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Ich möchte mich auch bei meinen Freunden in Karlsruhe und anderswo bedanken. Ihnen
verdanke ich Anregung in allen denkbaren Bereichen und Freude beim gemeinsamen Tun.
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Chapter 1

Introduction

The subject of the probabilistic part of this thesis are Palm measures and Palm distributions
of stationary point processes and, more generally, of stationary random measures. The so-
called Palm theory of stationary point processes named after the Swedish engineer Conny
Palm is today an integral part of modern probability theory and its applications. While the
distribution of a stationary point process describes the statistical properties as seen from a
“randomly chosen” site in space, the Palm distribution is the conditional distribution given
that there is a “typical” point of the process at the origin. Such a change of viewpoint
from an absolute to an intrinsic frame of reference is not only useful for understanding point
process properties but is also important for many applications.

The thesis of Palm (1943) himself includes both a general mathematical section with
contributions to stochastic point processes, and a specialized section on teletraffic intensity
variations. Today this field is intregrated into queueing theory, where Palm probabilities
provide the natural framework for formulating and studying basic relationships between
time and event averages. Another important field of applications is stochastic geometry.
Already the definition of some of the basic characteristics, as the distribution of the volume
of the typical cell of a random tessellation or of a rose of directions of a random surface
process, require the usage of Palm distributions.

Recent years have seen some interesting and partly even surprising developments in the
theory of stationary spatial point processes. One starting point was the observation made
by Thorisson (1999), that a point process is “point stationary” under its Palm distribution,
meaning that its statistical properties do not change, when the origin is shifted to another
point of the process, provided this point is chosen in an unbiased (“bijective”) way. In fact
point stationarity is just a special case of some invariance properties found by Mecke (1974).
Thorisson then asked whether point stationarity is characteristic for Palm distributions, a
problem that has finally been solved in Heveling and Last (2005).

Another quite intriguing and stimulating question asked by Ferrari, Landim und Thoris-
son (2004) was for the existence of a linear order between the points of a stationary Poisson
process that is almost surely preserved under translations. In low dimensions (d = 2, 3), they
proved the existence of an equivariant random tree on the points of the Poisson process that
can be transformed into a linear order. This approach inspired consecutive work by Holroyd
and Peres (2003), who extended the results to higher dimensions, and by Timar (2004), who

1



2 CHAPTER 1. INTRODUCTION

could even show that any stationary point process (with finite intensity) allows such a linear
order.

The problem of linear orderings seems only on first glance to be unrelated to Palm
measures. Actually, in the case of the real line, where a trivial linear order exists, a well-
known result for point processes states that, under some mild side conditions, a point process
is the Palm measure of some stationary point process if and only if it is invariant under the
shift, which translates the succesor of 0 to the origin. In higher dimensions, it turns out
that certain countable families of bijective point maps are sufficient to take the role of the
universal point map in this characterization of Palm measures. The definition of such families
is crucial for this appoach, which relies on Mecke’s (1967) intrinsic characterization of Palm
measures, and provides a new interpretation of it. Indeed, it turns out that the integral
equation in this characterization theorem is equivalent with point stationarity.

The first part of this thesis, which comprises Chapters 2 and 3, is completely measure-
free. We work on a locally compact, second countable Hausdorff (lcscH) group G, which
is assumed to be Abelian and equipped with its Borel σ-field G. A flow of translation
or shift operators is introduced and various classes of shift equivariant and shift invariant
functions are discussed, including (extended) index functions, selection functions, factor
graphs, (extended) point maps and point shifts.

Point maps are defined without any reference to a point process or probability space,
as measurable functions that map a locally finite subset ϕ to a point of ϕ, whenever 0 is a
point of ϕ. We associate a (deterministic) point shift θσ : L(G) → L(G) with the point map
σ, which translates a locally finite set ϕ in such a way that the point σ(ϕ) selected by the
point map is moved to the origin. The extended point map σ̃ is defined as a mapping on
the product space L(G) × G and yields an interpretation of the point map σ as a function
of a locally finite set ϕ and a point x ∈ ϕ. This interpretation motivates the non-standard
definition of bijective point maps. We establish that the set of bijective point maps equipped
with the composition is a group, which acts as a group operation on L(G).

In Chapter 3, various examples of families of point maps are defined. On the real line,
there exists a single (universal) point map τ that generates a complete family of bijective
point shifts, meaning that the iterates of τ and its inverse τ−1 exhaust the points of any
locally finite subset ϕ of R that contains the origin. On general lcscH groups G, and even
on Rd, it turns out that it is much more difficult to define complete families of point maps,
and the application of point maps to simple examples of periodic sets ϕ ∈ L(Rd) shows that
one cannot hope for a single point map to generate a complete family. However, a countable
and quasi-complete family of self-inverse, bijective point maps (matchings) on L(G) is given
(Theorem 3.2.6). In the special case G = Rd, a bijective point map is defined, that is
complete on large subclasses of L0(Rd), that turn out to be meaningful in a probabilistic
framework (cf. Chapter 5). Moreover, we can show that two bijective point maps suffice to
generate a complete family of point maps on L(Rd) (Theorem 3.4.1).

The second part of this thesis, starting with Chapter 4, begins with a short review of
the now classical Palm theory for stationary measures on M(G), the space of locally finite
measures on a lcscH group G. We follow Mecke’s (1967) exposition, which generalizes earlier
work by Matthes (1963) for the case of the real line. In particular, we state the intrinsic
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characterization theorem for Palm measures (Theorem 4.2.2), where Palm measures are
identified as the only σ-finite measures that satisfy a certain integral equation. We do not
have anything to add to this particularly beautiful result per se, but the characterization
results of Chapter 6 may be regarded as a new interpretation of the integral formula.

In Chapter 5, we take up the discussion from Chapter 3 in a probabilistic setting. A
recent result by Timar (2004) defines a linear order on the points of any stationary point
process, which is almost surely preserved under translations. We restate this result in terms
of point maps and provide an alternative proof using Palm calculus (Theorem 5.2.3). In
particular, the existence of a universal point map on general stationary point processes
allows a generalisation to higher dimensions of one direction of the key stationarity theorem,
that provides a one-to-one correspondance between stationary point processes on R and
stationary sequences of non-negative random variables (Proposition 5.3.3).

In the final chapter, the discussions of point maps and Palm measures merge to the
central problem of this thesis: The characterization of Palm measures by point stationarity.
This concept was introduced by Thorisson (1999), and formalizes the intuitive idea of a point
process for which the behaviour relative to a given point of the process is independant of the
point selected as origin. Now, where large families of bijective point shifts are known (even
in the general case of a lcscH group), point stationarity can be (and actually is) defined
as invariance under bijective point shifts. Thorisson (1999) showed that the Palm version
of a stationary point process is invariant under bijective point shifts. A more general, but
implicit, proof of this fact was given by Mecke(1974). The converse result was established by
Heveling and Last (2005), where, for the first time, a countable, complete family of bijective
point maps was defined and used in the proof of the characterization result. Slightly adapting
this technique of proof, we generalize the characterization result from Rd to a general lcscH
group G, and from simple counting measures to discrete measures (Theorem 6.3.7). Both
generalizations are needed in the last section, where an appoximation procedure for general
random measures on Rd is defined that allows a further extension of the characterization
results (Theorem 6.4.8).
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Chapter 2

Flow equivariant and flow invariant

analysis

2.1 Preliminaries

We will first introduce the general setting of this thesis. Let (G,+) be an Abelian group
and denote, as usual, the inverse element of x ∈ G by −x and the neutral element in G
by 0. We assume that G is equipped with a topology T , that the addition is a continuous
mapping from G × G (equipped with the product topology) to G and that the mapping
G→ G, x 7→ −x is also continuous.

Moreover, we assume that (G, T ) is a locally compact, second countable Hausdorff space
(lcscH space). Throughout, we will fix a dense sequence (zn) in G, and a countable base
B = (Bn) of the topology of G, where Bn, n ∈ N, are assumed to be open and relatively
compact, i.e., with compact closure (cf. Theorem A.1.3). The Borel σ-field on G will be
denoted by G.

By Theorem A.1.1, there exists a metric d on G, which is compatible with the topology
of G. Given a non-empty subset A ⊂ G, we will write d(x,A) := inf{d(x, y) : y ∈ A} for the
distance of a point x ∈ G from a set A ⊂ G. The open ball with centre x and radius r will
be denoted by Bd(x, r) := {y ∈ G : d(x, y) < r}.

The locally finite subsets L(G) comprise all subsets ϕ of G such that ϕ ∩ C is a finite
set for all relatively compact subsets C of G. On L(G) we introduce the hit-and-miss σ-field
L(G), which is generated by the mappings hB : L(G) → {0, 1}, B ∈ G, defined by

hB(ϕ) := 1{ϕ ∩ B 6= ∅}.

We denote by N = {1, 2, . . .} the natural numbers starting with one, and the power set of a
set A by P(A).

We will begin with some general measurability results of elementary mappings on the
spaces that we have introduced so far. Similar results and a by far more complete account
on measurability are given in [1], [24] and [15].

Lemma 2.1.1. The mapping f : L(G) × G → {0, 1} defined by f(ϕ, x) := 1{x ∈ ϕ} is
(L(G) ⊗ G,P({0, 1}))-measurable.

5
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Proof: Define C := {(ϕ, x) ∈ L(G) × G : x ∈ ϕ}. We have f−1({1}) = C, and it is
sufficient to show that C is a L(G)⊗G-measurable set. Recall that (zn) is a dense sequence
in G. We claim that

C =
⋂

m∈N

⋃

n∈N

({ψ ∈ L(G) : ψ ∩Bd(zn, 1/m) 6= ∅} × Bd(zn, 1/m)) .

Indeed, if (ϕ, x) ∈ C, then for all m ∈ N there exists an n ∈ N such that d(x, zn) < 1/m,
hence, ϕ ∩ Bd(zn, 1/m) 6= ∅ and (ϕ, x) ∈ {ψ ∈ L(G) : ψ ∩ Bd(zn, 1/m) 6= ∅} × Bd(zn, 1/m).

Conversely, assume that (ϕ, x) /∈ C. Then there exists ε > 0 such that ϕ ∩Bd(x, ε) = ∅.
For all m > 2/ε, we have Bd(zn, 1/m) ⊂ Bd(x, ε) whenever d(x, zn) < 1/m, and hence,
ϕ ∩ Bd(zn, 1/m) = ∅ whenever x ∈ Bd(zn, 1/m).

Lemma 2.1.2. The counting mappings cB : L(G) → [0,∞], B ∈ G, defined by cB(ϕ) :=
card(ϕ ∩ B) are (L(G),B([0,∞]))-measurable, where B([0,∞]) denotes the usual Borel σ-
field on [0,∞].

Proof: Let Pn be the partition of G, that is generated by the first n elements of the
countable base B, i.e., P1 = {B1, B

c
1}, P2 = {B1 ∩ B2, B1 ∩ Bc

2, B
c
1 ∩ B2, B

c
1 ∩B

c
2}, . . .. Then

define cn,B : L(G) → [0,∞] by

cn,B(ϕ) :=
∑

C∈Pn

1{ϕ ∩ (C ∩ B) 6= ∅}.

Then cn,B is an increasing sequence of (L(G),B([0,∞]))-measurable functions on L(G).
Since, for x, y ∈ G and x 6= y, there exists some n ∈ N such that x ∈ Bn and y /∈ Bn,
we have

lim
n→∞

cn,B(ϕ) = cB(ϕ),

so cB is measurable as the pointwise limit function of a sequence of measurable functions.

A total order relation ≤ on a set X satisfies the axioms of an order relation (reflexivity,
anti-symmetry, transitivity) and for all distinct x, y ∈ X we have either x ≤ y or y ≤ x.

Lemma 2.1.3. There exists a total order relation ≺ on G, such that any locally finite subset
ϕ of G equipped with the restriction of ≺ to ϕ×ϕ is a well-ordered set, i.e., any subset ψ ⊂ ϕ
has a minimal element with respect to ≺. Moreover, the sets Sx := {y ∈ G : y ≺ x}, x ∈ G,
are Borel subsets of G.

Proof: Define a function f : G → {0, 1}N by f := (fn) and fn(x) := 1{x ∈ Bn}. As
we have mentioned in the proof of Lemma 2.1.2, for x, y ∈ G and x 6= y, there exists some
n ∈ N such that x ∈ Bn and y /∈ Bn, hence, f is injective on G.

On {0, 1}N, we define the (reverse lexicographic) order relation ≤ by

(an) ≤ (bn) :⇔

{
(an) = (bn) or

there exists n ∈ N such that ak = bk for all 1 ≤ k < n and an > bn.
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Using the function f and the order relation ≤ on {0, 1}N we introduce an order relation on
G by

x ≺ y :⇔ f(x) ≤ f(y). (2.1)

Clearly, the order relation ≺ is total on G and we will now show that an arbitrary set
ϕ ∈ L(G) equipped with the restriction of ≺ to ϕ × ϕ is a well-ordered set. Assume that
ϕ 6= ∅. Then, for ψ ⊂ ϕ, there exists a number n ∈ N such that ψ∩Bk = ∅ for all k < n and
ψ ∩ Bn 6= ∅. Since Bn is relatively compact, ψ ∩ Bn = {x1, . . . , xm} is a finite set. Also, by
the definition of ≺, we have xi ≺ y for all 1 ≤ i ≤ m and y ∈ ψ \ {x1, . . . , xm}. Hence, the
minimum w.r.t. ≺ of the finite set {x1, . . . , xm} is also the minimum of ψ and we conclude
that ϕ is well-ordered by ≺.

Finally, for x ∈ G, the equation

Sx = {x} ∪
⋃

n∈N

(
{y ∈ G : fn(y) > fn(x)} ∩

⋂

k<n

{y ∈ G : fk(y) = fk(x)}
)

yields that Sx is a measurable subset of G, so the lemma is proved.

We will now define a sequence of mappings that enumerate the points of any locally
finite set ϕ ⊂ G. Add an element ∆ to the measurable space G, whose role is similar to the
cemetery state which is often added to the state space of a stochastic process, and which
allows us here to treat locally finite sets of finite and infinite cardinality simultaneously. A
σ-field G∆ on G ∪ {∆} is defined by all subsets A ⊂ G ∪ {∆} such that A \ {∆} ∈ G.

Proposition 2.1.4. There exists a sequence (ξn) of (L(G),G∆)-measurable mappings ξn :
L(G) → G ∪ {∆} such that, for any ϕ ∈ L(G), we have ϕ = {ξn(ϕ) : n ∈ N} \ {∆}, and,
for n 6= m, ξn(ϕ) 6= ξm(ϕ) or ξn(ϕ) = ξm(ϕ) = ∆.

Proof: Let C := {(ϕ, x) ∈ L(G)×G : x ∈ ϕ}. By Lemma 2.1.1, we have C ∈ L(G)⊗G.
Using Lemma 2.1.3, we first introduce the ranking function f : C → L(G) × N by

f(ϕ, x) := (ϕ, card(ϕ ∩ Sx)), (2.2)

that maps a point set ϕ ∈ L(G) and a point x ∈ ϕ to the point set ϕ and the rank of x ∈ ϕ
with respect to ≺. Since there exists n ∈ N such that x ∈ Bn, we have

card(ϕ ∩ Sx) ≤ card(∪k≤n(ϕ ∩ Bk)) <∞, (2.3)

so f is well defined. Also, for two distinct elements x, y ∈ ϕ such that x ≺ y, we have
Sx ⊂ Sy \ {y}, and deduce that card(ϕ ∩ Sx) ≤ card(ϕ ∩ Sy) − 1. Hence, f is injective, and
we denote by g the inverse function of f defined on Im(f) := {f(ϕ, x) : (ϕ, x) ∈ C}, the image
of C under f . We extend this definition to L(G)×N by letting g(ϕ, n) := ∆ if (ϕ, n) /∈ Im(f)
and obtain a left-inverse function of f . Then define functions ξn : L(G) → G ∪ {∆}, n ∈ N,
by

ξn(ϕ) := p2(g(ϕ, n)), ϕ ∈ L(G), (2.4)

where the projection on the second component of the product space is denoted by p2.
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Our proof that the functions ξn, n ∈ N, are measurable, is along the lines of the proof of
Lemma 3.1.7 in [24]. Indeed, for B ∈ G∆, we have

ξ−1
n (B) = {ϕ ∈ L(G) : ξn(ϕ) ∈ B}

=
⋃

j∈N

⋃

I⊂{1,...,j}

{
ϕ ∈ L(G) : card

(
ϕ ∩B ∩

⋂

i∈I

Bi ∩
⋂

i∈{1,...,j}\I

Bc
i

)
= 1,

card
(
ϕ ∩

⋂

i∈I

Bi ∩
⋂

i∈{1,...,j}\I

Bc
i

)
= 1,

card
(
ϕ ∩

j⋃

k=1

⋃

I∩{1,...,k}⊂J⊂{1,...,k}

I∩{1,...,k}6=J

( ⋂

i∈J

Bi

))
= n− 1

}
.

This formula can be interpreted in the following way. An element ϕ ∈ L(G) is in the set on
the right hand side if and only if, for some j ∈ N, there exist I ⊂ {1, . . . , j} and a unique
point x in ϕ∩

⋂
i∈I Bi∩

⋂
i∈{1,...,j}\I B

c
i , this point satisfies x ∈ B, and there are exactly n−1

other points in ϕ that are strictly smaller than x w.r.t. ≺. We have shown that ξ−1
n (B) for

any B ∈ G∆, and, hence, ξn, n ∈ N, are (L(G),G∆)-measurable mappings.
From the injectivity of f on C, we obtain that ξn(ϕ) 6= ξm(ϕ), whenever n 6= m and

either n ≤ card(ϕ) or m ≤ card(ϕ). Also, using (2.3), we have Im(g) ⊂ {(ϕ, ξn(ϕ)) : n ∈ N},
where Im(g) is the image of g. The choice of g as left-inverse function of f yields C =
Im(g) \ (L(G) × {∆}), and we conclude that ϕ = {ξn(ϕ) : n ∈ N} \ {∆}.

Let us now introduce the space M(G) of locally finite measures on G, where local finite-
ness of µ ∈ M(G) expresses that µ(B) < ∞ for all relatively compact sets B ∈ G, and the
subspace N(G) of simple, locally finite counting measures. We equip M(G) with the cylindri-
cal σ-field M(G) which is generated by the evaluation mappings eB : M(G) → [0,∞], B ∈ G,
given by eB : µ 7→ µ(B), where [0,∞] is endowed with the usual (Borel) σ-field.

We denote by N (G) the restriction of M(G) to N(G), or equivalently, the σ-field which is
generated by the restrictions of the mappings eB, B ∈ G, to N(G). Moreover, for µ ∈ M(G),
we denote by supp(µ) the support of the measure µ.

Lemma 2.1.5. The measurable spaces (L(G),L(G)) and (N(G),N (G)) are isomorphic.

Proof: We denote by δx the Dirac measure on G with a unit mass in x. Then
define mappings f and g as follows. Let f : L(G) → N(G) be the mapping given by
f(ϕ)(·) :=

∑
n∈N

δξn(ϕ)(·), and g : N(G) → L(G) by g(ψ) := supp(ψ). It is straightforward
to show that g is measurable, and, using Proposition 2.1.4, the same is true for f . Also, we
have f ◦ g = idN(G) and g ◦ f = idL(G), finishing the proof of the Lemma.

2.2 The flow of translation mappings

Let us now define the class of translation operators on G, G and M(G). The group G acts
on itself by addition of the inverse element, i.e., every element x ∈ G induces a bijective
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mapping on G as follows.

Definition 2.2.1. For x ∈ G we define an automorphism (of the measurable space (G,G))
θx : G→ G by

θxy := y − x, y ∈ G,

and call θx a translation or shift operator on G.

For two shift operators θx, θy we write θx ◦ θy for the composed mapping on G. It is easy
to prove that θx+y = θx ◦ θy, and that (θx)

−1 = θ−x. Hence, for ΘG := {θx : x ∈ G}, (ΘG, ◦)
is a group which is isomorphic to (G,+).

The domain of the shift operators θx, x ∈ G, extends naturally to the Borel sets of G and
locally finite measures on G. Define

θxB := B − x := {y − x : y ∈ B}, B ∈ G, (2.5)

θxµ(·) := µ ◦ θ−1
x (·), µ ∈ M(G). (2.6)

One may easily verify that these definitions satisfy the axioms of a group operation (cf.
[11], Chapter I 5) of ΘG on the respective space. The operation of ΘG on G can be restricted
to L(G), and the operation of ΘG on M(G) to N(G). More generally, if ΘG operates on
some space X, then also on any ΘG-stable subspace Y ⊂ X, i.e. a subspace that satisfies
θxY ⊂ Y for all x ∈ G. If ΘG acts on spaces Xi, i ∈ I, where I denotes an arbitrary index
set, then we define the action of ΘG on the product space

∏
i∈I Xi by

θx((xi)i∈I) := (θxxi)i∈I . (2.7)

Finally, if ΘG acts on X and F(X) denotes the non-negative, real functions on X, then ΘG

acts on F(X) through the definition

θx(f) := f ◦ θ−1
x , f ∈ F(X). (2.8)

The space M(G), topologized with the vague topology as described in Section A.2, is a
Polish space. A complete metric ρ on M(G), that is compatible with the vague topology, is
defined in (A.1). It is a remarkable fact that the associated Borel σ-field on M(G) coincides
with the cylindrical σ-field M(G) (cf. Theorem A.2.1). Let us define θ : M(G)×G → M(G)
by θ(ϕ, x) := θxϕ. Then we have the following continuity result.

Proposition 2.2.2. The mapping θ is continuous with respect to the product topology on
M(G) ×G. In particular, θ is (M(G) ⊗ G,M(G))-measurable.

Proof: The spaces M(G) and G are both metrizable (even Polish, cf. Theorem A.2.1
and Theorem A.1.2), hence, the same is true for the product space M(G) × G, and so it
is sufficient to show sequential continuity of θ. Let (ϕn, xn) be a converging sequence in
M(G) × G with limit (ϕ, x) and fix an arbitrary continuous function f : G → [0,∞) with
compact support. The claim of the propositon follows from

∫

G

f(y)θxn
ϕn(dy) →

∫

G

f(y)θxϕ(dy) as n→ ∞, (2.9)
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and we will use Theorem A.2.2 to show (2.9).

Define functions fn : G → [0,∞) by fn(y) := f(y − xn) and f0 : G → [0,∞) by
f0(y) := f(y − x). For n ≥ 0, the support supp(fn) of the function fn is compact in G as
a translate of the compact set supp(f). Let V be a relatively compact neighbourhood of 0.
Then Tychonov’s theorem yields that supp(f0) × cl(V ), where cl(V ) denotes the closure of
V , is compact in G × G. The addition is a continuous mapping from G × G to G (and G
has the Hausdorff property), hence, the Minkowski sum

supp(f0) ⊕ cl(V ) = {y + z : y ∈ supp(f), z ∈ cl(V )}

is also a compact set in G. Moreover, there exists n0 ∈ N such that x − xn ∈ V for all
n ≥ n0, and we have fn(y) > 0 if and only if f0(y + x− xn) > 0, hence,

supp(fn) ⊂ supp(f0) ⊕ cl(V ) for all n ≥ n0.

We deduce that the support of any of the functions fn, n ≥ 0, is contained in the compact set
K := ∪n<n0 supp(fn)∪ (supp(f0)⊕ cl(V )). It is obvious from the definition of fn, n ≥ 0, that
{fn : n ≥ 0} is a uniformly bounded family of measurable functions, and that fn(y) → f0(y)
as n→ ∞. Then Theorem A.2.2 yields that

∫

G

fn(y)ϕn(dy) →

∫

G

f0(y)ϕ(dy) as n→ ∞,

which is equivalent to (2.9).

The measurability of the mapping θ transfers to the restriction of θ to N(G) × G. We
deduce that the mapping L(G) × G → L(G), (ϕ, x) 7→ θxϕ is also measurable, a fact that
will be used several times in the sequel. Let us now define the notion of a flow (see also [7],
p. 183).

Definition 2.2.3. Let H be a semigroup and (X,X ) a measurable space. A family ΘH :=
{θz : z ∈ H} of measurable transformations θz : X → X is called a (generalized) flow on X
if θy+z = θy ◦ θz for all y, z ∈ H , and θ0 = idX. If H is equipped with a σ-field H and the
mapping (ϕ, y) 7→ θyϕ is (X ⊗H,X )-measurable, then we call ΘH a measurable flow on X.

In particular, we have shown in Proposition 2.2.2 that the family ΘG is a measurable
flow on M(G). In the remainder of this chapter, and througout this thesis, we will be
interested in mappings that commute with the operators of this flow, or are invariant under
the composition with θx, x ∈ G.

Definition 2.2.4. Assume that θH is a flow that acts on measurable spaces X and Y. Then
a function f : X → Y is called equivariant if f ◦ θx = θx ◦ f for all x ∈ H . For an arbitrary
third space Z, a function f : X → Z is called invariant if f ◦ θx = f for all x ∈ H .
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2.3 Point maps on L(G)

A simple description of point maps can be given as follows. A point map σ is a measurable
mapping that assigns to ϕ ∈ L(G) a point x ∈ ϕ if 0 ∈ ϕ, and 0 otherwise. We write
L0(G) := {ϕ ∈ L(G) : 0 ∈ ϕ} for all locally finite subsets of G that contain the origin. As
we shall see, we can define an extended point map on L(G) × G, which is closely related
to the original point map. We choose, however, to begin with separate definitions of point
maps and extended point maps.

Definition 2.3.1. A point map is a measurable mapping σ : L(G) → G such that σ(ϕ) ∈ ϕ
if ϕ ∈ L0(G) and σ(ϕ) = 0 otherwise. A measurable, equivariant mapping τ : L(G) × G →
L(G) ×G such that τ(ϕ, x) ∈ {ϕ} × ϕ for all ϕ ∈ L(G) and x ∈ ϕ, and τ(ϕ, x) = (ϕ, x) for
all ϕ ∈ L(G) and x /∈ ϕ is called an extended point map.

It is clear from the definition that a point map σ is determined by its restriction on
L0(G) and that it is measurable if and only if the restriction of σ to L0(G) is measurable.
Let us now show that there is a natural one-to-one correspondance between point maps and
extended point maps.

Lemma 2.3.2. For any point map σ, an extended point map σ̃ is defined by

σ̃(ϕ, x) := (ϕ, σ(θxϕ) + x), ϕ ∈ L(G), x ∈ G.

Conversely, for an extended point map τ , a point map τ̂ is defined by

τ̂(ϕ) := p2 ◦ τ(ϕ, 0), ϕ ∈ L(G),

where p2 : L(G) × G → G denotes the projection on the second coordinate. Moreover, we

have (̂σ̃) = σ for any point map σ and (̃τ̂) = τ for any extended point map τ .

Proof: The measurability of σ̃ follows from the measurability of σ and Proposition
2.2.2. The equivariance of σ̃ follows from

σ̃ ◦ θz(ϕ, x) = σ̃(θzϕ, x− z)

= (θzϕ, σ(θx−z(θzϕ) + x− z)

= (θzϕ, σ(θxϕ) + x− z) = θz ◦ σ̃(ϕ, x), z ∈ G.

Finally, for ϕ ∈ L(G) and x ∈ G, we have

p2(σ̃(ϕ, x)) ∈ ϕ⇔ σ(θxϕ) + x ∈ ϕ⇔ σ(θxϕ) ∈ θxϕ⇔ θxϕ ∈ L0 ⇔ x ∈ ϕ. (2.10)

The measurability of τ̂ follows from the measurability of ϕ 7→ τ(ϕ, 0) and the measura-
bility of p2. Moreover we have τ̂ (ϕ) ∈ ϕ if and only if p2(τ(ϕ, 0)) ∈ ϕ, which is the case if
and only if ϕ ∈ L0(G). The last claim is an immediate consequence of the definitions and
easily verified.
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Definition 2.3.3. We call a point map σ bijective if the extended point map σ̃ is bijective
from L(G) ×G to L(G) ×G. The set of bijective point maps will be denoted by Π.

In general, a bijective point map is not a one-to-one mapping. However, this terminology,
which was introduced by Thorisson in [29] and also used in [4], gives the right intuition for
the induced mapping x 7→ σ(θxϕ) + x on the points of some fixed ϕ ∈ L(G). In Proposition
2.4.4, we will give an additional argument for this choice of terminology.

The composition σ ◦ τ of two point maps σ : L(G) → G and τ : L(G) → G is defined via
the associated extended point maps by

σ ◦ τ(ϕ) := ̂̃σ ◦ τ̃(ϕ).

Lemma 2.3.2 yields that the composition of two point maps is again a point map, and that
σ̃ ◦ τ = σ̃ ◦ τ̃ . Moreover, if σ and τ are bijective, so is σ ◦ τ , and we define the inverse point

map of σ by σ−1 := ̂̃σ−1. Let us show that the composition ◦ defines a group operation on
the set of bijective point maps.

Proposition 2.3.4. Consider the set of bijective point maps Π equipped with the composition
of mappings ◦. Then (Π, ◦) is a group.

Proof: We have already mentioned that σ ◦ τ ∈ Π for all σ, τ ∈ Π. Let us now
show that ◦ is an associative operation. The composition of extended point maps is trivially
associative. For σ1, σ2, σ3 ∈ Π, we then have

(σ1 ◦ σ2) ◦ σ3 = ̂((σ̃1 ◦ σ̃2) ◦ σ̃3) = ̂(σ̃1 ◦ (σ̃2 ◦ σ̃3)) = σ1 ◦ (σ2 ◦ σ3).

Next, we have to show the existence of a neutral element and inverse elements. Clearly, the
trivial point map ν : L(G) → G defined by ν(ϕ) := 0 for all ϕ ∈ L(G) is a neutral element
with respect to the composition.

Then fix σ ∈ Π. Since the extended point map σ̃ : L(G)×G→ L(G)×G is a one-to-one
mapping, there exists an inverse mapping σ̃−1, which is equivariant, because σ̃ is equivariant.
Moreover, since L(G)×G is a Borel space, the measurability of σ̃−1 follows from a theorem
by Kuratowski (cf. Theorem A 1.3 in [7]), which states that the inverse of a measurable
bijection between two Borel spaces is again measurable. Using Lemma 2.3.2, we conclude
that σ−1 is the inverse element of σ in (Π(A), ◦).

To conclude this section, we will now complement our terminology for point maps and
families of point maps.

Definition 2.3.5. Let σ be a bijective point map on L(G). If σ = σ−1 then we call σ a
matching. If, for some n ∈ N, we have σn(ϕ) = 0 for all ϕ ∈ L(G), then we call σ cyclic of
order n.

Definition 2.3.6. Let A ⊂ L0(G). A family of point maps {σi : i ∈ I} is called complete
on A if ϕ = {σi(ϕ) : i ∈ I} for all ϕ ∈ A. It is called quasi-complete on A if

{x ∈ ϕ : θxϕ 6= ϕ} ⊂ {σi(ϕ) : i ∈ I}

for all ϕ ∈ A.
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A family of bijective point maps {σi, i ∈ I} generates a – possibly strictly – larger family
of bijective point maps in the following way.

Definition 2.3.7. Let {σi : i ∈ I} be a family of bijective point maps. Then the family of
compositions of finitely many of the point maps or their inverse point maps

{σk1i1 ◦ . . . ◦ σkn

in
: n ∈ N, ij ∈ I, kj ∈ Z, 1 ≤ j ≤ n}

is called the generated family and denoted by 〈{σi : i ∈ I}〉. In particular, we denote by
〈{σ}〉 = {σn : n ∈ Z} the family of point maps generated by σ.

Definition 2.3.8. Given a bijective point map σ on L(G) and ϕ ∈ L(G), we call the set
Oσ(ϕ) := {σn(ϕ) : n ∈ Z} the orbit of 0 in ϕ under σ. For A ⊂ L0(G), the point map σ is
called complete on A or universal point map on A if Oσ(ϕ) = ϕ for all ϕ ∈ A.

Clearly, σ is complete on A if and only if the family 〈{σ}〉 of point maps generated by σ
is complete on A. The existence of such a universal point map on the locally finite subsets
L(R) of R is a triviality (cf. Section 3.1.1). In higher dimensions, i.e., on L(Rd), it has
been the subject of recent papers such as [2], [5] and [30]. The surprising results will be
summarized in Section 3.3.

2.4 Point shifts on L(G)

Let us now introduce the second important family of mappings, the point shifts, which are
closely related to point maps.

Definition 2.4.1. Let σ : L(G) → G be a point map. The composed mapping θσ : L(G) →
L(G) defined by

θσ(ϕ) := θσ(ϕ)ϕ

is called the point shift associated with σ.

Lemma 2.4.2. Let σ : L(G) → G be a point map, then the associated point shift θσ :
L(G) → L(G) is (L(G),L(G))-measurable.

Proof: Clearly, θσ is a composition of measurable mappings.

Simple examples show that point shifts are not (θx)-equivariant mappings. However, they
fit well into the framework of this chapter (cf. Corollary 2.4.6). Let us begin our analysis of
points shifts with some simple computation rules.

Proposition 2.4.3. Let σ, τ : L(G) → G be point maps and π : L(G) → G a matching.
The following equalities involving shift operators, point maps and point shifts hold.

(a) θσ ◦ θx(ϕ) = θσ(θxϕ)+x(ϕ), ϕ ∈ L(G),

(b) (σ ◦ τ)(ϕ) = σ ◦ θτ (ϕ) + τ(ϕ), ϕ ∈ L(G),
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(c) π ◦ θπ(ϕ) = −π(ϕ), ϕ ∈ L(G),

(d) θσ◦τ = θσ ◦ θτ .

Proof: Throughout the proof we write ϕ ∈ L(G) for an arbitrary locally finite subset of
G. Parts (a) and (b) follow directly from the definitions above and one line of computation,
i.e.,

θσ ◦ θx(ϕ) = θσ(θxϕ)(θxϕ) = θσ(θxϕ)+x(ϕ)

implies (a) and from

(σ ◦ τ)(ϕ) = ̂̃σ ◦ τ̃(ϕ) = p2(σ̃(ϕ, τ(ϕ)) = σ(θτ (ϕ)) + τ(ϕ) = σ ◦ θτ (ϕ) + τ(ϕ)

we obtain (b). Using (b) for the second equality, we have

π ◦ θπ(ϕ) = π(θπ(ϕ)) + π(ϕ) − π(ϕ) = π ◦ π(ϕ) − π(ϕ) = π ◦ π−1(ϕ) − π(ϕ) = −π(ϕ),

hence (c) is proved. Finally, using (b) one more time, we obtain

θσ◦τ (ϕ) = θσ(θτ(ϕ)ϕ)+τ(ϕ)(ϕ) = θσ(θτ(ϕ)(ϕ)) ◦ θτ(ϕ)(ϕ) = θσ(θτ(ϕ)(ϕ)) = θσ ◦ θτ (ϕ),

so (d) holds and the proposition is proved.

Proposition 2.4.4. The point shift θσ : L(G) → L(G) associated with the point map σ is
bijective if and only if σ is a bijective point map. In this case, we have θσ−1 = (θσ)

−1.

Proof: Assume that σ is a bijective point map. There exists an inverse point map σ−1

and σ ◦ σ−1(ϕ) = 0 = σ−1 ◦ σ(ϕ) for all ϕ ∈ L(G). Proposition 2.4.3 (d) yields that

θσ ◦ θσ−1 = θσ◦σ−1 = θ0 = θσ−1◦σ = θσ−1 ◦ θσ.

Hence, θσ−1 is the inverse element of θσ, and, in particular, θσ is bijective.
Let us now assume that θσ is bijective on L(G). We fix ϕ ∈ L(G) and show that σ̃(ϕ, ·) is

a bijective mapping from G to G. Let x, y ∈ G such that x 6= y. If θxϕ = θyϕ then trivially
σ(θxϕ) + x 6= σ(θyϕ) + y. If θxϕ 6= θyϕ, then, by Proposition 2.4.3 (a),

θσ(θxϕ)+x(ϕ) = θσ ◦ θx(ϕ) = θσ(θxϕ) 6= θσ(θy(ϕ)) = θσ ◦ θy(ϕ) = θσ(θyϕ)+y(ϕ),

hence, also σ(θxϕ) + x 6= σ(θyϕ) + y. We deduce that σ̃ is injective.
To show surjectivity, let (ϕ, x) ∈ L(G) × G. The mapping θσ is surjective, hence, there

exists a set ψ ∈ L(G) such that θσ(ψ) = θxϕ. Moreover, the set ψ is a translate of ϕ,
so there exists y ∈ G such that θσ(θyϕ) = θxϕ. From Proposition 2.4.3 (a) we infer that
θσ(θyϕ)+y(ϕ) = θxϕ and hence θyϕ = θ−σ(θyϕ)+x(ϕ). Define z := −σ(θyϕ) + x ∈ G, then

σ̃(ϕ, z) = (ϕ, σ(θzϕ) + z) = (ϕ, σ(θyϕ) + z) = (ϕ, x),

finishing the proof of the proposition.
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Corollary 2.4.5. The set of point shifts associated with bijective point maps ΘΠ = {θσ :
σ ∈ Π}, equipped with the composition ◦, is a group. Moreover, the mapping σ 7→ θσ is a
group homomorphism and a point map σ is mapped to the neutral element θ0 if and only if
ϕ− σ(ϕ) = ϕ for all ϕ ∈ L(G).

To conclude this section, we will show how bijective point shifts fit into the framework
of this chapter.

Corollary 2.4.6. The group {θσ : σ ∈ Π} is a generalized flow on L(G), the flow of bijective
point shifts.

Proof: We have shown in Corollary 2.3.4 that (Π, ◦) is a group, and in Proposition
2.4.3 (d) that θσ◦π = θσ ◦ θπ for all σ, π ∈ Π.

2.5 Index functions

In the remaining sections of this chapter, we will provide tools for the definition and inter-
pretation of (families of) point maps. We will begin with index functions, that were first
introduced on point processes by Holroyd and Peres in [5]. They defined index functions
in an isometry invariant way in order to generalize a tree construction for random graphs
on Rd. Here we will only postulate invariance under translation (shift) operators. In [30],
Timar gave a more detailed account on index functions. We will adapt this concept to our
deterministic setting.

Definition 2.5.1. An injective, measurable function f : L(G) → [0,∞) is called index
function. The associated extended index function f̃ : L(G) × G → [0,∞) is defined as the
composed mapping

f̃(ϕ, x) := f(θxϕ), ϕ ∈ L(G), x ∈ G.

The flow of shift operators ΘG operates on the product L(G)×G of measurable spaces as
defined in (2.7), and it is easy to check that the extended index function is a shift invariant
mapping.

Lemma 2.5.2. Let ϕ ∈ L(G) and f̃ an extended index function. The mapping

x 7→ f̃(ϕ, x)

is an injective function from G to [0,∞), if and only if, for all x, y ∈ G, x 6= y, we have
θxϕ 6= θyϕ.

Proof: The lemma follows directly from the definition of an index function

Note that in [5] and [30], almost sure injectivity in the sense of Lemma 2.5.2 is a defining
property for the index function of a random point set.
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The following example of an index function is constructed along the lines that Holroyd
and Peres propose in [5]. Recall from Section 2.1 that B = (Bn) denotes a countable base of
the topology of G, and Bn, n ∈ N, are open sets with compact closure. We then define the
standard index function I : L(G) → [0,∞) by

I(ϕ) :=
∑

n∈N

2−n 1{ϕ ∩ Bn 6= ∅}. (2.11)

Lemma 2.5.3. The function I is an index function. In particular, for ϕ, η ∈ L(G), we have
ϕ = η if and only if I(ϕ) = I(η).

Proof: As a pointwise limit function of measurable functions, I is also measurable.
For ϕ, η ∈ L(G) such that ϕ 6⊂ η, there exists x ∈ ϕ \ η. Since G \ η is an open subset of G,
there exists n ∈ N such that x ∈ Bn ⊂ G \ η. Hence, ϕ ∩ Bn 6= ∅ and η ∩ Bn = ∅, and we
conclude that I(ϕ) 6= I(η).

We will now introduce the notion of periodicity of locally finite subsets of G.

Definition 2.5.4. We define the periodicity lattice mapping L : L(G) → L(G) by

L(ϕ) := {x ∈ G : θxϕ = ϕ} for all ϕ 6= ∅,

and by L(∅) := ∅. An element ϕ ∈ L(G) is called aperiodic if L(ϕ) = {0}, otherwise it is
called periodic.

We may summarize the link between index function and periodicity lattice by the fol-
lowing equivalences, which are often used in the sequel,

Ĩ(ϕ, x) = Ĩ(ϕ, y) ⇔ ϕ− x = ϕ− y ⇔ x− y ∈ L(ϕ), ϕ ∈ L(G), x, y ∈ G.

Moreover, the periodicity lattice has the following properties.

Lemma 2.5.5. The mapping L : L(G) → L(G) is measurable and shift invariant. For
ϕ ∈ L(G) \ {∅}, the periodicity lattice L(ϕ) is a discrete subgroup of G.

Proof: Let ϕ ∈ L(G) \ {∅} and y ∈ ϕ. Then L(ϕ) ⊂ θyϕ, and, in particular, L(ϕ)
is locally finite. Recall that we have already shown the measurability of the functions ξn
(cf. Proposition 2.1.4), the mapping (ϕ, x) 7→ θxϕ (cf. Proposition 2.2.2), and of the index
function I (cf. Lemma 2.5.3). Since x ∈ L(ϕ) if and only if x = y − z for some z ∈ ϕ with
ϕ− y = ϕ− z, the measurability of L follows from

{ϕ ∈ L(G) : L(ϕ) ∩ B 6= ∅}

=
⋃

n∈N

{ϕ ∈ L(G) : card(ϕ) ≥ n, Ĩ(ϕ, ξ1(ϕ)) = Ĩ(ϕ, ξn(ϕ)), ξ1(ϕ) − ξn(ϕ) ∈ B}

for all B ∈ G. Moreover, L is shift invariant, because ϕ = θxϕ if and only if θzϕ = θx(θzϕ)
for all ϕ ∈ L(G) and x, z ∈ G. Finally, the subgroup property follows from θ0ϕ = ϕ and
θx−yϕ = ϕ, whenever θxϕ = ϕ and θyϕ = ϕ.



2.6. SELECTION FUNCTIONS AND THINNING PROCEDURES 17

The extended index function Ĩ may also be used to define an intrinsic order relation on
ϕ as follows

x≪ϕ y :⇔ Ĩ(ϕ, x) ≤ Ĩ(ϕ, y), x, y ∈ ϕ. (2.12)

We will refer to ≪ϕ as the standard order relation on ϕ and, abusing notation, we will write
≪ for ≪ϕ, whenever the set ϕ is uniquely determined from the context.

Lemma 2.5.6. The standard order relation is equivariant in the sense that, for x, y ∈ ϕ
and z ∈ G, we have x ≪ϕ y if and only if x − z ≪θzϕ y − z. It is a total order relation on
ϕ if and only if ϕ is aperiodic.

Proof: Shift invariance of the extended index function yields the equivariance of the
order relation. Also, ϕ ∈ L(G) is aperiodic if and only if the function x 7→ Ĩ(ϕ, x) is injective,
hence, if and only if ≪ϕ is a total order relation on ϕ.

2.6 Selection functions and thinning procedures

We will begin this section with the introduction of global and local selection functions.

Definition 2.6.1. A selection function is an equivariant, measurable mapping Φ : L(G) →
L(G) such that Φ(ϕ) ⊂ ϕ. A local selection function is a measurable mapping Ψ : L(G) →
L(G) such that Ψ(ϕ) ⊂ ϕ and θx ◦ Ψ(ϕ) = Ψ ◦ θx(ϕ) for all ϕ ∈ L(G) and x ∈ Ψ(ϕ) (local
equivariance property).

Lemma 2.6.2. Any selection function Φ is also a local selection function. For selection
functions Φ1,Φ2 and local selection functions Ψ1,Ψ2, the composed mapping Φ1 ◦ Φ2 is a
selection function, the composed mapping Ψ1◦Ψ2 a local selection function, and the mapping
Ψ1 ∩ Ψ2 : L(G) → L(G) defined by (Ψ1 ∩ Ψ2)(ϕ) := Ψ1(ϕ) ∩ Ψ2(ϕ) is also a local selection
mapping.

Proof: The first two claims follow almost immediately from the definitions, so that
we will only prove that Ψ1 ◦ Ψ2 is a local selection function. The mapping Ψ1 ◦ Ψ2 is
measurable, because it is the composition of measurable mappings. Also, for ϕ ∈ L(G) and
x ∈ Ψ1 ◦ Ψ2(ϕ), we have x ∈ Ψ2(ϕ) and then

(Ψ1 ◦ Ψ2) ◦ θx(ϕ) = Ψ1 ◦ (Ψ2 ◦ θx)(ϕ) = Ψ1 ◦ (θx ◦ Ψ2)(ϕ) = θx ◦ (Ψ1 ◦ Ψ2)(ϕ),

where we have used x ∈ Ψ2(ϕ) for the second equation and x ∈ Ψ1(Ψ2(ϕ)) for the last
equation.

We have shown that the classes of (local) selection functions are stable with respect to
compositions. More importantly, as we will show in the following proposition, the composi-
tion of a (bijective) point map with a local selection function that satisfies a side condition,
is again a (bijective) point map. This fact will be used frequently in Chapter 3, where we
will explicitly define various families of point maps.
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Proposition 2.6.3. Let σ be a point map resp. bijective point map and Ψ a local selec-
tion function that satisfies Ψ(ϕ) ∈ L0(G) for all ϕ ∈ L0(G). Then σ ◦ Ψ is a point map
resp. bijective point map.

Proof: The mapping σ ◦ Ψ is measurable as a composition of measurable mappings.
If ϕ ∈ L0(G) we have Ψ(ϕ) ∈ L0(G) and then

σ ◦ Ψ(ϕ) = σ(Ψ(ϕ)) ∈ Ψ(ϕ) ⊂ ϕ.

Also, ϕ /∈ L0(G) yields Ψ(ϕ) /∈ L0(G) and hence σ ◦Ψ(ϕ) = 0. Hence, σ ◦Ψ is a point map.
If σ is bijective then there exists an inverse point map σ−1, and we claim that σ−1 ◦Ψ is

the inverse point map of σ ◦ Ψ. Lemma 2.4.3(b) yields

0 = σ−1 ◦ σ(Ψ(ϕ)) = σ−1 ◦ θσ(Ψ(ϕ)) + σ(Ψ(ϕ)) = σ−1 ◦ θσ◦Ψ(ϕ) ◦ Ψ(ϕ) + σ(Ψ(ϕ)) (2.13)

for all ϕ ∈ L(G). Also, we have shown above that (σ ◦ Ψ)(ϕ) ∈ Ψ(ϕ) whenever ϕ ∈ L0(G),
hence, by the local equivariance property of Ψ

Ψ ◦ θσ◦Ψ(ϕ) = θσ◦Ψ ◦ Ψ(ϕ), ϕ ∈ L0(G). (2.14)

For ϕ ∈ L(G) \ L0(G), equation (2.14) is trivially satisfied, because Ψ ◦ Ψ(ϕ) ⊂ Ψ(ϕ) ⊂ ϕ
and, hence, σ ◦ Ψ ◦ Ψ(ϕ) = σ ◦ Ψ(ϕ) = 0. We deduce that

(σ−1 ◦ Ψ) ◦ (σ ◦ Ψ)(ϕ)

= σ−1 ◦ Ψ ◦ θσ◦Ψ(ϕ)(ϕ) + σ ◦ Ψ(ϕ)

= σ−1 ◦ θσ◦Ψ(ϕ) ◦ Ψ(ϕ) + σ ◦ Ψ(ϕ)

= 0

for all ϕ ∈ L(G), where we have used Lemma 2.4.3 (b) for the first, (2.14) for the second
and (2.13) for the third equation. We have proved that the point map σ−1 ◦ Ψ is the left
inverse point map of σ ◦Ψ, and, exchanging the roles of σ and σ−1, we obtain that it is also
the right inverse point map of σ ◦Ψ. Hence, (σ ◦Ψ)−1 = σ−1 ◦Ψ and, in particular, σ ◦Ψ is
a bijective point map.

Let us now define r-regular subsets of locally finite sets, and then introduce r-regularity
of selection functions.

Definition 2.6.4. For ϕ ∈ L(G) and r > 0, we call ψ an r-regular subset of ϕ if ψ ⊂ ϕ,
d(x, ψ) ≤ r for all x ∈ ϕ and d(y, z) > r for all distinct y, z ∈ ψ.

Definition 2.6.5. Let r > 0. A selection function Φ is called r-regular on A ⊂ L(G) if Φ(ϕ)
is an r-regular subset of ϕ for all ϕ ∈ A.

We will now define an example of a selection function Φr, which is r-regular on the ape-
riodic, locally finite subsets of G, i.e., on A = {ϕ ∈ L(G) : L(ϕ) = {0}}, where L(ϕ) denotes
the periodicity lattice of ϕ (cf. Definition 2.5.4). It is inspired by similar constructions in
[5] and [30].
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Fix an enumeration (qn) of the non-negative rational numbers contained in (0, 1) and let
r > 0. Define the mappings Ψn,r : L(G) → L(G), n ∈ N, by

Ψn,r(ϕ) := {x ∈ ϕ : |Ĩ(ϕ, x) − qn| ≤ |Ĩ(ϕ, y) − qn| for all y ∈ Bd(x, r)},

where Ĩ denotes the extended version of the standard index function defined in (2.11). A
point x ∈ ϕ is in Ψn,r(ϕ) if and only if the extended index function Ĩ applied to (ϕ, x)
is closer to qn than the extended index function applied to (ϕ, y) for all y ∈ ϕ such that
d(x, y) ≤ r.

For B ∈ G and r > 0, we define the parallel set B⊕r at distance r by

B⊕r := {x ∈ G : inf{d(x, y) : y ∈ B} ≤ r}.

Only in the case of a translation invariant metric d, i.e., d(x, y) = d(x − z, y − z) for all
x, y, z ∈ G, and for closed sets F ⊂ G, the equality F⊕r = F ⊕ cl(Bd(0, r)) holds, where
cl(Bd(0, r)) denotes the closed unit ball in G. It follows from the continuity of the addition
in G that, for a measurable set B ∈ G and r ≥ 0, the parallel set B⊕r is also measurable.
Define Φn,r : L(G) → L(G), n ∈ N, inductively by Φ1,r(ϕ) := Ψ1,r(ϕ) and then

Φn,r(ϕ) := Φn−1,r(ϕ) ∪ (Ψn,r(ϕ) \ (Φn−1,r(ϕ))⊕r), n ≥ 2.

Finally, define Φr : L(G) → L(G) by

Φr(ϕ) :=
⋃

n∈N

Φn,r(ϕ). (2.15)

Let us show that Φr is a selection function.

Lemma 2.6.6. The mapping Φr is equivariant and measurable.

Proof: The equivariance of the mappings Ψn,r, n ∈ N, can be seen from their definition.
One deduces inductively that the mappings Φn,r, n ∈ N, are equivariant and, hence, the same
is true for Φr.

The measurability of Ψn,r, n ∈ N, follows from
{
ϕ ∈ L(G) : Ψn,r(ϕ) ∩B 6= ∅

}

=
⋃

k∈N

⋂

m∈N

{
ϕ ∈ L(G) : ξk(ϕ) ∈ B, |Ĩ(ϕ, ξk(ϕ)) − qn| ≤ |Ĩ(ϕ, ξm(ϕ)) − qn|

or d(ξk(ϕ), ξm(ϕ)) > r
}
, B ∈ G,

and the measurability of ξk, k ∈ N, (cf. Propositon 2.1.4) and the extended standard index
function Ĩ (cf. Lemma 2.5.3). Define Φ0,r(ϕ) := ∅ for all ϕ ∈ L(G), then the measurability
of the mappings Φn,r, n ∈ N, follows inductively from

{ϕ ∈ L(G) : Φn,r(ϕ) ∩B 6= ∅}

= {ϕ ∈ L(G) : Φn−1,r(ϕ) ∩ B 6= ∅}

∪
⋃

n∈N

⋃

k∈N

{ϕ ∈ L(G) : ξk(ϕ) ∈ Ψn,r(ϕ) ∩B, ξk(ϕ) /∈ Φn−1,r(ϕ) ∩B⊕r}, B ∈ G.
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Finally, we have

{ϕ ∈ L(G) : Φr(ϕ) ∩ B 6= ∅} =
⋃

n∈N

{ϕ ∈ L(G) : Φn,r(ϕ) ∩B 6= ∅}, B ∈ G,

and, hence, Φr is measurable and equivariant, i.e., a selection function.

Lemma 2.6.7. Let ϕ ∈ L(G) be aperiodic. Then Φr(ϕ) is a r-regular subset of ϕ.

Proof: For x ∈ ϕ, there exists k ≥ 1 such that |Ĩ(ϕ, x) − qk| < |Ĩ(ϕ, y) − qk| for all
y ∈ ϕ∩Bd(x, r)\{x}, because ϕ is locally finite, f injective on ϕ, and (qn) dense in [0, 1]. We
deduce that x ∈ Ψk,r(ϕ). Hence, either x ∈ (Φk−1,r(ϕ))⊕r ⊂ (Φr(ϕ))⊕r or x /∈ (Φk−1,r(ϕ))⊕r,
and then x ∈ Φk,r(ϕ) ⊂ (Φr(ϕ))⊕r.

Moreover, it follows directly from the definition of Φr and the injectivity of x 7→ I(ϕ, x̃)
for all aperiodic ϕ ∈ L(G) that d(x, y) > r for all distinct x, y ∈ Φr(ϕ).

Let us now introduce families of selection mappings (Tn) that map a locally finite set ϕ
to a decreasing sequence (Tn(ϕ)) of subsets of ϕ.

Definition 2.6.8. A sequence (ϕn) of subsets of ϕ ∈ L(G), such that ϕn+1 ⊂ ϕn for all
n ∈ N is called thinning of ϕ. It is called non-trivial if ϕn 6= ∅ for all n ∈ N, and complete if
ϕn ↓ ∅.

Definition 2.6.9. Let (rn) be an increasing sequence of non-negative real numbers such
that rn ↑ ∞. A thinning (ϕn) of ϕ0 ∈ L(G) is called (rn)-regular if ϕn is a rn-regular subset
of ϕn−1 for all n ∈ N.

Lemma 2.6.10. If (ϕn) is a (rn)-regular thinning of ϕ then

card
( ⋂

n∈N

Tn(ϕ)
)
≤ 1.

If ϕ ∈ L(G) satisfies 0 < card(ϕ) < ∞, then there exists n0 ∈ N such that card(Tn(ϕ)) = 1
for all n ≥ n0.

Proof: Assume that there are two distinct points x, y ∈ G in
⋂
n∈N

Tn(ϕ). There exists
n0 ∈ N such that rn > d(x, y), and, hence, {x, y} ⊂ Tn(ϕ) implies that Tn(ϕ) is not a
rn-regular subset, a contradiction. The second claim follows from the fact that a finite set
is always bounded.

Definition 2.6.11. A thinning procedure (Tn) is a sequence of selection functions Tn, n ∈ N,
such that (Tn(ϕ)) is a thinning for all ϕ ∈ L(G). It is called non-trivial resp. complete
resp. (rn)-regular on A ⊂ L(G) \ ∅ if the thinning (Tnϕ) is non-trivial resp. complete
resp. (rn)-regular for all ϕ ∈ A.
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Let (rn) be a sequence of non-negative real numbers such that rn ↑ ∞. Using the selection
function Φr from (2.15), we define an example of a thinning procedure (Tn), that is (rn)-
regular on A ⊂ L(G), the aperiodic, locally finite subsets of G. Indeed, let T0 := idL(G) and
then inductively

Tn+1(ϕ) := Φrn+1(Tn(ϕ)), n ∈ N. (2.16)

In the special case, where rn = cn for some c > 1, we will call this thinning procedure the
c-exponential thinning procedure.

Proposition 2.6.12. The thinning procedure (Tn) defined above is (rn)-regular on the ape-
riodic, locally finite subsets A ⊂ L(G).

Proof: The claim of the proposition follows immediately from Lemma 2.6.7.

2.7 Graphs on point sets

In the final section of this chapter, we will define factor graphs, i.e., equivariant mappings,
that map a locally finite point set ϕ to a graph Γ(ϕ) with vertex set V (ϕ) ⊂ ϕ. Many of
the recent results on graphs defined on point processes (cf. [2], [4], [5] and [30], also the
book [20]) can be stated in terms of equivariant mappings, allowing a strict separation of
the deterministic construction of the graph, and the study of its random properties, which
depend on the underlying point process.

In this thesis, the introduction of factor graphs has a double purpose. First, point maps
can be most easily visualized (and interpreted) by means of the associated (equivariant)
graph, and, secondly, recent findings in random graph theory will lead to examples of point
maps.

Definition 2.7.1. A factor graph Γ : L(G) → L(G) × L(G × G) is given by a pair of
measurable, equivariant mappings Γ = (V,E), where V : L(G) → L(G) satisfies V (ϕ) ⊂ ϕ
for all ϕ ∈ L(G), and E : L(G) → L(G × G) is such that E(ϕ) ⊂ V (ϕ) × V (ϕ) for all
ϕ ∈ L(G). We call V the vertex mapping and E the edge mapping of Γ.

Let us now shortly summarize some basic terminology from graph theory, which refers
to a directed graph Γ = (V,E). An edge (x, y) ∈ E connects two vertices, the starting
point x ∈ V and the endpoint y ∈ V . If connected by an edge, we call x and y adjacent
or neighbours. The degree of a vertex is the number of its neighbours. If every vertex has
finite degree, we call the graph locally finite. A finite sequence of pairwise distinct vertices
(x1, . . . , xn), n ≥ 2, and edges (xi, xi+1), i ∈ {1, . . . , n − 1} is called a finite path. If any
two points are distinct except x1 = xn, then (x1, . . . , xn) is a circuit. A sequence of pairwise
distinct vertices (xi), i ∈ Z, such that (xi, xj) ∈ E(ϕ) if and only if j = i+ 1 for all i, j ∈ Z
is called a directed doubly infinite path.

An edge of the form (x, x) is called a loop. A subset of vertices S ⊂ V in a graph is
connected if there is a path between any two distinct vertices in S. A tree is a connected
graph without loops and circuits. A connected component of a graph is a maximal connected
subset, and if every connected component in a graph is a tree, the graph is called a forest.



22 CHAPTER 2. FLOW EQUIVARIANT AND FLOW INVARIANT ANALYSIS

For a more complete account we refer the reader to [13]. Let us illustrate the definition
of a factor graph with a well-known example of an undirected graph. For r ≥ 0, we define
the geometric graph Γr = (Vr, Er) by Vr(ϕ) := ϕ and Er(ϕ) := {(x, y) ∈ ϕ×ϕ : d(x, y) ≤ r}.

Lemma 2.7.2. The geometric graph Γr for distance r ≥ 0 is a factor graph.

Proof: The equivariance of Γr follows directly from the definition. We have to prove
the measurability of Er. For B ∈ G ⊗ G, we have

{
ϕ ∈ L(G) : Er(ϕ) ∩ B 6= ∅

}

=
⋃

n,m∈N

{
ϕ ∈ L(G) : (ξn(ϕ), ξm(ϕ)) ∈ B and d(ξn(ϕ), ξm(ϕ)) ≤ r

}
,

so the measurability follows from Proposition 2.1.4.

There exists an extensive literature on random geometric graphs, i.e. the composition of
a geometric graph and a point process. For an introduction to the subject and many recent
results, we refer the reader to the monograph [20]. Let us now establish the link between
factor graphs and point maps.

Definition 2.7.3. Let σ be a point map. The associated graph Γσ = (Vσ, Eσ) is defined by
Vσ(ϕ) := ϕ and Eσ(ϕ) := {(x, σ(θxϕ) + x) : x ∈ ϕ}.

Proposition 2.7.4. The associated graph Γσ of a point map σ is a factor graph.

Proof: The measurability and equivariance of Vσ are obvious. The measurability of
Eσ follows from

{ϕ ∈ L(G) : Eσ(ϕ) ∩B 6= ∅} =
⋃

n≤card(ϕ)

{ϕ ∈ L(G) : (ξn(ϕ), σ(θξn(ϕ)ϕ) + ξn(ϕ)) ∈ B}

for all B ∈ G ⊗ G. Finally, the equivariance of the extended point map (cf. Lemma 2.3.2)
yields σ̃(ϕ, x) = (ϕ, y) if and only if σ̃(θzϕ, x−z) = (θzϕ, y−z), and we deduce that (x, y) ∈
Γσ(ϕ) if and only if (x− z, y− z) ∈ Eσ(θzϕ). We conclude that Eσ ◦ θz(ϕ) = θz ◦Eσ(ϕ).

Proposition 2.7.5. A point map σ is bijective if and only if the associated graph Γσ =
(Vσ, Eσ) satisfies

card({(x, y) ∈ Eσ(ϕ) : x ∈ ϕ}) = 1, ϕ ∈ L(G), y ∈ ϕ, (2.17)

i.e., if and only if, for all ϕ ∈ L(G), any y ∈ ϕ is the endpoint of exactly one directed edge
(x, y) in Γσ(ϕ).

Proof: Let ϕ ∈ L(G) and x ∈ ϕ. Again, we use the link between the associated graph
and the extended point map stated at the beginning of the proof of Proposition 2.7.4. The
extended point map σ̃ is bijective if and only if, for all ϕ ∈ L(G), the mapping x→ σ(θxϕ)+x
is a bijection on ϕ. We claim that the latter is true, if and only if any point y ∈ ϕ is the
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endpoint of exactly one directed edge ends in (x, y). Indeed, σ̃ is surjective, whenever every
point y ∈ ϕ is the endpoint of at least one directed edge (x, y), and σ̃ is injective, whenever
every point y ∈ ϕ is the endpoint of at most one directed edge (x, y) in Eσ(ϕ), ϕ ∈ L(G).

Proposition 2.7.6. A point map σ is a universal point map on A ⊂ L0(G), i.e., 〈{σ}〉 is
a complete family of point maps on A ⊂ L0(G), if and only if Γσ(ϕ) is a doubly-infinite,
directed path or a finite circuit for all ϕ ∈ A.

Proof: If σ is a universal point map on A and ϕ ∈ A then ϕ = {σn(ϕ) : n ∈ Z}. We
distinguish two cases. If the set {n ∈ N : σn(ϕ) = 0} is empty, then σk(ϕ) 6= σm(ϕ) for all
k,m ∈ Z, k < m, because otherwise we have

0 = σ−k ◦ σk(ϕ) = σ−k ◦ σm(ϕ) = σm−k(ϕ),

a contradiction. Hence, Γσ(ϕ) is a doubly-infinite, directed path on ϕ. Otherwise, define
n0 := min({n ∈ N : σn(ϕ) = 0}), then Γσ(ϕ) is a finite circuit of length n0 on ϕ.

For the converse direction, we assume that, for all ϕ ∈ A, Γσ(ϕ) is a doubly-infinite,
directed path or a finite circuit. Then for all ϕ ∈ L(G), any y ∈ ϕ is the endpoint of exactly
one directed edge, hence, by Proposition 2.7.5, the point map σ is bijective. Moreover, the
connectedness of Γσ(ϕ) yields that σ is complete on ϕ.
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Chapter 3

Point maps

3.1 The universal point map

We will now seek to define complete families of bijective point maps on L(G), i.e., families
that exhaust the points of any given locally finite subset ϕ ∈ L0(G). In [4], it was shown that
there exists a countable families of bijective point maps that has this property on L0(Rd).
In special cases, even a single bijective point map σ generates such a family. The existence
of such a universal point map σ is trivial in the case of locally finite point sets on R (cf.
Section 3.1.1), but it turns out to be a triggering – and not yet completely solved – problem
in higher dimensions.

3.1.1 A fundamental point map on the line

In the early papers by Kaplan [10] and Ryll-Nardzewski [22], stationary, Z-indexed sequences
of positive valued random variables (Xn) were studied, where stationarity expresses distri-
butional invariance under a shift of the indices, i.e.,

(Xn)
d
= (Xn+1).

Denote by L∞
0 (R) the locally finite subsets ϕ ∈ L0(R) that are two-sided infinite, i.e.,

inf ϕ = −∞ and supϕ = ∞. In this setting, the index shift corresponds to the fundamental
example of a point shift on L(R), which shifts a point configuration ϕ ∈ L∞

0 (R) in such a
way that the first strictly positive point x of ϕ is translated to the origin. This particular
point shift is associated with the point map σ : L0(R) → R, which is defined by

σ(ϕ) :=

{
min{x ∈ ϕ : x > 0} if ϕ ∈ L∞

0 ,

0 otherwise.
(3.1)

Proposition 3.1.1. The point map σ is bijective. The family of point maps 〈{σ}〉 generated
by σ is complete on L∞

0 (R).

We omit the obvious proof of the proposition and recall that, by definition, any point
map π on L(R) is required to satisfy π(ϕ) = 0 for all ϕ ∈ L(R) \L0(R), so it is sufficient to

25
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give an explicit definition on L0(R). The definition of σ can be modified in such a way that
the new point map τ : L(R) → R is bijective and the family 〈{τ}〉 is complete on L0(R).
For ϕ ∈ L0(R), we define

τ(ϕ) :=





min{x ∈ ϕ : x > 0}

if ϕ ∈ L∞
0 or if inf ϕ > −∞ and 0 < supϕ <∞,

min{x ∈ ϕ}

if inf ϕ > −∞ and supϕ = 0,

min{x ∈ ϕ : there exists y ∈ ϕ such that 0 < y < x}

if inf ϕ = −∞ and card(ϕ ∩ (0,∞)) ∈ 2N,

max{x ∈ ϕ : there exists y ∈ ϕ such that x < y < 0}

if inf ϕ = −∞ and card(ϕ ∩ (0,∞)) ∈ N \ 2N,

max{x ∈ ϕ : x < 0}

if inf ϕ = −∞ and supϕ = 0,

max{x ∈ ϕ : there exists y ∈ ϕ such that x < y < 0}

if supϕ = ∞ and card(ϕ ∩ (−∞, 0)) ∈ 2N,

min{x ∈ ϕ : there exists y ∈ ϕ such that 0 < y < x}

if supϕ = ∞ and card(ϕ ∩ (−∞, 0)) ∈ N \ 2N,

min{x ∈ ϕ : x > 0}

if supϕ = ∞ and inf ϕ = 0.

(3.2)

The technicality comes from the challenge to handle all cases by a single point map. However,
from Figure 3.1 it is clear that the mapping itself is in no way complicated.

inf ϕ = −∞, supϕ = ∞:

inf ϕ > −∞, supϕ <∞:

inf ϕ > −∞, supϕ = ∞:

b b b b b b b b

b b b b b b

b b b b b b

Figure 3.1: The factor graph Γτ associated with τ applied to subsets of the real line

3.1.2 Completeness in higher dimensions

Given the point map from Subsection 3.1.1, it is a natural question to ask whether there is
also a bijective point map on L(Rd) that is complete on L0(Rd). In the following proposition,
we will show that this is not the case.
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Proposition 3.1.2. For d > 1, there is no (bijective) point map on L(Rd), which is complete
on L0(Rd).

Proof: Assume that σ is a bijective point map on L(Rd) and complete on L0(Rd).
Let ϕ ∈ L0(Rd) be a periodic set that is not contained in any half-space of Rd. There exists
0 6= x ∈ ϕ such that ϕ − x = ϕ and n ∈ Z such that σn(ϕ) = x. Then it follows from the
equivariance of σ that {σk(ϕ) : k ∈ Z} ⊂ {σm(ϕ) + kx : 0 ≤ m < n, k ∈ Z}, which is a
contradiction to the assumption that ϕ is not contained in any half-space of Rd.

The proof of Proposition 3.1.2 relies on the equivariance of point maps and its implications
for point maps on periodic sets, see Figure 3.2 for an illustration.
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Figure 3.2: The graph Γσ associated with σ on a periodic set ϕ ∈ R2

Taking into account Proposition 3.1.2 we state the following fundamental problem which,
for the moment, remains unsolved.

Open problem 1. Is there a bijective point map on L(Rd), which is complete on the set of
aperiodic, locally finite subsets Rd, d > 1, that contain the origin?

We will have to settle with partial answers to the above problem. Indeed, in Section
3.2.4, we will show that there exists a countable family of matchings on L(G), that is quasi-
complete on L0(G). This result is crucial for the characterization results on Palm measures
via bijective point shifts in Chapter 6.

In the special case G = Rd, we will show in Section 3.3 that there exists a bijective point
map on L(R) that is complete on large subclasses of L0(Rd), which in Chapter 5 will be
shown to include almost all realizations of any stationary point process. Finally, in Section
3.4, we define two bijective point maps that generate a complete family on the aperiodic,
locally finite subsets of Rd that contain the origin.
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3.2 Cyclic point maps

In this section we will discuss various families of cyclic point maps in the general setting of
a lcscH group G. Recall from Definition 2.3.5 that a point map σ on L(G) is called cyclic of
order n if it satisfies σn(ϕ) = 0 for all ϕ ∈ L(G). We will begin our discussion of point maps
in higher dimensions with matchings, i.e., self-inverse bijective point maps, which were also
historically the first bijective point maps to be defined on L(Rd).

3.2.1 First examples of matchings

The following example of a bijective point map on L(Rd) was devised by Olle Häggström and
is known as mutual nearest neighbour matching. It generalizes without any modification to
the setting of a lcscH group G. Informally, a point map π : L(G) → G is defined by π(ϕ) := x
if 0, x ∈ ϕ are mutual unique nearest neighbours in ϕ, and by π(ϕ) := 0 otherwise. The
symmetry in the condition ensures that π(ϕ) = x if and only if π(θxϕ) + x = 0. Hence π is
a matching and, in particular, a bijective point map.

A moderate variation of mutual nearest neighbour matching, was defined in [4], Section 4,
the matchings by symmetric area search. In this example, the symmetric nearest neighbour
condition is replaced by a unique neighbour condition in a symmetric area as follows.

Fix a Borel set B ∈ G. Then call y ∈ ϕ a B-neighbour of x ∈ ϕ if y ∈ x+ B. Clearly, y
is a B-neighbour of x if and only if x is a (−B)-neighbour of y, i.e., x ∈ y + (−B), where
the reflected set −B is defined by −B := {−x : x ∈ B}. We say that y is the unique
B-neighbour of x if (x + B) ∩ ϕ = {y}. Note that y can be the unique B-neighbour of x
and x a non-unique (−B)-neighbour of y. We then define, again informally, a point map
πB : L(G) → G by

πB(ϕ) :=

{
x if 0, x ∈ ϕ are mutual unique (B ∪ (−B))-neighbours,

0 otherwise.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0 x

B

−B

x−B

x+B

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0

x

B

−B

x− B

x+B

Figure 3.3: Matching by symmetric area search
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In Figure 3.3, we illustrate on the left hand side the case where πB(ϕ) = x. Not so on the
right hand side, where we have πB(ϕ) = 0, because there are two points in x+ (B ∪ (−B)).

Let us then check whether the family {πB : B ∈ G} is quasi-complete on L0(G). It is
easy to show that, for ϕ ∈ L0(G) we have

{πB(ϕ) : B ∈ G} = {x ∈ ϕ : {−x, 2x} ∩ ϕ = ∅} ∪ {0}. (3.3)

In particular, the family of matchings {πB : B ∈ G} is complete on the large subclass of
L0(Rd) given by

D := {ϕ ∈ L0(R
d) : there are no distinct points x, y, z in ϕ such that x− y = y − z}.

(3.4)
However, if 0 6= x and −x (or 2x) are points in ϕ ∈ L0(G) then none of these matchings
satisfies π(ϕ) = x. In the following three subsections, we will define a variation of the above
symmetric area search in order to obtain a quasi-complete family of matchings on L0(G).
This is an optimal result as we can see from the following proposition.

Proposition 3.2.1. Let ϕ ∈ L0(G), 0 6= x ∈ ϕ and assume that ϕ = ϕ − x. Then there is
no matching π that satisfies π(ϕ) = x.

Proof: Let π be a bijective point map such that π(ϕ) = x. Then

π2(ϕ) = π(θxϕ) + x = 2x,

hence, π is not a matching.

3.2.2 Matchings by two area search

We will now introduce matchings by two area search, which, at first glance, may look more
complicated, and hardly more powerful than the symmetric area search. However, the defi-
nition of these matchings is subject to further refinement (cf. Subsections 3.2.3 and 3.2.4).
Also, the definition of the matchings introduced here can be adapted to define cyclic point
maps of higher order (cf. Subsection 3.2.5).

Let (ak) be a dense sequence of points in G, and Um a sequence of symmetric, open
neighbourhoods of 0 with compact closure and such that Um+1 ⊂ Um and ∩m∈NUm = {0}.
Fix m ∈ N, distinct k1, k2 ∈ N, and i ∈ {1, 2}, and define an auxiliary function fm,i,k1,k2 :
L(G) → {0, 1} by

fm,i,k1,k2(ϕ) :=
2∏

j=1

1{card(ϕ ∩ (Um + akj
− aki

)) = 1} for all ϕ ∈ L0(G),

and fm,i,k1,k2(ϕ) := 0 for all ϕ ∈ L(G) \ L0(G). We have fm,i,k1,k2(ϕ) = 1 if and only if there
is a unique point in each of the two sets ϕ ∩ (Um + akj

− aki
), j = 1, 2, with the origin at
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ith position. We need to have direct access to these points and, thus define the mappings
ym,i,k1,k2j : L(G) → G, j = 1, 2, by

ym,i,k1,k2j (ϕ) :=

{
x if fm,i,k1,k2(ϕ) = 1 and (ϕ ∩ Um + akj

− aki
) = {x},

0 otherwise,

In particular, we always have ym,i,k1,k2i = 0. For convenience, we will write yij for ym,i,k1,k2j in
the sequel, omitting the indices m, k1, k2, which can be retrieved from the context.

Let us comment on the above definition of yij. If the origin is the unique point of ϕ in Um
and there exists a unique point y in ϕ ∩ Um + akj

− aki
, we write y = yij(ϕ) to express that

y has jth position (lower index) in the unique pair of points detected by two area search
and including the origin at ith position (upper index). Accordingly, we have yii(ϕ) = 0.
Moreover, assume that the origin is also the unique point in θyϕ ∩ Um and that there is a
unique point in θyϕ ∩ Um + aki

− akj
. Then this unique point is given by yji (θyϕ), i.e., the

point at ith position in the unique pair of points detected by two area search and including
the origin at jth position, and we also have yjj (θyϕ) = 0. In the following lemma, we will
prove that, for ℓ ∈ {1, 2}, the unique point in θyϕ ∩ Um + akj

− akℓ
is the image of yiℓ(ϕ)

under θy, i.e., the point yiℓ(ϕ) − y.
Using the Kronecker symbol εj,ℓ defined by εj,ℓ = 1 if j = ℓ and εj,ℓ = 0 otherwise, the

lemma is formally stated as follows.

Lemma 3.2.2. Let ϕ ∈ L0(G), i ∈ {1, 2}, and assume that fm,j,k1,k2(θyi
ℓ
(ϕ)ϕ) = εj,ℓ for all

1 ≤ j, ℓ ≤ 2. Then we have

yjℓ(θyi
j(ϕ)ϕ) = θyi

j(ϕ)(y
i
ℓ(ϕ)), 1 ≤ j, ℓ ≤ 2. (3.5)

Proof: The special case j = ℓ = i yields fm,i,k1,k2(ϕ) = 1 and, by the definition of yij ,
we have

ϕ ∩ (Um + aj − ai) = {yij(ϕ)}, 1 ≤ j ≤ 2.

From the symmetry of Um and yii(ϕ) = 0 we deduce that

θyi
j(ϕ)(y

i
ℓ(ϕ)) ∈ Um + aℓ − aj , 1 ≤ j, ℓ ≤ 2.

Since we have assumed that fm,j,k1,k2(θyi
j(ϕ)(ϕ)) = 1, we obtain

θyi
j(ϕ)ϕ ∩ (Um + aℓ − aj) = {θyi

j(ϕ)(y
i
ℓ(ϕ))}, 1 ≤ j, ℓ ≤ 2,

and conclude that (3.5) holds.

A local selection function Ξm,k1,k2 : L(G) → L(G) is defined by

Ξm,k1,k2(ϕ) :=





{y1
1(ϕ), y1

2(ϕ)} if fm,j,k1,k2(θy1ℓ (ϕ)ϕ) = εj,ℓ for 1 ≤ j, ℓ ≤ 2,

{y2
1(ϕ), y2

2(ϕ)} if fm,j,k1,k2(θy2ℓ (ϕ)ϕ) = εj,ℓ for 1 ≤ j, ℓ ≤ 2,

ϕ if ϕ ∈ L(G) \ L0(G),

{0} otherwise.

(3.6)
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The local equivariance property follows from Lemma 3.2.2.
Define the very simple matching π : L(G) → G by

π(ϕ) :=

{
x if ϕ = {0, x},

0 otherwise.
(3.7)

Proposition 3.2.3. For all ϕ ∈ L0(G), the family of matchings defined by a composition of
one of the local selection functions Ξm,k1,k2, m, k1, k2 ∈ N, and the matching π satisfies

{x ∈ ϕ : {−x, 2x} ∩ ϕ = ∅} ∪ {0} ⊂ {π ◦ Ξm,k1,k2(ϕ) : m, k1, k2 ∈ N}. (3.8)

Proof: Assume that ϕ ∈ L0(G) and that x ∈ ϕ such that {−x, 2x} ∩ ϕ = ∅. For
m0 ∈ N and y ∈ G, the set ϕ∩ (Um0 − y) contains only finitely many points, because Um0 is
assumed to be relatively compact. Moreover, we have ∩m∈N(ϕ∩Um + y) ⊂ {y}. We deduce
that there exist m, k1, k2 ∈ N such that

(i) ϕ ∩ (Um + ak2 − ak1) = {x}, ϕ ∩ Um = {0}, hence fm,1,k1,k2 = 1,

(ii) ϕ ∩ (Um + ak1 − ak2) = ∅, ϕ ∩ Um = {0}, hence fm,2,k1,k2 = 0,

(iii) θxϕ ∩ (Um + ak2 − ak1) = ∅, θxϕ ∩ Um = {0}, hence fm,1,k1,k2 = 0,

(iv) θxϕ ∩ (Um + ak1 − ak2) = {−x}, θxϕ ∩ Um = {0}, hence fm,2,k1,k2 = 1.

We then have Ξm,k1,k2(ϕ) = {0, x}, and conclude that π ◦ Ξm,k1,k2(ϕ) = x.

Depending on ϕ ∈ L0(G), there may be equality or strict inequality in (3.8), so the
family of matchings is at least as rich as the family that we had obtained in the preceding
subsection by symmetric area search.

3.2.3 The induced permutation

Our aim is now to refine the point maps from the last subsection. The major difference
between the symmetric area search and the two area search is that an enumeration of the
points that depends only on their relative positions, is intrinsic in the procedure. This
particularity will be exploited now.

Let ϕ ∈ L0(G), m, k1, k2 ∈ N and assume that fm,i,k1,k2(ϕ) = 1. Then there are two points
in ϕ that we have called yij(ϕ) ∈ ϕ, 1 ≤ j ≤ 2, that satisfy Um + aj − ai ∩ ϕ = {yij(ϕ)}, 1 ≤
j ≤ 2. We assign to each point its position, i.e., its lower index j. It follows from Lemma
3.2.2, that this enumeration of the two points only depends on their relative positions, but
not on the fact, which one of them is in the origin.

Let ∆ : {1, 2} → {1, 2} be the constant function ∆ ≡ 1. We introduce the induced
permutation mapping ̺m,i,k1,k2 : L(G) → S2 ∪ {∆}, which maps each ϕ ∈ L(G) to an
element of the symmetric group S2 of permutations of the set {1, 2} or ∆. We define

̺m,i,k1,k2(ϕ)(j) := card{ℓ ∈ {1, 2} : yiℓ(ϕ) ≪ϕ y
i
j(ϕ)}
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if fm,i,k1,k2(ϕ) = 1 and Ĩ(ϕ, yi1(ϕ)) 6= Ĩ(ϕ, yi2(ϕ)), and ̺m,i,k1,k2(ϕ) := ∆ otherwise.
This gives us the means to refine the definition of local selection functions from (3.6),

and subsequently, extend the resulting family of matchings. Let γ ∈ S2 and m, k1, k2 ∈ N,
then we define

Φm,k1,k2,γ(ϕ) :=





{y1
1(ϕ), y1

2(ϕ)} if fm,j,k1,k2(θy1ℓ (ϕ)ϕ) 1{̺m,j,k1,k2(θy1ℓ (ϕ)ϕ) = γ} = εj,ℓ

for 1 ≤ j, ℓ ≤ 2,

{y2
1(ϕ), y2

2(ϕ)} if fm,j,k1,k2(θy2ℓ (ϕ)ϕ) 1{̺m,j,k1,k2(θy2ℓ (ϕ)ϕ) = γ} = εj,ℓ

for 1 ≤ j, ℓ ≤ 2,

ϕ if ϕ ∈ L(G) \ L0(G),

{0} otherwise.

(3.9)
If we are in the first case, the condition fm,j,k1,k2(θy1ℓ (ϕ)ϕ) 1{̺m,j,k1,k2(θy1ℓ (ϕ)ϕ) = γ} = εj,ℓ
yields fm,1,k1,k2(ϕ) = 1 and ̺m,1,k1,k2(ϕ) = γ when j = ℓ = 1 and fm,2,k1,k2(ϕ) 1{̺m,2,k1,k2(ϕ) =
γ} = 0 for j = 2, ℓ = 1. In the second case we have fm,2,k1,k2(ϕ) = 1 and ̺m,2,k1,k2(ϕ) = γ.
So the first and second case are exclusive and the function is well defined. We can now state
a refined version of Proposition 3.2.3.

Proposition 3.2.4. The family of matchings defined by a composition of one of the local
selection functions Φm,k1,k2,γ, m, k1, k2 ∈ N, γ ∈ S2, and the matching π satisfies

{x ∈ ϕ : {−x, 2x} ∩ ϕ = ∅ or Ĩ(ϕ, 0) 6= Ĩ(ϕ, x) = Ĩ(ϕ,−x)}

⊂ {π ◦ Φm,k1,k2,γ(ϕ) : m, k1, k2 ∈ N, γ ∈ S2}, ϕ ∈ L0(G). (3.10)

Proof: Clearly, for any m, k1, k2 ∈ N, we have

{π ◦ Ξm,k1,k2(ϕ)} ⊂
⋃

γ∈S2

{π ◦ Φm,k1,k2,γ(ϕ)},

so let us assume that ϕ ∈ L0(G) and x ∈ ϕ satisfies Ĩ(ϕ, 0) 6= Ĩ(ϕ, x) = Ĩ(ϕ,−x). Then
θxϕ = θ−xϕ, hence, the fact that 0, x ∈ ϕ yields {−x, 0, x, 2x} ⊂ ϕ. We denote the two
elements in S2 by id{1,2} for the identity mapping on {1, 2} and τ for the non-trivial trans-
position. Without restriction of generality, we assume here that 0 ≪ϕ x, the case x≪ϕ 0 is
treated in the same way. There exist m, k1, k2 ∈ N such that

(i) ϕ∩ (Um+ak2 −ak1) = {x}, ϕ∩Um = {0}, hence fm,1,k1,k2(ϕ) = 1, y1
1(ϕ) = 0, y1

2(ϕ) = x
and ̺m,1,k1,k2(ϕ) = id{1,2},

(ii) ϕ∩(Um+ak1 −ak2) = {−x}, ϕ∩Um = {0}, hence fm,2,k1,k2(ϕ) = 1, y2
1(ϕ) = −x, y2

2 = 0
and ̺m,1,k1,k2(ϕ) = τ ,

(iii) θxϕ ∩ (Um + ak2 − ak1) = {x}, θxϕ ∩ Um = {0}, hence fm,1,k1,k2(θxϕ) = 1, y1
1(ϕ) =

0, y1
2(ϕ) = x and ̺m,1,k1,k2(ϕ) = τ .

(iv) θxϕ ∩ (Um + ak1 − ak2) = {−x}, θxϕ ∩ Um = {0}, hence fm,2,k1,k2(ϕ) = 1, y2
1(ϕ) =

−x, y2
2(ϕ) = 0 and ̺m,1,k1,k2(ϕ) = id{1,2}.

We conclude that Φm,k1,k2,id{1,2}
(ϕ) = {0, x}, finishing the proof of the proposition.
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3.2.4 A quasi complete family of matchings

We have shown in Proposition 3.2.4 that there exists a countable family of matchings with
the property that, for ϕ ∈ L0(G) and x ∈ ϕ such that −x, 2x /∈ ϕ or ϕ 6= ϕ− x = ϕ+ x, (at
least) one of the matchings σ satisfies σ(ϕ) = x. The challenge is now to define matchings
for the case, where ϕ− x 6= ϕ, {−x, 2x} ∩ ϕ 6= ∅, and Ĩ(ϕ,−x) 6= Ĩ(ϕ, x). Our approach to
this problem is quite simple. In the definition of Φm,k1,kn,γ we replace f by f ◦ Ψ, where Ψ
is a selection function that removes any point y such that Ĩ(ϕ, y) /∈ {Ĩ(ϕ, 0), Ĩ(ϕ, x)} in a
suitable area around 0.

Let (q̄n) be an enumeration of (Q ∩ (0, 1))2, i.e., the pairs q̄n = (q1
n, q

2
n) of rational

numbers contained in the open interval (0, 1). For s, t ∈ N, define a selection function
Ψs,t : L(G) → L(G) by

Ψs,t(ϕ) := {x ∈ ϕ : min
1≤i≤2

|Ĩ(ϕ, x) − qis| < t−1}. (3.11)

These selection functions have the following property.

Lemma 3.2.5. For ϕ ∈ L0(G), x ∈ ϕ and c > 0 there exist s0, t0 ∈ N such that 0, x ∈
Ψs0,t0(ϕ) and Ĩ(ϕ, y) ∈ {Ĩ(ϕ, 0), Ĩ(ϕ, x)} for all y ∈ Ψs0,t0(ϕ) ∩ Bd(0, c).

Proof: Define ε = ε(ϕ, 0, x) as the minimal, strictly positive difference of the value of
the index function applied to (ϕ, y), where y ∈ ϕ ∩ Bd(0, c), and the values of the standard
index function applied to (ϕ, 0) or (ϕ, x), i.e.,

ε := inf{|Ĩ(ϕ, y) − Ĩ(ϕ, z)| : y ∈ ϕ ∩ Bd(0, c), z ∈ {0, x}, Ĩ(ϕ, y) 6= Ĩ(ϕ, z)},

where, for convenience, we let inf ∅ := ∞. There are only finitely many points in the set
ϕ∩Bd(0, c), so the infimum is attained or infinite and, hence, strictly positive. Choose t0 ∈ N
such that t0 > 2/ε, and s0 ∈ N such that |Ĩ(ϕ, 0)−q1

s0
| < t−1

0 and |Ĩ(ϕ, x)−q2
s0
| < t−1

0 , then the
claim of the Lemma follows by a straightforward application of the triangle inequality.

Then define local selection functions Φm,k1,k2,γ,s,t, m, k1, k2, s, t ∈ N and γ ∈ S2, by

Φm,k1,k2,γ,s,t(ϕ) :=




{y1
1(ϕ), y1

2(ϕ)} if fm,j,k1,k2(Ψs,t(θy1
ℓ
(ϕ)ϕ)) 1{̺m,j,k1,k2(θy1ℓ (ϕ)ϕ) = γ} = εj,ℓ

for 1 ≤ j, ℓ ≤ 2,

{y2
1(ϕ), y2

2(ϕ)} if fm,j,k1,k2(Ψs,t(θy2
ℓ
(ϕ)ϕ)) 1{̺m,j,k1,k2(θy2ℓ (ϕ)ϕ) = γ} = εj,ℓ

for 1 ≤ j, ℓ ≤ 2,

ϕ if ϕ ∈ L(G) \ L0(G),

{0} otherwise.

(3.12)

Note that ̺m,j,k1,k2(θyi
ℓ
(ϕ)ϕ) = γ yields fm,j,k1,k2(θyi

ℓ
(ϕ)ϕ) = 1 for all 1 ≤ i, j, ℓ ≤ n. Hence,

fm,j,k1,k2(Ψs,t(θyi
ℓ
(ϕ)ϕ)) 1{̺m,j,k1,k2(θyi

ℓ
(ϕ)ϕ) = γ} = 1
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implies fm,j,k1,k2(Ψs,t(θyi
ℓ
(ϕ)ϕ)) = fm,j,k1,k2(θyi

ℓ
(ϕ)ϕ) = 1 and, hence, yj1(ϕ) = yj1(Ψs,t(ϕ)) and

yj1(ϕ) = yj1(Ψs,t(ϕ)). We are now ready to state and prove the result announced in the
introduction of this thesis on the existence of a countable family of matchings that is quasi-
complete on L0(G).

Theorem 3.2.6. The family of matchings M defined by a composition of one of the local
selection functions Φm,k1,k2,γ,s,t, m, k1, k2, s, t ∈ N, γ ∈ S2 and the matching π satisfies

{π ◦ Φm,k1,k2,γ,s,t(ϕ) : m, k1, k2, s, t ∈ N, γ ∈ S2} = {x ∈ ϕ : Ĩ(ϕ, 0) 6= Ĩ(ϕ, x)} ∪ {0} (3.13)

for all ϕ ∈ L0(G). Hence, the countable family of matchings M is quasi-complete on L0(G).

Proof: Let ϕ ∈ L0(G) and x ∈ ϕ and assume that Ĩ(ϕ, 0) 6= Ĩ(ϕ, x). If {−x, 2x}∩ϕ =
∅ or Ĩ(ϕ, x) = Ĩ(ϕ,−x), then we may use that Ψ1,1 is the identity mapping on L(G) and
conclude by Proposition 3.2.4 that there exists a matching σ ∈M such that σ(ϕ) = x.

If {−x, 2x} ∩ ϕ 6= ∅, Ĩ(ϕ, 0) 6= Ĩ(ϕ, x) and Ĩ(ϕ, x) 6= Ĩ(ϕ,−x), then we have ϕ − x 6= ϕ
and ϕ− x 6= ϕ+ x, and, hence, also Ĩ(ϕ, x) 6= Ĩ(ϕ, 2x) and Ĩ(ϕ, 0) 6= Ĩ(ϕ, 2x). We may now
apply Lemma 3.2.5 for some c > max{d(0, 2x), d(0,−x)}, and obtain s0, t0 ∈ N such that
0, x ∈ Ψs0,t0(ϕ) and {−x, 2x}∩Ψs0,t0(ϕ) = ∅. As before, in the proof of Proposition 3.2.4, we
can then show that there exist m, k1, k2 ∈ N and γ ∈ S2 such that Φm,k1,k2,γ,s0,t0(ϕ) = {0, x},
and conclude that there is a matching τ ∈M such that τ(ϕ) = x, finishing the proof of the
theorem.

3.2.5 Cyclic point maps of order n

Let us now generalize the definition of matchings to a definition of general cyclic point maps
of order n, i.e., point maps σ that satisfy σn(ϕ) = 0. For this purpose, we will adopt a
similar strategy as in Subsections 3.2.2-3.2.4, and adapt the steps made therein to obtain a
family C of cyclic point maps of order n with the following property. For any ϕ ∈ L0(G)
and n points x1, . . . , xn ∈ ϕ such that x1 = 0 and Ĩ(ϕ, xi) 6= Ĩ(ϕ, xj), 1 ≤ i < j ≤ n, there is
a n-cyclic point map π ∈ C such that {πi(ϕ) : 1 ≤ i ≤ n} = {xi : 1 ≤ i ≤ n}.

We begin with the definition of a point map on finite point configurations, which gener-
alizes the definition of the matching π in (3.7). Compare also to the case of a finite ϕ in the
definition of the universal point map τ in (3.2). Define σ : L(G) → G by

σ(ϕ) :=





min{x ∈ ϕ \ {0} : 0 ≪ϕ x} if 1 ≤ card(ϕ) <∞, 0 ∈ ϕ and 0 6= max≪ϕ
(ϕ),

min≪ϕ
(ϕ) if 1 ≤ card(ϕ) <∞ and 0 = max≪ϕ

(ϕ),

0 otherwise,

(3.14)
where min≪ϕ

resp. max≪ϕ
denote the minimum resp. the maximum with respect to the

standard order relation ≪ϕ on ϕ defined in (2.12). These minima and maxima exist, because
a finite point set is always aperiodic, and so Lemma 2.5.6 yields that the standard order
relation is total on any non-empty ϕ ∈ L(G) with finitely many elements. In particular, the
mapping σ is cyclic of order n on

{ϕ ∈ L0(G) : card(ϕ) = n}.
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We will now define local selection functions, that extract the n points from a suitable
ϕ ∈ L0(G). We will do this in close analogy to the procedure from the last subsections.

As before, we denote by (ak) a dense sequence of points inG. Then, let (Um) be a sequence
of symmetric, open neighbourhoods of 0 with compact closure and such that ∩m∈NUm = {0}.
Moreover, we require that Um+1 ⊕ Um+1 ⊂ Um. In general, the existence of such a sequence
follows from the continuity of the addition on G, in the special case G = Rd, we may choose
open balls around the origin with radius 2−m.

For fixed m ∈ N, pairwise distinct k1, . . . , kn ∈ N and i ∈ {1, . . . , n}, we define the
auxiliary function fm,i,k1,...,kn

: L(G) → {0, 1} by

fm,i,k1,...,kn
(ϕ) :=

n∏

j=1

1{card(ϕ ∩ (Um + akj
− aki

)) = 1} for all ϕ ∈ L0(G),

and fm,i,k1,...,kn
(ϕ) := 0 for all ϕ ∈ L(G) \ L0(G). We have fm,i,k1,...,kn

(ϕ) = 1 if and only if
there is a unique point in each of the n sets ϕ ∩ (Um + akj

− aki
), 1 ≤ j ≤ n, with the origin

at ith position. Again, we define mappings yij = ym,i,k1,...,kn

j : L(G) → G, j = 1, . . . , n, by

yij(ϕ) :=

{
x if fm,i,k1,...,kn

(ϕ) = 1 and (ϕ ∩ Um + akj
− aki

) = {x},

0 otherwise.

In particular, we always have ym,i,k1,...,kn

i = 0. It is easy to verify that fm,i,k1,...,kn
(ϕ) =

fm+1,i,k1,...,kn
(ϕ) implies ym,i,k1,...,kn

j (ϕ) = ym+1,i,k1,...,kn

j (ϕ) for all 1 ≤ j ≤ n. This fact enables

us to write yij for ym,i,k1,...,kn

j as before, even though m will not always be assumed to be fixed
in the sequel.

The following lemma is an adaptation of Lemma 3.2.2. Here, we will use our additional
assumption on the sequence (Um), i.e., Um+1 ⊕ Um+1 ⊂ Um.

Lemma 3.2.7. Let ϕ ∈ L(G), i ∈ {1, . . . , n} and m, k1, . . . , kn ∈ N, m ≥ 2, and assume that

fm−1,i,k1,...,kn
(ϕ) = fm+1,i,k1,...,kn

(ϕ) = 1.

Then
fm,j,k1,...,kn

(θyi
j
(ϕ)ϕ) = 1, 1 ≤ j ≤ n,

and we have
yjℓ(θyi

j(ϕ)ϕ) = yiℓ(ϕ) − yij(ϕ), 1 ≤ j, ℓ ≤ n. (3.15)

Proof: We have

yij(ϕ) ∈ ϕ ∩ (Um+1 + akj
− aki

), 1 ≤ j ≤ n.

Hence, the assumption on the sequence (Um) yields

yiℓ(ϕ) − yij(ϕ) ∈ Um+1 ⊕ Um+1 + akℓ
− akj

⊂ Um + akℓ
− akj

, 1 ≤ j, ℓ ≤ n.

For fixed j, ℓ such that 1 ≤ j, ℓ ≤ n, the fact that

yiℓ(ϕ) − yij(ϕ) ∈ θyi
j(ϕ)ϕ
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yields that card(θyi
j(ϕ)ϕ∩ (Um +akℓ

−akj
)) ≥ 1. Moreover, any x ∈ θyi

j(ϕ)ϕ∩ (Um +akℓ
−akj

)

satisfies

x+ yij(ϕ) ∈ ϕ ∩ (Um + akℓ
− akj

+ yij(ϕ)) ⊂ ϕ ∩ (Um−1 + akℓ
− aki

).

Since, again by the assumption, ϕ∩ (Um−1 +akℓ
−aki

) contains exactly one element, we have
x+ yij(ϕ) = yiℓ(ϕ). We conclude that card(θyi

j(ϕ)ϕ ∩ (Um + akℓ
− akj

)) = 1 and that

θyi
j(ϕ)ϕ ∩ (Um + akℓ

− akj
) = {yiℓ(ϕ) − yij(ϕ)},

proving both claims of the lemma.

As before in (3.6), the lemma yields the possibility to introduce local selection functions.
However, here we will directly proceed to introduce the induced permutation.

Let ϕ ∈ L0(G), m, k1, . . . , kn ∈ N and assume that fm,i,k1,...,kn
(ϕ) = 1. Then there are n

points yij(ϕ) ∈ ϕ, 1 ≤ j ≤ n, that satisfy (Um + aj − ai) ∩ ϕ = {yij(ϕ)}, 1 ≤ j ≤ n. Lemma
3.2.7 yields that the position of each point, i.e., the lower index, only depends on the relative
positions of the n points and not on the fact which point is the origin.

Let ∆ : {1, . . . , n} → {1, . . . , n} be the constant function ∆ ≡ 1. The induced permuta-
tion mapping ̺m,i,k1,...,kn

: L(G) → Sn ∪ {∆} is defined by

̺m,i,k1,...,kn
(ϕ)(j) := card{ℓ ∈ {1, . . . , n} : yiℓ(ϕ) ≪ϕ y

i
j(ϕ)}

if fm,i,k1,...,kn
(ϕ) = 1 and

∏
1≤j<ℓ≤n 1{Ĩ(ϕ, yij(ϕ)) 6= Ĩ(ϕ, yiℓ)(ϕ))} = 1, and by

̺m,i,k1,...,kn
(ϕ) := ∆

otherwise. As a last preparation, we will now generalize the selection functions defined
in (3.11). Let (q̄k) be an enumeration of (Q ∩ (0, 1))n, i.e., the n-tuples q̄k = (q1

k, . . . , q
n
k )

of rational numbers contained in the open interval (0, 1). For s, t ∈ N, define a selection
function Ψs,t,n : L(G) → L(G) by

Ψs,t,n(ϕ) := {x ∈ ϕ : min
1≤i≤n

|Ĩ(ϕ, x) − qis| < t−1}.

These selection functions have the following properties.

Lemma 3.2.8. For ϕ ∈ L0(G), c > 0 and x1, . . . , xn ∈ ϕ such that x1 = 0 and Ĩ(ϕ, xi) 6=
Ĩ(ϕ, xj), 1 ≤ i, j ≤ n, there exist s, t ∈ N such that xi ∈ Ψs,t,n(ϕ), 1 ≤ i ≤ n, and Ĩ(ϕ, y) ∈
{Ĩ(ϕ, xi) : 1 ≤ i ≤ n} for all y ∈ Ψs,t,n(ϕ) ∩ Bd(0, c).

We omit the proof, which is a straightforward adaptation of the proof of Lemma 3.2.5.
Generalizing the definition of the local selection functions from (3.12), we define, for γ ∈ Sn
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and m, k1, . . . , kn, s, t ∈ N the local selection function Φm,k1,...,kn,γ,s,t,n : L(G) → L(G) by

Φm,k1,...,kn,γ,s,t,n(ϕ) := (3.16)



{y1
1(ϕ), . . . , y1

n(ϕ)} if fm−1,j(θy1
ℓ
(ϕ)ϕ)fm+1,j(Ψs,t,n(θy1

ℓ
(ϕ)ϕ)) 1{̺m,j(θy1

ℓ
(ϕ)ϕ) = γ} = εj,ℓ

for all 1 ≤ j, ℓ ≤ n,

. . . . . .

{yn1 (ϕ), . . . , ynn(ϕ)} if fm−1,j(θyn
ℓ
(ϕ)ϕ)fm+1,j(Ψs,t,n(θyn

ℓ
(ϕ)ϕ)) 1{̺m,j(θyn

ℓ
(ϕ)ϕ) = γ} = εj,ℓ

for all 1 ≤ j, ℓ ≤ n,

ϕ if ϕ ∈ L(G) \ L0(G),

{0} otherwise,

where we have exceptionally omitted the indices k1, . . . , kn in fm−1,j,k1,...,kn
, fm+1,j,k1,...,kn

and
̺m,j,k1,...,kn

.
Note that ̺m,j,k1,...,kn

(θyi
ℓ
(ϕ)ϕ) = γ yields fm,j,k1,...,kn

(θyi
ℓ
(ϕ)ϕ) = 1 for all 1 ≤ i, j, ℓ ≤ n.

Hence,
fm+1,j,k1,...,kn

(Ψs,t(θyi
ℓ
(ϕ)ϕ)) 1{̺m,j,k1,...,kn

(θyi
ℓ
(ϕ)ϕ) = γ} = 1

implies fm+1,j,k1,...,kn
(Ψs,t(θyi

ℓ
(ϕ)ϕ)) = fm,j,k1,...,kn

(θyi
ℓ
(ϕ)ϕ) = 1 and, hence, yj1(ϕ) = yj1(Ψs,t(ϕ))

and yj1(ϕ) = yj1(Ψs,t(ϕ)).
The local selection functions Φm,k1,...,kn,γ,s,t,n are well defined, because the conditions of

the first n cases are exclusive. Indeed, if, for i ∈ {1, . . . , n}, the condition

fm+1,j,k1,...,kn
(θyi

ℓ
(ϕ)ϕ) 1{̺m+1,i,k1,k2(θyi

ℓ
(ϕ)ϕ) = γ} = εj,ℓ (3.17)

holds, then the special case i = ℓ yields fm+1,j,k1,k2(ϕ) 1{̺m+1,j,k1,k2(ϕ) = γ} = 1 if and only
if j = i. Hence, (3.17) does not hold for any j ∈ {1, . . . , n} \ {i}. Moreover, Lemma 3.2.7
yields the local equivariance property.

Theorem 3.2.9. The family C of cyclic point maps of order n defined by the composition
of one of the local selection functions Φm,k1,...,kn,γ,s,t,n, m, k1, k2, s, t ∈ N, γ ∈ Sn and the point
map σ has the following property. For any ϕ ∈ L0(G) and n points x1, . . . , xn ∈ ϕ such that
x1 = 0 and Ĩ(ϕ, xi) 6= Ĩ(ϕ, xj) for all 1 ≤ i < j ≤ n, there exist m, k1, . . . , kn, s, t ∈ N and
γ ∈ Sn such that

{(σ ◦ Φm,k1,...,kn,γ,s,t,n)
i(ϕ) : 1 ≤ i ≤ n} = {x1, . . . , xn}. (3.18)

In particular, C is a countable family of cyclic point maps of order n that is quasi-complete
on {ϕ ∈ L0(G) : card{Ĩ(ϕ, x) : x ∈ ϕ} ≥ n}.

Proof: Let ϕ ∈ L0(G) and x1, . . . , xn ∈ ϕ such that x1 = 0 and Ĩ(ϕ, xi) 6= Ĩ(ϕ, xj) for
all 1 ≤ i < j ≤ n. Define

c := 2 max
1≤i<j≤n

d(xi, xj) + 2.

By Lemma 3.2.8, there exist s, t ∈ N such that

xi ∈ Ψs,t,n(ϕ), 1 ≤ i ≤ n,
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and
Ĩ(ϕ, y) ∈ {Ĩ(ϕ, xi) : 1 ≤ i ≤ n} (3.19)

for all y ∈ Ψs,t,n(ϕ) ∩Bd(0, c). Moreover, there exist m, k1, . . . , kn ∈ N, m ≥ 2, such that

fm−1,i,k1,...,kn
(θxi

ϕ) = fm+1,i,k1,...,kn
(Ψs,t,n(θxi

ϕ)) = 1, 1 ≤ i ≤ n, (3.20)

and yiℓ(θxi
ϕ) + xi = yiℓ(Ψs,t,n(θxi

ϕ)) + xi = xℓ, 1 ≤ i, ℓ ≤ n. Also, from (3.20) we obtain
fm+1,i,k1,...,kn

(θxi
ϕ) = 1, 1 ≤ i ≤ n, and Lemma 3.2.7 yields

fm,ℓ,k1,...,kn
(θyi

ℓ
(θxi

ϕ)ϕ) = 1, 1 ≤ i, ℓ ≤ n. (3.21)

By assumption, we have Ĩ(ϕ, xi) 6= Ĩ(ϕ, xj) for all 1 ≤ i < j ≤ n, and by Lemma 3.2.7, the
induced permutation γ := ̺m,1,k1,...,kn

(ϕ) satisfies γ ∈ Sn. We claim that

1{̺m,j,k1,...,kn
(θxℓ

ϕ) = γ} = εj,ℓ (3.22)

for all 1 ≤ j, ℓ ≤ n. Indeed, for j = ℓ, Lemma 3.2.7 and the fact that the extended standard
index function Ĩ is invariant under shifts applied to both arguments yield ̺m,i,k1,...,kn

(θxi
ϕ) =

γ. In the case j 6= ℓ, let us assume that

fm,j,k1,...,kn
(θxℓ

ϕ) = 1

and that ∏

1≤q,r≤n

1{Ĩ(θxℓ
ϕ, yℓq(θxℓ

ϕ)) 6= Ĩ(θxℓ
ϕ, yℓr(θxℓ

ϕ))} = 1,

because otherwise we have ̺m,j,k1,...,kn
(θxℓ

ϕ) = ∆ 6= γ. The last equation and (3.19) yield

{Ĩ(θxℓ
ϕ, yℓr(θxℓ

ϕ)) : 1 ≤ r ≤ n} = {Ĩ(ϕ, xr) : 1 ≤ r ≤ n}.

Hence,
̺m,j,k1,...,kn

(θxℓ
ϕ)(j) = ̺m,1,k1,...,kn

(ϕ)(ℓ) = γ(i),

which implies ̺m,j,k1,...,kn
(θxℓ

ϕ) 6= γ. We conclude that

Φm,k1,...,kn,γ,s,t = {xi : 1 ≤ i ≤ n}

and, hence, σ ◦ Φm,k1,...,kn,γ,s,t is a cyclic point map of order n that satisfies (3.18).

These point maps will be used in Section 3.4, where we will define two point maps that
generate a family of point maps on L(Rd) that is complete on the aperiodic sets in L0(Rd).

3.3 Directed doubly infinite paths

The study of directed, doubly infinite paths on point processes initiated with the paper [2]
by Ferrari, Landim and Thorisson (see also Problems 1.1, 1.2, 1.3 in [2], which are closely
related to the subjects of this thesis). Progress was made by Holroyd and Peres in [5] and
Timar in [30]. Their probabilistic results will be briefly reviewed in Chapter 5, here we will
summarize only some of the ideas from the graph construction in [30], which are essential for
the point maps defined in this section. For details, and a careful description of the related
problems in random graph theory, we refer the reader to the three papers cited above.
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3.3.1 Clumpings, locally finite trees and doubly infinite directed

paths

In [30], Timar defines isometry equivariant factor graphs on the points of a point process
N on Rd with finite intensity and isometry invariant distribution. He assumes that a given
(isometry invariant) index function is injective on the points of N almost surely, which is
shown to be equivalent with the fact that almost surely there is no non-trivial isometry that
leaves N invariant. To stick with our setting, we will describe the definition of the graph on
locally finite subsets ϕ of Rd that satisfy card(ϕ) = ∞ and ϕ 6= S(ϕ) for all translations or
rotations S 6= idRd on Rd. Both properties are almost surely satisfied by the point processes
described above.

The index function is used to define a thinning procedure (Tn) such that the thinning
(Tn(ϕ)) satisfies a hardcore property, i.e., the interpoint distances are bounded from below.
Then a partition of Rd is defined by the superposition of the Voronoi mosaics associated
with the sets Tn(ϕ), n ∈ N. Every cell of the partition is bounded and, hence, contains at
most finitely many points from ϕ. The index function is again used to declare one of the
points in each cell the leader of the points in the cell. Then the Voronoi mosaic associated
with T1(ϕ) is taken away from the superposition, which yields a coarser partition, where,
among the leaders of the first generation, the leaders of the second generation are chosen in
each cell. This procedure is iterated, the Voronoi mosaics associated with T2(ϕ), T3(ϕ), . . .
are removed, giving way to a sequence of coarser and coarser partitions of Rd, which is called
a clumping.

A locally finite graph is then defined on the points of ϕ, by defining an edge from the
leader of kth generation, to the leaders of k − 1th generation, k ∈ N, that are in the same
cell of the partition generated by the superposition of Voronoi mosaics associated with the
thinned sets Tn(ϕ), n ≥ k. By a combination of geometric and probabilistic arguments it is
finally shown that the so defined graph is a one-ended tree, and satisfies a side condition on
each of its points. It is then a well known fact (cf. [2], [5]), which is also used for search
algorithms in computer sciences, that a doubly infinite, directed path can be defined on the
points of such a tree.

In the following subsection, we will take over many of these ideas, and give purely de-
termistic results on the resulting graphs. Probabilistic arguments and results will then be
given in Chapter 5.

3.3.2 The succession point map

In the remainder of the chapter, we specialize to the case where G = Rd equipped with the
Euclidean metric d(·, ·) and the lexicographic order ≪ on Rd. Clearly, Rd is a lcscH group,
so the results from Section 2 apply. We define a point map σ on L(Rd), such that, for any
aperiodic point set ϕ ∈ L(Rd), the associated graph Γσ(ϕ) consists of only finitely many
infinite directed paths (cf. Theorem 3.3.9). Moreover, the number of connected components
(paths) of the graph can be bounded by a constant that depends only on the dimension d.

The definition is based on the constructions in [5] and [30] of a doubly infinite path
on stationary point processes. As before, we denote by (ξk) a sequence of mappings that
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enumerates the points of an arbitrary locally finite subset ϕ ∈ L(Rd). Starting with an
aperiodic, locally finite set ϕ ∈ L(Rd) we consider a sequence (rn) of real numbers such that
rn ↑ ∞ and we denote by Tn the (rn)-thinning procedure defined in (2.16). For convenience,
we define T0 := idL(Rd).

For n ∈ N ∪ {0}, we say that a point x ∈ G is a point of the nth generation in ϕ, if and
only if x ∈ Tn(ϕ) \Tn+1(ϕ). We introduce the mapping g : L(Rd) → N∪{0,−∞} that maps
ϕ ∈ L(Rd) to the number of the generation of 0 with respect to ϕ. Formally, we define

g(ϕ) := sup{n ∈ N ∪ {0} : 0 ∈ Tn(ϕ)}, ϕ ∈ L(Rd),

where sup ∅ = −∞. We define an extended function g̃ : L(Rd) × Rd → N ∪ {0,−∞} by
g̃(ϕ, x) := g(θxϕ). Then g̃ is a shift invariant function and the number of the generation
of an arbitrary point x ∈ Rd w.r.t. ϕ is given by g(ϕ, x). Moreover, selection functions
Ψn : L(Rd) → L(Rd), n ∈ N, are defined by

Ψn(ϕ) := Tn(ϕ) \ Tn+1(ϕ), ϕ ∈ L(Rd).

The selection function Ψn maps a set ϕ ∈ L(Rd) to the subset of ϕ consisting of the points
of the nth geneneration.

Let us now introduce the (measurable) empty-space function r : L(Rd)\{∅} → [0,∞) by

r(ϕ) := inf{s ≥ 0 : ϕ ∩ Bd(0, s) 6= ∅},

and then define the nearest neighbour point maps νn : L(Rd) 7→ Rd, n ∈ N, associated with
the thinning procedure (Tn) by

νn(ϕ) :=

{
x if ϕ ∈ L0(Rd) and min(Tn(ϕ) ∩Bd(0, r(Tnϕ)) = x,

0 otherwise.

The mapping νn maps a point set ϕ ∈ L0(Rd) to the lexicographically smallest among the
nearest neighbours of 0 in Tn(ϕ). Then we define inductively the n-ancestors αn, n ≥ 0, of 0
in ϕ by α0(ϕ) := 0 and

αn(ϕ) := νn(θαn−1(ϕ)) + αn−1(ϕ), ϕ ∈ L0(R
d), n ∈ N.

The n-ancestor of an arbitrary point x ∈ ϕ is given by αn(θxϕ) + x. In particular, unlike in
genealogy, a point of the nth generation is considered to be its own k-ancestor for all k ≤ n,
and a k-ancestor is in general not a point of the kth generation. If x 6= z := αn(θxϕ) + x for
some n ∈ N, we also say that x is a descendant of z, and we define the set of descendants of
0 in ϕ by

D(ϕ) :=
⋃

n∈N

{y ∈ ϕ \ {0} : αn(θyϕ+ y) = 0}.

The classification of the points in ϕ in generations, with well defined relations of ancestors
and descendants is called the (Tn)-Voronoi hierarchy on ϕ.

Figure 3.4 shows the Voronoi mosaics associated with the subsets T1(ϕ) and T2(ϕ) of a
locally finite set ϕ ∈ L(R2). The point y ∈ ϕ is in the Voronoi cell with center z of the
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Figure 3.4: The Voronoi mosaics associated with Tn(ϕ), 1 ≤ n ≤ 2.

Voronoi mosaic associated with T1(ϕ). Hence, the nearest neighbour of y in T1(ϕ) is z, so z
is the 1-ancestor of y in the (Tn)-Voronoi hierarchy. The point z is its own 1-ancestor, and
its 2-ancestor is x, because x is the nearest neighbour of y in T2(ϕ). The point x is of third
generation, so it is its own 1, 2 and 3-ancestor, and also the 3-ancestor of y and z.

Lemma 3.3.1. The mappings αn, n ∈ N, are point maps.

Proof: We first proof that the mappings νn, n ∈ N, are measurable. Indeed, we have

{ϕ ∈L0(R
d) : νn(ϕ ∈ B)}

=
⋃

k∈N

⋂

j∈N

(
{ϕ ∈ L0(R

d) : ξk(ϕ) ∈ B ∩ Tn(ϕ) and ξj(ϕ) /∈ Tn(ϕ)}

∪ {ϕ ∈ L0(R
d) : ξk(ϕ) ∈ B ∩ Tn(ϕ) and ‖ξk(ϕ)‖ < ‖ξj(ϕ)‖}

∪ {ϕ ∈ L0(R
d) : ξk(ϕ) ∈ B ∩ Tn(ϕ) and ‖ξk(ϕ)‖ = ‖ξj(ϕ)‖ and ξk(ϕ) ≪ ξj(ϕ)}

)
,

and, hence, the measurability of νn follows from the measurability of ξk, k ∈ N, and Tn. By
induction, we then obtain the measurability of αn, n ∈ N. Moreover, we have α0(ϕ) = 0 ∈ ϕ
if and only if 0 ∈ ϕ, and, again by induction, that αn(ϕ) ∈ ϕ if and only if 0 ∈ ϕ.

We define two auxiliary point maps σ1, σ2 : L(Rd) → Rd by

σ1(ϕ) :=

{
min(ϕ) if ϕ ∈ L0(Rd) and 1 ≤ card(ϕ) <∞,

0 otherwise,
(3.23)
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and

σ2(ϕ) :=





min({y ∈ ϕ \ {0} : 0 ≪ y}) if ϕ ∈ L0(R
d)

and 1 ≤ card({y ∈ ϕ \ {0} : 0 ≪ y}) <∞,

0 otherwise.

Given ϕ ∈ L0(Rd) of finite cardinality, σ1 maps ϕ to its lexicographically smallest element,
and σ2 maps ϕ to the lexicographically smallest among all elements that are bigger than 0.
The composition σi ◦ f, i ∈ {1, 2}, of σ1 or σ2 with any measurable mapping f : L(Rd) →
L(Rd) such that f(ϕ) ∈ L0(Rd) if and only if ϕ ∈ L0(Rd) is again a point map. We will use
this fact to define two more auxiliary point maps, π1, π2 : L(Rd) → Rd.

Let ϕ ∈ L0(Rd) and assume that g(ϕ) = n ≥ 1. Then, for m < n we have αm(ϕ) = 0,
and the descendants of 0 in the mth generation are given by D(ϕ)∩Ψm(ϕ). With the point
map π1 : L(Rd) → Rd, we want to map ϕ to the lexicographically smallest of those elements
that have 0 as an ancestor of minimal generation, i.e., with

h(ϕ) := inf{0 ≤ k < g(ϕ) : {x ∈ D(ϕ) : αk+1(θxϕ) + x = 0} 6= ∅},

where inf ∅ := ∞, we define

π1(ϕ) :=

{
σ1({x ∈ D(ϕ) : αh(ϕ)+1(θxϕ) + x = 0}) 0 ≤ h(ϕ) <∞,

0 otherwise.
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Figure 3.5: Γπ1 and Γπ2 on a finite set ϕ, rearranged in the (Tn)-Voronoi hierarchy

The second auxiliary point map π2 is supposed to map ϕ ∈ L0(Rd) to the smallest among
the lexicographically bigger sisters of the origin. If there is no such point, then ϕ is mapped
to a point of higher generation as indicated on the right hand side of figure 3.5. Formally,
the minimal generation k, that does not contain αk(ϕ) but a different point x that has the
same k + 1-ancestor as 0, i.e., αk+1(θxϕ) + x = αk+1(ϕ), is defined by

f1(ϕ) := inf{k ≥ g(ϕ) : g(αk(ϕ)) 6= k and D(αk+1(ϕ)) ∩ Ψk(ϕ) 6= ∅},
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where inf ∅ := ∞. Moreover, the minimal generation ℓ that actually contains the ℓ-ancestor
of 0, i.e., g(αℓ(ϕ)) = ℓ, and at least one more point that is bigger with respect to the
lexicographic order than αℓ(ϕ) is defined by

f2(ϕ) := inf{ℓ ≥ g(ϕ) : g(αℓ(ϕ)) = ℓ and max(D(αℓ+1(ϕ)) ∩ Ψℓ(ϕ)) 6= αℓ(ϕ)}.

Then define π2 : L(Rd) → Rd by

π2(ϕ) :=





σ1(D(αf1(ϕ)+1(ϕ)) ∩ Ψf1(ϕ)(ϕ)) if f1(ϕ) < f2(ϕ),

σ2(D(αf2(ϕ)+1(ϕ) ∩ Ψf2(ϕ)(ϕ)) if f2(ϕ) < f1(ϕ),

0 otherwise.

The succession point map η : L(Rd) → Rd associated with the (Tn)-Voronoi hierarchy is
then defined by

η(ϕ) :=

{
π1(ϕ) if π1(ϕ) 6= 0,

π2(ϕ) otherwise.
(3.24)
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Figure 3.6: The graph Γη on the (Tn)-Voronoi hierarchy of a finite and rearranged set ϕ

The graph Γη associated with η has a loop in a point x ∈ ϕ if and only if π1(θxϕ) =
π2(θxϕ) = 0. Let us define the set of such points by

Λη(ϕ) := {x ∈ ϕ : (x, x) ∈ Eη(ϕ)}, ϕ ∈ L(Rd).

Lemma 3.3.2. The mapping Λη is a selection function on L(Rd).
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Proof: The fact that the extended point map η̃ is equivariant yields the equivariance
of Λη. Also, the measurability of Λη follows from the measurability of η̃.

Proposition 3.3.3. The mapping η is a point map with the following properties. For fixed
aperiodic ϕ ∈ L0(G) such that ∩n∈NTn(ϕ) = ∅, there are only finitely many descendants of 0
in ϕ and, for m := card(D(ϕ)), we have

D(ϕ) = {ηk(ϕ) : 1 ≤ k ≤ m}, (3.25)

i.e., the first m iterations of η map the set ϕ to all m descendants of 0 in ϕ. Conversely, there
exists an increasing sequence (kn) of numbers in N∪{0}, such that ηkn(θαn

(ϕ))+αn(ϕ) = 0
and, if card(ϕ) = ∞, then kn ↑ ∞.

Proof: We have already shown that π1 and π2 are point maps, so η is also a point map.
For the remainder of the proof let us fix ϕ ∈ L0(Rd), and recall that the generation of the
origin is denoted by g(ϕ), and that g(ϕ) <∞ because we have assumed that ∩n∈NTn(ϕ) = ∅.
Then, by (rn)-regularity of the thinning (Tn(ϕ)), an arbitrary descendant x of 0 satisfies
d(x, 0) ≤ r1 + . . . + rg(ϕ). Hence, D(ϕ) ⊂ ϕ ∩ Bd(0, r1 + . . . + rg(ϕ)) is a set of finite
cardinality.

Let us now prove (3.25) by an induction over m. If m = 0, then there are no descendants
of 0 in ϕ and the claim is trivially satisfied. Now assume that g(ϕ) ≥ 1, that m > 0 and
that the claim is true for all 0 ≤ k < m. Let

ℓ := max{0 ≤ k < g(ϕ) : D(ϕ) ∩ Ψk(ϕ) ≥ 1},

then the set Ψℓ(ϕ) ∩ Φn(ϕ) consists of the j descendants {x1, . . . , xj} of 0 of maximal gen-
eration ℓ < g(ϕ). We have 1 ≤ j ≤ m and we may assume x1 ≪ . . .≪ xj .

The descendants of xi, 1 ≤ i ≤ j, in ϕ are given by D(θxi
ϕ) + xi and we define m0 :=

card({x ∈ D(ϕ) : αℓ(θxϕ) + x = 0}) and mi := card(D(θxi
ϕ)). By the induction hypothesis,

for 1 ≤ i ≤ j, we obtain a path on the mi + 1 points in D(θxi
ϕ) + xi ∪ {xi}. Moreover, we

have ηm0+1(ϕ) = x1 and ηmi+1(xi) = xi+1 for all 1 ≤ i < j. We conclude that (3.25) holds.
From what we have proved above we deduce that for n ∈ N there exists a kn ∈ N ∪ {0}

such that kn ≤ card(D(θαn
(ϕ))) and ηkn(αn(ϕ)) = 0. Finally, the fact that the thinning is

complete yields g(ϕ, αn(ϕ)) <∞ for all n ∈ N, and, hence, the sequence (αn(ϕ)) of ancestors
of 0 in ϕ contains infinitely many distinct elements of ϕ. In particular, kn ↑ ∞.

Corollary 3.3.4. Let ϕ ∈ L(Rd) such that ∩n∈NTn(ϕ) = ∅ and x, y ∈ ϕ. Then there exists
ℓ ∈ N such that ηℓ(θxϕ) + x = y or ηℓ(θyϕ) + y = x if and only if x and y have a joint
ancestor in the Tn-Voronoi hierarchy.

Proof: If x and y have a joint k-ancestor αk(θxϕ) + x = αk(θyϕ) + y then Proposition
3.3.3 applied to θαk

(ϕ) ∈ L0(Rd) yields that there are i, j ∈ N ∪ {0} such that ηi(θαk
(ϕ)) +

αk(ϕ) = x and ηj(θαk
(ϕ)) + αk(ϕ) = y. Hence, ℓ := |i− j| satisfies the claim.

Conversely, let x, y ∈ ϕ such that αn(θxϕ) + x 6= αn(θyϕ) + y for all n ∈ N. Then, for
all n ∈ N, we must have Tn(ϕ) ≥ 2, so Lemma 2.6.10 yields card(ϕ) = ∞. Let us assume
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that ηℓ(θxϕ) + x = y. By Proposition 3.3.3 applied to θxϕ, there exists a sequence (kn) such
that kn ↑ ∞ and ηkn(θαn

◦ θx(ϕ) + αn(θxϕ) + x) = x. In particular, there exists n0 ∈ N such
that kn0 ≥ ℓ. We conclude, again using Proposition 3.3.3, that αn0(θyϕ)+ y = αn0(θxϕ)+x,
a contradiction. Hence, ηℓ(θxϕ) + x 6= y for all ℓ ∈ N ∪ {0} and the same argument yields
ηℓ(θyϕ) + y 6= x for all ℓ ∈ N ∪ {0}.

Let us now assume that (rn) is an increasing sequence of positive real numbers such that
rn ≥

∑n−1
i=1 ri for all n ∈ N. Moreover, let (Tn) be the (rn)-regular thinning procedure defined

in (2.16). Then we have the following main result of this section.

Theorem 3.3.5. For ϕ ∈ L(Rd) such that ∩n∈NTn(ϕ) = ∅, the number of connected com-
ponents of the graph Γη(ϕ) associated with the succession point map η on ϕ is bounded by a
constant b(d) ∈ N that depends only on the dimension of the space. A connected component
C ⊂ ϕ in Γη(ϕ) contains at most one point from Λ(ϕ) and it is a doubly infinite path if and
only if C ∩ Λ(ϕ) = ∅.

Proof: Througout the whole proof, we fix ϕ ∈ L(Rd). By Corollary 3.3.4, two points
x, y ∈ ϕ are in the same connected component of Γη(ϕ) if and only if, for some k ∈ N, they
have a joint k-ancestor in the (Tn)-Voronoi hierarchy. Assume now that F = {x1, . . . , xm}
is a set of points in ϕ such that αn(θxi

ϕ + xi) 6= αn(θxj
ϕ + xj) for all n ∈ N and i 6= j.

Let ̺ := max{d(xi, xj) : i 6= j} be the maximal distance between two points in F . By the
rn-regularity of (Tn), we have

d(xi, αn(xi)) ≤
n∑

ℓ=1

rℓ, n ∈ N.

Hence, the ancestors of xi and xj in the nth generation satisfy

rn < d(αn(θxi
ϕ) + xi, αn(θxj

ϕ) + xj) ≤ ̺+ 2

n∑

ℓ=1

rℓ, (3.26)

and, for n→ ∞, we conclude that there cannot be more than

b(d) := max{card(A) : 1 ≤ d(x, y) ≤ 3 for all distinct x, y ∈ A} (3.27)

points in F . Hence, there are at most b(d) connected components in Γη(ϕ).
Let us now fix one connected component C ⊂ ϕ in Γη(ϕ) and assume that there are two

distinct points x, y ∈ C ∩ Λη(ϕ). Corollary 3.3.4 yields that there exists ℓ ∈ N such that
ηℓ(θxϕ) + x = y or ηℓ(θyϕ) + y = x. In particular, there can not be a loop in x and a loop
in y, a contradiction.

We will prove the last claim of the theorem by showing that, if C∩Λη(ϕ) = ∅, every point
x ∈ C has a unique predecessor and a unique successor in Γη(ϕ), and that C is not a cycle.
By the equivariance of the graph, we may assume that x = 0. The unique successor of 0 ∈ C
is the point η(ϕ). It is distinct from 0, because 0 /∈ Λη(ϕ). Let ℓ := g(ϕ) and αℓ+1(ϕ) be the
first ancestor of 0 that is not 0 itself. By Proposition 3.3.3 (applied to θαl+1

(ϕ), there exists
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k := kℓ+1 ∈ N such that ηk(θαℓ+1
(ϕ)) + αℓ+1(ϕ) = 0, and, hence, ηk−1(θαℓ+1

(ϕ)) + αℓ+1(ϕ)
is a predecessor of 0 in Γη(ϕ). Moreover, since any predecessor of 0 satisfies this relation,
the predecessor of 0 in Γη(ϕ) is unique. Finally, assume that C is a cycle of points and
x ∈ C. Then αn(θxϕ) + x ∈ C for all n ∈ N, hence, there is a point y ∈ C ∩ (∩n∈NTn(ϕ)), a
contradiction.

Conversely, if there exists a point x ∈ C ∩Λη(ϕ) then C is not a doubly infinite, directed
path because η(θxϕ) + x = x.

Lemma 3.3.6. For all ϕ ∈ L(G) we have ∩n∈NTn(ϕ) ⊂ Λη(ϕ), i.e., there is loop at every
point x such that g(ϕ, x) = ∞.

Proof: Assume that x ∈ ∩n∈NTn(ϕ). Then it follows straight from the definition of
the point map η, where the non-trivial part refers only to points of finite generation in the
(Tn)-Voronoi hierarchy, that η(θxϕ) + x = x, hence, there is a loop at the point x in Γη(ϕ),
and we have x ∈ Λη(ϕ).

Corollary 3.3.7. There exists a point map ζ : L(Rd) → Rd such that ζ(θxϕ)+x = ζ(θyϕ)+y
for all x, y ∈ ϕ, whenever ϕ ∈ L(G) is aperiodic and satisfies Λη(ϕ) 6= ∅.

Proof: Recall the definition of σ1 in (3.23), then define the point map ζ by

ζ(ϕ) :=

{
σ1(∩n∈NTn(ϕ)) if ∩n∈NTn(ϕ) 6= ∅,

σ1 ◦ Λη(ϕ) otherwise.

The claim follows from Theorem 3.3.5 and Lemma 3.3.6.

From all ϕ ∈ L(Rd) in the ΘG-stable set

{ϕ ∈ L(G) : Λη(ϕ) 6= ∅}

we can thus pick a single point by ζ , which will serve as the anchor point in the following
definition of a doubly infinite, directed path on ϕ. Let f be an arbitrary bijection from N to
Z. The function f is used to attribute a predecessor and a successor to a natural number,
i.e., the natural numbers f−1(f(n)− 1) and f−1(f(n)+ 1). Then, recall the definition of the
order relation ≺ in (2.1), let S0 := {x ∈ ϕ : x ≺ 0} and define h : L(Rd) × Rd → N by

h(ϕ, x) :=

{
card(ϕ ∩ Sx) if ϕ ∈ L0(R

d),

0 otherwise.

We have already used and discussed this function in the proof of Proposition 2.1.4, it at-
tributes to every ϕ ∈ L(Rd) and x ∈ ϕ the index n such that ξn(ϕ) = x. Then we define a
mapping τ : L(Rd) → Rd by

τ(ϕ) :=

{
ξf−1(f◦h(θζϕ,−ζ(ϕ))+1) if ϕ ∈ L0(R

d) is aperiodic, card(ϕ) = ∞ and Λη(ϕ) 6= ∅,

0 otherwise,

where, in particular, h(θζϕ,−ζ(ϕ)) is the position of 0 seen from ζ(ϕ).
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Proposition 3.3.8. The mapping τ is a bijective point map. For all aperiodic ϕ ∈ L0(Rd)
such that card(ϕ) = ∞ and Λη(ϕ) 6= ∅, the graph Γτ (ϕ) is a doubly infinite directed path.

Proof: The mapping τ is measurable, because the functions f, h and ζ are measurable.
Moreover, if 0 ∈ ϕ then τ(ϕ) ∈ ϕ, hence, τ is a point map. If, in the definition of τ , we
replace h by g := −h, which is also a bijection from N to Z, we obtain a point map τ̂ which
is the inverse point map of τ . In particular, τ is bijective.

Now assume that ϕ ∈ L0(R
d) is aperiodic, that card(ϕ) = ∞ and that Λη(ϕ) 6= ∅. Then

τn(ϕ) = ξf−1(f◦h(θζϕ,−ζ(ϕ))+n), n ∈ Z,

hence, the point map τ is complete on {ϕ}, and, in particular, is not cyclic. Moreover, the
unique predecessor of x ∈ ϕ in Γτ (ϕ) is given by τ̂(θxϕ) + x and the unique successor of
x ∈ ϕ in Γτ (ϕ) is given by τ(θxϕ) + x. Hence, Γτ (ϕ) is a doubly infinite directed path on
ϕ.

Theorem 3.3.9. There exists a point map σ : L(Rd) → Rd, such that Γσ(ϕ) is a finite
collection of doubly infinite paths, whenever ϕ is aperiodic and card(ϕ) = ∞, and a cycle
that contains all the points of ϕ, whenever card(ϕ) <∞.

Proof: It remains to put together the pieces that we already have. We define a point
map σ : L(Rd) → Rd by

σ(ϕ) :=





σ2(ϕ) if card(ϕ) <∞ and 0 6= max(ϕ),

σ1(ϕ) if card(ϕ) <∞ and 0 = max(ϕ),

η(ϕ) if card(ϕ) = ∞ and Λη(ϕ) = ∅,

τ(ϕ) if card(ϕ) = ∞ and Λη(ϕ) 6= ∅.

Then the claim of the propositon follows from Theorem 3.3.5 and Proposition 3.3.8.

3.4 A complete family generated by two point maps

We will now define a bijective point map π that, together with the point map σ from Theorem
3.3.9, generates a complete family on the aperiodic sets in L0(Rd). In particular, if the open
problem 1 from Section 3.1 has a negative answer, i.e., if there is no universal point map on
the aperiodic sets in L0(Rd), then {σ, π} is a minimal generator of such a complete family.

We have seen in Theorem 3.3.9 that the point map σ partitions any ϕ ∈ L∞
0 (Rd) into

finitely many doubly infinite paths, the n(ϕ) connected components of the associated graph
Γσ(ϕ). We then want to define a mapping π that is n(ϕ)-cyclic and such that the orbit
Oπ(ϕ, x) of a point x in ϕ under π is either trivial, or contains one point from each connected
component of Γσ(ϕ), ϕ ∈ L∞

0 (Rd). From Theorem 3.2.9 we infer that there exists a countable
family of cyclic point maps {πm : m ∈ N} such that, for any aperiodic ϕ ∈ L∞

0 (Rd), n ∈ N
and n distinct points x1, . . . , xn ∈ ϕ, there exists an index m0 such that πm0 is n-cyclic and
{x1, . . . , xn} = {σi(θx1ϕ) + x1 : 1 ≤ i ≤ n}.
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We will now modify the point maps πm, m ∈ N, in such a way that we only keep cycles
that involve exactly one point from every path in Γη(ϕ). We define the point maps τm :
L(Rd) → Rd by

τm(ϕ) :=





πm(ϕ) if π
n(ϕ)
m (ϕ) = 0 and

σk ◦ πim(ϕ) 6= πjm(ϕ) for all k ∈ Z and 1 ≤ i < j ≤ n(ϕ),

0 otherwise.

Theorem 3.2.9, as it is restated above, then yields that

m0(ϕ) := inf{m ∈ N : τm 6≡ 0},

where inf ∅ := ∞, is finite for all aperiodic ϕ ∈ L0(R
d). The measurability of m0 : L0(G) →

N ∪ {∞} is a consequence of the measurability of the mappings τm, m ∈ N, which are all
bijective point maps. Hence, the definition of π : L(Rd) → Rd by

π(ϕ) := τm0(ϕ)(ϕ), ϕ ∈ L(Rd),

yields a bijective point map.

Theorem 3.4.1. The family of bijective point maps generated by σ and π is complete on
the aperiodic locally finite subsets of Rd that contain the origin, i.e., on

A = {ϕ ∈ L0(R
d) : ϕ is aperiodic}.

Proof: Let ϕ ∈ A. We define

κ1(ϕ) := inf{k ≥ 0 : π ◦ σk(ϕ) 6= 0}, κ2(ϕ) := inf{k ∈ N : π ◦ σ−k(ϕ) 6= 0}

and, finally,

κ(ϕ) :=

{
κ1(ϕ) if κ1 <∞,

−κ2(ϕ) if κ1 = ∞.

The definition of π yields κ(ϕ) ∈ Z, and we have

{σk ◦ πj ◦ σκ(ϕ) : k ∈ Z, 0 ≤ j < n(ϕ)} = ϕ,

and we conclude that

{σk ◦ πj ◦ σi(ϕ) : i, k ∈ Z, j ∈ N ∪ {0}} = ϕ

for all ϕ in A. Hence, 〈{σ, π}〉 is a countable family of bijective point maps that is complete
on A.



Chapter 4

Palm measure and characterization

theorems

In this chapter, we give a brief summary of the classical theory of Palm measures associated
with stationary measures on M(G), with emphasis on the characterization results that were
established by Mecke in [16]. More complete accounts on Palm theory are given in Chapter
12 of [1], also in [7], [15] and [18].

In the first section, we introduce the Palm measure associated with a stationary measure
P on M(G), the space of locally finite measures on a lcscH Abelian group G. The treatment
of the subject follows the exposition in [16] and, in the second section, the intrinsic charac-
terization theorem for Palm measures (cf. Theorem 4.2.2) is stated. We work in a canonical
framework, and for some of the proofs, we refer the reader to the original work.

4.1 Stationarity and Palm measure

In Section 2.2, we have introduced the measurable flow ΘG = {θx : x ∈ G} of translation
mappings that operates as a group operation on G, and also on the locally finite subsets
L(G) of G, and on the space M(G) of locally finite measures on G. The operation on M(G)
transfers to an operation on the space of σ-finite measures on M(G). For a σ-finite measure
P on M(G) we define

θx(P) := P ◦ θ−1
x .

Definition 4.1.1. A σ-finite measure P on (M(G),M(G)) is called stationary if it is shift
invariant, i.e., if θx(P) = P for all x ∈ G.

A standard monotone convergence argument yields that a σ-finite measure P on M(G)
is stationary if and only if, for all y ∈ G and f ∈ F(M(G)), we have

∫
f ◦ θy(ϕ)P(dϕ) =

∫
f(ϕ)P(dϕ). (4.1)

The Campbell measure C associated with a σ-finite measure P on M(G) is defined on the

49
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product space (M(G) ×G,M(G) ⊗ G) by

C(A) :=

∫
1{(ϕ, x) ∈ A}ϕ(dx)P(dϕ).

The Campbell measure is again σ-finite. Now assume that P is stationary, and fix B ∈ M(G).
Define a mapping θ : M(G)×G by θ(ϕ, x) := (θxϕ, x). Then, for C ∈ G and y ∈ G, we have

θ(C)(B × C) =

∫
1{θ(ϕ, x) ∈ B × C}ϕ(dx)P(dϕ)

=

∫
1{(θxϕ, x) ∈ B × C}ϕ(dx)θy(P)(dϕ)

=

∫
1{(θx ◦ θyϕ, x) ∈ B × C}θyϕ(dx)P(dϕ)

=

∫
1{(θx−y ◦ θy(ϕ), x− y) ∈ B × C}ϕ(dx)P(dϕ)

=

∫
1{(θxϕ, x) ∈ B × (C + y)}ϕ(dx)P(dϕ)

= θ(C)(B × (C + y)).

We deduce that the set function θ(C) is invariant under shifts in G. Then Theorem A.3.2
yields the existence of a unique σ-finite measure P0 on M(G) such that θ(C) = P0⊗λ, where
λ is the unique (up to normalization) invariant measure on G, called Haar measure on G
(cf. Theorem A.3.1). By a standard monotone convergence argument we deduce that, for
f ∈ F(M(G) ×G), we have

∫

M(G)

∫

G

f(ϕ, x)λ(dx)P0(dϕ) =

∫

M(G)

∫

G

f(θxϕ, x)ϕ(dx)P(dϕ). (4.2)

Equation 4.2 is known as the refined Campbell formula. In particular, given a non-negative,
measurable function g : G→ [0,∞) such that

∫
G
g(x)λ(dx) = 1, we obtain

P0(B) =

∫

M(G)

∫

G

g(x) 1{θxϕ ∈ B}ϕ(dx)P(dϕ), B ∈ M(G). (4.3)

Definition 4.1.2. Let P be a σ-finite, stationary measure on (M(G),M(G)). Then the
σ-finite measure P0 defined above is called the Palm measure associated with P.

Recall from Section 2.1 that N(G) denotes the subspace of simple counting measures in
M(G). We introduce a second measurable subspace of (M(G),M(G)),

Md(G) := {ϕ ∈ M(G) : supp(ϕ) ∈ L(G)}, (4.4)

the set of locally finite measures on G with discrete support, equipped with the σ-field
Md(G) := {A ∩ Md(G) : A ∈ M(G)}, the restriction of the cylindrical σ-field on M(G).
Finally, we define the subspaces of Md(G) resp. N(G) that contain all measures ϕ with
positive mass in 0 by

Md,0(G) := {ϕ ∈ Md(G) : ϕ({0}) 6= 0} resp. N0(G) := {ϕ ∈ N(G) : ϕ({0}) 6= 0}.
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Lemma 4.1.3. If the stationary measure P on (M(G),M(G)) is concentrated on Md(G)
resp. N(G), then the Palm measure P0 satisfies

P0({ϕ ∈ M(G) : ϕ({0}) = 0}) = 0, (4.5)

and P0 is concentrated on Md,0(G) resp. N0(G).

Proof: Let g be a non-negative function on G such that
∫
G
g(x)λ(dx) = 1. We apply

the refined Campbell formula (4.2) to the measurable function

f(ϕ, x) := g(x) 1{ϕ({0}) = 0}

and obtain

P0({ϕ ∈ M(G) : ϕ({0}) = 0}) =

∫

M(G)

∫

G

f(ϕ, x)λ(dx)P0(dϕ)

=

∫

M(G)

∫

G

g(x) 1{θxϕ({0}) = 0}ϕ(dx)P(dϕ)

=

∫

M(G)

∑

x∈supp(ϕ)

g(x) 1{θxϕ({0}) = 0}ϕ({x})P(dϕ)

= 0.

Hence, (4.5) is satisfied. Moreover, Md(G) resp. N(G) are ΘG-stable subspaces of M(G),
hence, if P is concentrated on either one of the two spaces, then the same is true for the
Palm measure P0.

The Palm measure P0 has been defined with respect to a σ-finite, stationary measure P
on (M(G),M(G)). Let us now ask the reverse question. Given a Palm measure P0, can
the stationary measure P be retrieved? Denote the trivial zero-measure in M(G) by 0. It
is a simple consequence of (4.2) applied to f(ϕ, x) := 1{ϕ = 0} that the mass of P on {0}
cannot be recovered from P0. However, we can retrieve the restriction of P to M(G) \ {0}.

For a non-negative, measurable function g : G → [0,∞) such that
∫
G
g(x)λ(dx) = 1

and A ∈ M(G), the refined Campbell formula (4.2) applied to f(ϕ, x) := g(x) 1{ϕ ∈ A}
yields the defining equation for the Palm measure because the inner integral over G is
always 1 and disappears from the equation. In the same way, we obtain a defining equation
for the restriction of the measure P to M(G) \ {0}, if there exists a measurable function
h : M(G) ×G→ [0,∞] such that

∫

G

h(ϕ, x)ϕ(dx) = 1 (4.6)

for all ϕ ∈ M(G) \ {0}. We will now define such a function h.

A lcscH group G is a σ-compact space (cf. Theorem A.1.3). In particular, there exists a
partition of G into countably many, pairwise disjoint sets Gn ∈ G with compact closure in G.
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For all ϕ ∈ M(G) and n ∈ N, we have ϕ(Gn) < ∞. We define a function h̄ : M(G) ×G →
[0,∞] by

h̄(ϕ, x) :=
∑

n∈N

2−nϕ(Gn)
−1 1{x ∈ Gn}, (4.7)

where ϕ(Gn)
−1 := ∞ if ϕ(Gn) = 0. Then, for all ϕ ∈ M(G) \ {0}, we have

0 <

∫

G

h̄(ϕ, x)ϕ(dx) ≤ 1. (4.8)

Normalizing the function h̄, we define h : M(G) ×G→ [0,∞) by

h(ϕ, x) :=

{(∫
G
h̄(ϕ, y)ϕ(dy)

)−1
h̄(ϕ, x) if ϕ 6= 0,

0 if ϕ = 0.
(4.9)

Hence, h is a measurable function on M(G) ×G that satisfies (4.6).

Theorem 4.1.4. Let P be a σ-finite and stationary measure on (M(G),M(G)) and P0 the
associated Palm measure. Then, for all f ∈ F(M(G)) such that f(0) = 0, we have

∫

M(G)

f(ϕ)P(dϕ) =

∫

M(G)

∫

G

h(θ−xϕ, x)f(θ−xϕ)dxP0(dµ). (4.10)

Proof: Define a measurable function u : M(G) ×G→ [0,∞) by

u(ϕ, x) := h(θ−xϕ, x)f(θ−xϕ).

The refined Campbell formula (4.2) applied to u yields (4.10).

4.2 Integral characterization of Palm measures

In the preceding section, the Palm measure P0 was defined with respect to a stationary
measure P. We will now summarize results by Mecke from [16], that provide an intrinsic
characterization of Palm measures.

Theorem 4.2.1. For σ-finite measures P and Q on (M(G),M(G)) the following two as-
sertions are equivalent.

(a) P is stationary and Q = P0.

(b) For all f ∈ F(M(G) ×G), we have

∫

M(G)

∫

G

f(ϕ, x)dxQ(dϕ) =

∫

M(G)

∫

G

f(θxϕ, x)ϕ(dx)P(dϕ). (4.11)
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Proof: cf. [16], Satz 2.3.

In particular, it is shown in the proof that (4.11) yields the stationarity of P. We will
now state the main result of this section, in which Palm measures are characterized without
any reference to an explicit stationary measure P.

Theorem 4.2.2. A measure Q on (M(G),M(G)) is the Palm measure of some σ-finite
stationary measure P on (M(G),M(G)) if and only if the following three conditions are
satisfied.

(i) Q is σ-finite,

(ii) Q({0}) = 0,

(iii) for all f ∈ F(M(G) ×G), we have

∫

M(G)

∫

G

f(θxϕ,−x)ϕ(dx)Q(dϕ) =

∫

M(G)

∫

G

f(ϕ, x)ϕ(dx)Q(dϕ).

Proof: cf. [16], Satz 2.5.
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Chapter 5

The universal point map on point

processes

The central subject of this chapter is a probabilistic version of Open Problem 1 (cf. page
27) that has been discussed in various recent papers: For which classes of point processes
is there a factor graph on the points of the process, that is a doubly infinite, directed path
almost surely? The answer given in Theorem 5.2.3 yields a partial extension of a classical
result on the relationship between time stationarity and cycle-stationarity from R to Rd.
Throughout the chapter, we will restrict ourselves to the case G = Rd. We will begin with
some basic probabilistic terminology, and then give a brief overview over the related results
from [2], [5] and [30] (in chronological order).

A (simple) point process on Rd is a N(Rd)-valued random variable defined on a probability
space (Ω,A,P). Sticking to the canonical framework that is used througout the whole thesis,
we will equip the space (N(Rd),N (Rd)) with a probability measure P. Then the identity
mapping N on N(Rd) is a point process. In view of the identification provided by Lemma
2.1.5, we can and will identify N(G) and L(G). We call N stationary resp. aperiodic, if
P is stationary resp. aperiodic, i.e., if θxP = P for all x ∈ Rd resp. P(L(N) 6= {0}) = 0,
where L denotes the periodicity lattice mapping defined in Definition 2.5.4. Moreover, if N
is stationary, we define the (possibly infinite) intensity of N under P by

λP :=

∫

Rd

ϕ([0, 1])dP(dϕ).

5.1 Paths on Poisson processes

In [2], the following example of a factor graph Γ is defined. Let ϕ ∈ L(Rd) and for each
point x = (x1, . . . , xd) ∈ ϕ call the first d−1 coordinates s(x) := (x1, . . . , xd) ∈ Rd−1 and the
remaining coordinate t(x) := xd. In this way x = (s(x), t(x)), and s(x) is interpreted as the
space coordinate and t(x) as the time coordinate of x. For s ∈ Rd−1, denote by B(s) := {s′ ∈
Rd−1 : ‖s−s′‖ ≤ 1} the (closed) (d−1)-dimensional Euclidean unit ball centered at s. With
every point x = (s(x), t(x)) we associate the obstacle Z(x) := {(s′, t(x)) : s′ ∈ B(s(x))}.
A directed edge (x, x′) is defined, if and only if the first obstacle hit by a half line starting
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in x in direction of the (positive) time axis is the one centered in x′. We then call x the
mother of x′, and x′ a daughter of x and denote the resulting factor graph by Γ(ϕ). When
this construction is applied to the points of a stationary Poisson process N , the resulting
graph Γ(N) has no loops and in every point x ∈ N a unique edge starts. Moreover, Ferrari,
Landim and Thorisson obtained the following result.

Theorem 5.1.1. Let N be a stationary Poisson process on Rd. Then, almost surely, the
random graph Γ(N) associated with N has the following properties.

(a) Γ(N) is a locally finite forest.

(b) Every vertex in Γ(N) has a unique mother vertex.

(c) Using the order of the first coordinate in Rd, each vertex has an ancestor with a lexi-
cographically smaller sister.

(d) If d = 2 or d = 3 then Γ(N) has a unique connected component; if d ≥ 4, then Γ(N)
has infinitely many connected components.

Proof: cf. [2], Theorem 3.1.

Also, it is observed in [2], that if Γ is a factor graph, and Γ(ϕ) has the properties (a) (b)
and (c) for all ϕ in some set A ⊂ N(Rd), then there exists a factor graph Γ′ such that Γ′(ϕ) is
a doubly-infinite, directed path for all ϕ ∈ A. Hence, by Theorem 5.1.1, for d ∈ {2, 3}, there
exists a factors graph Γd defined on N(Rd) such that, Γd(N) is a directed, doubly infinite path
on the points of the Poisson process N almost surely. In the same paper, Ferrari, Landim
and Thorisson ask the question whether the same assertion is true for the Poisson process
on Rd for d ≥ 4. In [5], Holroyd and Peres answer this question by giving a deterministic
construction of factor graphs, which are equivariant not only under translations but also
under rotations, and have the properties stated in the following theorem.

Theorem 5.1.2. Let N be a stationary Poisson process on Rd.

(a) There is a factor graph Γ such that Γ(N) is almost surely a locally finite one-ended
tree.

(b) There is a factor graph Γ′ such that Γ′(N) is almost surely a directed, doubly infinite
path.

Proof: cf. [5], Theorem 1.

Using the same argument as in [2], it is shown that the first assertion implies the second
one. Moreover, a similar result is given for each component of the graph Γ(N), when N is
a non-equidistant processes (a process such that the distribution is concentrated on the set
D defined in (3.4)), which is ergodic and invariant under isometries (cf. [5], Theorem 2).
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5.2 Paths on stationary point processes

In [30], Timar then generalized the results cited in the preceding subsection as follows.

Theorem 5.2.1. Let N be an isometry invariant point process with finite intensity, such
that the subgroup of isometries of Rd that leave N invariant is trivial almost surely. Then
there exists a factor graph Γ, which is equivariant under all isometries, and such that Γ(N)
is a doubly infinite directed path almost surely.

Proof: cf. [30], Section 3.

The generality of this result is striking. The condition that the subgroup of isometries
leaving N invariant is trivial almost surely yields, in particular, that N is aperiodic almost
surely. The focus of Timar’s paper is then to show that there are more general grid factor
graphs as stated in the following theorem.

Theorem 5.2.2. Let N be an isometry invariant point process with finite intensity, such
that the subgroup of isometries of Rd that leave N invariant is trivial almost surely. Then
there exists an isometry equivariant factor graph Γ such that Γ(N) is isomorphic with the
distance-one graph on Zd almost surely.

Proof: cf. [30], Section 4.

We will now present an alternative proof of Theorem 5.2.1, with the following minor
modification: We postulate that the point process N is stationary, not invariant under
all isometries, and then show that there exists a factor graph Γ in the sense of Definition
2.7.1, i.e., not isometry equivariant but only shift equivariant, such that Γ(N) is a doubly
infinite path almost surely. Indeed, it is proved that the factor graph Γη associated with the
succession point map η from Theorem 3.3.5 has this property. Using Palm calculus as it is
introduced in the first section of Chapter 4, we show that the hypothesis of finite intensity
can be omitted. Note, however, that one can also adapt the original proof to this more
general case as follows. Let T be a c-regular selection function and define a path on T (N),
which is a stationary point process of finite intensity. Then include the points from N \T (N)
into the path by some equivariant, deterministic rule.

Theorem 5.2.3. Let N be a stationary, aperiodic point process. Then, almost surely, the
factor graph Γη(N) associated with the succession point map η defined in (3.24) is a doubly
infinite, directed path on N .

Proof: Consider the sequence rn := 2n
2
, n ∈ N. We first show that the rn-regular

thinning procedure Tn yields a complete thinning on N almost surely. Indeed, the selection
functions Tn, n ∈ N, are equivariant and measurable, hence, ∩n∈NTn(N) is again a stationary
point process, and by Lemma 2.6.10, we have card(∩n∈NTn(N)) ∈ {0, 1}. Since there is
no stationary distribution for a Rd-valued random variable, we deduce that ∩n∈NTn(N) = ∅
almost surely, and denote by A1 a subset of N(Rd) that satisfies P(A1) = 1 and ∩n∈NTn(ϕ) =
∅ for all ϕ ∈ A1.
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By Lemma 3.3.2, Λη is a selection function and, hence, Λη(N) is also a stationary point
process. For all ϕ ∈ A1, Theorem 3.3.5 yields that 0 ≤ card(Λη(ϕ)) < ∞, and whenever
Λη(ϕ) is not empty the choice of the lexicographic smallest point in Λη(ϕ) yields again an
equivariant selection of a single point from N . Hence, the same argument as above applies
and there exists a set A2 ⊂ A1 such that P(A2) = 1 and Λη(ϕ) = ∅ for all ϕ ∈ A2.

We may now apply Theorem 3.3.5 and obtain that, for all ϕ ∈ A2, the graph Γη(ϕ)
consists of finitely many doubly infinite, directed paths on ϕ. It remains to show that, for
almost all ϕ ∈ A2, there is a unique path in Γη(ϕ), i.e., that Γη(ϕ) is connected. By Corollary
3.3.4, this is equivalent with the fact that for almost all ϕ ∈ A2, any two points x, y ∈ ϕ
have a joint ancestor in the (Tn)-Voronoi hierarchy.

We will first argue in a determistic setting. Let ϕ ∈ L(G), x ∈ ϕ and denote by V (ϕ, x)
the cell with center x ∈ ϕ in the Voronoi mosaic associated with ϕ. Define the union of the
boundaries of the cells by

Z(ϕ) :=
⋃

x∈ϕ

∂V (ϕ, x).

The set Z(ϕ) consists of all points in Rd that do not have a unique nearest neighbour in ϕ,
often this set is also called the exoskeleton of ϕ.

Now assume that there are two points x, y ∈ ϕ ∩ Bd(0, k) such that αn(θxϕ) + x 6=
αn(θyϕ) + y. Then the points αn−1(θxϕ) + x and αn−1(θyϕ) + y are in two different cells
of the Voronoi mosaic associated with the set Tn(ϕ). Defining sn := k +

∑n−1
i=1 ri, we have

d(0, αn−1(θxϕ) + x) ≤ sn and d(0, αn−1(θyϕ) + y) ≤ sn, so both points are contained in
the ball Bd(0, sn), and we deduce that this ball must have a non-empty intersection with
Z(Tn(ϕ)). Hence, we have d(0, Z(Tn(ϕ))) ≤ sn, or equivalently, 0 ∈ Z(Tn(ϕ))⊕sn

.
Finally, we get to the probabilistic part of the argument. Fix n ∈ N and write Pn for the

stationary measure Tn(P) and P0
n for the associated Palm measure. We have

P({there exist x, y ∈ N ∩ Bd(0, k) with distinct n-ancestors})

≤ P({0 ∈ Z(Tn(N))⊕sn
})

=

∫

[0,1]d

∫

N(Rd)

1{x ∈ Z(ϕ)⊕sn
}Pn(dϕ)λd(dx)

=

∫

[0,1]d

∫

N(Rd)

∫

Rd

1{x ∈ V (ϕ, y) ∩ Z(ϕ)⊕sn
}ϕ(dy)Pn(dϕ)λd(dx) (5.1)

=

∫

N(Rd)

∫

Rd

∫

Rd

1{x ∈ [0, 1]d} 1{x− y ∈ V (θyϕ, 0) ∩ Z(θyϕ)⊕sn
}λd(dx)ϕ(dy)Pn(dϕ)

=

∫

N(Rd)

∫

Rd

∫

Rd

1{x ∈ [0, 1]d} 1{x− y ∈ V (ϕ, 0) ∩ Z(ϕ)⊕sn
}λd(dx)λd(dy)P0

n(dϕ)

=

∫

N(Rd)

∫

Rd

1{x ∈ [0, 1]d}λd(V (ϕ, 0) ∩ Z(ϕ)⊕sn
)λd(dx)P0

n(dϕ).

The set ϕ is P0
n-almost surely a rn-regular set with 0 ∈ ϕ, so the Voronoi cell V (ϕ, 0) is a

polytope, and its inradius is at least rn/2. Denote by x the center of an open ball with radius
rn/2 that is contained in V (ϕ, 0). Then the volume of each of the pyramides P , defined as
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the convex hull of a facet F of V (ϕ, 0) and x, satisfies

1

d

rn
2
Sd−1(F ) ≤ λd(P ),

where Sd−1(F ) denotes the d− 1-dimensional Hausdorff measure of F (or simply the d− 1-
dimensional volume of F in the d−1 dimensional affine subspace generated by F ). Summing
up over the finitely many facets of V (ϕ, 0), we obtain

rn
2d
Sd−1(∂V (ϕ, 0)) ≤ λd(V (ϕ, 0)). (5.2)

Using mixed volumes (see Chapter 5 in [23]) it is possible to derive this inequality for general
convex bodies (i.e., convex, compact sets). Moreover, an elementary inequality for convex
bodies is given by

λd(V (ϕ, 0) ∩ (∂V (ϕ, 0))⊕s) ≤ sSd−1(∂V (ϕ, 0)). (5.3)

Since V (ϕ, 0) ∩ Z(ϕ) = ∂V (ϕ, 0), we deduce from (5.1), (5.2) and (5.3) that

P({0 ∈ Z(Tn(N))⊕sn
}) ≤

2dsn
rn

∫

N(Rd)

λd(V (ϕ, 0))P0
n(dϕ).

A similar computation as above (in the reverse direction) yields that
∫

N(Rd)

λd(V (ϕ, 0))P0
n(dϕ)

=

∫

N(Rd)

∫

Rd

∫

Rd

1{x ∈ [0, 1]d} 1{x− y ∈ V (ϕ, 0)}λ(dx)λ(dy)P0
n(dϕ)

=

∫

N(Rd)

∫

Rd

∫

Rd

1{x ∈ [0, 1]d} 1{x− y ∈ V (θyϕ, 0)}λ(dx)ϕ(dy)Pn(dϕ)

=

∫

N(Rd)

∫

Rd

∫

Rd

1{x ∈ [0, 1]d} 1{x ∈ V (ϕ, y)}λ(dx)ϕ(dy)Pn(dϕ)

=

∫

N(Rd)

∫

Rd

1{x ∈ [0, 1]d}λ(dx)Pn(dϕ)

= 1.

We have sn ≤ 2(n−1)2+1 + k, and so sn/rn ≤ (1 + k)2−n holds for all n ≥ 2. We conclude
that

P({there exist x, y ∈ N ∩ Bd(0, k) with distinct n-ancestors}) ≤
d(1 + k)

2n−1
.

Since the series over n with the general term from the right of the last equation is summable,
the Borel-Cantelli lemma yields that P-almost surely any two points x, y ∈ N ∩Bd(0, k) have
only finitely many distinct n-ancestors, i.e., the event

Dk := {there exist x, y ∈ N ∩ Bd(0, k) with distinct n-ancestors for all n ∈ N}

satisfies P(Dk) = 0. Clearly, we then also have P(∪k∈NDk) = 0, and conclude that the event
A3 := A2 \ (∪k∈NDk) satisfies P(A3) = 1 and Γη(ϕ) is a doubly infinite, directed path on ϕ
for all ϕ ∈ A3.



60 CHAPTER 5. THE UNIVERSAL POINT MAP ON POINT PROCESSES

5.3 On the key stationarity theorem

In this section, we will state and discuss a theorem, that (in a more general, marked version,
cf. [29], Ch. 8) has been called the key stationarity theorem. We begin with the introduction
of an invariance property for point processes on R. Recall the definition of the universal point
map τ defined in (3.2).

Definition 5.3.1. A σ-finite measure Q on (N(R),N (R)) is called cycle-stationary if

Q(0 /∈ N) = 0 and θτ (Q) = Q.

If Q is a probability measure, we also call the point process N cycle-stationary (in this case

θτ (N)
d
= N).

If N is a cycle-stationary point process on R, then the successive differences defined by

Zn := τn+1(N) − τn(N), n ∈ Z, (5.4)

form a stationary sequence of real random variables, i.e., (Zn)n∈Z

d
= (Zn+1)n∈Z, and a version

of the cycle-stationary point process N can be recovered from the sequence (Zn) via

N = {0} ∪

{ n∑

i=1

Zi : n ∈ N

}
∪

{ n∑

i=0

−Zi : n ∈ N ∪ {0}

}
Q-almost surely.

The following theorem states a fundamental relationship between stationarity and cycle-
stationarity, and can easily be derived from Theorem 11.4 in [7].

Theorem 5.3.2. There exists a one-to-one correspondence between the distributions P of
stationary point processes on R such that λP < ∞ and P(N = 0) = 0, where 0 denotes
the zero-measure on R, and the distributions Q of cycle-stationary point processes such that
Q({τ(N) ≤ 0}) = 0 and

∫
N(G)

τ(ϕ)Q(dϕ) <∞.

The one-to-one correspondence can even be made explicit, using normalized versions of
Palm measures (4.3) in one direction, and the inversion formula (4.10) in the other (cf. [7],
Theorem 11.4).

Let us now consider the analogous problem in d dimensions. Assume that P is the
distribution of a stationary and aperiodic point process with finite intensity. Then the
associated Palm measure P0 has finite total mass and normalizaton yields the associated
Palm distribution P̂0. Moreover, Theorem 5.2.3 yields that, P-a.s., Γ(N) is a doubly infinite
path on the points of N . By the equivariance of the factor graph Γη and the refined Campbell

formula (4.2), we obtain that, P0-a.s., and then also P̂0-a.s., Γ(N) is a doubly infinite path
on the points of N . It will be shown in Proposition 6.2.2 that P0 is invariant under the point
shift θη which is associated with the succession point map η from (3.24), a property that

transfers to P̂0. Hence, we can define a stationary sequence of Rd-valued random variables
just as in the one-dimensional case.
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Proposition 5.3.3. Let N be a stationary and aperiodic point process on Rd, and let η be
the point map from (3.24). Then the sequence of random variables in Rd defined by

Zn := ηn+1(N) − ηn(N), n ∈ Z,

is stationary under P̂0 and

N = {0} ∪

{ n∑

i=1

Zi : n ∈ N

}
∪

{ n∑

i=0

−Zi : n ∈ N ∪ {0}

}
P̂0-almost surely. (5.5)

In view of Theorem 5.3.2, the following problems arise.

Open problem 2. Let (Zn)n∈Z be a stationary random sequence in Rd with distribution Q
(on (Rd)Z) and define

M((Zn)n∈Z) := {0} ∪

{ n∑

i=1

Zi : n ∈ N

}
∪

{ n∑

i=1

−Zi : n ∈ N ∪ {0}

}
.

What are suitable conditions on Q to ensure that M((Zn)n∈Z) is the Palm version of a
stationary point process?

Less ambitious, one could ask for examples of random sequences that yield a stationary
point process.

Open problem 3. What examples of stationary probability distributions Q on (Rd)Z can
be explicitly given, such that M((Zn)n∈Z) is the Palm version of a stationary point process?

We are aware that, given a stationary point process N , the definition of η hardly gives
any insights on the distribution of the sequence (Zn) defined in Proposition 5.3.3. Still,
there may be a chance to find examples that solve Open Problem 3. After all, Proposition
5.3.3 yields that the Palm distribution of any stationary, aperiodic point process with finite
intensity can be obtained in this way.

At the end of this chapter, we return to the framework of σ-finite measures that will
also be used in the remainder of this thesis. Then Theorem 5.3.2 has the following, smooth
formulation.

Theorem 5.3.4. There exists a one-to-one correspondence between σ-finite stationary mea-
sures P on N(R) such that P({0}) = 0, and σ-finite cycle-stationary measures Q.

The following, concluding chapter will be concerned with the characterization of Palm
measures on a lcscH group G, and Theorem 5.3.4 is a consequence of the characterization
of Palm measures on N(R) derived in Theorem 6.2.2, Theorem 6.2.3 and the remark made
after the latter theorem.
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Chapter 6

Point shift characterization of Palm

measures

In this final chapter we will bring together the three key words that appear in the title of this
thesis: bijective point maps, point-stationarity and Palm measures. We will begin with the
formal definition of point-stationarity, which involves bijective points shifts and will then
explore the intimate connection of point-stationarity and Palm measures, beginning with
measures on the space of simple counting measures N(G).

6.1 Point-stationarity

In this section, the notion of point-stationarity, which was first introduced and discussed
by Thorisson (cf. [26], [28], [29]), will be defined. Informally, a point processs N is called
point-stationary if it contains the origin almost surely and “looks statistically the same from
any of its points”, i.e., if by some unbiased rule we “pick a point x from N \ {0}” then the
process θxN has the same distribution as N . Formally, we will first define point stationarity
for σ-finite mesures Q on N(G), where, as before, we will identify a measure ϕ ∈ N(G)
and its support supp(ϕ) ∈ L(G) (cf. Lemma 2.1.5). The key to a formal approach to
point-stationarity are bijective point shifts.

Definition 6.1.1. A σ-finite measure Q on N(G) is called point-stationary if

Q(N(G) \ N0(G)) = 0

holds and Q is invariant under bijective point shifts.

Indeed, a bijective point map σ provides the possibility to pick a point from ϕ ∈ N0(G).
This choice is made deterministically, however, the bijectivity of the point map assures that
for every x ∈ ϕ there exists a unique y ∈ ϕ such that σ(θxϕ) + x = y, and the invariance
of Q under θσ reflects the fact that θxϕ has “the same weight” under Q as θyϕ. For a
formalization of the property that the process “looks statistically the same from any of its
points”, it is then necessary to find a family of bijective point maps {σi : i ∈ I}, such that,
for Q-almost all ϕ ∈ N0(G) and for any x ∈ ϕ there exists i ∈ I such that σi(ϕ) = x, or,
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equivalently, a complete family of point maps on some θG-stable set A ⊂ N0(G) that satisfies
Q(N(G) \ A) = 0.

A solution to this problem is given in Chapter 9.5 of [29], where randomized bijective
point shifts are introduced. In [4], a countable family of deterministic bijective point shifts is
defined that is complete on N0(Rd). In Section 3.2 of this thesis, we have defined a countable
family of matchings that is quasi complete on N0(G), where G is an arbitrary lcscH group.

6.2 Simple point processes

We will now discuss the connections of point-stationarity and Palm measures. For fixed
ϕ ∈ N0(G), (the second component of) an extended bijective point map σ̃ is a permutation
of the points of ϕ. As we will show in the following lemma, this fact entails that the Campbell
measure C(d(ϕ, x)) = ϕ(dx)P(dϕ) on N(G) × G associated with a measure P on N(G) is
invariant under σ̃, a fact that is tacitly used in the proof of Theorem 3.1 in [4].

Lemma 6.2.1. Let P be an arbitrary σ-finite measure on N(G), and C the associated Camp-
bell measure on N(G)×G. If π is a bijective point map on N(G), then C is invariant under
the extended point map π̃.

Proof: For f ∈ F(N(G) ×G), we have

∫

N(G)×G

f(ϕ, x)C(d(ϕ, x)) =

∫

N(G)

∑

x∈ϕ

f(ϕ, x)P(dϕ)

=

∫

N(G)

∑

x∈ϕ

f(ϕ, π(θxϕ) + x)P(dϕ)

=

∫

N(G)×G

f(ϕ, x)π̃(C)(d(ϕ, x)),

so the lemma is proved.

We will now state and prove our first theorem establishing the link between point-
stationarity and Palm measures. The theorem is a special case of Satz 4.3 in [17], see
also Theorem 9.4.1 in [29] and Theorem 3.1 in [4].

Theorem 6.2.2. Let P0 be the Palm measure of a stationary measure P on N(G) and π a
bijective point map. Then P0 is invariant under the associated point shift θπ.

Proof: Let g ∈ F(G) such that
∫
g(x)dx = 1, and denote by C the Campbell measure
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associated with P. For any f ∈ F(N(G)), we have
∫

N(G)

f(ϕ)θπ(P
0)(dϕ) =

∫

N(G)

f ◦ θπ(ϕ)P0(dϕ)

=

∫

N(G)

∫

G

g(x)f ◦ θπ(θxϕ)ϕ(dx)P(dϕ)

=

∫

N(G)

∫

G

g(x)f(θπ(θxϕ)+xϕ)ϕ(dx)P(dϕ)

=

∫

N(G)×G

g(π−1(θxϕ) + x)f(θxϕ)π̃(C)(d(ϕ, x))

=

∫

N(G)×G

g(π−1(θxϕ) + x)f(θxϕ)C(d(ϕ, x))

=

∫

N(G)

∫

G

g(π−1(θxϕ) + x)f(θxϕ)ϕ(dx)P(dϕ)

=

∫

N(G)

∫

G

g(π−1(ϕ) + x)f(ϕ)dxP0(dϕ)

=

∫

N(G)

f(ϕ)P0(dϕ),

where we have used Proposition 2.4.3, the refined Campbell formula (4.2) and Lemma 6.2.1.

Hence, any σ-finite Palm measure is point-stationary. The main result in [4] establishes,
that for G = Rd the converse is also true, i.e., that point-stationarity is a characteristic
property of Palm measures. We will now generalize this result to the case of a lcscH group
G.

Theorem 6.2.3. A measure Q on (N(G),N (G)) is the Palm measure of some stationary
σ-finite measure P if and only if Q is σ-finite and point-stationary.

Proof: Assume that Q is σ-finite and point-stationary, i.e., Q(N(G) \ N0(G)) = 0
and Q is invariant under bijective point shifts. By Mecke’s characterization theorem (cf.
Theorem 4.2.2), we have to show that, for any f ∈ F(N(G) ×G), we have

∫

N(G)

∫

G

f(θxϕ,−x)ϕ(dx)Q(dϕ) =

∫

N(G)

∫

G

f(ϕ, x)ϕ(dx)Q(dϕ). (6.1)

Fix f ∈ F(N(G) × G) and let π be a matching on N(G). Invariance of Q under the point
shift θπ yields

∫

N(G)

f(ϕ, π(ϕ))θπQ(dϕ) =

∫

N(G)

f(θπϕ,−π(ϕ))Q(dϕ), (6.2)

where we have used that, for a matching π, we have π = π−1 and π ◦ θπ = −π (cf. Lemma
2.4.3 (c)). By Theorem 3.2.6, there exists a countable family of matchings M = {πn : n ∈ N}
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on N(G) that is quasi-complete on N0(G). Using the invariance of Q under bijective point
shifts and (6.2) for the second equality, we obtain

∫

N(G)

∫

G

1{θxϕ 6= ϕ}f(ϕ, x)ϕ(dx)Q(dϕ)

=

∫

N(G)

∑

n∈N

1{πn(ϕ) 6= 0} 1{πn(ϕ) 6= πm(ϕ) : 1 ≤ m < n}f(ϕ, πn(ϕ))θπn
Q(dϕ)

=

∫

N(G)

∑

n∈N

1{−πn(ϕ) 6= 0} 1{−πn(ϕ) 6= πm(θπn
ϕ) : 1 ≤ m < n}f(θπn

ϕ,−πn(ϕ))Q(dϕ)

=

∫

N(G)

∑

n∈N

1{πn(ϕ) 6= 0} 1{πm(ϕ) 6= πn(ϕ) : 1 ≤ m < n}f(θπn
ϕ,−πn(ϕ))Q(dϕ)

=

∫

N(G)

∫

G

1{θxϕ 6= ϕ}f(θxϕ,−x)ϕ(dx)Q(dϕ), (6.3)

where, in the penultimate step, we have used that

−πn(ϕ) 6= πm(θπn
ϕ) ⇐⇒ πm(θπn

ϕ) + πn(ϕ) 6= 0 ⇐⇒ πm ◦ πn(ϕ) 6= 0 ⇐⇒ πm(ϕ) 6= πn(ϕ).

Since, for ϕ ∈ N(G) and x ∈ G such that θxϕ = ϕ, we have θ−xϕ = ϕ and, in particular,
x ∈ ϕ if and only if −x ∈ ϕ, we obtain∫

N(G)

∫

G

1{θxϕ = ϕ}f(ϕ, x)ϕ(dx)Q(dϕ)

=

∫

N(G)

∫

G

1{θxϕ = ϕ}f(θ−xϕ, x)ϕ(dx)Q(dϕ)

=

∫

N(G)

∫

G

1{θxϕ = ϕ}f(θxϕ,−x)ϕ(dx)Q(dϕ).

Hence, (6.1) holds and the proof of the theorem is concluded.

In the proof of the theorem, we have only used the invariance of Q under the point shifts
associated with a quasi-complete family of bijective point maps {πn : n ∈ N} such that

{x ∈ ϕ : θxϕ 6= ϕ} = {πn(ϕ) : πn(ϕ) 6= 0 and πn(ϕ) 6= πm(ϕ) for all 1 ≤ m < n, n ∈ N}

= {π−1
n (ϕ) : πn(ϕ) 6= 0 and πn(ϕ) 6= πm(ϕ) for all 1 ≤ m < n, n ∈ N}

for all ϕ ∈ N0(G). Clearly, any family of matchings that is quasi complete on N0(G) has this
property. In the special case G = R, the universal point map τ generates the complete family
of bijective point maps {τn : n ∈ Z}. Moreover, for ϕ ∈ N0(R) such that card(ϕ) = ∞, we
have

ϕ = {τn(ϕ) : n ∈ Z} = {τ−n(ϕ) : n ∈ Z},

and, for ϕ ∈ N0(R) such that card(ϕ) <∞, we have

ϕ = {τn(ϕ) : 1 ≤ n ≤ card(ϕ)} = {τ−n(ϕ) : 1 ≤ n ≤ card(ϕ)},

where in each of the four cases τk(ϕ) 6= τℓ(ϕ) whenever k 6= ℓ. Hence, the above proof can
easily be adapted to show that cycle-stationarity, i.e., invariance under the point shift θτ , is
characteristic for Palm measures on N(R) (cf. Theorem 5.3.4).
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6.3 Discrete random measures

In this section, we have the objective to generalize the results from the previous section to
general discrete random measures. Recall the definition

Md(G) := {ϕ ∈ M(G) : supp(ϕ) ∈ L(G)}

from (4.4). The space Md(G) contains the locally finite measures on G with discrete support
and is equipped with the σ-field Md(G), the restriction of the cylindrical σ-field on M(G).
The mapping supp : Md(G) → L(G), ϕ 7→ supp(ϕ), that maps a measure in Md(G) to its
support, is measurable. Let us now extend the definitions of point maps and point shifts
and the notion of point-stationarity.

Definition 6.3.1. Let σ be a point map and θπ the associated point shift. We extend the
domain of σ and define σ : Md(G) → G by σ(ϕ) := σ(supp(ϕ)). Accordingly, we extend
the domain and the range of the associated point shift and define θσ : Md(G) → Md(G) by
θσ(ϕ) := θσ(ϕ)(ϕ).

Definition 6.3.2. A σ-finite measure Q on (Md(G),Md(G)) is called point-stationary if
Q(Md(G) \Md,0(G)) = 0 and Q is invariant under bijective point shifts, i.e., θσ(Q) = Q for
all bijective point maps π.

As we will see in the following, elementary example, the Palm measure P0 associated
with a stationary measure P on Md(G) is (in general) not invariant under point shifts.

Example 6.3.3. Generalizing our notation for Dirac measures on G (see Lemma 2.1.5), we
denote by δψ the measure on Md(G) defined by δψ(A) := 1{ψ ∈ A}, A ∈ Md(G). Now
assume that G = R and define a locally finite measure on R by ϕ := δ0 + 2δ1. A stationary
measure P on (Md(R),Md(R)) is then given by

P(A) :=

∫

R

δθxϕ(A)dx, A ∈ Md(R).

We define the events An := {ϕ ∈ Md : ϕ([−n, n]) 6= 0}. Then P(An) = 2n + 1 and
∪n∈NAn ∪ {0} = Md(R), hence, P is σ-finite. Using the function g : R → [0,∞) defined by
g(x) := 1{x ∈ (0, 1]}, the definition of the Palm measure P0 associated with P yields

P0(A) =

∫

Md(R)

∫

R

1{y ∈ (0, 1]} 1{θyϕ ∈ A}ϕ(dy)P(dϕ)

=

∫

R

∫

R

1{y ∈ (0, 1]} 1{θyθxϕ ∈ A}θxϕ(dy)dx

= δϕ(A) + 2δθ1ϕ(A), A ∈ Md(R),

where, in the last step, the integral with respect to x over (−1, 0] corresponds to δϕ(A), and
the integral over (0, 1] to 2δθ1ϕ(A). The integrand is zero if y /∈ {−x, 1 − x}.

Now suppose that π is a bijective point map such that π(ϕ) 6= 0. Then π({0, 1}) = 1
and, by bijectivity, π({0,−1}) = −1. The associated point shift θπ satisfies θπ(ϕ) = θ1ϕ and
θπ(θ1ϕ) = ϕ, hence,

θπ(P
0) = 2δϕ + δθ1ϕ.

We conclude that P0 is not invariant under bijective point shifts.
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Taking into account Example 6.3.3, we propose the following transformation for σ-finite
measures on (Md(G),Md(G)).

Definition 6.3.4. For a σ-finite measure Q on (Md(G),Md(G)) we define the zero com-
pensated version ζ(Q) by

ζ(Q)(A) := Q(A \ Md,0(G)) +

∫

A∩Md,0(G)

ϕ({0})−1Q(dϕ), A ∈ Md(G).

Lemma 6.3.5. Let Q be a σ-finite measure on (Md(G),Md(G)). Then the zero compensated
version ζ(Q) is also σ-finite. Moreover, if Q is concentrated on Md,0(G) then ζ(Q) is also
concentrated Md,0(G).

Proof: Both claims follow from the fact that ζ(Q) has the positive density

f(ϕ) := 1{ϕ ∈ Md(G) \ Md,0(G)} + ϕ({0})−1 1{ϕ ∈ Md,0(G)}

with respect to Q.

Proposition 6.3.6. A measure Q on (Md(G),Md(G)) is invariant under zero compensation
if and only if

Q({ϕ ∈ Md(G) : ϕ({0}) /∈ {0, 1}}) = 0.

Proof: If Q is concentrated on {ϕ ∈ Md : ϕ({0}) ∈ {0, 1}}, then it is clearly invariant
under ζ . Otherwise, define A+ := {ϕ ∈ Md : ϕ({0}) > 1} and A− := {ϕ ∈ Md : 0 <
ϕ({0}) < 1}. If Q(A+) > 0 then ζ(Q)(A+) < Q(A+), and, if Q(A−) > 0 then ζ(Q)(A−) >
Q(A−). We conclude that Q is not invariant under ζ , whenever Q(A+ ∪ A−) 6= 0.

Let us now briefly return to Example 6.3.3. The zero-compensated version of the Palm
measure P0 is given by

ζ(P0) = δϕ + δθ1ϕ.

It is invariant under the bijective point shift θπ. Indeed, generalizing Theorem 6.2.2, we will
now show that the zero-compensated version of a Palm measure is always invariant under
bijective point shifts. This fact can also be derived from Satz 4.3 in [17], where invariance
properties of Palm measures are studied. Moreover, we also generalize Theorem 6.2.3 and
show that invariance of the zero-compensated version under all bijective point shifts is a
characterizing property of Palm measures.

Theorem 6.3.7. A measure Q on (Md(G),Md(G)) is the Palm measure of some stationary
σ-finite measure P if and only if Q is σ-finite and its zero-compensated version ζ(Q) is point-
stationary.

Proof: First assume that Q is the Palm measure of some stationary, σ-finite measure
P. Then Q is also σ-finite. From Lemma 4.1.3 and Lemma 6.3.5, we obtain that ζ(Q)(Md \
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Md,0) = 0. Let π be a bijective point map, f ∈ F(Md(G)) and g ∈ F(G) such that∫
g(x)dx = 1. An adaptation of the proof of Theorem 6.2.2 then yields

∫

Md(G)

∫

G

f(ϕ)θπ ◦ ζ(Q)(dϕ)

=

∫

Md(G)

∫

G

f(θπ(ϕ))ζ(Q)(dϕ)

=

∫

Md(G)

∫

G

g(π(ϕ) + x)f(θπ(ϕ)(ϕ)ϕ({0})−1dxQ(dϕ)

=

∫

Md(G)

∫

G

g(π(θxϕ) + x)f(θπ(θxϕ)(θxϕ)θxϕ({0})−1ϕ(dx)P(dϕ)

=

∫

Md(G)

∑

x∈supp(ϕ)

g(π(θxϕ) + x)f(θπ(θxϕ)+xϕ)P(dϕ)

=

∫

Md(G)

∑

x∈supp(ϕ)

g(x)f(θxϕ)P(dϕ),

and from a similar computation in the reverse direction we obtain

∫

Md(G)

∑

x∈supp(ϕ)

g(x)f(θxϕ)P(dϕ)

=

∫

Md(G)

∫

G

g(x)f(θxϕ)ϕ({x})−1ϕ(dx)P(dϕ)

=

∫

Md(G)

f(ϕ)ϕ({0})−1Q(dϕ)

=

∫

Md(G)

f(ϕ)ζ(Q)(dϕ).

We have shown that ζ(Q) is point-stationary. Now we suppose that Q is σ-finite and ζ(Q)
point-stationary. Then

Q(Md(G) \ Md,0(G)) = ζ(Q)(Md(G) \ Md,0(G)) = 0,

and ζ(Q) is invariant under bijective point shifts. By Mecke’s characterization theorem (cf.
Theorem 4.2.2), we have to show that, for any measurable f ∈ F(Md(G) ×G), we have

∫

Md(G)

∫

G

f(θxϕ,−x)ϕ(dx)Q(dϕ) =

∫

Md(G)

∫

G

f(ϕ, x)ϕ(dx)Q(dϕ). (6.4)

Fix f ∈ F(Md(G)×G), then invariance of ζ(Q) under the bijective point shift θπ associated
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with a matching π yields
∫

Md(G)

1{θπ(ϕ) 6= ϕ}f(ϕ, π(ϕ))ϕ({π(ϕ)})Q(dϕ)

=

∫

Md(G)

1{θπ(ϕ) 6= ϕ}f(ϕ, π(ϕ))ϕ({π(ϕ)})ϕ({0})ζ(Q)(dϕ)

=

∫

Md(G)

1{ϕ 6= θπ(ϕ)}f(θπ(ϕ),−π(ϕ))θπ(ϕ)({−π(ϕ)})θπ(ϕ)({0})ζ(Q)(dϕ)

=

∫

Md(G)

1{ϕ 6= θπ(ϕ)}f(θπ(ϕ),−π(ϕ))ϕ({0})ϕ({π(ϕ)})ζ(Q)(dϕ)

=

∫

Md(G)

1{ϕ 6= θπ(ϕ)}f(θπ(ϕ),−π(ϕ))ϕ({π(ϕ)})Q(dϕ).

By Theorem 3.2.6, there exists a countable family of matchings {πn : n ∈ N} on L(G) that
is quasi-complete L0(G). The above equation applied to the matchings of the family yields
∫

Md(G)

∫

G

1{θxϕ 6= ϕ}f(ϕ, x)ϕ(dx)Q(dϕ)

=

∫

Md(G)

∑

n∈N

1{πn(ϕ) 6= 0} 1{πn(ϕ) 6= πm(ϕ) : 1 ≤ m < n}f(ϕ, πn(ϕ))ϕ(πn(ϕ))Q(dϕ)

=

∫

Md(G)

∑

n∈N

1{πn(ϕ) 6= 0} 1{πn(ϕ) 6= πm(ϕ) : 1 ≤ m < n}f(θπn
ϕ,−πn(ϕ))θπn

ϕ(0)Q(dϕ)

=

∫

Md(G)

∫

G

1{θxϕ 6= ϕ}f(θxϕ,−x)ϕ(dx)Q(dϕ),

where the same reasoning as after (6.3) justifies that πn(ϕ) 6= πm(ϕ) if and only if πn(θπn
ϕ) 6=

πm(θπn
ϕ). Since, for ϕ ∈ Md(G) and x ∈ G such that θxϕ = ϕ, we have θ−xϕ = ϕ and, in

particular, ϕ({−x} = ϕ({x}), we obtain
∫

Md(G)

∫

G

1{θxϕ = ϕ}f(ϕ, x)ϕ(dx)Q(dϕ)

=

∫

Md(G)

∫

G

1{θxϕ = ϕ}f(θ−xϕ, x)ϕ(dx)Q(dϕ)

=

∫

Md(G)

∫

G

1{θxϕ = ϕ}f(θxϕ,−x)ϕ(dx)Q(dϕ).

This implies (6.4), concluding the proof of the theorem.

6.4 Discretisation of general random measures

The generalization of the point shift characterization to Palm measures of general random
measures appears to be a difficult problem. In particular, only little is known about bijective
point maps that are defined on (subclasses different from L(G) of) the closed subsets C(G)
of G.
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Open problem 4. What families of bijective point maps can be defined on the closed
subsets of G? Are there complete (in a sense which is to be defined!) families of point maps
on C0(G), i.e. the closed subsets of G that contain 0?

To circumvent these difficulties for random measures on Rd, we will propose here a
discretization procedure. Denote by Dn the subgroup of (Rd,+) of the dyadic numbers of
order n ∈ N, i.e.,

Dn = {(x1, . . . , xd) ∈ Rd : xi = ki/2
n, (k1, . . . , kd) ∈ Zd}.

Equipped with the discrete topology, (Dn,+) is a lcscH group. We denote by Cn :=
[−2−n−1, 2−n−1)d the product of d half-open intervals [−2−n−1, 2−n−1) and by dn : Rd → Dn

the mapping that sends x ∈ Rd to the (unique) point in Dn such that x ∈ Cn + dn(x).
Conversely, we denote by in : Dn → Rd the embedding of Dn into Rd.

There exists a translation invariant measure λn on Dn, which is unique up to a constant.
We normalize λn in such a way, that λn(Dn∩[0, 1)d) = 1. With this normalization, λ(Cn)

−1λn
is the counting measure on Dn. Then, for n ∈ N, define a discretisation operator Dn, and
an embedding operator In as follows.

Definition 6.4.1. The mapping Dn : M(Rd) → M(Dn) defined by

Dn(µ) := dn(µ) =
∑

x∈Dn

µ(Cn + x)δx,

is called a dyadic lattice discretisation operator of order n. Conversely, an embedding In :
M(Dn) → M(Rd) is defined by

In(µ) := in(µ) =
∑

x∈Dn

µ({x})δin(x).

We have Dn(λ
d) = λn and λn

v
−→ λd for n → ∞. More generally, the operators Dn and

In have the following properties.

Lemma 6.4.2. The composition Dn ◦ In is the identity mapping on M(Dn). Conversely,
for ϕ ∈ M(Rd), the sequence of measures (In ◦ Dn(ϕ)) converges vaguely towards ϕ, i.e.,
In ◦Dn(ϕ)

v
−→ ϕ for n→ ∞.

Proof: The first claim follows immediately from the definitions of In and Dn. The
second is a consequence of the fact that continuous functions with compact support on Rd

are Riemann integrable.

Proposition 6.4.3. Let P be a σ-finite measure on (M(Rd),M(Rd)).

(a) If P is stationary, then Dn(P) is also stationary, i.e., θx ◦ Dn(P) = Dn(P) for all
x ∈ Dn.

(b) If P(M(Rd)) <∞, then the sequence (In ◦Dn(P))n∈N converges weakly towards P.
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Proof: To show (a), we fix x ∈ Dn. Then θx◦Dn = Dn◦θin(x), and, hence, θx◦Dn(P) =
Dn(P). For (b), we fix a bounded and continuous function f : M(Rd) → R. Then

∫

M(Rd)

f(µ)In ◦Dn(P)(dµ) =

∫

M(Rd)

f(In ◦Dn(µ))P(dµ).

By Lemma 6.4.2, we have vague convergence In ◦Dn(µ)
v

−→ µ and the continuity of f yields
f(In ◦Dn(µ))

n→∞
−→ f(µ). Using the dominated convergence theorem we conclude that

∫

M(Rd)

f(µ)In ◦Dn(P)(dµ) →

∫

M(Rd)

f(µ)P(dµ),

finishing the proof of the proposition.

Lemma 6.4.4. Let (xn) be a converging sequence in Rd with limit x ∈ Rd.

(a) For ϕ ∈ M(Rd), the sequence of measures θxn
ϕ converges vaguely towards ϕ, i.e.

θxn
(ϕ)

v
−→ ϕ for n→ ∞.

(b) For a finite measure P on M(Rd), the sequence (θxn
(P)) converges weakly towards P.

Proof: Part (a) is a corollary of the continuity result proved in Proposition 2.2.2. The
proof of (b) is identical to the proof of part (b) in Proposition 6.4.3.

Let P be a stationary measure on M(Rd). Then, by Proposition 6.4.3 (b), the measure
Dn(P) is a stationary measure on M(Dn), so it is natural to ask for the existence of an
associated Palm measure and its connections with the Palm measure associated with P.
However, as we have seen in Section 4, σ-finiteness of the stationary measure is a necessary
condition for the definition of the associated Palm measure. We will see in the following
example that σ-finiteness is a property that is, in general, not preserved by the discretisation
operators.

Example 6.4.5. For c ∈ [0, 1] we define a density function fc : R → [0,∞) by fc(x) =
c + (1 − c)2(2x − ⌊2x⌋), where ⌊·⌋ denotes the Gaussian brackets, that map a real number
x to the biggest integer that is smaller than x. Then we define locally finite measures µc on
R by µc := fc · λ1, where λ1 denotes the Lebesgue measure on R. A σ-finite measure P on
(M(R),M(R)) is then defined by

P(A) :=

∫

[0,1]

1{µc ∈ A}c−1λ1(dc), A ∈ M(R).

However, since D1(µc) = λ1 for all c ∈ [0, 1], the measure D1(P) is not σ-finite, but the
degenerate measure D1(P)(·) = ∞ · δλ1(·).

Proposition 6.4.6. Let P be a σ-finite, stationary measure on (M(Rd),M(Rd)) and P0 the
corresponding Palm measure. Define a measure Qn by

Qn(A) :=
1

λd(Cn)

∫

Cn

Dn ◦ θ−z(P
0)(A)λd(dz), A ∈ M(Dn).
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Then we have
∫

M(Dn)

∫

Dn

f(θxµ, x)µ(dx)Dn(P)(dµ) =

∫

M(Dn)

∫

Dn

f(µ, y)λn(dy)Qn(dµ) (6.5)

for all f ∈ F(M(Dn)×Dn) and if Dn(P) is σ-finite then Qn is the associated Palm measure
on (M(Dn),M(Dn)).

Proof: Let us first show that (6.5) is satisfied. For f ∈ F(M(Dn) × Dn), we have

∫

M(Dn)

∫

Dn

f(θxµ, x)µ(dx)Dn(P)(dµ)

=

∫

M(Rd)

∫

Dn

f(θx ◦Dn(µ), x)Dn(µ)(dx)P(dµ)

=

∫

M(Rd)

∫

Rd

f(θdn(x) ◦Dn(µ), dn(x))µ(dx)P(dµ)

=

∫

M(Rd)

∫

Rd

f(Dn ◦ θin◦dn(x)(µ), dn(x))µ(dx)P(dµ)

=

∫

M(Rd)

∫

Rd

f(Dn ◦ θin◦dn(x)−x(µ), dn(x))λ
d(dx)P0(dµ)

=

∫

M(Rd)

∑

y∈Dn

(∫

Cn

f(Dn ◦ θ−z(µ), y)λd(dz)

)
P0(dµ)

=

∫

Cn

∫

M(Rd)

∑

y∈Dn

f(Dn ◦ θ−z(µ), y)P0(dµ)λd(dz)

=
1

λd(Cn)

∫

Cn

∫

M(Dn)

∫

Dn

f(µ, y)λn(dy)Dn ◦ θ−z(P
0)(dµ)λd(dz)

=

∫

M(Dn)

∫

Dn

f(µ, y)λn(dy)Qn(dµ),

where we have used the refined Campbell formula (4.2) for the forth equation. If Dn(P) is
σ-finite, then Theorem 4.2.1 yields that Dn(P) is a stationary measure with Palm measure
Qn. This concludes the proof of the theorem.

In Theorem 4.1.4, we have seen how (the restriction of) the stationary measure P (to
M(G) \ {0}) can be retrieved from the Palm measure P0. We will now make the choice of
the function h on Rd × M(Rd) more explicit by fixing an enumeration (un) of the elements
of Zd and defining Gn := un + C1. Clearly, (Gn) is a partition of Rd into relatively compact
sets. As before in (4.7), (4.8) and (4.9), we define a function h : M(Rd) × Rd → [0,∞].

Lemma 6.4.7. The function h satisfies

h(µ, x) = h(µ, in ◦ dn(x)) = h(In ◦Dn(µ), in ◦ dn(x)) (6.6)
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for all µ ∈ M(Rd) and x ∈ Rd. Moreover, for n ∈ N, the function hn : M(Dn)×Dn → [0,∞]
defined by hn(µ, x) := h(In(µ), in(x)) satisfies

∫

Dn

hn(µ, x)µ(dx) = 1

for all µ ∈ M(Dn).

Proof: First we prove (6.6). Indeed, for h̄ defined in (4.7) and µ 6= 0, we have

h̄(µ, x) =
∑

n∈N

2−n(µ(Gn))
−1 1{x ∈ Gn}

=
∑

n∈N

2−n(µ(Gn))
−1 1{in ◦ dn(x) ∈ Gn} = h̄(µ, in ◦ dn(x))

=
∑

n∈N

2−n(In ◦Dn(µ)(Gn))
−1 1{in ◦ bn(x) ∈ Gn} = h̄(In ◦Dn(µ), in ◦ dn(x)).

The above equality yields

∫

Rd

h̄(In ◦Dn(µ), y)In ◦Dn(µ)(dy) =

∫

Rd

h̄(In ◦Dn(µ), in ◦ dn(y))(dy) =

∫

Rd

h̄(µ, y)µ(dy),

so, using the definition of h from (4.9), the first claim is proved. For µ ∈ M(Dn), we have

∫

Dn

hn(µ, x)µ(dx) =

∫

Dn

h(In(µ), in(x))µ(dx) =

∫

Rd

h(In(µ), x)In(µ)(dx) = 1,

so the lemma is proved.

We are now prepared to state the main theorem of this section.

Theorem 6.4.8. Let Q be a measure on (M(Rd),M(Rd)) and assume that

∫

M(Rd)

∫

Rd

h(θ−xµ, x)dxQ(dµ) <∞. (6.7)

Then Q is a Palm measure on (M(Rd),M(Rd)) if and only if, for all n ∈ N, the zero-
compensated version of the measure Qn defined by

Qn(A) :=
1

λd(Cn)

∫

Cn

Dn ◦ θ−z(Q)(A)λd(dz), A ∈ M(Dn)

is point-stationary.

Proof: It follows from Proposition 6.4.6, that the condition of the theorem is necessary.
Let us now show that it is sufficient.
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Let us first fix n ∈ N. Using the characterization of Palm measures on lcscH groups given
in Theorem 6.3.7, we will show that Qn is a Palm measure on (M(Dn),M(Dn)). We have
to show that Qn is σ-finite. Indeed, the function un : M(Dn) → [0,∞) defined by

un(µ) :=

∫

Dn

hn(θ−xµ, x)λn(dx)

is strictly positive on M(Dn) \ {0}, so from (6.7) we obtain

∫

M(Dn)

un(µ)Qn(dµ)

=
1

λd(Cn)

∫

Cn

∫

M(Dn)

∫

Dn

hn(θ−xµ, x)λn(dx)Dn ◦ θ−z(Q)(dµ)λd(dz)

=
1

λd(Cn)

∫

Cn

∫

M(Dn)

∫

Dn

h(θ−in(x)(In(µ)), in(x))λn(dx)Dn ◦ θ−z(Q)(dµ)λd(dz)

=
1

λd(Cn)

∫

Cn

∫

M(Rd)

∫

Rd

h(θ−x ◦ In ◦Dn ◦ θ−z(µ), x)In(λn)(dx)Q(dµ)λd(dz)

=
1

λd(Cn)

∫

M(Rd)

∫

Cn

∫

Rd

h(In ◦Dn ◦ θ−x−z(µ), x)In(λn)(dx)λ
d(dz)Q(dµ)

=

∫

M(Rd)

∫

Cn

∑

x∈Dn

h(In ◦Dn ◦ θ−in(x)−z(µ), in(x) + z)λd(dz)Q(dµ)

=

∫

M(Rd)

∫

Rd

h(θ−y(µ), y)λd(dy)Q(dµ) <∞,

where we have used (6.6) for the penultimate equality. Hence, there exists a σ-finite, sta-
tionary measure Pn on (M(Dn),M(Dn)) such that Qn is the Palm measure associated with
Pn. In particular, the inversion formula (cf. Theorem 4.1.4) yields

∫

M(Dn)

f(µ)Pn(dµ) =

∫

M(Dn)

∫

Dn

hn(θ−xµ, x)f(θ−xµ)λn(dx)Qn(dµ), (6.8)

and from the special case f ≡ 1 we deduce that all Pn, n ∈ N, are finite measures. Let us
now show that (In(Pn)) is a weakly convergent sequence of finite measures, and that the
limit measure is given by

P(A) :=

∫ ∫
h(θ−xµ, x) 1{θ−xµ ∈ A}dxQ(dµ), A ∈ M(Rd). (6.9)
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For an arbitrary measurable and bounded function f : M(Rd) → R, we have

∫

M(Rd)

f(µ)In(Pn)(dµ)

=

∫

M(Dn)

f(In(µ))Pn(dµ)

=

∫

M(Dn)

∫

Dn

hn(θ−xµ, x)f(In ◦ θ−x(µ))λn(dx)Qn(dµ)

=
1

λd(Cn)

∫

Cn

∫

M(Dn)

∫

Dn

hn(θ−xµ, x)f(In ◦ θ−x(µ))λn(dx)Dn ◦ θ−z(Q)(dµ)λd(dz)

=
1

λd(Cn)

∫

Cn

∫

M(Rd)

∫

Dn

h(In ◦ θ−x ◦Dn ◦ θ−z(µ), in(x))

f(In ◦ θ−x ◦Dn ◦ θ−z(µ))λn(dx)Q(dµ)λd(dz)

=
1

λd(Cn)

∫

Cn

∫

M(Rd)

∫

Dn

h(In ◦Dn ◦ θin(−x)−z(µ), in(x))

f(In ◦Dn ◦ θin(−x)−z(µ))λn(dx)Q(dµ)λd(dz)

=

∫

M(Rd)

∫

Cn

∑

x∈Dn

h(In ◦Dn ◦ θ−in(x)−z(µ), in(x) + z)

f(In ◦Dn ◦ θ−in(x)−z(µ))λd(dz)Q(dµ)

=

∫

M(Rd)

∫

Rd

h(θ−y(µ), y)f(In ◦Dn ◦ θ−y(µ))λd(dy)Q(dµ).

Assume now that f is a continuous, bounded function on M(Rd). Then, by Proposition
6.4.3, the sequence f(In ◦ Dn ◦ θ−y(µ)) tends to f(θ−y(µ)) for n → ∞ and from equation
(6.7) we know that the function

µ 7→

∫
h(θ−xµ, x)dx sup{|f(ν)| : ν ∈ M(R)}

is integrable with respect to Q. Hence,

∫

M(Rd)

f(µ)In(Pn)(dµ)
n→∞
−→

∫

M(Rd)

f(µ)P(dµ),

where P is defined in (6.9). Finally, for n ∈ N, the measures Im(Pm), m ≥ n, are invariant
under θx for all x ∈ in(Dn) ⊂ Rd, and we infer that the limit measure P is also invariant
under θx for all x ∈ in(Dn). Clearly,

⋃
n∈N

in(Dn) is dense in Rd. Hence, for an arbitrary
y ∈ Rd, there exists a converging sequence yn ∈ in(Dn), n ∈ N, with limit y, and θyn

(P) = P
and Lemma 6.4.4(b) yield θy(P) = P. Hence, P is a stationary measure on (M(Rd),M(Rd))
and Q the associated Palm measure.
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Appendix

A.1 General topological complements

As a general reference on basic topology we refer the reader to [25], [21] or [3]. Here, we
will only review some results which are needed in this thesis. A topological space (X, T ) is
called a T1-space if each of its points is a closed set. A T1-space is called normal, if, for any
two disjoint closed sets F1, F2, there exist disjoint open sets G1, G2 such that F1 ⊂ G1 and
F2 ⊂ G2. Every normal space is, in particular, a Hausdorff space. The space X is called
second countable, if its topology has a countable base. Any metric space is normal and the
following theorem is on a converse statement.

Theorem A.1.1. (Urysohn embedding theorem). If X is a second countable, normal space,
then there exists a homeomorphism f of X onto a subspace of ℓ2(R), and X is therefore
metrizable.

Proof: cf. [25] Section 29, Theorem A.

A topological space X is called Polish if it is separable with a complete metrization. It is
locally compact if every point x ∈ X has a neighbourhood with compact closure. A locally
compact Hausdorff space is normal and we have the following complement to the above
theorem.

Theorem A.1.2. If X is locally compact, metrizable and second countable then it is Polish.

Proof: cf. [21], Satz 13.17.

A topological space X is called σ-compact if it is a countable union of compact sets. Let
us now summarize some properties of locally compact, second countable Hausdorff (lcscH)
spaces.

Theorem A.1.3. Let (X, T ) be lcscH space. There exists a countable base of the topology of
X that consists of open sets with compact closure. Moreover, there exist compact sets Kn, n ∈
N, such that Kn ⊂ int(Kn+1), where int(K) denotes the interior of K, and X = ∪n∈NKn. In
particular, X is σ-compact.

77



78 APPENDIX A. APPENDIX

Proof: Fix an arbitrary countable base (Bn) of the topology T and show that the
subfamily of sets in (Bn) with compact closure is again a base of the topology. Let G be
an arbitrary open subset of X and x ∈ G. Since X is locally compact, there exists an
open neighbourhood Nx of x with compact closure, hence, G ∩ Nx is also an open set and
G ∩ Nx = ∪i∈IxBi for some Ix ⊂ N. All Bi have compact closure, because Bi ⊂ Nx, i ∈ Ix.
Then we can write G = ∪x∈G ∪i∈Ix Bi as the union of sets from (Bn), all of which have
compact closure.

Let us now write (Bk) for a base of the topology such that Bk has compact closure for
all k ∈ N. Inductively, the sequence of compact sets Kn, n ∈ N, is defined as follows. Let
K1 := cl(B1). Then assume that the first n−1 sets in the sequence are defined. The compact
set Kn−1 ∪ cl(Bn) is included in the union of finitely many of the Bk and we let Kn be the
closure of the union of these sets.

A.2 Vague and weak topology on measure spaces

Following Section A2 in [7] and Section A 2.3 in [1], we will now introduce the notions of
vague and weak topology, and discuss some of their properties. Let (X, T ) be a lcscH space
with Borel σ-field X , and let X̂ denote the relatively compact sets in X. By Theorem A.1.1
and Theorem A.1.2, X is Polish. The family C+

K(X) of continuous functions f : X → [0,∞)
with compact support is separable in the uniform metric.

We denote by M(X) the space of locally finite measures on X, and, for B ∈ X and
f ∈ F(X) (a measurable, non-negative function on X), write πB and πf for the mappings
µ 7→ µ(B) and µ 7→

∫
G
f(x)µ(dx), respectively, on M(X). The vague topology is generated

by the maps πf , f ∈ C+
K(X), and we write the vague convergence of µn to µ as µn

v
−→ µ. For

any µ ∈ M(X), define X̂µ := {B ∈ X̂ : µ(∂B) = 0}. We then have the following properties
of the vague topology.

Theorem A.2.1. For any lcscH space X we have

(a) M(X) is Polish in the vague topology;

(b) a set A ⊂ M(X) is vaguely relatively compact if and only if sup{µf : µ ∈ A} <∞ for
all f ∈ C+

K(X);

(c) if µn
v

−→ µ and B ∈ X̂µ then µn(B) → µ(B);

(d) The Borel σ-field B(M(X)) generated by the open sets of the vague topology is generated
by the maps πf , f ∈ C+

K(X), and also for any µ ∈ M(X) by the maps πB, B ∈ Ŝµ.

Proof: cf. [7], Theorem A 2.3.

Let (fn) be a dense sequence in C+
K(X). Then a complete metric ρ on M(X) is defined

by

ρ(µ, ϕ) :=
∑

n∈N

2−n(|πfn
(µ) − πfn

(ϕ)| ∧ 1), µ, ν ∈ M(X), (A.1)
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and the topology generated by ρ coincides with the vague topology (cf. [7], Theorem A 2.3).

Theorem A.2.2. Let µn ∈ M(G), n ≥ 0, with µn
v

−→ µ0, and let Bn ∈ G, n ≥ 0, such that
µn(G \ Bn) = 0, n ≥ 0. Further suppose that fn : G → [0,∞), n ≥ 0, are uniformly bounded
measurable functions with uniformly bounded supports, such that fn(yn) → f0(y0) whenever
yn ∈ Bn, n ≥ 0, with yn → y0. Then πfn

(µn) → πf0(µ0).

Proof: cf. [8], Theorem A 7.3.

Let Y be a metric space, with Borel σ-field Y , and let C+
b (Y) denote the family of

bounded, continuous functions f : Y → [0,∞). Write Mf(Y) for the space of finite measures
on Y. The weak topology is generated by the maps πf , f ∈ C+

b (Y), and we write weak

convergence of µn to µ as µn
w

−→ µ.

Theorem A.2.3. If Y is Polish and Mf(Y) is equipped with the topology of weak convergence,
then Mf(Y) is also Polish.

Proof: The theorem is an immediate consequence of Theorem A 2.5.III in [1].

A.3 Measure theoretical complements

Assume now, that (G, T ) is a topological group, i.e., a topological space equipped with a
group operation + such that the mapping (x, y) 7→ x+ (−y), where −y denotes the inverse
element of y ∈ G, is continuous with respect to the product topology. A Radon measure is
a measure µ on the Borel σ-field G := σ(T ) of G which satisfies µ(K) < ∞ for all compact
sets K ⊂ G. If (G, T ) is a locally compact, second countable Hausdorff space, we have the
following fundamental result on the existence and uniqueness of an invariant Radon measure.

Theorem A.3.1. (Haar measure) On G there exists, uniquely up to normalization, a left-
invariant Radon measure λ 6= 0. If G is compact, then λ is also right-invariant.

Proof: cf. [7], Theorem 2.27.

Finally, we state the following factorization theorem.

Theorem A.3.2. Let (S,S) be a measurable space, and µ a σ-finite measure on the product
space G× S, such that µ is left-invariant under shifts in G. Then µ = λ⊗ ν for a unique,
σ-finite measure ν on S.

Proof: cf. [9], Lemma 4.2.
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