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 Chi conosce la geometria, può comprendere tutto in questo mondo. 

 

(Galileo Galilei, 1564-1642) 

 

 

 

 

  ,     . 

Tko razumije geometriju, može razumjeti sve na ovom svijetu. 

Kdo rozumí geometrii, rozumí všemu ve vesmíru. 

Who understands geometry understands anything in this world. 

Joka geometrian ymmärtää, voi tässä maailmassa kaiken käsittää. 

Celui qui comprend la géometrie, est capable de comprendre tout dans le monde. 

Wer die Geometrie begreift, vermag in dieser Welt alles zu verstehen. 

 

   ,      . 

Aki a geometriát érti, mindent ért a világon. 

 
Chi conosce la geometria, può comprendere tutto in questo mondo. 

 

Qui geometriam intellegat, is universum totum intellegit. 

Ten kto rozumie geometrię jest w stanie zrozumieć wszystko na tym świecie. 

Quem compreende geometria é capaz de entender tudo neste mundo. 

,   ,      . 

Quien entiende la geometría puede entenderlo todo en este mundo. 

Den som förstår geometri kan förstå allt i världen. 

 

O ki geometriyi anlayan bu dünyada herșeyi anlayabilecek olandır. 

 
 
 
 

The author is very thankful to many international friends and colleagues who help this page to be written in their mother languages. 
*The list of languages is alphabetical according to the English names of the languages.  
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Abstract

The intuitive understanding of contact between bodies is based on the geometry

of adjoining bodies. A more sophisticated approach of an advanced analysis in-

cluding the application of various numerical methods is to take advantage of the

geometry of an analyzed object and describe the problem in the best coordinate

system. The best coordinate system to describe contact interaction in all its ge-

ometrical details is a coordinate system attached to the geometrical features of

contacting bodies. In the current thesis a systematical analysis of geometrical

situations leading to contact pairs – surface-to-surface, line-to-surface, point-to-

surface, line-to-line, point-to-line is presented. Each contact pair is inherited with

a special coordinate system based on its geometrical properties such as a Gaus-

sian surface coordinate system, or a Serret-Frenet curve coordinate system. Then

standard methods well known in computational contact mechanics such as penalty

methods, Lagrange multipliers methods and others are formulated in these coordi-

nate systems. Such formulations require then the powerful apparatus of differential

geometry of surfaces and curves and of convex analysis. The final goals of such

transformations are then ready-for-implementation numerical algorithms within the

finite element method which are most convenient for a certain geometrical situation

because they contain their intrinsic geometrical properties. Among the advantages

of this consideration are

• the formulation of classical contact algorithms (penalty, Lagrange multipli-

ers methods) in closed form independent on approximations of surfaces and

curves;

• generalization of the well known Coulomb friction law into arbitrary surface

interface laws with an example of a coupled anisotropic adhesion and fric-

tion law where the adhesion is defining the geometrical micro-structure of

surfaces. This result includes even a proved experimental validation;

• development of a new description for curve-to-curve contact with applications

to beam-to-beam and to edge-to-edge contact.

In addition, a number of different numerical features appearing during this devel-

opment are analyzed in several chapters of the current thesis.



Kurzfassung

Kontakt zwischen Körpern beruht intuitiv auf der Geometrie angrenzender Kör-

per. Auch aktuelle Ansätze zur Lösung von Kontaktproblemen insbesonodere

bei Anwendung diverser numerischer Methoden bedienen sich des Vorteils der

bekannten Geometrie der gegebenen Strukturen. Zur Beschreibung des jeweili-

gen Kontakts zwischen den einzelnen Körpern ist dazu ein Bezugssystem zu

wählen, das die geometrischen Eigenschaften der kontaktierenden Körper am

besten wiedergibt. In der vorliegenden Arbeit wird dazu ein systematisches Vorge-

hen zur Ermittlung von geometrischen Konstellationen, Kontaktpaaren (surface-

to-surface, line-to-surface, point-to-surface, line-to-line, point-to-line), aufgezeigt.

Jedes dieser Kontaktpaare besitzt dabei ein spezielles Koordinatensystem. Es

basiert je nach geometrischer Eigenschaft des Problems auf Koordinatensyste-

men wie dem auf einer Gaußschen Oberfläche oder dem an einer Serret-Frenet

Kurve. Auf der Grundlage dieser Koordinatensysteme werden dann die in der com-

putergestützten Kontaktmechanik bekannten Methoden wie das Penalty- und das

Lagrange Multiplikatorenverfahren formuliert. Die Umsetzung dieser Formulierun-

gen erfordert die Mittel der Differentialgeometrie für Flächen und Kurven sowie

konvexe Analysis. Das Ziel dieser Umsetzung sind letztlich numerische Algorith-

men, die sich einfach in die Finite Element Umgebung implementieren lassen und

die aufgrund der geometrischen Eigenschaften der behandelten Problemstellung

besonders geeignet sind.

Als Vorteile sind dabei u.a. aufzuführen:

• die Unabhängigkeit der Formulierung von klassischen Kontaktalgorithmen in

geschlossener Form (Penalty, Lagrange Multiplikatoren) von der Oberflächen-

bzw. Kurvendiskretisierung;

• die Verallgemeinerung des bekannten Coulomb-Reibgesetzes in eine allge-

meine Grenzflächenformulierung. Dies wird anhand eines Beispiels der Kop-

plung von anisotropem Haft- und Reibgesetz aufgezeigt und experimentell

validiert, wobei die Haftung durch die geometrische Mikrostruktur der Ober-

fläche definiert wird;

• die Entwicklung einer neuen Beschreibung für curve-to-curve - Kontakt mit

Anwendungen zum beam-to-beam und edge-to-edge - Kontakt.

Außerdem werden unterschiedliche numerische Eigenschaften der Verfahren un-

tersucht, die sich bei dieser Art von Kontaktbetrachtung ergeben.
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Introduction

1.1 Introduction

Computational contact mechanics has been developed into a separated
branch of computational mechanics during the last decades. A fairly
large number of publications on computational contact mechanics has
been published since then. In order to locate the development in contact
mechanics focusing on its computational issues and formulate the goals
of the current work, first, we try to classify these developments.

1.1.1 Overview of approaches to model contact problems

The overview of the current state of the art in computational contact me-
chanics is arranged in such a way that the publications are classified by
different approaches used for modeling, by different solution methods
etc., therefore, a separated article can be mentioned in different sub-
sections of the overview. Limits and drawbacks are then discussed in a
special subsection.

In computational contact mechanics the modeling process depends
generally on assumptions concerning the geometry of objects – 3D bod-
ies, shells, beams, ropes and other combinations – leading to appropri-
ate computational models. The robustness and tolerance of the compu-
tations depends on the numerical method involved in contact modeling.

In order to classify known approaches the modeling process can
be split into several steps:

1. kinematics of contact interactions
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1. INTRODUCTION

2. constitutive relations for contact conditions

3. methods to enforce contact conditions

4. formulation of basic mechanical principles (conservation of momen-
tum, equilibrium etc.) on contact boundaries

5. numerical solution and analysis of the proposed model.

Here we are discussing these steps classifying various numerical
methods known in literature focusing mostly on the recent develop-
ments.

1.1.1.1 Step 1: Kinematics of contact interactions

In this step types of contact interactions together with measures of con-
tact interaction are defined similar to deformation measures in contin-
uum mechanics. Regarding the relative motion of contacting bodies it is
important to distinguish the following interactions: a) tied contact and
b) arbitrary contact with b1) small and with b2) large relative dis-
placements.

a) Tied contact requires simple “sewing” of two contacting bodies,
and, therefore, a pointwise enforcement of contact as

r = ‖rA − rB‖ = 0, (1.1)

assuming that vectors from a body A and a body B describe the
same geometrical point at the beginning of a deformation process, e.g.
rA − rB = 0. Enforcement of a tied contact can be regarded as addi-
tional constraints on interface surfaces and has been introduced for the
finite element method in earlier developments as mesh tying algorithms.
This has been solved by the Lagrange multiplier method for dominantly
straight contact boundaries already by Francavilla and Zienkiewicz [43]
(1975). More recently mesh tying algorithms are developed for the case
of curved contact interfaces. Tan [171] (2003) considered a special con-
struction of contact matrices in 2D for mesh matching and for the con-
tact patch test. Various techniques based on the construction of spe-
cial volume elements after the projection procedure were developed by
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Heinstein and Laursen [108] (2003), [66] (2003) for mesh tying of arbi-
trary curved interfaces. Puso and Laursen [149] (2003) used the Mortar
method for mesh tying of curved interfaces in 3D.

b) Both normal and tangential displacements should be distinguished
in the case of arbitrary contact. This leads to a splitting of displace-
ments into a normal penetration and into tangential displacements. In
early publications, see Kikuchi and Oden [84] (1988), a normal pene-
tration has been introduced as a result of the linearization of nonlinear
non-penetration conditions eqn. (1.1) in the direction of the normal to
the surface of a contacting body. Hallquist et.al. [53] (1985) introduced
this split, and therefore, a penetration via the projection operation. Thus,
a, so-called, ”master-slave” algorithm within an explicit time integration
scheme for dynamic problems has been introduced. For applications
with implicit schemes the “master-slave” algorithm has then been modi-
fied in Wriggers and Simo [192] (1985) and in Simo et.al. [162] (1986).
The projection can be formulated in extremal form as

‖rs − ρ‖ −→ min . (1.2)

The ”master-slave” approach is treating the normal contact such that
a ”slave” node rs of one body penetrates into a ”master” segment of
another body parameterized with ρ. The value of penetration p is mea-
sured as a closest distance to the master body and, therefore, in the
direction of the normal n of the “master” surface

p = (rs − ρ) · n. (1.3)

This measure can be defined differently depending either on the geom-
etry of contacting bodies, or on further application of various numerical
methods.

a) For contact between surfaces the penetration can be defined in the
following ways:

i in the direction of the normal n to a rigid undeformed body for
Signorini problems as e.g. in Kikuchi and Oden [84] (1988);

ii in the direction of the normal n to an initially undeformed sur-
face for small displacement problems, see the ”node-to-node”
approach in Wriggers [188] (2002).
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iii in the directions of normals to spheres around certain nodes
representing the contacting body, see the ”pinball algorithm” in
Belytschko and Neal [10] (1991).

iv in the directions of the normal to a master segment with the
assumption that the segment is updated during the deforma-
tion. This is called ”node-to-segment” approach, first published
in Hallquist et.al. [53] (1985) for explicit time integration and in
Wriggers and Simo [192] (1985) for the implicit scheme. An
alternative is the ”segment-to-segment” approach with the pro-
jection of integration points from a slave segment, see Zavarise
and Wriggers [199] (1998) and Harnau et.al. [57] (2005); for
a Mortar approach with segment-wisely defined normals, see
Puso and Laursen [150], [151] (2004); for a Mortar approach
with point-wisely defined normals, see Fischer and Wriggers
[41] (2006).

b) For contact between beams the penetration is defined in the direc-
tion of mutual normals assuming a shape of a cross sections which
may vary.

c) For contact between particles for discrete models, see Cundall and
Strack [170] (1979), the penetration is defined as distance between
the centers of the particles subtracting the distance between cor-
responding centers and boundaries of the particles. Similar mod-
els for contact are used in the ”Smoothed particle hydrodynamics”
(SPH) method, see e.g. in Libersky and Petschek [110] (1991) and
Campbell et.al. [25] (2000). For a specially shaped geometry, how-
ever, an exact measure is necessary, thus, a special projection pro-
cedure has been developed in Wellmann et.al. [178] (2008) in order
to compute the distance between particles shaped as superellip-
soids.

d) The measure of contact can be defined as a mutual volume of over-
lapping contacting bodies arising from inequality constraints. This
approach is often used for contact between rigid bodies, see Kane
et.al. [83] (1999) and Pandolfi et.al. [136] (2002).
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e) A measure of the tangent interaction Δρ can be formally introduced
via a projector operator constructed by subtracting a dyadic product
of normals from the unit tensor:

Δρ = (I− n ⊗ n)(rA − rB). (1.4)

This approach is widely used e.g. in Wriggers and Simo [192]
(1985), Parisch and Lübbing [138], (1989) Peric and Owen [139]
(1992) together with a penalty regularization, in Heegaard and
Curnier [63] (1993), Heege and Alart [65] (1996) for Augmented La-
grangian methods and in McDevitt and Laursen [123] (2000), Puso
[147] (2004), Puso and Laursen [150; 151] (2004) for the Mortar
method.

The main difficulties of such a representation are the following:

• The absence of a geometrical interpretation leads to difficulties
for the transformation of history variables.

• Some difficulties in the linearization – transformations are re-
quired to show that it would lead to a relative velocity vector.
The linearizied results are very complex expressions for the
tangent matrices, see the book of Wriggers [188] (2002) for
surface-to-surface contact, Litewka and Wriggers [113; 114]
(2002) for beam-to-beam contacts.

f) Another approach to describe a tangential interaction is to consider
convective variables arising from the surface approximations: see
Simo et.al. [162] (1986), Wriggers at.al. [194] (1990), Laursen and
Simo [109] (1993), Laursen [105] (1994) and recently in Konyukhov
and Schweizerhof [86] (2004), [89] (2005), [92] (2006) with

Δρ = Δξiρi. (1.5)

Then two convective variables Δξ1, Δξ2 in a surface covariant basis
ρ1, ρ2 are introduced as tangential measure.

This approach has many advantages:

• objectivity is straightforwardly observed because the surface
coordinates ξi are used.
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• geometrical interpretation of a tangential contact measure is
easily possible – line on a surface; geometrical interpretation
of a linearized measure – relative tangent velocity of a contact
point.

• the number of history variables is minimal (two for surface in-
teraction).

• a complex constitutive law for the tangent interaction can be
easily formulated in a robust form for computation.

• expressions for contact tangent matrices are by far less com-
plex within the fully covariant approach than in schemes as in
eqn. (1.4).

The last method, however, requires a lot of preliminary transforma-
tions based on the differential geometry of contacting objects (surfaces
or even curves) and extensive application of the tensor analysis espe-
cially for differential operation and linearization. The complete trans-
formation in a covariant form is, however, absolutely necessary – the
lack of such transformation leads again to a very complex form of tan-
gent matrices, see in Laursen [104] (1992), in Laursen and Simo [109]
(1993) and in the monograph of Laursen [106]. Moreover, it can even
lead to the paradox result such as “the lack of symmetry in the stick
linearization“ for 3D cases reported in Laursen and Simo [109] [P. 3468]
(1993).

1.1.1.2 Step 2: Constitutive relations for contact conditions

A term "constitutive relations" here is understood in a continuum me-
chanics sense, however, being formulated as a constitutive law only
between contacting surfaces. Thus, the relations are discussed sep-
arately for normal and tangential tractions. They can be formulated in
several ways, but essentially two types can be distinguished: a) when
a surface has randomly distributed asperities, and b) when asperities
have algorithmic structure with prescribed geometrical and mechanical
properties, e.g. the surface shows different macro properties in different
directions. Statistical analysis is applied for the model of the first type
in order to introduce and describe mechanical characteristics of rough
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surfaces observed in experiments. Various theoretical generalizations
based on phenomenological observations are the basis for the model of
rough surfaces of the second type. We outline here both approaches
with the focus on computational analyses.

Statistical friction models. Statistical analysis of a real rough surface and
experimental aspects of its measurements have been developed in a
series of publications: Longuet-Higgins [116], [117] (1957), Greenwood
and Williamson [50] (1966), Whitehouse and Archard [179] (1970) and
more recently Whitehouse and Phillips [180] (1978), [181] (1982) and
Greenwood [48] (1984). A comparative analysis of such surface mod-
els is presented in McCool and John [122] (1986). These statistical
models formed a basis to construct a set of non-linear laws for normal
compliance which has been then used for normal contact in the context
of finite element methods: see Zavarise et.al. [202] (1992), Wriggers
and Zavarise [196] (1993), [195] (1993) for the contact with asperities
distributed by the Gaussian normal distribution law. Numerical tests for
particular statistical models have been considered in Willner and Gaul
[183] (1995), by Willner [182] (1997), [184] (1997) with experimental ver-
ification in Willner and Görke [185] (2006). Buczkowski and Kleiber [23]
(1999) considered first an isotropical statistical distribution of asperities,
and then in [24] (2000) an anisotropic statistical distribution of asper-
ities. The novel combined approach is based on a multi-scale tech-
nique. In this case macro characteristics for friction are obtained via
a micro model including randomly generated surfaces with certain sta-
tistical characteristics, see also in Bandeira, Wriggers and Pimenta [9]
(2004) and in [8] (2005).

Phenomenological friction models. For this type of models the asperi-
ties possess an algorithmic structure and various generalizations of the
isotropic macro characteristics have been proposed. A generalization
can be derived separately for normal and tangential tractions.

Various interface non-linear constitutive relations for normal traction
have been studied in Paggi et.al. [135] (2005). A generalization of a
Coulomb friction law with regard to Maxwell and Kelvin viscoelastic mod-
els was considered in Araki and Hjelmstad [5] (2003). In the context
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of the discrete element method various models have been discussed
in Luding [118] (2007) and models including normal adhesion can be
found in Tomas [174] (2007).

A set of frictional models is obtained when various constitutive mod-
els are applied for tangential traction. One of the first anisotropic friction
models has been proposed by Michalowski and Mroz [127] (1978) con-
sidering the sliding of a rigid block on an inclined surface. A model
with periodically inclined asperities has been used in Mroz and Stup-
kiewicz [129] (1994). Zmitrowicz in [210] (1981) described various
anisotropic structures of the friction tensor for the generalization of the
Coulomb friction law and then developed a classification of anisotropic
surfaces in [211] (1989). A rate independent theory of anisotropic
friction is developed in Curnier [32] (1984) and thermodynamical re-
strictions for the friction tensor are discussed in He and Curnier [62]
(1993). Finite element models of anisotropic friction are presented as
follows: with an application to hot rolling processes these have been
discussed in Montmitonnet and Hasquin [128] (1995) and also in Alart
and Heege [4] (1995). Buczkowski and Kleiber [22] (1997), [23] (1999),
[24] (2000) created an interface element containing an orthotropic slid-
ing law. Hjiaj et.al. [68] (2004) formulated an anisotropic friction problem
via the bi-potential and applied Lagrangian multiplier methods. Para-
metric quadratic programming was used in Zhang et.al. [203] (2004)
to solve the almost identical problem. Jones and Papadopoulos [82]
(2006) developed a finite element model for anisotropic friction, where
the stick-slip condition is enforced via Lagrange multipliers for small rel-
ative sliding.

Adhesion models. In the earliest publications adhesion phenomena
have been introduced in normal direction as force needed to detach one
body from the other where lubrication plays an essential role, see Hardy
and Nottage [55; 56] (1926). Experimental investigations of tangen-
tial adhesion for different pairs of materials are described in McFarlane
and Tabor [124] (1950). The relation between friction force and normal
adhesion is experimentally investigated in McFarlane and Tabor [125]
(1950). The normal adhesion between clean metal surfaces is experi-
mentally investigated in Bowden and Rowe [20] (1956). Here tangential
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adhesion forces have been observed in addition to the frictional force.
Also a simplified theoretical model was proposed which describes this
elastic force as a reaction of micro spherical asperities. Fuller and Ta-
bor [44] (1975) made experiments with rubber surfaces with spherical
asperities to show the influence of the surface roughness on normal
adhesion. Surface adhesion on elastic spherical asperities has been
introduced to describe global adhesion forces in Johnson, Kendall and
Roberts [78] (1971). This model (so-called, JKR-model) has been de-
veloped further describing the coupling of normal adhesion and friction
forces, see Johnson [76] (1997) and also Greenwood [49] (1997). The
influence of the roughness of a different scale on normal adhesion is
studied by Persson and Tosatti in [141] (2001). Concerning applications
on different scales, a method of non-direct determination of adhesive
and elastic properties of contacting materials is proposed for various
adhesion models (JKR and others) for nano-indentation, Borodich and
Keer [18] (2004), Borodich and Galanov [17] (2008).

Coupled adhesion-friction models. A constitutive model of tangential ad-
hesion as a reversible elastic force has been discussed in Curnier [32]
(1984). Complex models where adhesion and friction forces are un-
coupled appear recently in computational mechanics. For statics Raous,
Cangemi and Cocou in [153] (1999) introduce a model including a cou-
pling of a regularization term called tangential adhesion and friction.
Also an adhesion term representing elastic effects is considered in nor-
mal direction and introduced via additional internal variables. The fric-
tional force and the normal adhesion are coupled via a yield friction func-
tion of Coulomb type. The model has been developed further in Cocou,
Raous and Schryve [29] (2006) including the coupling of these adhesion
terms and viscous forces in dynamics. A coupled model including sliding
forces in accordance with the Coulomb friction model and viscoelastic
tangential forces analogous to the tangential adhesion above in accor-
dance with the Maxwell and Kelvin model was considered in Araki and
Hjelmstad [5] (2003).

The discussed coupled models include only isotropic constitutive re-
lations. Thus, a coupled interface contact model has been developed in
Konyukhov and Schweizerhof [90], [91]. This model includes anisotropy
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for both the friction and the tangential adhesion region and is derived via
the application of the covariant approach. A general approach for the
combination of a complex friction law together with a complex adhesion
law has been proposed. The approach necessarily leads to a computa-
tional model which allows a straightforward implementation into a finite
element code. The important point is the correlation of such a model to
experimentally observed phenomena. A first simple experimental test
for a corrugated rubber mat has been reported in [98]. The importance
of the coupled model has been shown experimentally in the so-called,
”geometrically isotropic case”, where the combination of both anisotropy
for adhesion and anisotropy for friction can even lead to geometrically
isotropic behavior of the sliding body. In [99] this effect was shown ex-
perimentally for a rubber surface possessing a periodical waviness.

Motivation of interface surface models from computational tribology. In ex-
perimental tribology The physical properties between contacting bod-
ies are described via, a so-called, third body filling the space between
the contacting bodies and possessing specific properties, though, dif-
fering from the properties of the contacting bodies. Recent develop-
ments in computational Molecular Dynamic (MD) simulations, see for
2D-simulations at the nano-scale [85] (2007), have shown that the be-
havior of such a third body (tribomaterial) during contact is equivalent
to models known in computational mechanics, besides of course, the
nano-effects. Another simplified MD model described as movable cel-
lular automata is also used for simulations of third body behavior see
Popov and Psakhie [146] (2007). A discussion of several models for in-
terfaces, classical friction laws and dislocations can be found in Merkle
and Marks [126] (2007).

Thus, the interface surface law can be also considered as an upper
level in the chain of models: nanotribology, ... , micro-structural model,
interface model. It also serves as a theoretical basis for the treatment of
various interface surface laws such as a constitutive law reduced to the
surface.

The advantages of the covariant approach is especially pronounced
for complex contact interface laws. The coupled model including
anisotropic friction and tangential adhesion, proposed in Konyukhov
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and Schweizerhof [90], [91] (2006), is directly formulated in a covariant
form as a computational model for an iterative Newton type solver. The
approach allows the straightforward coupling of various interface laws
(plasticity, elasticity, viscosity etc.) formulated in an arbitrary curvilinear
coordinate system given on the contact surface.

General discussions and reviews on constitutive models used in
contact mechanics can be found in the monographs of Laursen [106]
(2002), Persson [140] (2000), Sextro [157] (2002) and Wriggers [188]
(2002).

1.1.1.3 Step 3: Methods to enforce contact conditions.

Several numerical methods are known in literature in order to enforce
contact conditions. These method are used to resolve the contact con-
ditions formulated as inequalities in the form of Kuhn-Tucker conditions.
The terminology is initially found in the optimization methods, see e.g.
the monographs of Bertsekas [13] (2003) and Borwein and Lewis [19]
(2000). These methods can be classified by the structure of the function-
als enforcing these conditions in a weak form: the Lagrange multiplier
method, the Penalty method, the Nitsche method and the Augmented
Lagrangian method.

Lagrange multipliers together with a trial-and-error procedure are
introduced to describe additional contact nodal forces in the some
first finite element models, see Francavilla and Zienkiewicz (1975) and
Hughes at.al. [71] (1976). Cescotto and Charlier [27] (1993) considered
four mixed variational formulations of frictional contact leading to con-
tact elements with independent approximation of stress and displace-
ment fields. Taylor and Papadopoulos in [173] (1991), Solberg and
Papadopoulos in [163] (2005) studied this method in order to find out
so-called Babuska-Brezzi stable cases of Lagrange multiplier schemes
leading to the satisfaction of the contact patch test. For various or-
ders of approximations, the patch test has been studied in Crisfield [31]
(2000). A patch-test for the small displacement frictional case is studied
in Jones and Papadopoulos in [79] (2000). Harnau et.al. [57] (2005)
used various integration techniques for the contact integral within ”a
segment-to-segment” approach to improve the patch-test.
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A special technique for the approximation of the Lagrange multipli-
ers is the so-called Mortar method with dual multipliers, see Hüeber
and Wohlmuth [70] (2005), though the Mortar method is not restricted
to the enforcement via the Lagrange multipliers only, another applica-
tion will be discussed later. For a small sliding problem, a perturbed
Lagrangian method including both penalty and Lagrangian functionals
was discussed in Wriggers and Simo [192] (1985).

Heintz and Hansbo [67] (2006) constructed a special functional in-
cluding not only penalized displacements, but also penalized normal
stresses from both contacting sides, the so-called Nitsche method, and
obtained estimations for the penalty parameter necessary for conver-
gence. The method is proved to be independent on the penalty param-
eter. However, due to the cumbersome formulation its finite element im-
plementation have been considered only for 2D problems, see in Wrig-
gers and Zavarise [198] (2008) and in Oliver et.al. (part 1) [132] and in
Hartmann et.al. (part 2) [58] (2009).

The Penalty method theoretically discussed in detail in Kikuchi and
Oden [84] (1988) is among the most popular methods for finite element
implementations. Both normal and tangential displacements have to
be penalized with a large penalty parameter in order to enforce contact
conditions. This leads from a mechanical point of view to an ”additional
spring” acting at the contact point as proposed in Hallquist et.al. [53]
(1985) for an explicit time integration scheme. The essential stage of
the implicit solution scheme is an iterative solution of e.g. Newton’s
type, which requires, in due course, consistent linearization. This pro-
cedure has been introduced for the 2D non-frictional case in Wriggers
and Simo [192] (1985). The penalty enforcement for non-frictional cases
is discussed also in Parisch [137] (1989) within a covariant approach. A
special linearization approach for the penalty term in the form of co-
variant derivatives in the local coordinate system has been introduced
in and in Konyukhov and Schweizerhof [86] (2005). In order to com-
pute correct tangent forces for frictional problems Wriggers et.al. [194]
(1990) used the return-mapping algorithm to compute correct tangent
forces for frictional problems. The penalty formulation in a global co-
ordinate system is used in Peric and Owen [139] (1992) and Parisch
and Lübbing [138] (1997). Starting with Laursen and Simo [109] (1993)
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1.1 Introduction

(also in Laursen [104] (1992) and [105] (1994)) convective coordinates
are directly used for regularization. The fully covariant description in the
coordinate system defined by the closest point projection is developed
in Konyukhov and Schweizerhof [89] (2005).

The penalty method is applied not only for contact between surfaces,
but also for contact between other objects such as beams. Thus, con-
tact between straight beams with circular cross sections is considered in
Wriggers and Zavarise [197] (1997) for non-frictional contact and then
in Zavarise and Wriggers [200] (2000) for frictional contact. Straight
beams with rectangular cross-sections have been studied in Litewka
and Wriggers [113] (2002) and in [114] (2002) for both frictional and
non-frictional cases respectively. The Lagrange multiplier method for
a beam-to-beam contact is discussed in Litewka and Wriggers [115]
(2003). A special treatment (so-called ”slide-line contact”) also based
on the penalty method for the straight rod/continuum contact is devel-
oped in Maker and Laursen [120] (1994).

The Mortar method together with penalty regularization with a spe-
cially defined Mortar projection is used in Puso and Laursen [150] (2004)
for non-frictional and in [151] (2004) for frictional contact. The Aug-
mented Lagrangian scheme is exploited to enforce frictional forces in
[151]. Various approximations for contact surfaces concerning the order
of the surface description within the Mortar method have been studied
in Fischer and Wriggers [41] (2006).

An Augmented Lagrangian method allowing to satisfy contact con-
straints with prescribed tolerance, has been thoroughly studied in
Pietrzak and Curnier [144] (1999). The problem has been formulated
as a saddle point optimization. Convergence of various Augmented
Lagrangian formulations in contact is studied by Stadler [167] (2007).
A Mortar method together with Augmented Lagrangian enforcement of
tangent forces is used in Hüeber et.al. [69] (2006).

A symmetrization procedure based on a nested Uzawa algorithm has
been used in Simo and Laursen [161] (1992) in order to obtain symmet-
ric tangent matrices for the frictional case. The Uzawa symmetrization
technique has been extended also for a coupled anisotropic adhesion-
friction model in Konyukhov and Schweizerhof [94] (2007).
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Remark 1.
The application of various numerical methods requires a-priori knowl-
edge about existence and uniqueness of the solutions of the contact
mechanics problems. There is a large number of publications on this
subject: more recent results are summarized in monographs of Han
and Sofonea [54] (2002) and Shillor, Sofonea and Telega [158] (2004),
see also references therein.

Remark 2.
In a geometrically exact theory the discussed solution methods depend-
ing on a geometrical feature (surface, line or point) should be formulated
in the covariant form according to the corresponding geometrical feature
(e.g. in a Frenet coordinate system for a beam-to-beam contact etc.).

1.1.1.4 Step 4: Formulation of basic principles (conservation of momentum,
equilibrium etc.) on contact boundaries.

In this step fundamental equations such as balance of momentum etc.
are formulated either in strong, or in weak forms. The form of differ-
ential equations (the strong form) is used directly in computations only
in discrete models, see in Strack and Cundall [170] (1979), while the
weak form is a key issue for the application of the finite element method
as well as so-called various meshless methods. The current contribu-
tion is aimed at the development of computational algorithms in appli-
cations with the finite element method, therefore, we mention here only
a specific problem in dynamic computations, namely, energy and mo-
mentum conserving algorithms for contact problems. Various integra-
tions schemes on contact boundaries have been proposed in Laursen
and Chawla [107] (1997) and in Armero and Petöcz [6] (1998) for non-
frictional problems, and then, so-called, entropy dissipative schemes in
Chawla and Laursen [28] (1998) and in Armero and Petöcz [6] (1999)
for frictional problems. The discrete null space method developed ear-
lier in Betsch [14] (2005) for continuum cases is extended for contact
problems in Betsch and Hesch [15] (2007).
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1.1 Introduction

1.1.1.5 Step 5: Numerical solution and analysis of the proposed model

In this step the equations defined for the discretized model are solved
numerically. Among numerous problems such as selection of methods,
storage of data, parallel algorithms we consider only two particular prob-
lems typical for contact algorithms: the contact searching algorithm and
the consistent linearization necessary for implicit solvers.

Global searching algorithms. The computation of contact-impact prob-
lems for structures undergoing large deformations requires extensive
searching of contact pairs, that is why robust searching algorithms are
necessary. Benson and Hallquist [11] (1990) proposed a single surface
contact algorithm effectively describing self-contact. Zhong and Nilsson
[206] (1989), [207] (1996) developed a hierarchical algorithm carefully
treating contact cases with edges, see also the book of Zhong [205]
(1993). The Pinball algorithm proposed by Belytschko and Neal [10]
(1991) is based on searching in spherical regions around certain nodes.
Schweizerhof and Hallquist [155] (1992) described a searching strat-
egy based on an additional subdivision of the searching space. Various
searching algorithms based on hierarchical subdivisions are discussed
also in Feng and Owen [39] (2002), Bruneel and Rycke [21] (2002). Es-
pecially for blow molding processes several algorithms have been de-
veloped: the inside-outside algorithm by Wang and Nakamachi [177]
(1997); the moving box algorithm by Wang and Makinouchi [176] (2000);
the Free-Form-Surface (FFS) algorithm for modeling the contact surface
with C1-continuity by Wang et.al. [175] (2001). Numerical aspects of
searching especially for parallel computation are discussed in the thesis
of Persson [142] (2000). Various global searching techniques in combi-
nation with both finite element and discrete element method are consid-
ered in monograph of Munjiza [130] (2004).

Consistent linearization. Two approaches for linearization of the final
functional representing the work of contact tractions can be distin-
guished in order to obtain consistent tangent matrices. The direct ap-
proach follows the following sequence: functional – discretization – lin-
earization and the covariant approach follows the rule: functional – lin-
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earization – discretization.
The direct approach assumes that the discretization is then involved

in the process and the linearization is provided with regard to the dis-
placement vector u and, therefore, of the discretized system. This leads
to the final results containing a set of approximation matrices. Various
aspects of this approach are considered in the following publications:

a) for surface-to-surface contact in Wriggers and Simo [192]
(1985), Wriggers et.al. [194] (1990), Wriggers [187] (1995),
Parisch [137] (1989), Parisch and Luebbing [138] (1997), Peric and
Owen [139] (1992), Simo and Laursen [161] (1992), Laursen [104]
(1992), Laursen and Simo [109] (1993);

b) for anisotropic friction between surfaces in Alart and Heege [4]
(1995);

c) for beam-to-beam contact in Wriggers and Zavarise [197] (1997),
Zavarise and Wriggers [200] (2000), Litewka and Wriggers [113]
(2002), Litewka and Wriggers [114] (2002).

The complexity in the derivation for curved contact interfaces led to
the combination of a finite element code with a mathematical soft-
ware for automatic derivations, see for surface-to-surface contact
in Heege and Alart [65] (1996), Stadler, Holzapfel and Korelc [169]
(2003), Krstulovic-Opara and Wriggers [100] (2001), Krstulovic-Opara
and Wriggers [101] (2002), Krstulovic-Opara, Wriggers and Korelc [102]
(2002), for anisotropic friction in Montmitonnet and Hasquin [128]
(1995) and for beam-to-beam contact in Litewka [112] (2007) and
in [111] (2007).

The fully covariant approach, however, assumes only a local coordi-
nate system associated with the deformed continuum (convective co-
ordinates) and requires extensive application of covariant operations
(derivatives etc.). Though the convective coordinates were partially
involved in some publications mentioned above, the full description
has been first derived in Konyukhov and Schweizerhof [86] (2004) for
non-frictional; in [89] (2005) for frictional contact; a specific consid-
eration for 2D cases in [92] (2006); for the coupled adhesion-friction
anisotropic contact in [90] (2006) and in [91] (2006); in an application of
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the Augmented Lagrangian approach for the coupled adhesion-friction
anisotropic contact in [94] (2007); for arbitrary contact between curves
representing beam and cable type structures in [96] (2009). Concern-
ing the final complexity of the derived algorithms the covariant approach
leads to a simple structure of the contact matrices. Other advantages
of the covariant approach are discussed in detail in the Section 1.4.2
describing the structure of the current work.

1.2 Discussion – why covariant approach?

Through all considered steps from 1 to 5 two general approaches can
be distinguished: a) covariant approach when a contact description
is fully based on local surface coordinate systems and b) direct ap-
proach (non-covariant one) when all parameters are described with the
assumed finite element approximations in a global coordinate system.
The latter is historically motivated by the development of the finite el-
ement method, while the fully covariant approach, though, is intended
for the finite element method, but does not assume approximations from
the beginning. The covariant approach serves to describe all parame-
ters necessary for the solution based on the geometry of the contacting
bodies in the local coordinate system.

Open questions and drawbacks of the direct approach can be sum-
marized as follows:

• A closed form for tangent matrices is available only for linear ap-
proximations of surfaces. For curved interfaces, either a form de-
pending on approximations (mathematical software), or a form of
simplified matrices (taken for linear approximations) is reported.

• The structure of the derived matrices is very complicated and often
intransparent. There is no clear interpretation of each part possible.
Thus, simplifications are hardly possible.

• A specification of complex contact interface laws with proper-
ties explicitly depending on the surface geometry (e.g. arbitrary
anisotropy) is not possible.
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• A contact description of many geometrical features (curved line-to-
curved line, curved line-to-surface) is almost not possible because
of the necessity of convective surface coordinates.

• Geometrically motivated measures of contact interaction are cou-
pled with convective variables in a specially defined coordinate sys-
tem. This straightforwardly leads to a description via convective
variables. However, in the direct approach, they are not defined
separately for various geometrical objects such as surfaces, edges
etc. and can be handled – mostly improperly – with great efforts.

1.3 On geometrical approaches in contact mechanics

Contact interaction from a geometrical point of view can be seen as
an interaction between deformable surfaces and, therefore, geometrical
approaches can be exploited. However, there are only a few publica-
tions uncovering geometrical issues to some extent. Gurtin et.al. [51]
(1998) considered surface tractions on curvilinear interfaces describing
them from a geometrical point of view. Jones and Papadopoulos [81]
(2006) considered contact describing various mappings from the refer-
ence configuration employing the Lie derivative. Laursen and Simo [109]
(1993) and Laursen [105] (1994) described some contact parameters
via geometrical surface parameters. Heegaard and Curnier [64] (1996)
considered geometrical properties of slip operators.

1.4 Goals and structure of the work

In order to formulate goals and describe the complete structure of the
book we consider a model contact problem with two bodies possessing
not only smooth surfaces, but also various geometrical features such as
edges and vertexes – an example of this is a banana and a knife shown
in Fig. 1.1. Considering all possible geometrical situations in which knife
and banana can contact each other, the following hierarchical sequence
of contact pairs is appearing:
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Possible contact pairs:

1. Point-to-point contact pair, see Fig. 1.2

2. Point-to-line contact pair, see Fig. 1.7

3. Point-to-surface contact pair, Figs. 1.4 and 1.5.

4. Line-to-line contact pair, see Fig. 1.3

5. Line-to-surface contact pair, see Figs. 1.6 and 1.7

6. Surface-to-surface contact pair, see Figs. 1.4and 1.5.

1.4.1 Goals

Summarizing the literature review and the discussion in the previous
sections the following open problems can be stated as goals for the
current work:

1. Development of an unified geometrical formulation of contact con-
ditions in a covariant form for various geometrical situations of con-
tacting bodies leading to contact pairs: surface-to-surface, line-
to-surface, point-to-surface, line-to-line, point-to-line, point-to-point.
The description will be fully based on the differential geometry of
specific features forming a continuum, because it is carried out in
the local coordinate systems attached to this feature: in the case of
a surface – in the Gaussian surface coordinate system; in the case
of a curved line – in the Serret-Frenet basis; in the case of a point –
in the coordinate system standard for rigid body rotation problems
(e.g. via the Euler angles). This general description is forming a
geometrically exact theory for contact interaction.

2. A full set of contact pairs requires various closest point projection
(CPP) procedures. Thus, fundamental problems of existence and
uniqueness of closest point projection routines corresponding to the
following situations will be investigated: point-to-surface, point-to-
line, line-to-line.
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3. A solution of existence and uniqueness problems of closest point
routines leads to “projection domains”. Thus, the “maximum
searching domain” allows to improve the searching routines includ-
ing interactions between contact pairs.

4. Since contact interaction between arbitrary bodies is modeled via
a corresponding set of contact pairs (surface-surface, surface-line
etc.) the necessary transfer algorithm for history variables will be
constructed.

5. Derivation of a unified covariant description of various applicable
methods to enforce contact conditions: Lagrange multiplier meth-
ods, penalty methods, Augmented Lagrange multiplier method.
Consistent tangent matrices are given in a closed covariant form
possessing a clear geometrical structure.

6. Description of all geometrical situations in a covariant form which
is a-priori independent of approximations of these geometrical fea-
tures leads to straightforward recipes for the implementation with
any order of approximation for finite elements. Application with bi-
linear and bi-quadratic ”solid-shell“ finite elements will be consid-
ered in detail.

7. A special integration technique based on sub-domain integration
is developed for ”the segment-to-segment“ approach (equivalent to
the Mortar method).

8. Covariant contact description for high order approximations includ-
ing exact representation of geometry for continua (iso-geometrical
approach). Numerical tests show the efficiency for the classical
Hertz problem.

9. Generalization of the classical Coulomb law into complex interface
laws in covariant form for arbitrary geometries of the surfaces (e.g.
coupled anisotropic friction and adhesion for surfaces). Develop-
ment of an a-priori stable numerical algorithm for computations.

10. Experimental validation of the proposed anisotropic law for coupled
tangential adhesion and friction.
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11. Development of the curve-to-curve contact model allowing to con-
sider the complete set of relative motions between curves including
a rotational interaction (a novel in the current theory).

12. Development of the corresponding constitutive relations together
with the corresponding numerical algorithm allowing an anisotropic
behavior for curve-to-curve interaction (various relative adhesion
and friction properties).

13. Application of the curve-to-curve contact algorithm to edge-to-edge
contact as well as to beam-to-beam contact.

14. Curved beams possessing C1-continuity allowing contact (a cable
model). Application to the tying of knots (the theory of knots).

1.4.2 Structure of the current work

The current work is subjected to the rules for the submission the Ha-
bilitation thesis in a cumulative way at Karlsruhe University (TH) and,
therefore, is organized as a set of research papers published within a
research period of 2002-2009 years. The research has been supported
by the following DFG grants:

1. DFG SCHW 307/18-2 “Kovariante Kontaktformulierung von stark
deformierbaren Köorpern mit FE Diskretisierung und separater In-
terpolation der Oberflächen bei statischer und dynamischer Belas-
tung.”

2. DFG SCHW 307/22-1 “Geometrically exact theory of contact inter-
action of structures with curved beams, cables and surface edges
– A covariant approach for all possible geometrical features of gen-
eral bodies.”

The publications are covering different parts of the goal stated in the
previous section, therefore, the aim of the current section is to give to a
reader the complete structure of particular details written in the following
chapters.
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Figure 1.1: Various geometrical situations in contact lead to different contact algo-

rithms: Surface-To-Surface, Line-To-Surface, Point-To-Line, Line-To-Line and Point-

To-Point
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Figure 1.2: Point-To-Point (PTP) contact algorithm

Figure 1.3: Line-To-Line (LTL) contact algorithm

Figure 1.4: Surface-To-Surface (STS) contact algorithm
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Figure 1.5: Surface-To-Surface (STS) contact algorithm:

transfer of variables between elements.

Figure 1.6: Line-To-Surface contact as Surface-To-Surface algorithm

Figure 1.7: Line-To-Surface contact as Point-To-Line algorithm
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The most powerful approach in the computational contact mechanics
is to work in accordance with the geometry of contact bodies and con-
struct all computational algorithms in a covariant form. This combination
forms a geometrically exact theory of contact interaction.

As mentioned in the literature overview, the closest distance has be-
come a natural measure of the contact interaction. The procedure is
introduced via the closest point projection procedure (CPP), for which
the solution requires the differentiability of the function representing the
parameterization of the surface of contacting bodies. An analysis of the
solvability for the CPP procedure allows then to classify all types of all
possible contact pairs given in 1.4. Chapter 2 starts, first, with a consid-
eration of the CPP procedure for C2-continuous surfaces. The concept
of the projection domain is introduced as a domain from which any point
can be uniquely projected, and therefore, the contact algorithm can be
further constructed. This domain can be constructed for at the utmost
C1-continuous surfaces. If the surfaces contain edges and vertices then
the CPP procedure should be generalized in order to include the pro-
jection onto edges and onto vertices. The criteria of uniqueness and
existence of these projection routines and corresponding domains are
studied in detail. Examples of the projection domain and a controversial
for CPP procedure are shown.

The main idea for application for contact is then straightforward – the
CPP procedure corresponding to a certain geometrical feature gives rise
to a special, in general, curvilinear 3D coordinate system. This coordi-
nate system is attached to a geometrical feature and its convective co-
ordinates are directly used for further definition of the contact measures.
Thus, all contact pairs listed in 1.4 can be described in the correspond-
ing local coordinate system. The existence requirement for the general-
ized CPP procedure leads to the transformation rule between types of
contact pairs according to which the corresponding coordinate system
is chosen. Thus, all contact pairs can be uniquely described in most
situations.

A surface-to-surface contact pair, see Fig. 1.4, is described via the
well known “master-slave” contact algorithm based on the CPP proce-
dure onto a surface. This projection allows to define a coordinate system
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as follows:
r(ξ1, ξ2, ξ3) = ρ(ξ1, ξ2) + ξ3n(ξ1, ξ2). (1.6)

The vector r is a vector for the “slave” point, ρ is a parameteriza-
tion of the “master” surface, n is a normal to the surface. The slave
point is taken to be a node from the finite element mesh for the well-
known Node-To-Segment algorithm, however, the algorithm is applica-
ble mainly to linear approximations due to failing the patch test. For
arbitrary approximations Segment-To-Segment, or Surface-To-Surface
algorithms are taken, in which an integration point is taken as a slave
point. Such algorithms will be discussed later, however, it is obvious
that the kinematics for both the surface-to-surface, and the point-to-
surface contact algorithms are described in a coordinate system given in
eqn. (1.6). Thus, point-to-surface and surface-to-surface contact pairs
are equivalent. Eqn. (1.6) describes, in fact, a curvilinear coordinate
transformation where convective coordinates are used for a measure of
contact interaction: ξ3 is a penetration, Δξ1, Δξ2 are measures for tan-
gent interaction. The algorithm is applied only in the existence domain
for the surface CPP procedure.

Consideration of existence of the CPP procedure for edges allows to
define then the point-to-line contact algorithm used for the point-to-line
contact pair directly as well as for the line-to-surface contact pair, see
Fig. 1.7. The local coordinate system is constructed as follows:

r(s, r, ϕ) = ρ(s) + re(s, ϕ); e = ν cos ϕ + β sin ϕ. (1.7)

For the line-to-surface algorithm, the vector r is describing a “slave” point
from the surface, ρ(s) is a parameterization of the “master” curve edge;
e is a unit vector describing the shortest distance between the point and
the curve written via the unit normal ν and bi-normal β of the curve
ρ(s). The convective coordinates are used as measures: r – for normal
interaction; s – for tangential interaction; ϕ – for rotational interaction.

The Line-To-Surface contact pair, however, can be described in a
dual fashion via the Surface-To-Surface contact algorithm if we consider
a “slave” point on the edge and project it onto the “master” surface, see
Fig. 1.6 (Line-To-Surface contact as Surface-To-Surface algorithm). The
contact is described then in the surface coordinate system (1.6).
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The Line-To-Line contact pair requires the projection on both curves,
therefore, there is no classical “master” and “slave” parts and both
curves are equivalent. For the description both coordinate systems as-
signed to each contacting I-th curve are used:

ρ2(s1, r, ϕ1) = ρ1(s1) + re1(s1, ϕ1); e1 = ν1 cosϕ1 + β1 sin ϕ1 1 � 2.

(1.8)

Here, the vector ρ2 is a vector describing a contact point of the sec-
ond curve, ρ1(s1) is a parameterization of the first curve; a unit vec-
tor describing the shortest distance e1 is written via the unit normal ν1

and bi-normal β1 of the first curve. Eqn. (1.8) describes the motion of
the second contact point in the coordinate system attached to the first
curve. The description is symmetric with respect to the choice of the
curve 1 � 2. Convective coordinates are used as measures: r – is
mutual for both curve and a measure for normal interaction; sI – for tan-
gential interaction and ϕI – for rotational interaction for the I-th curve.

The Point-To-Point contact pair is described then in a coordinate sys-
tem standard for rigid body rotation problems (e.g. via the Euler angles),
however in contact situations it is a very rare case, and in computations
it is rather improbable unless specially treated, and therfore, because of
the numerical error would fall into other contact pair types.

Chapter 3 opens the development of the computational algorithm
with non-frictional contact interaction for smooth surfaces. Here the de-
scription starts in the coordinate system given in eqn. (1.6), however,
due to the small penetration ξ3 ≈ 0 it is mostly falling into a description
in the Gaussian surface coordinate system arising from the surface pa-
rameterization ρ(ξ1, ξ2). All contact parameters such as sliding distance
and tangent forces are described then on the tangent plane at ξ3 = 0.
The linearization procedure is given in a form of covariant derivatives.
This leads to a closed form of the tangent matrix subdivided into a main,
a rotational and a curvature parts. The influence of those parts on con-
vergence is studied in numerical examples for the linear and quadratic
finite elements.

Chapter 4 extends the problem into a Coulomb frictional contact. It
is shown that for the correct regularization of tangential contact con-
ditions the evolution equation for contact traction should be taken in a
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form of covariant derivatives on the tangent plane. The structures of all
parts of tangent matrices are obtained due to covariant derivation in a
compact tensor closed form. This makes it applicable for any surface
approximation. It is shown that the tangent matrix in the sticking case
is always symmetric for any kind of approximation. A classification of
parts of the tangent matrix is given and their influence on convergence
with regard to small and large sliding problems is considered. Small
sliding problems are introduced as problems where the computation of
the sticking-sliding zone is essential, while a sliding path is only of inter-
est for large sliding problems. An algorithm to transfer history variables
in contact problems overcoming the discontinuity of history variables on
element boundaries, see illustration in Fig. 1.5, is created in a covari-
ant form. Numerical examples illustrating the application of bilinear and
biquadratic finite elements to frictional phenomena are shown.

Chapter 5 is devoted to the various computational aspects and im-
plementation details of the developed theory. All known contact ap-
proaches such ‘Node-To-Segment” (NTS) and, Mortar like “Segment-To-
Segment” are reconsidered within the covariant description. All contact
parameters are evaluated at integration points within the STS approach,
therefore, combinations of various adaptive integration techniques
such as integration with sub-domains with independent applica-
tion either Gauss-Legendre, or Gauss-Lobatto quadrature formu-
las are specially developed. This allows to satisfy the “contact patch-
test” on unstructured distorted meshes for arbitrarily chosen “master” or
“slave” segments. Special attention is given to the implementation of the
STS contact approach together with “solid-shell” elements. The influ-
ence of various integration techniques on computed results (especially
on the force-displacement curves) is extensively studied in numerical ex-
amples. It is shown that geometrical contact conditions can be satisfied
with high tolerance even for the linear finite elements by the applica-
tion of adaptive integration techniques. A smoothing technique based
on the application of NURBS surfaces is considered with quadrilateral
meshes. A patch test is studied in a combination with smooth surfaces.
A special development within the covariant approach is devoted to the
contact with a rigid surface described analytically. “The rigid surface
is a slave” and “the rigid surface is a master” approaches are ana-
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lyzed. A reduced solution for the surface of revolution is studied and a
set of closed form solutions for the penetration is derived for both strate-
gies. The set contains the following geometrical figures: plane, sphere,
cylinder, torus and cone. The cases requiring the application of special
techniques such as the history transfer algorithm and higher then linear
finite elements are specially studied for some deep drawing cases.

A general geometrical approach to treat contact kinematics in the 2D
case either as a reduction of the 3D case, or as a development based on
a plane curve geometry is described in Chapter 6. This leads to a more
simple kinematical interpretation of all parts of the tangent matrix com-
pared to the 3D case. A fast implementation of frictional contact in 2D is
proposed. The algorithm to transfer the history variables, see Fig. 1.5,
in contact problems overcoming the discontinuity of history variables on
element boundaries and the algorithm to update the history variables in
the case of reversible loading are studied and illustrated in detail. This
part became a core for a course of “Contact Mechanics” at the Univer-
sity of Karlsruhe.

A special development of the covariant approach in combination with
high-order finite element methods is given in Chapter 7. Both the
penalty, and the Lagrange multiplier method are considered. Approxi-
mation and selection of the integration schemes for the Lagrange mul-
tipliers and for other terms are chosen in order to satisfy the discrete
Babuska-Brezzi (BB) stability condition. The linearization procedure is
enhanced for cases with the exact geometry of contact boundaries be-
ing represented by the blending function method. As a result a contact
layer element allowing anisotropic p−refinement is created. The layer
contact element is applied then to initially linear meshes. A good corre-
lation with the analytical Hertz problem is achieved even within a single
contact layer element.

Chapter 8 begins with a systematic generalization of a contact inter-
face law from the Coulomb friction law into the anisotropic region in a
covariant form including various known visco-elasto-plastic mechanical
models. Thus, a coupled model including anisotropy for tangential ad-
hesion and for friction is obtained. This model is formulated via the prin-
ciple of maximum dissipation in a rate form. Finally, the computational
model is derived via the application of the return-mapping scheme to
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the incremental form. As a result a frictional force is derived in a closed
form including both, the adhesion and the friction tensors. The structure
of the tensors is derived for various types of anisotropy: a uniform or-
thotropy of a plane given by the spectral decomposition, a nonuniform
orthotropy of a plane inherited with the polar coordinate system and a
spiral orthotropy of a cylindrical surface. A special update algorithm for
history variables is developed for arbitrary coupled anisotropies. The ge-
ometrical interpretation of the return-mapping and the update algorithm
is considered via an ellipse on the tangent plane.

Chapter 9 continues the development of the computational algorithm
for the coupled anisotropic friction model. The linearization is obtained
as a covariant derivation in the local surface coordinate system and,
therefore, all tangent matrices possess the simple form similar to the
isotropic friction models. The mechanical interpretation of the model
as a two spring-slider-mass system is discussed. The behavior of con-
tacting bodies for various types of anisotropy is numerically analyzed.
The development of the sticking zone for the small displacement case,
and the influence of orthotropic properties on a trajectory of the sliding
block in the case of large displacements are analyzed for the uniform
orthotropy of a plane given by the spectral decomposition and for the
nonuniform orthotropy of a plane inherited with the polar coordinate sys-
tem. As an interesting result, a geometrically isotropic behavior of the
block has been found: in this case the combination of both, anisotropy
for adhesion and anisotropy for friction leads to a trajectory which can be
normally observed only for isotropic surfaces. It is shown that the appli-
cation of the spiral orthotropy on a cylindrical surface allows to simulate
the kinematics of the bolt connection on relatively rough mesh.

The tangent matrices for sliding in the case of the anisotropic coupled
adhesion-friction model are non-symmetric, due to the non-associativity
and due to the coupled anisotropy. Thus, a symmetrized algorithm
based on the Augmented Lagrangian method for coupled anisotropic
friction is developed in Chapter 10. It is shown that for small sliding
problems both normal and tangential tractions should be augmented to
enforce the non-penetration resp. sticking conditions, but for large slid-
ing problems the augmentation of only the normal traction leads to a
satisfactory tolerance for trajectories.
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As a key for the practical application, the developed model is ex-

perimentally investigated. It is shown in Chapter 11, that the coupled

anisotropic adhesion-friction model can successfully describe a set of

trajectories of a block on a rubber mat with a periodical wavy profile,

while the classical anisotropic friction model fails. Special attention is

given to the analysis of geometrically isotropic behavior.

Figure 1.8: Contact between curvilinear beams with circular cross-sections

A geometrically exact description in a covariant form for curve-to-

curve contact pairs shown in Fig. 1.3 is developed in Chapter 12. The

development begins consistently with an analysis of the Closest Point

Projection (CPP) procedure. This analysis leads to a special local co-

ordinate system in which convective coordinates are used directly as

measures of contact interaction between curves: normal, tangential

and rotational. The existence and uniqueness of the CPP procedure
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Figure 1.9: Contact between curvilinear beams: arbitrary cross-section can be defined

in (ν1 − β)-plane

is studied in detail – projection domains with a-priori unique solutions

are constructed in this coordinate system for curves with varying geom-

etry. Several achievements appear to be novel for the line-to-line contact

description: a) consideration of any relative motion separately for each

curve is possible; b) rotational interactions including corresponding ro-

tational moments between curves can be considered consistently.

The Coulomb friction law for tangential interaction and the Tresca fric-

tion law for rotational interaction are considered as examples for consti-

tutive relations between curves. The curve-to-curve contact model is

applied then for the beam-to-beam contact, see Fig. 1.8. In this case

constitutive relations are formulated with regards to a cross section,

while for the edge-to-edge contact they are supplied for the sector in

the orthogonal plane (ν − β), see Fig. 1.9. However, not only circular

cross sections are possible – any arbitrary cross section can be sup-
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plied in the orthogonal plane, see Fig. 1.9. All necessary linearizations
for the iterative solution scheme are provided as covariant derivations in
the introduced coordinate system for arbitrary large distances between
curves. This leads to a closed form of tangent matrices independent of
the approximation used for the finite elements.

The verification section contains the comparison between the beam-
to-beam and the edge-to-edge finite element models as well as the ver-
ification with a famous “Equilibrium of Euler elastica problem” computed
via a finite difference scheme. The further numerical examples are il-
lustrating the ability to describe various kinematics for curve-to-curve
contact situations e.g. partial sticking of a single curve. Special atten-
tion is devoted to the applications with curvilinear beams. C1-continuous
spline finite elements for the beam allowing large rotations are enriched
with the possibility of contact. Thus, the isogeometrical approach for
curvilinear beams together with contact is realized. A new application
area for the tying of knots is considered in some numerical examples.
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On the solvability of closest point
projection procedures in contact
analysis: analysis and solution
strategy for surfaces of arbitrary
geometry∗

Abstract
The uniqueness and existence of the closest point projection procedure
widely used in contact mechanics are analyzed in the current article.
First, a projection domain for C2-continuous surfaces is created based
on the geometrical properties of surfaces. Then any point from the
projection domain has a unique projection onto the given surface. It
is shown that in order to construct a continuous projection domain for
arbitrary globally C1, or C0–continuous surfaces, a projection routine
should be generalized and also include a projection onto a curved edge
and onto corner points. Criteria of uniqueness and existence of the
corresponding projection routine are given and discussed from the geo-
metrical point of view. Some examples showing the construction of the
projection domain as well as the necessity of a generalized projection
routine are given.

Keywords
closest point projection uniqueness and existence contact covariant
description

∗The chapter is published in [95]: A. Konyukhov and K. Schweizerhof, On the solvability of closest
point projection procedures in contact analysis: Analysis and solution strategy for surfaces of arbitrary
geometry, Computer Methods in Applied Mechanics and Engineering, 197 (33-40):3045–3056, 2008.
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2. ON THE SOLVABILITY OF CPP IN CONTACT ANALYSIS

2.1 Introduction

The so-called closest point projection procedure is often introduced as
a numerical scheme to compute coordinates of a point projected onto a
surface. In variational formulations for contact problems it appears due
to the split of contact displacements into a normal and a tangential part.
In early publications for finite element models it was explained as a re-
sult of the linearization of non-penetration conditions, Kikuchi and Oden
[84]. Hallquist et al. [53] considered the split into normal and tangen-
tial direction via the projection operation for a so-called ”master-slave”
approach within the finite element contact model. Such an approach is
based on looking at normal contact where a ”slave” node of one body
penetrates into a ”master” segment of another body. The value of pen-
etration is measured as the closest distance to the master body. In a
next step of the contact algorithm, the penalty method together with ex-
plicit time integration was used to enforce the contact conditions. For
an implicit solution Wriggers and Simo [192] proposed a consistent lin-
earization procedure of the penalty functional containing the penetra-
tion function and obtained the corresponding tangent stiffness matrices
within the Newton iteration scheme. However, the penetration function
based on the closest point projection is not only used for formulations
in combination with a penalty functional, but also in other computational
schemes to enforce the condition of non-penetration in contact. The
concept of the closest distance is also important for contact searching
routines in order to define potentially contacting points.

In order to show the importance of the projection operation, we briefly
focus here on methods in contact mechanics, where the closest point
procedure occurs. Contact elements for bilinear surface approximations
based on the penalty method for non-frictional problems are discussed
in Parisch [137]. Due to decoupling of normal and tangential forces the
projection procedure necessarily appears for 2D frictional problems in
Giannakopoulos [45] and Wriggers et al. [194], then also for 3D prob-
lems in Peric and Owen [139] and in Parisch and Lübbing [138]. All
mentioned references combine the penalty method together with the
regularization of the Coulomb friction model and a radial-return algo-
rithm within the friction algorithm. This algorithm is predominantly used
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in computational plasticity, see Simo and Hughes [160], and also ex-
ploits the closest point procedure; however, then the projection is given
onto the yield surface in the force space. Full Lagrange multipliers meth-
ods are standard for enforcing constraints in computational mechanics,
but cannot be easily transported into frictional problems using the same
penetration, or distance function as mentioned above, see the review
in Zhong [205]. This is due to the nature of friction forces depending
on velocity and, therefore, requiring an incremental update procedure.
For a small sliding problem, a perturbed Lagrangian method including
both penalty and Lagrangian functionals was discussed in Wriggers and
Simo [192]. Then augmented Lagrangian methods appeared to be more
robust. Thus, a 2D finite element algorithm based on the augmented La-
grangian method has been proposed in Wriggers et al. [194]. A mixed
penalty-duality approach based on the augmented Lagrangian scheme
is proposed in Alart and Curnier [3], where different distance functions
have been discussed. Laursen and Simo [109] formulated contact con-
ditions via convective coordinates on the contact surface within both,
the penalty method and the augmented Lagrangian method. For vari-
ous geometrical situations the method has been discussed in Heegaard
and Curnier [63] for large-slip problems, in Heege and Alart [65] for con-
tact with CAD surfaces and in Pietrzak and Curnier [144] for finite de-
formations and large sliding. The full Lagrangian approach for frictional
problems has been discussed in Jones and Papadopoulos [79] utilizing
stick-to-slide conditions in one step, and therefore, covering only small
sliding problems. More recently the so-called mortar method, originally
based on Lagrangian multipliers enforcing the non-penetration condi-
tions is considered in Hüeber and Wohlmuth [70] for non-frictional prob-
lems, where a special discretization technique has been taken for the
Lagrange multiplier functions. A mortar scheme based on a special in-
tegration technique for constraint equations is proposed in Puso and
Laursen [150] for non-frictional problems and extended into the frictional
case via the augmented Lagrangian method by the same authors [151].

The publications listed above cover the most applied methods in com-
putational contact mechanics and all contain the closest point procedure
as the first necessary step. Despite the enormous number of publica-
tions on contact mechanics, there are only a few publications covering
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2. ON THE SOLVABILITY OF CPP IN CONTACT ANALYSIS

to some completeness the problem of uniqueness and existence of the
closest point procedure for arbitrary approximations of the contact sur-
faces as well as describing effective numerical algorithms to overcome
problems. The problem of non-uniqueness and non-existence of the
projection for e.g. bi-linear approximations of a surface by finite ele-
ments is known since the first publications, see Hallquist et al.[53], and
mostly reported in theoretical manuals of popular commercial codes,
see [52], [1]. Heegaard and Curnier in [64] mentioned that geometrical
parameters of a surface, such as a focal point can be used to determine
existence and uniqueness of the projection for smooth surfaces. How-
ever, for arbitrary surfaces described e.g. by CAD systems and contain-
ing combinations of smooth surfaces, curved edges and corner points,
the situation can be far more complex. Some techniques dealing with
non-existence of the projection in certain cases are well known, e.g. a
situation when the slave point is passing over the edge of a locally con-
cave part of a body can be overcome by taking an average vector from
the normals of neighboring contact surface segments. A description of
this rather heuristic approach can be found in the books of Wriggers
[189] and Laursen [106] as well as in theory manuals [52], [1]. This
technique is used in a similar manner in multi-surface plasticity when
the C1-continuity of the yield surface is broken, see Simo and Hughes
[160]. Other techniques such as the projection onto the edge for such
cases, see e.g. in Heegaard and Curnier [63] and in Zhong and Nils-
son [207], are also reported to be implemented in commercial programs
[52].

In the current contribution, we provide analytical tools allowing to cre-
ate, a-priori, proximity domains of contact surfaces from which a given
contact point is always uniquely projected. This approach is based on
the geometrical properties of contact surfaces exploiting the covariant
description for contact problems developed in Konyukhov and Schweiz-
erhof [86], [89]. First, all C2-continuous surfaces are classified according
to their differential properties allowing a unique projection. Then, prox-
imity domains are created for C1-continuous surfaces. Finally, proximity
domains are proposed for globally C0-continuous surfaces covering all
practical approximations. The projection scheme in the latter case is
further generalized including the projection onto geometrical objects of
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lower order (curved edges, corner points). In such cases the corre-
sponding proximity domains are created by a geometrical analysis of
those objects. Also the reduction into the 2D plane case is discussed.
The examples are chosen to show the necessity of the proposed gen-
eralized projection procedure in certain mechanical problems as well as
the necessity of the proximity domain for searching techniques when a
contact surface is given by arbitrary discretization, e.g. described by
CAD-systems, or found in high order FEM analysis.

2.2 Formulation of the closest point projection
procedure in geometrical terms

The most important operation for the data transfer between contacting
bodies in contact mechanics is the closest point projection procedure,
see Fig. 2.1, where one seeks the projection of a given contact point
from one body r, usually called a slave point, onto another contact body,
usually called a master body, parameterized as

ρ = ρ(ξ1, ξ2). (2.1)

The parameterization (12.1) by Gaussian coordinates is arbitrary and
ξ1, ξ2 can be provided either by e.g. a finite element approximation, or
by a spline approximation or by a NURBS approximation. The closest
point procedure appears also in many other applications such as fluid-
structure interactions, computational plasticity and others. The projec-
tion problem is formulated as an extremal problem

||r − ρ(ξ1, ξ2)|| → min, −→ (r− ρ) · (r− ρ) → min, (2.2)

which is solved then mostly numerically. However, then a fundamental
problem arises: Does the solution of (2.2) exist? And, if it exists, then,
is it unique for any arbitrary surface approximation?

The direct and strict answer is fully covered by the application of the
famous theorem from the convex analysis to problem (2.2), see e.g.
[13].
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Figure 2.1: Closest point procedure and definition of the spatial coordinate system.

If the function
F(ξ1, ξ2) =

1

2
(r− ρ) · (r− ρ) (2.3)

is convex in a domain (ξ1, ξ2) ∈ D, then the solution of problem (2.2)
exists and is unique in this domain.

This leads to the fact that the solution can be obtained numerically by
e.g. a Newton iteration procedure, which will converge from any initial
point inside the domain (ξ1

(0), ξ
2
(0)) ∈ D.

Using this criterion we can focus on the geometrical properties of the
surfaces. Then the goal of this contribution is to create a classification
of surfaces from its differential geometry point of view onto which a point
can be projected uniquely.

The analysis of the local geometrical structure of surfaces allows to
create a projection domain Ω in 3D from which any point can be uniquely
projected onto the given surface. Starting with the C2-continuous case,
we will consider also cases possessing parts with solely C1- and C0-
continuity discussing the solvability of problem (2.2) and in addition the
possible multiplicity of solutions.

Assuming that the function F is twice differentiable, i.e. for C2-
continuous surfaces, we can construct the Newton iterative process for
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the solution of the minimization problem (2.2) as follows:

Δξ(n) =

⎡
⎣ Δξ1

(n)

Δξ2
(n)

⎤
⎦ = −(F′′)−1

(n) F′
(n) (2.4)

ξ(n+1) = ξ(n) + Δξ(n),

where the first derivative F′ and the second derivative F′′ with respect to
the surface coordinates ξ1, ξ2 are computed as:

F′ =

⎡
⎢⎢⎢⎢⎣

∂F

∂ξ1

∂F

∂ξ2

⎤
⎥⎥⎥⎥⎦ = −

[
ρ1 · (r− ρ)

ρ2 · (r− ρ)

]
(2.5)

F′′ =

[
ρ1 · ρ1 − ρ11 · (r − ρ) ρ1 · ρ2 − ρ12 · (r− ρ)
ρ2 · ρ1 − ρ21 · (r − ρ) ρ2 · ρ2 − ρ22 · (r− ρ)

]
. (2.6)

Here a short notation for the partial derivatives has been introduced as

ρi =
∂ρ

∂ξi
, ρij =

∂2ρ

∂ξi∂ξj
. (2.7)

Now, we introduce a 3D spatial coordinate system related to the surface
coordinate system, see Fig. 2.1, as follows:

r(ξ1, ξ2, ξ3) = ρ + nξ3. (2.8)

All necessary parameters are defined in the covariant basis of the sur-

face tangent vectors ρ1, ρ2 and a unit normal vector n =
ρ1 × ρ2

‖ρ1 × ρ2‖
.

The solvability of the minimization problem (2.2) will be considered in
this coordinate system. The introduction of such a coordinate system
is the basis of the covariant description for contact problems, developed
in Konyukhov and Schweizerhof [86], [89] for isotropical frictional prob-
lems, and then in [90], [91] for anisotropic frictional problems. The domi-
nantly geometrical structure of all contact parameters is among the main
advantages of this description, e.g. a value of penetration is simply the
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third convective coordinate ξ3.
The following surface tensors are used to describe the metric and the

curvature properties of surfaces in differential geometry [103]:

a) metric tensor with components:

aij = ρi · ρj (2.9)

b) curvature tensor with components:

hij = ρij · n (2.10)

Inserting now eqn. (2.8) into eqn. (2.6) and using the notations given
in eqns. (2.9) and (2.10) we obtain the expression F′′ in the introduced
spatial coordinate system as:

F′′ =

[
a11 − ξ3h11 a12 − ξ3h12

a21 − ξ3h21 a22 − ξ3h22

]
. (2.11)

Let us start with a case assuming a unique projection: In this case the
function F must be convex. As is known for the convexity of F, the
second derivative F′′ must then be a positive definite matrix. Thus, the
Sylvester criterion from basic algebra is exploited to check the positivity
of the matrix given in eqn. (2.11):

(a11 − ξ3h11) > 0
det[(aij − ξ3hij)] > 0

(2.12)

2.2.1 Necessary information about the surface structure

Surprisingly, the second equation in (12.18) is similar to that which is
used in differential geometry for the analysis of the surface structure. To
emphasize this, we present here main formulae necessary for the fur-
ther developments. For more information including the specific deriva-
tions of the formulae see e.g. in [103].

The geometrical analysis of the surface structure is given by the gen-
eralized eigenvalue problem:

(hij − kaij)ej = 0, (2.13)
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which leads to the real roots k1, k2 of the equation

det[(hij − kaij)] = 0. (2.14)

These roots are called principal curvatures and correspond to the or-
thogonal principal directions e1, e2. The principal curvature k1 (resp. k2)
is the curvature of a line arising from the intersection of the surface with
the plane containing both, normal vector n and principal vector e1 (e2).
Their inverse values are principal radii Ri = 1/ki, see Fig. 2.2. The local
structure of the surface in the vicinity of the computed contact point can
be then classified by the Gaussian curvature K

K = k1 · k2 (2.15)

into four cases as follows:

1) K = k1 · k2 > 0 — an elliptic point, i.e. a surface in vicinity of the
point looks like an elliptic paraboloid, see Fig. 2.2.

2) K = k1 · k2 < 0 — a hyperbolic point, i.e. a surface looks like a
hyperbolic paraboloid, see Fig. 2.3.

For the case with zero Gaussian curvature K = 0 a more careful anal-
ysis is required.

3) Either k1 = 0, k2 	= 0, or k2 = 0, k1 	= 0 — a parabolic point. A
surface looks then like a parabolic cylinder, see Fig. 2.4. If these
conditions are fulfilled for each point of the surface, then a flat sur-
face is obtained. This surface (e.g. a cylinder, or a cone) can be
unwrapped on a plane.

4) Both k1 = 0 and k2 = 0 — a planar point. The local structure can
not be identified without the analysis of the higher order derivatives.
Nevertheless, the case with k1 = 0, k2 = 0 for each point leads to a
plane in 3D.

Eqn. (2.14) for a definition of the principal curvatures can be written
in the following form:

k2 − 2Hk + K = 0, =⇒ k1,2 = H ±
√

H2 − K (2.16)
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where the Gaussian curvature K is defined as

K = k1 · k2 =
det[hij]

det[aij]
=

h11h22 − h2
12

a11a22 − a2
12

, (2.17)

and the mean curvature H is defined as

H =
1

2
(k1 + k2) =

1

2

a22h11 − 2a12h12 + a11h22

a11a22 − a2
12

. (2.18)

Remark.
Any other structure of the surface in the vicinity of a point different from
the described cases 1)-3) (e.g. edge point etc.) can arise either from
a planar point (case 4), or from violation of the a-priori assumed C2-
continuity and a more advanced analysis would be necessary. Surfaces
with more complicated local structure leading e.g. to a so-called ”star”-
looking domain, self-contacting and self-penetrating surfaces etc. are
relatively seldom in practical applications and are out of the scope of
the current contribution.

2.3 Proximity criteria for different surfaces

In this section we consider the structure of 3D domains (proximity do-
mains) surrounding a given surface, from which a point can be a-priori
uniquely projected onto the surface. This structure depends on the clas-
sification of surface points given in Sect. 2.2.1. Taking into account
eqn. (2.16) for principal curvatures, the Sylvester criteria in eqn. (12.18)
can be written in the following form:

(a11 − ξ3h11) > 0(
1

ξ3

)2

− 2H
1

ξ3
+ K > 0

(2.19)
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This system of inequalities can be reformulated in terms of principal
curvatures k1, k2 as: (

1

ξ3
− k1

)
> 0(

1

ξ3
− k1

)(
1

ξ3
− k2

)
> 0.

(2.20)

Within the last transformation, it was assumed that the coordinate
ξ3 is a positive value into the normal vector direction n, as chosen in
eqn. (2.8). Thus, zones with positive and negative coordinates ξ3 should
be distinguished.

2.3.1 Projection domains for an elliptic point

According to the geometry presented in Fig. 2.2, a normal n is pointing
into a convex part, where ξ3 > 0 and, both k1 > 0 and k2 > 0.

2.3.1.1 Domain for the convex part ξ3 > 0

Using the geometrical interpretation of the principal curvatures as prin-
cipal radii Ri = 1/ki, eqn. (2.20) can be written as:

R1 − ξ3 > 0
(R1 − ξ3)(R2 − ξ3) > 0

(2.21)

The solution allows to create a projection domain Ω(ξ1, ξ2, ξ3) with a pa-
rameter ξ̂3 = min{R1, R2} with an a-priory unique solution of the projec-
tion problem, see Fig. 2.2:

Ω(ξ1, ξ2, ξ3) := {r = ρ + ξ3n, where 0 < ξ3 < ξ̂3}. (2.22)

This domain is created in the local coordinate system and contains all
points between the original surface and shifted by nξ3 surface.
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2.3.1.2 Domain for the concave part ξ3 < 0

In this case, criterion (2.21) is automatically fulfilled leading to an infinite
domain Ω above the surface:

Ω(ξ1, ξ2, ξ3) := {r = ρ + ξ3n, with −∞ < ξ3 < 0}. (2.23)

R
ξ

3 > 0

ξ
3 < 0

R
n

1

2

ρ
2

ρ
1

Figure 2.2: Elliptic point. Structure of the surface and projection domain assuming
C2-continuity.

2.3.2 Projection domain for a hyperbolic point

Considering a situation as presented in Fig. 2.3, in the case with ξ3 > 0,
where a projection domain is created as an overlapping of the semi-
infinite domain due to the line with negative curvature k1 and the finite
domain due to the line with positive curvature k2 similar to the domain
as for a convex part for an elliptic point. The case with ξ3 < 0 leads
to a projection domain constructed in an identical fashion. Summarizing
both cases, a finite projection domain Ω(ξ1, ξ2, ξ3) is created as a domain
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between two shifted surfaces:

Ω(ξ1, ξ2, ξ3) := {r = ρ + ξ3n, where − R1 < ξ3 < R2}. (2.24)
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3
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Figure 2.3: Hyperbolic point. Structure of the surface and projection domain assuming
C2-continuity.

2.3.3 Projection domain for a parabolic point

A projection domain for a parabolic point, see Fig. 2.4, consists of a finite
domain for the convex part with ξ3 > 0, and a semi-infinite domain for
the concave part with ξ3 < 0. Thus, the projection domain Ω(ξ1, ξ2, ξ3) is
described as follows:

Ω(ξ1, ξ2, ξ3) := {r = ρ + ξ3n, where −∞ < ξ3 < R2}. (2.25)

2.3.4 Discussion about planar points – Required approximation
for the plane

As mentioned in Sect. 2.2.1 case 4), the structure of a surface in the
vicinity of the planar point requires an analysis of the higher order
derivatives with respect to the surface coordinates. In this case, it is
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Figure 2.4: Parabolic point. Structure of the surface and projection domain assuming
C2-continuity.

also difficult to discuss the convergence of the Newton iterative pro-
cess (2.4). However, for the plane with zero curvature tensor hij = 0

criterion (12.18) becomes

det[aij] > 0. (2.26)

Since the metric tensor aij is always positive, a trivial result is recov-
ered: The projection onto a plane always exists and is unique. Never-
theless, from the numerical point of view it is necessary to avoid cases
with det[aij] ≈ 0. In such cases the angle between the convective co-
ordinate lines is close either to 0o or to 180o, which is normally avoided
ab initio as e.g. in finite element approximations this would be a sign for
inadmissibly distorted elements.

2.4 Solvability of the projection algorithm – allowable
and non-allowable domains

In the previous section, the projection domains were constructed under
the main assumption of sufficient smoothness of the corresponding sur-
faces, specifically C2-continuity was necessary to derive all curvature
parameters. In this section, we will obtain that C1-continuity of a sur-
face is sufficient for the construction of a continuous projection domain,
while violation of C1-continuity can cause either multiplicity of solutions,
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or non-existence of solutions at all. Starting with a 2D case as a prelim-
inary case, we then develop ”a remedy” for globally C0-continuous sur-
faces by constructing a continuous projection domain allowing unique
projections onto the surface. A generalized projection procedure in-
cludes then several projection procedures onto curved edges and cor-
ners.

2.4.1 Reduction to 2D plane geometry – Solvability criteria and
uniqueness

A covariant approach for contact problems allows to look at a 2D case
either as a special reduction from a cylindrical geometry in 2D space,
or as a case based on a 2D plane curve geometry, see [92]. In the last
case, the length of a curved line s is used as a convective coordinate.
The closest point projection method (2.2) is then formulated as follows:

F =
1

2
||r − ρ(s)||2 → min . (2.27)

A curvilinear coordinate system in 2D is based on a flat curve geometry
and is introduced as follows:

r(s, ζ) = ρ(s) + ζν. (2.28)

A second derivative with respect to s in this coordinate system is com-
puted as:

F ′′ =
∂ρ

∂s
· ∂ρ

∂s
− ∂2ρ

∂s2
· (r− ρ(s)) = τ · τ − ∂τ

∂s
· (r− ρ(s)) (2.29)

For further transformation it is necessary to introduce the Serret-
Frenet formulae

τ =
∂ρ

∂s
,

∂τ

∂s
= kν, (2.30)

where τ is a unit tangent vector, ν is a unit normal vector and k is

a curvature of the curve (the radius of the curvature R =
1

k
is also

often used). Taking into account the Serret-Frenet formulae together
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2. ON THE SOLVABILITY OF CPP IN CONTACT ANALYSIS

with eqn. (2.28) the second derivative F ′′ is transformed as

F ′′ = 1 − kζ. (2.31)

Since the normal vector ν is always pointing to the center of curvature
C1, see Fig. 2.5, we obtain from the condition F ′′ = 1 − kζ > 0 a finite
projection domain O1 O2 C2 C1 for the convex part as follows:

Ω(s, ζ) := {r = ρ(s) + ζν, with 0 < ζ <
1

k
= R}, (2.32)

and a semi-infinite projection domain for the concave part above the
curve O1 O2:

Ω(s, ζ) := {r = ρ(s) + ζν, with −∞ < ζ < 0}. (2.33)

ν

τ

ζ

ζ >0

ζ <0

O
C

C

O
1

1

2

2

Ω(  ,ζ)s

R= 1
k

Figure 2.5: 2D case – plane curve. Projection domain.

The case with F ′′ = 0 can lead to a multiplicity of the solution. This
is visible in Fig. 2.6, where an infinite number of projections is possible
from a point O1 with the coordinate ζ = R onto an arc BC, and from a
point O2 with the coordinate ζ = −R onto another arc CD.

2.4.1.1 Violation of C2-continuity

The violation of C2-continuity, but keeping C1-continuity leads to a dis-
continuous projection domain. In this case, however, it is easily possible
to construct a continuous projection domain, from where uniqueness
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2.4 Existence of the projection – allowable and non-allowable domains

of the projection operation is automatically fulfilled. The idea is pre-
sented in Table 2.1 and is illustrated in Fig. 2.6. Since discontinuity is
resulting due to the only piecewise continuous parameter ζ, a continu-
ous projection domain is constructed by taking the minimal parameter
ζ = min{R,∞} = R along the curve.

Part of a curve Curvature k Computed ζ Minimal ζ
A B 0 +∞ R
B C R R R
C D -R +∞ R

Table 2.1: Violation of C2-continuity of a curve leads to piecewise continuous curvature
and consequently to a piecewise continuous parameter ζ . A continuous projection
domain Ω(s, ζ) := {r = ρ(s) + ζν} can be constructed by setting ζ to a minimal value.
An example is given for ζ > 0 in Fig.2.6.

A

B

C

O

O

1

2

R

D

minimal projection domain for ζ >0

ν

R

ζ < 0

Figure 2.6: Violation of C2-continuity results in changing the discontinuity of the pro-
jection domain. A continuous domain is constructed by setting ζ to a minimal value.

2.4.1.2 Violation of C1-continuity

We consider here the most practical case which is standard in the trian-
gulation of surfaces with low order finite elements: piecewise differen-
tiable functions with finite jumps for the first derivative. From a geomet-
rical point of view this situation leads to an angular point for curves or
an edge for surfaces. The violation of C1-continuity for a surface param-
eterization leads also to a discontinuity of the normal vector n causing
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either difficulty with definition of the local coordinate system, or multiplic-
ity of projection. The situation in 2D is presented in Fig. 2.7. Now, we
consider a point following the path S1 S2 S3 S4 S5 in the local coordinate
system (2.28). Since a normal vector ν has jumps (points B and C),
there are portions of the trajectory which can not be described in this
local coordinate system. They are located in the non-allowable domain
with regard to the projection onto the curve: any point S2 laying in the
non-allowable domain can not be described in the local coordinate sys-
tem given by eqn. (2.28). The term non allowable domain with regard
to the projection onto surface resp. curve resp. point is then used for
a domain where any point can not be described in the local coordinate
system corresponding to the projection onto surface resp. curve resp.
point.

However, in such a situation it is possible to create a continuous map-
ping of the path S1 S2 S3 S4 S5 onto the curve by introducing a new
projection operation in the non-allowable domain with regard to the pro-
jection onto the curve. This is a projection of the point into an angular
point of curves (e.g. S2 into B and S4 into C in Fig. 2.7), or a closest
point projection onto the edge of surfaces. This method is mentioned for
2D examples in Heegaard and Curnier [63] and in Zhong and Nilsson
[207]; it is also reported to be done e.g. in LS-DYNA [52]. A projection
procedure keeping a continuous mapping of any path on the curve will
be called the generalized closest point procedure. In 2D cases this pro-
cedure includes both a projection onto the curve and onto the corner
point.

Another situation arising from the violation of C1-continuity is overlap-
ping of two or more projection domains causing consequently the multi-
plicity of projection, see e.g. domain of multiple solutions in Fig. 2.7.

We already could observe the multiplicity of solutions in the case of
the violation of C2-continuity where the second derivative of the distance
function is zero F ′′ = 0, see point O1 in Fig. 2.6. In this case, a strong
inequality in the formulation of the projection domains allows to eliminate
the multiplicity. A case with violation of C1-continuity (e.g. domain of
multiple solutions in Fig. 2.7) can lead to a more severe situation, see
point M passing over corner point C. A natural remedy in this case is
to define a minimum distance in the sense of the generalized closest
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2.4 Existence of the projection – allowable and non-allowable domains

point procedure onto neighboring segments and onto corner point C.
However, one can find a line with points which are equidistantly situated
from both segments.

In this situation, though relatively seldom in numerical computations
due to round-off errors, a choice either with a random selection of pro-
jection sides, or with an averaged normal from all projection sides can
be applied, implicitly assuming that the distance is fairly small. Within a
contact algorithm the storage of the ”slave” point path as history variable
would be then necessary.

O

R

D
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S S

S

S

1 2

4

5

S3

P

P

P1

3

5

ν

non−allowable domain

C

M

domain of multiple solutions

Figure 2.7: Violation of C1-continuity leads to non-allowable domains with regard to
the projection onto curve ABCD. A special treatment is necessary to preserve a
continuous mapping.

2.4.2 Proximity domain for globally C0-continuous surface in 3D

It is necessary to define additional projection procedures in order to
create a proximity domain for the 3D space allowing a continuous map-
ping of any path laying inside, similar to that discussed for the 2D case
in 2.4.1.2. These projections include a projection onto an edge and onto
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a corner. The combination of proximity domains leads finally to a con-
tinuous domain. The idea is illustrated in Fig. 2.8 for the contact surface
of a hexaeder focusing on the surfaces containing the corner point O.
The continuous proximity domain surrounding corner point O consists of

1. three domains for sides arising from the standard projection proce-
dure:
S1 = {x, y, z |x > 0, y > 0, z < 0} for side BOCF ,
S2 = {x, y, z |x > 0, y < 0, z > 0} for side AOBE,
S3 = {x, y, z |x < 0, y < 0, z < 0} for side AOC;

2. three domains for edges arising from the point-to-edge projection
procedure:
E1 = {x, y, z |x < 0, y < 0, z > 0} for edge OA,
E2 = {x, y, z |x > 0, y > 0, z > 0} for edge OB,
E3 = {x, y, z |x < 0, y > 0, z < 0} for edge OC;

3. one domain arising from the point-to-corner point projection proce-
dure:
P = {x, y, z|x < 0, y > 0, z > 0} for corner point O.

The last domain is added to fulfill the continuity, because from this
domain a projection onto the cube in general is possible only into a
corner point. This projection is trivial, always exists and can be defined
simply as difference between ”slave” and corner point: rs − ρO.

The point-to-edge projection, in case of a curved edge, requires a
numerical solution and again the problem of existence and uniqueness
arises.

2.4.3 Point-to-edge closest point projection and corresponding
projection domain

An arbitrary curved edge as a result of the intersection of two surfaces
is represented by a curved line, see e.g. AOB in Fig. 2.9. This line
can be parameterized by the arc-length parameter s as well as by an
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B
C

A

S
O

Z

Y

X

E

FD

Figure 2.8: Hexaedral contact surface in the vicinity of O. A continuous proximity
domain (i.e. allowing continuous projection onto the C1-surface) consist of domains
for sides, edges OA, OB, OC and, finally, of a domain for the corner point O.

arbitrary parameter ξ, e.g. a normalized coordinate in a finite element
approximation:

ρ = ρ(s) = ρ(s(ξ)). (2.34)

The transformation of the parameters s ← ξ is provided by the formula:

ds =

√
∂ρ

∂ξ
· ∂ρ

∂ξ
dξ =

√
ρξ · ρξdξ. (2.35)

The projection routine, though it is looking similar to eqn. (2.27), is now
formulated in 3D as follows:

F (s(ξ)) =
1

2
||rs − ρ(s(ξ))||2 → min . (2.36)

The necessary optimum condition leads to the projection operation onto
the curve

F ′ = −(rs − ρ(s(ξ)) · ∂ρ

∂s
= −(rs − ρ(s(ξ)) · τ = 0, (2.37)
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showing the orthogonality of the vector (rs − ρ) and the tangent vector
τ . According to this, a new coordinate system τ , ν, β is introduced as
a natural coordinate system of the curved line, see Fig. 2.9, where τ

is a unit tangent vector, ν is a unit main normal vector and β is a unit
binormal vector of the curve, see [103]. This results in orthogonal planes
I, II, III. The given point S (”slave” point) is defined as follows:

rs = ρ(s) + re, (2.38)

where r is the shortest distance between the point S and the curve AB.
e is a vector giving a director of the shortest distance in the plane ν0β

(plane II), defined via ν and β as follows:

e = ν cos ϕ + β sin ϕ. (2.39)

The second derivative F ′′ taking into account eqn. (2.38) is trans-
formed in the curvilinear coordinate system as follows:

F ′′ = τ · τ − (r− ρ(s)) · kν = 1 − kr(e · ν) (2.40)

and finally using representation (2.39) for the vector e as

F ′′ = 1 − kr cos ϕ. (2.41)

Considering now F ′′ > 0, the projection domain is constructed from
two parts 1 and 2, see Fig. 2.9:

1: a semi-infinite domain with negative ν, or with ϕ ∈ [π/2, 3π/2]. Here
the projection of the vector re onto the normal ν is negative leading
to the automatic satisfaction of F ′′ > 0,

and,

2: a layer with positive ν, or with ϕ ∈ (−π/2, π/2). Here the projection
of the vector re on the normal ν must be less than the radius of the
curvature R, i.e.

r cosϕ <
1

k
= R. (2.42)

As one can see, two domains surround a curve densely, e.g. with-
out any void. A problem can occur if vector ρ(s) looses C1-continuity,
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2.4 Existence of the projection – allowable and non-allowable domains

however in this case we obtain a corner point as discussed above.
Remark 1.

If the edge is a straight line then the coordinate system τ , ν, β should
not be derived via the curved properties of the line according to the
Serret-Frenet formulae, however, it can be defined arbitrarily.

In the case of an arbitrary parameterization of a line, the projection
routine is fulfilled via the Newton iterative process in eqn. (2.4) for the
parameter ξ, where Δξ is computed as:

Δξ = −F ′

F ′′ = − (rs − ρ) · ρξ

(ρξ · ρξ) − (rs − ρ) · ρξξ

, ξ(n+1) = ξ(n) + Δξ. (2.43)
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Figure 2.9: Point-to-edge projection. Proximity criteria and projection domain.

Summary: A continuous projection domain for a globally C0-
continuous surface allowing unique continuous projections of any path
laying inside this domain can be constructed via a generalized projec-
tion procedure including three projection operations: a) onto a surface;
b) onto an edge; c) onto a corner point.
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Remark 2.
An algorithm for the continuous projection domain can be used also as
a preparation stage for the global searching routine. Thus, in follow-
ing computations within an analysis of a contact problem any possible
”slave” point can be uniquely projected onto the ”master” surface via the
corresponding projection onto a surface, an edge or a point.

2.5 Kinematics of the point-to-edge contact element

The introduction of the projection procedure and a corresponding curvi-
linear coordinate system allows also to consider the kinematics of the
contact, and therefore, to compute all necessary contact parameters
such as forces, measures of displacements etc.

Consider a motion of the given point S (”a slave” point) in the moving
coordinate system τ , ν, β. The velocity vector vs is computed as a full
time derivative:

drs

dt
=

∂ρ

∂t
+ ṡτ + ṙe + r

de

dt
, (2.44)

where the full time derivative
de

dt
= ω describes a rigid body rotation

of the coordinate system τ , e, g both, due to the changing curvature
along a curve, and due to the rigid motion of a curve. For the further
numerical model a value of r must lay within an allowable small distance
surrounding a curve, see Fig. 2.10. This assumption necessarily will
lead also to the corresponding small load or time increments to solve
the contact problem. Altogether these assumptions allow to neglect the
contribution of the last term (r de

dt ) similar to the covariant description for
the 3D-dimensional case [89], where a relative velocity vector has been
considered on the tangent plane. With the dot product of the vectors τ

and e, the following components of the velocity vector are obtained:

ṡ = (vs − v) · τ , (2.45)

ṙ = (vs − v) · e, (2.46)

where vs =
drs

dt
is absolute velocity of the slave points, and v =

∂ρ

∂t
is
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2.5 Kinematics of the point-to-edge contact element

the translational velocity of the projected point O.

Remark. According to the assumptions mentioned above, all varia-
tion parameters for the further weak form are created in a similar fashion
as the kinematical eqns. (2.44), (2.45), (2.46), e.g.

δrs − δρ = δsτ + δre. (2.47)

The convective velocities in eqns. (2.45), (2.46) define essential mea-
sures for the contact interaction as: r – for the normal interaction, Δs –
for the tangential interaction. In addition for the normal interaction a pen-
etration area can be defined in the plane νOβ (plane II in Fig. 2.9 as a
curve in the polar coordinate system

r = r(ϕ), φ ∈ [ϕ0, ϕn]. (2.48)

The simplest case is a circular area with a radius Rε, see Fig. 2.10.
Thus, a measure can be taken as

ζ = r − Rε = ‖rs − ρ‖ − Rε. (2.49)

Remark. A case with artificial Rε is rather necessary for the point-
to-curve algorithm applicable for edge-to-edge contact. In the case of
globally C0 surface, e.g. in the case of an edge, penetration is computed
exactly at projection point: ζ = ‖rs − ρ‖.

2.5.1 Weak formulation of contact equilibrium

The components of the contact force vector F in the curvilinear coor-
dinate system are chosen to be conjugate variables with regard to the
work W of the contact forces. Thus, vector F is decomposed as:

R = Nν + Tτ . (2.50)

A pointwise equilibrium contact condition FS + FO = 0 is formulated in
variational form as:

δW = FS · δrs + FS · δρ, (2.51)
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Figure 2.10: Point-to-edge contact element. Definition of measures of contact interac-
tions: ζ – for normal interaction defined according to a circular area with radius Rε; Δs
– for tangential interaction.

and is transformed exploiting eqns. (2.50) and (2.47) into

δW = (δrs − δρ) · FS = Nδr + Tδs. (2.52)

2.5.2 Regularization of contact forces – Return-mapping scheme
for the Coulomb friction model

The regularization of contact conditions is derived with regard to the
decomposition into normal and tangential force as described in the co-
variant description, see [86], [89]. Thus, the normal component N is
regularized in closed form as:

N = εNζ, (2.53)

and the tangent component T is regularized in rate form as:

dT

dt
= −εT ṡ. (2.54)
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2.5 Kinematics of the point-to-edge contact element

A computational algorithm for the tangent traction can be constructed
according to the standard return-mapping scheme for the Coulomb fric-
tion law, see e.g. in [189], [106]. First, the trial force Ttr is computed
assuming to be an elastic predictor:

T
(n+1)
tr = T (n) − εT (s(n+1) − s(n)), (2.55)

then the real force is computed as:

T (n+1) =

⎧⎪⎨
⎪⎩

T
(n+1)
tr if |T (n+1)

tr | < μ|N | sticking

sign(T
(n+1)
tr )μ|N | if |T (n+1)

tr | ≥ μ|N | sliding

. (2.56)

2.5.3 Linearization of the weak form

The linearization of the weak form has to be done in the form of covariant
derivatives in the curvilinear coordinate system in a similar fashion to the
case of the point-to-surface contact algorithm, for the 3D case see [89],
for the 2D case see [92]. Here we skip all mathematical details providing
the final result only.

Linearized part for normal interaction:

L(δWN) = L(Nδζ) = L(εNζδζ) = (δrs − δρ)εNν ⊗ ν(vs − v). (2.57)

Linearized part for tangent interaction:
– sticking

L(δW stick
T ) = L(Ttrδs) = (δrs − δρ)εTτ ⊗ τ (vs − v). (2.58)

– sliding

L(δW slide
T ) = L(Tδs) = (δrs − δρ)sign(T

(n+1)
tr )εNτ ⊗ ν(vs − v). (2.59)
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2.6 Numerical examples

In this section, we give first a reference example for the construction
of the projection domain for a hyperbolical surface, and then discuss
a situation where the generalized projection procedure including both,
projection onto a segment and onto an edge is needed.

2.6.1 Reference example: projection domain for a hyperbolical
surface

Consider a quadratic surface of the form: z = (x2 − y2)/2, 0 ≤ x, y ≤ 1

see Fig. 2.11. The upper projection domain is then a domain between
the original surface OABC and the surface O′A′B′C ′ created by shifting
in normal direction as follows:

r = ρ(x, y) + R(x, y)n(x, y), ρ(x, y) = {x, y, (x2 − y2)/2}T , (2.60)

where R(x, y) is a function of the corresponding radius of curvature. Ex-
emplarily, the position of point C ′ is computed as follows. A point on
the surface C is defined by the vector ρ = {1.000, 0.000, 0.500}T, with
the corresponding normal vector n = {−0.707, 0.000, 0.707}T. The main
curvatures at point C are computed via eqn. (2.16), (2.17) and (2.18):
k1 = 0.354, k2 = −0.700. A positive value here defines a curvature of
a corresponding line which is locally convex with respect to the chosen
direction of the normal n, i.e. a normal is pointing into a center of curva-
ture of the line. According to the rule for a hyperbolic point discussed in
Sect. 2.3.2, the value k1 is taken for the shift as R1 = 1/k1 = 2.825. Thus,
the upper boundary of the projection domain at point C ′ is computed as
r = ρ + R1n = {−0.997, 0.000, 2.497}T .

Remark
It is obvious, that the complete algorithm for the projection for an arbi-
trarily composed CAD surface requires the application of some Boolean
operations with domains known from CAD applications. Thus, in gen-
eral, a fairly large number of cases has to be analyzed within a contact
search routine taking advantage of the derived proximity domains.
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2.6 Numerical examples

Figure 2.11: Structure of the upper proximity domain for a given surface OABC with
z = (x2 − y2)/2, 0 ≤ x, y ≤ 1.

2.6.2 Sliding block

This example is intentionally chosen as simple as possible in order to
discuss the influence of various contact algorithms on kinematical ef-
fects only. A heavy rigid block ABCD with mass m, see Fig. 2.12 starts
to slide (position I) without friction on an inclined surface OE till it is
impacting an edge 0 in position II. Assuming frictional contact at the
horizontal surface OF , we seek two parameters: the hight H and the
friction coefficient μ such that after the impact the block would turn over
the edge O in position III without jumping on it until the second impact
with a surface OF in position IV. The simplicity of the case allows us to
obtain an analytical solution, which we will try to represent numerically.
The equation of motion immediately after impacting the edge O (contact
only at edge):

ma = R + mg (2.61)

leads to the result that a coefficient of friction μ > tanα would prevent
the block from sliding on the surface OF . An equation for the angular
momentum is involved in a polar coordinate system in order to get the
information about the possibility of jumping. The full set of equations is
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then written as:

JOϕ̈ = mga

√
2

2
sin ϕ

ma

√
2

2
ϕ̈ = mg sin ϕ + Rτ

ma

√
2

2
ϕ̇2 = mg cos ϕ + Rν, (2.62)

where a is an edge of the cube, JO is the moment of inertia about the
edge O. The solution leads to the reaction force Rν = 5mg cos ϕ/2 −
3mg/2 − ma

√
2/2ϕ̇2

0. Defining via the energy theorem the initial angu-
lar velocity ϕ̇0 after the impact, we finally obtain Rν = 5mg cosϕ/2 −
mgL

√
2/a − 3mg/2. If the reaction is positive Rν > 0, the block will

not jump before the second contact along the side CD occurs (i.e.
cos ϕ = 45o). The sliding length L satisfies the following inequality:

L < a(5
√

2 − 6). (2.63)

Now, we model this problem via the node-to-segment approach
(NTS), see the FE algorithms in [189] and [106]. The full problem is
modeled with only three finite elements, see Fig. 2.12 b. A penalty ap-
proach to enforce contact conditions is applied and a Newmark time
integration scheme is used. Inclined and horizontal segments are cho-
sen to be ”master” segments, then nodes from the cube are ”slaves”. It
is obvious to see, that during the rotation of the block over the edge the
slave nodes are running through a non-allowable domain for the seg-
ment projection procedure. This leads to the impossibility to describe
the rotation. This artefact causes the block to jump on the second seg-
ment, see screen-shots in Fig. 2.13.

Several possibilities to get a correct solution exist, e.g. Heege and
Alart [65] mentioned that correct forces can be recovered as a superpo-
sition of forces from neighboring segments within a full Lagrange mul-
tiplier method. Another of the possible remedies (also reported in [52])
to recover a correct force as a superposition is to allow an overlapping
of segments and, therefore, double projections on both segments at the
same time. However, this does not solve the problem completely and
also leads to jumping. Thus, an additional projection onto the edge
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Figure 2.12: a) Process of sliding cube b) and its finite element model.

needs to be included into the contact algorithm within a penalty ap-
proach. But since, the penalty parameter plays the role of an additional
spring hanging on the edge, this in general leads to unnecessary vibra-
tions. Then only a careful selection of the penalty parameters leads to
acceptable results leading to a rotational motion. This shows that cor-
rect kinematics are hard to achieve within a penalty approach. A full
Lagrange multiplier method together with a generalized projection pro-
cedure would cover the kinematics of this specific example more exactly,
allowing e.g. sliding along the edge.

Remark
The finite element model described above requires also additional con-
tact elements such as a node-to-edge element. The simple version with
a linear edge has been implemented so-far for the current example, see
also Wriggers [189]. For the fully nonlinear element for curvilinear edges
also the application the covariant approach for kinematics as well as for
linearization is needed, which is out of scope of the current contribution.
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2. ON THE SOLVABILITY OF CPP IN CONTACT ANALYSIS

a) b) c)

Figure 2.13: Absence of the projection of the slave node onto the edge in the contact
algorithm (only Node-to-Segment approach) leads to the impossibility to capture the
rotational part of the motion. a) cube impacting the edge, b)-c) results of artefact: block
jumps on the second segment

2.7 Conclusion

In this contribution fundamental problems of existence and uniqueness
of the closest point projection procedure are investigated. The analysis
is given in a surface coordinate system, which has also been a basis for
a covariant description of the contact. The consideration of the differen-
tial properties of smooth surfaces allows to create ”projection domains”
from which a projection of e.g. a slave node is uniquely defined. For
arbitrary C0 continuous surfaces a projection routine should be general-
ized to include projections not only onto surfaces, but also onto objects
of lower geometrical dimension, such as curved lines and points. The
corresponding criteria of existence and uniqueness and, therefore, pro-
jection domains are also given in the contribution. The general results
are illustrated within a simple example, where the lack of a fully general-
ized projection scheme may result in a completely different kinematical
behavior.
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3

Contact formulation via a velocity
description allowing efficiency
improvements in frictionless contact
analysis∗

Abstract
A velocity description, based on the consideration of contact from the
surface geometry point of view, is used for a consistent formulation of
contact conditions and for the derivation of the corresponding tangent
matrix. Within this approach differential operations are treated as co-
variant derivatives in the local surface coordinate system. The main
advantage is a more algorithmic and geometrical structure of the tan-
gent matrix, which consists of a ”main”, a ”rotational” and a pure “cur-
vature” term. Each part of the tangent matrix contains the information
either about the internal geometry of the contact surface or about the
change of the geometry during incremental loading and can be esti-
mated in a norm during the analysis. Representative examples with
contact and bending of shells modelled with linear and quadratic ele-
ments over some classical second order geometrical figures serve to
show situations where keeping all parts of the tangent matrix is not nec-
essary.

Keywords
contact problem velocity description covariant differential operations

∗The chapter is published in [86]: A. Konyukhov and K. Schweizerhof, Contact formulation via a ve-
locity description allowing efficiency improvements in frictionless contact analysis, Computational Me-
chanics, 33:165-173, 2004.
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3. COVARIANT DESCRIPTION IN FRICTIONLESS CONTACT

tangent matrix, penalty method.

3.1 Introduction

From the variety of methods which are mainly used for the solution of
contact problems, the “master-slave” concept is one of the most robust
methods. This concept is based on the determination of the penetra-
tion of the “slave” surface, represented by ”slave” nodes, resp. points,
into a “master” surface. The penetration can be used for regularization
methods like the penalty method and the Augmented Lagrange multi-
plier method. The penalty method see e.g. Wriggers and Simo [192],
Laursen [104] and an extensive theoretical discussion in Kikuchi and
Oden [84] leads to the exact solution in the limit when the penalty ap-
proaches infinity. As an improvement, concerning the satisfaction of
impenetrability, the Augmented Lagrange method has been proposed
and developed for contact problems by Wriggers, Simo and Taylor [193],
Simo and Laursen [161], Pietrzak and Curnier [144]. A contemporary
and comprehensive review about contact problems in general can be
found in the books of Wriggers [188] and Laursen [106].

In nonlinear contact problems the penetration is a function of the cur-
rent geometry and it is used for the ”constitutive” model of the contact
tractions. For the solution of the nonlinear equilibrium equations by a
Newton method the corresponding equations have to be linearized. The
correct linearization, taking, in particular, also algorithmic aspects into
account, is called consistent linearization. This procedure was consid-
ered by Wriggers and Simo [192] for the 2D case, where the penalty
functional has been linearized in the global coordinate system directly.
Parisch [137] developed the consistent linearization for the 3D case also
in global coordinates and used equations based on an orthogonal pro-
jection of the “slave” node onto the “master” surface to get convective
coordinate increments during linearization. This approach was gen-
eralized for the linearization procedure in the local surface coordinate
system by Simo and Laursen [161]. In both contributions, the solution
of the projection problem for every “slave” node and the consistent lin-
earization of the global equations were considered together in one step
making it difficult to distinguish the different contributions to e.g. the
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3.2 Covariant formulation of contact conditions and linearization

stiffness matrix.

In the alternative approach considered in the following, the coordinate
increment vector can be treated as a velocity vector during linearization,
see Bonet and Wood [16], and the linearization itself can be treated as
a covariant differential operation in the local surface coordinate system,
see Marsden and Hughes [121]. The main approach of the proposed ve-
locity description is to consider the global linearization separately from
the local “slave” node searching procedure and derive linearized equa-
tions from kinematic equations in the local surface coordinate system.
Focusing on frictionless contact, it leads to a very simple structure of
the tangent matrix for the contact element, which is naturally divided
into three parts. The first ”main” part, or the constitutive part, consists of
the tensor product of surface normal vectors only, while the second ”ro-
tational” part contains information about rotations of the contact element
during the iteration process and the third ”pure curvature” part contains
the curvature tensor of the “master” surface.

For an extensive test of the proposed technique numerical exam-
ples with curved surfaces are presented. These tests serve to check
the influence of different parts of the contact matrix on convergence
within a nonlinear solution process. Two surfaces of second order (cylin-
der and sphere) have been chosen for this purpose. So-called “solid-
shell”elements with various orders of approximation are used to model
the shell structures, see [60], [61] and [59].

3.2 Covariant formulation of contact conditions and
linearization

We introduce two coordinate systems: a reference global coordinate
system for the finite element discretization only and a spatial local sur-
face coordinate system in the contact consideration. All geometric prop-
erties of the element as well as the differential operations will be de-
scribed in the local coordinate system.
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3. COVARIANT DESCRIPTION IN FRICTIONLESS CONTACT

3.2.1 Geometry of the contact condition

A surface 2D coordinate system is usually defined to describe the sur-
face geometry. In addition, a special 3D local coordinate system which
is related to this surface can be constructed to describe any spatial ob-
ject. This system will be used to define any characteristics that belongs
to the surface as well as to transfer the result of the linearization into the
global coordinate system for the purpose of a finite element implemen-
tation. All geometric and kinematic characteristics of the contact are
investigated in the local coordinate system. First, all necessary opera-
tions in the surface coordinate system are described. For this a surface
element (Fig.1), the so-called “master” element, is considered, which is
parameterized by local coordinates ξ1, ξ2. ρ is a vector, describing an
arbitrary point on the surface. It has the following form

ρ =
∑

k

Nk(ξ
1, ξ2)x(k). (3.1)

where Nk(ξ
1, ξ2), k = 1, 2, .., n are later the shape functions of e.g. finite

elements.
Though a rather general description is given, we present for imple-

mentation purposes the expression for a 4-node bilinear surface ele-
ment in detail. The approximation for this element can be written as

ρ =
4∑

k=1

Nk(ξ
1, ξ2)x(k) =

1

4

4∑
k=1

(1 + ξ1ξ(k))(1 + ξ2ξ(k))x(k). (3.2)

In order to describe the geometry of the surface element from the
internal differential geometry point of view, surface tangent vectors
ρi, i = 1, 2 have to be specified

ρ1 =
∂ρ

∂ξ1
, ρ2 =

∂ρ

∂ξ2
. (3.3)

The normal surface vector is computed as a cross product of the tangent
vectors

n =
ρ1 × ρ2

|ρ1 × ρ2|
. (3.4)

The surface vectors ρ1, ρ2 define a surface coordinate system, while
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3.2 Covariant formulation of contact conditions and linearization

the normal n is used to describe geometrical properties of the surface
and to construct a local 3D coordinate system as well. The coordinate
vectors serve to obtain two fundamental tensors of the surface: the first
(also called a metric tensor) and the second fundamental tensors [47]
(also called a curvature tensor). The covariant components of the metric
tensor are defined by the dot product of the base surface vectors

aij = ρi · ρj, i, j = 1, 2. (3.5)

Assuming invertibility of the metric tensor (3.5), the contravariant com-
ponents of the metric tensor aij can be defined as

aij :
1

a

[
a22 −a12

−a12 a11

]
, a = det(aij) = a11a22 − (a12)

2 (3.6)

Covariant components of the second fundamental tensor are given as a
dot product of the second derivative of the vector ρ and the normal n

hij = ρij · n, (3.7)

and contravariant components are defined as a double summation with
the contravariant components of the metric tensor given as

hij = hkla
ikajl. (3.8)

The formulae of partial derivatives of the base vectors are necessary to
describe any differential operation in the local surface coordinate sys-
tem. The Weingarten formula [47] for the derivative of the normal vector
n

ni = −hija
jkρk = −hk

i ρk (3.9)

and the Gauss-Kodazzi formula [47], for the derivatives of the surface
vectors ρ,i,

ρij = Γk
ijρk + hijn (3.10)

are among them. In the last equation (3.10) Γk
ij are the Christoffel sym-

bols, defined as
Γk

ij = ρij · ρk = ρij · ρmamk. (3.11)
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3. COVARIANT DESCRIPTION IN FRICTIONLESS CONTACT

3.2.1.1 Projection of the contact node vector onto the master surface.

The penetration is computed by a projection procedure, see [188], [106].
Let rs be a position vector of a “slave” node in the 3D space and ρ its
projection onto the “master” surface. The standard closest point projec-
tion procedure leads then to the following extremal problem

||(rs − ρ)|| → min =⇒ (rs − ρ) · (rs − ρ) → min . (3.12)

As is well known, the solution of this problem can be achieved by the
application of a Newton procedure for the function

F (ξ1, ξ2) = (rs − ρ)2 (3.13)

Δξn+1 =

⎛
⎝ Δξ1

n+1

Δξ2
n+1

⎞
⎠ = −(F ′′)−1

n F ′
n (3.14)

ξn+1 = ξn + Δξn+1

The first derivative with respect to the surface coordinates in the form of

F ′ =

⎛
⎜⎜⎝

∂F

∂ξ1

∂F

∂ξ2

⎞
⎟⎟⎠ = −2 ·

(
ρ1 · (rs − ρ)
ρ2 · (rs − ρ)

)
(3.15)

must be finally zero. The second derivative has the form

F ′′ =

⎡
⎢⎢⎢⎢⎣

∂2F

∂ξ1∂ξ1

∂2F

∂ξ1∂ξ2

∂2F

∂ξ2∂ξ1

∂2F

∂ξ2∂ξ2

⎤
⎥⎥⎥⎥⎦ =

= 2 ·
[

ρ1 · ρ1 − ρ11(rs − ρ) ρ1 · ρ2 − ρ12(rs − ρ)
ρ2 · ρ1 − ρ12(rs − ρ) ρ2 · ρ2 − ρ22(rs − ρ)

]
= (3.16)

= 2 ·
[

a11 − ρ11(rs − ρ) a12 − ρ12(rs − ρ)

a21 − ρ22(rs − ρ) a22 − ρ22(rs − ρ)

]
.
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3.2 Covariant formulation of contact conditions and linearization

3.2.1.2 Spatial local coordinate system and internal geometry of the element

Now we construct a special local coordinate system, introducing the
third coordinate ξ3 in the direction of the surface normal n, and keeping
a surface point ρ(ξ1, ξ2) as a projection of the ”slave” point. Any spatial
vector rs in this system can be written as

rs(ξ
1, ξ2, ξ3) = ρ(ξ1, ξ2) + ξ3n. (3.17)

One should notice that the projection procedure is taken into account
within our local coordinate system. The Lie type derivative in the form
of a covariant derivative [121] is used for any differential operation on
the surface. If e.g. a is a vector which is defined in the local coordinate
system, then its material time derivative is defined as

d

dt
a = (

∂ai

∂t
+ ∇ja

iξ̇j)ρi, (3.18)

where the term ∇ja
i is a covariant derivative of the contravariant com-

ponent ai

∇ja
i =

∂ai

∂ξj
+ akΓi

jk. (3.19)

The ”slave” point in the local coordinate system (3.17) has the local
coordinate ξ3 (Fig. 3.1). We now consider the motion of the ”slave” point
S in the local coordinate system, assuming that the ”master” surface
is moving, i.e. the surface vector ρ(t, ξ1, ξ2, ξ3) as well as the normal
n(t, ξ1, ξ2, ξ3) are time dependent. Within a static process, the time t is
an incremental load parameter. Then the full time derivative becomes

d

dt
rs(t, ξ

1, ξ2, ξ3) =
d

dt
ρ +

d

dt
(nξ3) = (3.20)

=
∂ρ

∂t
+

∂ρ

∂ξj
ξ̇j +

∂n

∂t
ξ3 + nξ̇3 +

∂n

∂ξj
ξ3ξ̇j, j = 1, 2.

Let a point C be a projection point of the ”slave” node onto the master

surface. Denote the translation velocity of the point C as v =
∂ρ

∂t
and

the velocity of the ”slave” point as vs =
d

dt
rs(t, ξ

1, ξ2, ξ3). Then equation
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3. COVARIANT DESCRIPTION IN FRICTIONLESS CONTACT

�
�
�
�

�
�
�
�

ξ

ξ

S

C

O

X

X

X

2

1

1

2

3

sr
r

r
r

n

ξ

1

2

3

Figure 3.1: Definition of coordinate systems

(3.20) has the following form, using the Weingarten formula (3.9),

vs = v + ξ3∂n

∂t
+ nξ̇3 + (ρj − ξ3hi

jρi)ξ̇
j, i, j = 1, 2, (3.21)

where hi
j are mixed components of the curvature tensor.

The difference between the velocity vs of "slave" point S and the ve-
locity of point C is a relative velocity vrel of the "slave" point, or in other
words, the velocity of point S as it can be seen from point C. In order
to define its projection in the local coordinate system, the dot product of
the relative velocity vrel and the coordinate vector ρi is taken

(vs − v) · ρi = (aij − ξ3hij)ξ̇
j + ξ3(

∂n

∂t
· ρi), (3.22)

where aij are the components of the metric tensor. Therefore, the con-
vective velocity is defined as

ξ̇j = âij[(vs − v) · ρi − ξ3(
∂n

∂t
· ρi)] (3.23)
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3.2 Covariant formulation of contact conditions and linearization

where âij are contravariant components of the tensor with components
aij − ξ3hij.

The third coordinate ξ3 is a penetration

ξ3 = g = (rs − ρ) · n. (3.24)

The scalar product of the normal n and the equation (3.21) gives the
time derivative of the penetration

ξ̇3 = (vs − v) · n. (3.25)

All further considerations are based on the following assumption:
Only the contact problem is considered, but not the motion and de-
formation of the two body system connected by means of the normal
vector with coordinate ξ3. The penetration is assumed to be very small,
as usual during the solution of contact problems. Further, the global
iteration procedure for the solution leads to a decreasing value of the
penetration g. Thus, the convective velocity, with the additional assump-
tion ξ3 = 0, can be defined in the form

ξ̇j = aij(vs − v) · ρi. (3.26)

This definition of the convective velocity (3.26) on the tangent plane
allows to consider the contact kinematics on the master surface only
and to exploit the differential geometry of the surface during further con-
siderations. The formula in eq. (3.26) was mentioned in Wriggers [187]
as a possible simplifiction as well. Here we show that from a mathemat-
ical point of view this simplifiction leads to a consistent expression of
the contact integral and, as it can be seen from numerical results, also
leads to high numerical efficiency.

In order to estimate the difference between the exact definition in
equation (3.23) and the proposed form (3.26), a series expansion of Aij

assuming ξ3 as a small parameter is performed. Suppose A is a metric
tensor with components aij, H is a curvature tensor with components
hij and tensor Â with components aij − ξ3hij

Â−1 = (A − ξ3H)−1 = A−1 + ξ3A−1HA−1 + O((ξ3)2) (3.27)

where A−1 is the contravariant metric tensor with components aij. Then
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3. COVARIANT DESCRIPTION IN FRICTIONLESS CONTACT

the convective velocity has the following form:

ξ̇j = aij(vs−v)·ρi+ξ3 [ aikamjhkm(vs−v)·ρi−aijṅ·ρi]+O((ξ3)2) (3.28)

It is obvious that eqn. (3.26) describes the constant main part of the
full equation.

3.3 Weak formulation of the contact conditions

For the complete description contact tractions T1, T2 on the surfaces s1

and s2 in the current configuration have to be considered, δu is then the
variation of the displacement field on the surface. The virtual work δWc

of the contact tractions is obtained by the following surface integral

δWc =

∫
s1

T1 · δu1ds1 +

∫
s2

T2 · δu2ds2 (3.29)

which must be added to the global work of the internal and external
forces. Due to the equilibrium equation at the contact boundary, T1ds1 =
−T2ds2, equation (3.29) can be written as

δWc =

∫
s1

T1 · (δu1 − δu2)ds1 (3.30)

Up to now, one surface has to be specified as the ”master” and the
other one as the ”slave” surface. The contact integral is computed over
the ”slave” surface. It can be computed using quadrature formulae [106]
or, in simple cases, nodal quadrature [194]. With s1 as the ”slave” sur-
face, the redefined previous notation leads to δu1 = δρs as the variation
of the ”slave” point and δu2 = δρ as a projection of the the variation of
”slave” point onto the ”master” surface.

The traction vector in the local coordinate system can be split into a
normal and into a tangential part

T1 ≡ T = Nn + T iρi. (3.31)

Here the traction vector is defined as a contravariant vector. An equation
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3.3 Weak formulation of the contact conditions

for the variation is derived following the kinematic equation (3.21):

δrs − δρ = (ρj − ξ3hi
jρi)δξ

j + nδξ3 + ξ3δn (3.32)

It should be mentioned, that the variation itself is time independent.
Then the contact integral (3.30) can be written in the following form:

δWc =

∫
s

Nδξ3ds +

∫
s

[aijT
iδξj + ξ3T i(δn · ρi − hk

jaikδξ
j)]ds (3.33)

with
δξ3 = δg = (δrs − δρ) · n. (3.34)

In most formulations (see Wriggers [188] and Laursen [106]), it is
assumed that the virtual work is considered on the surface, i.e. ξ3 = 0.
Therefore, the contact integral (3.33) can be reduced to the following
form:

δWc =

∫
s

Nδgds +

∫
s

aijT
iδξjds = (3.35)

=

∫
s

N(δrs − δρ) · nds +

∫
s

T i(δrs − δρ) · ρids

This form (3.35) is mostly used in contact mechanics. Therefore it ap-
pears contradictory to use equations for the convective velocity in the full
form of eqn. (3.23) with the reduced form of the contact integral (3.35).
One can show that the contact integral in the form (3.35) is the main
part of the full form (3.33) after consistent expansion into a Taylor series
with the small parameter ξ3, i.e. with taking into account the expansion
for the convective velocity (3.28). However, if the problem of two bodies
with large arbitrary penetration is considered, then the contact integral
in the full form (3.33) together with the full convective velocity equations
(3.23) must be used.

In the current contribution the further discussion is restricted to the
non-frictional case, i.e. T i = 0. The case with friction is considered in a
following paper.

77



3. COVARIANT DESCRIPTION IN FRICTIONLESS CONTACT

3.3.1 Penalty regularization

The penalty regularization of the contact condition, see [188], [106],
leads to the following regularized functional:

δWc =

∫
S

εN 〈g〉δgds (3.36)

where εN is a penalty parameter and 〈〉 are Macauley brackets, which
means that the integral is computed only if the value of penetration g is
nonpositive

〈g〉 =

{
0, if g > 0
g, if g ≤ 0

.

The contact integral (3.36) is computed over the master surface. Within
the ”node-to-surface” approach the value of penetration is taken from the
node and, in fact, there is no computation of the surface integral over the
master surface. Following the velocity description, we take the full time
derivative in order to linearize it as well as to develop the variation

Dv(δWc) =

∫
S

εNH(−g)(ġ δg + g δġ)ds (3.37)

where H(−g) is the Heaviside function, replacing the Macauley brack-
ets. An expression for the linearized penetration follows from the kine-
matical equation (3.25)

ġ = ξ̇3 = (vs − v) · n. (3.38)

The full time derivative (see eqn. 3.18) is used to linearize the variation
of the penetration (3.34)

Dv(δg) = δġ = −δρiξ̇
i · n + (δrs − δρ) · (∂n

∂t
+ niξ̇

i) =

= −(δρi ·n)aij(vs−v) ·ρj − (δrs−δρ) ·ρih
ij(vs−v) ·ρj − (δrs−δρ) ·ρia

ij(vi ·n) (3.39)

For this expression the Weingarten formula (3.9), the equation for the
convective velocities (3.26) and the orthogonality condition n ·ρi = 0 are
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3.4 Finite element discretization

taken into account. The complete linearization of the contact integral
(3.36) leads to the following result

D(δWN
c ) =

∫
S

εN H(−g) (δrs − δρ) · (n ⊗ n)(vs − v)ds − (3.40)

−
∫

S

εN H(−g) g δρj · aij(n ⊗ ρi)(vs − v)ds − (3.41)

−
∫

S

εN H(−g) g (δrs − δρ) · aij(ρj ⊗ n)v,ids − (3.42)

−
∫

S

εN H(−g) g (δrs − δρ) · hij(ρi ⊗ ρj)(vs − v)ds (3.43)

The full contact tangent matrix is then directly subdivided into the ”main”
part eq. (3.40) and the ”curvature” part (3.41, 3.42, 3.43) which is small
due to the small penetration g. The ”curvature” part itself consist of a
”rotational” part (eq. 3.41 and 3.42) and a ”pure curvature” part (eq.
3.43). The ”rotational” part contains derivatives of δρ and v with respect
to the convective coordinates ξj and, therefore, is responsible for the
rotation of a contact surface during the incremental solution procedure.
The pure curvature part contains components of the curvature tensor
hij and, therefore, is responsible for the change of the master surface
curvature.

3.4 Finite element discretization

Though, all derivations and later numerical tests are provided also for
elements based on higher order shape functions, in this section we con-
sider only details of the finite element implementation for the bilinear
element. All equations for the tangent matrix have an algorithmic struc-
ture and, therefore, the procedure of the tangent matrix derivation can
be easily extended into any other case. The variables of the displace-
ment field of the bilinear ”contact element” are described by the vector

uT = {u(1)
1 , u

(1)
2 , u

(1)
3 , u

(2)
1 , u

(2)
2 , u

(2)
3 , u

(3)
1 , u

(3)
2 , u

(3)
3 , u

(4)
1 , u

(4)
2 , u

(4)
3 , u

(5)
1 , u

(5)
2 , u

(5)
3 }T , (3.44)

where the first 4 nodes belong to the master surface, while the 5’th
node is the ”slave” node.

Position matrices Ak of dimension 3× 15, where the unit matrix 3× 3
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3. COVARIANT DESCRIPTION IN FRICTIONLESS CONTACT

is on k’th position,

Ak =

⎡
⎣ 0 0 0 · · · 1 0 0 · · ·

0 0 0 · · · 0 1 0 · · ·
0 0 0 · · · 0 0 1 · · ·

⎤
⎦ (3.45)

serve to define the variation of nodal displacements for the ”master”
surface as

δuk = Akδu (3.46)

and the variation of the ”slave” node S as

δrs = A5δu, (3.47)

therefore, the variation of the projection point C is defined as

δρ =

4∑
k=1

NkA
kδu = Acδu, (3.48)

where Ac =

4∑
k=1

NkA
k. Similar expressions can be given for the velocity

vector. Using this notation, we will have

δrs − δρ = (A5 −Ac)δu. (3.49)

The surface tangent vectors ρi are defined by differentiation of the shape
functions

ρi =

4∑
k=1

∂Nk(ξ
1, ξ2)

∂ξi
x(k). (3.50)

The normal (3.4), the first (3.5) and the second fundamental tensor (3.7)
can be then computed according to their definition. After introducing a
new matrix A = A5 −Ac

A =

⎡
⎣ −N1 0 0 −N2 0 0 −N3 0 0

0 −N1 0 0 −N2 0 0 −N3 0
0 0 −N1 0 0 −N2 0 0 −N3

−N4 0 0 1 0 0
0 −N4 0 0 1 0

0 0 −N4 0 0 1

⎤
⎦ , (3.51)
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3.4 Finite element discretization

the relative velocity vector (vs − v) has the following form:

vs − v = (A(5) −Ac)ṽ = Aṽ, (3.52)

where ṽ is a nodal velocity vector of the contact element, similar to the
nodal displacement vector u (3.44). It has to be noted that the velocity
v introduced for the tangent matrix derivation has to be treated as an
incremental displacement Δu within the computation.

With the matrix of the shape function derivative A,j

A,j =

⎡
⎣ −N1,j 0 0 −N2,j 0 0

0 −N1,j 0 0 −N2,j 0

0 0 −N1,j 0 0 −N2,j

−N3,j 0 0 −N4,j 0 0 0 0 0

0 −N3,j 0 0 −N4,j 0 0 0 0
0 0 −N3,j 0 0 −N4,j 0 0 0

⎤
⎦ , (3.53)

the vectors δρj and v,j are written as

δρj = −A,jδu, v,j = −A,jṽ. (3.54)

The ”main” part, often also called ”constitutive” part, of the normal
tangent matrix (3.40) has then the following form

K(m) = H(−g) εN

∫
S

AT (n ⊗ n)Ads (3.55)

The ”curvature” part of the tangent matrix, in the general case, con-
sists of three matrices. The first two matrices (3.41) and (3.42) build the
rotation matrix

K(1)
r = −H(−g) εN

∫
S

g AT
,ja

ij(n ⊗ ρi)Ads (3.56)

K(2)
r = −H(−g) εN

∫
S

g ATaij(ρi ⊗ n)A,jds (3.57)

and the third matrix (3.43) is the ”pure curvature” matrix

K(h) = −H(−g) εN

∫
S

g AThij(ρi ⊗ ρj)Ads (3.58)
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3. COVARIANT DESCRIPTION IN FRICTIONLESS CONTACT

Thus, the full normal tangent matrix is set up as

K = K(m) + K(curv) = K(m) + K(1)
r + K(2)

r + K(h) (3.59)

which is symmetric due to K
(1)
r

T
= K

(2)
r , and due to the symmetry of

hij(ρi ⊗ ρj).
The proposed procedure has been implemented into the finite ele-

ment code FEAP-MeKA documented in [172] and [209].

3.5 Numerical examples

In this section a series of numerical examples of contact problems
between a flexible structure and rigid surfaces of second order (cylinder
and sphere) are investigated. Bilinear and biquadratic contact elements
are used for parameterization of both contact surfaces. The aim is to
estimate the influence of rotational and curvature parts of the contact
tangent matrix on the convergence of the iterative algorithm. In order
to investigate the corresponding contribution of each part of the tangent
matrix, the following three alternatives are considered

a. Use of the full tangent matrix K = K(m) + K(curv).

b. Use the main part K(m) and the rotational part Kr,
i.e. the contact matrix K = K(m) + K

(1)
r + K

(2)
r .

c. Use the main part K(m) and the pure curvature part Kh,
i.e. the contact matrix K = K(m) + K(h).

d. Use only the main part K(m) as a contact matrix, i.e. K = K(m)

The main contribution into the full contact tangent matrix comes usu-
ally from the main matrix K(m), therefore a relative measure ε is chosen
as an estimate

ε =
||K −K(m)||

||K(m)|| · 100% (3.60)
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with the following matrix norm:

||K|| = max
i

n∑
j=1

|kij| (3.61)

The influence on the convergence rate is given by the number of
equilibrium iterations at each load step, while the value ε, computed at
each load step after the equilibrium iteration, is given in order to estimate
the contribution of the ”curvature” part.

3.5.1 Bending of a beam over a rigid cylinder

3.5.1.1 Linear approximation of the contact surfaces

A clamped elastic beam is loaded by prescribed displacements at the
free end in vertical direction, that leads to bending over a rigid cylin-
der. The parameters of the beam are chosen as: length l=24 cm, height
h=0.25 cm, width b=1 cm; the material model is St. Venant elastic ma-
terial with an elasticity modulus of 1.0 · 104; the Poisson ratio is 0.3; for
contact a penalty factor of 1.0 · 104 MPa/cm is chosen. The beam is
modeled with 24 ”solid-shell” elements [61] with linear shape functions
plus some added shell specific enhancements. The rigid cylinder with
radius R=2 cm is modelled with 49 contact elements in the circumferen-
tial direction. The central axis of the cylinder is positioned at 12 cm from
the clamping. For the contact elements a linear approximation for the
contact surfaces is used; the beam surface was treated as a ”master”
surface. The prescribed final displacement uext = 9 cm is subdivided
into 90 identical load steps. Fig. 2 shows a sequence of the deformed
beam during loading at the 0, 20, 40, 60, 80 and 90’th load step respec-
tively. The value of penetration does not exceed 0.18 % of the beam
thickness.

The results of the computation are presented in table 3.1. The con-
vergence rate in each load step is estimated by the number of equilib-
rium iterations (column No. it. / l.s. in table 3.1), which has been chang-
ing over load steps, e.g. the computation shows 3 equilibrium iterations
per load step within the first 15 load steps. The contribution of various
parts of the tangent matrix is estimated by the norm in eq. (3.60).
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3. COVARIANT DESCRIPTION IN FRICTIONLESS CONTACT

We obtain 319 total iterations for the cases a and b and 345 iterations
for the cases c and d. As expected, there is no difference between the
results if the ”pure curvature” part is taken into account or not, because
the curvature tensor is zero. It is also obvious that the rotational part is
much more important.

Figure 3.2: Bending of a clamped beam over a rigid cylinder. Sequence of deforma-
tions.

Case a/b Case c/d
No. l.s. it./l.s. Cum. it. ε · 10−2 % eq. (3.60) No. l.s. it./l.s. Cum. it.

1-15 3 45 0.18 1-15 3 45
16 5 50 0.19 16 5 50

17-45 3 137 0.55 17-26 3 80
46-73 4 249 0.45 27-73 4 268

74 5 254 0.62 74 5 273
75 4 258 1.04 75 4 277
76 5 263 0.62 76 5 282

77-90 4 319 1.26 77-83 4 310
84-90 5 345

Table 3.1: Bending over a rigid cylinder. Bilinear elements for the beam. Node-to-
surface contact elements. Influence of various contact stiffness parts on convergence.
Case a: full matrix, case b: without curvature part; case c: without rotational part;
case d: only main matrix. Comparison of no. of iterations in each load step (l.s.) and
accumulated over several load steps.
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3.5.1.2 Quadratic approximation of the contact surfaces

Now the beam from the previous example is modeled with 12 quadratic
”solid-shell” elements [59]. The penalty factor is chosen as 5.0 · 104

MPa/cm, which leads to a maximum penetration of 0.048 % of the beam
thickness.

The total number of iterations for case a with full matrix and case
b, when the rotational matrix is taken into account, is identical, there-
fore, table 3.2 presents the influence of the ”curvature” matrix on con-
vergence in case of a, c and d. Though, elements with quadratic shape
functions are used, the influence of the ”pure curvature” part is still neg-
ligible. It is even possible to obtain the result with the main matrix only
with a loss of 7 % of the total number of iterations.

3.5.2 Bending of a beam over a rigid sphere

A more general case to examine the influence of all parts of the contact
matrix is to consider the contact with a body with a curvature in both
directions.

The clamped elastic beam of the previous example, but with a width
of b = 4 cm, is now bending over a rigid sphere. The radius of the sphere
is 4 cm. The center of the sphere is positioned at 0.5 cm from the edge
of the beam and at 12 cm along the beam measured from the clamping.
The rigid sphere was modeled with 512 bilinear contact elements. The
contact elements of the beam inherit the geometry of the beam and,
therefore, have biquadratic approximations; the beam surface is repre-
sented as a ”master” surface. Two asymmetric forces F1 = 17.5 N and
F2 = 70 N are applied in the nodes at the free end as presented in
Fig. 3.3. In the computation they were applied incrementally with 100
identical load steps. Fig. 3.3 shows the evolution diagram of the defor-
mation for the 0, 20, 40, 60, 80, 100’th load step respectively. In this
example we have bending and twisting of the beam as well.

Again the composition of the tangent matrix is varied. The value of
the contact penalty is taken as 0.5 · 104 MPa/cm for the cases c and d,
but 0.5 ·103 MPa/cm for the cases a and b due to convergence problems.
The last value leads to a maximum penetration of 0.75 % of the beam
thickness. Table 3.5.2 shows the result of the analysis with biquadratic
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Case a/b Case c
No. l.s. No. Cum. ε · 10−2% No. l.s. No. Cum. ε · 10−4 %

it./l.s. No. it. it./l.s. No. it.
1-16 3 48 0.19 1-16 3 48 0.09

17-18 4 56 0.19 17-18 4 56 0.12
19-46 3 140 0.55 19-30 3 92 0.35

47 4 144 0.45 31-47 4 160 0.49
48-50 3 153 0.62 48 3 163 1.03
51-69 4 229 1.04 49-86 4 315 4.81

70 5 234 0.63 87-90 5 335 9.76
71-86 4 298 1.27

87 5 303 2.00
88-90 4 315 2.37

Case d
No. l.s. No. Cum.

it./l.s. No. it.
1-16 3 48

17-18 4 56
19-30 3 92
31-47 4 160

48 3 163
49-69 4 247

70 5 252
71-86 4 316

87 6 322
88-90 5 337

Table 3.2: Bending over a rigid cylinder. Biquadratic elements for the beam. Node-to-
surface contact elements. Influence of various contact stiffness parts on convergence.
Case a: full matrix; case b: without curvature part; case c: without rotational part;
case d: only main matrix. Comparison of no. of iterations in each load step (l.s.) and
accumulated over several load steps.

”solid-shell” elements and biquadratic contact elements.

In this case the curvature is changing in both directions and, as it can
be seen from the result for case b, the influence of the ”rotational” and
the ”pure curvature” part is larger. The higher the curvature, the more
equilibrium iterations are necessary. One can see that the influence of
the ”rotational” part in this example is crucial, because the exclusion of
the ”rotational” part leads to an increase of the total number of iterations
of more than 40 % , while the influence of the ”pure curvature” part is still
small. For the case c, which is not presented in the table 3.5.2, we obtain
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Case a Case b Case d
No. l.s. No. Cum. ε · 10−2 % No. l.s. No. Cum. No. l.s. No. Cum.

it./l.s. No. it. it./l.s. No. it. it./l.s. No. it.
1 27 27 0.731 1 27 27 1 20 20

2-23 4 115 7.382 2-22 4 111 2-8 4 48
24 6 121 18.08 23 6 117 9-23 5 123

25-33 4 157 16.26 24-33 4 157 24 6 129
34 5 162 12.20 34 6 163 25-33 5 174

35-100 4 426 17.32 35-100 4 427 34-48 6 264
49-58 5 314
59-68 6 374
69-85 7 493
86-100 8 613

Table 3.3: Bending over a rigid sphere. Biquadratic elements for the beam. Node-to-
surface contact elements. Influence of various contact stiffness parts on convergence.
Case a: full matrix; case b: without curvature part; case d: only main matrix. Compar-
ison of no. of iterations in all load steps (l.s.)

609 iterations. For the full matrix (case a), however, the computation of
the curvature part is rather costly in comparison with the ”main” and
with the ”rotational” part, due to the necessity to compute the second
derivative and the double summation for the contravariant components
of the curvature tensor hij, see eqn. (3.8). Thus it appears to be the
most efficient choice to consider the analysis without ”pure curvature”
matrix.

Figure 3.3: Bending of a beam over a rigid sphere. Sequence of deformations.
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3.6 Conclusions

In this contribution a velocity description for the development of a consis-
tent contact tangent matrix has been proposed. It allows to distinguish
between three parts of a tangent matrix, namely the ”main” part, the
”rotational” part and the ”pure curvature” part.

The numerical examples show that in the case of linear approxima-
tions and aligned contact elements keeping of the ”pure curvature” part
is meaningless. Then, it even appears sufficient to keep only the main
part as a contact tangent matrix.

If elements with higher order approximations are used, the influence
of the ”rotational” part is larger, but the influence of the ”pure curvature”
part remains still small. Therefore, the last part, which is computationally
more expensive then the others, can be eliminated from the complete
tangent matrix without loss of efficiency.
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4

Covariant description for frictional
contact problems∗

Abstract
A fully covariant description, based on the consideration of contact from
the surface geometry point of view, is used for a consistent formulation
of frictional contact conditions. All necessary operations for the descrip-
tion of the contact problems: kinematics, all differential operations etc.
are defined in the covariant form in the local coordinate system which
corresponds to the closest point procedure. The main advantage is a
geometrical structure of the full tangent matrix, which is is subdivided
into main, rotational and curvature parts. The consistent linearization of
the penalty regularized contact integral leads to a symmetrical tangent
matrix in the case of sticking. Representative examples show the effec-
tiveness of the approach for problems where the definition of sticking-
sliding zones is necessary as well as for the case of fully developed
sliding zones.

Keywords
frictional contact problem covariant description tangent matrix sticking
sliding evolution equations

4.1 Introduction

With frictional contact a specific interaction between bodies contacting
each other along surfaces of those bodies is described. Differential ge-

∗The chapter is published in [89]: A. Konyukhov and K. Schweizerhof. Covariant description for
frictional contact problems, Computational Mechanics, 35:190–213, 2005.
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4. COVARIANT DESCRIPTION FOR FRICTIONAL CONTACT

ometry provides a powerful mathematical tool to capture the change of
these surfaces in the covariant form. Another essential feature to model
frictional contact problems is the formulation of the contact conditions as
kinematicalconstraints which leads to a nonlinear problem and, there-
fore, in the correct description of the solution process, to a consistent
linearization problem. The Lagrange multiplier method as well as vari-
ous regularization techniques are among the solutions schemes avail-
able to satisfy the contact conditions. E. g. for 2D frictional problems
Wriggers et. al. [194] used the elasto-plastic analogy and the penalty
regularization of contact conditions. By then the return mapping algo-
rithm developed for the plasticity problem was linearized in the global co-
ordinate system. Peric and Owen [139] used the penalty method for 3D
frictional contact problems with small deformations. Laursen and Simo
[109], however, formulated the penalty based contact conditions and the
return mapping algorithm via convective surface coordinates, but the fol-
lowing linearization performed in the global coordinate system led to an
artificial non-symmetry of the tangent matrix in the case of sticking. The
symmetrization based on the nested Augmented Lagrangian algorithm
was proposed in Simo and Laursen [161] to gain back the symmetry of
the tangent matrices, but this is not a consistent procedure. Pietrzak
and Curnier [32] worked extensively with the Augmented Lagrangian
formulation, which was still formulated in global coordinates though with
an usage of the convective coordinates. Parish and Lübbing [138] used
also the convective conditions together with the penalty regularization
for sticking and sliding, but still obtain a non-symmetric stick tangent
matrix. Wriggers in [188] mentions the regularization of the stick condi-
tions based on a functional used in mesh tying procedures which con-
sequently leads to a symmetric tangent matrix. An alternative approach
preserving symmetry in 2D for sticking, based on the so-called moving
cone was proposed in Krstulovic-Opara and Wriggers [101]. Another
problems arises from the artificial non-smoothness of the contact sur-
faces modeled by low-order polynomial functions leading to oscillations
of the major characteristics of the solution. Various techniques based on
smooth approximations of contact surfaces can be found in [134], [37],
[2], [32]. Wriggers et. al. [190] mentioned e.g. a problem concerning the
discontinuity of the history variables at element boundaries for smooth
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surfaces and proposed to use the path length in the 2D case. Various
techniques based on geometrical forms in global coordinates were later
considered for 3D problems in Krstulovic-Opara et. al. [102] and in Puso
and Laursen [148].

Despite the large amount of contributions the fully covariant descrip-
tion of contact is still not available in literature. In this contribution we
employ the highly developed ”apparatus” of differential geometry (see
e.g. Gray [47]) to reconsider the contact conditions in a specially defined
spatial local coordinate system which corresponds to the well-known
closest point procedure. All differential operations necessary for kine-
matics and linearization are considered as covariant derivatives (see
Marsden and Hughes [121]). Special attention is on the consideration
of the operations and the weak form on the tangent plane. The con-
stitutive equations for the tangential tractions within the penalty regu-
larization, or, so called, the evolution equations, are considered in the
covariant description as a parallel translation on the contact surface. It
is important to use this form of the constitutive equations, because the
consistent linearization of the contact integral together with these equa-
tions leads to a symmetrical tangent matrix on the tangent plane in the
case of sticking. Each part of the full tangent matrix, such as the nor-
mal tangent matrix, the tangent matrix in the case of sticking and the
tangent matrix in the case of sliding has a geometrical structure, and,
in due course, is subdivided into main, rotational and curvature parts.
In addition the geometrical interpretation of the parallel translation al-
lows to develop an integration scheme for the tangential tractions and
to overcome the problem of the discontinuity of the history variables at
element boundaries. The frictional contact problem can be subdivided
for numerical solutions into two types depending on the necessity to
capture the stick-slip behavior precisely by considering the numerical
integration of the evolution equations. The ”segment-to-segment”, the
”node-to-segement” and the ”segment-to-analytical surface” finite ele-
ment approaches are considered and discussed for different types of
contact problems.

The article is organized as follows. In the first section of the part
”Geometry and Kinematics of Contact” we recall all the operations nec-
essary for our development, known from differential geometry. The
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core of the contribution is the second section where a spatial coordi-
nate system corresponding to the closest point projection procedure is
built. Kinematics of contact and differential operations are revisited in
this coordinate system. In the third section the numerical algorithms to
compute the characteristics from the geometrical point of view are pre-
sented. In particular the weak form, the penalty regularization and the
return-mapping algorithm are considered with a special attention on the
construction of the evolution equations for the tangent tractions. The
developed equations are combined during the linearization in the fourth
section. The fifth section contains a summary of the results which are
necessary for finite element implementation. A series of the numerical
examples shows the effectiveness of the proposed technique in the sixth
section.

4.2 Geometry and Kinematics of Contact

We consider two interacting bodies (Figure 4.1). One of them is cho-
sen as the contact body: its surface is called ”master” surface. On the
surface of the second body, we consider a ”slave” point S, which is e.g.
an integration or a nodal point. Two bodies are coming into contact, if
a slave point of the second surface penetrates into the master surface,
where penetration is defined as the shortest distance between the two
surfaces of the contacting bodies.

As contact between two bodies is dominantly an interaction between
these two surfaces, the main aim of the following consideration is to take
advantage of the differential geometry of the contact surfaces in order to
describe the kinematics of the contact conditions. First, we consider the
geometry of the master surface and its characteristics and then define
a special spatial coordinate system attached to this surface.

4.2.1 Local surface coordinate system and its geometrical
characteristics

The ”master” surface of the body (Fig. 4.1), is a 2D manifold, and there-
fore, can be parameterized by the surface coordinates ξ1, ξ2. Let ρ be a
surface vector, describing any point on the surface. In a finite element
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Figure 4.1: Two body contact. Local surface coordinate system on master surface.

discretization this can be done in the following form

ρ =
∑

k

Nk(ξ
1, ξ2)x(k), (4.1)

where Nk(ξ
1, ξ2) are shape functions and x(k) are nodal coordinates.

The set of shape functions can be either of the same order as for the fi-
nite discretization of the contact body, or it can be constructed differently
as for the case of the smooth approximation of the contact surfaces. It
must be noted that the parameterization (4.1) is locally defined on the
surface element. Therefore, the internal variables ξi are not continuous
between the boundaries of adjacent surface elements. This leads to a
problem for the kinematical characteristics while crossing the element
boundaries.
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We consider here quasi-statical problems, therefore, we assume that
x(k) = x(k)(t), where time is treated as a load increment parameter. In
general, we consider the geometry of moving surfaces. A specific focus
is on the solution scheme, for which the nonlinear equations have to be
linearized. Within the velocity description the increment vector is then
treated as a velocity vector.

4.2.1.1 The fundamental tensors and property of the contact surface

Two fundamental tensors of the surface: the metrics tensor, or the first
fundamental tensor, and the curvature tensor, or the second fundamen-
tal tensor, fully contain the properties of a surface. The metrics tensor
is responsible for any metric operation on the surface (length, area or
angle). The curvature tensor is responsible for the inclusion of a surface
as a 2D manifold into the 3D space R

3 (Cartesian space) respectively
for the local structure of the surface in the 3D space.

First, two surface base vectors ρi, i = 1, 2 in the tangent plane of a
surface are introduced

ρ1 =
∂ρ

∂ξ1
, ρ2 =

∂ρ

∂ξ2
, (4.2)

then the normal unit surface vector is given as the cross product of the
basis vectors

n =
ρ1 × ρ2

|ρ1 × ρ2|
. (4.3)

These three vectors ρ1, ρ2,n define a local surface coordinate sys-
tem and they are used to obtain the two fundamental tensors of the
surface [47], [154].

The metric tensor. The covariant components of the metric tensor on the
surface are defined as the dot product of the base surface vectors (4.2)

aij = ρi · ρj, i, j = 1, 2 (4.4)

The contravariant components of the metric tensor aij are obtained via
the equation

aika
kj = a.j

i. = δj
i , (4.5)
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i. e. as the inverse matrix is given in the following form:

aij :
1

a

[
a22 −a12

−a12 a11

]
, a = det(aij) = a11a22 − (a12)

2, (4.6)

the mixed components a.j
i. are in fact identical to the Kronecker delta δj

i .
An adjacent basis of the surface is defined by the contravariant base

vectors ρi, which are obtained via a linear form of the covariant base
vectors:

ρi = aijρj. (4.7)

Thus, the metric tensor can be defined either in the covariant, or the
contravariant basis, or the mixed basis

A = aijρi ⊗ ρj = aijρ
i ⊗ ρj = a.j

i.ρ
i ⊗ ρj (4.8)

The metrical characteristics, which are necessary for the further descrip-
tion, are length and area. The differential dl of the length is obtained as

dl =
√

(ρi · ρj)dξidξj =
√

aijdξidξj. (4.9)

The differential ds of the area can be obtained either via the determinant
a of the matrix of the metric tensor eqn. (4.4), or via the absolute value
of the cross product of the surface vectors eqn. (4.3):

ds =
√

| det(aij)|dξ1dξ2 = |ρ1 × ρ2|dξ1dξ2. (4.10)

The curvature tensor. In differential geometry the curvature tensor is
used to describe a local surface structure via e.g. main curvatures, for
more information see [47], [154]. The tensor is defined by its covariant
components hij, which are computed as the dot product of the second
derivative of the vector ρ and the normal n

hij = ρij · n. (4.11)

The contravariant components are obtained as a bilinear combination of
the covariant components with the contravariant metrics components

hij = hkna
ikanj . (4.12)
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Equation (4.12) gives also a general rule how to compute contravariant
components of any second order tensor via covariant components.

4.2.1.2 Differential operations in the surface coordinate system

For any further derivations the most important mathematical operations
in the surface coordinate system are frame independent differential op-
erations. They are defined in order to describe the kinematics from the
local surface coordinate system point of view. For this the derivatives of
base vectors have to be determined. The Weingarten formula and the
Gauss-Codazzi formula [154] give us a complete set for derivatives of
base vectors and are used to define covariant derivatives on the surface.

The Weingarten formula gives directly derivatives of the unit normal –
prove see Appendix A:

ni = −hija
jkρk = −hk

i ρk. (4.13)

The Gauss-Codazzi formula allows directly the computation of derivatives
of the basis vectors ρi.

ρij = Γk
ijρk + hijn, (4.14)

where Γk
ij are Christoffel symbols [154], [121], defined on the surface as

follows
Γk

ij = ρij · ρk = ρij · ρna
nk. (4.15)

For the prove see Appendix B.

Indifferent covariant derivative. The derivatives of the base vectors allow
to evaluate a frame indifferent derivative of any object defined on the
surface. We now consider a vector T, defined by its local contravariant
coordinates T i in the surface coordinate system

T = T iρi. (4.16)
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The full time derivative of T – with the assumption that the vector ρi is
implicitly time dependent via the coordinates ξi – gives

d

dt
T =

∂T i

∂t
ρi +

∂T i

∂ξj
ξ̇jρi + T iξ̇jρij. (4.17)

Further applying the Gauss-Codazzi formula, we get

d

dt
T =

∂T i

∂t
ρi + (

∂T i

∂ξj
+ T kΓi

jk)ξ̇
jρi.

Finally, the full material time derivative of the vector has the following
form

d

dt
T = (

∂T i

∂t
+ ∇jT

iξ̇j)ρi. (4.18)

The term ∇jT
i is a covariant derivative of the contravariant component

T i

∇jT
i =

∂T i

∂ξj
+ T kΓi

jk. (4.19)

A similar expression can be found for the covariant derivative of the
covariant components Ti, see prove in Appendix C:

∇jTi =
∂Ti

∂ξj
− TkΓ

k
ij. (4.20)

4.2.2 Spatial coordinate system and its characteristics

As discussed above two bodies come into contact if a slave point pen-
etrates at least at the closest distance into the master surface. This
point is computed via the well known closest point procedure, see de-
tails for the finite element implementation in Wriggers [188], Laursen
[106]. This procedure can be included in the variational formulation, see
also the theoretical details in Kikuchi and Oden [84]. One of the impor-
tant aspects in the current contribution is to construct a special spatial
coordinate system on the master surface corresponding to the projec-
tion procedure and to consider then the contact integral as well as a
linearization procedure in this system.
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4. COVARIANT DESCRIPTION FOR FRICTIONAL CONTACT

4.2.2.1 Projection of the contact point vector onto the master surface

We recall here the projection procedure with specific attention on the
definition of all necessary parameters via the surface characteristics. At
the location C on the surface described by the vector ρ(t, ξ1, ξ2) (see Fig.
4.1), the value of the penetration of a surface into another one is defined
as the minimal distance between these surfaces, see Kikuchi and Oden
[84], Wriggers [188], Laursen [106]. This leads to the following extremal
problem:

||(rs − ρ)|| → min, −→ (rs − ρ) · (rs − ρ) → min . (4.21)

As is well known, the solution of eqn. (4.21) can be achieved by the
application of a Newton procedure for the function

F(ξ1, ξ2) = (rs − ρ)2. (4.22)

The convective coordinates ξi
n+1 at the penetration location C are com-

puted with the Newton scheme for the iteration n + 1

Δξn =

[
Δξ1

n+1

Δξ2
n+1

]
= −(F′′)−1

n F′
n (4.23)

ξn+1 = ξn + Δξn,

where the first derivative F′ and the second derivative F′′ with respect
to the surface coordinates are described via the surface characteristics
as:

F′ =

⎡
⎢⎣

∂F
∂ξ1

∂F
∂ξ2

⎤
⎥⎦ = −2 ·

[
ρ1 · (rs − ρ)
ρ2 · (rs − ρ)

]
(4.24)

F′′ = 2 ·
[

a11 − ρ11(rs − ρ) a12 − ρ12(rs − ρ)

a21 − ρ22(rs − ρ) a22 − ρ22(rs − ρ)

]
, (4.25)

with the components of F′
n and F′′

n evaluated at state n.
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4.2 Geometry and Kinematics of Contact

4.2.2.2 Spatial local coordinate system. Geometrical characteristics on the tan-
gent plane.

Now we define a special local coordinate system related to the master
surface at the penetration point C. Any spatial vector in space can be
defined as

r(ξ1, ξ2, ξ3) = ρ + nξ3 (4.26)

By assuming the normal vector to be known, the projection procedure
has already been taken into account into this consideration. The equi-
librium equations for contact will now be formulated in the defined local
coordinate system, but since contact is an interaction between surfaces
then each necessary equation especially for the linearization will be con-
sidered on the tangent plane, i.e. at ξ3 = 0. For this, we define all the
geometrical and differential characteristics with special attention on their
values on the tangent plane.

The penetration. A value of the penetration g, essential for formulation
of the non-penetration conditions in the contact mechanics, see [188],
[106], [84], is exactly the third coordinate in our surface coordinate sys-
tem:

ξ3 = g = (rs − ρ) · n. (4.27)

In the spatial curvilinear coordinate system all the characteristics as
metrics, covariant derivative etc. considered before can be defined. We
consider only those which are necessary for the further development.
The base vectors of the system are given as

ri =
∂r

∂ξi
= ρi + niξ

3 = (ak
i − hk

i ξ
3)ρk, i = 1, 2, r3 = n, (4.28)

where the Weingarten formula (4.13) and the first fundamental tensor in
the mixed formulation (4.5) have been used to obtain a more compact
formula. The covariant components of the metric tensor of the spatial
coordinate system are defined via the dot product of vectors eqn. (4.28).

gij = (ri · rj) = aij − 2 ξ3hij + hikh
k
j (ξ

3)2, i = 1, 2 gi3 = 0, g33 = 1.
(4.29)
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4. COVARIANT DESCRIPTION FOR FRICTIONAL CONTACT

Contravariant metric components gij, as well as contravariant base vec-
tors ri are defined in a similar fashion, eqn. (4.5), (4.7).

Time derivative of the covariant metrics components aij. During the forth-
coming linearization it is essential to consider this procedure as a 3D
process in the spatial coordinate system (4.26), therefore, in general,
derivatives also with respect to the third coordinate ξ3 should be consid-
ered. Thus, time derivatives of the surface metric components aij are
calculated as values of the spatial metric components gij on the tangent
plane at ξ3 = 0, namely

damn

dt
=

dgmn

dt

∣∣∣∣
ξ3=0

=

[
∂

∂t
+ ξ̇j ∂

∂ξj
+ ξ̇3 ∂

∂ξ3

] (
amn − 2ξ3hmn + hmkh

k
n(ξ

3)2
)∣∣∣∣

ξ3=0

=

=

(
∂

∂t
+ ξ̇j ∂

∂ξj

)
(ρm · ρn) − 2hmnξ̇

3 =

= (vm ·ρn)+ (ρm ·vn)+
(
Γl

mj(ρl · ρn) + Γl
nj(ρm · ρl)

)
ξ̇j −2hmnξ̇

3. (4.30)

The Christoffel symbols appear in eqn. (4.30) due to the usage of the
Codazzi formula. All indices are running from 1 to 2.

Time derivative of the contravariant metrics components aij . The time
derivative of the contravariant component of the metric tensor aij is ob-
tained from the derivation of eqn. (4.5):

d

dt
(aikakj) = 0 −→ akj

daik

dt
+ aikdakj

dt
= 0 −→ daik

dt
= −aimank damn

dt
.

(4.31)

Spatial Christoffel symbols. Covariant derivative on the tangent plane. In or-
der to distinguish in the summation agreement a spatial object from the
surface one, we will use capital letters, i.e. I, J, ... = {1, 2, 3}. Covariant
derivatives in the spatial coordinate system require the spatial Christoffel
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4.2 Geometry and Kinematics of Contact

symbols Γ̂K
IJ . They are defined, similar to eqn. (4.15) but with the spatial

base vectors rI , as Γ̃K
IJ = (rK · rIJ). The full time derivative in the spatial

coordinate system in the form of eqn. (4.18), computed in convective
coordinates ξI via covariant derivatives for contravariant components in
eqn. (4.19) or for covariant components in eqn. (4.20), is a frame indif-
ferent derivative and coincides with the Lie time derivative definition Lt

in the form

LtT := F
d

dt
(F−1T) =

d

dt
T (4.32)

where F is a push-forward and F−1 is a pull-back operator, see more in
Bonet and Wood [16], Marsden and Hughes [121]. For the prove of for-
mula (4.32) see Appendix D. The Lie time derivative is usually exploited
for the linearization, therefore, the computation of the covariant deriva-
tives will be employed for further linearization. In the further consider-
ations we concentrate on the full time derivative on the tangent plane.
Then values of the spatial Christoffel symbols on the surfaces Γ̂K

IJ |ξ3=0,
i.e. if ξ3 = 0, define a value of covariant derivatives for any spatial object
on the tangent plane. It can be easily seen from their definition and the
Weingarten formula that the following relations between the spatial and
surface terms hold:

Γ̂k
ij|ξ3=0 = Γk

ij, i, j, k = 1, 2

Γ̂3
ij|ξ3=0 = 0 (4.33)

Γ̂k
3j|ξ3=0 = −hk

j ,

where Γk
ij are the surface Christoffel symbols (4.15) and hk

j are mixed
components of the curvature tensor.

With the vector T in the tangent plane in covariant components, i.e.

T = Tir
i|ξ3=0 = Tiρ

i; (4.34)

its full time derivative is computed employing the rules given in (4.17)
and (4.20)

dTi

dt
=

∂Ti

∂t
+

(
∂Ti

∂ξJ
− Γ̂K

IJTK

)
ξ3=0

ξ̇J −→
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=
∂Ti

∂t
+

(
∂Ti

∂ξj
− Γk

ijTk

)
ξ̇j + hk

i Tkξ̇
3 (4.35)

One should distinguish that the full time derivative with the surface
Christoffel symbols in the form eqn. given in (4.17) and (4.20) can be
applied to an object that belongs to the internal geometry of the sur-
face, e.g. for ξ̇i; for the full time derivative of an arbitrary spatial object,
positioned in the tangent plane, the form in eqn. (4.35) must be used.

4.2.2.3 Motion of a slave point. Convective velocity on the tangent plane

During the quasi-statical loading the contact surfaces are moving and
may change. This process can be observed in the local coordinate sys-
tem of the surface as a motion of a slave point S, defined in eqn. (4.26).
As mentioned before for the quasi-statical problems, all parameters are
time dependent, where time is seen as a load parameter. Thus the
”master” surface is moving and the surface vector ρ(t, ξ1, ξ2) as well as
the normal n(t, ξ1, ξ2) are time dependent. Taking a full time derivative
we obtain:

d

dt
rs(t, ξ

1, ξ2, ξ3) =
d

dt
ρ +

d

dt
(nξ3) = (4.36)

=
∂ρ

∂t
+

∂ρ

∂ξj
ξ̇j +

∂n

∂t
ξ3 + nξ̇3 + ξ3 ∂n

∂ξj
ξ3ξ̇j.

With the translation velocity of the penetration point C as v =
∂ρ

∂t
and

the velocity of the slave point as vs =
d

dt
rs(t, ξ

1, ξ2, ξ3), the latter can be

written using the Weingarten formula

vs = v + ξ3∂n

∂t
+ nξ̇3 + (ρj − ξ3hi

jρi)ξ̇
j. (4.37)

The convective velocities ξ̇i and the rate of penetration ġ = ξ̇3 are ob-
tained from eqn. (4.37) as a projection in the local coordinate system by
evaluating the dot product with the base vectors defined in eqn. (4.28).
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4.2 Geometry and Kinematics of Contact

The vector
∂n

∂t
is orthogonal to n due to the fact that n is a unit vector:

n · n = 1 −→ ∂n

∂t
· n = 0 (4.38)

Evaluating then the dot product of eqn. (4.37) with r3 = n, and using the
last expression (4.38), we obtain the projection of the relative velocity on
the normal, or the full time derivative of the penetration:

ξ̇3 = ġ = (vs − v) · n. (4.39)

A dot product of eqn. (4.37) with the base vectors ri gives the following
expression:

(vs − v) · (ρi − ξ3hk
i ρk) = ξ3∂n

∂t
· (ρi − ξ3hk

i ρk) + (aij − 2ξ3hij + (ξ3)2hk
i hjk)ξ̇

j, (4.40)

from which an expression for the first two convective velocities is ob-
tained:

ξ̇j = âij

[
(vs − v) · ρi − ξ3

(
∂n

∂t
· ρi + hk

i (vs − v) · ρk

)]
, (4.41)

where âij are components of the inverse matrix (aij−2ξ3hij +(ξ3)2hk
i hjk).

Having taken ξ3 = 0, we obtain the values of the convective velocities
(4.41) on the tangent plane as

ξ̇j = aij(vs − v) · ρi. (4.42)

Again the assumption of a small value of the penetration g allows
to consider each characteristics on the tangent plane. This is a main
feature of the velocity description which leads to simplification of the
tangent matrix and an efficient application to non-frictional problems,
see Konyukhov and Schweizerhof [86].

4.2.3 Geometrical interpretation of covariant derivative and
numerical realization

The covariant derivatives require C1 continuity of the surface. Lack of
the surface continuity leads to oscillations in the characteristics, e.g.
at the crossing of element boundaries. Therefore, various approaches
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4. COVARIANT DESCRIPTION FOR FRICTIONAL CONTACT

based on the usage of a C1 approximation of the surface with Hermite
splines, NURBS etc. were developed e.g. in the following articles [190],
[134], [37], [2], [148], [169]. Wriggers et. al. [190] shown that for C1

continuous contact surfaces a continuity problem of internal parameters
on the element boundary arises and proposed an algorithm for the 2D
case, based on the usage of the path length of the projection point. Puso
and Laursen [148] proposed to determine increments of convective co-
ordinates in the geometric form for the 3D case. Here we construct a
numerical algorithm based on a geometrical interpretation of the covari-
ant derivative as a parallel translation, see Marsden and Hughes [121].
The result of this section will be used for the computation of the contact
tractions within the return-mapping algorithm.

4.2.3.1 Continuous numerical integration algorithm for a relative motion vector
Δρ

Consider a relative motion of the projection point C on the master sur-
face. The relative velocity vector of this motion is laying in the tangent
plane, i.e.

vr = ξ̇iρi. (4.43)

We are interested in the relative distance Δρ which was passed by point
C from step (n) to step (n + 1). For the C1-continuous surface and
continuous convective coordinates we can write the following

ρ(n+1) − ρ(n) = ρ(ξi + Δξi) − ρ(ξi) = ρiΔξi + O((Δξi)2) (4.44)

We define the incremental vector Δρ at step (n + 1) as

Δρ = ρ
(n+1)
i Δξi, (4.45)

from which the incremental components Δξi are derived as

Δξi = (Δρ · ρj) aij
(n+1). (4.46)

If the convective coordinates are no longer continuous then the incre-
mental vector Δρ can not be derived via eqn. (4.45), but it can be de-
rived directly in the 3D space. For illustration, see Fig. 4.2, we consider
at step (n) two adjacent patches A(n)B(n)D(n)G(n) and G(n)D(n)E(n)F (n)
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4.2 Geometry and Kinematics of Contact

for a C1-continuous surface, i.e. a surface normal n being continuous
while crossing the line D(n)G(n), but with independently defined convec-
tive coordinates of the patches. Let S(n) be a slave point and C(n) its
projection onto the patch A(n)B(n)D(n)G(n) at step (n). A pair of points
S(n) and C(n) defines then a spatial coordinate system, eqn. (4.26). Now
we consider a case, when at the next step (n+1) the same pair is shifted
into a position S(n+1) and C(n+1) with the slave point projected onto the
adjacent patch G(n+1)D(n+1)E(n+1)F (n+1) to obtain C(n+1). On the surface
it can be interpreted as a motion of the projection point from position C̃(n)

to position C(n+1), where the projection point has been crossing the line
D(n+1)G(n+1) (see a vector Δρ = C̃(n)C(n+1) in Fig. 4.2). Since a moving
surface is considered, point C(n) is shifted in the 3D space to the posi-
tion C̃(n) by the vector u. Thus, the increment vector Δρ is obtained in
the global reference Cartesian system as

Δρ = ρC(n+1)|ξ1
(n+1), ξ2

(n+1)
− (ρC(n) + uC(n)) |ξ1

(n), ξ2
(n)

(4.47)

The computation in the global reference Cartesian system clearly de-
fines the increment vector and, therefore, allows to avoid jumps which
would occur with the local convective coordinates ξi. It should be noted
that vectors ρC(n) and ρC(n+1) are defined after the closest point projection
procedure, therefore the information about internal variables ξ

(n)
1 , ξ

(n)
2

must be stored. However, within the ”segment-to-analytical surface”–
approach the value of penetration is computed at the same integration
points, i.e. ρC(n) ≡ ρC(n+1). Then it is only necessary to keep the infor-
mation about the increment vector u from the last load step in the global
coordinate system. Eqn. (4.46) is then reduced to

Δξi = −(u · ρj)a
ij
(n+1). (4.48)

Summarizing the result we obtain the rule for the continuous numeri-
cal algorithm to compute the increment vector:
The increment vector Δρ is defined in the spatial coordi-
nate system at step (n + 1) by its projection in eqn. (4.45),
where the increments Δξi are computed via eqn. (4.46)
and (4.47), or in the case of the ”segment-to-analytical
surface”–approach via (4.48).
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Figure 4.2: Contact point moving across element boundaries. Covariant derivatives.
Sketch of integration scheme.

4.2.3.2 Parallel translation of a vector T on the tangent plane

The full time derivative of a vector T in the covariant form in eqn. (4.35)
describes its change along the tangent plane. The geometrical interpre-
tation of the numerical increment analogy is to consider the evolution of
the vector T by enforcing its position on the tangent plane. This oper-
ation is called ”parallel translation” in differential geometry terminology,
see e.g. Gray [47], Schoen [154] and application in mechanics in Mars-
den and Hughes [121]. This interpretation also allows to overcome a
variation in the representation of the vector T due to different local ele-
ment coordinate systems.

If T(n) is defined at the step (n), see Fig. 4.2, and eK are basis
vectors of the global Cartesian coordinate system, then the vector T
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4.3 Weak form for finite element formulation and regularized contact conditions

can be written in both local and global coordinate systems as

T = T
(n)
i aij

(n)ρ
(n)
j = T

(n)
i aij

(n)

∂xK
(n)

∂ξj
eK . (4.49)

Projections of this vector to the new basis at state (n + 1) gives us the
vector T(n+1) translated in parallel. This operation in the Cartesian coor-
dinate system leads to:

T
(n+1)
l = T(n) · ρ(n+1)

l = T
(n)
i aij

(n)

∂xK
(n)

∂ξj
eK · ∂xM

(n+1)

∂ξl
eM = T

(n)
i aij

(n)

∂xK
(n)

∂ξj

∂xK
(n+1)

∂ξl
, (4.50)

or in compact form

T
(n+1)
l = T

(n)
i aij

(n) (ρ
(n)
j · ρ(n+1)

l ). (4.51)

In other words, this operation can be seen as a pull-back from the
current configuration at time (n) into the reference configuration and
then a push-forward into the current configuration at time (n + 1). This
procedure allows to keep continuity due to the use of the same reference
configuration.

Remark
In the case of translation in a plane, the metric tensor is constant and
eqn. (4.51) defines a standard parallel shifting

T
(n+1)
l = T

(n)
i aij

(n) (ρ
(n)
j · ρ(n+1)

l ) = T
(n)
i aijajl = T

(n)
i δi

l = T
(n)
l . (4.52)

4.3 Weak form for finite element formulation and regu-
larized contact conditions

The previous parts give us all the necessary operations to build a weak
formulation. Due to the a-priori small value of the penetration the weak
form in the spatial coordinate system is considered on the tangent plane.
A penalty method for a simple Coloumb friction law is now used as a
regularization within the contact algorithm.
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4.3.1 Weak formulation in the spatial coordinate system

Now we consider the contact tractions T1 and T2 on both contact sur-
faces s1 and s2 in the current configuration. Let δui be a variation of the
displacement field on the surface si. Then the work of the contact forces
is determined in the following integral

δWc =

∫
s1

T1 · δu1ds1 +

∫
s2

T2 · δu2ds2 (4.53)

which must be added to the global work of the internal and external
forces. Due to equilibrium at the contact boundary T1ds1 = −T2ds2,
equation (4.53) can be also written as

δWc =

∫
s1

T1 · (δu1 − δu2)ds1. (4.54)

The integral in (4.54) is considered in the local coordinate system, there-
fore, since this point one surface must be specified as master surface
and the other as slave surface. With s1 as slave surface, the previous
notation is now slightly redefined:

u1 = rs is a slave point; u2 = ρ is a projection of the slave point onto
the master surface; the traction vector in the local coordinate system
becomes then:

T1 = T = Nn + Tiρ
i. (4.55)

Here the traction vector is defined as a covariant vector. The variation
of (u1 − u2) is directly obtained from the kinematic equation (4.37):

δrs − δρ = (ρj − ξ3hi
jρi)δξ

j + nδξ3 + ξ3δn. (4.56)

It should be mentioned, that the variations themselves are time inde-
pendent. Now the contact integral (4.54) can be written as:

δWc =

∫
s

Nδξ3ds +

∫
s

[Tiδξ
i + ξ3Ti(δn · ρi − hi

jδξ
j)]ds. (4.57)

The full integral must be considered with the variation of the convective
coordinates which are obtained from eqn. (4.39) for the penetration as
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4.3 Weak form and regularized contact conditions

the third coordinate g = ξ3 in the form

δξ3 = δg = (δrs − δρ) · n, (4.58)

and from eqn. (4.41) for the convective coordinate ξj in the form

δξj = âij
[
(δrs − δρ) · ρi − ξ3

(
δn · ρi + hk

i (δrs − δρ) · ρk

)]
. (4.59)

The full formulation with eqns. (4.57), (4.58) and (4.59) in the local
coordinate system is very cumbersome. However, as the value of pene-
tration g must be small during the solution, which is an important feature
of the current covariant description, we consider the full contact integral
only on the tangent plane, i.e. ξ3 = 0. Thus, we obtain the following
form:

δWc =

∫
s

Nδgds +

∫
s

Tjδξ
jds = (4.60)

=

∫
s

N(δrs − δρ) · nds +

∫
s

Tja
ij(δrs − δρ) · ρids,

which is accompanied with the variation of the convective coordinates
on the tangent plane in the form:

δξj = aij(δrs − δρ) · ρi (4.61)

The formulation of the contact integral in the form presented in (4.60)
is mostly used in contact mechanics (see Wriggers [188] and Laursen
[106]).

4.3.2 Regularization by the penalty method

The contact tractions N and Tj are additional unknowns in the con-
tact integral (4.60). If they are treated as independent variables, the
Lagrangian multiplier method is used. If they are treated as depen-
dent variables, additional assumptions are necessary to define the
contact tractions, leading to regularization schemes. Here we follow
the regularization technique as described e.g. in Kikuchi [84], Wrig-
gers [188], [187], Laursen [106] and Zhong [205]. This regularization
is based on an elasto-plastic analogy to model the Coulomb friction.
Other types of regularization based on elasto-visco-plastic models of
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the Maxwell type and the Kelvin type are considered in Araki and Hjelm-
stad [5].

4.3.2.1 Normal contact conditions

We describe contact conditions in terms of the spatial coordinate sys-
tem. For normal contact they can be formulated as the Kuhn-Tucker
complementary conditions for the variational problem.

1. Contact occurs when a slave point penetrates into the tangent
plane: ξ3 = g ≤ 0.

2. At the penetration point the normal nonnegative traction appears:
N ≥ 0.

3. The contact traction N exists only, if the slave point is on the
tangent plane, i.e. when ξ3 = g = 0: N · g = 0.

The penalty method, allowing a small penetration, is often used to
overcome numerical difficulties in satisfying conditions 1-3. These three
conditions can be accomplished by the following regularization:

N = εN〈g〉, (4.62)

where εN is a penalty parameter and 〈〉 are Macauley brackets in the
form

〈g〉 =

{
0, if g > 0
g, if g ≤ 0

.

4.3.2.2 Tangential contact conditions. Evolution equations

Additional constitutive equations are necessary for the tangential con-
tact tractions Tj. Frictional problems in the finite element formulation
are considered as quasi-statical ones with the loading from zero up to
a certain value. This kinematical approach allows to describe stick and
slide conditions in our spatial coordinate system, see Fig. 4.1.

a) The slave point S sticks, if its projection point C is not moving on
the tangent plane, i.e. has zero relative velocity vr = 0.

b) The slave point S slides, if during quasi-statical loading there is a
relative motion of its projection point C, i.e. vr 	= 0.

These conditions for the simplest case as a model of Coulomb dry
friction can be specified as follows:
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4.3 Weak form and regularized contact conditions

1. The slave point sticks as long as the Coulomb dry friction inequality
holds

vr = 0 if Φ := ‖T‖ − μN ≤ 0 (4.63)

where μ is a friction coefficient, and ‖T‖ is the absolute value of the
tangential traction T, which is computed as

‖T‖ =
√

TiTjaij. (4.64)

2. Beyond the threshold defined by the friction condition (4.63) the
slave point starts to slide in the direction of the relative velocity vector;
the tangential tractions are then acting in the opposite direction.

if Φ > 0 then ∃ ζ > 0 vr = −ζ
T

‖T‖, (4.65)

where ζ is a consistency parameter.
3. Sliding happens only if Φ = 0, thus

ζΦ = 0. (4.66)

Again the contact conditions lead to a lack of differentiability and,
therefore, numerical problems. In order to overcome this Kikuchi [84]
considered a penalty regularization for the contact functional assuming
a small tangential motion in the case of sticking; a penalty regularization
based on the elasto-plastic analogy was developed then in Wriggers et.
al. [194], Laursen and Simo [161]. In the last article the following regu-
larization was proposed in convective coordinates for the trial tractions:

aij ξ̇
j − ζ

Ti

‖T‖ = − 1

εT

∂Ti

∂t
, (4.67)

where εT is a penalty parameter. Then a return-mapping algorithm
known from plasticity can be used to satisfy the stick-slide condition.

From a mathematical point of view (see Marsden and Hughes [121]),
it appears to be more correct to consider a parallel translation of the
vector field Ti(ξ

i(t)) on the master surface. In this situation the rel-
ative velocity vector vr of the projection point C on the master surface,
see eqn. (4.43) must be equal to the full time derivative in the covariant
form (4.18) of the vector T defined on the tangent plane in the spatial co-
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ordinate system. Thus, for the corresponding regularization we propose
the following form

vr − ζ
T

‖T‖ = − 1

εT

dT

dt
, (4.68)

or employing the covariant derivative of T on the tangent plane in eqn.
(4.35), we obtain the following expression for the components

aij ξ̇
j − ζ

Ti

‖T‖ = − 1

εT

(
∂Ti

∂t
+

(
∂Ti

∂ξj
− Γk

ijTk

)
ξ̇j + hk

i Tkξ̇
3

)
(4.69)

or finally, having denoted the time derivative of Ti as

dTi

dt
=

∂Ti

∂t
+

∂Ti

∂ξj
ξ̇j, (4.70)

we obtain

aij ξ̇
j − ζ

Ti

‖T‖ = − 1

εT

(
dTi

dt
− Γk

ijTkξ̇
j + hk

i Tkξ̇
3

)
. (4.71)

In order to integrate the differential equation (4.71) we employ a
return-mapping algorithm based on the backward Euler implicit scheme
for the ordinary differential equations, see e.g. Simo and Hughes [160].
The trial step is assumed to be with sticking, therefore ζ = 0. The con-
sistent backward Euler scheme for eq. (4.71) has the following form

(
δi
k − Γk

ij |(n+1)ξ
j
(n+1) + hk

i |(n+1)ξ
3
(n+1)

)
(T trial)

(n+1)
k =

= (T trial)
(n)
i − εT

(
a

(n+1)
ij ξj

(n+1) − a
(n)
ij ξj

(n)

)
− Γk

ij|(n)T
(n)
k ξj

(n) + hk
i |(n)ξ

3
(n)T

(n)
k ,

(4.72)

which can be seen as a backward scheme for the following ordinary
differential equations

dTi

dt
= (−εTaij + Γk

ijTk)ξ̇
j − hk

i Tkξ̇
3 (4.73)

The system of ordinary differential equations for the computation of
the tangential traction (4.73) is called the evolution equations. They
are important for the linearization process. Keeping the form with the
covariant derivatives (4.73) instead of the form in eqn. (4.67) leads to
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4.3 Weak form and regularized contact conditions

a symmetrical tangent matrix for sticking, while as used in Laursen and
Simo [109], [104], the form (4.67) leads to a non-symmetrical tangent
matrix for the arbitrary 3D case.

Remark 1. Consider the backward Euler scheme (4.72) in the case
with a linear approximation of the master surface. Then, having taken
all Christoffel symbols and components of the curvature tensor as zero,
we obtain the following equations:

(T tr)
(n+1)
i = T

(n)
i − εTaij(ξ

j
(n+1) − ξj

(n)). (4.74)

This algorithm can be found in Laursen [106] for the trial step solution of
equation (4.67).

Any analysis based on equation (4.72) becomes computationally
rather expensive, because a full matrix appears on the left side and
additional history variables Γk

ij|(n), a
(n)
ij have to be used. Moreover, the

integration scheme (4.72) as well as (4.74) suffers from jumps occurring
at element boundaries due to the different internal coordinates ξi. Thus,
we propose a discrete analog of the evolution equations (4.73) for the
numerical computation

ΔT = −εTΔρ. (4.75)

The application of the results of section 4.2.3 to eqn. (4.75) together
with the sliding condition leads to the following return-mapping scheme:

Trial step.

N (n+1) = εN〈g(n+1)〉

(T tr)
(n+1)
i = T

(n)
k akj

(n) (ρ
(n)

j · ρ (n+1)
i ) − εTΔξja

(n+1)
ij

Φtr
(n+1) := ‖Ttr

(n+1)‖ − μN (n+1)

‖Ttr
(n+1)‖ =

√
(T tr)

(n+1)
i (T tr)

(n+1)
j aij

(n+1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (4.76)
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where Δξj is obtained as

Δξj =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(Δρ · ρk) ajk
(n+1) for node-to-surface (NTS) and

surface-to-surface (STS) approaches, where

Δρ = ρC(n+1) |ξ1
(n+1)

, ξ2
(n+1)

− (ρC(n) + uC(n)) |ξ1
(n)

, ξ2
(n)

−(u · ρk)a
kj
(n+1) for segment-to-analytical surface (STAS) approach

(4.77)

Return mapping. The stick-slip condition is checked within the return
mapping process:

T
(n+1)
i =

⎧⎪⎪⎨
⎪⎪⎩

(T tr)
(n+1)
i if Φtr

(n+1) ≤ 0 (stick)

μN (n+1) (T tr)
(n+1)
i

‖Ttr
(n+1)‖ if Φtr

(n+1) > 0 (slide)

. (4.78)

Remark 2. The regularized frictional problem is strictly path-
dependent: it follows from the fact that the contact tractions Ti in the
contact functional in eqn. (4.60) must satisfy the evolution equations
(4.73). The return-mapping algorithm for the incremental solution, as
is known, is unconditionally stable, but a problem of choosing the dis-
placement increments arises due to the correct definition of sticking and
sliding zones. A simple a-priori estimation will be proposed further for
the numerical example.

Remark 3. For 2D problems Krstulovic-Opara and Wriggers [101]
proposed the so-called moving cone description. Under the assumption
of Remark 1, now a point of the cone axis on the tangent plane with
coordinates ξ1

0, ξ
2
0 is considered. One can show that the friction condition

(4.76. 3) together with eqn. (4.74) defines an ellipse on the tangent
plane, which can be obtained by projection of the frictional cone onto
the tangent plane. For a stick case the initial frictional forces Ti are zero
at the initial point ξ1

(0), ξ
2
(0) in algorithm (4.74). Considering the absolute
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value ‖T‖ in eqn. (4.64) at step (n) we obtain

‖T(n)‖2 = T
(n)
i T

(n)
j aij = (4.79)

= εTaik(ξ
k
(n) − ξk

(0))εTajl(ξ
l
(n) − ξl

(0))a
ij =

= ε2
Takl(ξ

k
(n) − ξk

(0))(ξ
l
(n) − ξl

(0)).

Having taken an incremental analog of the differential of length in eqn.
(4.9) together with eqn. (4.76. 3), we can find that

Δl2 = ε2
Takl(ξ

k
(n) − ξk

(0))(ξ
l
(n) − ξl

(0)) ≤ (μN)2. (4.80)

Eqn. (4.80) defines an ellipse as allowable domain inside which the pro-
jection point C can move in the case of sticking leading to a symmetric
tangent matrix finally.

4.4 Consistent linearization

The idea behind the consistent linearization for a Newton type solution
process is to exploit the full material time derivative in the form of the co-
variant derivative in the spatial coordinate system, see sections 4.2.1.2
and 4.2.2.2, together with the evolution equations for the contact tangent
frictional forces (4.73).

4.4.1 Linearization of the normal contact expression

The contact integral, see e.g. eqn. (3.30) is computed over the ”slave”
surface, which is defined by a set of ”slave” points. Each parameter in
the contact integral is considered in the spatial local coordinate system
of the ”master” surface, (i.e. as a function of the convective coordinates
ξi), therefore, linearization of the ”slave” surface element ds will not be
included in process. Thus ds is assumed to remain constant within lin-
earization. Further it must be noted that the use of different quadrature
schemes for the computation of the contact integral may lead to different
contact elements.
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The normal part of the contact integral (4.60) has the following form:

δWN
c =

∫
s

εN〈g〉δgds =

∫
s

εN〈(rs − ρ) · n〉 (δrs − δρ) · nds (4.81)

The details of the linearization of the normal part δWN
c and the ap-

plication to the non-frictional problems are outlined in Konyukhov and
Schweizerhof [86]. Here we only include the result for the full normal
tangent matrix:

D(δWN
c ) =

=

∫
S

εN H(−g) (δrs − δρ) · (n⊗ n)(vs − v)dS− (4.82a)

−
∫

S

εN H(−g) g
(
δρ,j · aij(n⊗ ρi)(vs − v) + (δrs − δρ) · aij(ρj ⊗ n)v,i

)
dS− (4.82b)

−
∫

S

εN H(−g) g (δrs − δρ) · hij(ρi ⊗ ρj)(vs − v)dS. (4.82c)

The full contact tangent matrix is subdivided into the main part eqn.
(4.82a), the ”rotational” part (4.82b) and the ”curvature” part (4.82c).
The last two terms are small due to the small value of the penetration
g. The ”rotational” part contains derivatives of δρ and v with respect
to the convective coordinates ξj and, therefore, represents the rotation
of a contact surface during the incremental solution procedure. The
”curvature” part contains components of the curvature tensor hij and,
therefore, represents the change of the curvature of the master surface.

4.4.2 Linearization of the tangential contact expression

The tangential part of the contact integral (4.60)

δW T
c =

∫
S

Tiδξ
ids (4.83)

has to be considered together with the evolution equations (4.73) and
the return mapping algorithm eqn. (4.76), (4.77), (4.78). The cases of
sticking and sliding have to be treated separately.
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For the linearization either a covariant or a contravariant component,
two operators, based on the covariant derivative are necessary. The
operator for the linearization of the contravariant component has the
form

L(xi) ≡
(

∂

∂t
+ ξ̇j∇j

)
(xi) =

∂xi

∂t
+

(
∂xi

∂ξj
+ Γi

kjx
k

)
ξ̇j (4.84)

and the linearization operator for the covariant component has the form

L(xi) ≡
(

∂

∂t
+ ξ̇j∇j

)
(xi) =

∂xi

∂t
+

(
∂xi

∂ξj
− Γk

ijxi

)
ξ̇j. (4.85)

It is obvious that the Christoffel symbols disappear in the final result
after the linearization of the scalar, i.e. the full time derivative of the
scalar is the covariant derivative of the scalar

L(xivi) =

{
∂xi

∂t
+

(
∂xi

∂ξj
+ Γi

kjx
k

)
ξ̇j

}
vi+

{
∂vi

∂t
+

(
∂vi

∂ξj
− Γk

ijvi

)
ξ̇j

}
xi =

=

{
∂xi

∂t
+

∂xi

∂ξj
ξ̇j

}
vi +

{
∂vi

∂t
+

∂vi

∂ξj
ξ̇j

}
xi = vi

dxi

dt
+ xidvi

dt
(4.86)

Therefore, the linearization leads to the following expression

Dv(δW
T
c ) =

∫
s

(
δξidTi

dt
+ Ti

dδξi

dt

)
ds. (4.87)

As the handling of the complete expression is rather complex, we
focus on each term separately in the following.

4.4.2.1 Linearization of δξi

The linearization of the variation of the convective coordinates δξi is
one of the important parts which requires the results about differential
operations in the spatial coordinate system from section 4.2.2.2 together
with the tensor algebra operations on the tangent plane. The full time
derivative gives

L(δξi) =

{
∂

∂t
+

∂

∂ξj
ξ̇j

}
(δξi) =

daik

dt
(δrs − δρ) · ρk + aik d

dt
[(δrs − δρ) · ρk)] . (4.88)
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Linearization of (δrs − δρ) · ρk requires the application of the Gauss-
Codazzi formula (4.14).

d

dt
[(δrs − δρ) · ρk)] = (4.89)

= ((δrs − δρ),j · ρk)ξ̇
j + (δrs − δρ) · vk)+

+Γl
kj((δrs − δρ) · ρl)ξ̇

j + hkj((δrs − δρ) · n)ξ̇j.

Linearization of the contravariant components aij was already given in the
section 4.2.2.2.

Simplification of
d

dt
δξi. The final formula is long, but can be simplified.

In addition, the following transformations are cumbersome but neces-
sary to show the symmetry of the tangent matrix in the case of sticking.
Summarizing the results in one formula, we obtain

d

dt
(δξi) =

= −aimank(vm · ρn)((δrs − δρ) · ρk) (4.90a)

−aimank(ρm · vn)((δrs − δρ) · ρk) (4.90b)

−aimankΓl
mj(ρl · ρn)ξ̇

j((δrs − δρ) · ρk) (4.90c)

−aimankΓl
nj(ρm · ρl)ξ̇

j((δrs − δρ) · ρk) (4.90d)

+2aimankhmnξ̇
3((δrs − δρ) · ρk) (4.90e)

+aik((δrs − δρ)),j · ρk)ξ̇
j (4.90f)
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+aik(δrs − δρ) · vk (4.90g)

+aikΓl
kj((δrs − δρ) · ρl)ξ̇

j (4.90h)

+aikhkj((δrs − δρ) · n)ξ̇j (4.90i)

The nine parts in eqns. (4.90a–4.90i) will be tremendously simplified,
if we take into account the expression for the convective velocities (4.42)
and consider tensor operations on the tangent plane. The following five
transformations will lead to a simple structure:

a.
The sum of the terms (4.90a) and (4.90g) becomes zero on the surface:

−aimank(vm · ρn)((δrs − δρ) · ρk) + aik(δrs − δρ) · vk = 0. (4.91)

In order to show this the dot product in the second term is expressed
on the tangent plane, i.e. as double sum with the surface metric tensor
components aij:

aim(δrs − δρ) · vm = aim((δrs − δρ) · ρk)ρ
k · (vm · ρn)ρ

n =

= aimakn((δrs − δρ) · ρk)(vm · ρn),

from which (4.91) is obtained.

b.
The sum of the terms (4.90c) and (4.90h) becomes zero on the surface:

−aimankΓl
mj(ρl · ρn)ξ̇

j((δrs − δρ) · ρk) + aikΓl
kj((δrs − δρ) · ρl)ξ̇

j =

=
(−aimankalnΓ

l
mj((δrs − δρ) · ρk) + aikΓl

kj((δrs − δρ) · ρl)
)
ξ̇j =

=
(−aimak

l Γ
l
mj((δrs − δρ) · ρk) + aikΓl

kj((δrs − δρ) · ρl)
)
ξ̇j =

=
(−aimΓk

mj((δrs − δρ) · ρk) + aikΓl
kj((δrs − δρ) · ρl)

)
ξ̇j = 0.

Here the properties of the covariant and contravariant components (4.4)
and (4.5) have been used.

c.
The sum of (4.90b) and (4.90f) leads to a symmetrical rotational part.
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We start with using the expression for the convective velocities (4.42):

−aimank(ρm · vn)((δrs − δρ) · ρk) + aik((δrs − δρ),j · ρk)ξ̇
j =

= −ailajk(ρl · vj)((δrs − δρ) · ρk) − aikajl(δρ,j · ρk)((vs − v) · ρl) =

= −(δrs − δρ) ailajk ρk ⊗ ρl vj − δρ,j aikajl ρk ⊗ ρl (vs − v). (4.92)

The final expression is found via the tensor product.

d.
After grouping (4.90e) with (4.90i), we obtain

2aimankhmnξ̇
3((δrs − δρ) · ρk) + aikhkj((δrs − δρ) · n)ξ̇j =

= aimankhmnξ̇
3((δrs − δρ) · ρk)+ (4.93a)

aimankhmn(vs−v) ·n)((δrs−δρ) ·ρk)+aikajmhkj((δrs−δρ) ·n)((vs−v) ·ρm) = (4.93b)

In order to show the symmetry of the part in eqn. (4.93b), the ten-
sor product and contravariant components of the curvature tensor eqn.
(4.12) are used. For a reduction of eqn. (4.93a) the equation for the
variation of the convective velocity (4.42) and mixed components of the
curvature tensor are taken, leading finally to

= hi
nξ̇

3δξn+ (4.94a)

+hij(δrs − δρ) · (ρj ⊗ n + n ⊗ ρj

)
(vs − v) (4.94b)

The last part (4.94b) defines the curvature part of the tangent matrix.

e.
The equation for the variation of the convective velocity (4.42) is used to
simplify (4.90d):

−aimankΓl
nj(ρm · ρl)ξ̇

j((δrs − δρ) · ρk)
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4.4 Consistent linearization

= −Γi
kj ξ̇

jδξk (4.95)

The resulting parts in eqn. (4.94a) and (4.95) remain untransformed,
however they will disappear in both sticking and sliding cases, after tak-
ing into account the fully linearized contact integral together with the
evolution equations (4.73) as shown in the next section.

Summarizing the result of the complete transformation, we obtain

d

dt
(δξi) =

= −(δrs − δρ) ailajk ρk ⊗ ρl vj − δρ,j aikajl ρk ⊗ ρl (vs − v) (4.96a)

+hij(δrs − δρ) · (ρj ⊗ n + n ⊗ ρj

)
(vs − v)+ (4.96b)

+hi
nξ̇

3δξn − Γi
kj ξ̇

jδξk (4.96c)

Thus, the full time derivative consists of a symmetrical rotational part
(4.96a), a symmetrical pure curvature part (4.96b) and a connection part
with the Christoffel symbols (4.96c), describing the connection proper-
ties.

4.4.2.2 Sticking

In the sticking case, the trial tangential traction terms Ti are identical with
the real traction, therefore, the linearized traction terms are obtained
from the evolution equation in (4.73) directly. Starting with eqn. (4.87)
and taking into account Remark 1 in section 4.3.2 together with the
evolution equation (4.73), and eqn. (4.96a), (4.96b), (4.96c) we finally
obtain

Dv(δW
T
c ) = (4.97)

=

∫
s

(
(−εTaij + Γk

ijTk)ξ̇
j − hk

i Tkξ̇
3︸ ︷︷ ︸
)

δξids+
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4. COVARIANT DESCRIPTION FOR FRICTIONAL CONTACT

+

∫
s

Ti

[− (
(δrs − δρ) ailajk ρk ⊗ ρl vj + δρ,j aikajl ρk ⊗ ρl (vs − v)

)
+

+hij(δrs − δρ) · (ρj ⊗ n + n ⊗ ρj

)
(vs − v)+

+ hi
nξ̇

3δξn − Γi
kj ξ̇

jδξk︸ ︷︷ ︸
]

ds.

Using the tensor notation and the equation for convective velocities
(4.42) for the main part aij ξ̇

jδξi, we obtain the following form for the
tangential tangent matrix in the case of sticking.

Dv(δW
T
c ) =

−εT

∫
s

(δrs − δρ)aijρi ⊗ ρj(vs − v)ds (4.98a)

−
∫

s

Ti

(
(δrs − δρ) ailajk ρk ⊗ ρl vj + δρ,j aikajl ρk ⊗ ρl (vs − v)

)
ds (4.98b)

+

∫
s

Tih
ij(δrs − δρ) · (ρj ⊗ n + n ⊗ ρj

)
(vs − v)ds. (4.98c)

As we have a conservative problem for sticking it is obvious that the
symmetric form is correct.

Similar to the normal tangent matrix, the tangential tangent matrix
can be subdivided into a main (4.98a), a rotational (4.98b) and a pure
curvature part (4.98c).

Remark 1. The artificial non-symmetry of the tangent matrix for the
stick condition, based on the evolution equation (4.67) was mentioned
by Laursen and Simo in [109], [106] and [104]. As an appropriate al-
ternative within a solution scheme, a symmetrization based on a split
technique with the Augmented Lagrangian method was proposed by
Laursen in [161]. Wriggers [188], suggested to use the consistent lin-
earization of the sticking conditions in the form ‖rs − ρ‖2 directly, which
then leads to the correct symmetric matrix. Here, it becomes obvious,
that it is particularly important to use the evolution equation in the form of
the covariant derivatives (see eqn. 4.73) together with the linearization
of the metric components aij as 3D metric components gij (see eqn.
4.30). This allows to avoid the artificial non-symmetry and obtain the
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4.4 Consistent linearization

correct symmetric tangent matrix for sticking.

4.4.2.3 Sliding

The expressions for the linearized variation of the convective velocity
eqn. (4.96a), (4.96b) and (4.96c) are also used in this case. In addition,
the tangential force in the case of sliding, see eqn. (4.78) of the return-
mapping algorithm, has to be linearized.

dT
(n+1)
i

dt
=

d

dt

(
μN (n+1)(T

tr)
(n+1)
i

‖Ttr
(n+1)‖

)
= (4.99)

= μ
dN (n+1)

dt

(T tr)
(n+1)
i

‖Ttr
(n+1)‖

+ μN (n+1) d

dt

(
(T tr)

(n+1)
i

‖Ttr
(n+1)‖

)

For the derivative of the unit vector on the tangent plane

e =
(T trial)

(n+1)
i

‖Ttrial
(n+1)‖

aijρj

we will use the following formula, see Simo and Hughes [160]

de

dT
=

1

‖T‖ [I− e ⊗ e] (4.100)

and the chain rule

de

dt
=

de

dT

dT

dt
=

1

‖T‖ [I − e ⊗ e]
dT

dt
. (4.101)

Here the full time derivative of the tangential traction
dT

dt
is given by the

evolution equation (4.73). The tensor operations are considered on the
tangent plane:

[I − e ⊗ e]
dT

dt
=

=

[
aijρi ⊗ ρj −

TkTla
ikajl

‖T‖2
ρi ⊗ ρj

] (
(−εTamn + Γr

mnTr)ξ̇
n − hr

mTrξ̇
3
)

ρm =
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4. COVARIANT DESCRIPTION FOR FRICTIONAL CONTACT

=
(
−εT ξ̇i + aikTlΓ

l
kj ξ̇

j − hk
ja

ijTkξ̇
3
)

ρi+ (4.102a)

+
TkTla

ik

‖T‖2

(
εT ξ̇l − ajlTmΓm

jnξ̇
n + ajlTmhm

j ξ̇3
)

ρi. (4.102b)

The time derivative of the normal force N (n+1) gives:

dN (n+1)

dt
=

d

dt
(εN |ξ3|) = −εN ξ̇3, (4.103)

where the minus sign is a result from the conditions that the contact
integral is computed only if ξ3 < 0. Summarizing, we get:

Dv(δW
T
c ) =

∫
s

(
−εNμξ̇3Tiδξ

i

‖T‖ − εTμ|N |aij ξ̇
iδξj

‖T‖ (4.104a)

+
μ|N |TkΓ

k
ij ξ̇

jδξi

‖T‖ − μ|N |Tih
i
j ξ̇

3δξj

‖T‖ (4.104b)

+
μ|N |TsTlδξ

s

‖T‖3

(
εT ξ̇l − ajlTmΓm

jnξ̇
n + ajlTmhm

j ξ̇3
)

(4.104c)

−μ|N |Ti

‖T‖
[(

(δrs − δρ) ailajk ρk ⊗ ρl vj + δρ,j aikajl ρk ⊗ ρl (vs − v)
)

(4.104d)

+hij(δrs − δρ) · (ρj ⊗ n + n ⊗ ρj

)
(vs − v)+ (4.104e)

+hi
nξ̇

3δξn − Γi
kj ξ̇

jδξk
])

ds (4.104f)

The sum of the parts (4.104b) and (4.104f) is zero. After some tensor
algebra the other parts can be grouped into the following form:

Dv(δW
T
c ) =

−
∫

s

(
(δrs − δρ)

εNμTia
ij

‖T‖ ρj ⊗ n(vs − v)

)
ds (4.105a)
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4.5 Global solution scheme. Summary of the results

−
∫

s

(
(δrs − δρ)

εTμ|N |aij

‖T‖ ρi ⊗ ρj(vs − v)

)
ds (4.105b)

+

∫
s

(
(δrs − δρ)

εTμ|N |TiTja
ikajl

‖T‖3
ρk ⊗ ρl(vs − v)

)
ds (4.105c)

−
∫

s

μ|N |Ti

‖T‖
(
(δrs − δρ) ailajk ρk ⊗ ρl vj + δρ,j aikajl ρk ⊗ ρl (vs − v)

)
ds (4.105d)

+

∫
s

(
μ|N |Ti

‖T‖ hij(δrs − δρ) · (ρj ⊗ n + n ⊗ ρj

)
(vs − v)

)
ds (4.105e)

+

∫
s

μ|N |TsTlδξ
s

‖T‖3

(
−ajlTmΓm

jnξ̇
n + ajlTmhm

j ξ̇3
)

ds. (4.105f)

The matrix consists then of a constitutive non-symmetric part
(4.105a), a constitutive symmetric part (4.105b) and (4.105c), a sym-
metric rotational part (4.105d), a symmetric curvature part (4.105e) and
a non-symmetric part curvature part (4.105f) which is preserved for
curved surfaces. All geometrical parameters are computed for the mas-
ter surface.

Remark 2. One can find from comparison with Peric and Owen [139],
that they have considered the tangent matrix which is represented by the
the main parts of the full tangent matrix.

4.5 Global solution scheme. Summary of the results

Summarizing the theoretical discussion about the covariant description,
we present the global solution scheme for the numerical implementation
in Table 4.1 and 4.2. All parts of tangent matrices contain either a term
(δrs − δρ), or a term δρ,j, resp. terms (vs − v) and v,j, and, therefore,
can be algorithmically computed. For discretization of any surface only
two position matrices A and Aξ are necessary. The proposed approach
has been implemented in FEAP code see [172], ”solid-shell” elements
are used for modelling of elastic structures, see [60] and [59]. For the
details of the finite element implementation we refer to Konyukhov and
Schweizerhof [86].
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4. COVARIANT DESCRIPTION FOR FRICTIONAL CONTACT

Table 4.1: Global solution scheme. Summary of the results for
numerical implementation.

1. Initialization of convective coordinates ξi.
The projection procedure in eqns. (4.23, 4.24, 4.25)
with no external loads gives ξi

(0).

2. Loop over load increments and Newton iterations
for the contact integral

δWc =
∫

s
Nδgds +

∫
s
Tjδξ

jds where δξj = aij(δrs − δρ) · ρi

3. Loop over all contact elements and all contact points

• compute projection points ξi
(n) eqns. (4.23, 4.24, 4.25)

• Check penetration g = (rs − ρ) · n. If g > 0 then exit loop 3.

• Compute contact tractions and corresponding tangent matrices

Normal traction: N = εNg

Tangent matrix KN for normal traction is defined via∫
s
εN (δrs − δρ) · (n⊗ n)(vs − v)ds − ∫

s
εN g

(
δρ,j · aij(n⊗ ρi)(vs − v) +

+ (δrs − δρ) · aij(ρj ⊗ n)v,i

)
ds − ∫

s εN g (δrs − δρ) · hij(ρi ⊗ ρj)(vs − v)ds

Tangent traction Ti is defined via the return-mapping algorithm.

Trial step: T
(n+1)
i = T

(n)
k akj

(n) (ρ
(n)

j · ρ (n+1)
i )−

−εT ·

⎧⎪⎪⎨
⎪⎪⎩

(Δρ · ρi) for node-to-surface (NTS) and
surface-to-surface (STS) approaches, where
Δρ = ρC(n+1) |ξ1

(n+1)
, ξ2

(n+1)
− (ρC(n) + uC(n)) |ξ1

(n)
, ξ2

(n)

−(u · ρi) for segment-to-analytical surface (STAS) approach

Coulomb friction law:

Φ(n+1) =
√

T
(n+1)
i T

(n+1)
j aij

(n+1) − μN (n+1)

Return-mapping step see Table 4.2.

• Compute residual R from the contact integral in 2

• Compute the full contact tangent matrix K = KN + KT
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4.5 Global solution scheme. Summary of the results

Table 4.2: Return-mapping scheme and tangent matrices for tangential traction.

if Φtr
(n+1) ≤ 0

sticking condition

T
(n+1)
i stick = T

(n+1)
i

Tangent matrix KT

−εT

∫
s
(δrs − δρ)aijρi ⊗ ρj(vs − v)ds

− ∫
s
Ti

(
(δrs − δρ) ailajk ρk ⊗ ρl vj + δρj aikajl ρk ⊗ ρl (vs − v)

)
ds

+
∫
s Tih

ij(δrs − δρ) · (ρj ⊗ n + n⊗ ρj

)
(vs − v)ds.

if Φtr
(n+1) > 0

sliding condition

T
(n+1)
i slide = μN (n+1) (T

tr)
(n+1)
i

‖Ttr
(n+1)‖

Tangent matrix KT

−
∫

s

(
(δrs − δρ)

εNμTia
ij

‖T‖ ρj ⊗ n(vs − v)

)
ds

−
∫

s

(
(δrs − δρ)

εT μ|N |aij

‖T‖ ρi ⊗ ρj(vs − v)

)
ds

+

∫
s

(
(δrs − δρ)

εT μ|N |TiTja
ikajl

‖T‖3
ρk ⊗ ρl(vs − v)

)
ds

−
∫

s

μ|N |Ti

‖T‖
(
(δrs − δρ) ailajk ρk ⊗ ρl vj + δρ,j aikajl ρk ⊗ ρl (vs − v)

)
ds

+
∫
s

(
μ|N |Ti

‖T‖ hij(δrs − δρ) · (ρj ⊗ n + n⊗ ρj

)
(vs − v)

)
ds

+
∫
s

μ|N |TsTlδξ
s

‖T‖3

(
−ajlTmΓm

jnξ̇n + ajlTmhm
j ξ̇3

)
ds.

Remark. Curvature parts in boxes (Table 4.1 and 4.2) can be omitted with very little
loss of efficiency
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4. COVARIANT DESCRIPTION FOR FRICTIONAL CONTACT

4.6 Numerical examples

4.6.1 Sliding of a block. Linear approximation of the contact sur-
faces. Two types of the contact frictional problem

During the solution of the frictional problem, it is necessary to solve the
evolution equation (4.73) with a return-mapping algorithm, as described
in (4.76), (4.77) and (4.78). As was mentioned in Remark 2, it is im-
portant to know the value of coordinate increments Δξi and, therefore,
displacement increments Δui in order to capture the ”sticking-sliding”
zone correctly. As a representative example for a-priori estimation of
the value of incremental displacements, the stresses in an infinite layer
have to be considered, see Fig. (4.3). Both a vertical displacement h and
a horizontal displacement u are applied at the upper boundary. During
the deformation the rectangle ABCD is changing into a parallelogram
AB1C1D. Under the assumption of linear elasticity and a plane strain
deformation, the stresses in the layer are obtained via superposition of
the normal compressive stress σ and the pure shear stress τ :

σ = ε
E

1 − ν2
=

h

b

E

1 − ν2
; τ = γG =

u

b

E

2(1 + ν)
. (4.106)

Now we assume Coloumb friction with μ as a friction coefficient at the
lower boundary. Sliding starts if the condition τ = μσ is fulfilled. Thus,
the condition of sticking of the thin layer can estimated by the following
ratio:

γ(1 − ν)

2ε
≤ μ, (4.107)

from which we obtain the threshold value of the horizontal displacement
u:

ucr =
2μh

1 − ν
, (4.108)

One can see from the infinite layer, that sliding starts immediately at
the complete lower boundary. However, though this is not a case for a
finite dimensional block, or an arbitrarily thin layer, where a developing
zone of sticking and sliding exists, eqns. (4.107) and (4.108) can be
used as a rough estimation of the presence of the sticking condition,
and, therefore, for the estimation of the displacement increments.
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Figure 4.3: Plane deformation of a layer.
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rigid
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Y

X

Figure 4.4: Sliding block on the base. Meshed surfaces. STS contact approach.

As an example for the computation, we consider a rectangular block
(Fig. 4.4) with the following parameters: elasticity modulus E = 2.1 · 104,
Poisson ratio ν = 0.3, length a = 20, height b = 5, thickness c = 0.5. The
dimension system is assumed to be consistent. The lower supplemen-
tary block is added to model a rigid base. The Coloumb friction with a
coefficient μ = 0.3 is specified between two bodies. The contact surface
of the upper block is assumed to be a ”master”, while the upper surface
of the lower block is a ”slave” surface within the ”segment-to-segment”
approach. The penalty parameters are chosen as εN = εT = 2.1 · 106.

Since the problem is path-dependent, we will investigate a case when
displacements at the upper edge are applied in two steps: at the first
step, a vertical displacement v = −7.0 ·10−3 is applied, then, a horizontal
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Figure 4.5: Horizontal displacements of the contact surface for various states of the
displacement loading.
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Figure 4.6: Reaction forces ratio Fx/Fy on the contact surface for various states of the
displacement loading.

displacement is applied incrementally. Here, we should mention that
initial conditions for the history variables are defined at the zero load
step with zero external loads, i.e. the initial projection points are the
sticking points, see step 1 in Table 4.1. An estimation of the critical
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4.6 Numerical examples

horizontal displacement in eqn. (4.108) gives ucr = 6.0 · 10−3, so in
order to capture the sticking-sliding zone we choose a displacement
increment Δu = 2.5 · 10−4 and apply it in 100 load steps. Our aim in
the first computation is to show the development of the sticking-sliding
zone. In order to verify this zone carefully we will consider a plot of
the horizontal displacements and a plot of the reaction forces ratio on
the boundary Fx/Fy. Of course, this zone is precisely specified by the
return-mapping algorithm, but we are interested in various parameters.
Fig. 4.5 contains the spatial distribution of the horizontal displacements
at the lower boundary, if the following displacements u = 3.0 · 10−3;
6.0 ·10−3; 7.5 ·10−3; 9.0 ·10−3; 10.0 ·10−3; 11.0 ·10−3; 12.0 ·10−3 are applied
at the upper boundary. As shown in the corresponding reaction forces
ratio diagram in Fig. 4.6, sliding starts from u = 7.5 · 10−3, when the ratio
Fx/Fy = −0.3 is reached. The block is considered to be sliding at the
full lower boundary, when the applied displacement reaches the value
u = 11.0·10−3. We can also conclude that the estimation of the threshold
displacement given by eqn. (4.108) is a good approximation.

The spreading of the zone of sliding is found to be within a relatively
short interval of loading. In some practical problems, as e.g. metal
forming, the energy loss due to large sliding can be more important.
Assume for the next discussion that stresses are approximated by eqn.
(4.106) for the finite-dimensional block with size AD = a, e.g. for a very
long block. Then the elastic energy accumulated at the critical state in
the block has the following form:

Eel =
σεab

2
+

τγab

2
=

Eah2

2b(1 − ν2)

[
1 +

2μ2

1 − ν
.

]
(4.109)

If the sliding process is developing, when the block is dragged along the
distance l, then the work of the critical sliding stresses τsl, is evaluated
as:

Esl =
τslal

2
=

Eahlμ

b(1 − ν2)
. (4.110)

It is obvious, that during the large sliding a thin layer along a relatively
large distance l, dissipation of energy due to sliding, eqn. (4.110) can
be rather important then initial threshold value. Thus, frictional problems
can be subdivided into two problems:
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a) compute the global threshold value for sliding and the development
of the distribution of the sticking-sliding zone;

b) compute forces which are necessary to drag the structure under
the assumption of full sliding.

Obviously, for the first problem the evolution equation (4.73) must be
computed with small steps within the return-mapping algorithm, but for
the second problem the sticking zone is out of interest and for the anal-
ysis relatively large steps can be taken. Such problems are certainly
present in forming processes with large plastic deformations. In order to
show an example for the problem type b), another analysis is performed
with a displacement increment Δu = 12.0 · 10−3, which is even larger
then the critical one and corresponds to the developed sliding zone,
see Fig. 4.5. In order to compare the influence of the various parts of
the tangent matrix we compute two cases
1) with the full tangent matrix;
2) only with the main part of the tangent matrix.
The penalty parameter is chosen as εN = εT = 2.1 · 105. Table 4.3
shows the comparison of the numerical results between both cases by
the number of iterations per load step. As we can see in the developed
sliding region the full matrix in comparison with only the main matrix
leads to a reduction of the number of equilibrium iterations per load step
from 4 to 3. We should mention that for the previous example during the
incremental horizontal loading there is no difference between the num-
ber of equilibrium iterations for both cases. Obviously this is due to the
fairly small load steps. Thus, as expected, keeping all parts of the matrix
appears to be only necessary in the case of large load increments.

Fig. 4.7 shows the spatial distribution of the relative horizontal dis-
placements u − uapplied at the lower boundary if the displacement at the
upper boundary is taken exemplarily as u = 0.012, then u = 0.048 and
finally u = 0.120. It is obvious, that the relative horizontal displacements
hardly change during the fairly large sliding process.
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Figure 4.7: Relative horizontal displacements of the contact surface for various states
of the displacement loading.

Case 1 Case 2
No. l.s. No. Cum. No. l.s. No. Cum.

it./l.s. No. it. it./l.s. No. it.
1 4 4 1 5 5
2 6 10 2 6 11
3 5 15 3 5 16

4-20 3 66 4-20 4 84

Table 4.3: Sliding of a block. Bilinear elements. Segment-to-segment contact ap-
proach. Influence of various contact stiffness parts on convergence. Case 1: full
matrix; case 2: only main matrix. Comparison of no. of iterations in all load steps (l.s.)

4.6.2 Sliding of a block. Quadratical approximation of the contact
surfaces

Since general smoothing techniques for contact surfaces are out of the
scope of this article, in this example we will use contact elements with
quadratical approximation of the master surface together with a spe-
cially chosen geometry of both contact bodies in order to preserve C1-
continuity of the contact surfaces. Namely, we consider contact between
a parabolical block sliding on a parabolical cylindrical base, see Fig.
4.8. The block is meshed with 18-node solid-shell elements with den-
sity 20 × 1 × 5. Both master and slave contact surface geometries are
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uw
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Figure 4.8: Sliding of a parabolical block on a parabolical base. Meshed block. NTS
contact approach.

satisfying the equation

z = c · x2, with c = 0.03 (4.111)

The contact is modeled by the node-to-surface approach with the
master surface from the parabolical block. The parabolical slave surface
of the fixed base is represented by slave nodes with the same mesh
density as the master, which are not shown in Fig. 4.8. The geometrical
parameters are H = 5, L = 10; the material is linear elastic with Young’s
modulus E = 2.1 · 104, Poisson ratio ν = 0.3, Coulomb friction coefficient
μ = 0.3.

In the case of contact with a curvilinear surface, even with homo-
geneous loading, zones with sticking and sliding can be present. One
can expect from the rigid body mechanics that the sliding zone during
vertical loading w in the current example is satisfying the following con-
dition |x| > 5. From the friction cone for the parabolical cylinder follows
that: tanα|x=5 = z′ = 2 · 0.03x|x=5 = 0.3. In order to inspect this ef-
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Figure 4.9: Distribution of the tangential displacements in OX direction. Parabolical
cylinder. NTS contact approach. Incremental vertical loading.

fect in the deformable body, we apply at the upper edge the vertical
displacement w = 0.007 in 7 load steps. In Fig.4.9 the distribution of
the tangent displacement uτ = ux cos α + uy sin α over x on the contact
surface is depicted, where now and for the next example the angle α is
computed in the reference configuration. For the further discussion we
will distinguish based on the OZ axis, the left sliding zone with negative
displacements and the right sliding zone with positive displacements.
The tangential displacements from both zones are directed towards the
OZ axis, therefore the distribution looks mirror-symmetric. One can see
that the sticking zone is approximately satisfying the condition |x| < 3.

Equidistant motion on a cylinder. As continuation of the numerical exam-
ple, we choose an equidistant motion of the upper edge of the parabol-
ical block at the distance h from the generatrix of the parabolical base.
The curve r of this motion satisfies the following equation:

r = ρ + hn, (4.112)
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which for the parabola (4.111) can be written as:

r =

⎧⎨
⎩

x
0

cx2

⎫⎬
⎭ +

h√
1 + 4c2x2

⎧⎨
⎩

−2cx
0

1

⎫⎬
⎭ , (4.113)

where n is a normal on the initial curve, and h is an initial vertical dis-
placement. From eqn. (4.113) it is clear that the trajectory of the body
is no longer a parabola. If the curvature of the cylinder is small, i.e.
c << 1, then we consider a Taylor expansion with a linear term for the
first coordinate and with a quadratic term for the second coordinate.
Thus, we obtain as a first approximation of the trajectory in eqn. (4.113)
a parabolical motion in the form:

r =

⎧⎨
⎩

x(1 − 2ch)
0

h + cx2(1 − 2ch)

⎫⎬
⎭ . (4.114)

In this displacement driven problem the parabolical block is moving in
the X-Z plane, providing an approximately constant compression.

Next, the loading is applied in two steps also: the first step is a
vertical loading with w = −h = 0.007, then both a horizontal and
a vertical loading are incrementally applied at the upper edge with
Δu = Δx = 2.5 · 10−5 according to eqn. (4.114), providing the equidis-
tant motion of the parabolical block. Now, two phases of the devel-
opment of the sticking-sliding zone can be observed. The first phase
corresponds to the situation when the right sliding zone disappears dur-
ing horizontal loading, as presented in Fig. 4.10 for the following load
steps: u = 1.0 · 10−3, 2.0 · 10−3, 3.0 · 10−3, 5.0 · 10−3. Fig. 4.11 a) shows
scaled deformed and undeformed states when only vertical displace-
ments are applied and, therefore, the two sliding zones are symmetric.
The configuration with the vanishing resp. vanished sliding zone on the
right side is presented in Fig. 4.11 b). This moment can be detected
also from the reaction forces ratio diagram Fτ/Fn in Fig. 4.13, where the
right part of the sliding zone is also disappearing with Fτ/Fn = 0.3. The
second phase is the spreading of the left sliding zone through the con-
tact surface shown in Fig. 4.12 exemplarily for u = 5.0 · 10−3, 10.0 · 10−3,
15.0·10−3, 20.0·10−3, 25.0·10−3, 30.0·10−3. Here the zone without contact
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Figure 4.10: Parabolical cylinder. Horizontal loading. Distribution of the tangential
displacements in X direction. Phase 1 — vanishing right sliding zone.

is detected as a zone with zero normal nodal forces fn = 0 starting at a
loading with u ≥ 1.52 · 10−2. These sub-zones are marked with thicker
lines in Fig. 4.12.

Again we now compare the influence of the various parts of the tan-
gent matrix on the convergence rate when the applied displacements
correspond to the developed sliding. Namely, the load is applied in 20
load steps with the displacement increment Δu = 4.0 · 10−2, providing a
fully developed sliding motion from the first step on. The following cases
are shown in table 4.4:
1) full tangent matrix;
2) without curvature parts;
3) only with main part of the tangent matrix.

We see that excluding the curvature matrix leads to a minor reduction
of the convergence, while excluding the rotational part too causes a
considerable increase of the number of equilibrium iterations per load
step. We should also mention that during the analysis of the threshold
value before full sliding the number of equilibrium iterations remains the
same for each case due to a small load step. Thus, the computation with
the rotational part is more important for the developed sliding problem
of type b.
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ux = 0.0

a)

ux = 5.0 · 10−3

b)

Figure 4.11: Parabolical cylinder. Initial vertical loading. Undeformed and deformed
states with in addition applied horizontal displacement a) u = 0.0 – two sliding zones; b)
u = 5.0 · 10−3 – only left sliding zone. (Displacements scaled: 250 times in x-direction,
40 times in z-direction.)

Case 1 Case 2 Case 3
No. l.s. No. Cum. No. l.s. No. Cum. No. l.s. No. Cum.

it./l.s. No. it. it./l.s. No. it. it./l.s. No. it.
1 6 6 1 6 6 1-9 6 54
2 5 11 2 5 11 10-12 7 75
3 5 16 3 5 16 13-15 8 99

4-18 4 76 4-16 4 68 15-17 9 126
19-20 5 86 17-20 3 88 18-20 10 156

Table 4.4: Full sliding of a parabolical block. Biquadratic elements. Node-to-segment
contact approach. Influence of various contact stiffness parts on convergence. Case
1: full matrix; case 2: without curvature parts; case 3: only main matrix. Comparison
of no. of iterations in all load steps (l.s.)

4.6.3 Large sliding on a rigid parabolical cylinder

As an example of a problem with a 3D spatial large sliding, we consider
here a motion of a semi-circular cylinder on the surface of a paraboli-
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Figure 4.12: Parabolical cylinder. Horizontal loading. Distribution of the tangent dis-
placement over X-coordinate. Phase 2 — spreading of the left sliding zone.
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Figure 4.13: Parabolical cylinder. Horizontal loading. Reaction forces ratio Fτ/Fn on
the contact surface for various states of loading.
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cal cylinder in analogy to [100], see Fig. 4.14. The necessary details
for the description of contact with rigid surfaces described by analytical
functions is given in a short from [57].

4.6.3.1 Contact with a surface described by analytical functions

If a body contacts a rigid surface, the latter one is chosen as a ”slave”
surface in our description, but the integration is performed over the
”master” surface. The rigid surface is then parameterized by internal
coordinates α1, α2. Then a point r of this surface has to satisfy eqn.
(4.26) as a point in the local coordinate system of the contact element
too. This condition leads to the following equation

r(α1, α2) = ρ(ξ1, ξ2) + ξ3n. (4.115)

The ’slave’ point projection procedure, which was necessary for the
previous description with surface segments, now turns into the deter-
mination of the surface point defined by equation (4.115). Using a
”segment-to-segment” type strategy for the computation of the contact
integral, first integration points ξ1

I , ξ
2
J are defined on the ”master” seg-

ment and then the corresponding internal coordinates α1, α2 of the rigid
surface as well as the penetration ξ3 are computed e. g. by the Newton
method. For this algorithm we define a function F (α1, α2, ξ3) with the
components given in eqn. (4.115)

F =

⎡
⎣ xs1 − x1 − n1ξ

3

xs2 − x2 − n2ξ
3

xs3 − x3 − n3ξ
3

⎤
⎦ with xi = xi(ξ

1, ξ2). (4.116)

Its derivative with respect to the coordinates (α1, α2, ξ3) is:

F′ =

⎡
⎣ xs1,1 xs1,2 −n1

xs2,1 xs2,2 −n2

xs3,1 xs3,2 −n3

⎤
⎦ . (4.117)

Then, the Newton iteration procedure reads as follows for iteration
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step n:

Δαn =

⎡
⎣ Δα1

n

Δα2
n

Δξ3
n

⎤
⎦ = −(F′)−1

n Fn, (4.118)

αn+1 = αn + Δαn.

Parabolical cylinder. Consider a parabolical cylinder in the canonical
form:

xs = α

ys = cα2 (4.119)

The Newton procedure in eqn. (4.118) in this case is reduced to the
definition of α from the following iterative expression:

α(n+1) =
c(α(n))2n1 + n1x2 − n2x1

2cα(n)n1 − n2
(4.120)

where an initial guess can be computed e.g. as

α(0) = x1 (4.121)

The value of the penetration does not require an iterative procedure and
can be computed after the definition of α as

ξ3 =
cα2 − 2cαx1 + x2 − n2x1

2cα(n)n1 − n2
. (4.122)

Spiral equidistant motion to a cylinder. Now we consider a 3D motion on
the surface of the parabolical cylinder. In order to generalize the equidis-
tant motion in eqn. (4.114) into a spiral one we consider the parameter-
ization in the form:

x = vt, y = Ht/T, (4.123)
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Figure 4.14: Spiral motion of a circular semi-cylinder on the parabolical cylinder.
Segment-to-analytical surface approach.

where v is a loading rate, T is the final load step. Thus, the spiral motion
with the trajectory shown in Fig. 4.14 is defined as

r =

⎧⎨
⎩

vt(1 − 2ch)

Ht/T
h + c(vt)2(1 − 2ch)

⎫⎬
⎭ , t = 0, 1, 2, ..., T. (4.124)

For the numerical example, we chose the spiral motion of a short
deformable circular semi-cylinder with radius R = 1 and l = 0.4 on the
surface of the parabolical cylinder with parameters c = 5 · 10−2, H = 20,
see Fig. 4.14. The semi-cylinder is made of the linear elastic material:
E = 2.10 · 104; ν = 0.3 and meshed with linear ”solid-shell” elements
16 × 3 as shown in Fig. 4.14. Coulomb friction with μ = 0.3 is specified
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between the bodies.
The loading process consists of two stages:
1) the circular semi-cylinder positioned at the initial point is pressed

into the parabolical cylinder with Δz = h = −0.01

2) then the circular semi-cylinder is moving on the parabolical surface,
providing an equidistant motion of the central axis with the distance R +
Δz = 0.99 according to eqn. (4.124) together with the upper surface
parallel to the X-Z plane. Thus, the central axis of the semi-cylinder is
moving according to the following equation:

r =

⎧⎨
⎩

1.001vt

20t/T
h + 5.005 · 10−2(vt)2

⎫⎬
⎭ . (4.125)

The displacements are applied in 1000 load steps with v = 10−2, pro-
viding an increment Δy = 0.02 which is larger than the critical threshold
value in eqn. (4.108). The Gauss integration formula with 4 × 4 inte-
gration points is used to check the value of penetration in eqn. (4.115).
Here we concentrate again on the investigation of the influence of the
various parts of the matrix on the convergence. Since the contact ge-
ometry is linear only due to the discretization of the semi-cylinder, the
cases with the main matrix and the tangent matrix without curvature part
are compared, see Table 4.5 for the first 20 loads steps. Obviously, it
is definitely advantageous to use the tangent matrix without curvature
parts, but keeping the rotational parts in this problem.

4.7 Conclusions

In this contribution a fully convective description for frictional contact has
been proposed. For this, a special local coordinate system according to
the closest point procedure is used. The core of the description is to
consider differential operations in the covariant form with expressing all
values on the tangent plane. Thus, e.g. a penalty regularization of the
Coloumb friction law leads to evolution equations expressed in the co-
variant derivatives. This approach has several advantages. First, the
artificial non-symmetry of the sticking tangent matrix, which appeared
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Case 1 Case 2
No. l.s. No. Cum. No. l.s. No. Cum.

it./l.s. No. it. it./l.s. No. it.
1 9 9 1 10 10
2 8 17 2-18 13 231
3 5 22 19 12 243

4-20 4 90 20 11 254
... ... ... ... ... ...

Table 4.5: Sliding of a semi-cylinder on a parabolical block. Bilinear contact elements.
Segment-to-analytical surface contact approach. Influence of various contact stiffness
parts on convergence. Case 1: excluding only curvature matrix; case 2: only main
matrix. Comparison of no. of iterations for the fist 20 load steps (l.s.)

in earlier publications, is removed. Second, the structure of each tan-
gent matrix is more geometrical and algorithmic. It allows to distinguish
between three parts of a tangent matrix, namely the ”main” part, the
”rotational” part and the ”curvature” part. Further, the geometrical in-
terpretation of the covariant derivatives leads to a continuous numerical
integration algorithm which overcomes the discontinuities of the convec-
tive variables.

It was shown in the numerical examples that frictional contact prob-
lems can be subdivided into two types. The first type contains the de-
velopment of a sticking-sliding zone. In this case, small loads steps,
which can be estimated by considering an elastic layer under friction
conditions, are necessary. In due course, it appears that then the dif-
ferences in the convergence rate between computations with various
tangent matrix are meaningless. For the second type a fully developed
sliding is assumed and, therefore, fairly large steps beyond the thresh-
old value can be applied. In this case it is important to compute with the
matrix containing the rotational part. Keeping the curvature matrix leads
only to a small improvement.
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4.8 APPENDIX

A. Proof of the Weingarten formula.

Having taken the derivative of the unity equation n ·n = 1 with respect
to surface coordinates ξi, we obtain n·ni = 0, from which follows that the
vectors ni are orthogonal to n and, therefore, lay on the tangent plane
of the surface. Thus, ni is expressed as a sum of the surface vectors ρi

ni = c.k
i. ρk. (4.126)

Computing a dot product with ρj

(ni · ρj) = c.k
i. (ρk · ρj) → (ni · ρj) = c.k

i. akj, (4.127)

a derivative of the orthogonality condition ρi ·n = 0, gives ρij ·n+ρi ·nj =
0. Thus

hij ≡ (ρij · n) = −(ρi · nj) (4.128)

Therefore, the c.k
i. can be defined as

c.k
i. = −hija

jk, (4.129)

from which Weingarten’s formula (4.13) is obtained.

B. Proof of the Gauss-Codazzi formula.

In general, the derivatives of the coordinate surface vectors ρi are no
longer on the surface, therefore, one should express them by the vectors
ρ1, ρ2,n

ρij = Γk
ijρk + hijn. (4.130)

Expressions for Γk
ij and hij follow from the computation of the dot prod-

uct with the basis vectors ρj and the normal n.
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C. Covariant derivative of covariant components.

In the case of covariant components we need the derivative of a con-

travariant base vector
∂ρ i

∂ξj
instead of ρij, see eqn. (4.17). First, take

the derivative of the mixed metric components:

∂ak
i

∂ξj
=

∂(ρi · ρ k)

∂ξj
= (ρij ·ρ k) + (ρi ·

∂ρ k

∂ξj
) = Γk

ij + (ρi ·ρ k
,j ) = 0, (4.131)

therefore,
(ρi · ρ k

,j ) = −Γk
ij (4.132)

and the covariant derivative for the covariant component gets the follow-
ing form

∇jTi =
∂Ti

∂ξj
− TkΓ

k
ij. (4.133)

D. Proof that the full time derivative is a Lie time derivative.

In order to prove eqn. (4.32) consider the vector r(ξi) in the reference
Cartesian frame:

r = Xkek (4.134)

where ek are unit vectors of the Cartesian reference frame. By definition
of the reference frame the vectors ek are time independent. Since here
only the spatial case is considered, all indices are running from 1 to
3. The vector r is assumed to be time independent only for simplicity
without loss of generality. The coordinate vectors ri are defined as

ri =
∂Xk

∂ξi
ek = (F−1)k

i ek (4.135)

where (F−1)k
i are components of the inverse gradient deformation tensor

F with components

F i
j =

∂ξi

∂Xj
, (4.136)
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which are used for the vice versa transformation:

ek = F i
kri. (4.137)

Eqns. (4.137) and (4.135) give the push-forward operator F and the
pull-back operator F−1 respectively in a tensor form:

F = F i
jri ⊗ e j, F−1 = (F−1)i

jei ⊗ r j (4.138)

The Lie time derivative of the spatial vector T = T iri is taken following
the rule: pull-back to the reference configuration, take time derivative,
push-forward to the current configuration:

LtT = F
d

dt
(F−1T) = (4.139)

= F k
nrk ⊗ e n · d

dt

(
(F−1)j

iej ⊗ r i · Tmrm

)
=

= F k
nrk ⊗ e n · d

dt

(
(F−1)j

iejδ
i
mTm

)
=

= F k
nrkδ

n
j

d

dt

(
(F−1)j

iT
i
)

=
d((F−1)j

iT
i)

dt
F k

j rk.

This is a full time derivative. It can be seen directly

d[(F−1)j
iT

i]

dt
F k

j rk =
d[(F−1)j

iT
i]

dt
ej =

d[(F−1)j
iT

iej]

dt
=

d[T iri]

dt
=

dT

dt
. (4.140)

For the proof only the time independence of the reference basis vectors
ej was used. Some algebraic manipulations of equation (4.139) are
required to show this for the components.

LtT =
d[(F−1)j

iT
i]

dt
F k

j rk = (4.141)

=
∂T i

∂t
(F−1)j

iF
k
j rk +

∂T i

∂ξn
(F−1)j

iF
k
j ξ̇nrk +

∂(F−1)j
i

∂ξn
T iF k

j ξ̇nrk =

=
∂T i

∂t
δk
i rk +

∂T i

∂ξn
δk
i ξ̇

nrk +
∂(F−1)j

i

∂ξn
T iF k

j ξ̇nrk.

The last term contains Christoffel symbols. In order to elaborate this,
their determination in the reference frame has to be considered. Equa-
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tion (4.15) can be written as

Γk
ijakl = rij · rl (4.142)

Γk
ij

∂Xm

∂ξk

∂Xm

∂ξl
=

∂Xn

∂ξi∂ξj

∂Xn

∂ξl

and, exploiting the chain rule,

Γk
ij

∂Xm

∂ξk

∂Xm

∂ξl

∂ξk

∂Xp

∂ξl

∂Xr
=

∂Xn

∂ξi∂ξj

∂Xn

∂ξl

∂ξk

∂Xp

∂ξl

∂Xr
−→ Γk

ijδ
m
p δm

r =
∂Xn

∂ξi∂ξj
δn
r

∂ξk

∂Xp

finally one obtains

Γk
ij =

∂Xn

∂ξi∂ξj

∂ξk

∂Xn
(4.143)

Now the Lie derivative (eqn. (4.141)) can be written as:

Lta = =
∂ai

∂t
ri +

∂ai

∂ξn
ξ̇nri +

∂Xj

∂ξi∂ξn

∂ξk

∂Xj
aiξ̇nrk (4.144)

=
∂ai

∂t
ri +

∂ai

∂ξn
ξ̇nri + Γk

ij ξ̇
jairk.

This is a full vector derivative (4.18) including the covariant
derivative (4.19).
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5

Computational aspects and
implementation of the covariant
approach for contact analysis

Abstract
This chapter is devoted to various numerical aspects arising in ap-
plications of the covariant approach with finite elements. Thus, the
algorithms known in literature are reconsidered under the unified co-
variant description. These are “Node-To-Surface” (NTS), “Segment-To-
Segment” (STS) and “Segment-To-Analytical (rigid) Surface” (STAS).

The closest point projection of the “slave” integration points onto the
master segment forms the basis of the STS-algorithm. Thus, various
numerical integration schemes based a) on simple increasing of the
number of integration points of Lobatto or Gauss type; b) on subdivision
of the integration area into subdomains with further application of the
quadrature formula are developed to satisfy the patch test. A smoothing
technique based on NURBS spline smoothing is considered in applica-
tion with a covariant approach. The numerical example is chosen to
show the behavior for the patch test. A set of closed form solutions for
the penetration is obtained for the STAS approach – for a plane, for a
cylinder, for a sphere, for a torus and for a cone. A reduced technique to
compute penetration is considered for the surface of evolution. Special
attention is given to discretization techniques in application with “Solid-
Shell” elements with various orders of approximation. Algorithms are de-
veloped to improve various results such as quality of force-displacement
or strain-displacement curves. Special attention is given to deep draw-
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ing problems.
Within the chapter the results partially published in articles and dif-

ferent conference proceedings as well as only presented in international
conferences are summarized, somehow reconsidered and rewritten.

5.1 Computation of contact integrals –
Mortar type contact∗

Within the finite element method the contact integrals in
eqn. (3.35), (4.60) leading to the residual, as well as the integrals
leading to the consistent tangent matrix, see eqns. (3.40), (3.41),
(3.42), (3.43) for non-frictional contact, or in Tables 4.5 and 4.5 from
Chapter 4 for frictional contact, have to be computed using one or
another quadrature formula. In the most common approach known
as “node-to-surface” technique the value at the nodes from the finite
element discretization of the “slave” part is taken directly. As is well
known, this technique can be only directly applied in the case of linear
approximations for both “slave” and “master” parts, see [194], and it
does not satisfy the patch test, see [31]. This fact can be explained
as under-integration of the contact integral, because the Lobatto
quadrature formula with only two integration points gives exactly a
nodal collocation formula in this case. As an improvement different
quadrature formulae of higher order can be used. In this situation the
question arrises: How many integration points have to be taken in order
to achieve a certain error bound? The usual formula to estimate the
integration error does not give a correct answer, because it requires
differentiability of the integrand up to a certain order. This is not the
case for the computation of the contact integral, which is discussed
in the following: the function in the integral is defined on the master
element, but the computation of the integral has to be done over the
unknown slave surface. In practice, the penetration of “slave” points,
e.g. integration points, from different “slave” segments into the master
segment is checked, see Fig. 5.9. This can be considered as integration

∗The section contains the selected sections from the article [57]: M. Harnau, A. Konyukhov,
K. Schweizerhof. Algorithmic aspects in large deformation contact analysis using “Solid-Shell” ele-
ments, Computers and Structures, 83:1804–1823, 2005.
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of auxiliary functions over the known master surface which again define
a function which is discontinuous on the master surface.

Remark
The “Segment-To-Segment” approach based on the projection of inte-
gration points onto the master segment considered in the current section
became known later as the Mortar method with a penalty regularization
of contact tractions, see Fischer and Wriggers [41] (2005).

5.1.1 Convergence test for the integration algorithm: computa-
tion of the energy associated with the penalty functional

As a representative example to show that the problem of integration of
discontinuous functions arises during the ”master-slave” approach we
consider the classical Hertz problem. Assume that the contact problem
of a cylinder and a semi-infinite elastic plane, see Fig. 5.1, is solved
by the standard penalty approach for the finite element method. Let
CD be a 2D contact element. Controlling the process with an applied
vertical displacement h, the cylinder penetrates into the plane within
the first iteration as shown in Fig. 5.1. A characteristic quantity for the
satisfaction of contact is the value of the energy associated with the
penalty form in e.g. the first iteration. It has the following form:

Eg =
1

2

∫
AB

εNg2
Ndx =

εN

2
J . (5.1)

The value of the integral J in eqn. (5.1) can be evaluated in closed
form, because both the penetration gN and the contact zone AB are
defined from the specific geometry as:

gN = R − h −
√

R2 − x2, AB = 2
√

h(2R − h) . (5.2)

The integral J after evaluation and some transformations has the fol-
lowing form:
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Figure 5.1: Cylinder during the first iteration

J =

∫ +
√

h(2R−h)

−
√

h(2R−h)

(R − h −
√

R2 − x2)2dx = (5.3)

=
2

3
(3R2 − 2Rh + h2)

√
h(2R − h) − 2R2(R − h) arcsin

√
h(2R − h)

R
.

Within the finite element solution the value of the integral J becomes:

J =

∫
AC

〈gN 〉2dx, (5.4)

where 〈 〉 denotes the Macauley brackets in the form

〈gN〉 =

{
0, if gN > 0
gN , if gN ≤ 0

(5.5)

The value of the integral in eqn. (5.4) is computed over the contact
element CD, while the contact region AB is detected via the integra-
tion points, which then leads in general to a discontinuous function de-
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fined over the contact element CD. Before comparing the results, we
describe in the following section one of the techniques to integrate dis-
continuous functions [33].

5.1.2 Integration schemes using a subdivision scheme into sub-
domains

The a-priori error estimation in the case of the application of Gauss
quadrature rules for discontinuous functions is a rather complicated
question, because it is necessary to know the behavior of the integrand,
see e.g. [33]. However, this is in general not known in the considered
cases of rather general contact surfaces. One can only expect, that
increasing the number of integration points leads to a reduction of the
integration error. As an improved and efficient technique to decrease
the integration error a subdivision of the integration area into subdo-
mains together with lower order integration in each subdomain can be
used (see e.g. [33]). With the same number of integration points as for a
standard Gauss integration this technique leads to a smaller integration
error, as is shown in the following.

Let A be an area of element. In the case of a quadrilateral contact
element with area A, this can be subdivided into non-overlapping sub-
domains Aij:

A =
⋃
ij

Aij. (5.6)

Now we consider the subdivision of A with the local coordinate sys-
tem ξ, η into rectangular subdomains, see Fig. 5.2, e.g. into m parts
along the ξ axis and into n parts along η axis. In each subdomain a sep-
arate local coordinate system ξi, ηj, which has to satisfy the following
conditions, is introduced:

ξi = −1 if ξ =
2i

m
− 1, (5.7)

ξi = 1 if ξ =
2(i + 1)

m
− 1, i = 0, 1, 2, ...m− 1
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Figure 5.2: Subdivision of the contact segment into subdomains for integration

and

ηj = −1 if η =
2j

n
− 1, (5.8)

ηj = 1 if η =
2(j + 1)

n
− 1, j = 0, 1, 2, ...n− 1

Then, the transformation of the coordinates ξi, ηj into ξ, η can be writ-
ten as:

ξ =
ξi

m
+

2i + 1

m
− 1, η =

ηj

n
+

2j + 1

n
− 1. (5.9)

Finally, the integration of a function f(ξ, η) over the area A in the local
coordinate system ξ, η leads to a sum of integrals over each subdomain
Aξi,ηj

:
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∫ +1

−1

∫ +1

−1

f(ξ, η)dξdη =

m−1∑
i=0

n−1∑
j=0

∫
Aξi,ηj

f(ξ, η)dξdη = (5.10)

=
1

m · n
m−1∑
i=0

n−1∑
j=0

∫ +1

−1

∫ +1

−1

f

(
ξi

m
+

2i + 1

m
− 1,

ηj

n
+

2j + 1

n
− 1

)
dξidηj.

Each integral in formula (5.10) is computed via standard quadrature for-
mulae, e.g. Gauss integration.

In order to consider general features of the proposed approach, first
the exact value of the integral J in eqn. (5.3) is compared with the
computed value in (5.4) for a line contact. The following parameters
are taken: radius of cylinder R = 2.0, vertical displacement h = 0.1,
length of element CD = 2.0. In this case as exact value of the integral
J = 6.7099 · 10−3 and as length of the contact zone AB = 1.249 are
obtained. The following relative error e is used for comparison of the
computed value Jcom with the exact value J :

e =
Jexact − Jcom

Jexact
· 100% . (5.11)

Tab. 5.1 shows the relative error e in the case of various numbers of
Gauss points and subdivisions.

As expected, the formula with subdivisions leads to a smaller er-
ror than the standard single domain Gauss formula. It is obvious that
among the formulae with a fixed total number of integration points the
smallest error is obtained by the formula that combines both the maxi-
mum number of subdivisions and the maximum number of Gauss points
which can be independently chosen.

After the description of the contact elements in the following part we
will show that the proposed approach allows first to diminish the error
for the patch test and second to improve the quality of the results, e.g.
the load-displacement curve.
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No. of Gauss points No. of subdivisions e %
2 1 93.4232
3 1 -32.4737
5 1 5.4618
6 1 -2.4670
3 2 4.7420
2 3 -0.1113
7 1 -1.0916
10 1 -0.6844
5 2 0.2399
2 5 0.2018
20 1 -0.0669
10 2 0.1147
5 4 0.0978
4 5 0.0153
2 10 0.0271
40 1 0.0114
20 2 0.0196
10 4 -0.0137
8 5 -0.0021
5 8 0.0001
4 10 0.0029
2 20 0.0142

Table 5.1: Relative error in energy of the contact integral for the penalty formulation;
comparing standard Gauss integration with subdivisional Gauss integration in subdo-
mains

5.2 Contact with rigid surfaces described by analytical
functions – two strategies

Two strategies can be applied if one of the contacting bodies is rigid
and can be analytically parameterized (directly by known analytical func-
tions, or by suitable NURB splines in a CAD system). These strategies
depend on the selection of the master or slave part in a surface coordi-
nate system.
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5.2.1 Rigid surface is a “slave” surface

If the rigid surface is a “slave” surface then we can write the following
coordinate system:

rs(α
1, α2) = ρ(ξ1, ξ2) + ξ3 n(ξ1, ξ2). (5.12)

The rigid surface rs is then parameterized by internal Gaussian coordi-
nates α1, α2. ρ(ξ1, ξ2) is the parameterization of our “master” deformable
segment from the finite element mesh and n is the normal to the master
segment. In other words, a point rs of this surface is observed in the
local coordinate system of the contact master element. The standard
Closest Point Projection procedure, which was necessary for the previ-
ous description with surface segments, now turns into the determination
of the surface point defined by equation (5.12). Using a ”segment-to-
segment” type strategy for the computation of the contact integral, the
integration points ξ1

I , ξ
2
J are defined on the ”master” segment and then

the corresponding internal coordinates α1, α2 of the rigid surface as well
as the penetration ξ3 are computed e. g. by the Newton method. For this
algorithm we define a function F (α1, α2, ξ3) with the components given
in eqn. (5.12)

F =

⎡
⎣ xs1 − x1 − n1ξ

3

xs2 − x2 − n2ξ
3

xs3 − x3 − n3ξ
3

⎤
⎦ with xi = xi(ξ

1, ξ2). (5.13)

Its derivative with respect to the coordinates (α1, α2, ξ3) is:

F′ =

⎡
⎣ xs1,1 xs1,2 −n1

xs2,1 xs2,2 −n2

xs3,1 xs3,2 −n3

⎤
⎦ . (5.14)

Then, the Newton iteration procedure reads as follows for iteration
step n:

Δαn =

⎡
⎣ Δα1

n

Δα2
n

Δξ3
n

⎤
⎦ = −(F′)−1

n Fn, (5.15)

αn+1 = αn + Δαn.
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Remark
A numerical example with such a strategy has been shown for the
parabolic cylinder in Chapter 4, Section 4.6.3. Another example in which
the iterative solution in eqn. (5.15) can be simplified is a surface of rev-
olution.

5.2.1.1 Surface of revolution∗

For a surface of revolution, given by an analytical function, or described
by NURBS, see [38], a matrix form solution for the coordinate incre-
ments in eqn. (5.15) can be directly developed. In the simplest case f(r)

can be a plane curve uniquely projected onto the r axis, see Fig. 5.3.
The revolution of the curve about the axis OZ gives a surface of revolu-
tion. In a Cartesian coordinate system it can be written as

X

Y

Z

f(r)

φ
r

n

ξ 3

slave

master

C

S

Figure 5.3: The surface of revolution

∗The material has been partially included in [87]: A. Konyukhov, K. Schweizerhof. Large Deforma-
tion Frictional Contact Formulation for Low Order “Solid Shell” Elements, ECCOMAS-2004, Jyväskylä.
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rs(r, φ) =

⎡
⎣ xs

ys

zs

⎤
⎦ =

⎡
⎣ r cos φ

r sinφ

f(r)

⎤
⎦ . (5.16)

Then the iteration vector Δαn in eqn. (5.15) gets the following form:

Δαn =

⎡
⎣ Δrn

Δφn

Δξ3
n

⎤
⎦ (5.17a)

where

Δrn =
1

D
· ((x3 − f(r))(n1 cos φ + n2 sin φ) + n3(r − x1 cos φ − x2 sin φ)) (5.17b)

Δφn =
1

Dr
·
(
(f(r) − x3 − rf ′(r))(n1 sin φ − n2 cos φ)+ (5.17c)

+ f ′(r)(n1x2 − n2x1) + n3(x1 sin φ − x2 cos φ)
)

Δξ3
n =

1

Dr
·
(
f ′(r)(x1 cos φ + x2 sin φ − r) + f(r) − x3 (5.17d)

+ ξ3[f ′(r)(n1 cos φ + n2 sin φ) − n3]
)

and with the determinant

D = − n3 + f ′(r)(n1 cos φ + n2 sin φ). (5.17e)

5.2.2 Rigid surface is a “master” surface

Preserving variables ξ1, ξ2 only for the finite element approximations for
the case the rigid surface is a “master” surface we can write the
following coordinate system:

rs(ξ
1, ξ2) = ρ(α1, α2) + pn(α1, α2). (5.18)

Now, an integration point rs(ξ
1, ξ2) from the deformable “slave” finite el-

ement segment is found in the direction of the normal n(α1, α2) to the
rigid “master” surface ρ(α1, α2). This distance denoted as p plays role
of the penetration. It is important to note that the distance p between
the master surface and slave point is not coinciding with the pen-
etration ξ3 measured from the finite element segment, because, the
normals from the master and the slave, in general, are not parallel. The
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situation is illustrated for the contact between the rigid sphere and a
“slave” segment in Fig. 5.5. However, when two bodies are close to
contact then the normals are almost parallel, in fact, they are enforced
to be parallel by the contact algorithm. This leads to the possibility to
use the current approach for the contact mechanics. Another important
remark is that the normal for any further computational algorithm (e.g.
necessary for tangent matrices) must be computed from the deformable
“slave” segment, otherwise disconvergence will be obtained. The corre-
sponding penetration is taken as ξ3 = p.

The Newton method is exploited in this approach in order to solve
eqn. (5.18) defining then a point with the coordinates α1, α2 on the rigid
surface and the distance p between this surface and selected integration
point on the “slave” segment rs(ξ

1, ξ2).

5.2.3 Surfaces allowing a closed form solution for the penetration

Here some simple analytical surfaces in both strategies are chosen for
which it is not necessary to solve nonlinear equations (5.12) or (5.18) in
order to compute the value of the penetration. We consider here plane,
cylinder, sphere, torus and cone. For them it is possible to derive the
closed form solution for the penetration.

5.2.3.1 Contact with a rigid plane

The simplest example with a closed form solution for the rigid surface as
a “slave” strategy is a contact with a rigid plane. Consider a rigid “slave”
plane given in the in analytical form as:

(r− r0) ·N = 0, (5.19)

where r0 is any point on the plane, N is a normal vector for the plane
and r is a vector with Cartesian coordinates {x, y, z}. Assuming now
that from one side the slave vector rs belongs to the plane (eqn. (5.19))
and from another side it is observed from the master segment, i.e. it is
satisfying eqn. (5.12) we can write the following system:{

(rs − r0) ·N = 0
rs = ρ(ξ1, ξ2) + ξ3 n(ξ1, ξ2).

(5.20)
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Figure 5.4: Contact with a rigid plane given analytically

Just inserting rs from the second equation into the first one, we can
obtain the value for the distance ξ3, and therefore for the penetration as:

ξ3 = −(ρ(ξ1
i.p., ξ

2
i.p.) − r0) · N

n(ξ1
i.p., ξ

2
i.p.) · N

(5.21)

It is easy to see, that the distance is always resolved if

n(ξ1
i.p., ξ

2
i.p.) · N 	= 0, (5.22)

which means the slave plane is not orthogonal to the tangent plane of
the master segment.

For the further computations, as a vector ρ(ξ1
i.p., ξ

2
i.p.) is given at inte-

gration points ξ1
i.p., ξ

2
i.p. of the master segment, the normal n(ξ1

i.p., ξ
2
i.p.) is

also computed at the same points.
Remark

Since, the parameterization of the master segment is considered arbi-
trary (the segment in Fig. 5.4 is shown intentionally curved), the cor-
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responding contact approach works with any kind of approximation for
finite elements.

5.2.3.2 Contact with a rigid sphere

The computation of the penetration for contact with a rigid sphere is the
most trivial case for the rigid surface is a “master” strategy, because the
absolute value of a vector, and therefore, a distance in the Cartesian
coordinate system is defined in a form of a sphere equation. However,
we formally start with the definition of a coordinate system assigned to
the spherical surface:

rs = RC + ρsph + pnsph, (5.23)

where RC is a center of the sphere, ρsph is a vector of the sphere with
radius R, satisfying ‖ρsph‖ = R. Since ρsph is parallel to the unit normal
nsph, see Fig. 5.5, we can rewrite eqn. (5.23) as

rs −RC = Rnsph + pnsph, (5.24)

Taking then the absolute value we obtain

‖rs −RC‖ = |R + p|, (5.25)

and the distance p as

p =

{ ‖rs −RC‖ − R – for an outward normal

R − ‖rs −RC‖ – for an inward normal
(5.26)

The first part in equation (5.26) is describing the simple geometrical fact
AS = CS − CA in Fig. 5.5 as a positive distance from the sphere in the
outward direction of the sphere. A continuum body is the interior of the
sphere in this case. The second equation describes a positive distance
in the inward direction of the sphere. In this case the continuum is the
exterior of the sphere.
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Figure 5.5: Contact with a rigid sphere given by an analytical equation

5.2.3.3 Contact with a rigid cylinder

Another example of the closed form solution within the Rigid surface is
a “master” strategy is a distance between a cylinder and a point, see
Fig. 5.6. The cylinder with a radius R can be given in the following form:

ρ(ϕ, z) = RC + z ez + R eϕ(ϕ) (5.27)

where RC is an arbitrary point on the central axis of the cylinder CCz,
ez is a unit vector of the central axis, eϕ(ϕ) is a unit vector in the radial
direction of the polar coordinate system in the orthogonal plane, see
Fig. 5.6. The unit coordinate vectors are orthogonal (eϕ(ϕ) · ez) = 0.
Noting that the vector eϕ is normal to the cylinder, the slave point S is
observed in the coordinate system assigned to the cylindrical surface
as:

rs = ρ(ϕ, z) + p eϕ(ϕ), (5.28)

Substituting ρ in eqn. (5.28) from eqn. (5.27) we obtain:

RC − rs + z ez + (R + p) eϕ(ϕ) = 0. (5.29)
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Figure 5.6: Contact with a rigid cylinder given by an analytical equation

First, a coordinate z is defined after taking the scalar product with ez:

z = −(RC − rs) · ez; (5.30)

afterwards the absolute value in eqn. (5.29) is taken as

‖RC − rs + z ez‖ = |R + p|, (5.31)

then the distance p is defined as

p =

{ ‖RC − rs −
(
(RC − rs) · ez

)
ez‖ − R – for an outward normal

R − ‖RC − rs −
(
(RC − rs) · ez

)
ez‖ – for an inward normal

(5.32)

The distance p is defined to be positive in both outward and inward
direction, see the explanation in Section 5.2.3.2.
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5.2.3.4 Contact with a rigid torus

Consider a torus as a result of rotating a circle given in the XOZ-plane
along the OZ-axis by increasing the angular coordinate ψ in the XOY -
plane, see Fig. 5.7. The torus can be given in the following form:

ρ(ϕ, ψ) = R eR(ψ) + r eϕ(ϕ), (5.33)

where eR and eϕ are radial unit vectors for the polar coordinate system
given by two orthogonal planes. First, we define a scalar product eR · ρ.
This product defines a projection of the vector

−→
OA = ρ = (x, y, z) on the

plane XOY , therefore,

ρ · eR =
√

x2 + y2. (5.34)

This product allows to get rid of eϕ in eqn. (5.33), by taking an absolute
value:

‖ρ − R eR‖2 = ‖r eϕ‖2 (5.35)

Transformation of the scalar products lead to a torus equation in the
following form

‖ρ‖2 + R ‖eR‖2 − 2R (ρ · eR) = ‖r eϕ‖;
or written by coordinates:

x2 + y2 + z2 + R2 − 2R
√

x2 + y2 = r2. (5.36)

Now we can proceed with the observation of the slave point rs =

ϕ

S

n
ξ

3

eϕ

C

X

Z

YO A

rs

pψ

r

eRR

Figure 5.7: Contact with a rigid torus given by an analytical equation
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(xs, ys, zs) at the distance p in the toroidal coordinate system, remem-
bering that eϕ is a normal vector to the torus surface

rs = R eR(ψ) + (r + p) eϕ(ϕ), (5.37)

Similar transformations are leading to the following distance:

p =

⎧⎪⎨
⎪⎩

√
x2

s + y2
s + z2

s + R2 − 2R
√

x2
s + y2

s − r – for an outward normal

r −
√

x2
s + y2

s + z2
s + R2 − 2R

√
x2

s + y2
s – for an inward normal

(5.38)

The distance p is defined to be positive in both outward and inward
directions, see the explanation in Section 5.2.3.2.

5.2.3.5 Contact with a rigid cone

A cone can be considered also within the rigid surface is a “master”
strategy. The cone, see Fig. 5.8, has the OZ-rotation axis and is defined
as:

ρ(r, ϕ) = r er(ϕ) + r tanα ez, (5.39)

where er and ez are unit vectors of the cylindrical coordinate system.
The outward normal vector n is simply defined from the geometry of a
triangle, see Fig. 5.8.

n = sin α er − cos α ez (5.40)

The slave point at the distance p from the cone surface is written first
in the cone coordinate system and then in the cylindrical coordinate
system as:

rs = ρ(r, ϕ) + pncone (5.41)

= r tanα ez + r er + p(sinα er − cosα ez)

= (r tanα − p cosα) ez + (r + p sin α) er.

Definition of the distance p is tremendously simplified if we notice that
the vectors ρ and n are orthogonal

ρ · n = 0, (5.42)
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then from eqn. (5.41) we have

p = (rs · n) = sin α (er · rs) − cosα (ez · rs). (5.43)

It is more convenient to consider rs in a cylindrical coordinate system in
order to compute the scalar product in eqn. (5.43) as

rs =
√

x2
s + y2

s er(ϕ) + zs ez, (5.44)

then the penetration in eqn. (5.43) becomes:

p =
√

x2
s + y2

s sin α − zs cos α. (5.45)
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Figure 5.8: Contact with a rigid “master” cone surface

Remark
The rigid surface is a “master” strategy does not give the answer to the
solvability of the contact algorithm. This criterion is appearing from the
geometry analysis of the contact segment. Thus, considering the con-

167



5. ALGORITHMIC ASPECTS IN CONTACT ANALYSIS

tact with a rigid cone described by the rigid surface is a “slave” strategy
as a surface of revolution in Sect. 5.2.1.1 it is necessary for the solv-
ability that the determinant in eqn. (5.17e) is not zero: D 	= 0. Taking
f ′(r) = tanα, the determinant is transformed as

D =
sinα(n1 cosφ + n2 sin φ) − n3 cos φ

cos α
. (5.46)

Using then the definition of the normal for the cone in eqn. (5.40), the
determinant can be written as

D =
nξ · ncone

cos α
	= 0. (5.47)

Now, the criterion of the solvability is clear – a segment normal nξ should
not be orthogonal to the cone normal ncone.

5.3 Finite element discretization for different
contact approaches

The discretization techniques are considered in the current section.
First, the well known ”Node-To-Surface” (NTS) contact element is con-
structed using the covariant approach. Then the discretization for the
”Segment-To-Segment” (STS) approach, (bi-linear and bi-quadratic STS
elements), combined with various integration techniques (see Sect. 5.1)
is considered. A smoothing technique based on a NURB spline ap-
proximation, see [38], is used to obtain C1 continuous contact elements
within the STS approach. Further a general discretization strategy is
presented for the “Segment-To-Analytical-Surface” (STAS) approach.

5.3.1 Node-To-Surface (NTS) contact approach

The master “surface” is approximated and a ”slave” node is taken di-
rectly from the finite element mesh in the case of the ”Node-To-Surface”
approach. A pair approximation for the master segment and a separated
node leads to the Node-To-Surface contact element. If the approxima-
tion of the ’master’ surface is defined by n nodes and the “slave” node
is the (n + 1)’th node, then the nodal vector for the contact element can
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5.3 Finite element discretization for different contact approaches

be written in the following form:

mxT ={mx(1),mx(2), . . . ,mx(n),mx(n+1)}T (5.48)

={x(1)
1 , x

(1)
2 , x

(1)
3 , x

(2)
1 , x

(2)
2 , x

(2)
3 , . . . , x

(n)
1 , x

(n)
2 , x

(n)
3 , x

(n+1)
1 , x

(n+1)
2 , x

(n+1)
3 }T ,

where mx(i), i = 1, 2, . . . n + 1 are vectors for nodal points. Let
N(k)(ξ

1, ξ2), k = 1, 2, ..., n be the shape functions for the master surface
parameterization. We then define the approximation matrix A(ξ1, ξ2)
with 3 × (n + 1) dimension as follows

A =

⎡
⎣ N1 0 0 N2 0 0 ... N(n) 0 0 −1 0 0

0 N1 0 0 N2 0 ... 0 N(n) 0 0 −1 0
0 0 N1 0 0 N2 ... 0 0 N(n) 0 0 −1

⎤
⎦ . (5.49)

On the basis of this notation, the relative displacement vector ρ(ξ1, ξ2)−
rs has the following form

ρ(ξ1, ξ2) − rs = Amx. (5.50)

Both the relative variation, and the relative velocity vector have identical
structure:

δρ − δrs = Aδmx, v − vs = A{v}. (5.51)

For further developments only the matrix of the shape function deriva-
tives A,j, i = 1, 2 has to be specified

∂A

∂ξj
= A,j =

⎡
⎣ N1,j 0 0 N2,j 0 0 ... N(n),j 0 0 0 0 0

0 N1,j 0 0 N2,j 0 ... 0 N(n),j 0 0 0 0
0 0 N1,j 0 0 N2,j ... 0 0 N(n),j 0 0 0

⎤
⎦ , (5.52)

in order to describe the vectors δρ,j and v,j

δρ,j = A,jmx , v,j = A,j{v}. (5.53)

5.3.2 Segment-To-Segment (STS) contact approach

Both ”master” and ”slave” segments should be approximated separately
for a contact pair within the Segment-To-Segment (STS) approach, see
Fig. 5.9. The STS contact element is constructed as follows. Since, the
integration of all parameters is performed over the slave segment, we
have to specify the location of the integration points on the slave element
via the selected integration rule. The slave points are then projected
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onto the master segment. Thus, the contact area is approximated as a
set of integration points which have penetrated into the master segment.
All necessary geometrical contact parameters, such as the penetration
ξ3, the normal n, the tangent vectors ρ1(ξ

1, ξ2), etc. are computed from
the master segment.
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Figure 5.9: Segment-To-Segment (STS) contact approach

Let ABDE be a master segment (see Fig. 5.9) defined by n nodes

mxT
master ={mx(1),mx(2), . . . ,mx(n)}T (5.54)

={x(1)
1 , x

(1)
2 , x

(1)
3 , x

(2)
1 , x

(2)
2 , x

(2)
3 , ..., x

(n)
1 , x

(n)
2 , x

(n)
3 }T ,

and KLMN be a slave segment defined by m nodes

myT
slave ={my(1),my(2), . . . ,my(m)}T (5.55)

={y(1)
1 , y

(1)
2 , y

(1)
3 , y

(2)
1 , y

(2)
2 , y

(2)
3 , ..., y

(m)
1 , y

(m)
2 , y

(m)
3 }T .
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5.3 Finite element discretization for different contact approaches

The shape functions Nk(ξ
1, ξ2), k = 1, 2, ...n and Mk(η

1, η2), k = 1, 2, ...m
are defined for the ”master” and the ”slave” segment respectively. A
displacement vector for the contact element is defined by n + m nodes
as

uT ={u(1)
1 , u

(1)
2 , u

(1)
3 , u

(2)
1 , u

(2)
2 , u

(2)
3 , ..., u

(n)
1 , u

(n)
2 , u

(n)
3 , (5.56)

u
(n+1)
1 , u

(n+1)
2 , u

(n+1)
3 , u

(n+2)
1 , u

(n+2)
2 , u

(n+2)
3 , ..., u

(n+m)
1 , u

(n+m)
2 , u

(n+m)
3 }T .

The approximation matrix A now contains both Nk(ξ
1, ξ2), and Mk(η

1, η2)
shape functions and has the dimension 3 × (n + m):

A(ξ1, ξ2, η1, η2) =

⎡
⎣ N1 0 0 N2 0 0 ... N(n) 0 0

0 N1 0 0 N2 0 ... 0 N(n) 0
0 0 N1 0 0 N2 ... 0 0 N(n)

(5.57)

−M1 0 0 −M2 0 0 ... −M(m) 0 0
0 −M1 0 0 −M2 0 ... 0 −M(m) 0
0 0 −M1 0 0 −M2 ... 0 0 −M(m)

⎤
⎦ .

The slave points are found on the slave segment after the selection
of the integration rule, and therefore, are computed as interpolation over
the slave nodal points my(k), see eqn. (5.55):

rs(η
1
I , η

2
J) |(η1=η1

I , η2=η2
J)=

m∑
k=1

Mk(η
1
I , η

2
J)my(k), (5.58)

where η1
I , η

2
J are integration points. Their projections onto the master

segment are computed then as

ρ(ξ1
c , ξ

2
c ) =

n∑
k=1

Nk(ξ
1
c , ξ

2
c )mx(k), (5.59)

where the coordinates ξ1
c , ξ

2
c are found as the solution of the closest point

projection procedure.
The relative displacement vector is approximated via the matrix A for

the full coordinate vector mx = {mxT
master,myT

slave}T

ρ(ξ1
c , ξ

2
c ) − rs(η

1
I , η

2
J) = A(ξ1

c , ξ
2
c , η

1
I , η

2
J)mx, (5.60)

Since the differential operations for all parts of the tangent matrix,
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see e.g. for non-frictional contact eqns. (3.40), (3.41), (3.42) and (3.43)
are defined only on the master surface, the matrix of the shape function
derivatives is computed only for the ξi derivatives as

∂A

∂ξj
= A,j =

⎡
⎣ N1,j 0 0 N2,j 0 0 ... N(n),j 0 0

0 N1,j 0 0 N2,j 0 ... 0 N(n),j 0
0 0 N1,j 0 0 N2,j ... 0 0 N(n),j

0 0 0 ... 0 0 0
0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

⎤
⎦ . (5.61)

Based on the matrices defined in eqn. (5.57) and (5.61), the relative
vectors for the variation and for the velocity will have the same form as
in eqns. (5.51) and (5.53).

Remark:
An integration rule should be specified by the user for the ”Segment-To-
Segment” contact approach. It should be noted that the Lobatto quadra-
ture formula (see e.g. [33] for a further discussion about numerical inte-
gration) with only 2 × 2 integration points leads exactly to the result of
the ”Node-To-Surface” element.

5.3.3 Segment-To-Analytical Surface (STAS) contact approach

The STAS approach is used in combination with one of the rules to
compute the penetration for the analytically given surfaces, described in
Sect. 5.2. Thus, an approximation is given only for the contact segment
covering the surface of the meshed deformed body. Consider then the
nodal displacement vector with n nodes

muT = {u(1)
1 , u

(1)
2 , u

(1)
3 , u

(2)
1 , u

(2)
2 , u

(2)
3 , ..., u

(n)
1 , u

(n)
2 , u

(n)
3 }T , (5.62)

which is taken from the finite element discretization of the deformable
body.

The approximation matrix A contains then only shape functions
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5.4 Various approximations of contact surfaces defined by finite elements

N(k), k = 1, 2, . . . n:

A =

⎡
⎣ N1 0 0 N2 0 0 ... ... ... N(n) 0 0

0 N1 0 0 N2 0 ... ... ... 0 N(n) 0
0 0 N1 0 0 N2 ... ... ... 0 0 N(n)

⎤
⎦ ; (5.63)

the matrix of the shape function derivatives A,j, i = 1, 2 has the following
form

∂A

∂ξj
= A,j =

⎡
⎣ N1,j 0 0 N2,j 0 0 ... N(n),j 0 0

0 N1,j 0 0 N2,j 0 ... 0 N(n),j 0
0 0 N1,j 0 0 N2,j ... 0 0 N(n),j

⎤
⎦ . (5.64)

All geometrical parameters are computed, of course, based on the seg-
ment geometry, see also the discussion in Sect. 5.2.2.

5.4 Various approximations of contact surfaces
defined by finite elements

As shown in Sect. 5.3, the approximation matrix A and its derivatives
should be supplied for all contact approaches. A huge variety of approx-
imations is known in finite element practice, starting from the classical
results in Zienkiewicz and Taylor [209] extended then to high-order finite
element techniques as in Solin et.al. [164] or the isogeometrical finite
element approximations via NURBS in Hughes et.al. [72]. We consider
here only quadrilateral elements with linear and quadratic approxima-
tion and smoothing techniques based on simplified NURB splines for a
quadrilateral area.

5.4.1 Quadrilateral segment with linear approximation

The geometry for the quadrilateral segment with linear approximation,
see Fig. 5.10, is given by 4 nodes, and therefore, 4 shape functions
are necessary to define the segment. Shape functions and their first
derivatives for −1 ≤ ξ1, ξ2 < +1 are given in Table 5.2.
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Figure 5.10: Quadrilateral segment with linear approximation

Nk(ξ1, ξ2)
∂Nk

∂ξ1

∂Nk

∂ξ2

N1 1

4
(1 + ξ1)(1 − ξ2)

1

4
(1 − ξ2) −1

4
(1 + ξ1)

N2 1

4
(1 + ξ1)(1 + ξ2)

1

4
(1 + ξ2) −1

4
(1 + ξ1)

N3 1

4
(1 − ξ1)(1 + ξ2) −1

4
(1 + ξ2)

1

4
(1 + ξ1)

N4 1

4
(1 − ξ1)(1 − ξ2) −1

4
(1 − ξ2) −1

4
(1 − ξ1)

Table 5.2: Shape functions for a quadrilateral segment with linear approximation

5.4.2 Quadrilateral segment with quadratic
Lagrangian approximation

The geometry for the quadrilateral segment with quadratic Lagrangian
approximation, see Fig. 5.11, is given by 9 nodes. The corresponding 9
shape functions and their first derivatives for −1 ≤ ξ1, ξ2 < +1 are given
in Table 5.3

5.4.3 Surface smoothing techniques in a covariant approach

Since linear finite elements have been mostly used for FE models, it
was soon recognized that faceted geometries are causing problems
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Nk(ξ1, ξ2)
∂Nk

∂ξ1

∂Nk

∂ξ2

N1 ξ1(ξ1 − 1)ξ2(ξ2 − 1)/4 (2ξ1 − 1)ξ2(ξ2 − 1)/4 ξ1(ξ1 − 1)(2ξ2 − 1)/4

N2 ξ1(ξ1 + 1)ξ2(ξ2 − 1)/4 (2ξ1 + 1)ξ2(ξ2 − 1)/4 ξ1(ξ1 + 1)(2ξ2 − 1)/4

N3 ξ1(ξ1 + 1)ξ2(ξ2 + 1)/4 (2ξ1 + 1)ξ2(ξ2 + 1)/4 ξ1(ξ1 + 1)(2ξ2 + 1)/4

N4 ξ1(ξ1 − 1)ξ2(ξ2 + 1)/4 (2ξ1 − 1)ξ2(ξ2 + 1)/4 ξ1(ξ1 − 1)(2ξ2 + 1)/4

N5 (1 − ξ1ξ1)ξ2(ξ2 − 1)/2 −ξ1ξ2(ξ2 − 1) (1 − ξ1ξ1)(2ξ2 − 1)/2

N6 ξ1(ξ1 + 1)(1 − ξ2ξ2)/2 (2ξ1 + 1)(1 − ξ2ξ2)/2 −ξ1(ξ1 + 1)ξ2

N7 (1 − ξ1ξ1)ξ2(ξ2 + 1)/2 −ξ1ξ2(ξ2 + 1) (1 − ξ1ξ1)(2ξ2 + 1)/2

N8 ξ1(ξ1 − 1)(1 − ξ2ξ2)/2 (2ξ1 − 1)(1 − ξ2ξ2)/2 −ξ1(ξ1 − 1)ξ2

N9 (1 − ξ1ξ1)(1 − ξ2ξ2) −2ξ1(1 − ξ2ξ2) −2(1 − ξ1ξ1)ξ2

Table 5.3: Shape functions for a quadrilateral segment with quadratic
Lagrangian approximation
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Figure 5.11: Quadrilateral segment with quadratic Lagrangian approximation

within the contact algorithm due to “jumping” normals on contact bound-
aries. Thus, the idea of smoothing for linear contact surfaces appeared.
The first publications have been focusing on smoothing for rigid obsta-
cles with splines, see Schweizerhof and Hallquist [155] (1992), Shimizu
and Sano [159] (1995)), Heege and Alart [65] (1996) for forming prob-
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lems. Pietrzak and Curnier [144] (1998) discussed a problem resulting
from the non-smoothness of the contact surfaces with the example of
two coaxial cylinders and used different splines for covering the linear
meshes. The major difficulties using a smooth approximation are the
algorithm for the computation of sliding forces and the linearization pro-
cedure, especially for the 3D case. Thus, a special approach based
on a so-called moving friction cone description for the computation of
sliding forces in combination with various spline smoothing techniques
have been proposed for 2D cases in Wriggers at.el. [190] (2001) and
in Krstulovic-Opara and Wriggers [101] (2002), then generalized for 3D
cases in Krstulovic-Opara et.al. [102] (2002). The difficulties in the lin-
earization have then been resolved for numerical examples by using an
automatic differentiation software.

The effect of C2 and C1 smoothing for frictionless 2D problems was
investigated in Stadler et.al. [169] (2003) and a subdivision scheme
for smooth contact surfaces, describing a procedure to sew different
meshes (various quadrilateral patches, triangular + quadrilateral) has
been considered in Holzapfel and Korelc [168] (2004). Again an auto-
matic differentiation software has been used in both publications.

An approach with convective coordinates together with different ap-
proximations including splines and Hermite interpolations for the contact
surface were used to enforce C1 continuity in the 2D case in Padmanab-
han and Laursen [134] (2001). A smoothing procedure for the 3D case,
based on the usage of Gregory patches was suggested in Puso and
Laursen [148] (2002). The problem with the linearization for curvilinear
surfaces has been overcome by taking the Mortar approach for the lin-
ear geometry. The application of a control spline polygon for the search-
ing procedure has been discussed in El-Abbasi et.al. [37] (2001) and in
Al-Dojayli and Meguid [2] (2002)

Since, in this thesis the linearization problems are resolved by the
covariant derivation, we are free now to choose any kind of approxima-
tions. Here, Hermitian approximation as a simple subclass of the NURB
spline approximation is taken.

However, a very short information about spline and NURBS surfaces
is necessary to describe even the simple structure of the smooth el-
ement. Advanced approximation techniques are described in special
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monographs for CAD surfaces, see e.g. Farin [38], Piegl and Tiller [143];
they can be applied within the covariant description without any limita-
tion.

5.4.3.1 Spline interpolation of curves

We start with the construction of splines for curves and consider the
interpolaton problem with different splines.

Bernstein Polynomials are forming a basis function space to construct
polynomial splines and can be generalized into Non-Uniform Rational
B-Spline (NURBS). The Bernstein Polynomials are defined as follows:

Bn
i (t) = Cn

i ti(1 − t)n−i, i = 0, 1, ..., n, (5.65)

where Cn
i =

n(n − 1)...(n− i + 1)

i!
are binomial coefficients. The first

three polynomial sets up to the third order contain the following polyno-
mials:

B0
0(t) = 1, B1

0(t) = 1 − t, B1
1(t) = t;

B2
0(t) = (1 − t)2, B2

1(t) = 2t(1 − t), B2
2(t) = t2;

B3
0(t) = (1 − t)3, B3

1(t) = 3t(1 − t)2, B3
2(t) = 3t2(1 − t), B3

3(t) = t3.

(5.66)

The first problem of spline interpolation is specified as a construction of a
spline which is passing through selected points. Let x0,x1, ...,xn ∈ R3

be given points with parameters u0, u1, ..., un.
Construct a curve r(u) which satisfies the following conditions:

r(uk) = xk, k ∈ {0, 1, ...n}. (5.67)

The second problem of spline interpolation is specified as a construction
of a spline line which is passing through selected points and is possess-
ing certain tangent vectors. Let x0,x1, ...,xn ∈ R3 be given points with
parameters u0, u1, ..., un and m0,m1, ...,mn ∈ R3 be given tangent vector
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with the same parameters.
Construct a curve r(u) which satisfies the following conditions:

r(uk) = xk,
dr(u)

du

∣∣∣
u=uk

= mk, k ∈ {0, 1, ...n}. (5.68)

The solution of the second problem allows to obtain then the C1-
continuous spline for the first problem.

Parameterization of the spline curve. A global spline should be parame-
terized based on the coordinates of the interpolation points. One of the
simplest parameterization is to use the distance between points as a
parameter (a chord length parameterization):

u0 = 0, u1 = ||x1−x0||, ... , ui = ui−1+||xi−xi−1||, i = 2, ..., n. (5.69)

The second interpolation problem – solution in the form of piecewise cubic C1

interpolation. We consider only piecewise interpolations, because this
case is more suitable for further finite element construction. In the
first problem, interpolation points together with their tangent vectors are
known. Both the continuity of tangent vectors (C1 continuity), and the
local support are satisfied. The solution can be constructed in the form
of a Bezier curve, see Farin [38]. The global Bezier curve consists of lo-
cal Bezier curves of third order; it passes through the points x0,x1, ...,xn

∈ R3 and satisfies C1 continuity being a Bezier curve of third order on
each interval (xi,xi+1), i ∈ {0, 1, ..., n− 1}. It should be mentioned that
this problem does not have a unique solution. As an additional con-
straint equation, the normalization of the tangent vector can be taken

||mi|| = 1, i ∈ {0, 1, ..., n}. (5.70)

Boundary Bezier points for each interval (xi,xi+1) are defined from the
interpolation condition:

b3i = xi, i = 0, 1, ..., n; (5.71)

the inner Bezier points are defined as

b3i+1 = b3i + αimi, b3i−1 = b3i − βimi. (5.72)
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Several choices for αi and βi values are discussed in Farin [38], recom-
mended ones are

αi = βi = 0.4||Δxi||. (5.73)

The global Bezier curve is then defined on the interval between points
xi and xi+1 by local Bezier curves:

x(u) = b3iB
3
0(t) + b3i+1B

3
1(t) + b3i+2B

3
2(t) + b3i+3B

3
3(t) = (5.74)

=

3∑
j=0

b3i+jB
3
j (t);

where the local variable t ∈ [0, 1] is given via the global parameter u,
see in eqn. (5.69):

t = (u − ui)/Δi, Δi = ui+1 − ui, i = 0, 1, ..., n− 1. (5.75)

The first interpolation problem – solution in the form of piecewise cubic C1 inter-

polation. The solution of the first problem as piecewise cubic C1 inter-
polation in Bezier form is, in general, not unique – all tangent vectors mi

have to be defined to achieve uniqueness. One of the possible approx-
imations of the tangent vectors is a vector describing a chord through
the points xi−1 and xi+1, i.e.

mi = xi−1 − xi+1, (5.76)

thus leading to the inner Bezier points in the form:

b3i−1 =b3i − Δi−1

3(Δi−1 + Δi)
mi

b3i+1 =b3i +
Δi

3(Δi−1 + Δi)
mi (5.77)

This method is known as the Catmull-Rom spline.

This construction of the spline fails at boundary points x0 and xn. Sev-
eral methods are known to overcome this problem. The idea behind the
Bessel method is to find an interpolating parabola q(u) through the start-
ing points x0,x1,x2 (or through the ending points x0,x1,x2 ) and to take
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the spline tangent direction as the tangent direction for this parabola:

m0 =
dq

du
(5.78)

Another method (Overhauser spline) is to construct a special cubic in-
terpolant in the form:

x(u) =
ui+1 − u

Δi
qi(u) +

u − ui

Δi
qi+1(u), i = 1, ..., n− 2 (5.79)

where qi(u) is the parabola passing through three points, then at the
beginning points one sets x(u0) = q0(0).

Piecewise cubic C1 interpolation in Hermite form. The Hermite form of the
spline is one of the most straightforward implementations into the finite
element method. One can show that the Hermite interpolation is sim-
ply another form of the Bezier interpolation. Consider, as example, the
first spline problem. The boundary Bezier points are the interpolation
points. In order to obtain the inner Bezier points, the derivative formula
for Bezier curves has to be used:

d

du
x(ui) =

3

Δi−1
(b3i − b3i−1) =

3

Δi
(b3i+1 − b3i) = mi (5.80)

Thus, the inner Bezier points are given as

b3i+1 =b3i +
Δi

3
mi, i = 0, 1, ..., n− 1

b3i−1 =b3i − Δi−1

3
mi, i = 0, 1, ..., n (5.81)

The spline in Bezier form can be written after some algebra in the form:

x(u) = xiH
3
0(u) + miH

3
1(u) + mi+1H

3
2(u) + xi+1H

3
3(u), (5.82)
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where H3
i (u) are Hermite polynomials. They can be expressed in terms

of Bernstein polynomials as follows:

H3
0(u) =B3

0(t) + B3
1(t)

H3
1(u) =

Δi

3
B3

1(t)

H3
2(u) = − Δi

3
B3

2(t)

H3
3(u) =B3

2(t) + B3
3(t) (5.83)

where t = (u − ui)/Δi ∈ [0, 1] is the local parameter of the interval
[ui, ui+1].

Equations (5.82) defines the relationship between the Hermite and
the Bezier form of the spline. If the Hermite form is known, then the
inner Bezier points can be calculated and vice versa.

Piecewise cubic C2 interpolation in Bezier form. The requirement of C2-
continuity leads to a linear system of equations with a unique solu-
tion, however, the local support property is lost then which makes
this scheme inconvenient in FEM. Another strategy of keeping the C2-
continuity is to use full NURBS definitions.

Rational B-spline – NURBS. Rational B-splines are one of the standard
curve and surface descriptions in CAD and computer graphics systems.
A generalization of the polynomial curve is a rational curve with order n
of Bernstein’s polynomials. The Bezier form of it can be written as

x(u) =
w0b0B

n
0 (t) + w1b1B

n
1 (t) + ...wnbnB

n
n(t)

w0Bn
0 (t) + w1Bn

1 (t) + ...wnBn
n(t)

. (5.84)

This description of a spline has many advantages due to the additional
degrees of freedom because of additional weights wi. It leads to multi-
ple possibilities to control the geometry. Rational B-splines constructed
in this way are called Non-Uniform Rational B-Spline or NURBS. Spe-
cial literature, however, is available containing all NURBS properties in
detail, see e.g. Farin [38], Piegl and Tiller [143].
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5.4.3.2 Spline surfaces interpolation

The theory outlined for the spline curve interpolation is directly applied
for the surface interpolation problem. However, the situation with sur-
faces is far more complicated: e.g. it is necessary to distinguish a regu-
lar or an irregular net of interpolation points, rules for mixed derivatives
should be additionally developed etc. All these problems are forming a
huge area of research, and we will take only the simplest structures out
of it.

Our main assumption is

• Interpolating points are defining a regular quadrilateral surface
mesh in a Cartesian coordinate system.

Thus, we directly can use the tensor product of Bezier splines, consid-
ered in Sect. 5.4.3.1.

Composite surfaces consist of patches. A patch is a part of the global
surface and has its own parameterization. This property is called a

local support property. The first interpolation problem is formu-
lated then for surfaces as follows:

Let the matrix ⎡
⎢⎢⎣

x00 x01 ... x0m

x10 x11 ... x1m

... ... ... ...
xn0 xn1 ... xnm

⎤
⎥⎥⎦ (5.85)

be a given as a regular net of points xij ∈ R3 with parameters
u0, u1, ..., un and v0, v1, ..., vm. These points are vertices of the quadri-
lateral mesh. Construct the smooth C1 surface parameterization x(u, v)
that satisfies the following condition:

x(ui, vj) = xij, i = 0, 1, ..., n; j = 0, 1, ..., m (5.86)

The interpolation problem can then be solved with patches constructed
as tensor products of 1D bicubic Bezier curves. However, additional
equations for the twist estimation xuv on the vertices are necessary.
This leads to an additional degree of freedom, and therefore to differ-
ent models of the composite surface.
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A bicubic Hermite patch is constructed as a tensor product of C1-splines
given in Hermite form. The surface interpolation vector x(u, v) gets then
the following form:

x(u, v) =

3∑
i=0

3∑
j=0

hijH
3
i (u)H3

j (v); 0 ≤ u, v ≤ 1, (5.87)

where H3
i (u) are the cubic Hermite functions from eqn. (5.83) and the

terms hi,j are defining the following matrix

[hij] =

⎡
⎢⎢⎣

x(0, 0) xv(0, 0) xv(0, 1) x(0, 1)

xu(0, 0) xuv(0, 0) xuv(0, 1) xu(0, 1)
xu(1, 0) xuv(1, 0) xuv(1, 1) xu(1, 1)

x(1, 0) xv(1, 0) xv(1, 1) x(1, 1)

⎤
⎥⎥⎦ (5.88)

Additional information for the mixed derivative xuv at vertices is re-
quired leading to the so-called twist estimation problem. Various
methods include then the Coons patch, the Adini twist, the Bessel twist,
the Gregory patch and others, see Farin [38]. In our numerical examples
we further use the simplest Zero twist just setting all mixed derivatives
to zero at the vertices

xuv(ui, vj) = 0. (5.89)

Finally, after a lengthy introduction into spline interpolation theory we
are ready to construct a simple smooth 3D contact element.

5.4.3.3 A quadrilateral smooth contact surface

The idea of surface smoothing discussed in computational contact me-
chanics is to cover the given linear surface mesh describing a possible
contact surface with a smooth spline surface. This is a mesh dependent
task for a certain type of spline. Thus, for simplicity we consider here
only a quadrilateral area with a regular quadrilateral mesh, see Fig. 5.12.
This area can be covered by a composite spline surface constructed via
regular patches as discussed in Sect. 5.4.3.2. Three different types of
patches are necessary for the quadrilateral surface: a corner patch for
four corners – No. 1-4 in Fig. 5.12, a boundary patch for boundaries –
No. 5-8, and a central patch for the inner region – No. 9.
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1

4

2

37

6

5

8

9

central patch

boundary patch

corner patch

Figure 5.12: A quadrilateral regularly meshed surface. 3 types of patches are neces-
sary for a smooth contact surface: central, boundary and corner patches.

Following the technique introduced in Sect. 5.4.3.2, the structure of
the matrix [hij] in eqn. (5.88) should be defined depending on the pos-
tion of the nodal vector. Assuming that nodal points from the regular net
in Fig. 5.12 are given in the form xij ∈ R3 i = 0, 1, ..., n; j = 0, 1, ..., m
we have to introduce parameters u0, u1, ..., un and v0, v1, ..., vm in order
to obtain the parameterization in the form of eqn. (5.86). This parame-
terization with ui, vj is constructed as a tensor product using the chord
length for lines in eqn. (5.69). Start with the line xi0, i = 0, 1, ..., n and
choose parameters u0, u1, ..., un

u0 = 0, u1 = ||x10 − x00||, ... , ui = ui−1 + ||xi0 − xi−10||, i = 2, ..., n; (5.90)

then, parameters v0, v1, ..., vn are chosen with the line x0j, j = 0, 1, ..., m
in the form

v0 = 0, v1 = ||x01 − x02||, ... , vj = vj−1 + ||x0j − x0j−1||, i = 2, ..., m. (5.91)

If the cells of the mesh have approximately the same size, it is even
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5.4 Various approximations of contact surfaces defined by finite elements

better to choose the simplest parameterization:{
ui = i, i = 0, ..., n;
vj = j, j = 1, ..., m.

(5.92)

The central patch is defined by 12 nodal points and has the pattern of
nodal points presented in Fig. 5.13. For simplicity, zero twist xuv = 0
is taken further for the finite elements. Taking into account the simplest
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Figure 5.13: Central patch – a pattern of nodal points.

parameterization in eqn. (5.92) (in this case the computation rule for the
first partial derivatives is coinciding with the finite difference scheme),
the matrix [hij] has the following form:

[hij] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
1

2
(x4 − x5)

1

2
(x10 − x1) x4

1

2
(x2 − x12) 0 0

1

2
(x3 − x11)

1

2
(x7 − x1) 0 0

1

2
(x8 − x4)

x2
1

2
(x3 − x6)

1

2
(x9 − x2) x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.93)

Using the formulae for the Hermite patch, the tensor form can be rewrit-
ten in the vector form as follows:

x(u, v) =
3∑

i=0

3∑
j=0

hi,jH
3
i (u)H3

j (v) =
12∑
i=1

N i(u, v)xi, 0 ≤ u, v ≤ 1. (5.94)

This vector form is used with the shape functions N i(u, v) and corre-
sponds to a nodal vector defined by nodes xi. This form is standard
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for the finite element method. Thus, the approximation of the vector is
given as

x(u, v) =

12∑
i=1

N i(u, v)xi = (5.95)

= x1[H1(u)H1(v) − 1

2
H1(u)H3(v) − 1

2
H3(u)H1(v)]

+ x2[
1

2
H2(u)H1(v) + H4(u)H1(v) − 1

2
H4(u)H3(v)]

+ x3[H4(u)H4(v) +
1

2
H4(u)H2(v) +

1

2
H2(u)H4(v)]

+ x4[
1

2
H1(u)H2(v) + H1(u)H4(v) − 1

2
H3(u)H4(v)]

+ x5
1

2
(−H1(u)H2(v)) + x6

1

2
(−H4(u)H2(v))

+ x7
1

2
H3(u)H1(v) + x8

1

2
H3(u)H4(v)

+ x9
1

2
H4(u)H3(v)) + x10

1

2
H1(u)H3(v))

+ x11
1

2
(−H2(u)H4(v)) + x12

1

2
(−H2(u)H1(v)).

The corner patch is defined by 8 nodes and has the pattern of nodal
points presented in Fig. 5.14. Now, the rules discussed in Sect. 5.4.3.1

34

1 2 5

6

8 7

Figure 5.14: Corner patch – a pattern of nodal points.

eqn. (5.78) for boundary points for curves are used to compute the
derivatives for the boundary points for a surface spline. Derivatives for
the inner points are computed similar to the central patch. The follow-
ing approximations coinciding with the finite difference scheme of order
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O(h2) is obtained:

xu(0, 0) = −3

2
x1 + 2x2 − 1

2
x5 xv(0, 0) = −3

2
x1 + 2x4 − 1

2
x8

xu(0, 1) = −3

2
x4 + 2x3 − 1

2
x6 xv(0, 1) = −1

2
x1 +

1

2
x8

xu(1, 0) =
1

2
x5 − 1

2
x1 xv(1, 0) = −3

2
x2 + 2x3 − 1

2
x7

xu(1, 1) =
1

2
x6 − 1

2
x4 xv(1, 1) = −1

2
x2 − 1

2
x7.

(5.96)

Then the matrix [hij] gets the following form:

[hij ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 −3

2
x1 + 2x4 − 1

2
x8 −1

2
x1 +

1

2
x8 x4

−3

2
x1 + 2x2 − 1

2
x5 0 0 −3

2
x4 + 2x3 − 1

2
x6

1
2
x5 − 1

2
x1 0 0

1

2
x6 − 1

2
x4

x2 −3

2
x2 + 2x3 − 1

2
x7 −1

2
x2 − 1

2
x7 x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.97)

The vector form of the approximation of the surface vector x(u, v)
is given as

x(u, v) = (5.98)

x1

[
H1(u)H1(v) − 3

2
H1(u)H2(v) − 1

2
H1(u)H3(v)

− 3

2
H2(u)H1(v) − 1

2
H3(u)H1(v)

]

+ x2

[
2H2(u)H1(v) + H4(u)H1(v) − 3

2
H4(u)H2(v) − 1

2
H4(u)H3(v)

]
+ x3 [2H2(u)H4(v) + 2H4(u)H2(v) + H4(u)H4(v)] +

+ x4

[
2H1(u)H2(v) + H1(u)H4(v) − 3

2
H2(u)H4(v) − 1

2
H3(u)H4(v)

]
+ x5

1

2
[−H2(u)H1(v) + H3(u)H1(v)]

+ x6
1

2
[−H2(u)H4(v) + H3(u)H4(v)]
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+ x7
1

2
[−H4(u)H2(v) + H4(u)H3(v)]

+ x8
1

2
[−H1(u)H2(v) + H1(u)H3(v))]

The boundary patch is defined by 10 nodes and has the pattern of nodal
points presented in Fig. 5.15. The partial derivatives for boundary points

1 2

34

5

6

78

9

10

Figure 5.15: Boundary patch – a pattern of nodal points.

are computed as

xu(0, 0) =
1

2
x2 − 1

2
x10 xv(0, 0) = −3

2
x1 + 2x4 − 1

2
x8

xu(0, 1) =
1

2
x3 − 1

2
x9 xv(0, 1) =

1

2
x8 − 1

2
x1

xu(1, 0) =
1

2
x5 − 1

2
x1 xv(1, 0) = −3

2
x2 + 2x3 − 1

2
x7

xu(1, 1) =
1

2
x6 − 1

2
x4 xv(1, 1) =

1

2
x7 − 1

2
x2.

(5.99)

The matrix [hij] has the following form:

[hij] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1 −3

2
x1 + 2x4 − 1

2
x8

1

2
x8 − 1

2
x1 x4

1

2
x2 − 1

2
x10 0 0

1

2
x3 − 1

2
x9

1

2
x5 − 1

2
x1 0 0

1

2
x6 − 1

2
x4

x2 −3

2
x2 + 2x3 − 1

2
x7

1

2
x7 − 1

2
x2 x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.100)
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The vector form approximation of the boundary patch vector x(u, v) is
given as

x(u, v) = x1

[
H1(u)H1(v) − 3

2
H1(u)H2(v) − 1

2
H1(u)H3(v) − 1

2
H3(u)H1(v)

]

+ x2

[
1

2
H2(u)H1(v) + H4(u)H1(v) − 3

2
H4(u)H2(v) − 1

2
H4(u)H3(v)

]

+ x3

[
1

2
H2(u)H4(v) + 2H4(u)H2(v) + H4(u)H4(v)

]

+ x4

[
2H1(u)H2(v) − 1

2
H3(u)H4(v) + H1(u)H4(v)

]

+ x5
1

2
H3(u)H1(v) + x6

1

2
H3(u)H4(v)

+ x7
1

2
(−H4(u)H2(v) + H4(u)H3(v))

+ x8
1

2
(−H1(u)H2(v) + H1(u)H3(v))

− x9
1

2
H2(u)H4(v) − x10

1

2
H2(u)H1(v). (5.101)

Writing all necessary shape functions in vector form together with
their derivatives is an absolutely tedious task. During implementa-
tion it is organized via subroutines containing the Hermite functions
H1(t), H2(t), H3(t), H4(t) used for all shape functions. These functions
are just consequently renumbered after their definition in eqn. (5.83).
The functions and their derivatives are presented in Table 13.1.

5.5 Numerical examples

In the current section various computational aspects and arising prob-
lems are shown discussing some numerical examples. Integration
schemes using subdivision into subdomains developed in Sect. 5.1.2
are applied together with STS and STAS contact approaches with var-
ious order of approximations for finite elements. Thus, STS approach
with various numerical schemes is applied for the standard patch test
with linear approximations, then the STS approach with smooth con-
tact surfaces is studied. The influence of the integration scheme on the
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Hk(t)
∂Hk

∂t

∂2Hk

∂t2

H1(t) 1 − 3t2 + 2t3 −6t + 6t2 −6 + 12t

H2(t) t − 2t2 + t3 1 − 4t + 3t2 −4 + 6t

H3(t) t3 − t2 3t2 − 2t 6t − 2

H4(t) 3t2 − 2t3 6t − 6t2 6 − 12t

Table 5.4: Hermite functions Hi(t), t ∈ [0, 1] and their derivatives are forming a shape
function space for smooth contact elements.

force-displacement curve is presented for a deep drawing example –
various approximations of solid shell elements are discussed. An ex-
ample with deep drawing of a plate into a pot is chosen to illustrate the
STAS algorithm with various combinations of rigid surfaces. A special
example with a deep drawing of a strip is devoted to the selection of the
approximation order for shell elements and contact approach in order to
obtain the correct thickness strain vs. loading displacement curve.

5.5.1 Classical contact patch test - linear approximations

One of the important problems for contact algorithm is the ability to
transfer the stresses correctly through the contact surface. This prob-
lem leads to the patch test. The contact patch test serves to check
the ability to transfer an uniform stress state through the contact sur-
face. Different techniques were proposed to pass the patch test. Taylor
and Papadopoulos [173] proposed the two-pass algorithm based on in-
terchanging the master and slave parts to pass the patch test in the
case of a linear approximation for 2D problems. Zavarise and Wriggers
[199] proposed the integration over overlapping regions in the 2D case
in order to more accurately treat the contact conditions. Crisfield [31]
considered contact elements with higher order approximation to satisfy
a patch test in the 2D case. Also in the 2D case the integration of the
contact integral over the overlapping zone, which is constructed by pro-
jection was investigated in El-Abbasi and Bathe [36] to satisfy the patch
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test. Jones and Papadopoulos [80] considered a special pressure inter-
polation in the overlapping region of the two contact elements to pass
the patch test in 3D. Heinstein and Laursen [66] developed an algorithm
based on the construction of a special 3D element in the overlapping
region for mesh-matching problems as well as to pass the patch test.

Here we consider the application of the Segment-To-Segment con-
tact approach with various integration schemes to the modified patch
test problem, originally proposed in Crisfield [31] for the 2D patch test.
The upper block with the dimensions 1×1×0.5 is meshed with a regular
rectangular 3 × 3 × 2 mesh. The lower block has the same geometry
as the upper block, and a finer, but distorted 6 × 6 × 2 mesh is used,
see Fig. 5.16. Both blocks are made of elastic material with the follow-
ing parameters: Young’s modulus E = 1.0 · 105, Poisson ratio ν = 0.3.
The value of the penalty is chosen as ε = 1.0 · 107. During contact the
upper block is considered as a slave. An uniform vertical displacement
of Δ = 0.05 is applied on the top surface.

upper block

lower block

contact surface of lower block

Figure 5.16: Blocks for the patch test; Upper block – regular mesh; Lower block –
distorted mesh

The integration algorithm based on integration of subdomains is an
approximate approach to integrate discontinuous functions. Here we
show, that with this technique it is possible to construct a sequence of
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Figure 5.17: Node-To-Surface (NTS) approach fails to pass the patch test; ”roof-like”
contact surface

results with diminishing error to finally satisfy the patch test. In order to
investigate in the case of uniform stresses the normal contact traction
N , the normal stress σz and the vertical nodal displacement uz of the
contact surface of the lower block are checked. Their values are con-
trolled by parameters used in statistics: by the mean value x̄ and by the
standard deviation σ and the coefficient of variation Cv = 100% · σ/x̄ in
order to estimate the variation. In Table 5.5 the results concerning the
mean value and the coefficient of variation for the following quantities
are given: sum of contact tractions N = εpgN over the surface, computed
at Gauss points of the contact surface; normal stresses σz, computed for
the upper and lower surface of each element of the lower block; nodal
vertical displacements uz for the contact surface. For comparison, the
first computation was made for the node-to-surface approach with a of
penalty value of 105 which was reduced due to the convergence prob-
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lems. As is known, this approach fails the patch test. Fig. 5.17 shows the
”roof-like” contact surface of the lower block for this case. As expected
this approach leads to the maximum of the coefficient of variation.

From Table 5.5 it becomes clear that also the integration with sub-
domains leads to – though only slightly – smaller variations than an
algorithm with standard Gauss integration. It appears rather remarkable
that the variations of the tractions remain constant while the variation of
the stresses and displacements falls below one percent. Visually, the
application of the STS approach together with higher order of integra-
tion rules, and integration with subdomains leads then to a flat surface,
and therefore, disappearing of the “roof-like” structure.

No. Gpt No. sbd. tractions N stress σz displ. uz

x̄ · 104 v % x̄ · 103 v % x̄ · 10−2 v %
NTS∗ 1 -1.3084 -68.087 -1.5248 -120.039 -0.9150 -157.93

2 1 -1.7767 -21.474 -4.6787 -2.5772 -2.4286 -7.7430
6 1 -1.6738 -19.851 -4.7077 -1.1663 -2.4143 -1.5571
3 2 -1.6210 -16.760 -4.7137 -0.8570 -2.4180 -1.2770
2 3 -1.6354 -17.331 -4.7115 -0.8789 -2.4170 -1.4131

10 1 -1.6614 -19.696 -4.7109 -0.8595 -2.4150 -1.3121
2 5 -1.6477 -15.793 -4.7113 -0.7798 -2.4166 -1.2097
5 2 -1.6408 -17.572 -4.7139 -0.7942 -2.4160 -1.2383

20 1 -1.6537 -19.226 -4.7124 -0.7791 -2.4164 -1.1597
10 2 -1.6408 -16.667 -4.7128 -0.7585 -2.4159 -1.1304
4 5 -1.6299 -16.790 -4.7141 -0.7136 -2.4158 -1.0822
5 4 -1.6447 -16.395 -4.7125 -0.7239 -2.4154 -1.1190
2 10 -1.6337 -16.341 -4.7126 -0.7578 -2.4170 -1.1335

Table 5.5: Influence of different integration schemes; patch test; mean value and
coefficient of variation for the following quantities: contact tractions N on the contact
surface, normal stresses σz in the lower block and vertical nodal displacements uz on
the contact surface; NTS∗ - node-to-surface approach

5.5.2 Contact patch test with smooth surfaces

As we have seen the STS approach either with increasing the number of
integration points, or with combining integration with a subdomain tech-
nique allows to improve the patch test result. This visually leads to the
flattening of the roof-like surfaces in the case of linear approxima-
tions. This example is illustrating the situation for the smooth surface.
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For the patch test two elastic blocks are taken, see Fig. 5.18. The lower
block consists of nine regular elements with linear approximation. The
upper surface is covered with a smooth contact surface – four corner
patches, four boundary patches and one central patch, as discussed in
Sect. 5.4.3.3. The upper block is only one element with linear approx-
imation. The size of the upper element is chosen such that the nodes
are projected in the middle of corner elements for the lower block, see
Fig. 5.18. The upper surface of the lower block is a master surface, and
the lower surface of the upper block is a slave one. As in the previous
example, the vertical displacements are applied to the four upper nodes
of the upper block.

From the meshed geometry and loading it is obvious that the NTS
contact approach with linear approximation will completely fail the patch
test leading to “the roof-like” surface, see Fig. 5.19 a). For the second
test, the surface has been covered with smooth patch, but the NTS algo-
rithm has been applied – the result is shown in Fig. 5.19 b) – the contact
surface is smooth, but it is erroneously pointed upward. Only a combi-
nation of STS approach (here with 3×3 Gauss integration points) with a
smooth contact surface leads to the correct deformed surface positioned
downward, see Fig. 5.19 c).

5.5.3 Free bending of a metal sheet on two cylinders

A second example is the free bending problem of a metal sheet (thick-
ness t). Geometry and deformed configuration are shown in Fig. 5.20 for
the bilinear and biquadratic elements. The material is taken to be elasto-
plastic of Henky’s type with isotropic plastic hardening with the following
data: Bulk modulus κ = 1.75 ·104 kN

cm2 ; Shear modulus μ = 8.077 ·103 kN
cm2 ;

σi16.0 kN
cm2 ; σ∞ = 40.0 kN

cm2 ; δ = 20.0; H = 20.0.
At the beginning the metal sheet with thickness t = 0.25 cm is po-

sitioned on two cylindrical rigid bodies. As loading a displacement u is
prescribed in the center of the sheet. Due to symmetry only one half
of the system has to be modeled and discretized using 12 bilinear resp.
6 biquadratic elements and a rather fine mesh with 100 bilinear resp.
50 biquadratic elements. Concerning the application of different contact
approaches the following variations were investigated:
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Figure 5.18: Geometry for the patch test. The upper surface of the lower block is
covered with a smooth spline surface.

1) The rigid cylinder is modeled by linear finite elements with 48 ele-
ments in the circumferential direction. The metal sheet is treated
as ”master” part, the cylinder as ”slave” part. Contact is modeled
by the ”Node-To-Surface” (NTS) approach.

2) The model is the same as in 1, but contact is modeled by the
”Segment-To-Segment” (STS) approach.

3) The surface of the rigid cylinder is described analytically (STAS ap-
proach), the metal sheet is then the ”master” part. The contact
integral is computed by a nodal collocation formula with additional
gap interpolation over the element surface.

4) The model is the same as in 3. The quadrature formula is chosen
either with different numbers of integration Gauss points, or with
subdomains on the ”master” part.

5.5.3.1 Case with bilinear solid-shell elements

In Fig. 5.21 the results for the global central reaction force for case 1,
case 2 with 2×2 Gauss points and case 3 each with a mesh of 12 bilinear

195



5. ALGORITHMIC ASPECTS IN CONTACT ANALYSIS

Failure of the patch test for the NTS contact approach with linear approximation
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Figure 5.19: Upper surface for three computations: a) NTS with linear approximation
(see above the whole block); b) NTS with smooth spline approximation; c) STS with
smooth spline approximation of the master contact surface. Vertical displacements are
scaled.

solid-shell elements are plotted, see the structure of solid-shell elements
in [57]. The result with the fine mesh of 100 bilinear solid-shell elements
of elements with one integration point for contact evaluation is taken for
comparison as ”exact” solution. The nodal collocation formula of case
3 shows the largest oscillations, because the value of the penetration is
checked only at the nodes of the sheet and the mesh is relatively coarse
in comparison with the geometrical size of the cylinder despite the an-
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Figure 5.20: Geometry and loading process for a metall sheet on two rigid cylinders.
Case with biquadratic elements is shown.
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Figure 5.21: Force-deflection curves for free bending problem; bilinear solid-shell ele-
ments; comparing quadrature formulae of low order and mesh refinement
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Figure 5.22: Force-deflection curves for free bending problem; bilinear solid-shell ele-
ments; contact against analytically defined contact surface; influence of the number of
Gauss points
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alytical description of the cylinder. If contact is checked at the nodes
of the mesh of the rigid cylinder, in case 1 of the ”Node-To-Surface”
approach, jumps appear with smaller amplitudes. This is an obvious
consequence of the finer mesh for the cylinder in comparison with the
sheet mesh. As is well known, this would improve with a finer mesh on
both sides. Using a Gauss quadrature for the ”Segment-To-Segment”
strategy leads to only slightly reduced jumps, because in both ”Node-
To-Surface” and ”Segment-To-Segment” approaches the rigid cylinder
is modeled still with a rather coarse finite element mesh. In order to
investigate the influence of the order of the Gauss integration for the
STAS approach when the rigid cylinder is given exactly by an analytical
function, case 4 was extended with 2 × 2, 3 × 3, 7 × 7 and 10 × 10 inte-
gration points and, finally, compared to the results with a refined mesh
of 100 elements, but with 1 Gauss point only, see Fig. 5.22. Obviously,
the quadrature formulae with 2×2 integration points leads to rather large
oscillations. This is due to the fact that rather non-smooth contact check-
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Figure 5.23: Force-deflection curves for free bending problem; biquadratic solid-shell
elements; Influence of the number of Gauss points and refined mesh

ing is performed, which can be improved using more contact points. As
mentioned earlier, checking contact at Gauss points can be interpreted
as integration of a discontinuous function for which no a-priori error esti-
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mation is avaliable. One can see that a convergent sequence of curves
is achieved if the number of integration points is increased even in the
case of a coarse mesh for the sheet. The influence of the mesh refine-
ment with a softer response of the sheet is also obvious.

5.5.3.2 Case with biquadratic solid-shell elements∗

The next step is to consider the influence of the number of Gauss points
for the sheet meshed with biquadratic elements. Fig. 5.23 shows the

0

5

10

15

20

25

0 2 4 6 8 10 12

F
or

ce

Displacement

10 Gpt, 6 el.
2 Gpt, 5 subdm, 6 el.

2 Gpt,  50 el.
�
�

�
�

�

�

�

�

Figure 5.24: Force-deflection curves for free bending problem; biquadratic solid-shell
elements; subdivision of the integration domain into subdomains results in smaller
oscillations

result of the computation for the beam meshed with 6 elements, if the
integration formula with 6 × 6 integration points is used and if as an
alternative the integration formula with 2 subdomains and 3 × 3 integra-
tion points in each and with 3 subdomains and 2 × 2 integration points
is used. The result is compared with a refined mesh of 12 elements for
the beam meshed with 12 elements with 3 × 3 integration points. For
comparison a 50 element mesh and 2×2 integration points per element

∗The material has been reported at [88]: A. Konyukhov, K. Schweizerhof. Application of a covariant
description to the contact of shells with different approximation, 5th IASS-IACM,Conference Proceed-
ings, Salzburg, Austria, 2005.
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is chosen. The density of the Gauss points to check the penetration is
identical in the first three cases, but as a consequence of the smallest a-
priori integration error for the algorithm with subdomains, the latter leads
to a reduction of the oscillations. In Fig. 5.24 it is shown that even a rel-
atively large number of 10×10 Gauss points per element still preserves
oscillations. The integration with 5 subdomains and 2 Gauss points for
the 6 element mesh leads again to a solution with a smaller deviation.

5.5.3.3 Frictional case with bilinear solid-shell elements

A comparison with the frictional case for the following friction coeffi-
cients: μ = 0.1, μ = 0.2, μ = 0.3 is presented in Fig. 5.25, where
the computation was performed with the ”best” 10 × 10 integration for-
mula. All contact pairs with rigid surfaces are modeled with the STAS
approach. As an obvious result, the reaction force is increasing following
the modification of the friction coefficient.

Remark
Here the STAS approach has been applied successfully for the C1-
continuous rigid surfaces. If the rigid boundary is not smooth, or an-
other approach is favorable (e.g. boundaries are not rigid surfaces and
STS is necessary), then the full history transfer algorithm is absolutely
necessary to resolve the frictional contact problem, see the study of the
example “drawing of an elastic strip into a channel with sharp corners”
in Sect. 6.7.2.

5.5.4 Deep drawing of a cylindrical pot – combination of STAS
contact elements∗

In this numerical example the deep drawing process of a circular plate
into a cylindrical pot with counter die is simulated, see the geometry
in Fig. 5.26. The material of a circular plate is elasto-plastic with the
following parameters: κ = 1.75 · 104 kN/cm2; μ = 8077 kN/cm2; σi = 16
kN/cm2. The circular sheet has a uniform thickness t = 1 mm and a
diameter D = 16.0 cm. The geometry of the tools is shown in Fig. 5.26.
Due to symmetry only a quarter of the structure is discretized using

∗The material has been reported at [87]: A. Konyukhov, K. Schweizerhof. Large Deformation
Frictional Contact Formulation for Low Order “Solid Shell” Elements, ECCOMAS-2004, Jyväskylä.
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Figure 5.25: Force-deflection curves for free bending problem; influence of the choice
for the friction coefficient; 10 × 10 Gauss points

a mesh with 175 bilinear elements. As loading the displacement u is
applied incrementally with Δu = 0.0025 for the punch, as well as for
the counter die, however, for the latter after the punch is contacting the
counter die.

The contact is defined with rigid surfaces using the STAS approach.
The example is illustrating the ability of the STAS approach to model a
rigid tool via a combination of planes, cylinders and toruses. Only the
non-frictional case is simulated here.

It can be seen from the deformation in Fig. 5.27 that the blank is
dominantly drawn along the upper part of the die and the punch.

5.5.5 Deep drawing – test for the quality of shell elements as well
as for the quality of contact algorithm∗

One of the advantages of the ”solid-shell” being 3D continuum formu-
lation is the ability to obtain the thickness strain. However, obtaining

∗The material has been reported at [156]: K. Schweizerhof, A. Konyukhov, Contact with shells, 7th
World Congress on Computational Mechanics. Los-Angeles, 2007.
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Figure 5.26: Geometry for deep drawing process.

such characteristic curves as thickness strain vs. loading dis-
placement can be a crucial test for the quality of both finite ele-
ments for shell problems and of contact elements. Thus, the ne-
cessity of a correct algorithm to transport the history variables has been
reported for special geometrical cases such as drawing of an elastic
strip into a channel with sharp corners, see [93] and also Sect. 6.7.2.

In order to study this case in a purified situation a deep drawing with
a counter die is modeled for one strip with thickness h = 0.125, see the
geometry in Fig. 5.28. Only half of the object is modeled due to symme-
try: a = 2.750×2, b = 2.875×2, c = 3.000×2, a = 2.750×2, l = 10.000×2.
The punch and the counter die are modelled via the STAS approach as
a combination of planes and cylinders with r = 0.500, R = 1.000, see the
geometry in Fig. 5.28. The geometry is chosen such that during drawing
the distance between the punch and the counter die remains equal to
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a) u = 0.00 cm

b) u = 1.25 cm

c) u = 2.50 cm

d) u = 3.75 cm

d) u = 5.00 cm

Figure 5.27: Deep drawing process. Blank at various deformation states.
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the thickness of the blank h = c− b. As in the example from Sect. 5.5.4,
the blank (the strip) is drawn by an applied vertical displacement u to
both the punch, and the counter die – though, small distances δ1 = 0.02
and δ2 = 0.01 are supplied at the beginning, see Fig. 5.28. Both, bi-
linear and biquadratic solid-shell elements are used for comparison of
the thickness strain – loading displacement curve. Thus, first 40 bilin-
ear elements are applied, then 20 biquadratic elements are applied, see
mesh and deformed configuration in Fig. 5.29.

h δ
1 δ
2

a

b

c

l

R

r

u

B A x = 3.75

Y

XO

Figure 5.28: Geometry for the deep drawing process.

The problem finally has been resolved using only the STAS approach
with 10×10 integration points, however, only a perfect smooth geometry
of rigid body allows to overcome the problem with the correct transfer of
history variables, see example in Sect. 6.7.2. Thus, the combination of
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the STS approach to model rigid bodies leads to difficulties with conver-
gence. The example with bilinear solid shell elements requires smaller
load steps, and therefore, more incremental load steps than the exam-
ple with biquadratic solid shell elements: 1000 incremental load steps
for bilinear and only 100 incremental load steps until the strip is reaching
the configuration at u = 5.000 presented in Figure 5.29. The advantage
of the biquadratic solid shell elements becomes more pronounced if we
consider the thickness strain computed at points during the deforma-
tion process. In Fig. 5.30 the strain vs. loading displacement curve is
given for the non-frictional case at point A with x = 3.750 (see geom-
etry in Fig. 5.28). The highly oscillatory behavior of the curve for the
bilinear mesh is due to enforcing a circular geometry by linear meshes.
Each peak in the figure is reflecting the rolling of a linear segment from
the strip on a circular part with radius R, see Fig. 5.28. The frictional
case with bilinear meshes is causing even more severe convergence
problem, therefore, only a case with biquadratic meshes is shown in
Fig. 5.31 for different points A (x = 3.750) and B (x = 3.000) for a small
coefficient of friction μ = 0.01.

5.6 Conclusions

The current section deals with various computational aspects arising
during the solution of contact problems in application together with a
covariant approach. First, the standard known approaches as Node-To-
Segment (NTS) and Segment-To-Segment (STS) are reconsidered in
a covariant fashion. Thus, finite element approximations of contact pa-
rameters including tangent matrices are considered for linear, quadratic
and spline surface approximations. A special integration rules based on
integration of discontinuous functions such as increasing the number of
integration points and integration over subdomains with selected either
Gauss or Lobatto rules are developed. It is shown that the application
of these rules within the STS approach allows to improve the results
for the contact patch test. A combination of smooth surfaces based on
NURBS interpolation together with the STS approach is studied for the
patch test. The Segment-To-Analytical-Surface approach is developed
for cases of contact with rigid surfaces. Within this approach there are
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two cases: a rigid surface is a slave and a rigid surface is a master –
and the closed form solutions for penetration are derived for contact with
a rigid plane, sphere, cylinder, torus and cone. The simplified procedure
is derived for surfaces of revolution.

In the present chapter continuum finite “Solid-Shell” elements have
been investigated for applications in large deformation contact analy-
sis including specific deep drawing situations. Thus, a large number
of examples is focusing on the comparison of the contact algorithms
used especially for problems in sheet metal forming. The discussed
contact elements with different degree of geometrical approximation of
the contact surfaces were tested in the example of a free bending of
metal sheet with large sliding in contact. A force-deflection curve was
chosen to represent the main characteristics of the results. Large oscil-
lations appeared if relatively coarse meshes together with a low order
integration are used. It was found that increasing the number of inte-
gration points leads to an improved reduction of these oscillations, but
an integration procedure with an additional subdivision into subdomains
leads to a sufficiently further reduction of oscillations with the same total
number of Gauss points over the contact area. It was shown that it is
possible within the STS approach together with an integration over sub-
domains to efficiently improve the quality of different characteristics such
as force-displacement and strain displacement curve. It was shown that
the higher than linear order finite elements (here biquadratic ones) are
superior concerning the results and using the same number of degrees
of freedom, especially for modeling of deep drawing processes.

Summarizing the discussion over various techniques one may con-
clude that the higherst quality can be achieved only within the smooth
contact finite element with higher then linear approximation of finite ele-
ments together with the full transfer of history variables algorithm, how-
ever, the skilled user of contact algorithms can achieve the good result
depending on the type of modeling with lower efforts.
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Model with bilinear solid shell elements.

Model with biquadratic solid shell elements.

Figure 5.29: Deformed configuration for both meshes at applied vertical displacements
u = 5.000
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6

A special focus on 2D formulations for
contact problems using a covariant
description∗

Abstract
A fully covariant description, based on the consideration of contact con-
ditions especially for the 2D case is proposed. The description is based
on a reconsideration of contact kinematics and all necessary operations
such as derivatives in a specially chosen curvilinear coordinate system
based on a curved geometry in plane. In addition, details of the finite
element implementation are presented for the simple linear contact ele-
ment. Special cases, requiring the update of history variables as well as
their careful transfer over the element boundaries are illustrated by nu-
merical examples. With these procedures artificial jumps in the contact
forces can be avoided.

Keywords
covariant description contact problem friction

6.1 INTRODUCTION

In the literature various contact descriptions for an effective finite ele-
ment implementation are available, which can be basically character-
ized by the following: from 2D to 3D formulations, from non-frictional

∗The chapter is published in [92]: A. Konyukhov, K. Schweizerhof. A special focus on 2D formula-
tions for contact problems using a covariant description, International Journal for Numerical Methods in
Engineering, 66:1432–1465, 2006.
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to frictional contact. Some major references are cited in the following:
Wriggers et. al. [194] used an elasto-plastic analogy and the penalty
regularization for 2D frictional problems restricted to piecewise linear
contact elements. Parisch [137] considered non-frictional 3D contact
and Parisch and Lübbing (1997) [138] revised the procedure for fric-
tional contact within the penalty method for piecewise bilinear surface
elements. Peric and Owen [139] used the penalty method for 3D fric-
tional contact problems with small deformations. The main character-
istics of the cited investigations are that the penalty functional as well
as its linearization were considered in a global coordinate system and
restricted to linear resp. bilinear surface elements. Laursen and Simo
[109], however, formulated the penalty based contact conditions and
the return mapping algorithm via convective surface coordinates, but
the following linearization performed in the global coordinate system
led to an artificial non-symmetry of the tangent matrix in the case of
sticking. Wriggers [188] could overcome this artefact using the idea of
mesh tying functionals. General overviews over contact conditions and
contact algorithms which are nowadays used in practice, are covered
by the books of Wriggers [188] and Laursen [106], while the theoreti-
cal aspects of the regularization methods in contact mechanics can be
found in Kikuchi and Oden [84]. Beyond that the covariant description
proposed in Konyukhov and Schweizerhof [86], [89] allows a unified de-
scription of contact problems within the penalty method independently
of the surface discretization. The method contains rather complicated
mathematical transformations in the local 3D coordinate system, how-
ever, finally leading to the consistent formulation of frictional contact.
Some advantages of this approach were shown, e.g. the sticking matrix
preserves necessarily its symmetry.

In the current contribution, we aim to present the development in a
more simple comparative manner for both 2D and 3D formulations. We
will show the unity of 2D and 3D formulations, where the 2D case can be
derived, from one hand, as a simplified case of the particular 3D geom-
etry of contact surfaces and, from the other hand, can be constructed
separately based on the differential geometry of 2D plane curves. This
consideration has additional advantages, e.g. the subdivision of the
contact tangent matrices into the ”main”, the ”rotational” part and the
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”curvature” part has a pure geometrical meaning. It is also possible to
distinguish a-priori various cases, where some of the parts are neces-
sary or can be omitted.

The article is organized as follows. We start with 2D kinematics
based on a curved geometry in a plane. The main results concerning
the 3D covariant description can then be presented without extensive in-
volvement into mathematics. For further details of the 3D description we
refer to [89]. Two-dimensional contact will also be considered separately
in 2D as well as a reduction of the 3D developments. In addition, we will
compare to known formulations and present some numerical examples.
A particular focus is on problems concerning contact points traversing
edges of contact segments and on problems with reversible loading.

6.2 Geometry and Kinematics of Contact

Considering a special contact case – contact between two cylindrical
infinite bodies with plane strain deformations, see Fig. 6.1, leads to
a definition of a 2D contact. In this case a generatrix GH of the first
cylindrical body is a contact line and corresponds to a contact line G’H’
which is also a generatrix but of the second cylindrical body. Thus, 3D
contact which can be seen as an interaction between two surfaces is
reduced to an interaction between two boundary curves in the 2D case,
see Fig. 6.2. One of boundary curves is chosen as the master curve. A
coordinate system is considered on the boundary, either for a surface in
3D or for a curve in 2D. Thus contact occurs or two bodies are coming
into contact, if a slave point belonging to the second body S penetrates
into the master body, where penetration is defined as the shortest dis-
tance between the surfaces of the two bodies. For simplicity we assume
now that the parameterization of the boundaries is sufficiently smooth.

6.2.1 Nomenclature of the used symbols

Throughout the article a tensor notation with regard to both, surface
and curve geometry, are used, therefore, a short notation used in the
contribution is provided:

ξ – arbitrary parameterization of a curve, convective coordinate.
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ζ – the normal coordinate for 2D bodies, if the description is based
on a cylindrical geometry. The value ζ describes the penetration.

s – length parameterization of a curve.
rs – position vector of the master point.
ρ(ξ) – position vector of the projection point.
ρξ, ρξξ – the first resp. second derivative of the position vector in the

case of an arbitrary parameterization.
τ – tangent normal vector in the case of the length parameterization

of the curve.
ν – normal vector in the case of both, arbitrary and length parame-

terizations of the curve.
aij, hij – components of the metrics resp. of the curvature tensor in

the case of an arbitrary parameterization of the curve.
For geometrical applications of the covariant derivation we refer to

[47], and for mechanical applications to [121].

6.2.2 Definition of penetration.
Closest point projection procedure

Let the boundary of the master body be a smooth curve, parameterized
by the parameter ξ: ρ = ρ(ξ). The vector rs describes the location of
a slave point S, see Fig. 6.2. Then the problem to find the shortest
distance between the curve ρ(ξ) and the slave point S is defined via the
minimum of the function:

F := ‖rs − ρ(ξ)‖ −→ min . (6.1)

The necessary condition for the minimum is the requirement of the
first derivative to be zero:

F ′ = (rs − ρ(ξ)) · dρ

dξ
= 0. (6.2)

Eqn. (6.2) is identical to the orthogonality condition between the vec-

tor rs − ρ(ξ) and the tangent vector
dρ

dξ
≡ ρξ, and serves to define a

projection point C, see Fig. 6.2. The solution can be obtained e.g. by an
iterative Newton scheme. For the latter the second derivative is neces-
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sary:

F ′′ = (rs − ρ(ξ)) · d2ρ

dξ2
− dρ

dξ
· dρ

dξ
, (6.3)

which is finally shown to be positive to specify the minimum distance.
The iterative scheme is then defined as:⎧⎪⎪⎨

⎪⎪⎩
Δξ = −F ′/F ′′ = − (rs − ρ) · ρξ

(rs − ρ) · ρξξ − (ρξ · ρξ)

ξ(n+1) = ξ(n) + Δξ

. (6.4)

We will show in the finite implementation section, that for a 2D con-
tact element with a linear approximation the general iterative scheme is
reduced to an exact definition of the projection point.

Figure 6.1: Two dimensional contact as a special case of three dimensional contact
– contact between cylindrical surfaces with parallel axes Z. Local surface coordinate
system on smooth master contact surface.
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Figure 6.2: Two dimensional contact. Definitions. Contact boundaries are smooth
curves in 2D.

6.2.3 2D contact kinematics

In the 2D case contact bodies are bounded by plane curves, therefore,
one can take advantage of their geometry. The geometrical properties of
the contact quantities can be defined in a very straightforward manner,
if we use the natural parameter length, i.e. ρ = ρ(s) with s = s(ξ). On
the plane we define a curvilinear coordinate system associated with the
curve by introducing two principal vectors as a basis: the tangent vector

ρξ =
∂ρ

∂ξ
and the unit normal vector ν

rs(ξ, ζ) = ρ(ξ) + ζν(ξ). (6.5)

Looking at the following implementation of the algorithm in a FE pro-
gram, the introduction of a natural parameter s would lead to additional
numerical effort, because the length of a boundary is changing during
deformation. Thus, we will only show the geometrical properties using
the parameter s, whereas for a finite element implementation we then
turn to the Lagrangian coordinate ξ. As the local coordinate system
is associated with the slave point S, then the closest point procedure
eqn. (6.2) is already fulfilled by this definition. The second coordinate ζ

is an exact (not scaled!) value of penetration often also known as gap
and used for the formulation of the non-penetrability condition.
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The normal unit vector ν in the case of arbitrary Lagrangian param-
eterizations with ξ can be defined via a cross product in a Cartesian
coordinate system as:

ρξ =
∂ρ

∂ξ
; =⇒ ν =

[k× ρξ]√
ρξ · ρξ

, (6.6)

where k is the third unit vector in this Cartesian coordinate system. The
definition of the normal vector in eqn. (6.6) comes from the standard def-
inition of the surface unit normal for cylindrical surfaces, see the contact
between cylinders in Fig. 6.1, as

ν =
[r̂1 × r̂2]

|[r̂1 × r̂2]| , r̂1 = ρξ, r̂2 = k, (6.7)

where r̂2 is a unit vector of the cylinder generatrix. The definition in
eqn. (6.6) gives a set of covariant basis vectors ρξ, k for a cylindrical
surface. The surface metric tensor can then be defined by the following
matrix aij:

[aij] =

[
(ρξ · ρξ) 0

0 1

]
(6.8)

This matrix allows to define a contravariant basis for the cylindrical sur-
face ρ1, ρ2, where only the first vector is changing its length:(

ρ1

ρ2

)
=

[
(ρξ · ρξ) 0

0 1

]−1 (
ρξ

ν

)
=⇒ ρ1 =

ρξ

(ρξ · ρξ)
, ρ2 = ν. (6.9)

We note here, that the dot product of the covariant basis with the
contravariant basis ρ1, ρ2 leads to a unit matrix (a mixed metrics tensor):

[aj
i ] = [(ρi · ρj)] =

[
1 0

0 1

]
. (6.10)

6.2.3.1 Derivatives of the basis vectors

Derivatives of the covariant basis vectors ρξ and ν are necessary for
the further formulation and for the linearization. The derivative of the
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tangent vector ρξ can be expressed via the covariant basis vectors

ρξξ :=
∂ρξ

∂ξ
= Γρξ + h11ν, (6.11)

where Γ and h11 are defined after taking a scalar product of eqn. (6.11)
with ρξ and ν:

Γ =
ρξξ · ρξ

ρξ · ρξ

, h11 = ρξξ · ν. (6.12)

In order to compute the derivative of the unit normal ν, first, we have
to take the derivative of the following identity:

∂

∂ξ
(ν · ν = 1) =⇒ ∂ν

∂ξ
· ν = 0, (6.13)

which leads to the orthogonality condition of the vectors ν and
∂ν

∂ξ
.

Thus, this derivative can be expressed via the tangent vector ρξ as:

νξ = aρξ. (6.14)

Then the scalar a is obtained after taking the dot product of eqn. (6.14)
and ρξ:

a = (νξ · ρξ)/(ρξ · ρξ) = −(ρξξ · ν)/(ρξ · ρξ). (6.15)

The last equation is obtained via the derivative of the equation ρξ ·ν = 0.
Finally, we get

νξ = −(ρξξ · ν)

(ρξ · ρξ)
ρξ = −h11

a11
ρξ. (6.16)

In eqns. (6.12) and (6.16) the scalar value h11 = (ρξξ · ν) is a curvature
coefficient and a11 = (ρξ ·ρξ) a metric coefficient for a cylindrical surface.
Eqn. (6.16) represents the Weingarten formula and eqn. (6.11) resp. the
Gauss-Codazzi formula for a cylindrical surface. Now, we can obtain the
basis vectors for the coordinate system in eqn. (6.5):

r1 =
∂r

∂ξ
= (1 − h11

a11
ζ)ρξ,

r2 = ν.
(6.17)

The geometrical properties in 2D contact are easily found, if they are
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reconsidered from the plane curve geometry with a natural parameter-
ization. This parameterization is based on a length parameter s, i.e.
ρ = ρ(s). The length s represents then the full path length passed by
the projection point C on the master curve during contact interaction,
see Fig. 6.2. The tangent vector τ in this case has a unit length

τ =
dρ

ds
. (6.18)

The relation between the parameter ξ and the length parameter s is
defined as:

ds =
√

(ρξ · ρξ)dξ. (6.19)

For the plane curve in natural parameterization the Serret-Frenet
formulae are used to define derivatives of the basis vectors in analogy
to eqns. (6.11) and (6.16):

dτ

ds
= κν;

dν

ds
= −κτ , (6.20)

where κ is a curvature of the curve. In this case the normal unit vector
ν is defined from eqn. (6.20) and is pointing into the convex part of
a body. Then the curvature κ can be computed from eqn. (6.20) by
premultiplying the first equation with ν and taking the chain rule into
account:

κ =
dτ

ds
· ν =

(ρξξ · ν)

(ρξ · ρξ)
=

h11

a11
. (6.21)

6.2.3.2 Covariant derivative of a tangent vector T.

We define a tangent vector field T – later taken as a friction force – as a
covariant vector field in the spatial coordinate system:

T(ξ) = T (ξ)r1|ζ=0 = T (ξ)ρ1 = T (ξ)
ρξ

(ρξ · ρξ)
. (6.22)

The definition in the form of eqn. (6.22) has the advantage that the
weak form – used later – becomes rather simple. The absolute value of
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the covariant vector eqn. (6.22) is computed as:

‖T(ξ)‖ =
|T (ξ)|
‖ρξ‖

=
|T (ξ)|√

a11
. (6.23)

The full time derivative of this vector field is determined taking the
changing metric into account and then considering its value at ζ = 0:

dT

dt
|
ζ=0

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
(

∂T

∂t
+

∂T

∂ξ
ξ̇

)
︸ ︷︷ ︸

dT

dt

r1 + T

(
ξ̇
∂r1

∂ξ
+ ζ̇

∂r1

∂ζ
)

)
⎤
⎥⎥⎥⎥⎥⎥⎥⎦

ζ=0

. (6.24)

The derivative is expressed then via the contravariant basis vectors as
ρ1, ρ2

dT

dt
|
ζ=0

=
D1T

dt
ρ1 +

D2T

dt
ρ2.

Here a full time derivative in the covariant form is introduced. Its value
on the tangent line is computed using the scalar product with ρξ as (see
Appendix):

D1T

dt
:=

(
dT

dt
· ρξ

)
ζ=0

=
dT

dt
− ρξξ · ρξ

(ρξ · ρξ)
ξ̇ +

h11

a11
ζ̇ . (6.25)

The second term on the right hand side contains the Christoffel symbol
and the last term contains the curvature for a cylindrical surface.

6.2.3.3 Convective velocities

An important part for the formulation as well as for the linearization of
the weak form is a time derivative of the vector of a slave point S in
eqn. (6.5)

drs

dt
=

∂ρ

∂t
+ ξ̇ρξ + ζ

(
∂ν

∂t
+ ξ̇

∂ν

∂ξ

)
+ ζ̇ν. (6.26)
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With vs =
drs

dt
as the absolute velocity of the slave point S resp. v =

∂ρ

∂t
as the velocity of its projection on the master surface. The dot product
with the normal vector ν leads to the rate of the penetration

ζ̇ = (vs − v) · ν. (6.27)

Considering a value of the convective tangent velocity ξ̇ on the tangent
line, i.e. at ζ = 0, we need the dot product of eqn. (6.26) with ρξ:

ξ̇ =
(vs − v) · ρξ

(ρξ · ρξ)
. (6.28)

In the case of a length parameterization with s = ξ, eqn. (6.28) leads to
the following convective velocity ṡ:

ṡ = (vs − v) · τ . (6.29)

From the kinematical equation (6.26) we can obtain an equation for
the variations by changing the time derivative operator into the variation
operator δ. This equation is also considered on the tangent line, i.e. at
ζ = 0:

δrs − δρ = δξρξ + δζν. (6.30)

Eqn. (6.30) gives a variation of the displacement field for the expres-
sion of the virtual work of contact tractions on the contact surface.

6.2.3.4 Evolution equations for contact tractions

The evolution equations can be regarded as rate equations for the con-
tact tractions. The contact traction vector Rs is defined for the slave
point s in the local coordinate system on the master curve in the covari-
ant form as:

Rs = Tρ1 + Nρ2 = T + Nρ2 = T
ρξ

(ρξ · ρξ)
+ Nν. (6.31)

For the normal traction N , the following regularized equation is ap-
plied

N = εN〈ζ〉, (6.32)
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where εN is a penalty parameter for the normal interaction and 〈〉 are
Macauley brackets in the form

〈ζ〉 =

{
0, if ζ > 0

ζ, if ζ ≤ 0
.

According to eqn. (6.27), the rate of a normal traction can be com-
puted as

Ṅ = εN ζ̇H(−ζ) = εNH(−ζ)(vs − v) · ν, (6.33)

where H(−ζ) is the Heaviside function.
As a reasonable equation for the regularization of the tangent traction

vector T we choose a proportional relation between the full time deriva-

tive
dT

dt
and the relative velocity vector expressed on the tangent line

ζ = 0:

D1T

dt
ρ1 = −εT ξ̇ρξ, (6.34)

in component form written as

D1T

dt
= −εT ξ̇(ρξ · ρξ), (6.35)

where εT is a penalty parameter for the tangential interaction. Applying
the results from eqn. (6.25) leads to the evolution equations in the form
of covariant derivatives:

dT

dt
= −εT (ρξ · ρξ)ξ̇ +

ρξξ · ρξ

(ρξ · ρξ)
ξ̇ − h11

a11
ζ̇ . (6.36)

which is used to compute a trial tangent traction.

6.3 Weak formulation in the spatial
coordinate system

Next we consider the contact tractions Rs and Rm on both the slave and
the master contact curves with corresponding lengths ls and lm in the
current configuration. Let δus resp. δum be variations of the displace-
ment field on the curves ls resp. lm, then the work of the contact forces
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6.4 Linearization process

is determined in the following integral

δWc =

∫
ls

Rs · δusdls +

∫
lm

Rm · δumdlm, (6.37)

which must be added to the global work of the internal and external
forces. Due to equilibrium at the contact boundary Rsdls = −Rmdlm,
equation (6.37) can be also written as

δWc =

∫
ls

Rs · (δus − δum)dls. (6.38)

The integral in (6.38) is considered in the local coordinate system.
We redefine now the variations δus = δrs for a slave point and δum = δρ

for a projection of the slave point onto the master curve.
Substituting the variation δus − δum = δrs − δρ from eqn. (6.30) and

also the full contact traction vector eqn. (6.31) into the integral (6.38) we
obtain

δWc =

∫
l

(Nδζ + Tδξ)dl. (6.39)

A closer look reveals that the contact integral (6.39) contains the work
of the contact tractions T and N defined on the master contact curve and
is computed along the slave curve l ≡ ls.

6.4 Linearization process

Here, we show the derivation of the normal contact matrices using the
geometry of plane curves. For all other results, we give a sketch of the
linearization procedure with a comparative discussion of results avail-
able in the literature, in order to avoid the repetition of complicated math-
ematics.

6.4.1 Necessary operations.
Linearization of convective variations

Since in the contact integral the linearization of the contact tractions
is directly given by the evolution equations, it is only necessary to find
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derivatives of the convective variations δζ and δξ to fulfill all steps in the
preparation for further forms.

6.4.1.1 Linearization of δζ

The result will be obtained assuming a natural parameterization of the
corresponding boundary curve.

d

dt
δζ =

d

dt
[(δrs − δρ) · ν] =

=
∂(δrs − δρ)

∂s
· νṡ + (δrs − δρ) · ∂ν

∂t
+ (δrs − δρ) · ∂ν

∂s
ṡ. (6.40)

The first term can be rewritten, taking into account eqn. (6.29) for a
convective velocity in the case of a natural parameterization, as follows:

δ
∂(rs − ρ)

∂s︸ ︷︷ ︸
−τ

·νṡ = −(δτ ·ν) ((vs − v) · τ )︸ ︷︷ ︸
ṡ

= −δτ · (ν⊗τ )(vs−v). (6.41)

In order to rewrite the second term, we have to take first a partial time
derivative of the orthogonality condition:

τ · ν = 0 =⇒ ∂(τ · ν)

∂t
=

∂2ρ

∂s∂t
· ν +

∂ν

∂t
· τ = 0, (6.42)

leading to the expression

∂ν

∂t
· τ = −∂v

∂s
· ν. (6.43)

From the other side, using the unity condition of the vector ν, we can
express the time derivative in terms of the tangent vector τ by analogy
to eqns. (6.14), (6.15), as

∂ν

∂t
= aτ = (τ · ∂ν

∂t
)τ (6.44)
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and substituting eqn. (6.43) we obtain

∂ν

∂t
= −

(
∂v

∂s
· ν

)
τ . (6.45)

Eqn. (6.45) allows to transform the second term in eqn. (6.40) as follows

(δrs − δρ) · ∂ν

∂t
= −(δrs − δρ) ·

(
∂v

∂s
· ν

)
τ = (6.46)

introducing a tensor product τ ⊗ ν in order to transform a dot product

= −(δrs − δρ) · (τ ⊗ ν)
∂v

∂s
= −(δrs − δρ) · (τ ⊗ ν)

∂τ

∂t
. (6.47)

The last term in eqn. (6.47) is obtained reversing the order of differenti-
ation as

∂v

∂s
=

∂

∂s

∂ρ

∂t
=

∂

∂t

∂ρ

∂s
=

∂τ

∂t
. (6.48)

The third term in (6.40) is reorganized into a tensor form with a sec-
ond Serret-Frenet formula and with equation (6.29) for the convective
velocity ṡ:

(δrs − δρ) · ∂ν

∂s
ṡ = −(δrs − δρ) · κτ ⊗ τ (vs − v). (6.49)

Therefore, combining eqn. (6.41), (6.46) and (6.49), we obtain a final
formula for the linearization of δζ:

d

dt
δζ = −

(
δτ · ν ⊗ τ (vs − v) + (δrs − δρ) · τ ⊗ ν

∂τ

∂t

)
(6.50)

− (δrs − δρ) · κτ ⊗ τ (vs − v).

6.4.1.2 Linearization of the convective variation δξ

The linearization of the convective variations δξi in a 3D formulation
is the most complicated part of the process. First, see Parisch [137],
Laursen and Simo [109], Wriggers [187] the convective variations δξi

were introduced via an iterative Newton scheme, see eqn. (6.4). A kine-
matical definition of δξi can be found in the books of Wriggers [188]
and Laursen [106]. The full linearization of these terms combined with
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the contact integral defined only on the surface led to an artificial non-
symmetry of the tangent matrix for the sticking case, which was men-
tioned in Laursen and Simo [109]. Wriggers [188] could avoid this by
looking at it as a mesh tying procedure. In [89] the variations of δξi

were defined kinematically and expressed on the tangent plane of the
contact surface. In addition, the linearization process was performed
in the covariant form on the tangent plane. For the sticking case this
leads directly to a symmetric matrix and allows to avoid the artificial
non-symmetry.

Here only the main points of the linearization process are depicted,
for the full derivation we refer to [89].

1. The convective variations are defined on the tangent plane of the
spatial coordinate system via consideration of the slave point veloc-
ity as ξ̇j = aij(vs − v) · ρi.

2. During the linearization of δξi the derivative of the metric tensor is
obtained as derivative of the spatial metric tensor considering its
value on the tangent plane.

The final result for the 3D case is then:

d

dt
(δξi) =

= −(δrs − δρ) ailajk ρk ⊗ ρl vj − δρ,j aikajl ρk ⊗ ρl (vs − v) (6.51a)

+hij(δrs − δρ) · (ρj ⊗ n + n ⊗ ρj

)
(vs − v)+ (6.51b)

+hi
nξ̇

3δξn − Γi
kj ξ̇

jδξk. (6.51c)

The reduction into the specific plane geometry in the current contri-
bution leads to:

d

dt
(δξ) =
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= −(δrs − δρ) · ρξ ⊗ ρξ vj + δρξ · ρξ ⊗ ρξ (vs − v)

(ρξ · ρξ)
2

(6.52a)

+
(ρξξ · ν)

(ρξ · ρξ)
2
(δrs − δρ) · (ρξ ⊗ ν + ν ⊗ ρξ

)
(vs − v)+ (6.52b)

+
h11

a11
ζ̇δξ − ρξξ · ρξ

(ρξ · ρξ)
ξ̇δξ. (6.52c)

The non-symmetric part in eqn. (6.52c) is intentionally kept in untrans-
formed form, because it will give a zero in sum with similar terms in the
evolution equation (6.36) during the forthcoming linearization.

6.4.2 Tangent matrices

We derive the tangent matrix for the normal part in the case of a natural
parameterization. In order to avoid the complexity for the sticking – slid-
ing cases for the tangential part, the derivation is given as a reduction
of the 3D case.

6.4.2.1 Tangent matrix for the normal part

The normal part is defined by the following integral:

δWN
c =

∫
l

Nδζdl. (6.53)

The integral is computed over the slave surface l, while all functions
are defined on the master surface. Thus, a linearization of dl is not
necessary within the process:

D(δWN
c ) =∫

l

(
dN

dt
δζ + N

dδζ

dt

)
dl =

then the application of eqn. (6.33) and eqn. (6.50) leads to

=

∫
l

εN(δrs − δρ) · (ν ⊗ ν)(vs − v)dl− (6.54a)
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−
∫

l

εNζ

(
δτ · (ν ⊗ τ )(vs − v) + (δrs − δρ) · (τ ⊗ ν)

∂τ

∂t

)
dl− (6.54b)

−
∫

l

εNζκ(δrs − δρ) · (τ ⊗ τ )(vs − v)dl. (6.54c)

Remark.
The contact matrix obtained via eqn. (6.54) is computed only for the
case ζ < 0 – this simplification allows us to exclude the usage of the
Heaviside function.

The form in natural coordinates allows a simple geometrical interpre-
tation of each part in eqn. (6.54) and even allows to determine situations
where some of them are zero. The first part eqn. (6.54a) is called main
part and defines the constitutive relation for normal contact conditions.
The second part eqn. (6.54b) is called rotational part and defines the
geometrical stiffness due to the rotation of the tangent vector of the mas-
ter curve. It disappears when a master segment is moving in parallel,
because only in this case the derivative of a unit vector τ becomes zero,
see Fig. 6.2. The third part eqn. (6.54c) is called curvature part. This
part disappears when the curvature κ of a master segment is zero, i.e.
in the case of linear approximations of the master segment.

6.4.2.2 Tangent matrix for tangential traction

The part of the contact integral which includes the effect of the tangential
interaction is given as:

δW T
c =

∫
l

Tδξdl (6.55)

The linearized equation has to be subdivided into a part for sticking
and another part for sliding, which differ concerning the return-mapping
scheme.

Sticking. In this case, the tangential force T has to be computed from
the solution of the evolution equation eqn. (6.36), e.g. via the back-
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ward Euler scheme. The simplest case with linear approximations will
be presented in the following section concerning the finite element im-
plementation.

Sticking is fulfilled according to Coulomb’s friction law, i.e. the in-
equality ‖T‖ ≤ μ|N | has to be valid in each load step. The linearized
contact integral has then the following form:

Dv(δW
T
c ) =

∫
l

(
dT

dt
δξ + T

dδξ

dt

)
dl =

−
∫

l

εT

(ρξ · ρξ)
(δrs − δρ) · ρξ ⊗ ρξ(vs − v)dl (6.56a)

−
∫

l

T

(ρξ · ρξ)
2

[
(δrs − δρ) · ρξ ⊗ ρξ vξ + δρξ · ρξ ⊗ ρξ (vs − v)

]
dl (6.56b)

+

∫
l

Th11

(ρξ · ρξ)
2
(δrs − δρ) · (ρξ ⊗ ν + ν ⊗ ρξ

)
(vs − v)dl. (6.56c)

Sliding. If sliding is detected, i.e. if ‖T‖ > μ|N |, then the sliding force is
computed according to Coulomb’s friction law. We also keep a covariant
form:

T sl = μ|N | Ttr

‖Ttr‖ = μ|N | ‖ρξ‖sgn(Ttr), (6.57)

with
‖ρξ‖ = (ρξ · ρξ)

1/2 =
√

a11.

The linearized contact integral gets the following form:

Dv(δW
T
c ) =

−
∫

l

εNμ sgn(Ttr)

(ρξ · ρξ)
1/2

(δrs − δρ) · (ρξ ⊗ ν)(vs − v)dl (6.58a)

−
∫

l

μ|N | sgn(Ttr)

(ρξ · ρξ)
3/2

(
(δrs − δρ) · ρξ ⊗ ρξ vξ + δρξ · ρξ ⊗ ρξ (vs − v)

)
dl (6.58b)
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+

∫
l

μh11|N | sgn(Ttr)

(ρξ · ρξ)
3/2

(δrs − δρ) · (2ρξ ⊗ ν + ν ⊗ ρξ

)
(vs − v)dl. (6.58c)

The non-symmetric part eqn. (6.58c) now is resulting from the last term
of the evolution equation (6.36).

Remark:
The derivations for the two dimensional case allow to describe all parts
of the tangent matrix and to find all cases, when some of them become
zero. The main parts, eqns. (6.56a) and (6.58a), the so-called constitu-
tive parts, contain a penalty parameter and describe the stiffness of the
contact interaction due to the chosen interface model. This is based on
an allowable elastic deformation due to the regularization in the case of
sticking resp. due to the applied sliding force μ|N | in the tangential direc-
tion in the case of sliding. The rotational parts eqns. (6.56b) and (6.58b),
contain a metric coefficient a11 = (ρξ ·ρξ) and a vector ρξ. A metric coef-
ficient is a measure of the tensile deformation of the contact master line,
e.g. a component of the Cauchy-Green tensor for the contact line can
be written as ε11 = (a11−1)/2. The vector ρξ is a measure of the rotation
of the master segment, which becomes obvious if the length is chosen
as a coordinate s = ξ. In this case we find δρξ = δτ and vξ = ∂τ

∂t . The
vector τ is a unit vector, therefore the vectors δτ and ∂τ

∂t are describing
the rotation of the unit vector τ (see Fig. 6.2). It is identical to zero only
in the case of parallel motions. Thus, the rotational part is obviously
negligible in the case of small deformations and small rotations of the
master line. The curvature parts eqns. (6.56c) and (6.58c) describe the
stiffness of the contact interaction due to the curvature of the contact
surface. If the surface has zero curvature or is approximated by linear
elements, then the curvature part becomes zero.

6.5 Finite element implementation

The structure of all parts of the tangent matrix is algorithmic. It is suf-
ficient for the discretization to define only approximations of a relative
displacement vector (rs − ρ) and its derivative with respect to ξ. Fol-
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lowing the standard iso-parametric technique as for finite elements, we
consider a contact surface element with the same order of approxima-
tion for the geometry as for the displacement field. The boundary curve
can be given with any curve description (spline, NURB, etc.). For sim-
plicity, we consider only the node-to-segment contact approach. Let a
boundary curve or a master segment of it be defined by n nodes with
x(1),x(2), ...,x(n); and x(n+1) for a slave node. A standard grouping of a
displacement vector can then be written as

uT = {u(1)
1 , u

(1)
2 , u

(2)
1 , u

(2)
2 , ..., u

(n)
1 , u

(n)
2 , u

(n+1)
1 , u

(n+1)
2 }T , (6.59)

where the first n nodes resp. 2n displacements belong to the master
surface, while the (n + 1)’th term is belonging to the ”slave” node resp.
is describing the ”slave” displacements.

We introduce a matrix of shape functions A

A =

[ −N1 0 0 −N2 0 0 ... −Nn 0 1 0
0 −N1 0 0 −N2 0 ... 0 −Nn 0 1

]
, (6.60)

where Ni, i = 1, 2, ..., n are shape functions. The matrix of the deriva-
tives of the shape functions A′ is defined then as

A′ = −
[

N ′
1 0 0 N ′

2 0 0 ... N ′
n 0 0 0

0 N ′
1 0 0 N ′

2 0 ... 0 N ′
n 0 0

]
, (6.61)

The relative vector of variations (δrs − δρ) and the relative velocity
vector (vs − v) are then written as

δrs − δρ = Aδu , vs − v = Au̇ , (6.62)

where u̇ is the nodal velocity vector. With the matrix of the derivatives
A′ e.g. a derivative δρξ of a vector δρ can be defined as

δρξ = −A′δu. (6.63)

We note that the matrices A and A′ are sufficient to build the tangent
matrices as well as the residual vector for any arbitrary contact surface.
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6.5.1 Linear contact element

The simplest approximation is a linear contact element within the node-
to-segment approach. This linear contact element has 3 nodes: the first
two nodes x1,x2 are approximating a contact boundary, while the third
node xS is the slave node. The approximation on the master element is
defined as

ρ(ξ) :=
1 − ξ

2
x1 +

1 + ξ

2
x2 =

1 − ξ

2

(
x1

y1

)
+

1 + ξ

2

(
x2

y2

)
. (6.64)

The tangent vector ρξ is then given as:

ρξ =
x2 − x1

2
=

1

2

(
x2 − x1

y2 − y1

)
. (6.65)

A single metric coefficient becomes:

a11 = ρξ · ρξ = 0.25 · ((x1 − x2)
2 + (y1 − y2)

2), (6.66)

which is the square of the length of the vector ρξ. The unit normal vector
ν to the contact segment is defined in a Cartesian coordinate system via
a cross product of the tangent vector ρξ and the third unit vector k which
is normal to the plane:

ν :=
[k× ρξ]

(ρξ · ρξ)
=

1

2a11

(
y2 − y1

x1 − x2

)
. (6.67)

In this definition according to eqn. (6.7) and to Fig. 6.1, we assume that
the solid body occupies the lower part relative to the contact element in
Fig. 6.3. The matrix of the shape functions A

A =

⎡
⎢⎣ −1 − ξ

2
0 −1 + ξ

2
0 1 0

0 −1 − ξ

2
0 −1 + ξ

2
0 1

⎤
⎥⎦ , (6.68)

and the matrix of the derivatives A′

A′ =
1

2

[
1 0 −1 0 0 0
0 1 0 −1 0 0

]
, (6.69)
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are used to approximate the displacement field as well as the deriva-
tives. The displacement vector u is defined as

uT = {u(1)
x , u(1)

y , u(2)
x , u(2)

y , u(S)
x , u(S)

y }T . (6.70)
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ξ
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1
O

ξ=1

ξ =−1

ξc

Y

X

Figure 6.3: Linear contact element. Node-to-segment approach.

6.5.1.1 Closest point projection procedure

Consider now the increment Δξ in load step (m) for the closest point
procedure in eqn. (6.4) in order to define the internal coordinate ξC of
the projection point C. Due to the linear approximation in the contact
element we get ρξξ = 0.

Δξ =
(rs − ρ) · ρξ

(ρξ · ρξ)
= (6.71)

=
4

‖x2 − x1‖2

(
xS − x1 + x2

2
− x2 − x1

2
ξ(m)

)
· x

2 − x1

2
=

=
2xS · (x2 − x1)

‖x2 − x1‖2
− ‖x2‖2 − ‖x1‖2

‖x2 − x1‖2
− ξ(m).

It is obvious that the Newton update scheme ξ(m+1) = ξ(m) + Δξ in
eqn. (6.4) is independent of the initial guess ξ(m), therefore, the last
expression in eqn. (6.71) together with this scheme leads to the exact
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value for the internal coordinate ξC:

ξC =
2xS · (x2 − x1)

‖x2 − x1‖2
− ‖x2‖2 − ‖x1‖2

‖x2 − x1‖2
. (6.72)

The result can be also interpreted as convergence in one iteration.
Since the geometry of this element is quite simple, the same result can
be also obtained directly via the triangle in Fig. 6.3.

A simple searching algorithm leads to computations of all further
components for a contact element at the projection point ξC only if the
slave point S is projected onto this element, i.e. if |ξC | ≤ 1.

6.5.1.2 Return-mapping scheme

In order to define the tangent traction vector T, we apply the standard
return-mapping scheme based on the elasto-plastic analogy, as is e.g.
presented in the books of Wriggers [188] and Laursen [106]. The trial
tangential traction is computed via the evolution equation (6.36), which
in the case of a linear approximation is reduced to:

Ṫ = −εT (ρξ · ρξ)ξ̇. (6.73)

We consider here the simplest case for frictional problems: a quasi-
statical motion leading to the development from sticking to sliding. In
addition, we assume that during motion a slave point is not crossing
an element boundary. Thus, for our case we need only one additional
variable ξ0 per contact element in order to define the initial position of the
slave point on the master segment. The trial tangent traction is obtained
via the application of the backward Euler scheme within the evolution
equation (6.73). Since we have a linear approximation for the geometry,
we have

T (m+1) = T (m) − εTa11(ξ
(m+1) − ξ(m)) = (6.74)

and continuing recursively, we obtain

= T (m−1) − εTa11(ξ
(m+1) − ξ(m−1)) = ... = T (0) − εTa11(ξ

(m+1) − ξ0).

Assuming in addition, that at the initial position the tangential traction
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T (0) was zero, we obtain

T
(m+1)
tr = −εTa11(ξ

(m+1) − ξ0). (6.75)

The last eqn. (6.75) serves now to compute the trial tangential reaction.

The return-mapping following the Coulomb friction condition leads
then with:

N (m+1) = εNζ(m+1),

to

T (m+1) =

⎧⎨
⎩

T
(m+1)
tr if |T (m+1)

tr | < μ|N (m+1)|√a11 (sticking)

μ|N (m+1)|√a11sgn(T
(m+1)
tr ) if |T (m+1)

tr | ≥ μ|N (m+1)|√a11 (sliding)

.

(6.76)

The inequality condition in eqn. (6.76) is obtained from the following:

‖T(m+1)
tr ‖ < μ|N | =⇒ T

(m+1)
tr√
a11

< μ|N |, (6.77)

where eqn. (6.23) for the absolute value of the covariant vector is taken
into account.

The global solution scheme for the simplest case discussed here is
presented in Table 6.1.

6.6 Treatment of special cases

In this section, we consider, how to treat some particularities, which
were mentioned and excluded in section 6.5.1.2. The first problem is
arising when the applied load is not simply modified proportionally. In
this situation a trial load can not be computed only via eqn. (6.75), be-
cause the attraction point ξ0 must be updated. Thus we have to ex-
tend the algorithm as is shown in the following. The second problem is
arising when the projection point is crossing an element boundary dur-
ing the incremental loading. In this case, the computation according to
eqn. (6.75) will produce a jump, because the convective coordinate ξ
belongs to different elements, see Wriggers [188] and Laursen [106].
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6.6.1 Update of the sliding displacements in the case of
reversible loading

We consider a geometrical interpretation of the return-mapping scheme
in eqn. (6.76) together with the evolution equation (6.75), see Fig. 6.4.

|T (m)
tr | < μ|N (m)|√a11 =⇒ εT |ξ(m) − ξ0| < μ|N (m)| (6.78a)

|ξ(m) − ξ0| < R
(m)
ξ , R

(m)
ξ =

μ|N (m)|
εT

(6.78b)

Eqn. (6.78b) describes an allowable elastic region A(m)B(m) with a
center of attraction O(m). All points inside this domain are in ”sticking
condition”. If now a point ξ(m+1) appears to be outside of the domain at
load step (m + 1), then its only admissible position is on the boundary
of the domain, i.e. must coincide with B(m+1). A sliding force is applied
then at the contact point, see eqn. (6.76). As long as we have a motion
of the contact point only in one direction the sign function for the sliding
force sgn(T

(m+1)
tr ) = sgn(Δξ(m+1)) does not change and the computation

will be correct. However, when a reversible load is applied which forces
the contact point to move forward or backward, the attraction point O(m)

must be updated, in order to define the sign function for the sliding force
correctly. This update can be defined geometrically from Fig. 6.4:

|Δξ(m+1)| = |Δξsl| + R
(m+1)
ξ = |Δξ(m+1)| − μ|N (m)|

εT
. (6.79)

The absolute value of the sliding displacement is then computed at load
step (m + 1) as:

|Δξsl| = |ξ(m+1) − ξ(0)| − μ|N (m+1)|
εT

, (6.80)

and the updated center of the elastic domain becomes:

ξ(up)
c = ξ(0) + sgn(ξ(m+1) − ξ(0))|Δξsl|. (6.81)
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6.6 Treatment of special cases

For the next step, the evolution equation (6.75) is corrected as

T (m+2) = −εTa11(ξ
(m+2) − ξup

c ). (6.82)

Remark.
As an alternative procedure the back-substitution of the evolution equa-
tion (6.75) into eqn. (6.80) gives the updated scheme via the trial force:

|Δξsl| =
1

εT

(
|T (m+1)

tr | − μ|N (m+1)|
)

, (6.83)

which can be found e.g. in Wriggers [188].

���� ���� �� ��������

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

����������������������������

��������

����������������������������

������

ξ
(0)
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ξΔ sl Rξ
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ξΔ
(m)

(up)
ξc

Figure 6.4: Coulomb friction. Updating of sliding displacements in convective coordi-
nates. Motion of friction cone and center of attraction.

6.6.2 Crossing an element boundary –
continuous integration scheme

Consider two adjacent elements I(m)J(m) and J(m)L(m) at load step (m),
see Fig. 6.5. Let the contact point S(m) be projected onto the element
I(m)J(m) and its projection is a point K(m) with the convective coordinate
ξ(m). At load step (m + 1) these two elements move into the position
I(m+1)J(m+1) and J(m+1)L(m+1), but the contact point is moved into posi-
tion S(m+1) and is projected now onto element J(m+1)L(m+1). We assume
that the angular deformation of these elements is small in comparison
with a rigid body motion, thus the elements are drawn as straight lines. It
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6. 2D COVARIANT FORMULATIONS FOR CONTACT PROBLEMS

is obvious, that the direct computation according to the evolution equa-
tion (6.75) results in a jump. Let e.g. the point K(m) have the convective
coordinate ξ(m) = 0.9 close to the right element boundary, (see parame-
terization in Fig. 6.3), and then point K(m+1) has ξ(m+1) = −0.9 close to
the left element boundary. The distance between them is only Δξ = 0.2,
but the evolution equation gives:

T
(m+1)
tr = −εTa11(ξ

(m+1) − ξ(m)) = 1.8εT . (6.84)

The maximum possible jump following this straightforward action is eas-
ily determined from the limit values of the convective coordinates:

Tjump = −εTa11

(
lim

ξ→−1+0
(ξ)ξ∈IJ − lim

ξ→+1−0
(ξ)ξ∈JL

)
= 2εTa11. (6.85)

This jump appears only due to the different approximation of the adja-
cent elements. In order to overcome this, we can compute the force
in geometrical form. The incremental tangential displacements Δρ can
be expressed in the metrics of the second element J(m+1)L(m+1) at time
step (m + 1):

Δρ = Δξρ
(m+1)
ξ , (6.86)

and alternatively, it can be geometrically defined via the incremental
displacement vector Δu:

Δρ = ρ(ξ(m+1))ξ∈JL −
(
ρ(ξ(m)) + Δu(ξ(m))

)
ξ∈IJ

. (6.87)

Then Δξ is defined as

Δξ =

(
ρ(ξ(m+1))ξ∈JL − (

ρ(ξ(m)) + Δu(ξ(m))
)
ξ∈IJ

)
· ρ(m+1)

ξ

a
(m+1)
11

(6.88)

and the evolution equation becomes

T
(m+1)
tr = T (m) − εTa

(m+1)
11 Δξ. (6.89)

Modifications of the global solution scheme given in Table 6.1 are
represented in Table 6.2 according to the special cases.
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6.6 Treatment of special cases

6.6.3 Remarks on additional developments

One can see, that the continuous integration scheme as presented in
Section 6.6.2 leads to an increasing number of history variables, in fact,
in addition to ξ(m) the vector ρ(ξ(m)) must be stored. Moreover, other
history variables such as the updated sliding displacements must be
transfered in a similar fashion. The continuous integration scheme, of
course, is particularly important for contact problems with singularities,
e.g. sliding of an edge along a curve as also shown in Fig. 6.5. For
other cases with nonsingular geometry it is more efficient to exclude
contact points, once they appear outside the master element, but then,
as a compensation, introduce additional contact points in the slave seg-
ment, e.g. integration points, within the so-called segment-to-segment
approach, for details see Zavarise and Wriggers [199] especially for the
2D case and Harnau, Konyukhov and Schweizerhof [57] for the 3D case.
Another approach to increase the number of contact points is the mortar
method, see e.g. in McDevitt and Laursen [123] and recent develop-
ments in Puso and Laursen [150].
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Figure 6.5: Crossing an element boundary within a load increment. Typical case for
the continuous integration scheme.
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Another important problem arises due to the non-smoothness of con-
tact boundaries, if for the boundary a low order finite element mesh is
used. This leads to jumps in both the normal and the tangential charac-
teristics when crossing the element boundary see Fig. 6.6, because nei-
ther a normal vector n, nor a tangent vector ρξ are defined at the edge
point B. If the real boundary is an edge then e.g. adaptive methods
can improve the result for a straight geometry, see Wriggers and Scherf
[191] and Wriggers [188]. If the real boundary is smooth, then vari-
ous smoothing techniques based on the approximation of the boundary
with e.g. splines can be used. There are numerous publications on this
subject, see Wriggers et. al. [190], Padmanabhan and Laursen [134]
and Stadler et.al. [169] especially for 2D problems, and then in Puso
and Laursen [148], Krstulovic-Opara et. al. [102], Stadler and Holzapfel
[168] for 3D problems. In this case, the geometrical singularity is re-
moved, i.e. the normal n and the tangent vector ρξ are uniquely defined
at point B. However, the continuous integration scheme in eqn. (6.88-
6.89) is still necessary, as the smooth patches have in all above publica-
tions local support, i.e. their convective coordinate is defined separately.

��

��

��

A
B

D

n
n n

ΑΒ
BD

ρ
ξ

ΑΒ BD

ρ
ξ

ρ
ξ

Figure 6.6: Low-order finite element approximation. Approximation of a real boundary
with a smooth curve.

6.7 Numerical examples

6.7.1 Sliding of a block. Linear approximation of the contact sur-
faces. Reversible loading process

We consider the sliding of an elastic block similar as shown in [89],
however, here the block will be loaded with horizontally prescribed re-
versible displacements. The main point is to show the update proce-
dure for sliding displacements and investigate the development of the
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Table 6.1: Global solution scheme for a linear contact element.

1. Initialization of the convective coordinate ξ0.
Initial condition for the evolution equation for all contact elements:

Compute projection point ξC in eqn. (6.72), with no external loads −→ ξ0 = ξC .

2. Loop over load increments m, m = 1, ..., mend.

3. Loop over global Newton iterations i, i = 1, ..., iend.

4. Loop over all contact elements

• compute projection points ξ
(i)
C eqn. (6.72). If | ξ

(i)
C | ≥ 1 then exit loop 4.

• check penetration ζ(i) = (rs − ρ) · ν. If ζ(i) > 0 then exit loop 4.

• compute contact tractions and corresponding tangent matrices at contact point
ξC .

Normal traction: N (i) = εNζ(i)

Tangent matrix K
N for normal traction

K
N = εN A

T (ν ⊗ ν)A +
εN ζ(i)

(ρξ · ρξ)

(
A

′T (ν ⊗ ρξ)A + A
T (ρξ ⊗ ν)A′

)
Trial tangent traction: T

(i)
tr = −εT (ρξ · ρξ)(ξ

(i)
C − ξ0)

Real tangent traction T and corresponding matrices
are defined via the return-mapping algorithm

if |T (i)
tr | ≤ μ|N (i)|‖ρξ‖

sticking

T (i) = Ttr

Tangent matrix K
T

K
T = − εT

(ρξ · ρξ)
A

T (ρξ ⊗ ρξ)A+

+
εT

(ρξ · ρξ)
2

[
A

′T (ρξ ⊗ ρξ)A + A
T (ρξ ⊗ ρξ)A

′T
]

if |T (i)
tr | > μ|N (i)|‖ρξ‖

sliding

T (i) = μ|N (i)|‖ρξ‖

Tangent matrix K
T

K
T = −εN μ sgn(T

(i)
tr )

(ρξ · ρξ)
1/2

A
T (ρξ ⊗ ν)A+

+
μ|N |sgn(T

(i)
tr )

(ρξ · ρξ)
3/2

[
A

′T (ρξ ⊗ ρξ)A+

+A
T (ρξ ⊗ ρξ)A

′T
]

• Compute the full contact tangent matrix K = K
N + K

T

• Compute residual R

RN = N (i)
A

T ν; RT =
T (i)

(ρξ · ρξ)
A

′T ρξ,

R = RN + RT .

end loop over contact elements
end loop over global Newton iterations
end loop over load increments
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Table 6.2: Modifications of the global solution scheme according to special cases.

1. Initialization of the convective coordinate ξ0.
Initial condition for the evolution equation for all contact elements:

Compute projection point ξC in eqn. (6.72), with no external loads −→ ξ0 = ξC .

2. Loop over load increments m, m = 1, ..., mend.

3. Loop over global Newton iterations i, i = 1, ..., iend.

4. Loop over all contact elements

• compute projection points ξ
(i)
C eqn. (6.72). If | ξ

(i)
C | ≥ 1 then exit loop 4.

• check penetration ζ(i) = (rs − ρ) · ν. If ζ(i) > 0 then exit loop 4.

• compute contact tractions and corresponding tangent matrices at contact point
ξC .

Compute normal traction: N (i) and corr. matrix, see Table 6.1

Trial tangent traction T
(i)
tr according to the specific algorithm:

a) reversible loading

T (i) = −εT a11(ξ
(i) − ξup

c ).

b) continuous integration

Δξ see eqn. (6.88)

T
(i)
tr = T (m−1) − εT a

(i)
11 Δξ.

• Compute real tangent traction T (i) and corr. tangent matrices K
T according to

the return mapping scheme, see Table 6.1

• Compute the full contact tangent matrix K = K
N + K

T, see Table 6.1

• Compute residual R, see Table 6.1

end loop over contact elements
end loop over global Newton iterations

Update and store necessary history variables

a) reversible loading

Compute and store the update center
ξ
(up)
c according to eqn. (6.81)

b) continuous integration

Store history variables for Δξ accord-
ing to eqn. (6.88) and T (m).

end loop over load increments
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sticking-sliding zone. All numerical investigations are performed with
FEAP-MeKa [172] including the implementation of the presented algo-
rithms.

As an example for the computation, we consider a rectangular block
(Fig. 6.7) resting on a surface with the following parameters: elasticity
modulus E = 2.1 · 104, Poisson ratio ν = 0.3, length a = 20, height b = 5.
The dimensions are assumed to be consistent. The block is uniformly
meshed by linear finite elements: 40 elements in horizontal direction and
10 elements in vertical direction. The lower surface represents a rigid
base. Coulomb friction with a coefficient μ = 0.3 is specified between
the surfaces. The contact surface of the deformable block is assumed
to be a ”master”, while the surface of the rigid base is a ”slave” surface
within the ”node-to-segment” approach. The penalty parameters are
chosen as εN = εT = 2.1 · 106. The loading is applied as prescribed
displacements at the top side of the deformable block. This example is
chosen to show the robustness of the contact algorithm and the update
scheme within a covariant description, though the current results can be
achieved certainly with other known techniques.
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Figure 6.7: Plane deformation of a block. Applied displacement loading at top of the
block.

The main question arising before the computation is, which size of
the load step is allowed, as it is important to capture the spreading of
the sticking-sliding zone correctly. We use the concept of the critical
displacement ucr, introduced in [89], namely, a value of the applied dis-
placements after which the block fully slides. As shown for the infinite
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layer this value is given as

ucr =
2μh

1 − ν
. (6.90)

The estimation of the critical horizontal displacement in eqn. (6.90) gives
ucr = 6.0 · 10−3, thus in order to investigate the sticking-sliding zone
properly we choose a displacement increment Δu = 1.0 · 10−4. The
displacements are applied according to the loading process given in
Table 6.7.1.

No. l.s. Δu u · 10−3 Δv · 10−3 v Loading
0 0.0 0.0 0.0 0 initialization of conv. coord.
1 0.0 0.0 7.0 · 10−3 0.0 − 7.0 vertical displ. v

2–80 10−4 0.0 − 8.0 0.0 7.0 forward horizontal displ. u1

81–84 −2.5 · 10−5 8.0 − 7.9 0.0 7.0 backward horizontal displ. u2

85–163 −1.0 · 10−4 7.9 − 0.0 0.0 7.0 backward horizontal displ. u2

164–280 −1.0 · 10−4 0.0 − (−1.17) 0.0 7.0 backward horizontal displ. u2

Table 6.3: Plane deformation of a block. Loading procedure with prescribed displace-
ments on the top side of the deformable block.

As a consequence of the reversible loading a hysteresis curve as
shown in Fig. 6.8 is developed. The applied displacement at point C,
see Fig. 6.7, is depicted along the x-axis, and the computed horizon-
tal displacement at point D is depicted along the y-axis. We obtain a
spreading of the sliding zone during the forward loading process (curve
OF) as well as during the backward loading process (curve FG). The
horizontal displacements u along the contact line AD, see Fig. 6.7, to-
gether with the distribution of the stress ratio T/N allow us to define the
sticking-sliding zone during the loading process.

Forward loading. Path OF on the hysteresis curve. The horizontal displace-
ment distribution as well as the stress ratio T/N distribution on the con-
tact boundary are shown in Fig. 6.9 and Fig. 6.10 for the following load-
ing points:

a) Load step 1, see Table 6.7.1, i.e. only vertical displacements are
applied v = 0.007. This is the starting point O on the hysteresis
curve Fig. 6.8;
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Figure 6.8: Plane deformation of a block. Hysteresis curve. Observed horizontal
displacement at point D vs. applied horizontal displacement at point C.

b) Intermediate points with applied horizontal displacements u =

0.0040 and u = 0.0060, resp. points O1 and O2 on the hysteresis
curve Fig. 6.8;

c) The load step No. 80 with u = 0.0080, see Table 6.7.1, is chosen
as a final point of the forward loading, see also the point F on the
hysteresis curve Fig. 6.8.

The development of the sliding zone with increasing displacement load-
ing u is given in Fig. 6.9 and the development of the stress ratio T/N in
Fig. 6.10. At the end of the forward loading the sliding zone is increased
to about 8 ≤ x ≤ 20.

Backward loading. Part FGH on the hysteresis curve. The horizontal dis-
placement distribution and the contact stress ratio T/N distribution on
the contact boundary are shown in Fig. 6.11 and in Fig. 6.12 for the
following loading points:

a) Last load step of the forward loading with u = 0.0080, resp. point F
on the hysteresis curve Fig. 6.8 as a starting point;

b) Intermediate points on the unloading part FG with applied horizon-
tal displacements u = 0.0040, u = 0.000, u = −0.0040, u = −0.0060,
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Figure 6.9: Plane deformation of a block. Horizontal displacement of the contact
boundary. Forward loading.

u = −0.0080, resp. points F2, F3, F4, F5, F6 on the hysteresis
curve;

c) Selected point with u = 0.010 on the full backward sliding part GH

of the hysteresis curve.

When the load is reversed, starting from load step No. 81, see Ta-
ble 6.7.1, all points on the contact boundary are sticking. On the contact
boundary we have so-called residual horizontal displacements (in anal-
ogy to plasticity). During the following unloading back to u = 0.000 the
whole boundary is still sticking: points F1, F2, F3. The latter we can
only detect from the stress ratio diagram in Fig. 6.12, where the curves
vary inside the layer −0.3 ≤ T/N ≤ 0.3. The residual displacements
are not changing, see diagram 6.11, until sliding is beginning. Starting
from the applied displacements u = −0.0040 (point F4) we can detect
the beginning of sliding at the left corner of the block, as the stress ratio
curve is approaching its limit ratio 0.3. The final part of the hysteresis
diagram, from point F4 to point G, is responsible for the development of
the sliding zone in the backward direction, which can be observed either
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Figure 6.10: Plane deformation of a block. Stress ratio T/N on the master contact
surface. Forward loading.

by the development of the horizontal displacements in the left part of
the displacement diagram 6.11, or by the development of the zone with
a stress ratio T/N = 0.3 in diagram 6.12. Full sliding of the block starts
at point G with u ≈ −0.0092. Beyond that, horizontal displacements
on the contact are changing proportionally to the applied displacement
loading, i.e. linearly, as we see from the linear part GH in the hysteresis
curve.

Remark.
In the presented example the displacements are small and slaves nodes
never cross the element boundaries, therefore the continuous integra-
tion scheme is not necessary. In the next example we show a particular
case with large sliding in which the application of the continuous inte-
gration scheme is necessary.
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6.7.2 Drawing of an elastic strip into a channel
with sharp corners

In this section, we consider a special contact case, for which the appli-
cation of the continuous integration scheme described in sect. 6.6.2 is
absolutely necessary. An elastic strip AD, see Fig. 6.13 (E = 2.1 · 104,
ν = 0.3, thickness h = 0.5, length L = 24) is positioned at the begin-
ning of a channel with width a = 13. The corners of the channel are
rather sharp. The channel itself is modeled by two rigid blocks B1 and
B2. The strip is loaded incrementally by a prescribed displacement v at
the center until it is inserted into the channel, see Fig. 6.14. The strip
here is modeled with 24 linear solid-shell elements, see Hauptmann and
Schweizerhof [60] and Hauptmann et.al. [59], and due to symmetry only
one half of the system is modeled. The crucial point during the analysis
is the sliding of a sharp corner C over the element boundaries 1, 2, 3,
see Fig. 6.14. A load-displacement curve computed for the loading point
is chosen as the representative parameter to compare various contact
approaches. The following variations were investigated:

1. Non-frictional case with the ”node-to-surface” approach without the
continuous integration scheme proposed in eqn. (6.88) and (6.89).

2. Non-frictional case with the ”segment-to-segment” approach. Here
the number of integration points in the contact segment is varied.

3. Frictional case with the ”node-to-surface” approach without the con-
tinuous integration scheme.

4. Frictional case with the ”node-to-surface” approach with the contin-
uous integration scheme.

5. Frictional case with the ”segment-to-segment” approach. Here the
number of integration points in the contact segment are varied.

We start the investigation with the non-frictional problem (case 1,
2) applying the load increment v = 0.005 with the penalty parameter
εN = 2.1 · 105. The elements from the strip are chosen to be a master,
while the sharp corner is a singular slave node. The load-displacement
curve for the ”node-to-surface” approach contains a jump when the
sharp corner is crossing the boundary nodes 1 resp. 2, see Fig. 6.14.
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The solution process is no longer converging after the sharp corner is
crossing the boundary node 3. As an alternative for improvements,
we chose the ”segment-to-segment” approach, described in Harnau,
Konyukhov and Schweizerhof [57]. The sharp corner C is modeled with
two slave segments which are orthogonal to each other and take contact
points as the Lobatto integration points. Taking 2 integration points with
2 sub-domains, or e.g. 5 integration points allows to compute the full
load-displacement curve without the jumps obtained with NTS scheme,
see Fig. 6.15. The smoothing effect in the last cases happens because
the contact is checked not only against the single edge node, but also
against the set of contact points which covers fairly densely the sharp
edge.

The next study is devoted to the frictional problem (case 3, 4) with the
load increment v = 0.0025, the penalty parameters εN = 2.1 · 105, εT =

2.1 · 105 and a friction coefficient μ = 0.2. The straightforward analysis
without the continuous integration scheme (case 3) leads to a jump in
the force-displacement curve when the sharp corner is crossing the first
boundary node 1. The solution is no longer converging when the sharp
corner is crossing the second boundary node 2, see Fig. 6.16. The ap-
plication of the continuous integration scheme, however, allows to obtain
the full force-displacement curve, even in the part when the strip is fully
inserted into the channel, see the straight part of the curves in Fig. 6.16.
For this case a side part of the channel is modeled as a rigid surface de-
scribed by an analytical function. For comparison, the analysis is carried
out with various friction coefficients μ = 0.1 and μ = 0.3, see Fig. 6.16.

It would be favorable also for the frictional case to perform the anal-
ysis without the continuous integration scheme avoiding to store a lot
of information about slave nodes and apply the ”segment-to-segment”
approach just increasing the number of integration points (case 2). The
results of such an analysis using the same loading parameters as for
the analysis in Fig. 6.16 are shown in Fig. 6.17. 5 and 10 Lobatto inte-
gration points are taken. Despite the fact that the solution is converging,
the load-displacement curve shows large oscillations in the sliding re-
gions after passing node 2. This result is due to the fact, that from one
load step to the other the history variables are not transported correctly.
Only the upper envelope of the oscillatory curve could be used as rep-
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Figure 6.11: Plane deformation of a block. Backward loading. Horizontal displace-
ment of the contact boundary.

resentation of the correct load-displacement curve. This confirms the
necessity of the continuous integration scheme in particular for frictional
contact.

Remark. We have to note that reversing the master surface, or the
so-called symmetric treatment of the contact, in the current example
would also not resolve the problem in a sufficient manner.

6.8 Conclusions

In this contribution a convective description was reconsidered for the
2D quasi-statical frictional contact problem. Special attention is paid to
the derivation of the necessary equations either as a reduction of the
known 3D covariant formulation, or directly from the special 2D cylin-
drical geometry of the contact surfaces. The algorithmic linearization
in the covariant form allows to obtain the tangent matrices before the
linearization process. Thus, an implementation can be easily carried
out without providing any special attention to the approximation of the
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Figure 6.12: Plane deformation of a block. Backward loading. Stress ratio T/N on the
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contact surfaces (e.g. finite element mesh, CAD surface etc.). A simple
linear contact element is chosen to illustrate the algorithmic implemen-
tation into a FE code.

Different situations requiring the application of more advanced tech-
niques, such as an update of sliding displacements and a continuous
integration scheme for the frictional case are discussed and illustrated
with numerical examples. Thus, the update technique is absolutely nec-
essary for the simulation of reversible loading processes, as the residual
deformations have to be described correctly. The continuous integration
technique allows to transport all history variables correctly over the con-
tact segment boundaries, however, additional storage is required. In the
particular example of a sliding edge on a surface, it is shown that for
the non-frictional contact problem the ”segment-to-segment” approach
with different integration schemes can improve the result, but for the fric-
tional contact problem the continuous integration scheme is absolutely
necessary independent of the approaches NTS and STS.
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Figure 6.13: Drawing of an elastic strip into a channel with sharp corners. Geometrical
parameters.

Figure 6.14: Sequence of deformations for the elastic strip. Nodes are sliding over the
sharp corner C.
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6.9 APPENDIX.
Covariant derivative of tangent vector T

The full time derivative of the tangent vector T is considered in the con-
travariant basis r1, r2

dT

dt
=

d

dt

(
Tr1

)
=

dT

dt
r1 + T

dr1

dt
. (6.91)

For the computation we assume, that the component T is a scalar func-
tion of t, ξ, i.e. T = T (t, ξ), and the basis vector r1 depends implicitly
on time via the convective coordinates ξ and ζ, see the definition in
eqn. (6.17). Then we obtain:

dT

dt
=

(
∂T

∂t
+

∂T

∂ξ
ξ̇

)
r1 + T

(
ξ̇
∂r1

∂ξ
+ ζ̇

∂r1

∂ζ

)
. (6.92)

The partial derivatives of the contravariant basis vectors are expressed
via the Christoffel symbols Γk

ij, see e.g. Marsden and Hughes [121],

∂r1

∂ξ
= Γ1

11r
1 + Γ1

12r
2,

∂r1

∂ζ
= Γ1

21r
1 + Γ1

22r
2.

(6.93)

Using the orthogonality of the covariant and contravariant basis vectors
ri and ri, we can write the following:

dT

dt
=

(
dT

dt
· r1

)
r1 +

(
dT

dt
· r2

)
r2. (6.94)

For the formulation of the evolution equations, it is necessary to obtain
only a covariant component of the full time derivative on the tangent
line, therefore, from the expansion (6.94) we need only the first term
computed at ζ = 0. We introduce this derivative as follows

D1T

dt
≡

(
dT

dt
· r1

)
ζ=0

=

(
dT

dt
· ρξ

)
=

∂T

∂t
+

∂T

∂ξ
ξ̇ + T (Γ1

11ξ̇ + Γ1
21ζ̇)ζ=0. (6.95)

One can recognize in eqn. (6.95) the full time derivative via the co-
variant derivatives. We compute the value of the necessary Christoffel
symbols in brackets, according to their definition in eqn. (6.93) and to
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the definition of r1 in (6.17).

(Γ1
11)ζ=0 =

(
∂r1

∂ξ
· r1

)
ζ=0

,

(Γ1
21)ζ=0 =

(
∂r1

∂ζ
· r1

)
ζ=0

.

(6.96)

In order to avoid the derivative of the contravariant vector in (6.96), we
take a derivative of the following identity

r1 ·r1 = 1 =⇒ ∂

∂(...)
(r1 ·r1) = 0 =⇒ ∂r1

∂(...)
·r1+r1 · ∂r1

∂(...)
= 0 (6.97)

=⇒ ∂r1

∂(...)
· r1 = −r1 · ∂r1

∂(...)
.

Now, we can compute the Christoffel symbols directly

(Γ1
11)ζ=0 = −

(
∂r1

∂ξ
· r1

)
ζ=0

= − ∂

∂ξ

(
(1 − h11

a11
ζ)ρξ

)
ζ=0

· ρ1 = (6.98)

the contravariant basis vector ρ1 is expressed via the covariant one in
eqn. (6.9)

= −
(

∂

∂ξ
(1 − h11

a11
ζ)ρξ + (1 − h11

a11
ζ)ρξξ

)
ζ=0

· ρξ

(ρξ · ρξ)
= −ρξξ · ρξ

ρξ · ρξ

= −Γ.

From eqns. (6.11) and (6.12) the identity mit −Γ is found.
The last necessary Christoffel symbol is computed analogously

(Γ1
21)ζ=0 = −

(
∂r1

∂ζ
· r1

)
ζ=0

= − ∂

∂ζ

(
(1 − h11

a11
ζ)ρξ

)
ζ=0

· ρ1 = (6.99)

=
h11

a11
ρξ ·

ρξ

(ρξ · ρξ)
=

h11

a11
.

Finally, the tangent component of the full derivative in eqn. (6.95) gets
the following form:

D1T

dt
:=

∂T

∂t
+

∂T

∂ξ
ξ̇ + T (Γ1

11ξ̇ + Γ1
21ζ̇)ζ=0 =

dT

dt
− T

(
ρξξ · ρξ

ρξ · ρξ

ξ̇ − h11

a11
ζ̇

)
. (6.100)
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7

Incorporation of contact for high order
finite elements in covariant form∗

Abstract
The covariant contact description is applied to incorporate the treatment
of contact problems into a high-order finite element technique. A hier-
archical enrichment of the shape functions space allows to construct a
contact layer finite element combining both exact geometry represen-
tation for contact surfaces, and a mesh with linear shape functions for
the interior of the contacting bodies. The developed contact approach
can be viewed as a smoothing technique for linear meshes as well as
a general application of high order FEM. The good approximation prop-
erty for the developed contact layer elements is shown for the classical
Hertz problem even within a few contact elements discretizing the con-
tact zone.

Keywords
smooth contact covariant description consistent linearization high
order FE anisotropic refinement contact layer FE

7.1 Introduction

One of the big advantages of high order finite elements along with the
high accuracy is the possibility to describe the given geometry of sur-
faces exactly. The high quality for shell structure analysis has been

∗The chapter is published in [97]: A. Konyukhov, K. Schweizerhof. Incorporation of contact for
high-order finite elements in covariant form, Computer Methods in Applied Mechanics and Engineering,
198(13-14):1213 - 1223, 2009.
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shown e.g. in Rank et.al [152] (2005). Also high order FE has became
a basis for a, so-called, iso-geometrical analysis for arbitrary 3D struc-
tures, see Hughes et.al. [72] (2005). The exact geometry naturally leads
also to improved results for contact problems, however, some difficulties
occur due to the nonlinear nature of contact problems.

For small displacement problems an hp-version of the finite element
method has been discussed in Paczelt et.al. [133] (1999). A gap func-
tion defined as a difference between approximated normal displace-
ments from two contacting bodies and corresponding to a penetration in
the direction of an initial normal vector nc is used as a measure of con-
tact interaction. The penalty method and the augmented Lagrangian
method have been used to enforce contact conditions within the sim-
ple iteration method possessing only a linear rate of convergence. For
large displacement problems simulated with linear finite elements the
gap has been introduced via the closest point projection procedure tak-
ing into account an updated normal vector earlier in Wriggers and Simo
[192] (1985). The problem was solved via an iterative solver of Newton’s
type possessing quadratic rate of convergence for which a consistent
linearization was necessary. A linearization procedure via convective
coordinates has been used for 3D problems in Laursen and Simo [109]
(1993), though the linearization has been carried out in the global coor-
dinate system. A fully covariant description in the local surface coordi-
nate system corresponding to the closest point procedure has been de-
veloped in Konyukhov and Schweizerhof [86] (2004), [89] (2005). Since
all operations such as formulation of a weak form in accordance with the
applied method (penalty, augmented Lagrangian), the return-mapping
algorithm and the linearization are carried out in the local surface coor-
dinate system via convective coordinates i.e. in the fully covariant form,
the description is applicable to any parametric approximations of the
surfaces. A straightforward geometrical interpretation of various contact
stiffness parts, see [92] and the possibility of generalization into coupled
anisotropy including tangential adhesion and friction, see [90], [91] are
among other advantages of the fully covariant description.

Non-smoothness of linear approximations for contact surfaces
(namely facetted surfaces) is causing artificial oscillations in contact
tractions and also can lead to dis-convergence of the iterative solu-
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tion. This has been recognized in numerical contact mechanics and
several approaches have been proposed: earlier proposals are deal-
ing with a smoothing of a rigid surface, see Schweizerhof and Hal-
lquist [155] (1992) and in Heege and Alart [65] (1996). Then vari-
ous aspects of smoothing techniques for master contact surfaces for
both non-frictional and frictional cases have been extensively studied
in Pietrzak and Curnier [144] (1999), Padmanabhan and Laursen [134]
(2001), Puso and Laursen [148] (2002), Krstulovic-Opara and Wriggers
[102] (2002), Stadler, Holzapfel and Korelc [169] (2003) and others. De-
spite the number of publications all developments have been concerned
predominantly with the geometrical smoothing of the given linear mesh.
The discussion about the unknown influence of the void between the
smoothed surfaces and the linear mesh surface remains open and a
high-order finite element technique seems to be a key to fill this void.
Thus, the current contribution is aimed at considerations of the covari-
ant contact description together with high-order finite elements with ex-
act representation of the contact boundaries as a smoothing technique
for piecewise linear meshes. A special anisotropically refined p-finite el-
ement adopting refinement only in a single layer is constructed to take
advantage both from the covariant contact description, and from the
p-finite element technique. Since the contact description itself is consid-
ered independently from the p-finite element techniques it can be easily
applied for other general cases with high-order FE.

The article is organized as follows. After the introduction, the kine-
matics of contact interaction, the weak formulation in accordance with
the full Lagrangian and the penalty method is considered in Section 2.
In addition to the developed earlier consistent tangent matrices, the lin-
earization procedure with regard to the exact geometry should be ful-
filled. Implementation details for contact with a rigid surface leading to a
”Contact Layer-to-Rigid Surface” contact element as well as for contact
between two deformable bodies leading to a ”Contact Layer-to-Contact
Layer” contact element are considered in Section 3. Extensive testing
and some numerical problems for the Hertz problem are discussed in
Section 4.
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7.2 Contact interaction in covariant form

A contact interaction in the covariant form, [86], [89] is observed as
a pointwise interaction between contacting surfaces. One of the con-
tacting surfaces is selected as a parameterized reference surface and
is called historically a ”master” surface, the other contacting surface (it
is called then a ”slave surface”) is represented by points (resp. ”slave
points”). The interaction is observed then in the local surface coordinate
attached to the master surface.

7.2.1 Kinematics of contact. Measures of contact

A closest distance between the slave point and the master surface is a
natural measure of the contact interaction and is defined via the closest
point projection (CPP) procedure, see Fig. 7.1:

||rS − ρ(ξ1, ξ2)|| → min, −→ (rS − ρ) · (rS − ρ) → min, (7.1)

where rS is a vector of the slave point S, ρ(ξ1, ξ2) is a parameterization of
the master surface. The fundamental questions for the CPP procedure
such as existence and uniqueness of the solution of eqn. (7.1) for the
surfaces of arbitrary geometry are studied in Konyukhov and Schweiz-
erhof [95]. The closest point projection procedure gives rise to a local
curvilinear 3D coordinate system defined via surface tangent vectors

ρi =
∂ρ

∂ξi
, i = 1, 2 and a normal vector n. All measures of the contact

interaction are defined in this coordinate system: the coordinate incre-
ments Δξi, i = 1, 2 are measures of tangential interaction and the third
coordinate ξ3 is a measure of normal interaction. The vector of the slave
point rS is defined as:

rS = ρ(ξ1, ξ2) + ξ3n. (7.2)

Measures of the rate of deformation are separately defined after con-
sideration of the relative velocity vS −v of a slave point S with respect to
the local coordinate system. On the tangent plane and, therefore, at the
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Figure 7.1: Closest point procedure and definition of the spatial coordinate system.

projection point C it has the following values for the normal interaction

ξ̇3 = (vS − v) · n (7.3)

and for the tangential interaction

ξ̇i = aij(vS − v) · ρj, (7.4)

where aij are contravariant components of the metric tensor. They are
defined as inverse of a matrix with covariant components aij = (ρi · ρj).
Using kinematical analogy, all rate terms are further directly used in the
following variational formulation, i.e. ξ̇3 leads to δξ3, (vS − v) leads to
(δrS − δρ).
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7. HIGH ORDER FINITE ELEMENTS WITH CONTACT

7.2.2 Weak formulation

Due to the additivity of the energy it is sufficient to consider only a part
δWc of the full virtual work arising from contact interaction between sur-
faces. Let R be a contact traction vector acting on an infinitesimal part
of the master surface ds and RS be a contact traction vector acting re-
spectively on an infinitesimal part of the slave surface dsS. Then the
work of the contact tractions δWc is computed as

δWc =

∫
S

R · δρ ds +

∫
SS

RS · δrS dsS, (7.5)

where the integrals should be taken over the mutual contacting area.
Taking into account the pointwise equilibrium on this area R ds +

RS dsS = 0, the work in eqn. (7.5) can be represented as an integral
taken over the slave surface

δWc =

∫
S

RS · (δrS − δρ)dsS. (7.6)

The next step is to represent the traction acting on the slave surface in
the local coordinate system i.e. via master surface coordinate vectors

RS = T iρi + Nn. (7.7)

Inserting then eqn. (7.7) into eqn. (7.6) and taking into account
eqns. (7.3), (7.4) together with the kinematical analogy, we can obtain
the following weak form:

δWc =

∫
s

Nδξ3dsS︸ ︷︷ ︸
δWN

c

+

∫
s

Tjδξ
jdsS︸ ︷︷ ︸

δWT
c

, (7.8)

where the normal part δWN
c represents the normal non-penetration con-

tact condition and δW T
c represents a frictional interaction. N is the nor-

mal contact traction and Tj, j = 1, 2 are covariant components of the
tangential contact traction.

Remark.
In the full two-body contact algorithm the contact integral (7.8) is com-
puted via the quadrature formula where the integration points from the
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7.2 Contact interaction in covariant form

slave surface sS are projected first to the master surface. Afterwards,
an iterative method of Newton’s type is applied to reach the equilibrium
condition. Due to this sequence (global solution after the projection) the
full derivative of the functional (7.8) resp. the linearization procedure
is taken fully in the metrics of the master surface and, therefore, the
linearization of the slave surface term is zero L[dsS] = 0.

7.2.3 Constitutive equations for the contact traction

Constitutive equations should be generally supplied in the local coor-
dinate system separately for normal and tangent tractions leading to a
variety of models between contact interfaces (e.g. elastic, viscoelastic,
plastic, adhesive etc. laws in both normal and tangential directions). A
pure geometrical enforcement of the non-penetration condition does not
require additional constitutive relations for normal traction and is usually
specified via the Kuhn-Tucker conditions:

ξ3 > 0; Nmaster = 0; no contact (7.9)

ξ3 = 0; Nmaster < 0 → N > 0; non penetration (7.10)

ξ3N = 0; complementary condition (7.11)

The standard Kuhn-Tucker condition in eqn. (7.10) formulated on the
master surface is modified here according to the representation (7.7) of
the contact traction on the slave surface.

If the full Lagrange multiplier method is further involved to satisfy the
conditions (7.9-7.11) then the normal traction N is independently ap-
proximated leading to the exact satisfaction of the non-penetration con-
dition (7.10) at the integration points (the method is also known as a
Mortar method, see Fischer and Wriggers [41]). The penalty method
from the mathematical point of view leads to an approximately satisfied
non-penetration condition and from a mechanical point of view it is a
constitutive equation for normal elastic compliance. This condition is
formulated as

N =

{
0 if ξ3 > 0 no contact
εNξ3 if ξ3 ≤ 0 penetration.

(7.12)

For further linearization the rate equation is obtained considering the
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7. HIGH ORDER FINITE ELEMENTS WITH CONTACT

time derivative of eqn. (7.12):

Ṅ = εN ξ̇3 for penetration ξ3 ≤ 0. (7.13)

In the more general case of tangential interactions the contact traction
depends on the relative velocity of contacting bodies. This leads to the
necessity to formulate constitute relations for contacting bodies. In the
current contribution the mostly applied relation in engineering practice,
the Coulomb friction law, is considered. According to this law a ”sticking”
case and a ”sliding” case are identified via the following yield function Φ

Φ :=
√

aijTiTj − μ|N |, (7.14)

formulated here via the master surface metrics with μ as a friction coeffi-
cient. The sticking-sliding conditions can be defined in the Kuhn-Tucker
form with regard to the aforementioned measures Δξi in the case of
contact ξ3 = 0, see eqn. (7.11)

Δξi = 0, i = 1, 2; if Φ < 0 sticking; (7.15)

∃λ > 0 that Tiρ
i = −λξ̇iρi; if Φ ≥ 0 sliding. (7.16)

The last eqn. (7.16) shows that the tangential traction is acting in the
direction opposite to the relative velocity. During the recent years it has
been recognized in the numerical community that the full Lagrange mul-
tiplier scheme with exact enforcement of the sticking-sliding conditions
is only robust for the rather small displacement case, see Jones and Pa-
padopoulos [79], Solberg and Papadopoulos [163]. In the case of large
displacements an augmented Lagrangian method is more applicable,
see Pietrzak and Curnier [144], Laursen and Simo [109] and recently
Hüeber et.al. [69] for the Mortar method and Konyukhov and Schweiz-
erhof [94] for anisotropic friction models. However, in both cases the
return-mapping algorithm is employed to check whether the real tan-
gent traction belongs to the sticking domain or to the sliding domain.
For both, penalty and augmented Lagrangian methods the sticking trac-
tion is computed assuming elastic compliance in the tangential direction.
The full description in a covariant form is then identical to a formulation
of 2D elasto-plasticity for the surface interface. Namely, the full incre-
mental displacements are additively decomposed into elastic and plas-
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7.2 Contact interaction in covariant form

tic, or sliding, parts as Δξi = Δξi
el + Δξi

sl. The principle of maximum
dissipation is used to derive then the sliding force as well as the slid-
ing displacements. For derivation details even in a more general case of
anisotropic contact interfaces including coupling of adhesion and friction
we refer an interested reader to Konyukhov and Schweizerhof [90], [91].
In the current contribution only the necessary formulae are presented.
The elastic tangential traction is given in the rate form as proportionality
of the covariant derivative of a tangential traction vector Tel to a relative
velocity vector vS − v is assumed. Components in the local coordinate
system are given via the following evolution equation:

dT el
i

dt
= (−εTaij + Γk

ijT
el
k )ξ̇j − hija

jkT el
k ξ̇3, i, j, k = 1, 2. (7.17)

where Γk
ij are the Christoffel symbols; aij resp. hij are covariant compo-

nents of the metric resp. curvature tensor of the master surface; εT is a
penalty parameter representing a tangent stiffness of the contact inter-
faces. For implementation eqn. (7.17) is simplified and then solved nu-
merically via the backward Euler finite difference scheme. The full con-
tact algorithm and computational issues will be further discussed in Sec-
tion 7.3. The real tangent traction is computed via the return-mapping
scheme with regard to the yield function Φel in eqn. (7.14) computed by
the elastic trial tractions T el

i

Ti =

⎧⎪⎪⎨
⎪⎪⎩

T el
i if Φel ≤ 0 sticking

T sl
i =

T el
i√

aijT el
i T el

j

if Φel > 0 sliding (7.18)

The return-mapping scheme for the isotropic case is systematically
studied in the monographs of Wriggers [188] and Laursen [106].

7.2.4 Consistent linearization of the weak form

The full Newton iterative method will be applied to solve the global equi-
librium equations. This requires the full linearization of the functional in
eqn. (7.8) representing the equilibrium conditions on the contact bound-
aries. Linearization for the penalty approach is obtained using the co-
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7. HIGH ORDER FINITE ELEMENTS WITH CONTACT

variant derivation in the local surface coordinate system, where deriva-
tives of contact tractions are given in eqns. (7.13), (7.17) and deriva-
tives of convective coordinates are given in eqns. (7.3) and (7.4). The
complete derivation procedure requires the linearization of convective
coordinate variations as well as extensive tensor transformations and
are omitted here. The interested reader is referred to the articles of
Konyukhov and Schweizerhof [86], [89], from which further results are
represented in Appendix 7.6.

7.3 Finite element implementation

In order to implement the possibility of contact for high order finite ele-
ments all elements on the potential contact boundary are modified into
the Contact Layer contact element shown in Fig. 7.2 according to the
following scheme:

1. Each element on the boundary is constructed as an anisotropically
refined element, see the terminology in Solin et.al. [164]. Thus,
the shape function space is hierarchically constructed via the Lo-
batto shape functions with the enrichment possibility for the edge
degree of freedom (DOF) pedge, the side DOF pside and the bub-
ble DOF pbubble possessing necessary conformity requirements to
the internal elements (for further numerical examples the layer el-
ement is satisfying conformity conditions with the linear mesh i.e.
pint. mehs = 1).

2. The shape function space is modified according to the blending
function method in order to represent the boundary surface exactly
(e.g. linear edge shape functions which have support at vertices
V5, V6, V7, V8 are modified).

3. The truncated shape function space organized via all shape func-
tions with a support on a curvilinear boundary V5V6V7V8 becomes
a shape function space for a contact element. Thus, all derived
tangent matrices and residuals are assembled with regard to the
DOF’s of the corresponding high order element.
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Figure 7.2: Structure of contact layer finite element

According to the described scheme it is possible then to subtract
the approximation of the master surface given by the vector ρ(ξ1, ξ2)
together with the approximation of the slave surface rs(η

1, η2). Since
all possible contacting pairs ”master-slave” should be tested it leads to
the necessity of a global searching routine which is out of scope of the
current contribution. One of the most robust scheme for linear ”master-
slave” segments allowing self-contact is described in Benson and Hal-
lquist [11]. The approximation operator A for a relative displacement
vector ρ(ξ1, ξ2) − rs(η

1, η2) in the standard finite element method also
for the p-version of finite elements is defined as a linear operator with
regard to a DOF vector x

x = {x(1)
ms, y

(1)
ms, z

(1)
ms, ..., x

(m)
ms , y

(m)
ms , z

(m)
ms , x

(1)
sl , y

(1)
sl , z

(1)
sl , ..., x

(n)
sl , y

(n)
sl , z

(n)
sl }T , (7.19)

where the index ms indicates correspondence to the master surface
and the index sl indicates correspondence to the slave surface. The
number of the degree of freedom depending on the involved method can
be related either to the nodal DOF for the classical nodal version of finite
element, or to the generalized DOF including a hierarchical structure of
the vertex, edge, side and bubble degree of freedom for a p-element.
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7. HIGH ORDER FINITE ELEMENTS WITH CONTACT

The linear operator is described then via the matrix

A =

⎡
⎣ M1 0 0 M2 0 0 ... ... ... Mm 0 0

0 M1 0 0 M2 0 ... ... ... 0 Mm 0
0 0 M1 0 0 M2 ... ... ... 0 0 Mm

(7.20)

−N1 0 0 −N2 0 0 ... ... ... −Nn 0 0
0 −N1 0 0 −N2 0 ... ... ... 0 −Nn 0
0 0 −N1 0 0 −N2 ... ... ... 0 0 −Nn

⎤
⎦ .

with Mk = Mk(ξ1, ξ2), k = 1, m as shape functions for a master sur-
face; Nk = Nk(η1, η2), k = 1, n are shape functions for a slave surface.
A relative virtual displacement or velocity vector is given then as

δρ(ξ1, ξ2) − δrs(η
1, η2) = Aδx for a virtual displacement vector;

v(ξ1, ξ2) − vs(η
1, η2) = Av for a velocity vector. (7.21)

In addition only derivatives with respect to the master convective coor-
dinates ξi should be computed for further representation of the tangent
matrices:

δρ,i =
∂A

∂ξi
δx = A,iδx. (7.22)

7.3.1 Representation of tangent matrices for FE implementation

Since all parts of the tangent matrices contain either a vector of vir-
tual relative displacements δρ − δrs or a relative velocity v − vs, and/or
their derivatives with respect to the master convective variable ξi only
the main part (7.36) and the rotational part (7.37) for the linearized nor-
mal part are considered. The other parts of the tangent matrices are
algorithmically constructed.

All parts except the rotational parts are transformed using the approx-
imation operator A in eqn. (7.21) directly. Taking the main part (7.36) as
an example one can obtain

L
m
N =

∫
sS

εN(δrS − δρ) · (n ⊗ n)(vS − v)dsS

= δx ·
∫

sS

εNAT (n ⊗ n)AdsSv = δx · [Km
N ]v (7.23)
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where [Km
N ] is the corresponding main part of the tangent matrix.

The rotational part is transformed using the operator A,i in
eqn. (7.22). Here the part L

r
N from eqn. (7.37) is taken

L
r
N = −

∫
sS

N
[
δρ,j · aij(n⊗ ρi)(vS − v) + (δrS − δρ) · aij(ρj ⊗ n)v,i

]
dsS

= δx ·
∫

sS

N
[
AT

,ja
ij(n ⊗ ρi)A + ATaij(ρj ⊗ n)A,i

]
dsSv

= δx · [Kr
N ]v (7.24)

7.3.2 Tangent matrices for the non-linear
approximation operator

For complex situations with an exact representation of boundaries via
the blended function method in general nonlinear approximations are
involved (e.g. NURB representation of the contact surfaces). Thus the
approximation operator A is nonlinear with respect to variables (DOF’s)
for the finite element approximation (or knot variables for the NURB,
iso-geometrical FE etc.)

ρ(ξ1, ξ2) − rs(η
1, η2) = A(x, ξi, ηi). (7.25)

In such a case, the approximation operator itself should be linearized
with respect to the global variable vector x in order to represent the
globally consistent tangent matrices. We introduce DA in the sense of
the Frechet derivative with respect to a global variable vector x. Con-
sidering the Taylor expansion for the relative virtual displacement vector
in eqn. (7.21) and taking into account the approximation property we
obtain A(0, ξi, ηi) = 0

δρ(ξ1, ξ2) − δrs(η
1, η2) = A(δx, ξi, ηi)

= A(0, ξi, ηi) + DA(0, ξi, ηi)δx + ...

= DA(0, ξi, ηi)δx + ... (7.26)
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Taking a partial derivative with respect to the convective variables ξi the
operator DA,i is introduced as:

δρ,i =
∂DA(0, ξi, ηi)

∂ξi
δx + ... = DA,iδx + ... (7.27)

Thus, in the case of nonlinear approximations for contact boundaries
all parts of tangent matrices are computed following the pattern pre-
sented in eqns. (7.23), (7.24) taking into account the linearized operator
DA in eqn. (7.26) and its derivative DA,i in eqn. (7.27). It leads formally
to the substitution of A with DA and respectively of A,i with DA,i.

7.3.3 Computation of contact integrals

Two situations should be distinguished for computations of all integrals
for equilibrium conditions as well as for corresponding tangent matrices:
contact between deformable and rigid bodies (so-called Signorini prob-
lems); and contact between two deformable bodies. The first problem
leads to the Contact Layer - Rigid Surface (CLRS) finite element and the
second problems leads to Contact Layer - Contact Layer (CLCL) finite.
element. The structure of these elements is considered here for the 2D
case as layer-wise enrichment of the initially linear mesh. However, the
general contact algorithm is not limited to this case.

7.3.4 Contact Layer - Rigid Surface (CLRS) finite element

An initially linear element, see Fig. 7.3, is enriched hierarchically with
edge pel − 1 shape functions for the left side, per − 1 edge shape func-
tions for the right side, peb − 1 edge shape functions for the bottom side
and (pb − 1) × (pb − 1) bubble shape functions, where p∗ is the high-
est polynomial degree of the corresponding shape function. An exem-
plary element with quadratic degree p = 2 of freedom in 2D leads to
2 × (4 vertex + 3 edge + 1 bubble) = 16 DOF. The linear boundary is
represented then exactly by the blending function method (e.g. an ex-
act circular arch in the following numerical examples). The contact with
a rigid surface can be resolved assuming that the parameterization of
the rigid surface (becoming then a ”slave” surface) is given as rS(η1, η2).
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All contact integrals are computed then over the master surface in the
following sequence:

1. A master segment is covered by a set of integration points C (e.g.
by Gauss points) ξ1

i , ξ
2
j i, j = 1, Np according to the chosen order

Np.

2. The CPP procedure eqn. (7.1) is interpreted now vice versa: both
the penetration ξ3 and the convective coordinate η1, η2 of the point S
on the slave surface where a normal n (computed at the integration
point C of the master surface) is “penetrating” the slave surface.
The numerical solution of the system is then derived from eqn. (7.2)

F(η1, η2, ξ3) ≡ rS(η1, η2) − ρ(ξ1
C, ξ2

C) − ξ3n(ξ1
C, ξ2

C) = 0. (7.28)

Remark.
For some surfaces such as plane, cylinder, sphere and torus the
solution of eqn. (7.28) can be obtained in a closed form, see further
information in Harnau et.al. [57].

3. All contact integrals (for residuals as well as for tangent matrices)
are formally computed via the quadrature formula, where a com-
ponent with an integration point ξ1

i , ξ
2
j is included only if the corre-

sponding penetration is less then zero ξ3|ξ1
i ,ξ2

j
≤ 0.

∫
f(ξ1, ξ2)ds =

∑
i,j

H(−ξ3)f(ξ1
i , ξ

2
j )detJ(ξ1

i , ξ
2
j )AiAj, (7.29)

where Ai, Aj are weights of the quadrature formula, J is the Ja-
cobian of the transformation ds → dξ1dξ2 for a master segment,
H(−ξ3) is a Heaviside function.

Remark.
All matrices reduced for the 2D case for the residual as well as for the
tangent matrices are presented in Konyukhov and Schweizerhof [92]
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Figure 7.3: Contact Layer - Rigid Surface contact element. 2D-representation.

7.3.5 Contact Layer - Contact Layer (CLCL) finite element

Both master and slave elements are enriched hierarchically in a sim-
ilar fashion as described in the previous Section 7.3.4. An exem-
plary element with quadratic degree p = 2 of freedom in 2D leads to
2× 2× (4 vertex +3 edge +1 bubble) = 32 DOF. All contact integrals are
computed over the slave surface in the following sequence:

1. A slave segment is covered by a set of integration points C (e.g. by
Gauss points) η1

i , η
2
j i, j = 1, Np according to the chosen order Np

and the corresponding vectors rs(η
1
i , η

2
j ) are computed.

2. The CPP procedure eqn. (7.1) is executed to find out the convective
coordinate ξ1

i , ξ
2
j on the master segment corresponding to projec-

tions of rs(η
1
i , η

2
j ). Points with coordinates ξ1

i , ξ
2
j not laying inside the

master segment are excluded (a, so-called, local searching proce-
dure).

3. All contact integrals are formally computed via the quadrature for-
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mula, where a component with an integration point ξ1
i , ξ

2
j is included

only if the corresponding penetration is less then zero ξ3|ξ1
i ,ξ2

j
≤ 0,

∫
f(ξ1, ξ2)ds =

∑
i,j

H(−ξ3)f(ξ1
i , ξ

2
j )detJ(η1

i , η
2
j )AiAj, (7.30)

where Ai, Aj are weights of the quadrature formula, J is the Jaco-
bian of the transformation dsS → dη1dη2 for a slave element, H(−ξ3)
is a Heaviside function.

The presented approach to compute integrals is also known as a
Mortar method discussed in Fischer and Wriggers [41], where a mortar
part is related to the master part, and a non-mortar part is related to the
slave part, see Fig. 7.4. This approach allows also to satisfy the contact
patch-test, see Harnau et.al. [57].
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linear mesh
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Figure 7.4: Contact Layer - Contact Layer contact element. 2D-representation.
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7.3.6 Lagrange multiplier method for normal traction

As discussed before a robust scheme based on the full Lagrange mul-
tiplier method for arbitrary large sliding problems would include the en-
forcement of only normal non-penetration conditions combined with the
augmented Lagrangian method for tangential condition. In a case of
contact with a rigid surface (CLRS) the finite element is modified ac-
cording to the following scheme:

1. Both, displacement vector and normal traction are approximated
(mixed formulation). Let A be an approximation matrix for a rela-
tive displacement vector corresponding to the DOF vector x, see
eqn. (7.21), and B [1 × Nλ] be an approximation matrix for the nor-
mal traction N corresponding to vector with Nλ DOF’s for a normal
traction λ. An element vector for the mixed formulation X contains
then both, displacement DOF’s x and variables for normal traction
λ:

δρ − δrs = Aδx
N = Bλ

}
→ {X} =

{
x

λ

}
(7.31)

2. The consistent linearization shown in eqn. (7.35) is derived accord-
ing to both independent variables x and λ. Thus, eqn. (7.35) leads
to the following matrix

[K] =

[
Kxx K

xλ
Kλx

O

]
, (7.32)

where the matrix Kxx is derived from the rotational part Lr
N and the

curvature Lc
N part in eqns. (7.37)-(7.38), see also the FE represen-

tation in Section 7.3.1.

Kxx = [Kr
N ] + [Kc

N ]. (7.33)

Since the constitutive equation for normal traction is not involved
into the linearization the main part Lr

N in eqn. (7.36) is representing

274



7.3 Finite element implementation

then a coupled part K
xλ

K
xλ =

∫
sS

ATnBdsS. (7.34)

7.3.6.1 Discussion about BB-stability of the proposed
Lagrange multiplier approach

As is known, a mixed formulation within the finite element method should
satisfy the discrete Babuska-Brezzi (BB) condition in order to ensure
convergence and stability with respect to the mesh size and discretized
constraints. The Lagrange method described in this section in combi-
nation with both the approximation of the stress field and the integration
rule of corresponding contact integrals via a set of projected slave inte-
gration points over the master segment (not via the set of slave nodes!)
is falling into the case ”one-pass pressure interpolation method”
which has been intensively studied in Solberg and Papadopoulos [163]
and proved to be BB-stable upon sufficiently accurate integration of con-
tact boundary terms P.2755 [163]. The BB-stability in due course leads
to the satisfaction of the contact patch test. Various integration tech-
niques including combinations of Gauss or Lobatto quadrature formu-
lae of higher order together with subdivisions of the integrand into sub-
domains were studied e.g. in [57] in order to improve the patch-test.

7.3.7 Global solution scheme

The global solution scheme in the case of a Contact Layer -Contact
Layer finite element is presented in Table 7.1. Some remarks are nec-
essary for better understanding.

• Since tangential tractions are defined in the rate form, see
eqn. (7.17), initial conditions should be supplied for further numeri-
cal solutions. This is done in Step 0 of the global scheme, in which
initial coordinates ξi

0 of the sticking point are computed and initial
tangential tractions are assigned Ti, 0 = 0.

• For a Contact Layer-Rigid Surface finite element the CPP proce-
dure in a) is changed as discussed in Section 7.3.4.
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• For the mixed formulation discussed in Section 7.3.6 condition b) of
No contact in loop 4 is changed into N = Bλ > 0, see definition in
eqn. (7.31).

• The simplest backward Euler scheme is employed in step d) to
solve the evolution equation (7.17) numerically. The improved nu-
merical scheme based on a geometrical interpretation of the co-
variant derivative allows to overcome jumps occurring in the contact
segments due to different approximations, for a detailed discussion
also concerning contact with rigid surfaces see in Konyukhov and
Schweizerhof [92].

• In many cases the curvature of the master surface is often chang-
ing only slightly during deformation and then curvature parts can
be omitted without large influence on convergence, see also the
discussion in [86].

7.4 Numerical examples

Contact between a deformable cylinder and a rigid plane, the classical
Hertz problem possessing an analytical solution, see e.g. in Johnson
[77], is chosen to test the ability of the anisotropically p-refined layered
element to approximate the exact solution. The problem is well known
also as a benchmark-test for h-adaptive schemes in contact mechan-
ics, see Wriggers and Scherf [191]. For the computation only a quar-
ter of the cylinder in Fig. 7.5 is meshed with 1120 bilinear finite ele-
ments. All parameters are chosen in order to satisfy the assumptions
for the Hertz problem. The material of the cylinder is linear elastic with
Young’s modulus E = 1.0 · 105N/mm2 and Poisson ratio ν = 0.3; ra-
dius of the cylinder R = 100mm. The quarter of cylinder is loaded by
a distributed pressure at the upper side equivalent to the global load
P/2. The level of the load P is intentionally chosen to keep the con-
tact radius a small in order to stay in the frame of the Hertz hypothesis,
namely a << R. Thus, only six bounding elements are modified into
Contact Layer-Rigid Surface (CLRS) finite elements (the sixth element
satisfies additionally the conformity condition with a linear mesh on the
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Table 7.1: Global solution scheme for Contact Layer – Contact Layer (CLCL) finite
element

0. Initialization of convective coordinates ξi
0 and tangential tractions Ti, 0 = 0. The CPP

procedure in eqn. (7.1) is computed without any external applied load.
1. Loop over load increments I

2. Newton iteration loop k:
Iterative solution of global equilibrium equations.

3. Loop over contact pairs “master-slave”
4. Loop over integration points η1, η2 of the slave segment

a) compute projection ξ1, ξ2 onto the master segment, eqn. (7.1).

if ξ1, ξ2 do not belong to the master segment (Local searching procedure)
then exit loop 4.

b) compute penetration ξ3 at the projection point

if ξ3 > 0 then exit loop 4. (No contact).

c) compute the normal traction N = εNξ3 and the corresponding tangent
matrix [KN ] in eqns. (7.36–7.38).

d) compute the trial tangential traction T el
i

T el
i = T I−1

i − εT (ξj − ξj
0)a

ij ,

where T I−1
i are real tangential tractions from the previous converged load

step I − 1.

e) return-mapping algorithm
compute the trial yield function

Φel =
√

amnT el
mT el

n − μ|N |

if Φel ≤ 0

sticking condition

Ti stick = T el
i

Compute the corresponding tan-
gent matrix [KT, st] in eqns. (7.39–
7.41).

if Φel > 0

sliding condition

Ti slide = μ|N | T el
i√

T el
mT el

n amn

Compute the corresponding tan-
gent matrix [KT, sl] in eqns. (7.42–
7.48).

e) Compute residual arising from eqn. (7.8)

R = NA
T
n + T i

A
T ρi

e) Assemble residual and tangent matrices

Check global convergence
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right side), see Fig. 7.5. The contact radius a =

√
4PR(1 − ν2)

πE
and

the contact pressure p =
2P

πa2

√
a2 − x2 (see derivation e.g. in [77]) are

main parameters for the verification. Several incremental loading states
corresponding to the extension of the contact zone through several ele-
ments are studied.

3 4 5 61 2

x x x x x x0 1 2 3 4 5

a

a) b)

Figure 7.5: a) Initial linear mesh. b) Anisotropic p-refinement in contact layer. Only six
elements are modified into Contact Layer-Rigid Surface (CLRS) elements.

7.4.1 Loading case 1. Contact zone within one element

The first load level is taken as P = 0.657 kN corresponding to the con-
tact radius a = 0.857 mm laying completely inside the first contacting
element, see Fig. (7.5) b). The computation is performed first with an
initially linear mesh employing a node-to-segment contact approach and
then with CLRS elements with increasing polynomial degree p = 2, 3, 4.
The penalty method has been used to enforce the contact conditions. As

278



7.4 Numerical examples

shown in Harnau et.al. [57] a problem of integration of non-smooth func-
tions appears during the integration of contact integrals. This leads to
the impossibility to set up the order of the quadrature formula, a-priori,
based only on knowledge of the polynomials involved into the shape
function space. Various integration techniques such as combination of
Gauss, or Lobatto quadrature formulae of higher order together with
subdivision of the integrand into sub-domains were successfully applied
in [57] for contact problems e.g. in order to improve the patch-test. The
current computation is performed only with 10 Gauss points. A compar-
ison with the analytical solution is given in Fig. 7.6.
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Figure 7.6: Contact zone is within a single element. a) Contact pressure vs. radius.
Variation of the polynomial degree for the CLRS element. b) Deformed shape.

Obviously a good approximation is achieved even with the second
order polynomial p = 2; also the deformed shape (Fig. 7.6 b) is repre-
sented exactly. It is obvious that this result is impossible to achieve with
a linear mesh and a node-to-segment approach.

7.4.2 Loading case 2. Contact zone within several elements

If the contact zone is spreading through several elements a specific
problem is arising: if the the contact zone is ending inside a contact el-
ement then a highly oscillatory solution occurs for the contact stresses.
This phenomenon is shown in Fig. 7.7. In this case the load P = 7.5 kN

is applied resulting in the contact zone ending inside the fourth element.
The amplitude of the oscillations is even higher than the maximum of
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stresses which makes the computed results inadmissible for applica-
tions. Moreover, oscillations occur not only inside the bounding element
(fourth element in the example), but also in neighboring elements. Nei-
ther increasing the polynomial degree, nor application of the mentioned
above composed integration rules of higher order could reduce the oscil-
lations. Oscillations are present for both penalty and Lagrange multiplier
method. Only if the contact zone is ending in the vicinity of the element
boundary (e.g. represented by a node for 2D) then the contact stresses
are well approximated. The problem has been recognized for high-order
FE already in Paczelt et.al. [133] and as remedy the re-meshing with the
goal to move the node to the end of the contact zone was performed.
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Figure 7.7: Oscillations for contact pressure occur at P = 7.5kN when the contact
zone is ending inside the element. Neither increasing the polynomial degree p, nor
application of the composed integration rules of higher order could reduce the oscilla-
tions.

In the case of arbitrary loading contact detection is performed via the
CPP procedure, therefore, it would be advantageous to find out tech-
niques without moving a node. It was found in computations that the
under-integration of the CLRS elements together with the lowering of
the order of polynomial degree only for bounding elements, e.g. where
the contact zone is ending, leads to a reduction of the oscillations. This
effect is shown in Fig. 7.8, where the polynomial degree is taken to be
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p = 2 and contact integrals only for the bounding element have been
computed with only 2 Gauss points (neither the exact function repre-
senting the circular arch, nor the quadratic shape functions are fully
integrated). Algorithmically this leads to the contact detection in only
two points, see Table 7.1, thus the size of the contact zone is underesti-
mated.

 0

 500

 1000

 1500

 2000

 2500

 0  0.5  1  1.5  2  2.5  3  3.5  4

C
on

ta
ct

 p
re

ss
ur

e

Contact radius

Exact Hertz
Full integration

Under-integration, 2 Gauss pts.

Figure 7.8: Contact pressure at P = 7.5kN . Under-integration of the bounding element
with p = 2 leads to a reduction of oscillations.

This technique is tested then for the development of the contact zone
through the element for p = 2. The applied force P is then rising in
the range 5.90 kN ≤ P ≤ 10.5 kN while the contact zone is spreading
through the fourth element, see Fig. 7.9. Obviously, the oscillations are
not eliminated completely, but their amplitudes are sufficiently reduced.

Remark.
A fairly good correlation with the analytical Hertz solution even for the
cases where only the contact layer is hierarchically enriched with poly-
nomial order p allows to consider the proposed contact layer elements
as a generalization of smoothing techniques known in contact mechan-
ics, where only contact surfaces are smoothed. However, the full p-
refinement combined with contact can be applied without loss of gener-
ality including the refinement the internal zone as well, which can lead
even to a better correlation.
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Figure 7.9: Contact pressure. Under-integration of the bounding element with p =
2. The contact zone is spreading through the bounding element while the load P is
increasing.

7.5 Conclusions and outlook

In this contribution a covariant contact description is applied to derive
all parameters which are necessary for numerical iterative solutions of
Newton’s type in combination with high order finite element techniques
allowing an exact representation of the contact boundary (e.g. involved
by the blended function method). In the latter case, additional lineariza-
tion of the approximation operator is only necessary to fulfill the con-
sistent linearization procedure. The structure of the derived tangent
matrices remains algorithmic. If the penalty method is involved to en-
force the normal contact condition then the matrices can be subdivided
into a main, or constitutive part, a rotational part and a curvature part.
The mixed method with Lagrange multiplier enforcement for the nor-
mal traction leads to a block structure of the corresponding tangent ma-
trix, where a diagonal block is represented by the sum of the rotational
and the curvature parts. The tangential conditions are enforced by the
penalty method leading to similarly structured matrices as well.

Special contact layer finite elements are constructed as anisotropi-
cally refined p-finite elements allowing refinement only in contact layers.
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Contact with rigid bodies leads then to a Contact Layer - Rigid Surface
finite element, and contact between deformable bodies leads to a Con-
tact Layer - Contact Layer finite element. The elements are verified with
the classical Hertz contact problem. It is shown, that good correlations
can be achieved even within a few elements. However, oscillations can
occur if the contact zone appears inside the master contact segment. In
such cases, the reduction of the polynomial order together with under-
integration of only these bounding elements leads to improved accept-
able results.

From a general point of view the proposed remedy for the oscilla-
tions has limitations. However, from the mathematical point of view the
source of oscillations lays in the inability to approximate non-smooth
functions (contact pressure) via the set of functions given on the fixed
domain represented by the master segment, known as the Gibbs phe-
nomenon. This explains the effect of under-integration as a simple elim-
ination of the singular point (end of the contact zone as a point of non-
smoothness) from the computation. A more advanced technique would
fall into the local enrichment of the space function space, i.e. into the
partition of unity method which is the focus of our further developments.

7.6 APPENDIX

7.6.1 Linearized normal part δWN
c

If the Lagrange multiplier method is applied to enforce non-penetration
conditions, then a normal traction is an independent variable and is in-
cluded into the linearization as an independent rate variable Ṅ . The rate
equation (7.13) is taken into account only for the penalty method. In this
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case the linearized equation is written as

L[δWN
c ] =

∫
sS

Ṅδξ3dsS +
∫

sS
NL[δξ3]dsS = (7.35)∫

sS

εN(δrS − δρ) · (n ⊗ n)(vS − v)dsS︸ ︷︷ ︸
Lm

N

(7.36)

−
∫

sS

N
[
δρ,j · aij(n ⊗ ρi)(vS − v) + (δrS − δρ) · aij(ρj ⊗ n)v,i

]
dsS︸ ︷︷ ︸

Lr
N

(7.37)

−
∫

sS

N(δrS − δρ) · hij(ρi ⊗ ρj)(vS − v)dsS︸ ︷︷ ︸
Lc

N

. (7.38)

Here, a comma stands for a partial derivative operator, namely (...),i ≡
∂(...)

∂ξi
. One of the advantages of the covariant description is the rep-

resentation of the linearized functional by parts: L
m is a main part de-

pending on the constitutive relation (this part represents an elastic com-
pliance with stiffness εN ); L

r is a rotational part depending on the ro-
tation of the master segment and Lc is a curvature part depending on
the curvature of the master segment. Other geometrical properties of
contact operators are discussed in Konyukhov and Schweizerhof [92].
Another advantage is that for further finite element approximation only a
single approximation operator for the relative displacement vector rs − r

should be introduced which makes the implementation procedure algo-
rithmic for any parameterization of the surface.

7.6.2 Linearization of the tangential part δW T
c

The expression for the tangential part δW T
c in eqn. (3.35) is varying with

regard to the return-mapping procedure in eqn. (7.18).

For the sticking case the evolution equation (4.73) is directly used
for linearization leading to the following expression:
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L[δW T, sticking
c ] =

∫
sS

(
dT el

i

dt
δξi + T el

i L[δξi]

)
dsS =

= −
∫

sS

εT (δrS − δρ) · aijρi ⊗ ρj(vS − v)dsS︸ ︷︷ ︸
Lm

T, st

(7.39)

−
∫

sS

T el
i

[
(δrS − δρ) · ailajkρk ⊗ ρlvj + δρ,j · aikajlρk ⊗ ρl(vS − v)

]
dsS︸ ︷︷ ︸

Lr
T, st

(7.40)

+

∫
sS

T el
i (δrS − δρ) · hij

(
ρj ⊗ n + n ⊗ ρj

)
(vS − v)dsS︸ ︷︷ ︸

Lc
T, st

(7.41)

For the sliding case the sliding traction T sl
i in eqn. (7.18) is linearized

taking into account the evolution equation (4.73). The full expression is,
though fairly long, but can be characterized by parts:

L[δW T, sliding
c ] =

∫
sS

(
dT sl

i

dt δξi + T sl
i L[δξi]

)
dsS =

=

∫
sS

μεN

‖Tel‖(δrS − δρ) · T i
elρi ⊗ n(vS − v)dsS︸ ︷︷ ︸

L
m, N
T, sl

(7.42)

−
∫

sS

εTμ|N |
‖Tel‖ (δrS − δρ) · aijρi ⊗ ρj(vS − v)dsS︸ ︷︷ ︸

L
m, T
T, sl

(7.43)

+

∫
sS

εTμ|N |
‖Tel‖3

(δrS − δρ) · T i
elT

j
elρi ⊗ ρj(vS − v)dsS︸ ︷︷ ︸

L
m, |T |
T, sl

(7.44)

−
∫

sS

T sl
i

[
(δrS − δρ) · ailajkρk ⊗ ρlvj + δρ,j · aikajlρk ⊗ ρl(vS − v)

]
dsS︸ ︷︷ ︸

Lr
T, sl

(7.45)
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+

∫
sS

T sl
i (δrS − δρ) · hij

(
ρj ⊗ n + n ⊗ ρj

)
(vS − v)dsS︸ ︷︷ ︸

L
c, sym
T, sl

(7.46)

−
∫

sS

μ|N |
‖Tel‖3

(δrS − δρ) · T i
elT

k
elT

n
elΓn,kja

jmρi ⊗ ρj(vS − v)dsS︸ ︷︷ ︸
L

c, ns1
T, sl

(7.47)

+

∫
sS

μ|N |
‖Tel‖3

(δrS − δρ) · T i
elT

j
elT

k
elhjkρi ⊗ n(vS − v)dsS︸ ︷︷ ︸

L
c, ns2
T, sl

(7.48)

The following notations are used here: ‖Tel‖ =
√

T el
i T el

j aij, where all
contravariant resp. covariant components are computed via the rising
resp. lowering index rule T i

el = T el
j aij; hij = hkla

ikalj. Covariant compo-

nents of the curvature tensor are computed as hkl =

(
∂ρ

∂ξkξl
· n

)
; the

Christoffel symbols are given as Γn,kj =

(
∂ρ

∂ξkξj
· ρn

)
. The matrix con-

tains non-symmetric main parts L
m, N
T, sl in eqn. (7.42) and non-symmetric

curvature parts L
c, ns1
T, sl , L

c, ns2
T, sl in eqns. (7.47), (7.48).

All parts of the tangent matrix can be classified as main parts, or
constitutive parts (marked as (.)m), representing the constitutive law for
contact interfaces; as rotational parts (marked as (.)r) representing a
stiffness due to the rotation of the master segment and as curvature
parts (marked as (.)c) representing a stiffness due to the curvature of
the master segment.

286



8

Covariant description of contact
interfaces considering anisotropy for
adhesion and friction: formulation
and analysis of the computational
model∗

Abstract
A covariant description for contact problems including anisotropy for
both adhesion and sliding domains is proposed. The principle of max-
imum dissipation is used to obtain a computational model in the case
of quasi-static motion. Various cases including curvilinear anisotropy on
arbitrary surfaces illustrating the possibility to model machined surfaces
are considered. The part is served to be a necessary preparation for
further finite element implementations and numerical analysis.

Keywords
covariant description anisotropy contact adhesion Coulomb friction

8.1 Introduction

The majority of contact problems is solved under the assumption of
smoothness of contact surfaces. However, some cases appear in prac-

∗The chapter is published in [90]: A. Konyukhov, K. Schweizerhof Covariant description of con-
tact interfaces considering anisotropy for adhesion and friction: Part 1. Formulation and analysis of
the computational model, Computer Methods in Applied Mechanics and Engineering, 196(1):103–117,
2006.

287



8. ANISOTROPIC ADHESION-FRICTION: FORMULATION

tice when it is impossible to neglect the roughness of the contact sur-
faces. Essentially two types can be distinguished: a) when a surface
has randomly distributed asperities, and b) when asperities have algo-
rithmic structure, e.g. the surface shows different macro properties in
different directions.

Mechanical characteristics for the contact problem of the first type
a) are obtained via statistically distributed asperities. Statistical anal-
ysis of a real rough surface and experimental aspects of its mea-
surements have been developed in series of publications: Longuet-
Higgins [116], Greenwood and Williamson [50], Whitehouse and Ar-
chard [179] and more recently Whitehouse and Phillips [181] and Green-
wood [48]. A comparative analysis of these surface models is presented
in McCool [122].

A statistical concept for the contact in the context of finite element
methods was developed then in Zavarise et.al. [201], Wriggers and
Zavarise [196], [195] for the non-frictional contact with normally dis-
tributed asperities. Buczkowski and Kleiber [23] considered first non-
frictional contact with an isotropical statistical distribution of asperities,
and then in [24] non-frictional contact with an anisotropic statistical dis-
tribution of asperities. The modeling of a contact surface with Bezier
splines according to the statistical distribution of asperities was consid-
ered in Bandeira, Wriggers and Pimenta [9]. Various nonlinear friction
models are considered in the monography of Wriggers [188].

A generalization of the isotropic macro characteristics is used to de-
scribe frictional contact problems of the second type b). Michalowski
and Mroz [129] considered the sliding of a rigid block on an inclined sur-
face and formulated various sliding rules for sliding displacements which
depend on directions. Thus, an anisotropic friction model for sliding was
introduced. In a purely theoretical description Zmitrowicz [210] devel-
oped the structure of the friction tensor for sliding forces based on the
motion of an elementary block on an anisotropic surface and described
its properties based on symmetry groups for the tensor. Curnier [32]
presented a rate independent theory of anisotropic friction for contact
interaction mentioning adhesion as a possible elastic part without any
further development. Zmitrowicz [211] developed the structure of the
sliding friction tensor according to a relative sliding velocity and intro-
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duced a classification of anisotropic surfaces based on the number of
eigenvalues of the friction tensor. These cases were numerically illus-
trated for a material point on the anisotropic plane. He and Curnier [62]
used the theory of tensor function representations to obtain the structure
of the friction tensor for an arbitrary nonlinear case according to the rela-
tive sliding velocity and derived also thermodynamical restrictions for the
friction tensor components. Mroz and Stupkiewicz [129] considered the
structure of the friction tensor based on a statical model of interaction of
springs located in a plane which has periodically inclined asperities.

Despite the extensive literature on finite element solutions for contact
problems, there are only few publications on finite element models for
anisotropic friction. Buczkowski and Kleiber [22], [24] created an inter-
face element containing the orthotropic sliding law. The return-mapping
scheme in a Cartesian coordinate system was then used to obtain the
sliding displacements. The effect of orthotropy was interpreted consid-
ering small displacements for a flat punch on an elastic foundation. Hjiaj
et. al. [68] formulated the problem via the bi-potential and applied La-
grangian multiplier methods to solve a problem with orthotropic friction
considering also small displacements in Cartesian coordinates. Para-
metric quadratic programming was used in Zhang et. al. [203] to solve
the almost identical problem. Recently, Jones and Papadopoulos [82]
developed a finite element model for anisotropic friction, where the stick-
slip condition is enforced via Lagrange multipliers.

The aforementioned publications include anisotropy only for the fric-
tion model and do not assume any anisotropy for the elastic region,
the adhesion. In the current contribution we propose a general ap-
proach for the finite element solution of quasi-statical frictional contact
problems including anisotropy for both adhesion and sliding assuming
that contact surfaces in general possess an anisotropic structure for
both, elastic and friction domains. This approach is based on the co-
variant description for contact problems which is applicable for an ar-
bitrary geometry of contact surfaces and large displacements. Within
the covariant description, as given in Konyukhov and Schweizerhof [86],
[89] contact conditions are described on the tangent plane of the con-
tact surface exploiting tensor analysis. Using a penalty regularization
of Coulomb’s friction law and the return-mapping algorithm leads to the
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evolution equations for contact friction. It becomes obvious, that the
evolution equations are not only a regularization technique, but act also
as the constitutive relation to model friction behavior for an adhesion
domain. Keeping this idea in mind, the evolution equations are general-
ized for a more complex mechanical behavior exploiting tensor algebra
on the tangent plane of the contact surface. The covariant description
allows to formulate the main characteristics for surfaces with arbitrary
geometry, e.g. the yield function is formulated via the friction tensor de-
fined in surface metrics. Then both, anisotropy for adhesion resp. stick-
ing and anisotropy for sliding are treated. Anisotropic resp. orthotropic
tensors inherit their properties either from the spectral decomposition or,
in the more general case, from arbitrary curvilinear coordinate systems
defined on the surface. The last case has advantages in practical appli-
cations as e.g. for a homogenized average model of machined surfaces.
This structure of tensors automatically satisfies all necessary theoreti-
cal restrictions developed earlier in [62] and [211]. Thus, a consistent
model for anisotropic surfaces can be developed.

In order to define sliding forces as well as sliding displacements the
principle of maximum dissipation is used. All models allow representa-
tive geometrical interpretations on the tangent plane. Via this principle,
the sliding forces and sliding displacements are derived in the covariant
form. The formulation in the covariant form easily allows to derive the
consistently linearized equations, which are necessary for the iterative
solution within a Newton type scheme, even for the case with nonlinear
anisotropy in the reference Cartesian coordinate system.

The article is subdivided into two parts, where the current part is or-
ganized as follows: In the second section we recall all necessary details
from the covariant description for the isotropic case. The generalization
for the adhesive part and for the sliding part for the arbitrary geometry
is developed in section 3. The orthotropic planar cases in Cartesian as
well as in polar coordinates are considered as particular structures of
tensors. As a specific case with curvilinear geometry spiral orthotropy
for a cylinder is considered. The fourth section deals with the formu-
lation of the friction problem as maximization problem for the energy
dissipation function. Here also the geometrical interpretation of the de-
rived model is discussed. The consistent linearization on the tangent
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plane, the finite element implementation and a discussion about the ro-
bustness of the developed approach on the basis of various numerical
examples are included in the second part.

8.2 Basis of the covariant description

Several computational approaches for isotropic Coulomb frictional con-
tact in context with finite element analysis have been developed in the
literature. The general models – all using the elastoplastic analogy and
the return-mapping algorithm for the penalty regularization of the friction
law – are developed in Wriggers et. al. [194], Laursen and Simo [109],
Peric and Owen [139], Parisch and Lübbing [138]. Reviews of contem-
porary contact models can be found in the monographs of Wriggers
[188] and Laursen [106]. The covariant description was especially de-
veloped in Konyukhov and Schweizerhof [86], [89] to take advantage of
the differential properties of contact surfaces. These derivations allow a
straightforward geometrical interpretation of the characteristics for an it-
erative solution, such as regularization equations and tangent matrices.
In the current section all important details of the covariant description
necessary for a further generalization into the anisotropic domain are
briefly outlined.

As starting basis of the covariant description, we introduce a spatial
local coordinate system related to the master surface. This coordinate
system is defined fitting the closest projection procedure. Let S be a
slave point and C its projection on the surface, see Fig. 8.1. At point C

we consider a coordinate system based on the following relation:

rs(ξ
1, ξ2, ξ3) = ρ(ξ1, ξ2) + nξ3. (8.1)

The first two convective coordinates ξ1, ξ2 define properties of the
surface and, therefore, are responsible for the tangential contact inter-
action. The third coordinate ξ3 is the value of the penetration and is used
to define the properties of the normal interaction. It is obtained after the
aforementioned closest point procedure as projection on the third axis n

291



8. ANISOTROPIC ADHESION-FRICTION: FORMULATION

�
�
�
�

�
�
�
�

ρ

S

C

O

X

X

2

ρ

ρ
1

1

3

r
ξ

2

r3 = n

1r

e1

r2
e2

ξ
3

ξ
1

X
2

α

rough surface
s

Figure 8.1: Contact between bodies. Definitions for closest point projection.
Anisotropic contact surface.

in each iteration step:

ξ3 = (rs − ρ) · n. (8.2)

The basis vectors ri, i = 1, 2, 3 of the spatial coordinate system
eqn. (8.1) are obtained via the basis surface vectors ρ1, ρ2, n as:

ri =
∂r

∂ξi
= ρi + niξ

3 = (ak
i − hk

i ξ
3)ρk, i, k = 1, 2, r3 = n, (8.3)

where ak
i are mixed components of the surface metric tensor and hk

i are
mixed components of the surface curvature tensor. A core of the co-
variant description is to consider contact dependencies in the 3D spatial
system and to express them on the tangent plane, i.e. at ξ3 = 0.

8.2.1 Convective velocities. Variation of relative displacements

Projections of the full time derivative of eqn. (8.1) to the local basis ri

considered at ξ3 = 0 result in the convective velocities ξ̇i. The tangential

292



8.2 Basis of the covariant description

components are defined as

ξ̇j = aij(vs − v) · ρi, i, j = 1, 2, (8.4)

where vs is the velocity of the slave point S, and v is the velocity of the
projection point C. The third component is given by the value in the
normal direction

ξ̇3 = (vs − v) · n, i = 1, 2. (8.5)

Considering the convective velocities also the variation of the relative
displacements can be expressed in form of δξi

δrs − δρ = δξiρi + δξ3n. (8.6)

8.2.2 Evolution equations for contact tractions

The vector of contact tractions R is defined as a covariant vector and,
therefore, is expressed via the contravariant basis vectors ρi and n as
sum of the tangential and normal components

R = T + N = Tiρ
i + Nn. (8.7)

As is well known, the relations between two coordinates ξ1, ξ2 and the
tangential force can be formulated in the differential form as so-called
evolution equations. The penalty regularization process for the simple
Coulomb friction law within the analogy to the rigid plasticity model leads
to the following evolution equations for the trial tangential contact trac-
tions Ti:

dTi

dt
= (−εTaij + Γk

ijTk)ξ̇
j − hk

i Tkξ̇
3, (8.8)

where Γk
ij are the Christoffel symbols for the contact surface. Eqn. (8.8)

serves to compute the trial tangent tractions. The final values are ob-
tained via the return-mapping scheme, see [106], [188]. Equation (8.8)
is a covariant scalar form of the proportionality condition between the full
time derivative of the tangent traction vector T and the relative velocity
vector ξ̇iρi expressed on the tangent plane

dT

dt
= −εT ξ̇iρi, (8.9)
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where a full time derivative dT
dt is taken in covariant form

dT

dt
=

DTi

dt
ρi,

DTi

dt
≡ dTi

dt
− Γk

ijTkξ̇
j + hk

i Tkξ̇
3, (8.10)

The regularization equation for the normal traction N satisfying the
non-penetrability condition has the following form:

N = εNH(−ξ3)ξ3, (8.11)

where a Heaviside function H(−ξ3) reflects the fact that N is not equal
zero and is computed only when a penetration occurs, i.e. ξ3 < 0.

The full time derivative Ṅ is then:

Ṅ = −εNH(−ξ3)ξ̇3. (8.12)

8.2.2.1 Integration of evolution equations. Geometrical interpretation of
the return-mapping scheme

As shown in Konyukhov and Schweizerhof [86], [89], within the contact
description the curvature part can be omitted in numerous cases with-
out loss of efficiency leading to considerable simplifications and a major
gain in numerical effort. This is especially pronounced for such contact
problems, where the development of sticking-sliding zones is important.
In such cases we can e.g. simplify all equations, assuming constant
metrics. The evolution equation is solved then numerically via the im-
plicit backward scheme with n indicating the load step arising from a
subdivision of the loads applied in sequential load steps.

T
(n+1)
i = T

(n)
i − εTaij(ξ

j
(n+1) − ξj

(n)) = (8.13)

continuing recursively:

= T
(n−1)
i − εTaij(ξ

j
(n) − ξj

(n−1)) − εTaij(ξ
j
(n+1) − ξj

(n))

= T
(n−1)
i − εTaij(ξ

j
(n+1) − ξj

(n−1)) = ...

= T
(0)
i − εTaij(ξ

j
(n+1) − ξj

(0))
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Assuming that the initial tangential forces are zero, T
(0)
i = 0, we get

T
(n+1)
i = −εTaijΔξj, with Δξj = (ξj

(n+1) − ξj
(0)). (8.14)

Eqn. (8.14) defines trial tractions Ti at load step (n + 1) at contact
points on the tangent plane ξ1

(n+1), ξ
2
(n+1). The absolute value of the tan-

gent traction is computed as:

‖T‖2 = T
(n+1)
i T

(n+1)
j aij = ε2

Taij(ξ
i
(n+1) − ξi

(0))(ξ
j
(n+1) − ξj

(0)). (8.15)

With eqn. (8.15) the sticking zone in combination with the Coulomb
law becomes then:

‖T‖2 ≤ μ|N |2 =⇒ ε2
Taij(ξ

i
(n+1) − ξi

(0))(ξ
j
(n+1) − ξj

(0)) ≤ μ2N2. (8.16)

Eqn. (8.16) describes a circle in a Cartesian coordinate system via
the convective coordinates ξ1, ξ2. The circle is placed on the tangent
plane with the center at ξ1

(0), ξ
2
(0). The inner part of it defines the allow-

able elastic region for the projection of a slave point, the so-called adhe-
sion domain. Thus, the geometrical interpretation of the solution of the
evolution equation is a trajectory of the contact point which is allowed
to be inside the circle in the case of sticking. If eqn. (8.11) is taken for
regularization of the normal traction N , then we obtain a cone equation
in the spatial coordinate system:

ε2
Taij(ξ

i
(n+1) − ξi

(0))(ξ
j
(n+1) − ξj

(0)) ≤ μ2ε2
N(ξ3)2. (8.17)

This interpretation can be found in Krstolovic-Opara and Wriggers [101],
where a so-called ”frictional cone description” was proposed.

8.2.3 Weak form.

The work of the contact tractions R in eqn. (8.7) on the relative virtual
displacement δrs − δρ in eqn. (8.6) can be expressed on the contact
surface as:

δWc =

∫
s

R · (δrs − δρ)ds =

∫
s

Nδξ3ds +

∫
s

Tjδξ
jds. (8.18)
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The integral in eqn. (8.18) is computed on the slave surface ds,
whereas all functions are defined on the master surface.

8.3 Generalization for complex contact interface laws

The regularization for a Coulomb type frictional law leads to a subdivi-
sion of the motion of the contact point on the master surface into re-
versible and irreversible parts. The first, reversible part appears due
to the regularization and usually contains a penalty parameter. It de-
scribes the elastic tangent deformation, the so-called tangential adhe-
sion, see Curnier [32]. The second, irreversible part is described by
a flow rule due to a specific yield function. Both parts can be gener-
alized for anisotropic domains by taking proper tensors and equations.
In this section, we summarize all necessary equations in vector form
convenient for the expansion into the anisotropic domain. For the repre-
sentations of the anisotropic tensor we will use the representation based
on the spectral decomposition in the simple case of constant orthotropy,
and in the general case, the representation based on the tensor product
of unit vectors of an arbitrary curvilinear surface coordinate system.

8.3.1 Vector form of the isotropic equations

The generalization is based upon the consideration of anisotropic ten-
sors instead of isotropic tensors in the evolution equations. The struc-
ture of the anisotropic tensors for contact, if one or both contact surfaces
have anisotropic structure is theoretically discussed by Zmitrowicz [210],
[211] and also by He and Curnier [62]. Here we assume the described
properties for tensors and will further discuss some restrictions for both
the adhesion tensor and the friction tensor. All tensors are defined in
the basis of the tangent plane of the contact master surface.

8.3.1.1 Elastic part of the contact deformation

To start the development, we reorganize the evolution equations (8.8)
and (8.12), describing in fact the elastic reversible part of the deforma-
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tion in vector form in the local surface coordinate system.

dR

dt
= Êvr, (8.19)

where R is a traction vector acting on a slave point S; vr = vs − v =
ρiξ̇

i + nξ̇3 is a relative velocity of a slave point and Ê is an isotropic
tensor of penalty parameters:

Ê =

⎡
⎣ −εT 0 0

0 −εT 0
0 0 −εN

⎤
⎦ . (8.20)

Eqn. (8.19) describes the force-displacement relationship in a rate form
for the reversible elastic part of the contact interaction. The irreversible
part in the case of a simple Coulomb friction law is correlated to the rigid
plasticity model.

8.3.1.2 Yield function for the isotropic Coulomb friction law

Remembering, that the scalar product is computed on the surface via
the metric tensor components aij, we can define a yield function for the
Coulomb friction law as

Φ :=

√
T ·T
μ|N | − 1 ≡

√
TiTjaij

μ|N | − 1. (8.21)

The sticking and sliding zones are now defined by the rule:

Φ ≤ 0 means sticking; Φ > 0 means sliding. (8.22)

Irreversible parts including the sliding forces etc. can be obtained via
the flow rule.

8.3.2 General interface model

In order to take into account a diversity of linear mechanical models
including viscoelasticity etc., we can generalize eqn. (8.19) as follows:

dR

dt
+ ÂR = B̂vr + ĈΔξ, (8.23)
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where Â, B̂, Ĉ are tensors defined in the local surface coordinate sys-
tem and Δξ is a vector of the relative displacements

Δξ = Δξiρi + Δξ3n, Δξi = ξi − ξi
(0), i = 1, 2, 3. (8.24)

A point with convective coordinates ξi
(0) indicates an initial position where

the contact traction vector R equals zero, i.e.

R|ξi=ξi
(0)

= 0. (8.25)

The equation for the elastic region in the form of eqn. (8.23) cov-
ers various viscoelastic models such as Maxwell and Kelvin models in
arbitrary anisotropic forms including adhesion. A generalization of the
isotropic Coulomb friction model according to Maxwell and Kelvin vis-
coelastic models was considered in Araki and Hjelmstad [5]. A rate-
dependent model with orthotropic friction coefficients in Cartesian coor-
dinate system was considered in Oancea and Laursen [131].

Assuming the decoupling of the third normal coordinate ξ3, we can
rewrite eqn. (8.23) for the surface components in the form:

dT

dt
+ AT = Bvr + CΔξ, (8.26)

where A, B, C are tensors defined on the tangent plane, T is a tangent
force vector, vr = vs − v is a relative tangent velocity vector expressed
on the tangent plane, Δξ = Δξiρi is a relative tangent displacement

vector and
d

dt
is a full time derivative in the covariant form on the contact

surface.

The third equation for the normal force N and for the penetration ξ3,
is treated separately

Ṅ + aN = bξ̇3 + cΔξ3. (8.27)

For the further development we consider only a rate independent mo-
tion, i.e. assume a specific structure of the evolution equations (8.23)
and (8.27) excluding the direct time dependency of the contact tractions.
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8.3.2.1 Anisotropic evolution equations. Rate-independent model

Considering a case of rate-independent motions by taking A = 0, C = 0

in eqn. (8.26) and a = 0, c = 0 in eqn. (8.27) we define anisotropy for
an elastic part of the contact conditions. Therefore, from eqn. (8.26) the
following rate forms remain:

dT

dt
= B(vs − v). (8.28)

Expressing this in the tangent plane by coordinates, we get the following
evolution equation

∂Ti

∂t
+ ∇jTiξ̇

j = bij ξ̇
j, j = 1, 2. (8.29)

The evolution equations (8.28) resp. (8.29) describe the fact that the
reaction tangential forces are acting not in the opposite direction to the
velocity vector, but in the direction defined by tensor B. In other words,
if a force T is acting on point C on the surface, then this point is moved
in a somewhat different direction defined by the angle β, see Fig. 8.2,
but, in general, not in the direction of the force.

Remark.
The evolution equations (8.28) describe the elastic deformations of con-
tact interaction in the rate form. This elastic tangential deformation is
known as tangential adhesion, see Curnier [32]. Thus, we call a tensor
B the elastic adhesion tensor, or simply the adhesion tensor.

Remark.
The mechanical restriction for the elastic force T to act in opposite direc-
tion to the relative velocity can be formulated in an energy sense accord-
ing to the thermodynamical restriction: the power of the elastic force T

must be negative. This requires that the adhesion tensor taken with
a minus sign −B is a positively defined tensor.

Since we are working with a decoupled model regarding the normal
and tangential contact interactions, the evolution equation for the normal
force N and thus the parameter b in eqn. (8.27) is kept in the form given
by eqn. (8.12).
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8.3.3 Anisotropic yield function

Several theoretical approaches are known in literature for formulations
for the yield function and for the sliding rule. Before presenting a par-
ticular structure of the tensor we will briefly review these approaches as
well as restrictions for the tensor which are known in literature.

8.3.3.1 Various approaches for formulations of yield criteria and sliding rules

In a first publication, Michalowski and Mroz [127] proposed to distin-
guish functions for limit criteria and for sliding, introducing the so-called
associated and non-associated sliding rules. These functions were built
by analogy looking at the solution for the sliding of a rigid block on an
inclined surface.

Zmitrowicz [210] introduced the friction tensor F into the originally
isotropic Coulomb criteria (8.21) and described its properties based
on the groups of material symmetry. The sliding forces were formu-
lated directly without correspondence to the yield criteria. It was also
obtained that ”There is no restrictions for the arbitrary anisotropic fric-
tion tensor except its positive definition, but the orthotropic friction ten-
sor is symmetric”. The superposition of two friction tensors when two
anisotropic surfaces are in contact was also discussed. In a later pub-
lication Zmitrowicz [211] assumed that the sliding force nonlinearly de-
pends on the relative velocity introducing in addition a 4th-order friction
tensor.

He and Curnier [62] applied the theory of tensor function represen-
tations – the fundamental aspects of this theory see Zheng [204] – to
obtain the general irreducible structure for the nonlinear friction tensor
in the case of friction between two orthotropic surfaces. The structure
at the contact point is defined by [62] as follows:

• m is a unit vector of the preferable direction for the first surface,

• k is a unit vector of the preferable direction for the second surface,

• u is a unit vector of the relative sliding velocity.

Then the sliding force T is defined as

T = N [ α1(I1, I2)E + α2(I1, I2)(m⊗m) + α3(I1, I2)(k⊗ k) ]u , (8.30)
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where N is a normal force, E is a unit tensor, αi are scalar functions of
the following invariants: I1 = u · (m ⊗ m)u, I2 = u · (k ⊗ k)u. Also the
symmetric properties of the friction tensor for orthotropic surfaces were
derived and it was shown, that a yield function is a direct consequence
of the rate-independence condition. Other important results were ”the
thermodynamical restrictions for the friction tensor leading to its positiv-
ity and the formulation of the convex energy dissipation function”.

8.3.3.2 Coulomb type yield functions

Summarizing the results of the previous developments, we will later use
a generalization of the isotropic yield criterion in eqn. (8.21) by replac-
ing the scaled metric components aij/μ2N2 with tensor components f ij,
assuming the a-priori necessary properties as discussed above. Thus,
we can obtain:

ΦN =

√
f ij

N TiTj − 1 =
√

(T · FNT) − 1. (8.31)

The standard assumption of proportionality of the sliding force Tsl to the
normal traction N , the so-called Coulomb’s form, see Curnier [32], leads
to

FN =
F

N2
, (8.32)

and the yield function can then be written as:

Φ =
√

f ijTiTj − |N | =
√

T · FT − |N |. (8.33)

The sliding criteria (8.21-8.22) become then

if Φ ≤ 0 then sticking, (8.34)

describing a contact point inside the adhesion domain,

if Φ > 0 then sliding, (8.35)

describing a contact point outside the adhesion domain.

The tensor F is called friction tensor and is defined by its compo-
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nents f ij in the surface tensor basis as

F = f ijρi ⊗ ρj. (8.36)

Comparing with the isotropic function, we introduce anisotropic friction
coefficients:

f ij =
aij

μ2
ij

, i, j = 1, 2, (8.37)

where μij are coefficients of friction.

8.3.4 Tensor representations for anisotropy

Here we consider particular structures for the anisotropic tensors for the
evolution equations (8.28) as well as for the yield function (8.33), auto-
matically satisfying the necessary restrictions mentioned in the previous
sections. We start with the simplest case – a constant orthotropy on the
plane. In this case all tensors are symmetrical ones. The more general
anisotropic case can be defined then in an arbitrary coordinate system
by setting different properties along the coordinate lines.

8.3.4.1 Spectral representation of the tensor –
constant orthotropy in the plane

As mentioned above, constant orthotropy in the plane is described by
constant symmetric tensors for which a spectral representation is cho-
sen. Any symmetric positive tensor A can be decomposed as:

A = QΛQT , (8.38)

where Λ is defined in the mixed tensorial basis as a diagonal matrix of
eigenvalues:

Λ =

[
λ1 0

0 λ2

]
; (8.39)

and Q is an orthogonal tensor. Since it describes the rotation on the
tangent plane between the main axes ei and the axes ξi, see Fig. 8.2, it
becomes

Qα =

[
cos α − sin α
sinα cos α

]
. (8.40)
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Figure 8.2: Main orthotropy axes and local surface coordinate system.

The main axes are hereby defined as orthotropy axes. Then the spec-
tral representation of A is obtained as

A = QαΛQT
α = [Ai

j] =

[
λ1 cos2 α + λ2 sin2 α (λ1 − λ2) sin α cos α
(λ1 − λ2) sinα cos α λ1 sin2 α + λ2 cos2 α

]
. (8.41)

Taking into account, that the model for constant orthotropic friction
contains the tensor in the evolution equations (8.28) and in the yield
function (8.33) in mixed form which allows the spectral decomposition
given in eqn. (8.41), the following derivations are possible:

First we focus on the evolution equation given by eqn. (8.29),
where the mixed components are introduced via the spectral decom-
position (8.41). Taking into account that the adhesion tensor B (see Re-
mark 8.3.2.1 in Sec. 8.3.2.1) is negative, we introduce positive values
εi = −λi > 0 and an orthotropy angle α. Thus, after a transformation
into a local coordinate system the following matrix description for the
tensor is obtained:

B = [bi
j] = −

[
ε1 cos2 α + ε2 sin2 α (ε1 − ε2) sinα cosα
(ε1 − ε2) sinα cos α ε1 sin2 α + ε2 cos2 α

]
. (8.42)

Matrix B in eqn. (8.42) describes the orthotropic properties in the re-
versible part of the tangential interaction, where the parameters ε1, ε2

can be seen as orthotropic moduli of the tangential adhesion. Assum-
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ing ε1 = ε2 leads to isotropic behavior and then the isotropic evolution
equation is recovered.

Second, the yield function for the constant orthotropic friction is de-
fined via the orthotropic friction tensor F which allows a spectral de-
composition. After introducing the angle β between the local coordinate
axes and the orthotropy axes, and eigenvalues as λi = 1/μ2

i , the follow-
ing matrix [f i

k] is obtained:

F = [f i
k] =

⎡
⎢⎢⎢⎢⎣

1

μ2
1

cos2 β +
1

μ2
2

sin2 β (
1

μ2
1

− 1

μ2
2

) sinβ cos β

(
1

μ2
1

− 1

μ2
2

) sinβ cos β
1

μ2
1

sin2 β +
1

μ2
2

cos2 β

⎤
⎥⎥⎥⎥⎦ . (8.43)

The restriction of positivity for the friction tensor F leads to the known
positive orthotropic friction coefficients μi > 0.

8.3.4.2 Structure of the anisotropic tensor inherited from an arbitrary surface
curvilinear coordinate system

We assume that on the surface defined via the Gaussian coordinates
ξ1, ξ2 as

ρ = ρ(ξ1, ξ2), ρ =

⎧⎨
⎩

x1(ξ
1, ξ2)

x2(ξ
1, ξ2)

x3(ξ
1, ξ2)

⎫⎬
⎭ (8.44)

another Gaussian coordinate system is defined. Thus, the Cartesian
coordinates of the same surface xi are defined by Gaussian convective
coordinates α1, α2:

xi = φi(α
1, α2), i = 1, 2, 3. (8.45)

One can say, that we have re-parameterization of the surface

αi = αi(ξ1, ξ2), i = 1, 2, (8.46)

or, in another words, eqn. (8.46) defines a new coordinate system on
the same surface.

Arbitrary anisotropic properties of a surface can be defined as differ-
ent characteristics along these coordinate lines. The unit tangent vec-
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tors along the coordinate lines are then defined as:

ei =
ri√
gii

, i = 1, 2 no summation over i (8.47)

where ri =
∂r

∂αi
are the basis vectors, and gii = ri · ri are diagonal

coefficients of the covariant metrics tensor.

The tensor of anisotropy A can then be defined via the unit tensor
basis as:

A := λ1e1 ⊗ e1 + λ2e2 ⊗ e2 = λ1
r1 ⊗ r1

g11
+ λ2

r2 ⊗ r2

g22
= λi

ri ⊗ ri

gii
. (8.48)

Remark.
From now on and further in the last representation in eqn. (8.48) the
summation convention is implied also for the sum over i-index, though
the index i is repeated four times.

It is obvious, that the tensor structure prescribed above, see
eqn. (8.30), is preserved. As a next step a transformation into the sur-
face basis ρi(ξ

1, ξ2) is necessary for the evolution equation as well as
for the yield equation.

Remark.
The tensor in eqn. (8.48) is defined, in general, via the coordinates
α1, α2. We introduce a notation AC, if the tensor A is defined in the
global reference Cartesian coordinates, and will keep the notation A if
the tensor is defined after the tensor transformation to the surface coor-
dinate system ξ1, ξ2, eqn. (8.44).

The evolution equation is transformed as follows. Assuming the stiff-
nesses along the coordinate lines as λi = −εi, we obtain

BC := −
(

ε1
r1 ⊗ r1

g11
+ ε2

r2 ⊗ r2

g22

)
. (8.49)

The tensor BC is a Cartesian tensor. Some steps are necessary to
transform it to surface coordinates ξ1, ξ2. Substitution into the right hand
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side of the evolution equation (8.28) leads to:

BC(vs − v) := −εi
ri ⊗ ri

gii
· ρj ξ̇

j = −εi(ri · ρj)ξ̇
j

gii
ri. (8.50)

The dot product of the evolution equation (8.28) with ρk, taking into ac-
count eqn. (8.50), leads to the equation in components according to the
surface metrics:

dTk

dt
= −εi(ri · ρk)(ri · ρj)

gii
ξ̇j. (8.51)

For the further implementation into a finite element code, it is more ap-
propriate to introduce a tensor decomposition:

dTk

dt
= −εiri ⊗ ri

gii
: (ρk ⊗ ρj)ξ̇

j, (8.52)

where the components of the first tensor BC = −εiri ⊗ ri

gii
can be com-

puted in a Cartesian coordinate system separately for the surface as:

bC
ln = − εi

gii

∂φl

∂αi

∂φn

∂αi
. (8.53)

After this the evolution eqn. (8.52) is defined as:

dTk

dt
= bC

ln

∂xl

∂ξk

∂xn

∂ξj
ξ̇j. (8.54)

From the last equation the covariant components of the tensor B in the
global surface basis ρ1, ρ2 are obtained as tensor transformations, i.e.

bij = bC
ln

∂xl

∂ξi

∂xn

∂ξj
. (8.55)

Introducing the friction coefficients λi = 1/μ2
i into the yield func-

tion and then applying analogous tensor operations as for the evolution
equation lead to the following form:

Φ =

√
ri ⊗ ri

μ2
i gii

: (TkTlρk ⊗ ρl) − |N |, (8.56)

from which a similar definition of covariant components for the friction
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tensor are obtained:

fkl =
ri ⊗ ri

μ2
i gii

: (ρk ⊗ ρl). (8.57)

In the following we consider particular structures for covariant com-
ponents in the Cartesian coordinate system bC

ij in eqn. (8.53) as well
as for bij in eqn. (8.55) in the local surface coordinate system for the
anisotropic plane, for polar orthotropy on a plane and for spiral or-
thotropy on a cylinder.

8.3.4.3 Anisotropic plane. Structure of the BC and B tensors in
Cartesian coordinates

On the plane x3 = 0, we consider anisotropic properties defined by two
unit vectors r1 and r2:

r1 =

⎧⎨
⎩

cos α

sinα
0

⎫⎬
⎭ , r2 =

⎧⎨
⎩

cosβ

sin β
0

⎫⎬
⎭ . (8.58)

The Cartesian components of the adhesion tensor bC
ln are obtained as:

BC = −
[

ε1 cos2 α + ε2 cos2 β ε1 sin α cos α + ε2 sin β cos β 0
ε1 sin α cos α + ε2 sin β cos β ε1 sin2 α + ε2 sin2 β 0

0 0 0

]
. (8.59)

For an analysis, the approximation of the surface is necessary in or-
der to obtain the structure of the tensor in surface coordinates ξ1, ξ2 in
eqn. (8.55). If the latter coincide with the global Cartesian coordinates
ξi = xi, we obtain

B = −
[

ε1 cos2 α + ε2 cos2 β ε1 sin α cos α + ε2 sin β cos β
ε1 sin α cos α + ε2 sin β cos β ε1 sin2 α + ε2 sin2 β

]
. (8.60)

It is obvious, that isotropy is no longer recovered simply by taking ε1 =
ε2. However, if we take the unit vectors to be orthogonal, i.e. β = π/2+α,
the orthotropic matrix obtained previously via the spectral representation
in eqn. (8.42) is recovered.
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8.3.4.4 Orthotropic surface in polar coordinates. Structure of the BC and B

tensors in Cartesian coordinates

As an example with curvilinear orthotropy, a plane with orthotropic prop-
erties in polar coordinates, see Fig. 8.3, is considered. These properties
are defined by the elastic constants εr, εφ acting along the coordinate
lines. The definition in eqn. (8.45) is then a transformation to polar co-
ordinates:

x = r cosφ, y = r sin φ, z = 0. (8.61)

The Cartesian components of the orthotropic tensor bC
kn are then de-

fined by the following matrix:

BC = −
⎡
⎣ εr cos2 φ + εφ sin2 φ (εr − εφ) sinφ cos φ 0

(εr − εφ) sinφ cos φ εr sin2 φ + εφ cos2 φ 0
0 0 0

⎤
⎦ . (8.62)

Applying the inverse mapping from polar coordinates to Cartesian coor-
dinates in eqn. (8.61) (see also eqn. (8.55), we obtain:

B = − 1

x2 + y2

[
εrx

2 + εφy
2 (εr − εφ)xy

(εr − εφ)xy εry
2 + εφx

2

]
. (8.63)

The adhesion tensor for polar orthotropy in eqn. (8.63) contains a typ-
ical example of nonlinear surface properties in the reference Cartesian
coordinate system.

8.3.4.5 Spiral orthotropy on a cylindrical surface. Structure of the BC and B

tensors in cylindrical coordinates

As a more complex case, we consider a circular cylinder and the surface
orthotropy resulting from spiral coordinate lines on the cylinder. This
example can be practically interesting to model e.g. screw connections.
First, we define a rigid cylinder with a surface described by the following

308



8.3 Generalization for complex contact interface laws

��
��
��
��

�
�
�
�

φ

εφ

rr

rφ,

, rε

O
Y

X

Figure 8.3: Polar orthotropic surface.

parameterization ρ(α, z):

ρ =

⎧⎨
⎩

R cosα

R sin α
z

⎫⎬
⎭ . (8.64)

The necessary surface characteristics are the tangent vectors and the
normal vector

ρ1 =

⎧⎨
⎩

−R sin α

R cos α
0

⎫⎬
⎭ , ρ2 =

⎧⎨
⎩

0

0
1

⎫⎬
⎭ , n =

⎧⎨
⎩

cosα

sin α
0

⎫⎬
⎭ , (8.65)

resulting in a covariant surface metrics tensor

[aij] =

[
(ρ1 · ρ1) (ρ1 · ρ2)
(ρ2 · ρ1) (ρ2 · ρ2)

]
=

[
R2 0
0 1

]
. (8.66)

Orthotropic properties of the surface are obtained as follows. The equa-
tion for a family of cylindrical spiral lines on the cylinder (8.64) is, see
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also the geometry given in Fig. 8.4:

r =

⎧⎪⎪⎨
⎪⎪⎩

R cosα

R sin α

H

2π
α + const

⎫⎪⎪⎬
⎪⎪⎭ . (8.67)

The first tangent vector r1 along the spiral line necessary for the tensor
representation (8.49) becomes:

r1 =
∂r

∂α
=

⎧⎪⎪⎨
⎪⎪⎩

−R sin α

R cos α

H

2π

⎫⎪⎪⎬
⎪⎪⎭ . (8.68)

The second tangent vector r2 is defined to be orthogonal to the first
vector r1 and to the normal on the cylinder surface, see eqn. (8.65.3)
and Fig. 8.4:

r2 = [n × r1] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H

2π
sinα

−H

2π
cosα

R

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (8.69)

With this expression an equation for the line orthogonal to the main spi-
ral line (8.67), see line AC in Fig. 8.4, can be found from the condition
that the integrated and scaled tangent vector r2 must belong to the cylin-
der surface

A

∫
r2dα ∈ cylinder =⇒ A =

2πR

H
, (8.70)

which leads to the following definition of a vector r̂, orthogonal to r:

r̂ =

⎧⎪⎪⎨
⎪⎪⎩

R cosα
R sin α

2πR2

H
α + const

⎫⎪⎪⎬
⎪⎪⎭ . (8.71)

Thus, orthotropic properties are inherited from the orthogonal spiral
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net on the cylinder via eqns. (8.67) and (8.71).

Remark.
For further analyses, one can define from eqns. (8.67) and (8.71) the
distances between two adjacent threads as H for the main spiral and

Ĥ =
(2πR)2

H
for the orthogonal spiral AC, see Fig. 8.4.

The covariant components of the metric tensor gij are defined as

[gij] =

⎡
⎢⎢⎢⎣

R2 +

(
H

2π

)2

0

0 R2 +

(
H

2π

)2

⎤
⎥⎥⎥⎦ . (8.72)

The tensor of orthotropy Bα in the Cartesian basis, see eqn. (8.49),
becomes then:

BC = −ε1
r1 ⊗ r1

g11
− ε2

r2 ⊗ r2

g22
= (8.73)

= − 1

R2 +

(
H

2π

)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

gε sin2 α −gε sin α cos α −(ε1 − ε2)
RH

2π
sin α

−gε sin α cos α gε cos2 α (ε1 − ε2)
RH

2π
cos α

−(ε1 − ε2)
RH

2π
sin α (ε1 − ε2)

RH

2π
cos α ε1

(
H

2π

)2

+ ε2R
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with

gε = ε1R
2 + ε2

(
H

2π

)2

. (8.74)

The backward tensor transformation (8.55) with the matrix H defined via
the cylindrical coordinates

H =

[
∂xi

∂ξj

]
=

[
∂ρ

∂ξ

]
=

⎡
⎣ −R sinα 0

R cosα 0

0 1

⎤
⎦ (8.75)

gives us the covariant components bij of the tensor B in the contravari-
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ant surface basis ρ1, ρ2:

B = HTBCH = − 1

R2 +

(
H

2π

)2

⎡
⎢⎢⎣

gεR
2 (ε1 − ε2)

R2H

2π

(ε1 − ε2)
R2H

2π
ε1

(
H

2π

)2

+ ε2R
2

⎤
⎥⎥⎦ .

(8.76)

Matrix B in eqn. (8.76) represents the constant spiral orthotropy for the
cylindrical surface and, therefore, is a generalization of the constant
plane orthotropy in eqn. (8.42) for the case of a cylindrical geometry.

Remark.
With the assumption of isotropy ε1 = ε2 = ε the unit matrix is recovered
only in mixed components. In covariant components we obtain

Bε1=ε2=ε = [bij]ε1=ε2=ε = −ε

[
R2 0
0 1

]
. (8.77)

Figure 8.4: Spiral orthotropy on the cylindrical surface.
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8.4 Derivation of the frictional contact problem via the
principle of maximum dissipation

The principle of maximum dissipation is known in plasticity for the for-
mulation of the necessary characteristics, such as plastic strains etc..
The application of this principle for the construction of computational
algorithms in linear and nonlinear isotropic plasticity was developed in
Simo and Hughes [160]. He and Curnier [62] formulated the dissipa-
tion function for the anisotropic function and investigated its extremal
properties applying convex analysis. The correspondence between the
dissipation function and the sliding rule was shown. Here we will also
formulate the frictional problem as an extremal problem in a continuous
form, and then applying the finite difference scheme in an incremen-
tal form. Afterwards, the return-mapping algorithm is applied to obtain
all characteristics for sliding, such as a sliding force Tsl and a sliding
displacement vector Δξsl. These variables can be viewed as a pair of
conjugate variables for the energy dissipation function, which allows to
define them separately.

8.4.1 Continuous formulation

According to the elastic-plastic analogy, a frictional contact problem via
the energy dissipation function can be formulated as follows:

a) The relative velocity vector of the contact point is decomposed ad-
ditively into an elastic part vel and a sliding part vsl

vr = vel + vsl. (8.78)

b) The elastic part vel is responsible for reversible deformations (ad-
hesion) and satisfies the evolution equations (8.28):

dT

dt
= Bvel. (8.79)

c) The tangential force T must satisfy the following inequalities de-
fined via the yield function eqn. (8.33), which in tensor form can be
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written as:

Φ :=
√

f ijTiTj − |N | =
√

T · FT − |N | : (8.80)

• if Φ < 0 then the contact point is inside the elastic domain and
T = Tel is an elastic force,

• if Φ = 0 then the contact point is sliding and T = Tsl is a sliding
force.

d) The power of the sliding forces, described by the energy dissipation
function D achieves its maximum:

D := ξ̇i
slT

sl
i = vsl · Tsl, D −→ max . (8.81)

For the convenient application of standard methods of convex analy-
sis [119], [19], [46] we transform the problem (8.81) into a minimization
problem

Dmin := −ξ̇i
slT

sl
i = −vsl ·Tsl, Dmin −→ min . (8.82)

The principle of maximum dissipation requires that the plastic dissi-
pation function D subjected to the inequality conditions (8.80) achieves
a maximum. A system of ordinary equations (8.78) - (8.79) is defined in
convective surface coordinates ξ1, ξ2, identifying a contact point on the
surface.

8.4.2 Incremental formulation

The application of the backward Euler scheme to the continuous prob-
lem a)-d) described above, namely to a system of ordinary differen-
tial equations (8.78)-(8.79) with an additional extremal condition (8.82)
leads to an incremental formulation. Here we investigate only quasi-
static contact problems, therefore we can take Δt = 1. The return-
mapping scheme – for plasticity see [160] and among the first applica-
tions for contact problems see [45] – is applied to obtain the real sliding
force and sliding displacements: the trial tangential force Ttr is assumed
to be elastic and can be computed from the incremental solution. Thus,
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the following incremental formulation for the trial tangential force Ttr is
found:

i) The full displacement vector Δξ = ξ(n+1) − ξ(n) is decomposed ad-
ditively into an elastic increment Δξel and into a sliding increment
Δξsl:

Δξ = Δξel + Δξsl, (8.83)

where both vectors are defined in the surface metrics, namely,

Δξ := Δξiρi = (ξi
(n+1) − ξi

(n))ρi. (8.84)

ii) The trial force Ttr
(n+1) is computed via the incremental evolution

equations:

Ttr
(n+1) − T(n) = B(n+1)(ξel

(n+1) − ξel
(n)). (8.85)

iii) In order to decide whether the trial force Ttr is a sliding force Tsl or
a sticking force Tst the yield condition is checked in each load step:

Φtr : =
√

Ttr
(n+1) · F(n+1)Ttr

(n+1) − |N(n+1)|
=

√
f ijT tr

i (n+1)T
tr
j (n+1) − |N(n+1)|, (8.86)

• If Φtr < 0 then the trial force is a real sticking force T = Ttr.

• If Φtr ≥ 0 then the sliding force must be obtained via the maxi-
mum of the energy dissipation function given in the incremental
form.

iv) The incremental analog of the continuous formulation
eqn. (8.82) is then:

D
(n+1)
min := −Δξsl · Tsl

(n+1) = −Δξi
slT

sl
i (n+1), D

(n+1)
min −→ min . (8.87)

For large sliding problems especially with reversible loading, it is nec-
essary to define both, the sliding force and the sliding displacements.
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Taking the sliding distance Δξsl as an independent variable we can de-
termine the sliding force Tsl via the minimum of the function D

(n+1)
min in

eqn. (8.87). The expression for the sliding force will be used for nu-
merical computation within each load step during an iterative Newton
solution scheme. The sliding distance, in due course, is defined after
convergence is achieved in the load step and is computed via the con-
sistency condition.

A Lagrange function for the constraint minimization problem is given
as:

L(n+1) := −Δξsl ·Tsl
(n+1) + λ

(√
Ttr

(n+1) · F(n+1)T
tr
(n+1) − |N(n+1)|

)
,

L(n+1) −→ min, (8.88)

where the complementary Kuhn-Tucker conditions (see [119], [19]) are
given as:

Φ :=
√

Ttr
(n+1) · F(n+1)T

tr
(n+1)−|N(n+1)| ≤ 0, λ ≥ 0, λΦ(n+1) = 0. (8.89)

For the next transformations a gradient of the yield function is necessary:

∂Φ(n+1)

∂Ttr
(n+1)

=
F(n+1)T

tr
(n+1)√

Ttr
(n+1) · F(n+1)T

tr
(n+1)

, (8.90)

as well as a derivative of the trial force at load step (n + 1), computed
via the chain rule, see eqns. (8.85) and (8.83):

∂Ttr
(n+1)

∂Δξsl
= −B(n+1). (8.91)

In the following sections the subscript (n+1) will be omitted everywhere
for simplicity reasons.

8.4.2.1 Derivation of the sliding force Tsl

In order to obtain the sliding force Tsl, the sliding incremental displace-
ment Δξsl is taken as an independent variable. A formal application of
convex analysis, see [119], [19], to the Lagrange function (8.88) gives
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us the necessary condition of the minimum:

∂L

∂Δξsl
= 0, (8.92)

leading to the definition of the sliding force as:

Tsl = λ
∂Φ

∂Δξsl
. (8.93)

Exploiting the chain rule and using eqns. (8.90), (8.91), we obtain:

Tsl = λ
∂Φ

∂Ttr

∂Ttr

∂Δξsl
= −λB

FTtr

√
Ttr · FTtr

. (8.94)

For the current sliding case, i.e. when λ > 0, we have to satisfy the
Kuhn-Tucker condition Φ = 0, in order to define λ, i.e. substitute Tsl

in the yield function Φ =
√

Tsl · FTsl − |N |. This leads to the following
equation for λ:

λ = |N |
√

Ttr · FTtr

BFTtr · FBFTtr
, (8.95)

where the positive λ is taken due to the second Kuhn-Tacker condition
in eqn. (8.89). Thus, the sliding force Tsl in eqn. (8.94) is defined as

Tsl = − BFTtr

√
BFTtr · FBFTtr

|N |. (8.96)

We now introduce an auxiliary vector

T̂ = BFTtr (8.97)

to compute the sliding force Tsl. The covariant components of the aux-
iliary vector are defined via various components of the tensor B and F

as:
T̂i = bijf

jkT tr
k = bijflna

jlaknT tr
k = bj

if
k
j T tr

k . (8.98)

Then the covariant components of the sliding vector (8.96) can be com-
puted as

Tsl = − T̂√
T̂ · FT̂

=⇒ T sl
i = − T̂i√

T̂kT̂lf kl

(8.99)

317



8. ANISOTROPIC ADHESION-FRICTION: FORMULATION

The isotropic case is recovered from eqn. (8.96) by taking B = −εTE

and F = E/μ2 to

Tsl = μ|N | Ttr

√
Ttr · Ttr

. (8.100)

8.4.3 Specification of initial conditions for
the return-mapping scheme

Initial conditions are necessary for the incremental solution of
eqns.(8.83) and (8.85) formulated as Cauchy problem for a system of
ordinary differential equations. These initial conditions can be defined
assuming that the initial configuration is unstressed, thus with zero ex-
ternal loading:

T = 0, N = 0 =⇒ ξ = ξ(0), ξsl
(0) = 0 for ξ3 ≤ 0. (8.101)

The conditions are formulated for all points which are in contact at the
initial configuration, i.e. for all points satisfying ξ3 ≤ 0. The vector ξ(0) is
obtained via a projection procedure, and defines the center of the ellipse
for the adhesion domain, see Fig. 8.5. The additional initialization of the
sliding displacement and the update procedure will be discussed after
the geometrical interpretation of the solution process.

8.4.4 Derivation of the sliding incremental displacement Δξsl and
update scheme for the history variables

We consider here a ”step-by-step” scheme for the case with nonlinear
tensors B and F concentrating on computational aspects for the numer-
ical implementation. For the nonlinear case let us assume that the first
converged load step is elastic, i.e. Φ < 0 in eqn. (8.89), while for the
second load step the sliding condition is achieved, i.e. Φ = 0 and the
load step was computed with the sliding force Tsl. Let ξ(1) and ξ(2) are
convective coordinates of a contact point after the corresponding first
and the second load steps. The trial force for the second load step Ttr

(2)

is then computed as in an Euler backward scheme:

Ttr
(2) = T(1) + B(2)(ξ(2) − ξ(1)), (8.102)
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where for the first load step a force T(1) is computed taking into account
the initial conditions in eqn. (8.101)

T(1) = B(1)(ξ(1) − ξ(0)). (8.103)

The value of the sliding displacement ξsl
(2) and resp. the elastic part ξel

(2)

are defined via the strict fulfillment of the Kuhn-Tucker condition Φ(2) = 0

for the elastic part ξel
(2):

Φ(2) = Φ(2)(ξ, ξsl) =

√
(T(1) + B(2)(ξel

(2) − ξ(1))) · F(2)(T(1) + B(2)(ξel
(2) − ξ(1))) − |N |, (8.104)

where the full displacement vector ξ(2) after the converged second load
step can be decomposed as:

ξ(2) = ξel
(2) + ξsl

(2). (8.105)

The consistency condition (see [119], [19]) for the constraint function
Φ(2) leads to an additional equation allowing to determine the direction
of the sliding displacement:

Φ̇ =
∂Φ

∂ξ(2)

· dξ(2)

dt
+

∂Φ

∂ξsl
(2)

· dξsl
(2)

dt
= 0. (8.106)

Continuing with the chain rule we obtain:

∂Φ

∂ξel
(2)

∂ξel
(2)

∂ξ(2)

· dξ(2)

dt
+

∂Φ

∂ξel
(2)

∂ξel
(2)

∂ξsl
(2)

· dξsl
(2)

dt
=

∂Φ

∂ξel
(2)

·
(

dξ(2)

dt
− dξsl

(2)

dt

)
= 0.

(8.107)
From the last equation, we can obtain the following condition

dξsl
(2)

dt
=

dξ(2)

dt
. (8.108)

Then the sliding displacement update vector ξsl
(2) can be defined in the

direction of the last converged full displacement vector ξ(2). For the
computation of the nonlinear case this direction can be approximately
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taken as

e =
ξ(2) − ξ(1)

|ξ(2) − ξ(1)|
(8.109)

leading to the sliding displacement

ξsl
(2) = λe. (8.110)

Parameter λ defining the length of the vector is obtained from the Kuhn-
Tucker condition for the function Φ(2) in eqn. (8.104). This leads to the
following algebraic equation:

λ2
(
B(2)e · F(2)B(2)e

)
− 2λ

(
B(2)e · F(2)T(2)

)
+

+T(2) · F(2)T(2) − N2 = 0, (8.111)

where the positive root λ > 0, minimizing globally the function in
eqn. (8.87), should be taken.

8.4.5 Computational aspects for further implementation
considering nonlinear and constant tensors

For the further implementations we consider the following cases: a) with
nonlinear tensors for large displacement problems; b) with constant ten-
sors, i.e. the case of constant orthotropy.

8.4.5.1 A case with nonlinear tensors for large displacement problems

Within the adjustment of the sliding force the strict execution of the back-
ward scheme in eqn. (8.85) leads to the necessity to store as history
variables in addition to ξel

(n) also updated sliding variables ξsl
(n) at load

step (n), which is computationally rather expensive. However, the nu-
merical experience from some cases even with non-constant B, e.g. for
polar orthotropy, shows that it may be mostly sufficient to use a sim-
plified scheme, which is identical with the backward scheme computed
with the updated matrix B(n+1) at load step (n + 1), namely, with the
following finite difference scheme:

Ttr
(n+1) = T(n) + B(n+1)(ξ(n+1) − ξ(n)), (8.112)
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where ξ(n) is a displacement vector from the converged load step (n).
For large displacement problems the elastic part ξel can be neglected
leading to the result that the update sliding vector ξsl

(n) is equal to the
displacement vector ξ(n) in the last converged load step. Computations
show that the scheme in eqn. (8.112) is robust and requires only T(n)

and ξ(n) as history variables.

8.4.5.2 A case with constant orthotropy

For the case with a constant tensor B, we can proceed recursively trans-
forming eqn. (8.85) similar to the isotropic case, see eqn. (8.13), and
obtain

Ttr
(n+1) = T(n) + BΔξel = ... = B(Δξ(n+1) − Δξsl), (8.113)

Δξ(n+1) = ξ(n+1) − ξ(0),

where ξ(0) is a center of the elliptical adhesion domain, for which a geo-
metrical interpretation is given later.

For the case with constant tensors the update algorithm in Sect. 8.4.4
leads to the exact definition of the sliding displacement as:

Δξsl = ξ − ξ(0) − |N | ξ − ξ(0)√
(ξ − ξ(0)) · BFB(ξ − ξ(0)),

(8.114)

where ξ is the full displacement vector after the converged load step. A
geometrical interpretation of this scheme is discussed in the next sec-
tion.

8.4.6 Geometrical interpretation of the solution process

A simple geometrical interpretation for the solution can be given for a
plane surface with constant orthotropy in the case of both, elastic stick-
ing and sliding behavior. Interpretations can be formulated in the trial
force space T tr

1 , T tr
2 and on the tangent plane ξ1, ξ2 where we assume

Cartesian metrics, i.e. aij = δij. In the trial force space the yield function
in eqn. (8.86) represents an ellipse due to the positivity of the friction
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tensor F:
Ttr · FTtr = N2. (8.115)

In order to obtain the interpretation on the tangent plane, the incremental
evolution equation (8.113) is used. Then, we also obtain an ellipse on
the tangent plane

BΔξ · FBΔξ = N2. (8.116)

In order to derive further characteristics, the symmetrical tensors F and
B are expressed via the spectral representation (8.41):

B = QαDBQT
α , F = QβDFQT

β , (8.117)

where Qα and Qβ are rotational matrices with corresponding angles α

and β, see eqn. (8.40), and DB, DF are diagonal matrices:

DB = −
[

ε1 0
0 ε2

]
, DF =

⎡
⎢⎣

1

μ2
1

0

0
1

μ2
2

⎤
⎥⎦ . (8.118)

Spectral representations leads to the canonical form of ellipses. Thus,
eqn. (8.115) becomes then

QT
βTtr ·

⎡
⎢⎣

1

μ2
1N

2
0

0
1

μ2
2N

2

⎤
⎥⎦QT

βTtr = 1, (8.119)

describing a central ellipse inclined with angle β in the force plane
T tr

1 , T tr
2 with the main axes μiN .

Eqn. (8.116) describes a domain with orthotropic elastic properties,
where the contact point S is attracted by the center (adhesion domain).
Its transformation according to the representation (8.117) and (8.118)
gives the following canonical equation:

(QαQαQ
T
β )TΔξ ·

⎡
⎢⎣

1

(μ1N/ε1)2
0

0
1

(μ2N/ε2)2

⎤
⎥⎦ (QαQαQ

T
β )TΔξ = 1,

(8.120)
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8.4 Statement via the principle of maximum dissipation

Δξ = ξ(n+1) − ξ(0)

describing an ellipse inclined by the matrix QαQαQ
T
β . The ellipse center

is shifted by the distance ξ(0) on the tangent plane ξ1, ξ2, see Fig. 8.5.
The lengths of the main axes of the ellipse are a resp. b = μiN/εi. The
inclination angle becomes φ = 2α−β, which is verified from the matrix:

QαQαQ
T
β =

[
cos(2α − β) − sin(2α − β)
sin(2α − β) cos(2α − β)

]
(8.121)
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lim
it d

omain

ε1
= 0

Figure 8.5: Allowable elastic region (adhesion domain).

In the numerical examples, we will also investigate a case with non-
linear orthotropy with ε1 = 0. In this limit case with lim a = ∞ the ellipse

degenerates into an infinite strip of width 2b = 2
μ2N

ε2
, see Fig. 8.5. The

properties inside the strip defined by eqn. (8.113) are elastic, but the
motion along the strip causes the corresponding elastic force to be zero
Ta = 0.

Thus, a geometrical interpretation of the solution is as follows. The
ellipse describes an elastic domain with orthotropic properties obtained
by the incremental evolution equation (8.113). The sticking condition is
fulfilled when a contact point S remains inside the ellipse. If a contact
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Figure 8.6: Update scheme. Particular case.

point S appears outside of the ellipse, then this point is sliding, i.e. the
acting force is computed via eqn. (8.99), see Fig. 8.5. Due to the condi-
tion Φ = 0 this point is on the boundary of the elliptic region, which leads
to a shifting of the ellipse in order to define the forces in the next load
step correctly. This shifting is originated by the sliding vector Δξsl which
leads to an update of the ellipse center and which is computed via the
update scheme in eqn. (8.114). The ellipse center is an attraction point
for the domain with anisotropic elastic central forces defined by the evo-
lution equation (8.113). As long as the contact point S is inside of the
adhesion domain, the sliding displacements as well as the sliding forces
have not to be computed. This is, the so-called, ”sticking zone”. Let k
be the number of the load step, when sliding is detected the first time,
i.e. the contact point has been moved outside the adhesion domain.
Then, the sliding displacement ξsl

(k) is computed via eqn. (8.114). Now,
the trial procedure in eqn. (8.113) is considered in the next load step
(k + 1). Since the trial procedure is a computation in the elastic region,
the sliding displacement ξsl

(k+1) is assumed to be zero.

Ttr
(k+1) = B(Δξ(k+1) − Δξsl

(k+1)) =

= B(ξ(k+1) − ξ(0) − ξsl
(k)) =

= B(ξ(k+1) − (ξ(0) + ξsl
(k))︸ ︷︷ ︸

ξ
c

(k)

). (8.122)

Vector ξc
(k) defines the update scheme for the sliding displacements and
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allows to describe the shift of the ellipse center. The incremental evo-
lution equation (8.113) is corrected then in accordance to this update
scheme as

Ttr
(n+1) = B(Δξ(n+1) − ξc

n),

with ξc
n = ξc

n−1 + ξsl
n = ... = ξ0 + ξc

k + ... + ξsl
n . (8.123)

Now a particular case is considered, when the orthotropy axes co-
incide with the Cartesian coordinate axes (i.e. Qα = Qβ = E) and a
contact point being at the position A during the load step (k) moved to
the position B during the load step (k + 1) along the ξ1 axis with the
distance Δξ, see Fig. 8.6. In this case, the trial force is obtained as
T tr

1 = −ε1Δξ, and the following sliding displacement Δξsl in eqn. (8.114)
becomes then

Δξsl = Δξ − |N | Δξμ1√
(Δξε1)2

=
T tr

1

ε1|T tr
1 |(−|T tr

1 | + μ1|N |). (8.124)

From Fig. 8.6 it becomes obvious that the sliding displacement Δξsl is
updating the position of the ellipse center O. The last result (8.124)
can already be found for the isotropic case in Wriggers and Krstulovic-
Opara [190] and [102]. In addition, the analogy between the geometrical
interpretations of friction and plasticity with kinematical hardening, as
described in Simo and Hughes [160] becomes obvious.

8.5 Conclusion

In this contribution a model for anisotropic surfaces including both
anisotropy for adhesion and anisotropy for friction domains has been
developed. The principle of maximum dissipation is applied to derive all
necessary parameters. The problem is formulated in a covariant form in
the surface coordinate system. Various types of anisotropy based either
on the spectral decomposition, or inherited from the arbitrary curvilinear
coordinate system are considered. As an example, the adhesion tensor
and the friction tensor are derived for the polar orthotropy on a plane
and the spiral orthotropy on a cylinder. A special attention is paid to the
geometrical interpretation of the solution process. The current consid-
eration is the necessary step for an iterative Newton type solution within
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the finite element method. The subsequent linearization procedure, de-
tails of the finite element implementation and numerical examples will
be considered in the second part.
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9

Covariant description of contact
interfaces considering anisotropy for
adhesion and friction: linearization,
finite element implementation and
numerical analysis of the model∗

Abstract
A covariant description for contact problems including anisotropy for
both adhesion and sliding domains is proposed. The principle of maxi-
mum dissipation is used to obtain a computational model in the case of
quasi-static motions. This second part is first focusing on the lineariza-
tion of the nonlinear equations necessary for the solution process. Then
the finite element implementation for various contact elements is devel-
oped. In addition, a mechanical interpretation via a rheological model
is discussed. Finally, different cases including curvilinear anisotropy on
arbitrary surfaces are considered. The numerical examples are chosen
to show the influence of the orthotropy type on the development of the
sticking-sliding zone as well as on the kinematical behavior of the con-
tact bodies.

Keywords
covariant description anisotropy contact adhesion Coulomb friction
linearization FE discretization geometrical isotropy

∗The chapter is published in [91]: A. Konyukhov, K. Schweizerhof Covariant description of con-
tact interfaces considering anisotropy for adhesion and friction. Part 2. Linearization, finite element
implementation and numerical analysis of the model, Computer Methods in Applied Mechanics and
Engineering, 196(3):289–303, 2006.

327



9. ANISOTROPIC ADHESION-FRICTION: IMPLEMENTATION

9.1 Introduction

In the first part of this contribution contact problems with surfaces pos-
sessing anisotropic structure have been formulated via the principle of
maximum dissipation in a continuous as well as in an incremental form.
The model includes both anisotropy for friction and anisotropy for ad-
hesion. An iterative solution, e.g. of a Newton’s type, is required for
the solution of the nonlinear contact problem. Thus, we consider in this
part the derivation of the necessary consistent tangent matrices for the
return-mapping scheme.

The finite implementation of an anisotropic friction law is briefly dis-
cussed in Montmitonnet and Hasquin [128] with an application to hot
rolling processes, and presented in details in Alart and Heege [4]. A
symbolic computation software has been exploited to derive the corre-
sponding tangent matrices in [4]. In the current publication, particular
attention is paid to the derivation of tangent matrices in a covariant form
allowing the straightforward implementation into a finite element code
even for arbitrary curved contact surfaces possessing anisotropic prop-
erties for both friction and adhesion.

A rheological model is discussed as a simple mechanical interpre-
tation of the continuous constitutive model. In addition details of finite
element implementations for various types of finite element approxima-
tions are presented. The set of numerical examples is chosen to show
the influence of the orthotropy type on the development of the sticking-
sliding zone as well as on the kinematical behavior of the contact bod-
ies. Thus, constant orthotropy is classified by the eigenvalue ratio of the
corresponding tensor defining the adhesion region. These cases are
thoroughly investigated by the development of the sticking-sliding zone.
It will be shown that a specific combination of both, orthotropy for ad-
hesion and orthotropy for friction, can lead to the so-called geometrical
isotropy, when the contact bodies show kinematically isotropic behavior.
Finally, it is demonstrated that various kinematical properties of arbitrar-
ily curved contact surfaces can be modeled by means of the adhesion
tensor.
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9.2 Consistent linearization for a Newton type solution

9.2 Consistent linearization for
a Newton type solution

The full contact integral can be split into parts for the normal and the
tangential directions:

δWc =

∫
s

Nδξ3ds︸ ︷︷ ︸
δWN

c

+

∫
s

Tjδξ
jds︸ ︷︷ ︸

δWT
c

, (9.1)

therefore, the linearization procedure for a Newton type solution will lead
to a normal part and to a tangential part of the tangent matrix. The
algorithmic aspects of the linearization include the following operations:

a) linearization of the convective variations, δξi, i = 1, 2, 3

b) linearization of contact traction N and tangential traction Ti taking
the return-mapping scheme properly into account.

In order to keep the information as brief as possible, we focus on the
specifications for the anisotropic part and refer to previous derivations
wherever possible. For the nomenclature we urge the reader to check
the first part of the contribution [90].

9.2.1 Linearization of the variations δξi

Since the spatial coordinate system is chosen according to the surface
geometry, the variational expressions are linearized separately for the
tangential variations δξi, i = 1, 2 and for the normal variation δξ3. For
details we refer to the derivations already given in [86], [89].

9.2.1.1 Linearization of the normal variation δξ3

d

dt
δξ3 = − (

δρ,j · aij(n ⊗ ρi)(vs − v) + (δrs − δρ) · aij(ρj ⊗ n)vi

)
−(δrs − δρ) · hij(ρi ⊗ ρj)(vs − v) . (9.2)
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9.2.1.2 Linearization of the tangential variations δξi, i = 1, 2

d

dt
δξi =

− (
(δrs − δρ) · ailajk ρk ⊗ ρl vj + δρj · aikajl ρk ⊗ ρl (vs − v)

)
+ (δrs − δρ) · hij

(
ρj ⊗ n + n ⊗ ρj

)
(vs − v)

+ hi
nξ̇

3δξn − Γi
kj ξ̇

jδξk. (9.3)

9.2.2 Linearization of the contact tractions

The derivative of the normal traction N is written as

Ṅ = −εN ξ̇3. (9.4)

For the linearization of the tangent traction of the reversible part, we re-
call the evolution equations from Part 1. For the linearization the tangent
traction T has to be considered in the covariant form

dT

dt
= B(vs − v), (9.5)

leading to the component form in the surface metrics as

∂Ti

∂t
+ ∇jTiξ̇

j = bij ξ̇
j, j = 1, 2, (9.6)

where the adhesion tensor B = bijρ
i ⊗ ρj is defined in the surface met-

rics.

Remark.
For a consistent linearization we adopt the assumption that all terms
describing the curvature properties of the master surface, i.e. including
the second derivatives with respect to convective coordinates, can be
neglected based on the numerical investigations in [86] and [89]. This
allows to reduce the size of various expressions considerably.
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9.2 Consistent linearization for a Newton type solution

9.2.3 Linearization of the normal part δWN
c

According to Remark 9.2.2 we write the result given in [86] without the
curvature term:

D(δWN
c ) =

∫
s

Ṅδξ3ds +

∫
s

N
d

dt
δξ3ds

= −
∫

s

εN (δrs − δρ) · (n ⊗ n)(vs − v)ds (9.7)

−
∫

s

εNξ3
(
δρ,j · aij(n ⊗ ρi)(vs − v) + (δrs − δρ) · aij(ρj ⊗ n)v,i

)
ds.

Here, for the first term (the main part) the evolution equation (9.4) to-
gether with the representation of δξ3 by the geometry of the surface is
used. For the second term (the rotational part) the regularization for
the normal traction together with the linearization of the variation δξ3 in
eqn. (9.2) is taken into account.

9.2.4 Linearization of the tangential part δW T
c

The tangential part of the contact integral δW T
c is considered taking into

account the anisotropic evolution equations and the return mapping al-
gorithm. The cases of sticking and sliding have to be treated separately.

9.2.4.1 The sticking case

Sticking is identified when the trial contact tractions T tr
i computed at load

step (n + 1) satisfy the conditions imposed by Coulomb’s law :

Φ :=
√

f ijT tr
j T tr

i − N < 0. (9.8)

In this case, the real tractions are identical to the trial ones Ti = T tr
i ,

therefore, the linearized traction terms are obtained from the evolution
equation in (9.6) directly. For the convective velocities δξi, the linearized
equations (9.3) can be used.

Dv(δW
T
c ) =

∫
s

(
dTi

dt
δξi + Ti

dδξi

dt

)
ds = (9.9)
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=

∫
s

(δrs − δρ) · B(vs − v)ds− (9.10a)

−
∫

s

Ti

(
(δrs − δρ) · ailajk ρk ⊗ ρl vj + δρ,j · aikajl ρk ⊗ ρl (vs − v)

)
ds, (9.10b)

or component-wise

=

∫
s

(δrs − δρ) · bijρi ⊗ ρj(vs − v)ds− (9.11a)

−
∫

s

Ti

(
(δrs − δρ) · ailajk ρk ⊗ ρl vj + δρ,j · aikajl ρk ⊗ ρl (vs − v)

)
ds. (9.11b)

The matrices included in this integral obviously preserve symmetry.

9.2.4.2 The sliding case

The sliding case is identified if the inequality in eqn. (9.8) is not satisfied.
Then the sliding force Tsl is derived from the principle of the maximum
dissipation (see Part 1) as

Tsl = − BFTtr

√
BFTtr · FBFTtr

|N | = −T̂|N |
Ψ

, (9.12)

or component-wise as

T sl
i = − bijf

jkT tr
k

bijblmf jkf ilfmnT tr
k T tr

n

(9.13)

In eqn. (9.12) an auxiliary force T̂ – allowing some reductions in the
following expressions – is introduced as

T̂ = BFTtr, (9.14)

or component-wise as

T̂i = bijf
jkT tr

k = bijflna
jlaknT tr

k = bj
if

k
j T tr

k . (9.15)
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and a function Ψ as

Ψ :=
√

BFTtr · FBFTtr =
√

T̂tr · FT̂tr. (9.16)

The derivative of the sliding force Tsl is computed according to the chain
rule as:

dTsl

dt
=

d

dt

(
−T̂|N |

Ψ

)
= −

(
d|N |
dt

T̂

Ψ
+

|N |
Ψ

dT̂

dt
− |N |T̂

Ψ2

∂Ψ

∂T̂
· dT̂

dt

)

= −
(

d|N |
dt

T̂

Ψ
+

|N |
Ψ

[
dT̂

dt
− T̂

FT̂

Ψ2
· dT̂

dt

])
(9.17)

The evolution equation (9.4) for the normal traction is used for the lin-
earization of |N |. The auxiliary force T̂ defined in eqn. (9.14) is lin-
earized according to the chain rule

dT̂

dt
=

∂T̂

∂Ttr

dTtr

dt
= BFB(vs − v), (9.18)

where for the linearization of the trial traction Ttr the evolution equation
(9.5) is used directly. It is an interesting fact that due to the tensor repre-
sentation the linearization is valid even in the case of arbitrarily varying
surface tensors B and F. Eqn. (9.17) is then transformed into

dTsl

dt
= εN ξ̇3 T̂

Ψ
− |N |

[
BFB

Ψ
− T̂ ⊗ (BFB)TFT̂

Ψ3

]
(vs − v). (9.19)

Eqn. (9.19) is used for the further linearization. After some trans-
formations the following expression in components is obtained for the
tangential part of the contact integral

Dv(δW
T
c ) =

∫
s

(
dTi

dt
δξi + Ti

dδξi

dt

)
ds = (9.20)

in tensor form denoted by (..._t)

=

∫
s

(
(δrs − δρ) · εN T̂ ⊗ n

Ψ
(vs − v)

)
ds (9.21a)
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−
∫

s

(
(δrs − δρ) · |N | BFB

Ψ
(vs − v)

)
ds (9.21b)

+

∫
s

(
(δrs − δρ) · |N | T̂ ⊗ (BFB)TFT̂

Ψ3
(vs − v)

)
ds (9.21c)

−
∫

s

T sl
i

[
(δrs − δρ) · ailajk ρk ⊗ ρl vj + δρ,j · aikajl ρk ⊗ ρl (vs − v)

]
ds., (9.21d)

or component-wise denoted by (..._c)

=

∫
s

(
(δrs − δρ) · εN T̂ia

ij

Ψ
ρj ⊗ n(vs − v)

)
ds (9.22a)

−
∫

s

(
(δrs − δρ) · |N | bk

i f
i
jb

jl

Ψ
ρk ⊗ ρl(vs − v)

)
ds (9.22b)

+

∫
s

(
(δrs − δρ) · |N | bi

jf
j
mbmlf q

i T̂qT̂na
nk

Ψ3
ρk ⊗ ρl(vs − v)

)
ds (9.22c)

−
∫

s

T sl
i

[
(δrs − δρ) · ailajk ρk ⊗ ρl vj + δρ,j · aikajl ρk ⊗ ρl (vs − v)

]
ds. (9.22d)

Here, the components of the sliding force T sl
i are computed

via eqn. (9.13), and the components of the auxiliary vector T̂i via
eqn. (9.15). It becomes obvious, that anisotropy leads to the loss of
symmetry of part (9.21c) and (9.22c), by looking at the non-diagonal
components of T̂ ⊗AT̂, where

A = (BFB)TF (9.23)

then we have

C = T̂ ⊗AT̂ =⇒
{

c12 = T̂1A
1
2T̂1 + T̂1A

2
2T̂2

c21 = T̂2A
1
1T̂1 + T̂2A

2
1T̂2

. (9.24)

Symmetry in eqn. (9.24) is recovered only in the isotropic case, i.e. if
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Ai
j = δi

j. In the case of isotropy we have f i
j =

δi
j

μ2
and bi

j = −εTδi
j leading

to Ψ =
‖T‖
μ3

and T̂ = −εT

μ2
T tr.

Summarizing we obtain, that the tangent matrix in eqn. (9.20) con-
sists of the standard constitutive non-symmetric part (9.21a), a con-
stitutive symmetric part (9.21b), and a constitutive non-symmetric part
(9.21c), which is symmetric only in the isotropic case, and, finally, the
standard symmetric rotational part (9.21d).

Remark.
The component-wise formulas in eqns. (9.22a, 9.22b, 9.22c, 9.22d)
show the possible representations of the corresponding tensor formulas
in eqns. (9.21a, 9.21b, 9.21c, 9.21d). It obvious that variations within
the sequence of covariant and contravariant components are possible.

9.3 Finite element implementation

In this section we will discuss details of the finite element implementa-
tion and necessary definitions for the proposed model. In particular, the
anisotropic structure has to be defined on the whole contact surface.
This leads to additional difficulties concerning a unique description for
the whole surface and not only an approximation for the corresponding
contact elements. Therefore, we start with the simplest contact element
defining contact with an anisotropic rigid surface a so-called a point-to-
analytical surface contact element. For this a node of a FE-mesh as
well as an integration point of an element can be taken as the contact
point. In this case, the contact point itself can be seen as containing his-
tory variables. If the anisotropic surface is deformable then the node-to-
segment strategy has to be applied. In this case the contact segments
store the history variables of passing nodes. As a more general case,
the re-parameterization of the complete contact surface in the case of
contact of two deformable bodies is discussed.
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9.3.1 Point-to-analytical surface contact element.
Linear surface approximation of a deformable body

The contact of a body meshed with bilinear finite elements – and thus
bilinear contact surface elements – with a rigid anisotropic surface is
one of the simplest cases to define a contact element. In this case,
a node of the FE meshed surface is taken as a contact point, while all
necessary anisotropic tensors are defined on the rigid surface which can
geometrically be described by analytical functions. The corresponding
geometrical characteristics as normal vector n and tangent vector ρi

are then directly given by the analytical surface description. All integrals
for the tangent matrix as well as for the residuum are defined for one
nodal point. Since the anisotropic surface is rigid, all rotational parts
can be set to zero. Thus, we obtain the following matrices for the contact
contributions.

9.3.1.1 Matrix for the normal part

KN = −εNn ⊗ n. (9.25)

9.3.1.2 Matrix for the tangential part. Sticking case

Kstick
T = bijρi ⊗ ρj. (9.26)

9.3.1.3 Matrix for the tangential part. Sliding case

Kslide
T =

εN T̂ia
ij

Ψ
ρj ⊗ n − bj

if
n
j bl

na
ik|N |

Ψ
ρk ⊗ ρl (9.27)

+
f q

i b
i
jf

j
mbmlT̂qT̂na

nk|N |
Ψ3

ρk ⊗ ρl.

All matrices contain only constitutive parts and belong to the cor-
responding nodes. The contact node then owns also the necessary
history variables from the previous converged step (n): convective co-
ordinates ξ1

(n), ξ
2
(n) and tangential contact forces T

(n)
1 , T

(n)
2 .
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9.3.2 Point-to-analytical surface contact element. Arbitrary sur-
face approximation of the deformable body

If a body is meshed with finite elements of higher order of approximation
for the surface – leading to a contact element of the same high order –
then an integration point of the FE surface elements has to be taken as a
contact point. In this case, the vector rs describes the analytical surface
and the vector ρ is computed from the finite element mesh. Algorithmic
aspects of contact problems with a surface described by analytical func-
tions are discussed in [57]. The algorithmic discretization of the tangent
matrix, presented in Sect. 9.2.2, is obtained as follows. Let ue be the
nodal displacement vector taken from the finite element discretization
as

uT
e = {u(1)

1 , u
(1)
2 , u

(1)
3 , u

(2)
1 , u

(2)
2 , u

(2)
3 , ..., u

(n)
1 , u

(n)
2 , u

(n)
3 }T , (9.28)

where (n) is a number of nodal points of the contact surface element.
Assuming that the approximation is performed with (n) shape functions,
only a single position matrix A is necessary for discretization of all con-
tact contributions.

A =

⎡
⎣ N1 0 0 N2 0 0 ... ... ... N(n) 0 0

0 N1 0 0 N2 0 ... ... ... 0 N(n) 0

0 0 N1 0 0 N2 ... ... ... 0 0 N(n)

⎤
⎦ . (9.29)

The contact matrix for the normal part in eqn. (9.7) is then obtained as:

KN = −
∫

s

εNATn ⊗ nAds = (9.30)

= −
Np∑

I,J=1

(
εNATn ⊗ nAWIWJ detJ(ξ1

I , ξ2
J)

)
,

where NP is the number of integration points and WI, I = 1, 2, ..., NP

are weights of the chosen quadrature formula. The determinant of the
Jacobian detJ(ξ1

I , ξ
2
J) is computed for the surface segment – the contact

segment – of the body. For each integration point a set of history vari-
ables from the previous converged step (n) must be stored: convective
coordinates ξ1

(n), ξ
2
(n) and tangential contact forces T

(n)
1 , T

(n)
2 . The tangent
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matrices for the tangential part as defined in Sect. 9.2.4.1 and 9.2.4.2
can be derived in similar fashion.

Remark.
For this specific case all geometrical characteristics such as normal vec-
tor n, tangent vector ρi as well as the anisotropic tensors are taken from
the rigid surface which is defined by analytical functions.

9.3.3 Node-to-segment approach.
Deformable anisotropic contact surface

If a deformable body has a surface with anisotropic properties, then
the node-to-segment approach can be applied. In this case, the corre-
sponding contact segments covering the anisotropic surface are taken
as master segments. A nodal displacement vector contains then an ad-
ditional (n + 1) slave node besides the first (n) nodes from the master
segment:

uT
e = {u(1)

1 , u
(1)
2 , u

(1)
3 , ..., u

(n)
1 , u

(n)
2 , u

(n)
3 , u

(n+1)
1 , u

(n+1)
2 , u

(n+1)
3 }T . (9.31)

The position matrix A is modified as

A =

[
N1 0 0 N2 0 0 ... N(n) 0 0 N(n+1) 0 0
0 N1 0 0 N2 0 ... 0 N(n) 0 0 N(n+1) 0
0 0 N1 0 0 N2 ... 0 0 N(n) 0 0 N(n+1)

]
.

(9.32)
The components of the tangent matrices (normal and tangent vectors
etc.) are computed in the projection point of the master segment. The
structure is again algorithmic, e.g. a part for the normal contact has the
form:

KN = −
∫

s

εNATn ⊗ nAds = (9.33)

= −εNATn ⊗ nA.

Here, the segment contains the aforementioned history variables.

338



9.3 Finite element implementation

9.3.3.1 Mapping of anisotropic properties from the surface to
a contact segment

It is expected, that the anisotropic properties are defined for the com-
plete surface, not only for a segment. Thus, the main problem is, how to
properly transfer the anisotropic properties from the surface to the con-
tact segment. In the case of a simple curvilinear rectangular patch this
can be organized as follows. Let s1, s2 are convective coordinates defin-
ing the parameterization of the patch, see Fig. 9.1, with 0 ≤ s1, s2 ≤ 1.
The anisotropic properties are determined then via the tensor basis
e1(s

1, s2) ⊗ e2(s
1, s2). The regular numbering i = 1, ..., m and j = 1, ..., n

is introduced according to the mapped mesh on the patch, see Fig. 9.2.
Therefore, a direct mapping of the convective coordinate on the element
ξ1 can be defined as

ξ1 = −1 −→ s1 =
j − 1

n

ξ1 = 1 −→ s1 =
j

n

⎫⎪⎬
⎪⎭ =⇒ s1 =

2j − 1 + ξ1

2n
. (9.34)

According to the introduced direct transformation, the backward trans-

s
s

1
2

e
e

1

2

2

1

r

r

Figure 9.1: Curvilinear rectangular patch.
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Figure 9.2: Curvilinear rectangular patch. Mapping scheme.

formation is defined according to the following algorithm:

do j = 1, n

if
j − 1

n
≤ s1 ≤ j

n
then k = j

ξ1 = 2ns1 − 2k + 1

endif

enddo

(9.35)

The second coordinate s2 is analogously computed.

9.4 Numerical examples

In this section we present numerical examples illustrating several types
of the orthotropy. As known, the orthotropic frictional properties of the
surface leads to changing of kinematical behavior of the contact bodies,
see [22], [24], [68], [82], [212], [213], [214], [203], therefore, the set of
numerical examples is chosen to illustrate particular kinematical effects
which appear due to presence of anisotropy for adhesion and friction.
In the first example we chose constant orthotropy on a plane repre-
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sented by a tensor with spectral decomposition. This model possesses
a simple mechanical interpretation a so-called rheological model. Con-
stant orthotropy is thoroughly investigated for the case with small dis-
placements in order to show the development and the distribution of the
sticking-sliding zone for different types of orthotropy. These cases are
considered for the start of sliding as well as for large sliding deforma-
tions in order to consider the trajectories of a block for different types of
orthotropy. Then a large displacement problem for a plane with polar or-
thotropy is taken as an example for curvilinear orthotropy on the plane.
In order to show the robustness of the developed approach for curvilin-
ear surfaces, kinematical effects of a bolt connection are modeled with
spiral orthotropy defined on a cylinder.

9.4.1 Rheological model of the orthotropic
adhesion-friction problem

As is well known [160], the return-mapping scheme used for the model
of elasto-plasticity can be interpreted via a one-dimensional spring-
sliding system. A generalization of this model into 2D anisotropy is
a point on the plane with a two spring-two slider system with different
properties: ε1, ε2 as stiffnesses of the springs and μ1, μ2 as coefficients
of friction for the sliding devices, see Fig. 9.3. A constant force F is
applied to the point at an angle γ. It becomes obvious, that after trans-
formation of the coordinate system in such a way that e.g. the X-axis
coincides with the direction a force F, the problem exactly corresponds
to the constant orthotropy on the plane. The latter is given by a tensor
with the spectral decomposition in the case of coinciding orthotropy an-
gles for adhesion α and for friction β, see Part 1. The trajectory of the
point is then a straight line inclined with an angle ϕ, the value of which
depends on the ratio of the eigenvalues defining the adhesion ellipse,
see the geometrical interpretation in Part 1:

rλ =
λ1

λ2
=

ε1

μ1
· μ2

ε2
(9.36)

In forthcoming computations, we will show, that it is possible to represent
geometrically isotropic behavior, in such a way that the trajectory of the
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Figure 9.3: Mechanical interpretation of orthotropic friction – orthotropic adhesion
model. A material point on a plane with two spring-slider systems driven by a tan-
gential force.

point is coinciding with the direction of the force F, though the properties
of this contact surface remain orthotropic.

9.4.2 Linear constant orthotropy on the plane

In order to investigate the properties of the proposed model, a rectan-
gular block is considered on an orthotropic plane. The dimensions of
the block are 10× 10× 4 with linear elastic properties: Young’s modulus
E = 2.10 · 104 and Poisson ratio ν = 0.3, assumed within a consistent di-
mension system. The block (see Fig. 9.4) is located on the XOY plane
and loaded by prescribing displacements on the upper surface in two
steps: 1) vertical loading with w = 1.0 · 10−2, 2) incremental loading with
Δu along the X axis. Contact with regard to the constant orthotropic
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model with the adhesion tensor

B = [bi
j] = −

[
ε1 cos2 α + ε2 sin2 α (ε1 − ε2) sinα cosα
(ε1 − ε2) sinα cos α ε1 sin2 α + ε2 cos2 α

]
, (9.37)

and the friction tensor

F = [f i
k] =

⎡
⎢⎢⎢⎢⎣

1

μ2
1

cos2 β +
1

μ2
2

sin2 β (
1

μ2
1

− 1

μ2
2

) sinβ cos β

(
1

μ2
1

− 1

μ2
2

) sinβ cos β
1

μ2
1

sin2 β +
1

μ2
2

cos2 β

⎤
⎥⎥⎥⎥⎦ (9.38)

is specified between the plane and the block. To compare both ap-
proaches contact is modeled with a point-to-analytical surface contact
element as well as with a node-to-segment approach. The rigid plane
is taken as master segment within the latter approach. As an example
coincident orthotropy angles α = β are chosen. First, we will investigate
the development of a sticking-sliding zone for small displacements for
various cases of the ratio rλ, see eqn. (9.36). Afterwards, we will con-
sider the large displacement problem and investigate the trajectories of
the block depending on the surface properties.

9.4.2.1 Small displacement problem.
Development of the sticking-sliding zone

In order to investigate the development of the sticking-sliding zone small
displacement increments with Δu = 1.0 · 10−4 along the X axis are ap-
plied. The following cases are considered:

1. Isotropic case; both, the friction and the adhesion tensors are
isotropic with: penalty parameter for the normal traction εN =

2.1 · 105, parameters of the adhesion tensor ε1 = ε2 = 2.1 · 105,
parameters of the friction tensor μ1 = μ2 = 0.3. Orthotropy angles:
α = β = 0o.

2. Geometrically isotropic case with: penalty parameter for the normal
traction εN = 2.1 · 105, parameters of the adhesion tensor ε1 =

3.0 · 105, ε2 = 2.0 · 105, parameters of the friction tensor μ1 = 0.3,
μ2 = 0.2. Orthotropy angles: α = β = 45o. This case leads to
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Figure 9.4: Geometry and loading of the rectangular in plane block.

the ratio of eigenvalues eqn. (9.36) rλ = 1 and, thus, to a circular
adhesion region.

3. Orthotropic case; orthotropic adhesion, isotropic friction with:
penalty parameter for the normal traction εN = 2.1 · 105, parame-
ters of the adhesion tensor ε1 = 2.0 · 105, ε2 = 3.0 · 105, parameters
of the friction tensor μ1 = μ2 = 0.3. Orthotropy angles: α = β = 45o.
The eigenvalue ratio is then rλ = 2/3.

4. Orthotropic case; isotropic adhesion, orthotropic friction with:
penalty parameter for the normal traction εN = 2.1 · 105, parame-
ters of the adhesion tensor ε1 = ε2 = 2.1 · 105, parameters of the
friction tensor μ1 = 0.3, μ2 = 0.2. Orthotropy angles: α = β = 45o.
The eigenvalue ratio is then rλ = 2/3.

Isotropic case (1). The results are depicted in the diagram in Fig-
ure 9.6 showing the developed sticking area (in grey color) for the ap-
plied horizontal displacements on the lower contact surface in several
states from the top view. This area is identified by sticking nodes on the
lower contact surface; these nodes are inside the adhesion ellipse. For
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Figure 9.5: Numbering of nodes on the lower surface and direction ϕ of the develop-
ment of a sliding zone.

the results of the investigations we use the node numbering and the in-
clination angle ϕ for the block as given in Fig. 9.5. One can observe that
the edge nodes are sliding from the beginning, i.e. when only vertical
loading is applied. This effect is due to the singularity of stresses on the
edges known from the analytical solution for a rigid punch problem, see
e.g. Johnson [77]. The symmetrical sticking region is vanishing and the
block begins to slide fully, once the applied horizontal displacements are
beyond the value u = 10.0 · 10−3.

It is also interesting, especially for the forthcoming orthotropic cases,
to observe the beginning of full sliding. Both the initial configuration and
the scaled deformed configuration from the bottom view are depicted in
Fig. 9.7 for loading u = 9.0 · 10−3 (the block begins to slide partially) as
well as for loading u = 20.0 · 10−3 (fully developed sliding of the block).
The deformation is symmetric as the horizontal axis and the current
horizontal symmetry axis are moving along the reference axis.

Geometrically isotropic case (2). The results are depicted in the
diagrams in Figure 9.8 showing the development of the sticking area. It
is interesting to observe that the initial sticking area u = 0.0 in this case
is symmetric along the main orthotropy axes which are turned according
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to the references coordinate system by the angles α = β = 45o.

We recall the geometrical interpretation to explain this phenomena.
The adhesion region becomes a circle in this particular example, see
Fig. 9.10. The elastic properties inside the circle are orthotropic accord-
ing to the computation of the trial force as Ttr = BΔx with the adhesion
tensor computed with α = 45o, see eqn. (9.37):

B = [bi
j] = −1

2

[
ε1 + ε2 ε1 − ε2

ε1 − ε2 ε1 + ε2

]
= −105

2

[
5 1

1 5

]
. (9.39)

Since, in the current example the stiffness in the second direction is less
then in the first one ε2 < ε1, all points Ael tend to reach the boundary of
the adhesion circle in the direction of the ξ2-axis. This can explain the
asymmetric behavior of the initial sticking area in Fig. 9.8 (a). The direc-
tion of the sliding force Tsl, which is starting to act from the boundary of
the circle, is defined by the matrix BFB, see eqn. (9.12), which in the
current example becomes:

BFB =
1

2

⎡
⎢⎢⎢⎣

ε2
1

μ2
1

+
ε2
2

μ2
2

ε2
1

μ2
1

− ε2
2

μ2
2

ε2
1

μ2
1

− ε2
2

μ2
2

ε2
1

μ2
1

+
ε2
2

μ2
2

⎤
⎥⎥⎥⎦ =

[
106 0

0 106

]
. (9.40)

This recovered isotropic behavior of the sliding force Tsl is depicted in
Fig. 9.10. This effect is depicted for the developed sliding in Fig. 9.9,
where the horizontal axis of symmetry of the deformed body is moving
along the reference axis.

For completeness, we would like to present the results showing the
convergence of the sticking zone with regard to: 1) adhesion param-
eters; 2) mesh density. Thus, Fig. 9.11 represents the comparison
of the initial sticking zones computed first for the set of parameters
εN = 2.1 · 103, ε1 = 3.0 · 103, ε2 = 2.0 · 103, then for the same set,
but instead of 103 scaled sequentially by the factors 104, 105 and 106. For
the latter computation the vertical loading has been provided in 10 load
steps. The results serve also to show the convergence of the results
with increasing penalty parameters.
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The influence of the mesh density on the sticking zone for the case of
parameters εN = 2.1·105, ε1 = 3.0·105, ε2 = 2.0·105 is shown in Fig. 9.12.
The uniform mesh was varied as 10 × 10 × 4, 16 × 16 × 6, 20 × 20 × 8
and 32 × 32 × 8 respectively, the third number always representing the
number of elements in thickness direction.

Orthotropic case (3). The results are depicted in the diagrams
in Fig. 9.13 showing the development of a closed sticking area. The
orthotropy of the adhesion region results in the sticking region being
turned by the angle 45o. The development of a sliding zone starts at the
upper right corner and continues unsymmetrically leading further to a
parallel shifting of the block and a straight trajectory inclined at an angle
ϕ (see definition at Fig. 9.5) in the case of large displacements. This
effect is depicted in Fig. 9.14, a bottom view.

(a) u = 0.0 (b) u = 1.0 (c) u = 2.0 (d) u = 3.0 (e) u = 4.0

(f) u = 5.0 (g) u = 6.0 (h) u = 7.0 (i) u = 8.0 (j) u = 9.0

Figure 9.6: Isotropic case (1). Development (degeneration) of sticking zone for sev-
eral displacement states. Horizontally applied displacement u pointing into the right
direction (u is scaled by 10−3).
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Figure 9.7: Isotropic case (1). Deformed and initial configuration. Bottom view. Dis-
placements scaled by factor 150. Applied horizontal displacements on the upper sur-
face: (a) u = 9.0 · 10−3 (start of sliding); (b) u = 20.0 · 10−3 (fully developed sliding).

(a) u = 0.0 (b) u = 1.0 (c) u = 2.0 (d) u = 3.0 (e) u = 4.0

(f) u = 5.0 (g) u = 6.0 (h) u = 7.0 (i) u = 8.0 (j) u = 9.0

Figure 9.8: Geometrically isotropic case (2). Development of the sticking zone for
various displacement states. Horizontally applied displacement u pointing into the
right direction (u is scaled by 10−3).
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Figure 9.9: Geometrically isotropic case (2). Deformed and initial configuration. Bot-
tom view. Displacements scaled by factor 150. Applied horizontal displacements on
the upper surface: (a) u = 9.0 ·10−3 (start of sliding); (b) u = 20.0 ·10−3 (fully developed
sliding).
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Figure 9.10: Adhesion region and direction of an elastic trial force and a sliding force
for specially chosen parameters leading to the geometrically isotropic case (2). ε1 < ε2,
α = 45o.
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(a) 103 (b) 104 (c) 105 (d) 106

Figure 9.11: Geometrically isotropic case (2). Initial sticking zone. Variation of penalty
and adhesion tensor parameters. (a) scale factor 103, one load step. (b) scale factor
104, one load step. (c) scale factor 105, one load step. (d) scale factor 106, 10 load
steps.

(a) 10 × 10 (b) 16 × 16 (c) 20 × 20 (d) 32 × 32

Figure 9.12: Geometrically isotropic case (2). Initial sticking zone. Variation of mesh
density. (a) 10 × 10 elements in plane. (b) 16 × 16 elements in plane. (c) 20 × 20
elements in plane. (d) 32 × 32 elements in plane.

(a) u = 0.0 (b) u = 1.0 (c) u = 2.0 (d) u = 3.0 (e) u = 4.0

(f) u = 5.0 (g) u = 6.0 (h) u = 7.0 (i) u = 8.0 (j) u = 9.0

Figure 9.13: Orthotropic case (3). Development (degeneration) of sticking zone for
several displacement states. Horizontally applied displacement u pointing into the
right direction (u is scaled by 10−3).
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Figure 9.14: Orthotropic case (3). Deformed and undeformed configuration. Bottom
view. Displacements scaled by factor 150. Applied horizontal displacements on the
upper surface: (a) u = 9.0 · 10−3 (start of sliding); (b) u = 20.0 · 10−3 (fully developed
sliding).

(a) u = 0.0 (b) u = 1.0 (c) u = 2.0 (d) u = 3.0 (e) u = 4.0

(f) u = 5.0 (g) u = 6.0 (h) u = 7.0 (i) u = 8.0 (j) u = 9.0

Figure 9.15: Orthotropic case(4). Development (degeneration) of sticking zone for
several displacement states. Horizontally applied displacement u pointing into the
right direction (u is scaled by 10−3).
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Figure 9.16: Orthotropic case (4). Deformed and undeformed configuration. Bottom
view. Displacements scaled by factor 150. Applied horizontal displacements on the
upper surface: (a) u = 9.0 · 10−3 (start of sliding); (b) u = 20.0 · 10−3 (fully developed
sliding).

Orthotropic case (4). The results are depicted in the diagrams in
Fig. 9.15 showing the development of a closed sticking area. Now,
isotropy for the adhesion region together with a small difference be-
tween the friction coefficients results in the obtained symmetric region.
As known, large differences between the coefficients lead to an unsym-
metrical region, see e.g. the results for the classical orthotropic friction
model in [68]. The sticking region is diminishing unsymmetrically result-
ing globally in a shifting of the block, see Fig. 9.16.

9.4.2.2 Large displacement problem. Investigation on influence of adhesion
parameters on the trajectory of the block

The goal of this analysis is to show that with properly chosen parameters
for the adhesion tensor it is possible to achieve a predefined motion on
the surface. Namely, if the surface is uniformly orthotropic with a given
orthotropy angle α then it is possible to prescribe a straight trajectory of
the block with an angle ϕ ≈ α, see Fig. 9.5, keeping the driving force
at a certain level. Moreover, it is possible to obtain even the geometri-
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cally isotropic case, when a trajectory is a straight line coinciding with
the direction of the force, though the friction tensor remains orthotropic
leading to different global forces in the different global directions.

In the numerical examples the penalty parameter for the normal trac-
tion is kept to εN = 2.1 · 104 for all cases; the orthotropy angles are given
as α = β = 45o. The horizontal incremental displacements are taken
as Δu = 5.0 · 10−2 in order to reach a sliding state of the block from the
beginning. The other parameters are varied to achieve different cases
as presented in Table 9.1.

Case Adhesion tensor Friction tensor Eigenvalue ratio Resulting angle ϕ

1 ε1 = 3.0 · 103

ε2 = 0.0 μ1 = μ2 = 0.3 ∞ −44.95o

2 ε1 = 3.0 · 103

ε2 = 2.0 · 103 μ1 = μ2 = 0.3 3/2 −21.01o

3 ε1 = 3.0 · 103

ε2 = 2.0 · 103
μ1 = 0.3
μ2 = 0.2

1 0o

geom. isotropy

4 ε1 = 2.0 · 103

ε2 = 3.0 · 103 μ1 = μ2 = 0.3 2/3 21.01o

5 ε1 = 0.0
ε2 = 3.0 · 103 μ1 = μ2 = 0.3 0 44.95o

Table 9.1: Sliding of a block on a plane. Large displacement problem. Variation of
orthotropy. Computed inclination angle of a sliding block ϕ.

The trajectories of the block for all cases are depicted in Fig. 9.17.
It becomes obvious that the block tends to move into the direction of
the eigenvector with smaller eigenvalue λ. E.g. if rλ = ε1/ε2 = 0, then
the trajectory is inclined at the angle of orthotropy ϕ ≈ α = 45o and
vice versa if rλ = ε1/ε2 = ∞, i.e. ε2 = 0, then the block is inclined
at angle ϕ ≈ −45o. The other parameter variations lead to different
trajectories with angles −45o < ϕ < 45o. As a particular example, the
geometrically isotropic case is recovered for the ratio rλ = 1 leading to a
circular adhesion region. In this particular case the block is moving into
the direction of the applied force.

9.4.3 Polar orthotropy on a plane. Large displacement problem

A more complex orthotropy is given by a polar orthotropy on a plane,
see Part 1. As in the previous example, we will show that it is possible to
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Figure 9.17: Trajectories of the block and inclination angle ϕ for various cases of or-
thotropy with the eigenvalue ratios: rλ = ∞ =⇒ ϕ = −44.95o; rλ = 3/2 =⇒ ϕ =
−21.01o; rλ = 1.0 =⇒ ϕ = 0.00o; rλ = 2/3 =⇒ ϕ = 21.01o; rλ = 0.0 =⇒ ϕ = 44.95o.

define the orthotropic structure of a plane by using the adhesion tensor.
An elastic block with dimensions 1 × 1 × 0.25 and mesh 4 × 4 × 1 is
sitting on a rigid block, see Fig. 9.18. Linear elastic material is assumed
within a consistent dimension system: Young’s modulus E = 2.10 · 104;
Poisson ratio ν = 0.3. The loading is applied sequentially by prescribing
displacements on the upper surface in (1 + n) steps: 1) vertical loading
with w = 1.0 · 10−2, 2) n steps with horizontal displacement increments
Δu = 1.0 · 10−2 along the X axis. The structure of the adhesion tensor
is as follows, see the derivation in Part 1:

B = − 1

x2 + y2

[
εrx

2 + εϕy2 (εr − εϕ)xy
(εr − εϕ)xy εry

2 + εϕx2

]
. (9.41)
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The chosen contact surface parameters are: penalty parameter for the
normal traction εN = 2.1 · 105; isotropic friction tensor with μ1 = μ2 = 0.2.
Adhesion tensor with cases: a) εr = 100, εϕ = 1000, b) εr = 2000,
εϕ = 5000, c) εr = 1000, εϕ = 1000, d) εr = 5000, εϕ = 2000, e) εr = 1000,
εϕ = 100, f) εr = 1000, εϕ = 0.0.

Figure 9.18: Geometry and loading for the case of polar orthotropy.

In Fig. 9.19 the sequence of the motions for all cases leading to dif-
ferent ratios rε = εϕ/εr is depicted. It is obvious, that the desired circular
motion can be achieved by prescribing the corresponding eigenvalue to
a small value, e.g. rε = 0.0 in the current example. The last result can
be derived also analytically from the analysis of global motion of a block,
see proof in Appendix.

Remark.
The trajectory of the block depends on the ratio λϕ/λr. However, the
numerical computations show that it is possible to prescribe the desired
trajectory by only controlling the adhesion tensor parameters. Attempts
to achieve the desired trajectory controlling the friction tensor param-
eters, e.g. taking μr ≈ 0 for the case (f), lead to disconvergence. A
straightforward conclusion is that the geometrical structure of the sur-
face in the sense of the desired trajectory can be defined via the ad-
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(a) rε = 10/1 (b) rε = 5/2 (c) rε = 1/1

(d) rε = 2/5 (e) rε = 1/10 (f) rε = 0

Figure 9.19: Motion of the block in the case of polar orthotropy on the plane. Varying
adhesion tensor parameters: rε = εϕ/εr = 10/1, 5/2, 1, 2/5, 1/10, 0; isotropic friction
tensor parameters: μ1 = μ2 = 0.2. Loading by prescribed vertical displacement w and
incremental y-displacement Δu.

hesion tensor, while other mechanical characteristics such as the mea-
sured global forces are defined via the friction tensor.

9.4.4 Spiral orthotropy on the cylinder

Another rather complex kinematical behavior of a curved contact sur-
face, e.g. a machined surface of a bolt can be described by means
of controlling the adhesion tensor parameters. The model of spiral or-
thotropy on the cylinder developed in Part 1 allows to describe the kine-
matical behavior of a bolt connection with a rather coarse mesh. In
order to show this, we consider a finite element model of the bolt, see
Fig. 9.20.

The bolt is modeled with linear finite elements with elastic properties:
E = 2.1 · 104, ν = 0.3. Contact is modeled with the point-to-analytical
surface contact element and specified on the cylindrical surface of the
bolt, i.e. each node on the bolt surface is a contact node. The important
dimensions of the example are the radius of a cylinder R = 3.0 and the
distance H between threads of a spiral line H = 3.3333. The central
axis is constrained to move along the OZ-axis and a rotation with an
angle increment Δϕ = 1o is applied to the head of the bolt. In order to
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Figure 9.20: Finite element model of a bolt connection. Outer surface is rigid and is
illustrated with one element only.

supply contact with a rigid external cylindrical surface an initial penetra-
tion is specified as 1.0 · 10−4 with a normal penalty parameter εN = 103.
The friction tensor is chosen to be isotropic with μ1 = μ2 = 0.01. The
adhesion tensor parameters ε1, ε2 are chosen according to the following
tensor representation (see derivation in Part 1)

B = bijρ
i ⊗ ρ

j = − 1

R2 +

(
H

2π

)2

⎡
⎢⎢⎣

gεR
2 (ε1 − ε2)

R2H

2π

(ε1 − ε2)
R2H

2π
ε1

(
H

2π

)2

+ ε2R
2

⎤
⎥⎥⎦ (9.42)

with gε = ε1R
2 + ε2

(
H

2π

)2

.

The adhesion tensor parameters are varying according to Table 9.2.
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Case Adhesion tensor Ratio rε Resulting distance h

1 ε1 = 0.0
ε2 = 10.0 0.0 1.000 H

2 ε1 = 5.0
ε2 = 10.0 1/2 0.742 H

3 ε1 = 7.5
ε2 = 10.0 3/4 0.430 H

4 ε1 = 10.0
ε2 = 10.0 1.0 0.000 H

geom. isotropy

5 ε1 = 10.0
ε2 = 5.0 2/1 −0.487 H

6 ε1 = 10.0
ε2 = 7.5 4/3 −2.758 H

7 ε1 = 10.0
ε2 = 0.0 ∞ −31.98 H = Ĥ

Table 9.2: Rotation of a bolt. Variation of parameters of the adhesion tensor. Resulting
distance of a longitudinal motion h after rotation of a bolt by 360o.

The results of the analyses are depicted in Fig. 9.21 showing the
computed longitudinal motion of the bolt along the OZ-axis vs. the ap-
plied rotation angle. The resulting distance of a longitudinal motion h

after the rotation of a bolt by 360o is also presented in Table 9.2. Case
(1) with ratio rε = 0 leads to a pure forward motion according to the mo-
tion along the main spiral line, see Part 1. The bolt moves forward at the
distance H while the bolt is rotating at the full angle 360o. The geomet-
rically isotropic case (4) does not lead to any longitudinal motion. For
ratios rε > 1 a backward motion is obtained. Finally, the case (7) with
ratio rε = ∞ (not shown in Fig. 9.21) leads to a motion along the orthog-

onal spiral, i.e. the bolt moves backwards at the distance Ĥ =
(2πR)2

H
,

see Remark 4 Sect. 3 in Part 1.
Remark.

This example is only chosen to illustrate the possibility to describe ma-
chined surface from a kinematical point of view. The applicability of the
proposed model to stress analysis of the bolt connection requires, cer-
tainly, a more sophisticated analysis.

Remark.
The presented technique has been implemented into the FEAP-MeKa
code [172]. The unsymmetric solver is based on a standard LU-
decomposition combined with an iterative Newton scheme.
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Figure 9.21: a) Spiral orthotropy on a cylinder. b) Observed longitudinal motion vs.
applied rotation. Variation of ratio rε = ε1/ε2. Loading cases according to Table 9.2.
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9.5 Conclusions

In the current part the numerical analysis of the model of contact inter-
faces including anisotropy for adhesion and friction developed in Part
1 is presented. The linearization necessary for the numerical iterative
solution is considered in a covariant form in the metrics of a tangent
plane. The covariant form makes the application of the derived scheme
to contact problems with arbitrary curved surfaces possible. A numerical
implementation into finite element codes is also considered leading to
a family of contact elements based on a) a point-to-analytical approach
for both linear and curvilinear approximations of the contact body and b)
a node-to-segment approach. In addition, a rheological model based on
a simple mechanical interpretation of the model is discussed.

The proposed model for contact interfaces is analyzed for constant
orthotropy on a plane, for polar orthotropy on a plane and for spiral or-
thotropy on a cylinder. The reliability of the numerical results is con-
trolled by checking the convergence with increasing the adhesion pa-
rameters and by remeshing. A classification of orthotropy based on the
ratio of eigenvalues for the corresponding orthotropic tensor is proposed
and the kinematical effects for the classified cases are numerically in-
vestigated. In particular, as a specific case of complex anisotropy the
geometrically isotropic kinematic behavior of the contact bodies can be
found despite the presence of both, anisotropy for adhesion and friction.
The possibility of modeling machined surfaces with the help of the ad-
hesion tensor is shown by numerical examples for polar orthotropy and
for the model of a bolt connection.

The presented approach shows an algorithmic inclusion in covariant
form only for linear elastic adhesion and for an associated Coloumb’s
friction law. Any combination of elastic, visco-elastic or nonlinear laws
for the adhesion region together with non-associative or associative fric-
tion laws can be derived in straightforward covariant manner based on
the metrics of the contact surfaces.
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9.7 APPENDIX. Recovering a circular motion for polar
orthotropy

A family of curves in the case of polar orthotropy with the parameter
εϕ = 0 for the problem considered in Sect. 9.4.3 is a family of circles.

In order to prove this statement we consider the equilibrium equations
for the quasi-statical sliding of a block, see Fig. 9.18, Sect. 9.4.3.

T1 = 0

T2 + F = 0. (9.43)

Here a force F is associated with applied displacements along OY axis
and T1, T2 are components of a sliding force Tsl defined in eqn. (9.12).
Following the incremental displacement loading process and the defini-
tion of the sliding force via the trial force, see also eqn. (9.14) we can
write:

Tsl = −|N |BFB

Ψ

{
Δu
Δv

}
, (9.44)

where Δu is a prescribed displacement component and Δv is a com-
puted component from the equilibrium equation. Then from the first
equilibrium equation (9.43) we obtain:

BFB11Δu + BFB12Δv = 0. (9.45)

The limit of the ratio of the displacement increments when Δu goes to
zero leads to the exact definition of the derivative:

lim
Δu→0

Δv

Δu
= y ′ = −BFB11

BFB12
. (9.46)
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Now, we specify the particular case with an isotropic friction tensor F =
E/μ2 and εϕ = 0 in the adhesion tensor B in eqn. (9.41) leading to

B = − εr

x2 + y2

[
x2 xy
xy y2

]
. (9.47)

Inserting the corresponding components from eqn. (9.47) into
eqn. (9.46) we obtain an ordinary differential equation (ODE) describ-
ing a family of curves (trajectory of the ODE):

y ′ = −x

y
. (9.48)

The integration of this differential equation leads to

y2 + x2 = const, (9.49)

which describes a family of circles.
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10

Symmetrization of various friction
models based on an Augmented
Lagrangian approach∗

Abstract
The standard implementation of the classical Coulomb friction model to-
gether with the Newton iterative method for the finite element method
leads to non-symmetric tangent matrices for sliding zones of contact
surfaces. This fact is known in literature as consequence of the non-
associativity of the friction law. Considering anisotropic models for fric-
tion, especially including coupling of adhesion and friction, leads to ad-
ditional non-symmetries due to anisotropy. Since, non-symmetry of ma-
trices is a non-desirable feature of most engineering problems, various
proposals for symmetrization are known in computational mechanics. A
further suggestion is made in this contribution. The covariant approach
for both isotropic and anisotropic frictional contact problems leads to
a very simple structure of the tangent matrices. This allows to obtain
very robust tangent matrices within the symmetrized Augmented La-
grangian method. In the current contribution, the nested Uzawa algo-
rithm is applied for symmetrization within the Augmented Lagrangian
approach for an anisotropic friction model including adhesion and fric-
tion. The numerical examples show the good convergence behavior for
various problems such as small and large sliding problems.

∗The chapter is published in [94]: A. Konyukhov, K. Schweizerhof Symmetrization of various friction
models based on an Augmented Lagrangian approach, In IUTAM Symposium on Computational Contact
Mechanics, U.Nackenhorst, P. Wriggers eds., IUTAM Bookseries. Springer, pp. 97–111, 2007.
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10. SYMMETRIZATION OF VARIOUS FRICTION MODELS

10.1 Introduction

The penalty method for frictional contact problems [188], [106] currently
is among the most popular schemes in finite element packages, leads
to the satisfaction of the contact constraints, such as non-penetration
and sticking conditions, only within a certain tolerance. This tolerance is
defined by the penalty parameters for both normal and tangential direc-
tion. As is known, the classical method of Lagrangian multipliers leads
to an exact satisfaction of contact constraints, however, one should take
care of the number of multipliers due to the often overstiff behavior of
contact interfaces, see e.g. in [57]. Additional degrees of freedoms for
the contact tractions are often mentioned among the disadvantages of
this method. Recently, various combinations of the Mortar method have
been developed in e.g. [150], [151], [40] allowing to overcome overstiff
behavior especially in the case where contact tractions are computed
point-wise at integration points. In addition, good results for the patch-
test have been shown also in [57] exploiting the, so-called, segment-
to-segment approach, coinciding with the Mortar method with penalty
descriptions of the contact traction. So-called dual Lagrange multipli-
ers have been developed for non-frictional contact in Wohlmuth [186]
allowing to condense degrees of freedom for contact traction. Using
this approach, the frictional constraints should be carefully treated as a
sequence of the Tresca type friction model, see [69]. This approach is
similar to the Augmented Lagrangian approach allowing to satisfy the
contact constraints for non-penetration and sticking within the nested al-
gorithm. The method is described theoretically in Bertsekas [12] and
Fortin and Glowinski [42]. Pietrzak and Curnier [144] developed the
Augmented Lagrangian approach for frictional contact including the cor-
responding saddle point functional. Laursen and Simo [109] proposed a
symmetrization procedure based on the nested Uzawa algorithm. This
approach is based on symmetrization of the corresponding tangent ma-
trices for the solution of the equilibrium equations, while the contact con-
straints have been still iteratively satisfied within the external loop with a
specified tolerance.

In the current contribution, we will describe the symmetric Augmented
Lagrangian method for the coupled anisotropic contact model includ-
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ing anisotropy for friction and adhesion as developed in Konyukhov and
Schweizerhof [90], [91]. The geometrical structure of the corresponding
tangent matrices allows us to construct very simple symmetric tangent
matrices for the anisotropic case. The isotropic case can then be de-
fined as a reduction of the anisotropic case. Good convergence rates
are illustrated in the numerical examples.

10.2 Covariant description of the coupled anisotropic
friction model

We shortly present here the main details of the coupled interface contact
model including anisotropy for adhesion and friction and refer to [90],
[91] for further details and corresponding derivations.

At the beginning, a local surface coordinate system is introduced as

rs(ξ
1, ξ2, ξ3) = ρ(ξ1, ξ2) + nξ3, (10.1)

where ξ1, ξ2 are two convective coordinates and responsible for the tan-
gential contact interaction. The third coordinate ξ3 is the value of the
penetration and is used to define the properties of the normal interac-
tion

ξ3 = (rs − ρ) · n. (10.2)

The vector of contact tractions R is defined as a covariant vector
and, therefore, is expressed via the contravariant basis vectors ρi and
n in the coordinate system (10.1) as sum of the tangential and normal
components

R = T + N = Tiρ
i + Nn. (10.3)

For the generalization into anisotropy for adhesion, the tangential
traction vector Tiρ

i and the normal traction vector Nn are assumed to
be decoupled. Therefore, the generalized constitutive equations for tan-
gential tractions are taken in rate form as

dT

dt
= B(vs − v), (10.4)
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where B is the anisotropic adhesion tensor. The covariant differentiation
operations are involved throughout whenever the rate form is given.

The constitutive equation for normal traction is given in closed form
and can be viewed as a simple penalty regularization procedure for this
normal traction N

N = εNξ3, (10.5)

where εN is a parameter of normal compliance, or a penalty parameter.
The anisotropy for friction is chosen as a model of Coulomb type

involving proportionality of the frictional force to the normal traction N .
The corresponding yield function is written as

Φ =
√

f ijTiTj − |N | =
√

T · FT − |N |, (10.6)

where F = f ijρiρj is the anisotropic friction tensor.

10.2.1 Incremental formulation of the coupled
anisotropic model

Though, initially the model is formulated in the continuous rate form, it
has been transformed into incremental form for the final computational
model via the application of the backward Euler scheme.

i) The full displacement vector Δξ = ξ(n+1) − ξ(n) is decomposed ad-
ditively into an elastic increment Δξel and into a sliding increment
Δξsl:

Δξ = Δξel + Δξsl, (10.7)

where both vectors are defined in the surface metrics, namely,

Δξ := Δξiρi = (ξi
(n+1) − ξi

(n))ρi. (10.8)

ii) The trial elastic, or adhesion force Ttr
(n+1) is computed via the incre-

mental evolution equations:

Ttr
(n+1) − T(n) = B(n+1)(ξel

(n+1) − ξel
(n)). (10.9)
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iii) The final result if the tangential traction T is the elastic one (belongs
to the adhesion region), or the plastic one if provided by the yield
condition of the Coulomb type in each load step becomes:

Φtr : =
√

Ttr
(n+1) · F(n+1)Ttr

(n+1) − |N(n+1)|
=

√
f ijT tr

i (n+1)T
tr
j (n+1) − |N(n+1)|, (10.10)

• If Φtr < 0 then the trial force is a real sticking force T = Ttr.

• If Φtr ≥ 0 then the sliding force must be obtained via the maxi-
mum of the energy dissipation function given in the incremental
form.

iv) All contact parameters such as sliding traction and sliding distance
should be derived via the principle of the maximum dissipation

D(n+1) := Δξsl · Tsl
(n+1) = Δξi

slT
sl
i (n+1), D(n+1) −→ max . (10.11)

Using the necessary optimization conditions for the functional D(n+1)

together with the Kuhn-Tucker conditions from iii) the closed form for the
sliding force Tsl is obtained as:

Tsl = − BFTtr

√
BFTtr · FBFTtr

|N |. (10.12)

10.3 Linearization process and structure of matrices

Since the frictional problem is nonlinear, an iterative solution based on
a Newton scheme should be applied. The important part of the im-
plementation is then a consistent tangent matrix which differs for stick-
ing and sliding according to the return-mapping scheme. We present
here the results with particular focus on the structure of the matrices
especially their symmetry. According to numerical experiences reported
in [86] and [89]. we will also exclude the curvature parts of the matrices.
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10.3.1 Linearization of the normal part δWN
c

We denote D(f) as a linearization operator acting on a functional f in
the covariant form. Thus, linearization of the virtual work of the contact
normal traction N is given as:

D(δWN
c ) = D(

∫
s

Nδξ3ds) = −
∫

s

εN (δrs − δρ) · (n⊗ n)(vs − v)ds︸ ︷︷ ︸
leads to Km

N

(10.13a)

−
∫

s

εNξ3
(
δρ,j · aij(n ⊗ ρi)(vs − v) + (δrs − δρ) · aij(ρj ⊗ n)v,i

)
ds,︸ ︷︷ ︸

leads to Kr
N

(10.13b)

where aij are contravariant components of the metric tensor for the
master surface and ρj =

∂ρ
∂ξj , j = 1, 2 are covariant basis (tangent)

vectors. Here, the first term (resp. the second term) after approximation
of the geometry leads to the main part of the contact matrix Km

N (resp.
the rotational part of the contact matrix Kr

N ).

All parts can be algorithmically implemented for any order of approx-
imation. In order to do this only the operator A for the approximation of
the surface geometry has to be introduced. The derivatives with respect
to convective coordinates Aξ are also necessary. Thus, the approxima-
tion can be written as

rs − ρ = A{x}, ρξ = Aξ{x} (10.14)

where x is a nodal vector for the standard FE implementation, or a con-
trol points (knots) vector for a CAD approximation. This leads e.g. to the
following structure of the contact matrix Km

N

Km
N = −

∫
s

εNAT · (n⊗ n)Ads, (10.15)

where the integral is computed via the set of Gauss points defined on
the slave segment and penetrating into the master surface (so-called
penalty based Mortar method, see Fischer and Wriggers [40]).
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10.3.2 Linearization of the tangential part δW T
c , sticking case

The sticking case is understood as a case where the tangential traction
remains in the elastic region and, therefore, is computed via the evolu-
tion equations ii). Linearization leads to

D(δW T
c ) = D(

∫
s

T tr
i δξids) = (10.16)

=

∫
s

(δrs − δρ) · B(vs − v)ds−︸ ︷︷ ︸
leads to Km

T,st

−
∫

s

Ti

(
(δrs − δρ) · ailajk ρk ⊗ ρl vj + δρ,j · aikajl ρk ⊗ ρl (vs − v)

)
ds.︸ ︷︷ ︸

leads to Kr
T,st

10.3.3 Linearization of the tangential part δW T
c , sliding case

The sliding case is understood as a case where the yield condition iii)
is fulfilled and, therefore, the tangential traction is computed as a sliding
traction given in eqn. (10.12). The corresponding linearization leads to

D(δW T
c ) = D(

∫
s

T sl
i δξids) = (10.17)

=

∫
s

(
(δrs − δρ) · εNBFTtr ⊗ n√

BFTtr · FBFTtr
(vs − v)

)
ds︸ ︷︷ ︸

leads to K
m,1
T,sl

−
∫

s

(
(δrs − δρ) · |N | BFB√

BFTtr · FBFTtr
(vs − v)

)
ds︸ ︷︷ ︸

leads to K
m,2
T,sl

+

∫
s

(
(δrs − δρ) · |N | BFTtr ⊗ (BFB)TFBFTtr√

(BFTtr · FBFTtr)3
(vs − v)

)
ds︸ ︷︷ ︸

leads to K
m,3
T,sl
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−
∫

s

T sl
i

[
(δrs − δρ) · ailajk ρk ⊗ ρl vj + δρ,j · aikajl ρk ⊗ ρl (vs − v)

]
ds.︸ ︷︷ ︸

leads to Kr
T,sl

Now we can summarize the results concerning the symmetry of the
necessary tangent matrices. As expected, all parts concerning non-
frictional and sticking contact, namely Km

N , Kr
N , Km

T,st and Kr
T,st are sym-

metric. Attention should be paid to the sliding tangent matrix, because
it contains both, symmetric and nonsymmetric parts:

K
m,1
T,sl is the first main part due to the coupling of the normal and the

sliding tractions. It appears due to linearization of the normal traction N

and it is nonsymmetric.

K
m,2
T,sl is the second main part. It appears due to linearization of the nor-

mal trial tangential traction Ttr and preserves symmetry.

K
m,3
T,sl is the third main part and nonsymmetric. It appears due to lin-

earization of the complex term
1√

BFTtr · FBFTtr
reflecting the coupling

of anisotropy for adhesion and friction.

Finally, Kr
T,sl is the rotational, symmetric part reflecting rotation of the

master segment, for more details see [92].

10.4 Augmented Lagrangian method and symmetric
Uzawa algorithm

The main advantage of the Augmented Lagrangian in comparison to
the penalty method is the possibility to select a value of the penalty pa-
rameter leading to well conditioned tangent matrices together with the
enforcement of the constraint conditions (non penetration and sticking)
within a specified tolerance. The method is constructed as a nested al-
gorithm known as Uzawa algorithm and possesses linear convergence.
The algorithm using the full consistent tangent matrix is known as exact
Uzawa algorithm, while the inexact algorithm is exploiting a somehow
simplified matrix, see results on convergence in Stadler [166]. Laursen
and Simo [109] developed a symmetrized Uzawa algorithm, where sym-
metric matrices for the sliding case have been obtained under the as-
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sumption that the normal traction remains constant for the solution of
the equilibrium equations within an internal loop. This preserves the
quadratic rate of convergence for the internal loop. The correct value
is enforced then within the external loop where a linear rate of conver-
gence is preserved.

10.4.1 Limitations of the Augmented Lagrangian approach for the
coupled anisotropic model

The complexity for a generalization of the discussed algorithm into
anisotropic friction especially including anisotropic adhesion is that the
sliding tangent matrix is fully nonsymmetric, moreover, the assumption
of isotropy together with the constant normal traction would lead only to
the rotational part of the tangent matrix. Since, this part has no influence
for small displacement problems as well as in the case when the master
segment has no rotation, we obtain only zero matrices. This makes it
impossible to obtain any solution. Fortunately, the covariant approach
allows to estimate the influence of the matrices part by part. Thus, we
can construct a symmetric algorithm and analyze it numerically.

Another problem for the coupled anisotropy is that the sticking case
is defined when the slave contact point lays inside the elliptic adhesion
domain, see Fig. 10.1. However, as is known from numerical results the
ratio a

b = μ1ε2

μ2ε1
does not influence the convergence result in the penalty

based approach and can lead to correct kinematics even for large sliding
problems. An enforcement to put a slave contact point inside the adhe-
sion ellipse via the Augmented Lagrangian approach necessarily leads
to dis-convergence in cases as a

b
→ 0, or a

b
→ ∞. In computation due to

the linear convergence of the Augmented Lagrangian method the global
number of iteration is proportional to the ratio a

b for a > b, e.g. a sim-
ply computable case with a

b = 10 would lead to a 10-times increase of
the global number of iterations for the Augmented Lagrangian method.
Thus, one should judge the coupled anisotropic model as an interface
model for tangential traction, rather than a penalty based approach.

Summarizing the discussion, we can define computable cases for the
Augmented Lagrangian method in application to the coupled anisotropic
model for:
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Figure 10.1: Allowable elastic region (adhesion domain).

Figure 10.2: Geometry and loading for the case of polar orthotropy.

1. Small sliding problems with low anisotropy. Small sliding can be
numerically defined as a case where it is important to compute the
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10.4 Augmented Lagrangian method and symmetric Uzawa algorithm

distribution of the sticking-sliding zone. The low anisotropy is de-
fined then as a case with a

b
≈ 1.

In this case, Lagrangian multipliers for both normal N , and tangen-
tial traction T are augmented. The convergence for tangential dis-
placements is checked by the proximity to the initial contact point:√

aij(ξi
(I) − ξi

(K−1))(ξ
j
(I) − ξj

(K−1)) ≤ εT , (10.18)

where εT is a specified tolerance for tangential displacements. The
convergence for normal displacements is checked as in the stan-
dard isotropic case by the normal penetration

|ξ3| ≤ εN , (10.19)

where εN is a specified tolerance for the normal penetration.

2. Large sliding problem with arbitrary anisotropy. Large sliding can
be numerically defined as a case where sliding is reached within
a single load step. In this case, the global kinematical behavior of
a contacting body is of interest rather than the distribution of the
sticking-sliding zone.

In this case, the Lagrangian multiplier only for the normal traction N

needs to be updated because the tolerance of the sticking condition
will normally not influence the tolerance of the computed trajectory.
Thus, convergence is checked only for the normal displacement.

The symmetrized algorithm in accordance with the inexact Uzawa
approach which appears to be numerically effective for the current
anisotropic problem is constructed as follows. The internal loop, No. 3 in
Table 10.1 and 10.2, serves for the solution of the equilibrium equations.
The normal traction NK,L,I is computed via the augmented scheme and
updated inside loop 2. The trial tangential traction TK,L,I for small sliding
problems is computed via the augmented scheme. The update accord-
ing to the scheme ΔλL

T = ΔλL−1
T +B(ξ(I)−ξ(K−1)) inside loop 2 allows to

enforce sticking conditions similar to the normal penetration. The mod-
ification for large sliding problems is as follows: the sticking condition
is satisfied in the penalty form, then the trial tangential traction TK,L,I is
computed as TK,L,I = TK−1,L,I+B(ξ(I)−ξ(K−1)). The Lagrange multiplier
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Table 10.1: Update scheme for normal traction N

1. Loop over applied in load incremental steps: K = K + 1
initialization of Lagrange multiplier λ0

N = 0

2. Loop over augmented multipliers: L = L + 1

3. Iterative solution of
global equilibrium equations:

with normal force

NK,L,I = λL−1
N + εNξ3

I

penetration ξ3
I is computed in each iteration I.

Update multipliers
λL

N = NK,L,I

Convergence is checked by the non-penetration condition:

|ξ3
I | ≤ εN , for NK,L,I < 0,

where εN - specified tolerance for normal displacements

for the tangential traction vector ΔλL−1
T is not introduced and, therefore,

an update loop 2 does not exist.

An important modification for symmetrization should be done for the
return-mapping scheme, see Table 10.3, where the sliding force instead
of eqn. (10.12) is computed via the augmented multiplier for the normal
traction λL−1

N as

Tsl = − BFTtr

√
BFTtr · FBFTtr

|λL−1
N |. (10.20)

The yield function (10.6) is respectively modified as

Φλ =

√
T

K,L,I
tr · FT

K,L,I
tr − |λL−1

N |. (10.21)

This leads to a constant sliding force for the internal loop and, there-
fore, the first main part of the sliding tangent matrix is zero K

m,1
T,sl = 0.
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10.4 Augmented Lagrangian method and symmetric Uzawa algorithm

Table 10.2: Update scheme for trial tangential traction T

1. Loop over load applied in incremental steps: K = K + 1
initial condition for tangential traction T0,0,0 = 0

initialization of Lagrange multiplier Δλ0
T = 0

2. Loop over augmented multipliers: L = L + 1

3. Iterative solution of
global equilibrium equations:

with tangential traction

TK,L,I = TK−1,L,I + ΔλL−1
T + B(ξ(I) − ξ(K−1))

ξ(I) is a projection point in each iteration I,
ξ(K−1) is a projection point in the previous load step.

Update multipliers

ΔλL
T = ΔλL−1

T + B(ξ(I) − ξ(K−1))

Convergence is checked by proximity
to the initial sticking point:√

aij(ξi
(I) − ξi

(K−1))(ξ
j
(I) − ξj

(K−1)) ≤ εT ,

where εT - specified tolerance for tangential displacements

Then, the full tangent matrix for the sliding case becomes:

K
full
sl = Km

N + Kr
N + K

m,2
T,sl + K

m,3
T,sl + Kr

T,sl. (10.22)

The part K
m,3
T,sl is still nonsymmetric due to anisotropy. The matrix

is fully symmetric only for isotropic friction. As it was found in numer-
ical computations we can exclude this part with only a small loss of
efficiency. This finally leads to the following matrix in the sliding case
according to the inexact Uzawa algorithm:

K
full
sl = Km

N + Kr
N + K

m,2
T,sl + Kr

T,sl. (10.23)
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The tangent matrix for sticking remains symmetric:

K
full
st = Km

N + Kr
N + Km

T,st + Kr
T,st. (10.24)

Table 10.3: Return-mapping scheme for
the symmetric Augmented Lagrangian method

1. Loop over load applied in incremental steps: K = K + 1
initial condition for tangential traction T0,0,0 = 0

initialization of Lagrange multiplier Δλ0
T = 0

initialization of Lagrange multiplier Δλ0
N = 0

2. Loop over load augmented multipliers: L = L + 1

3. Iterative solution of
global equilibrium equations:

a) compute trial tangential traction T
K,L,I
tr (Table 10.2)

b) compute trial yield function Φλ

Φλ =

√
T

K,L,I
tr · FT

K,L,I
tr − |λL−1

N |.
c) return-mapping: real tangential traction TK,L,I

TK,L,I =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T
K,L,I
tr if Φλ < 0

Tsl = − T̂√
T̂ · FT̂

|λL−1
N | if Φλ ≥ 0

where T̂ = BFT
K,L,I
tr
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10.5 Numerical examples

10.5 Numerical examples

Two cases with different anisotropy have been selected to illustrate the
convergence for the proposed approach: constant orthotropy and polar
orthotropy on the plane.

10.5.1 Small sliding problem. Constant orthotropy

We present here an example, which has been analyzed for the penalty
based approach in [91]. The rectangular block, see Fig. 10.3, is consid-
ered on an orthotropic plane. The dimensions of the block are 10×10×4

with linear elastic properties: Young’s modulus E = 2.10 · 104 and Pois-
son ratio ν = 0.3, assumed within a consistent dimension system.

Figure 10.3: Geometry and loading of the rectangular in plane block.

The case of constant orthotropy is defined by the spectral representa-
tion of both, the adhesion tensor B, and the friction tensor F as follows:

B = [bi
j] = −

[
ε1 cos2 α + ε2 sin2 α (ε1 − ε2) sinα cosα
(ε1 − ε2) sinα cos α ε1 sin2 α + ε2 cos2 α

]
. (10.25)
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F = [f i
k] =

⎡
⎢⎢⎢⎢⎣

1

μ2
1

cos2 β +
1

μ2
2

sin2 β (
1

μ2
1

− 1

μ2
2

) sinβ cosβ

(
1

μ2
1

− 1

μ2
2

) sinβ cosβ
1

μ2
1

sin2 β +
1

μ2
2

cos2 β

⎤
⎥⎥⎥⎥⎦ . (10.26)

The following parameters are taken for the computations: normal
penalty parameter: εN = 2.1 · 104; adhesion parameters: ε1 = 3.0 · 104,
ε1 = 2.0 · 104; friction coefficients: μ1 = 3.0, μ2 = 2.0; tolerance for
penetration: εN = 1.0 · 10−5; tolerance for tangential displacement:
εT = 1.0 · 10−5; orthotropic angles: α = 45o, β = 45o. This leads to
a, so-called, geometrical isotropic case because of the ratio ε1μ2

ε2μ1
= 1.0.

The block (see Fig. 10.3) is located on the XOY plane and loaded by
vertically prescribed displacements on the upper surface w = 1.0 · 10−2.
The penalty based approach gives convergence in 4 iterations, but both
normal and tangential displacements inside the sticking region do not
satisfy the prescribed tolerance. The results for the Augmented scheme
are presented in Table 10.4. The method shows linear convergence as
can be seen from the Tolerance column.

10.5.2 Large sliding problem. Polar orthotropy

For the case with large sliding, we consider the block on a plane with
polar orthotropy see [91]. An elastic block with dimensions 1 × 1 × 0.25

and mesh 4 × 4 × 1 is positioned on a rigid block, see Fig. 10.2. Lin-
ear elastic material is assumed within a consistent dimension system:
Young’s modulus E = 2.10 · 104; Poisson ratio ν = 0.3. The loading is
applied sequentially by prescribing displacements on the upper surface
in (1 + n) steps: 1) vertical loading with w = 1.0 · 10−2, 2) n steps with
horizontal displacement increments Δu = 1.0 · 10−2 along the X axis.
The frictional tensor is isotropic with μ1 = μ2 = 0.2, but the adhesion
tensor has the following structure in the Cartesian coordinate system:

B = − 1

x2 + y2

[
εrx

2 + εϕy2 (εr − εϕ)xy
(εr − εϕ)xy εry

2 + εϕx2

]
. (10.27)
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Parameters for the adhesion tensor are chosen as εr = 1000, εϕ = 0.0,
in order to obtain the circular trajectory of the sliding block. Now only
the normal tractions N are updated and a tolerance for penetration εN =
1.0·10−5 is chosen. The gap for the penalty based approach is computed
as ξ3 = 7.26 ·10−3 if the normal penalty εN = 2.1 ·104 is chosen. The total
number of iterations (4556) compared with the penalty approach (1834)
is influenced only by the normal penetration. The final coordinates of the
nodal point X = 0.292, Y = 4.996 are compared with the results focused
with the penalty approach X = 0.306, Y = 4.994 in order to show that the
main kinematical effect of the anisotropic surfaces is preserved for the
Augmented Lagrangian method. A comparison of both trajectories leads
to a slight difference comparable to the value of the initial penetration
and the initial sticking displacements.

Table 10.4: Constant orthotropy on a plane. Convergence results for the symmetric
Augmented Lagrangian method.

Aug. No. Number of eq. iter. Tolerance
1 7 1.8742 · 10−3

2 14 6.0419 · 10−4

3 12 1.7536 · 10−4

4 12 4.0497 · 10−5

5 12 3.5972 · 10−6∑
56

10.6 Conclusions

In this contribution a symmetrization of the stiffness matrix has been de-
veloped within the Augmented Lagrangian method for anisotropic con-
tact surfaces including both, anisotropy for adhesion and anisotropy for
friction domains. It is shown that in general a fully coupled model neces-
sarily leads to a fully nonsymmetric matrix in the case of sliding, but the
covariant approach allows to estimate the structure of the tangent ma-
trix part by part and, therefore, allows to construct a symmetric matrix
used in accordance with the inexact Uzawa algorithm. However, as is
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shown, the Augmented Lagrangian method can not be directly applied
to arbitrary anisotropic surfaces due to convergence problems. Thus, to
create a robust algorithm, contact problems have to be subdivided into
small sliding problems with low anisotropy where the distribution of the
sticking-sliding zone is of interest, and into large sliding problems where
the trajectory of the sliding body is of interest.

For the small sliding problems, both the normal, and the tangential
contact tractions are augmented within the nested Uzawa algorithm.
This makes it possible to enforce both normal and tangential sticking
displacements to satisfy a prescribed tolerance. For the large sliding
problems only the normal traction is augmented leading to the enforce-
ment of only the normal displacements to satisfy a prescribe tolerance.
In both cases the return-mapping scheme is exploited to obtain the real
sliding tractions. Numerical examples including constant as well as non-
linear orthotropy e.g. a polar orthotropy showed the effectiveness of the
proposed approach.
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11

On coupled models of anisotropic
contact surfaces and their
experimental validation∗

Abstract
The necessity to apply a coupled contact interface model including
anisotropy for both adhesion and friction is shown via a set of experi-
ments for a rubber surface possessing a periodical waviness, and there-
fore, an obvious anisotropic structure. The focus of experimental inves-
tigations is placed upon the measurements of the global macro charac-
teristics such as global forces and trajectories of a sliding block in order
to validate the proposed computational model.

Keywords
anisotropy adhesion friction contact coupled model experimental
verification

11.1 Introduction

Smoothness and isotropy of contacting body surfaces can vary consid-
erably for different contact problems. Classifying the surfaces roughness
two types can be distinguished: a) surfaces with randomly distributed
asperities, and b) asperities with algorithmic structure, e.g. the consid-
ered surface shows different macro properties in different directions.

Mechanical characteristics for the associated contact problems of the
∗The chapter is published in [99]: A. Konyukhov, P. Vielsack, K. Schweizerhof On coupled models

of anisotropic contact surfaces and their experimental validation, Wear, 264(7-8):579–588, 2008.
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11. ANISOTROPIC ADHESION-FRICTION – EXPERIMENTS

first type a) are obtained via statistically distributed asperities. Statistical
analysis of a real rough surface and experimental aspects of its mea-
surements have been developed in a series of publications: Longuet-
Higgins [116], Greenwood and Williamson [50], Whitehouse and Ar-
chard [179] and more recently Whitehouse and Phillips [181] and Green-
wood [48]. A comparative analysis of these surface models is presented
in McCool [122]. These experimentally proved models later have been
incorporated into finite element models, see e.g. Wriggers and Zavarise
[196], [195], Buczkowski and Kleiber [24]. More advanced numerical
analyses including homogenization methods and multi-scaled modeling
are presented in Bandeira et. al. [9], [8]. Carbone and Mangialardi
[26] derived contact tractions analytically for a particular example with
a rigid wavy surface with a sinusoidal profile, assuming the presence of
an adhesion hysteresis for 2D plane strain elasticity problem.

Constitutive modeling is applied for problems of the second type b).
Such models are based on the generalization of Coulomb’s friction law
into the anisotropic domain. One of the first models has been proposed
by Michalowski and Mroz [127] considered the sliding of a rigid block on
an inclined surface. A model of orthotropic friction has been analyzed
and consistently developed in Zmitrowicz [210], Curnier [32]. Various
cases of anisotropy were presented in He and Curnier [62] based on
the theory of tensor function representations and in Zmitrowicz [211]
based on consideration of a relative sliding velocity. In the latter contri-
bution, a classification of anisotropic surfaces based on the number of
eigenvalues of the friction tensor has been proposed.

When looking at practical problems concerning contact interactions
with friction between bodies made of soft rubber-like materials there are
some situations in which the tangential elasticity of the contact surfaces
should be taken into account. In these cases anisotropy for elastic
forces (adhesion) and frictional forces might be coupled. Such a
model including coupling of anisotropy for both friction and adhesion has
been developed and analyzed numerically in Konyukhov and Schweizer-
hof [90], [91]. In the current contribution we discuss the validation of this
model with a particular experimental test. The contact surfaces are cho-
sen to possess visual orthotropic properties, thus a corrugated rubber
mat is taken. The results of the experiments show the necessity to
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11.2 Experimental investigation

use the coupled model including anisotropy for both friction and
adhesion. Some originally surprising experimental phenomena, such
as geometrically isotropic observed behavior of a sliding block despite
obvious physical anisotropies can be explained only within the proposed
model.

11.2 Experimental investigation

A series of experimental tests are performed in order to investigate the
global characteristics of the system ”block on a rough surface”. The
rough surface possesses visually a clear periodical structure and, there-
fore, the mechanical constitutive model for an observable orthotropic
structure can be applied. Since we are trying to verify the average
interface model, the measured values in experiments are intentionally
chosen to be global, namely we measure global forces leading to the
macro friction coefficients and trajectory of a block instead of micro fric-
tion coefficients and corresponding stiffnesses of asperities. The focus
of the discussion is placed upon the kinematical behavior of the block
driven by a constant force together with the measurement of force com-
ponents leading to this motion. Therefore, the main measurable char-
acteristics during these experiments are global forces and trajectories
of the block, which create a main basis for further calibration of mod-
els for orthotropic friction. For the judgment of the results Coulomb like
models are assumed a-priori to be valid for the global behavior, i.e. that
the tangential driving global force F is proportional to the normal reac-
tion N : F = f(x, y)N , where a function f(x, y) describes the orthotropic
properties of a surface.

11.2.1 Experimental setup

A massive block positioned on a plane is moved with constant velocity
by a sliding carriage guided by rods on both sides, see Fig. 11.1. The
block made from steel has dimensions 110×110 mm in plane and 20 mm
height. The mass is m = 1.875kg. The contact surface between the slid-
ing carriage and the block is covered with a Teflon(R) strip to minimize
the friction between them due to relative sliding. In contrast to this, the
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11. ANISOTROPIC ADHESION-FRICTION – EXPERIMENTS

contact surface of the steel block is covered by a suede-like material with
square 90×90 mm to increase the interaction between the block and the
basement. A constant driving velocity is achieved by a step motor acting
on a rack, which allows a straight displacement of 500 mm. The contact
force between the rack and the sliding carriage is measured by a force
sensor. The displacement of the block during sliding is captured by an
optoelectronic device which is installed on a tripod above the surface.
The corresponding LED (light-emitting diode) is fixed on the block.

Figure 11.1: View on experimental setup.

For the first set of experiments a rubber mat with rather stiff ripples
has been taken. Naturally it was represented by an aged corrugated
rubber map. The frictional orthotropy is given by the wavy profile of
the contact rubber surface with parallel ripples possessing in the cross
section a periodical structure, see the CAD model in Fig. 11.2. The
distance between the ripples is rather small in comparison to the dimen-
sion of the contact area of the block allowing approximately 30 ripples
in contact area depending on orthotropy angle in experiments. The ori-
entation of the ripples with respect to the fixed driving direction can be
varied from 0o up to 90o by repositioning the mat, see Fig. 11.3. Again we
should mention that the aim of the experiments is to show the necessity
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11.2 Experimental investigation

of a coupled anisotropic model for adhesion and friction, therefore, we
intentionally skip any measurement of ripple stiffnesses concentrating
on finding the global macro characteristics of the coupled behavior.

Figure 11.2: Geometrical structure of the corrugated rubber mat.
Wavy periodical profile, CAD model.
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Figure 11.3: Orientation of the orthotropy with respect to the fixed direction of the
velocity: a) α = 0o, b) α = 0o < α < 90o, c) α = 90o. The trajectory of the block is a
straight line declined at angle ϕ.

11.2.2 Experimental results

At the beginning some experiments are performed to find out the global
macro mechanical properties of the system. All experiments were re-
produced with a driving velocity of the carriage v = 24.4 cm/sec. First
of all, the sliding carriage was moved without the block in order to de-
fine the internal resistant force Fint. Then experiments have been per-
formed with the sliding block to define the resulting driving force in the
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case α = 0o, corresponding to the X1-axis along the ripples, see CAD
model in Fig. 11.2, and α = 90o, corresponding to the X2-axis across
the ripples, see CAD model in Fig. 11.2, respectively. These measure-
ments together with subtracting the internal force lead to the definition
of macro friction coefficients μ1 and μ2 corresponding to angles α = 0o

and α = 90o. Assuming a Coulomb friction law the friction coefficients μi

were computed as

μ1 =
Fα=0o − Fint

N
=

12.50− 5.00

1.875 · 9.806
= 0.408 ≈ 0.41

μ2 =
Fα=90o − Fint

N
=

16.50− 5.00

1.875 · 9.806
= 0.625 ≈ 0.63. (11.1)

We note for further references that the macro friction coefficient across
the ripples is found to be higher than the macro friction coefficient along
the ripples.

The second set of experiments to find macro parameters of the in-
terface model is made by setting the angle α varying from α = 0o up to
α = 90o with a step Δα = 5o. The focus lies on the definition of the tra-
jectory of the sliding block. In all cases, the trajectory was observed
as a straight line inclined with the angle ϕ = ϕ(α), see the sketch
in Fig. 11.3(b). The mean value ϕ of sequences of 10 experiments for
each angle α is taken for the later analysis. The standard deviation has

been found as s ≈ 0.3o (defined by s =
√

1
N−1

∑N
i=1(ϕi − ϕ)2). Combin-

ing all results leads to the diagram in Fig. 11.4 showing the dependency
of the inclination angle ϕ on the orientation of the orthotropy given by
the angle α of the ripples. The maximum of the inclination angle ϕ is
located in the range of small angles α (the maximum is on the left side
on the graph).

11.2.2.1 Geometrically isotropic observed behavior of a sliding block

As a fairly surprising result detected in the experiments a large sensitiv-
ity to the elastic properties of the rubber ripples was obtained. Thus, if
the rubber mat with highly elastic rubber ripples (e.g. a new mat) has
been taken for the second set of experiments, then the inclination angle
ϕ was only varying in a very small range about 0o − 2o with a standard
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Figure 11.4: Observed mean value of the inclination angle ϕ vs. orthotropy angle α.
Experimental results for different velocities of the block.

deviation s ≈ 0.5o independently from the angle α. Since an interval
3s of the mean value defined as ϕ − 3s ≤ ϕ ≤ ϕ + 3s covers the zero
value ϕ = 0, and assuming a Gaussian error distribution, we can con-
clude that the inclination angle ϕ does not depend on the orthotropy
angle α. However, the measurement of forces still showed the differ-
ence between the macro coefficients of friction μ1 and μ2. We observe
that macro friction orthotropy is still present, but the kinematical effect of
the orthotropy disappears.

As we show later, the orthotropic friction model is not capable to de-
scribe this effect from the macro-model point of view, but the coupled
orthotropic adhesion – orthotropic friction interface model allows to qual-
itatively describe the observed phenomena.

11.3 Analysis of various models for anisotropic
friction and applicability to the observed
phenomenon

In this section, the range of applicability of a classical model of or-
thotropic friction, based only on the orthotropic friction tensor and its
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generalization including orthotropy for both friction (inelastic region) and
adhesion (elastic region) is discussed. The necessity to assume in ad-
dition elastic properties for the surface will be shown.

As a first simple model which can be investigated analytically a mate-
rial point on a plane is considered. According to the experimental tests
we assume a quasi-statical motion of the material point A with weight P

loaded by the force F acting along the X1-axis, see Fig. 11.5. The or-
thotropic properties of the surface are defined in the coordinate system
ξ1, ξ2 inclined with an angle α to the original coordinate system. During
quasi-statical loading, point A is moving along a line with velocity vector
v inclined with an angle ϕ. The reaction force T with Cartesian compo-
nents T1, T2 is acting on the point. The values of components depend on
the hypothesis concerning the orthotropic friction law. Here two variants
of the orthotropic law are considered: the well known orthotropic friction
Coulomb law and a contact interface model including orthotropy for both
friction and adhesion, see Konyukhov and Schweizerhof [90], [91].

X1

ξ
2

X
2

α
ξ

1

O

F
−T

−T

A v
ϕ

1
2

Figure 11.5: Motion of material point A on an orthotropic plane loaded by force F.

The equilibrium equations for the system in Fig. 11.5 are given as:⎧⎨
⎩

X1 : F + T1 = 0;
X2 : T2 = 0;

X3 : −P + N = 0.

, (11.2)

where N is the reaction force along the X3 axis.
The principle of maximum dissipation is applied to obtain relation

between the sliding force T and sliding displacements Δrsl. This princi-
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ple requires that the dissipation function Ψ reaches its maximum

Ψ := Δrsl · T = Δxi
slTi −→ max, (11.3)

where Δrsl is an increment of the sliding vector. The dissipation func-
tion Ψ must also satisfy the sliding condition, formulated via inequalities,
reflecting the assumed friction law, e.g. Coulomb’s law.

11.3.1 Orthotropic Coulomb friction law

First, we recall the standard case known in literature, see e.g. [127],
[32], [129], [211], where orthotropy is defined only for the sliding forces.
The model is formulated according to the generalization of the sliding
criteria. The yield function for the Coulomb friction law is then written as

Φ :=
√

T · FT− |N | =
√

TiTjf ij − |N |. (11.4)

The sticking and the sliding conditions are defined by the rule:

Φ < 0 → sticking; Φ ≥ 0 → sliding. (11.5)

According to equations (11.4-11.5) the material point is not moving dur-
ing sticking (no adhesion) and the motion starts when Φ = 0. The com-
ponents of the friction tensor f ij are defined for the orthotropy on the
plane via e.g. the spectral representation plane as follows:

F = QαΛFQT
α = (11.6)

=

[
cos α − sin α

sinα cos α

]
·

⎡
⎢⎣

1

μ2
1

0

0
1

μ2
2

⎤
⎥⎦ ·

[
cos α − sin α

sinα cos α

]T

=

⎡
⎢⎢⎢⎢⎣

1

μ2
1

cos2 α +
1

μ2
2

sin2 α (
1

μ2
1

− 1

μ2
2

) sinα cos α

(
1

μ2
1

− 1

μ2
2

) sinα cosα
1

μ2
1

sin2 α +
1

μ2
2

cos2 α

⎤
⎥⎥⎥⎥⎦ ,

where μi > 0 are friction coefficients along the axis ξi inclined at angle
α.
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The standard method of the convex analysis is applied to obtain the
sliding forces with regard to the principle of maximum dissipation (11.3).
Thus, the Lagrange function with the multiplier λ is specified as

L := −Ψ + λΦ = −Δxi
slTi + λ

(√
TiTjf ij − |N |

)
(11.7)

together with the complementary Kuhn-Tucker conditions:

λ ≥ 0, λΦ = 0. (11.8)

The optimality conditions
∂L

∂T i
= 0 lead to the following sliding displace-

ment components:

Δxi
sl = λ

Tjf
ij√

TkTlf kl
. (11.9)

These equations recover the trajectory of a block as a straight line de-
clined by angle ϕ, which is confirmed by experiments.

Now, taking into account the second equilibrium equation (11.2) tanϕ
can be determined:

Δx1 = λ
T1f

11√
TkTlf kl

,

Δx2 = λ
T1f

12√
TkTlf kl

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ =⇒ tanϕ =

Δx2

Δx1
=

f 12

f 11
, (11.10)

and, after transformations taking into account the values determined in
eqn. (11.6), we finally obtain:

tanϕ =
(μ2

2 − μ2
1)

μ2
2 + μ2

1 tan2 α
tanα. (11.11)

11.3.2 Model for orthotropic contact interfaces including both ad-
hesion and friction

An alternative model involving coupling orthotropy for both adhesion and
friction can be proposed including the elastic-plastic analogy and the
return-mapping scheme. This model is investigated theoretically and
developed into the computational model by Konyukhov and Schweizer-
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hof [90], [91]. Then the problem is formulated in continuous form as
follows

a) The relative velocity vector of the contact point is decomposed ad-
ditively into an elastic part vel and a sliding part vsl

vr = vel + vsl. (11.12)

b) The elastic part vel is responsible for reversible deformations (ad-
hesion) and satisfies the evolution equations

dT

dt
= Bvel. (11.13)

At this point an adhesion tensor B describing orthotropic properties
for the elastic region is introduced.

c) The tangential force T must satisfy the following inequalities de-
fined via the yield function, which in tensor form can be written as:

Φ :=
√

f ijTiTj − |N | =
√

T · FT − |N | : (11.14)

• if Φ < 0 then the contact point is inside the elastic domain and
T = Tel is an elastic force,
• if Φ = 0 then the contact point is sliding and T = Tsl is a sliding
force.

d) The power of the sliding forces, described by the energy dissipation
function D achieves its maximum:

D := ẋi
slT

sl
i = vsl · Tsl, D −→ max . (11.15)

The principle of maximum dissipation requires that the plastic dissi-
pation function D subjected to the inequality conditions (11.14) achieves
a maximum. For the computational treatment, the model is reformu-
lated in incremental form and then the return-mapping scheme is ap-
plied. The incremental analog is given as
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i) The full incremental displacement vector Δxi = Δxi
(n+1) − Δxi

(n) is
decomposed additively into an elastic increment Δxi

el and into a
sliding increment Δxi

sl:

Δxi = Δxi
el + Δxi

sl. (11.16)

ii) The elastic increment Δxi
el is computed via the incremental evolu-

tion equations, for which the tensor B is assumed to be constant:

T tr
i (n+1) = bijΔx

i (n+1)
el = bij(x

i (n+1)
el − xi (0)). (11.17)

iii) In order to decide whether the trial force Ttr is a sliding force Tsl or
a sticking force Tst the yield condition is checked in each load step:

Φtr :=
√

f ijT tr
i (n+1)T

tr
j (n+1) − N(n+1) (11.18)

• If Φtr < 0 then the trial force is a real sticking force T = Ttr.

• If Φtr ≥ 0 then the sliding force must be obtained via the max-
imum of the energy dissipation function given in incremental
form.

iv) The incremental analog of the continuous formulation eqn. (11.15)
is then:

D
(n+1)
min := −Δrsl ·Tsl

(n+1) = −Δxi
slT

sl
i (n+1), D

(n+1)
min −→ min . (11.19)

We recall the results obtained in [90], [91]. There the sliding force Tsl

can be defined after the necessary transformations as

Tsl = − BFTtr

√
BFTtr · FBFTtr

|N |. (11.20)

Now, we must follow the return-mapping scheme in order to define
the inclination angle ϕ. The problem is considered as a displacement
driven one, therefore the incremental displacement Δr = {Δx1, Δx2}
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11.3 Analysis of various anisotropic friction models

is applied. Thus, in each load step the sliding force in eqn. (11.20) is
computed as:

Tsl = − BFBΔr√
BFTtr · FBFTtr

|N | = AΔr. (11.21)

Now, if sliding is assumed, the second component of the sliding force T2

in the formulation depicted in Fig. 11.5 becomes zero, see equilibrium
eqn. (11.2). Thus, the displacement vector components Δx1, Δx2 are
coupled via the equation:

T2 = 0 =⇒ a21Δx1 + a22Δx2 = 0, (11.22)

leading to the equation for the angle ϕ:

tanϕ =
Δx2

Δx1
= −a21

a22
. (11.23)

11.3.2.1 Analysis of the model by general spectral representation

In order to calibrate later a theoretical curve ϕ(α) from the experimental
tests presented in Fig. 11.4, we consider a spectral decomposition of
the matrix A given in eqn. (11.21) as

A = [aij] =

⎡
⎣ λ2

1 cos2 α + λ2
2 sin2 α (λ2

1 − λ2
2) sin α cosα

(λ2
1 − λ2

2) sinα cos α λ2
1 sin2 α + λ2

2 cos2 α

⎤
⎦ , (11.24)

leading together with the condition (11.23) to the observed sliding angle
ϕ defined as

tanϕ = −a21

a22
= −(λ2

1 − λ2
2) sinα cosα

λ2
1 sin2 α + λ2

2 cos2 α
= −(λ2

1 − λ2
2) tanα

λ2
1 tan2 α + λ2

2

. (11.25)

An analysis for extremal values gives us

d tanϕ

d tanα
= 0, =⇒ (λ2

1 − λ2
2)(λ

2
2 − λ2

1 tan2 α) = 0. (11.26)
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The first bracket leads to the isotropic case, whereas from the second
one the following critical value is obtained:

tanαext =
λ2

λ1
, (11.27)

leading to the extremum of the observed inclination angle ϕext for the
motion of the point

tanϕext =
λ2

2 − λ2
1

2λ1λ2
. (11.28)

Considering the last equation (11.28) we can obtain a critical ratio of the
eigenvalues

ratioext =
λ1

λ2
= − tanϕext ±

√
tanϕ2

ext + 1. (11.29)

This value will be used during the validation procedure.
For further considerations we adopt the spectral decomposition also

for the adhesion tensor

B = QαΛBQT
α = (11.30)

=

[
cos α − sinα

sinα cos α

]
·
[ −ε1 0

0 −ε2

]
·
[

cosα − sinα

sin α cosα

]T

=

=

[
ε1 cos2 α + ε2 sin2 α (ε1 − ε2) sinα cos α

(ε1 − ε2) sinα cosα ε1 sin2 α + ε2 cos2 α

]
,

where εi > 0 are stiffnesses along the axis ξi inclined at angle α.
Remark:

The trajectory of a block is a straight line inclined by the angle ϕ. More-
over, the observed inclination angle ϕ does not depend on particular
values of λ1, λ2, but only on its ratio λ1/λ2.

11.3.2.2 Mechanical interpretation of the model

As is known, the mechanical interpretation of the regularized friction
model assuming elastic deformations is a spring-slider system, see
Simo and Hughes [160]. As generalization of this; according to our
model, we consider a material point with two spring-slider systems, see
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11.4 Calibration of parameters for different models

Fig. 11.6. The properties of these systems are the following: εi – stiff-
ness of ith spring, μi – coefficient of friction for ith sliding device. Each
system i is constrained to move parallel along the axis Xi respectively.
The constant force F inclined with angle α to the coordinate axis X1 is
applied to the point. Then the trajectory of the point lies either above the
force line or below the force line depending on the ratio of eigenvalues
λ1 and λ2 as discussed later, see also computational analysis in [91].
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Δ x Δ

Δ x
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1

1
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μ
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Figure 11.6: Mechanical interpretation of the orthotropic adhesion – orthotropic friction
model. A material point on a plane with a two spring – two slider system loaded by the
force F in plane.

11.4 Calibration of parameters for different models

As a representative parameter we take the curve ϕ(α) known from the
experiment, see Fig. 11.4. In addition, we distinguish two orthotropy an-
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gles: α – orthotropy angle for the adhesion tensor B and β – orthotropy
angle for the friction tensor F. In order to unify the computations we
chose the orthotropic values as μ1 < μ2 and ε1 < ε2. The following test
computations are performed for calibration purposes:

1. The orthotropic friction model as discussed in Section 11.3.1.

2. The interface model including coupled orthotropy for both adhesion
and friction as discussed in Section 11.3.2 with the specific case of
isotropic adhesion B = −εE.

3. The interface model including coupled orthotropy for both adhesion

and friction with the specific case of isotropic friction F =
1

μ2
E.

4. The interface model including orthotropy for both adhesion and fric-
tion with the specific case of coinciding orthotropy angle α = β.

5. The interface model including orthotropy for both adhesion and fric-
tion with the specification of the friction orthotropy angle β by 90o

degrees as β = α + π/2.

11.4.1 Case 1

We start the validation from the simple model including only orthotropic
friction as discussed in Sect. 11.3.1. Our aim is to find out a case de-
scribing qualitatively the experimental results. Therefore, we perform a
test computation with the following friction coefficients μ1 = 0.1, μ1 = 0.5.
In Fig. 11.7 the results are depicted. In addition, at an extremal angle

α = arctan μ2

μ1
= (78.69o) the maximum value ϕmax = arctan

μ2
2 − μ2

1

2μ1μ2
=

(67.38o) is computed by analyzing the shape of a curve. It can be seen,
that the point is moving into the direction with a smaller friction coeffi-
cient, which contradicts the experimental curve, see Fig. 11.4.

11.4.2 Case 2

As a next step, we choose the orthotropic adhesion – orthotropic friction
interface model, but including orthotropy only for the friction tensor and
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Figure 11.7: Computed inclination angle vs. orthotropy angle.
Case 1: Purely orthotropic friction model.

keeping the adhesion tensor to be isotropic, B = −εTE. In this case, a
structure of the matrix in eqns. (11.21) and (11.24) is given as A = −ε2

TF

leading to the inclination angle in eqn. (11.25) to be defined as

tanϕ =
(μ2

1 − μ2
2) tanβ

μ2
1 + μ2

2 tan2 β
. (11.31)

The analysis with the values μ1 = 0.1 and μ2 = 0.5 gives the curve
presented in Fig. 11.8 with the extremal parameters βext = 11.31o and
ϕmin = −67.38o. In this case, the point tends to move into the direction
with the larger friction coefficient. This is also a contradiction to the
experimental results.

11.4.3 Case 3

As a next step, within the orthotropic adhesion – orthotropic friction in-
terface model orthotropy is assumed only for adhesion with parameters
ε1 = 1 · 104 and ε2 = 5 · 104. The following structure of the matrix A is
obtained

A = BFB =
1

μ2
B, (11.32)
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Figure 11.8: Orthotropic adhesion – orthotropic friction interface model. Computed
inclination angle vs. orthotropy angle. Case 2: isotropic adhesion – orthotropic friction.

leading to an inclination angle ϕ defined as

tanϕ =
(ε2

2 − ε2
1) tanα

ε2
2 + ε2

1 tan2 α
. (11.33)

The result is depicted in Fig. 11.9 with the extremal values as αext =

78.69o and ϕmax = 67.38o. The curve shows a motion into the direction
with the smaller stiffness ε1. This contradicts the experimental results
as well.
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Figure 11.9: Orthotropic adhesion – orthotropic friction interface model. Computed
inclination angle vs. orthotropy angle. Case 3: orthotropic adhesion – isotropic friction.
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11.4 Calibration of parameters for different models

Summary
We observed that neither the purely orthotropic friction model, nor the
coupled model with separately included orthotropy either for friction, or
for adhesion is unable to capture the phenomena even qualitatively.

11.4.4 Case 4

Now we keep the orthotropy for both the adhesion tensor and the friction
tensor with the same angle, namely α = β. The structure of the tensor
A is found from the spectral decomposition in eqns. (11.6) and (11.30)
with Qα ≡ Qβ

A = BFB = QαΛB QT
αQβ︸ ︷︷ ︸
E

ΛF QT
βQα︸ ︷︷ ︸
E

ΛBQT
α = QαΛ

2
BΛFQT

α , (11.34)

leading to the eigenvalues λi = εi/μi. This case gives a more compre-
hensive information for the analysis of the physical experiments. The
most important issue is that by the combination of two orthotropic ten-
sors an isotropic case can be recovered. This case appears if we take
the value in proportion ε1

μ1
= ε2

μ2
leading to λ1 = λ2, e.g. with the com-

bination of two previous cases with ε1 = 104 and ε2 = 5 · 104 and
μ1 = 0.1, μ2 = 0.5 isotropy of the motion is recovered. For λ1 < λ2

we obtain a behavior similar to case 3; for λ1 > λ2 we find a behavior
similar to case 2. E.g. the computation with the parameters ε1 = 0.5·104,
ε2 = 5 · 104 and μ1 = 0.1, μ2 = 0.5 shows similarity to case 3 as shown
in Fig. 11.10. In this computational case, we assumed that the ripples
are softer in direction X1, see Fig. 11.2, which is obviously not the case
even without measurements of the ripple stiffnesses.

11.4.5 Case 5

Finally, we can choose the last possible modification for the observed
geometrical orthotropy for surfaces as taken in the experiment. We de-
fine a new angle β̂ as a main angle of surface asperities in the exper-
iment, see Fig. 11.11. The orthotropy angle β for the friction tensor is
shifted by 90o degrees to β = α + π/2 with respect to the orthotropy
angle α for the adhesion tensor. The structure of the tensor A is given
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Figure 11.10: Orthotropic adhesion – orthotropic friction interface model. Computed
inclination angle vs. orthotropy angle. Case 4: orthotropic adhesion – orthotropic
friction with eigenvalues λ1 < λ2.

according to eqn. (11.34), but now the composition of the two orthogonal
matrices QT

αQβ leads to:

QT
αQβ = (11.35)

=

[
cos α − sin α
sin α cos α

]T

·
[

cosβ − sin β
sin β cos β

]
=

=

[
cos α − sin α

sin α cos α

]T

·
[ − sinα − cosα

cosα − sin α

]
=

=

[
0 −1

1 0

]
.

Then, the matrix A in eqn. (11.34) is derived as

A = BFB = QαΛB QT
αQβ︸ ︷︷ ︸ΛF QT

βQα︸ ︷︷ ︸ΛBQT
α (11.36)

= Qα

⎡
⎢⎢⎣

ε2
1

μ2
2

0

0
ε2
2

μ2
1

⎤
⎥⎥⎦QT

α ,
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leading to the following eigenvalues λ1 = ε1/μ2 and λ2 = ε2/μ1 in
eqn. (11.24). The computation with ε1 = 104 and ε2 = 103 and
μ1 = 0.1, μ2 = 0.5 gives the curve ϕ vs. β̂ depicted in Fig. 11.12,
which quantitively has a shape similar to the experimental one (maxi-
mum from the left side). The extremal values are found as β̂ext = 26.56o

and ϕmax = 36.87o.
Thus, summarizing the numerical investigations and focusing on the

comparison to the experiments it becomes obvious that for the surface
as given in the experiment it is necessary to apply the orthotropic adhe-
sion – orthotropic friction interface model.

X1

X
2

α
ξ

1

O

ξ

2
μ

2
μ

1

β

β
^

Figure 11.11: Definition of the experimentally observed angle β̂, by an orthotropy
angle α for the adhesion tensor and an orthotropy angle β for the friction tensor.

In this case, the force T2 measured in direction X2 is larger, while
the ripples are softer in the same direction, which is visually observed
in experiments even without measurement of ripple stiffnesses, see
Fig. 11.2. Moreover, assuming ε1

ε2
= μ1

μ2
we obtain ϕ(α) = 0, i.e. the

block is no longer inclined, and we recover the geometrically isotropic
behavior already observed in experiments, see Sect. 11.2.2.1. In this
case, orthotropy for friction is compensated by orthotropy for adhesion
leading to the observed isotropic behavior of the block, though the rea-
son for this remains uncovered.

11.4.6 Calibration of the theoretical curve by extremal values

As found from the proposed model, the inclination angle ϕ depends only
on the ratio of eigenvalues λ1/λ2, see eqn. (11.25). This ratio contains
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Figure 11.12: Orthotropic adhesion – orthotropic friction interface model. Computed
inclination angle ϕ vs. redefined orthotropy angle β̂. Case 5: orthotropic adhesion –
orthotropic friction with angles β = α + π

2
.

information also about the ratio of adhesion parameters ε1/ε2:

ratioext =
λ1

λ2
=

ε1

ε2
· μ1

μ2
. (11.37)

Since, the friction coefficients μ1, μ2 are defined via the measurement
of forces in the experiment, the inclination angle ϕ depends only on the
ratio of eigenvalues ε1/ε2, see also the Remark in Section 11.3.2.1. This
fact gives the possibility to judge macro properties for ripple stiffnesses
without measurements. Thus, we will use eqn. (11.25) for a calibration
of the model. Calibration is provided according to following rules: 1) a
maximum rule – both theoretical and experimental curves must achieve
the same maximum; 2) a least square fit method. The friction coeffi-
cients have been determined previously to μ1 = 0.408, μ2 = 0.625.

According to the maximum rule the value for the angle ϕext defined in
eqn. (11.29) is used for calibration purposes. Taking e.g. the maximum
angle ϕmax = 11.5o measured for the velocity 12.5 cm/sec the ratio of the
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eigenvalues given in eqn. (11.29) becomes

ratioext =
λ1

λ2
= −0.20345± 1.02048 = 0.817, (11.38)

where only the positive solution is taken. The ratio of the stiffness coef-
ficient is then obtained as

ε1

ε2
=

μ2

μ1
· ratioext =

0.625

0.408
· 0.817 = 1.251 (11.39)

A more mathematically precise least square fit method leads to the
statement derived from eqn. (11.25). The following sum must be mini-
mized:

N∑
k=1

{
tanϕ(k) +

(λ2
1 − λ2

2) tanβ(k)

λ2
1 tan2 β(k) + λ2

2

}2

=

=

N∑
k=1

{
tanϕ(k) +

(r2
λ − 1) tanβ(k)

r2
λ tan2 β(k) + 1

}2

−→ min, (11.40)

where ϕ(k) are measured declination angles vs. applied orthotropy an-
gles α(k) and β(k) = π/2 − α(k). Minimization with regard to the variable
r2
λ leads to the following expression:

r2
λ =

∑N
k=1

{
tanβ(k)(1 + tan2 β(k))(tanβ(k) − tanϕ(k))

}
∑N

k=1

{
tanβ(k)(1 + tan2 β(k))(tanβ(k) + tanϕ(k))

} . (11.41)

The cases including the computed parameters are shown in
Fig. 11.13 and do not exhibit a quantitively good correlation, though we
reached the aim to show the necessity of coupling both orthotropy for
friction and orthotropy for adhesion in addition to the general applica-
bility of the proposed model. Among the possible reasons for the bad
correlations might be the following:
a) a too simple linear elastic model for adhesion region;
b) the simple Coulomb friction model for the friction region without e.g.
hysteresis etc.
Nevertheless, it seems to be important to consider fairly complex mod-
els including the coupled orthotropy for the adhesion and the friction in
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order to describe the observed phenomena more precisely.
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Figure 11.13: Observed inclination angle ϕ vs. redefined orthotropy angle β̂. Calibra-
tion: (1) by the absolute maximum value for different velocities of the block; (2) by the
least square fit method.
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11.6 Conclusions

The necessity to apply a coupled model including anisotropy for both
adhesion and friction is shown for particular soft anisotropic surfaces,
such as a periodic wavy rubber profile. The macro characteristics of
the proposed model such as macro friction coefficients μ1, μ2 can be de-
fined via the measurement of global forces, while the trajectory, namely,
the observed sliding angle ϕ(α) gives information about the ratio of or-
thotropic stiffnesses ε1/ε2. The model does not show the dependence
of particular values of stiffnesses ε1 and ε2 on the trajectory, which was
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also confirmed by experiments. The model allows to skip measurements
of surface microstiffnesses. Moreover, particular phenomena when a
sliding block shows geometrically isotropic behavior can be described
correctly with the proposed model.

The considered model contains only the coupling of linear models for
adhesion and friction, which is a possible explanation for the rather poor
quantitative correlation with experiments. The key to achieve better cor-
relation – from our point of view – can be the coupling of a more general
law for adhesion as well as for friction. Thus, a more complex elastic law
(e.g. Ogden material law for 2D case) can be taken for the adhesion re-
gion together with a more complex friction law for the friction region (e.g.
see the proposals of He and Curnier [62] and recently Zmitrowicz [214]).
The calibration process, in due course, can be provided by experimen-
tal investigations as well as by numerical tests involving homogenization
processes and multi-scale techniques, for which the methodology for the
isotropic case is shown in [9].
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Geometrically exact covariant
approach for contact between curves
representing beam and cable type
structures∗

Abstract
For curve-to-curve contact situation a geometrically exact description in
a covariant form is developed. The contact kinematics, the variational
formulation and the constitutive relations for contact tractions are de-
scribed in a specially defined curvilinear coordinate system based on
the closest point projection (CPP) procedure. The fundamental prob-
lems about the solvability of the CPP procedure for the curve-to-curve
case are investigated in detail as well. The introduced coordinate sys-
tem is independent of the choice of a contacting curve. This allows
to describe all possible relative motions of both curves including not
only normal and tangential interactions, but also rotational interaction
between curves representing e.g. circular cross sections of beams. All
necessary derivations for the iterative solution method such as lineariza-
tion of weak forms and the return-mapping schemes are fulfilled in a co-
variant form for the arbitrary distance between the curves. This allows
to apply the developed theory to both contact cases: when bodies are
contacting by their edges and to contact between beams. Another ad-
vantage is the complete independence concerning the order of approxi-

∗The chapter is published in [96] A. Konyukhov, K. Schweizerhof Geometrically exact covariant
approach for contact between curves, Computer Methods in Applied Mechanics and Engineering,
199(3):2510–2531, 2010.

407



12. COVARIANT APPROACH FOR CURVE-TO-CURVE CONTACT

mation involved in finite element construction. The numerical examples
are chosen to verify the proposed theory and to compare different cases
for both, the beam-to-beam and the edge-to-edge contact cases as well
as to illustrate the possibilities of the theory to describe relative contact
kinematics.

Keywords
contact curves, edges, beams geometrically exact covariant

12.1 Introduction

Contact between beams as a branch of computational contact con-
siderations appears to be a “stand alone specific problem” due to its
special geometrical tasks and following difficulties. Thus only fairly re-
cently, a first computational algorithm for beam-to-beam contact was
proposed by Wriggers and Zavarise [197] (1997) for non-frictional con-
tact between straight beams with circular cross sections. The mea-
sure of contact has been introduced as the shortest distance between
the central lines. Then the specific task is that two projection points
on both contact elements have to be found. Further, in order to ex-
tend this into the frictional case in Zavarise and Wriggers [200] (2000)
the return-mapping algorithm is exploited. The solution algorithm is
based on an iterative solution and involves the linearization for the par-
ticular linear contact elements. A generalization of this algorithm for
the case of rectangular cross-sections is given in Litewka and Wrig-
gers [113] (2002) and [114] (2002) for both frictional and non-frictional
cases respectively. While the mentioned publications were based on a
penalty method to enforce the contact constraints, in Litewka and Wrig-
gers [115] (2003) the Lagrange multiplier method has been involved.
One of the obvious – and up-to now not resolved – difficulties is the
linearization procedure for the case of arbitrarily curved geometry of
beams. As a first step thus, Litewka in [111] (2007) and in [112] (2007)
considered a smooth Hermite type element for contact formulations,
however, the linearization was provided as the direct derivation of the
obtained functionals via mathematical software (Mathematica in the cur-
rent case).

Another approach to contact between beams as an application for
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cable contact is described in Zhou et.al.[208] (2004) in which, a so-
called ”sliding cable” element leading to an element with a ”broken line”
is derived. This model, however, became a standard for a model of
”seat belt connections” since many years in commercial codes, such
as LS-DYNA, see [52]. A special problem of mooring cables has been
considered in Souza de Cursi [165] (1992) as a 2D contact problem of
Signorini type.

These references reveal the main difficulties and limitations of the
current state of beam-to-beam contact models:

1. Existing finite elements models are yet not serving for arbitrary
order of approximations due to problems with the linearization,
though, specific applications of high order finite elements are
known e.g. in [112], [111].

2. kinematics of contact considered in the existing models are rather
limited; by far not all possible variances of the relative motion and
corresponding relative constitutive equations are fully involved.

Thus, the main goal of the current contribution is to develop a gen-
eral theory for curve-to-curve contact from a geometrical point of view
considering a particular case of contact between bodies when the con-
tacting bodies are interacting along two curves. It can be viewed as
either contact between two sharp edges for full 3D bodies, or between
two beams as a mechanical model in the latter, if center lines of beams
or edges of bodies are considered in contact. Our aim is to describe
all contact parameters such as relative displacements and velocities,
contact forces in the specific coordinate system which is most suited
to describe the various geometrical diversities of both two curves. This
concept includes internal geometrical characteristics of curves such as
curvature and torsion as well as their relative position in 3D space. The
basics of such a concept have been developed by the authors previously
for contact between surfaces as a covariant approach for the nonfric-
tional case in [86] (2004), for the frictional case in [89] (2005), specially
reconsidered for 2D geometries in [92] (2006) and for high order finite
elements in [97] (2009), and generalized for the case of surfaces pos-
sessing coupled anisotropies for tangential adhesion and friction in [90]
and [91] (2006).
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The important feature for any curve-to-curve contact is a suitable def-
inition of the coordinate system which will allow to distinguish all kine-
matical details of the mutual interaction. Thus all contact measures for
relative motions should be directly obtained in this coordinate system.
Obviously a distance between two curves provides a definition of a mea-
sure of normal contact interaction. This leads to the well known idea of
the closest point projection (CPP) procedure. How the closest point is
representing the contact appropriately will be discussed later. Further,
the specific CPP procedure allows to set up two local curvilinear coordi-
nate systems attached to the each curve. These coordinate systems are
given in terms of Serret-Frenet formulas for 3D curved lines. This allows
to consider any motion of one curve relative to another. A good obser-
vation of the motion gives us then a choice of proper measures for such
an interaction between two curves. Afterwards, all possible parameters
such as sliding distances, variations, forces as well as the necessary
operations such as derivations, formulation of the return-mapping algo-
rithm are considered in a covariant form using the curvilinear metrics of
the specific two coordinate systems attached to the curves. As a result,
the complete diversity of contact interactions including even a possi-
ble moment interaction are described. Finally, a compact form of the
computational algorithm – a-priori independent on the type and order of
approximation of the curves – is established.

The outline of the contribution is then given as follows:

First, the closest point procedure in the local Serret-Frenet coordinate
system attached to the curves is presented leading to a special local 3D
coordinate system. A geometrical analysis of solvability for the CPP pro-
cedure is then given in this local coordinate system illustrated by some
examples showing the geometrical properties of the CPP procedure in-
cluding restrictions on curvature and position of an osculating circle in
space. Then geometrical characteristics of the curvilinear coordinate
system – structure of the metric tensor and covariant derivatives – are
studied. The kinematics of the curve-to-curve interaction can be then
considered in the local coordinate system and corresponding measures
of contact interaction are derived. The components of a contact force
vector are hereby obtained as energy conjugated pairs for the rate of
defined contact measures as a contravariant vector in the correspond-
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12.2 Closest point projection and definition of local coordinate systems

ing basis. A rotational moment between curves is appearing in addition
to normal and tangential forces. By taking into account equilibrium be-
tween two interacting curves a weak formulation of contact, morever, a
symmetric form is obtained. Since a curve-to-curve interaction is result-
ing from various geometrical situations constitutive equations for contact
traction have to be considered separately for the cases of beams or ca-
bles and for edges of solid bodies. A separate section follows devoted
to the linearization of the nonlinear expressions exploiting the covari-
ant differentiations of the weak form together with the return-mapping
scheme. The description of the finite element discretization shows the
implementation details for the simplest case of a linear approximation
of the edges of the contacting bodies. The full formulation is derived
for arbitrary large motions and an arbitrary structure of the curves. The
numerical examples are specifically selected to show the range of the
applicability of the developed computational scheme.

12.2 Closest point projection and definition of local
coordinate systems

The closest distance between two curves is a natural measure of any
contact interaction between two curves. This distance can be defined in
any convenient coordinate system. The standard coordinate system for
the final discretization and thus for the numerical computation is a global
Cartesian coordinate system, but in order to consider some local geo-
metrical properties it is far more convenient to consider the kinematics
of deformation and to describe the differential properties of the curves
in coordinate systems geometrically attached to the curves. Known in
differential geometry such a system is the Serret-Frenet coordinate sys-
tem to be defined in any point of the curve e.g. in a point which gives
rise to a contact measure between curves. This allows to exploit stan-
dard notations known in differential geometry ([103], [34]) throughout
the article.

Let us consider, see Fig. 12.1, two curves in 3D Cartesian space ar-
bitrarily parameterized with parameters ξI , I = 1, 2, where I is a number
assigned to the curve. For further developments – except special cases
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Figure 12.1: Closest point projection (CPP) procedure. Definition of the Serret-Frenet
coordinate system (τ I , νI , βI) and a local coordinate system (τ I , eI , gI) based on CPP
procedure.

– the curves are assumed to be continuously differentiable, namely C1-
continuous with resp. to the parameter ξI . The parameterization in vec-
tor notation can be written as

ρI = ρ(ξI), I = 1, 2 number of curve (12.1)

or via coordinates x1
I , x

2
I, x

3
I in Cartesian space as

xj
I = xj

I(ξI), I = 1, 2, j = 1, 2, 3. (12.2)

An arc-length sI for the I-th curve is then used in the differential ge-
ometry considerations for the curves as a natural coordinate to describe
all their geometrical characteristics. It is defined via the differential of a
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12.2 Closest point projection and definition of local coordinate systems

vector ρI

dsI = ds(ξI) =
√

ρI,ξI
· ρI,ξI

dξI = J(I)dξI (no summation) I = 1, 2. (12.3)

Here the following short notations are introduced for derivatives:

• derivative with respect to a convective coordinate ξI

ρ̇I = ρI,ξI
≡ ∂ρI

∂ξI

• derivative with respect to the arc-length (natural coordinate) sI

ρ′
I ≡

∂ρI

∂s
;

• Jacobian of the transformation sI → ξI

J(I) =
dsI

dξI
=

√
ρI,ξI

· ρI,ξI
=

√√√√ 3∑
j=1

(
∂xj

∂ξI

∂xj

∂ξI

)

The coordinates s1, s2 will be used then to define measures of the
tangential interaction.

The closest distance |−−−→C1C2| = |ρ12| between two curves can be cho-
sen as a natural measure of the contact interaction (see Fig. 12.1). How-
ever, the definition of this distance requires the knowledge about the
points C1 and C2, and, therefore, its arc-lengths s1 and s2 as local coor-
dinates on both curves respectively. It leads to the auxiliary minimization
problem for the following distance function F(s1, s2) :

F(s1, s2) =
1

2
‖ρ1(s1) − ρ2(s2)‖2 −→ min (12.4)

This mathematical problem is called closest point projection (CPP)
procedure. The solution gives us two coordinates sp

1 and sp
2. Then the

closest distance is defined as

r = |ρ12| = |ρ1(s
p
1) − ρ2(s

p
2)|. (12.5)

The necessary conditions minimizing F(s1, s2) in eqn. (12.4) lead to
derivatives with respect to the arc-lengths s1 and s2 as local coordinates
being zero:
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F′ =

{
(ρ1 − ρ2) · ρ′

1 = 0

−(ρ1 − ρ2) · ρ′
2 = 0

=

{
(ρ1 − ρ2) · τ 1 = 0

−(ρ1 − ρ2) · τ 2 = 0
, (12.6)

with unit tangent vectors introduced as derivatives with respect to the
arc-length τ I = ρ′

I .
In general, equation system (12.6) is non-linear and an iterative

method should be applied for its solution in a numerical realization. For
the nonlinear system the question of solvability becomes then important.
Such an analysis is possible in a special coordinate system defined in
the following section.

12.2.1 Definition of a local coordinate system

First, we start with a standard Serret-Frenet basis connected to the I-
th curve. As is known, at each sufficiently smooth point of a curve one
can define three unit vectors: a unit tangent vector τ , a unit normal
vector ν pointing to a center of curvature of the curve and a unit bi-
normal vector β defined as a cross product

β = τ × ν. (12.7)

These three unit vectors are connected via the derivatives of the curve ρ

with respect to the arc-length s. The formulas are known in the standard
literature on differential geometry, see e.g. in [103], [34], as Serret-
Frenet formulas: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dτ

ds
= kν

dν

ds
= −kτ + κβ

dβ

ds
= −κν

. (12.8)

Here, k is a curvature, and κ is a torsion of a spatial curve. Assuming
an arbitrary parameterization in eqn. (12.1) and in the Serret-Frenet for-
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mulas (12.8) the curvature k and the torsion κ of a spatial curve can be
computed as

kβ =
ρ̇ × ρ̈

|ρ̇|3 −→ k =
|ρ̇ × ρ̈|
|ρ̇|3 , (12.9)

κ =
det(ρ̇, ρ̈, ∂3ρ/∂ξ3)

|ρ̇ × ρ̈|2 =
(ρ̇ × ρ̈) · ∂3ρ/∂ξ3

|ρ̇ × ρ̈|2 . (12.10)

Now, we attach these Serret-Frenet frames τ I(sI), νI(sI), βI(sI) to
the projection points (C1 and C2), see Fig. 12.1.

The closest distance between the curves denoted as absolute value
of the vector |−−−→C1C2| becomes a second coordinate r in our specially de-
fined coordinate system, while the arc-length will be the first coordinate
sI . A vector corresponding to the closest distance

−−−→
C1C2 and defined as

ρ12 is orthogonal to both vectors τ 1 and τ 2 and, therefore, is represent-
ing an intersection line of two planes ν1 C1 β1 and ν2 C2 β2. The unit
vector of ρ12 is denoted as e1. Introducing the parameterization in the
plane ν1 C1 β1 for the vector e1 via an angle ϕ1, see again Fig. 12.1 we
obtain

ρ12 = ρ2 − ρ1 = re1(ϕ1) ∈ νI CI βI − plane. (12.11)

Here, the angle ϕ1 between the unit normal νI and the closest distance
vector ρ12 becomes then a third coordinate ϕ1 in our new coordinate
system. Thus, we can redefine a new coordinate system based on

a) a unit tangent vector τ I ,

b) a unit vector of the closest distance vector eI ,

c) a unit vector gI orthogonal to both τ I and eI .

The last two vectors are defined via the basic unit vectors νI , βI as
follows:

e1(ϕ1) ≡ ν1 cos ϕ1 + β1 sin ϕ1 (12.12a)

g1(ϕ1) =
∂e1

∂ϕ1
= −ν1 sinϕ1 + β1 cos ϕ1. (12.12b)

In fact e1 and g1 are defining a polar coordinate system in the plane
orthogonal to τ I . The new introduced coordinate system defined by the
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unit vectors τ I , eI , gI is orthogonal, but changing in space with regard
to a given curve. Summarizing, a relative motion of a point C2 and thus
the motion of a second curve can now be considered in the following
coordinate system:

ρ2(s1, r, ϕ1) = ρ1(s1) + re1(ϕ1), 1 ↔ 2. (12.13)

Thus, a 3D-local curvilinear coordinate system with convective coordi-
nates s1, r, ϕ1 is defined. These coordinates are representing a set of
convective coordinates for the curve in analogy to convective surface
coordinates ξ1, ξ2 and the penetration ξ3. Extensive usage of convective
coordinates for surface-to-surface contact is described in Laursen [106].

Remark.
the description is symmetric with regard to any choice of a curve 1 ↔ 2.

Remark.
the coordinate r is always positive and identical for both curves.

12.2.2 Analysis of uniqueness and existence of solutions for the
CPP: Definition of a projection domain

In this section we discuss a choice in which solutions of the CPP pro-
cedure exist and are unique a-priori. A similar analysis of the CPP pro-
cedure for surfaces is given in Konyukhov and Schweizerhof [95]. As is
known, the convexity of the function F in eqn. (12.4) would lead to the
fulfillment of uniqueness and existence. Then the positivity of a second
derivative F

′′

> 0 follows. The second derivative exploiting the Serret-
Frenet formulas (12.8) can be written as

F
′′

=

[
ρ′

1 · τ 1 + (ρ1 − ρ2) · τ ′
1 −ρ′

2 · τ 1

−ρ′
1 · τ 2 ρ′

2 · τ 2 − (ρ1 − ρ2) · τ ′
2

]

=

[
τ 1 · τ 1 + k1(ρ1 − ρ2) · ν1 −τ 1 · τ 2

−τ 1 · τ 2 τ 2 · τ 2 − k2(ρ1 − ρ2) · ν2

]

=

[
1 + k1(ρ1 − ρ2) · ν1 −τ 1 · τ 2

−τ 1 · τ 2 1 + k2(ρ2 − ρ1) · ν2

]
.

(12.14)
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Defining then ψ as an angle between two tangent lines τ 1 and τ 2

τ 1 · τ 2 = cos ψ (12.15)

and taking into account the coordinate system in eqn. (12.13) we obtain

F
′′

=

[
1 − k1r cosϕ1 − cos ψ

− cosψ 1 − k2r cos ϕ2

]
(12.16)

with the determinant as

detF
′′

= (1 − k1r cosϕ1)(1 − k2r cos ϕ2) − cos2 ψ. (12.17)

A Sylvester criterion can be now applied to enforce the positivity of
the matrix F

′′

. This leads to both, a positive first term of the matrix
F

′′

11 > 0 and a positive determinant detF
′′

> 0:

{
1 − kIr cosϕI > 0

sin2 ψ + r(rk1k2 cos ϕ1 cos ϕ2 − (k1 cos ϕ1 + k2 cos ϕ2)) > 0.
(12.18)

We shall now study step-by-step several particular cases in order
to understand the geometrical properties of the inequality conditions in
eqn. (12.18).

12.2.2.1 Case 1: both lines are straight lines

In this – simplest – case both curvatures are zero k1 ≡ 0, k2 ≡ 0 and
eqn. (12.17), resp. the Sylvester criterion in eqn. (12.18), is transformed
as

sin2 ψ 	= 0 −→ ψ 	= πn, n = 0, 1, 2, ... (12.19)

This has a simple geometrical interpretation – for the existence and
uniqueness of the CPP procedure for straight lines the angle de-
fined between tangent vectors τ 1 and τ 2 in eqn. (12.15) should not
be zero and, therefore, the lines should not be parallel.
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12.2.2.2 Case 2: two circles in a plane

As a next step for the complexification we consider first two overlapping
circles laying in a plane, see Figs. 12.2, 12.3 and 12.4. In this case
an angle between the tangent vectors τ 1 and τ 2 is zero ψ = 0 (the
critical case for the straight lines). The situation is also rather difficult for
overlapping circles with the angle between the normal ν1 and the vector
e1 being zero ϕ1 = ϕ2 = 0. Denoting the radii of curvature as as RI =
1

kI
, the first equation in the Sylvester criterion (12.18) leads to r < RI ,

however the determinant gives us the requirement r > R1 + R2. This
inconsistency for an enforcement of positivity means that the second
derivative F

′′

is neither positive, nor negative, making it impossible to use
the second derivative F

′′

only. One can see the difficulties in Fig. 12.2
where the multiplicity of the solution is depicted: the shortest distance
can be defined as C1S2, while the initial procedure assumes C1C2. We
note that even in this case the determinant is not zero which makes it
possible to exploit the Newton scheme for the iterative solution.

It is possible to simplify the analysis of the uniqueness if we con-
sider projection domains for both curves separately. The projection
domain for a curve, see Konyukhov and Schweizerhof [95], is defined as
a 3D domain from which any point can be projected uniquely onto the
current curve. This domain is obtained as follows.

Projection domain for a spatial curve

1. a half-space domain with ϕI ∈ [π/2, 3π/2]:

Ω(x, y, z) =

{
r ∈ R3| r = ρI(sI) + reI(ϕI), ϕI ∈ (

3π

2
, 2π), r ∈ (0, inf)

}

2. a layer with ϕ ∈ (−π/2, π/2). The projection of the vector reI onto

the normal νI must be smaller than the radius of curvature RI =
1

kI
(shadowed domains in Fig. 12.7):

Ω(x, y, z) =
{
r ∈ R3| r = ρI(sI) + reI(ϕI), ϕI ∈ (−π

2
,
π

2
), 0 < r cos ϕI < RI .

}
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12.2 Closest point projection and definition of local coordinate systems

In a case of overlapping circles we are falling into case (2), see
Fig. 12.3.

Summarizing, we can derive the domain of existence and uniqueness
of the CPP procedure as an overlapping of two projection domains for
the corresponding curves. Thus for the existence and uniqueness
of the CPP procedure for two overlapping circles the distance be-
tween two points should be less than the minimal radius of curva-
ture.

O1

C

τ τ2 1

1C
2

r O2 S2

Figure 12.2: Two overlapping circles in a single plane. The CPP procedure can have
a multiple solution: which choice C1C2 or C1S2?

For non-overlapping circles, see Fig. 12.4, the angle is ϕ1 = π, and
the Sylvester criterion (12.18) is always fulfilled leading to the conclu-
sion that the closest distance between two non-overlapping circles
is uniquely defined. This situation is also falling into case (1) as the
overlapping of projection domains for two separated circles.

Remark.
The conclusions of the current case are still valid if we consider arbitrary
curves with the osculating circles laying in parallel planes.

12.2.2.3 Case 3: osculating circles in orthogonal planes

Let us consider now two arbitrary curved lines (k1 	= 0, k2 	= 0) which
have two osculating circles laying in orthogonal planes, but still pos-
sessing parallel tangent vectors, e.g. ψ = π, for the case shown in
Fig. 12.5.
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O O1 2

C C

r

2 1

τ τ1 2

Figure 12.3: Two overlapping circles in a single plane. The CPP procedure has a
unique solution in the overlapping region of two projection domains {r ∈ (0, R1)}∩{r ∈
(0, R2)} and, therefore, if r < min{R1, R2}

r O2O1

τ1

τ 2

C2

1ν C1

1ϕ

Figure 12.4: Two non-overlapping circles in a single plane. The CPP procedure has
always a unique solution (Closest distance is uniquely defined).

One can see that for the exterior projection with ϕ1, ϕ2 ∈ [π/2, 3π/2].
the Sylvester criterion is fulfilled.
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Y

Z

X
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L

2
O

C2

O1

1C

1

τ

τ
ν1

2

r

1ϕ

ν2

2
ϕ

P1

Figure 12.5: Two curves with osculating circles laying in orthogonal planes.
The closest distance is uniquely defined if two points are situated in the over-
lapping projection domains. C1 ∈ {(r, ϕ2) | 0 < r + ∞, ϕ2 ∈ [π/2, 3π/2]} C2 ∈
{(r, ϕ1) | r cos ϕ1 < R1, ϕ1 ∈ [−π/2, π/2]}.

12.2.2.4 Case 4: a singular determinant for curved lines

The example of an extremal situation with singular determinant F
′′

in
eqn. (12.17) is illustrated in Fig. 12.6. In this case the tangent vectors
τ 1 and τ 2 are orthogonal leading to ψ = π/2, and therefore, cos ψ =
0. Moreover, the closest point C2 is projected exactly into a center of
curvature O1 leading to the fulfillment of R1 − r cos ϕ1 = 0 and finally to
F

′′

= 0.
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Oy
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τ 2
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r
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Figure 12.6: Singular determinant detF
′′

= 0 for arbitrary curves. The tangent vectors
are orthogonal and the closest point C2 is projected into a center of curvature.

12.2.2.5 Case 5: arbitrary curves in space

For arbitrary situations the direct analysis of eqns. (12.18) is rather com-
picated, however, the concept of two overlapping projection domains
described in paragraph 12.2.2.2 can be effectively applied. Fig. 12.7 il-
lustrates the analysis. A point C2 lays in the projection domain of type (1)
in paragraph 12.2.2.2 (a half-space domain) of the first curve. A point
C1 lays in the projection domain of type (2) in paragraph 12.2.2.2 (a
layer) of the first curve because the projection onto the osculating circle
P2C2 is smaller than the radius of curvature R2 = O2C2. The domain of
existence and uniqueness of the CPP procedure is constructed as the
overlapping of projection domains for two curves.
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Figure 12.7: Two arbitrary curves. The solution depends on the positions of oscu-
lating circles which give rise to corresponding projection domains. The domain for
uniqueness of the solution of a CPP procedure for both curves is constructed as the
overlapping of projection domains for two curves.

12.2.3 Computational issues of the CPP procedure

The CPP procedure written in terms of the arc-length parameter in
eqn. (12.4) is efficiently solved numerically via a Newton-type solver.
The procedure can be outlined as follows. With arbitrary parameteriza-
tions via ξ1 and ξ2, the second derivative F

′′

in eqn. (12.14) becomes
then a matrix

∂2F

∂ξ2 = F̈ =
∂Φ

∂ξ
=

[
ρ̇1 · ρ̇1 + (ρ1 − ρ2) · ρ̈1 −ρ̇1 · ρ̇2

−ρ̇1 · ρ̇2 ρ̇2 · ρ̇2 + (ρ2 − ρ1) · ρ̈2

]
(12.20)

while the first derivative F
′

is defined similar to eqn. (12.6)

Ḟ = Φ =

{
(ρ1 − ρ2) · ρ̇1

−(ρ1 − ρ2) · ρ̇2

}
. (12.21)
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The last equation should be solved iteratively as Ḟ = Φ = 0. Here an
additional variable Φ is introduced to illustrate the classical structure of
the Newton iterative scheme.

The tangential coordinates ξp
1 and ξp

2 along both lines are computed
then via a Newton iteration procedure as

ξ(n+1) = ξ(n) + Δξ with an initial guess ξ(0)

and increments Δξ =

{
Δξ1

Δξ2

}
= −

[
∂Φ

∂ξ

]−1

Φ = −(F̈)−1Ḟ. (12.22)

In the section devoted to the finite element implementation we specify
this procedure for a particular contact element.

12.3 Kinematics of contact.
Measures of contact interaction

In this section we study differential properties of the coordinate system
defined in eqn. (12.13). Since the coordinate system is arbitrarily curvi-
linear it is necessary to define the covariant operations. As a prepara-
tion, we compute partial derivatives of the unit vectors e1, g1 introduced
in eqns. (12.12a, 12.12b).

The derivatives of the vector e1 with respect to s1 and with respect to
ϕ1 are

∂e1

∂s1
= cos ϕ1(−k1τ 1 + κ1β1) + sin ϕ1(−κ1)ν1 = (12.23a)

= −k1τ 1 cosϕ1 + κ1g1

∂e1

∂ϕ1
= g1. (12.23b)

The derivatives of the vector g1 with respect to s1 and with respect to
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ϕ1 are

∂g1

∂s1
= − sin ϕ1[−k1τ 1 + κ1β1] − cos ϕ1κ1ν1 = k1τ 1 sin ϕ1 − κ1e1

(12.24a)

∂g1

∂ϕ1
= −e1. (12.24b)

Now, we can define coordinate vectors r1, r2, r3 (a subscript defining
the first curve is omitted) of the curvilinear coordinate system as partial
derivatives with respect to coordinates s1, r, ϕ1:

r1 =
∂ρ2

∂s1
=

∂ρ1

∂s1
+ r

∂e1

∂s1
= τ 1(1 − k1r cosϕ1) + κrg1 (12.25a)

r2 =
∂ρ2

∂r
= e1 (12.25b)

r3 =
∂ρ2

∂ϕ
= rg1. (12.25c)

The corresponding covariant metric tensor is given by components
(subscript (.)1 is omitted)

g11 = (r1 · r1) = (1 − kr cos ϕ)2 + κr2

g12 = (r1 · r2) = 0

g13 = (r1 · r3) = κr2

g22 = 1

g33 = r2

leading to a matrix

[gij] =

⎡
⎣ (1 − kr cos ϕ)2 + κ

2r2 0 κr2

0 1 0
κr2 0 r2

⎤
⎦ . (12.26)

The system is, in general, non-orthogonal (see g13 	= 0) and is chang-
ing in space reflecting the geometry of a given curve. However, at the
given point on a curve with r = 0 the system is orthogonal.

For the case of edge-to-edge contact the distance r between curves
is a small value and the terms containing torsion κ1 and curvature k1 are
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also usually small at least within a single finite element. It motivates us
to consider all parameters in such a case in a coordinate system exactly
attached to the curve at r = 0, removing all small terms containing com-
binations of either a curvature or a torsion together with the r-coodinate,
see the analogy for a tangent plane for the surface-to-surface contact in
[86], [89] and [92]. Thus, we consider also, an orthogonal basis as

r1 = τ 1, r2 = e1, r3 = rg1 (12.27)

with the corresponding metric tensor defined by a matrix

[gij] =

⎡
⎣ 1 0 0

0 1 0
0 0 r2

⎤
⎦ . (12.28)

Exactly for this situation we define the contravariant components of
the metric tensor as inverse components of the matrix in eqn. (12.28). It
leads to the standard definition of the contravariant basis ri, i = 1, 2, 3

for the curve with r = 0 as

ri = gijrj (12.29a)

r1 = τ 1, r2 = e1, r3 =
1

r
g1. (12.29b)

12.3.1 Rates and variations of measures for contact interaction

Now we can compute a full time derivative for a vector r2(s1, r, ϕ1) de-
scribing a full velocity vector in our coordinate system

dρ2

dt
=

∂ρ1

∂t
+ (1 − rk1 cosϕ1)ṡ1τ 1 + ṙe1 + r(κ1ṡ1 + ϕ̇1)g1. (12.30)

Redefining now the full velocity vector of the second point C2 as

v2 =
dρ2

dt
(12.31)
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12.3 Kinematics of contact. Measures of contact interaction

and the translational velocity of the first point C1 as

vt
1 =

∂ρt
1

∂t
(12.32)

we can rewrite the relative velocity vector of a point C2 in the coordinate
system of the first curve as

v2 − vt
1 = (1 − rk1 cos ϕ1)ṡ1τ 1 + ṙe1 + r(κ1ṡ1 + ϕ̇1)g1. (12.33)

Keeping in mind the edge-to-edge contact applications it is more con-
venient to consider the relative velocity vector in the coordinate system
attached exactly to the contact point. Thus, we obtain the expression of
the relative velocity vector (12.33) via the vectors τ 1, e1, g1 as

v2 − vt
1 = ṡ1τ 1 + ṙe1 + (κ1ṡ1 + ϕ̇1)rg1. (12.34)

Here, the last term remains reflecting the geometry of a 3D spatial curve,
because rg1 is a covariant basis vector r3, but not a small value, however
a term rk1 cos ϕ1 is assumed to be small.

Computing a scalar product with the coordinate vectors rI at r = 0

and, therefore, with τ 1, e1, g1 we obtain the rate of convective coordi-
nates as ⎧⎪⎨

⎪⎩
ṡ1 = (v2 − vt

1) · τ 1

ṙ1 = (v2 − vt
1) · e1

ϕ̇1 + κ1ṡ1 = (v2 − vt
1) ·

g1

r

1 ↔ 2. (12.35)

This gives us the rate of measures for the contact interaction between
curves

• ṡ1 – for tangential interaction;

• ṙ – for normal interaction;

• ϕ̇1 – for angular interaction.

The last coordinate is describing the rotation of the first curve (plane
e1, g1) along the vector τ 1.

For arbitrary large motions we also derive the exact – not simplified –
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12. COVARIANT APPROACH FOR CURVE-TO-CURVE CONTACT

expression for the rates of measures from eqn. (12.33):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṡ1 =
(v2 − vt

1) · τ 1

(1 − rk1 cos ϕ1)
ṙ1 = (v2 − vt

1) · e1

ϕ̇1 =
(v2 − vt

1) · g1

r
− κ1ṡ1 =

=
(v2 − vt

1) · g1

r
− κ1

(v2 − vt
1) · τ 1

(1 − rk1 cosϕ1)
.

1 ↔ 2 (12.36)

Remark.
Using the analogy between the kinematical values and the variations
we can write the variations of the relative displacements in full form (see
eqn. (12.33)) as

δρ2 − δρ1 = (1 − rk1 cos ϕ1)δs1τ 1 + δre1 + r(κ1δs1 + δϕ1)g1, (12.37)

or taking into account small values at r = 0 (see eqn. (12.34)) as

δρ2 − δρ1 = δs1τ 1 + δre1 + r(κ1δs1 + δϕ1)g1 (12.38)

as well as the variations of convective coordinates at r = 0 as⎧⎨
⎩

δs1 = (δρ2 − δρ1) · τ 1

δr1 = (δρ2 − δρ1) · e1

r(κ1δs1 + δϕ1) = (δρ2 − δρ1) · g1

1 ↔ 2. (12.39)

12.3.2 Linearization in a covariant form of variations for contact
measures

For the forthcoming linearization we need also the covariant derivatives
of the variation of the relative displacement vector in eqn (12.37). The
covariant derivation of vector components is the derivation operation
taking into account the change of a basis vector in space. Following the
standard derivation the Christoffel symbols Γk

ij, see [34], are required

∂ρi

∂ξj
= ρij = Γk

ijρk, (12.40)
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12.3 Kinematics of contact. Measures of contact interaction

but instead of computing the Christoffel symbols, we will directly
compute derivatives of coordinate vectors using their definitions in
eqns. (12.12a-12.12b) and the Serret-Frenet formulas (12.8). For the
derivation of the relative virtual displacements we can take the full
values given in eqn. (12.37) without any simplification. The following
derivatives are obtained

with respect to s1
∂

∂s1
(δρ2 − δρ1) = (12.41a)

= k1(1− k1r cos ϕ1)δs1ν1 + (−k1 cos ϕ1τ 1 + κ1g1)δr + r(κ1δs1 + δϕ1)(k1 sin ϕ1τ 1 −κ1e1)

= [−k1 cosϕ1δr + (κ1δs1 + δϕ1)rk1 sin ϕ1]τ 1+

k1(1 − k1r cos ϕ1)δs1ν1 − rκ1(κ1δs1 + δϕ1)e1 + κ1δrg1;

with respect to r

∂

∂r
(δρ2 − δρ1) = −k1 cosϕ1δs1τ 1 + (κ1δs1 + δϕ1)g1 (12.42)

and with respect to ϕ1

∂

∂ϕ1
(δρ2 − δρ1) = k1r sin ϕ1δs1τ 1 + δrg1 − (κ1δs1 + δϕ1)re1. (12.43)

The full covariant derivative operator Ls,r,ϕ[...] has the following form
(taking into account the derivation of coordinate vectors)

Ls,r,ϕ[...] ≡ ṡ
∂

∂s
[...] + ṙ

∂

∂r
[...] + ϕ̇

∂

∂ϕ
[...]. (12.44)

Summarizing all partial derivatives in eqns. (12.41a), (12.42), (12.43)
in one operator (12.44) and expressing a normal ν via e and g

(eqns. (12.12a, 12.12b)) as

ν1 = e1 cos ϕ1 − g1 sin ϕ1 (12.45)

we obtain the derivative of the variation of the relative displacement vec-

429



12. COVARIANT APPROACH FOR CURVE-TO-CURVE CONTACT

tor, or in fact the second derivative of the relative displacement vector,
as

Ls,r,ϕ[(δρ2 − δρ1)] = [rk1κ1 sinϕṡ1δs1− (12.46a)

− k1 cos ϕ1(ṡ1δr + ṙδs1) + rk1 sin ϕ1(ṡ1δϕ1 + ϕ̇1δs1)] τ 1 (12.46b)

+ [k1 cos ϕ1(1 − rk1 cos ϕ1)ṡ1δs1 − r(κ1ṡ1 + ϕ̇1)(κ1δs1 + δϕ1)] e1 (12.46c)

+ [−k1 sin ϕ1(1 − rk1 cos ϕ1)ṡ1δs1 + (ṙδϕ1 + ϕ̇1δr) + κ1(ṡ1δr + ṙδs1)] g1 (12.46d)

Remark.
The long expressions in eqns. (12.46b), (12.46c), (12.46d) represent
the exact linearization in a covariant form for the case of an arbitrary
motion (even for a large distance r between curves). For simplification
the derivatives of the curvature k and the torsion κ are not presented,
however, due to the derivation with respect to the arc-length s, the ex-
pression is exact for a line of constant curvature and torsion, e.g. for
circular and spiral lines.

We have to note that the linearization is given by a symmetric bilinear
form with respect to convective variables s, r, ϕ.

12.4 Weak form

A weak form, or variational form, is representing the equilibrium condi-
tions between two curves via the principle of virtual work. Let us con-
sider RIdsI as a force vector distributed along a curve segment dsI ,
I = 1, 2. For an infinitesimal curve segment dsI a virtual displacement
vector δρI is defined. Then a virtual work δW for two contacting curves
is computed as integral along the mutual contact area

δW =

∫
s1

δρ1 · R1ds1 +

∫
s2

δρ2 · R2ds2. (12.47)
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12.4 Weak form

Considering that two curves are contacting along the mutual boundary
the equilibrium conditions should be point-wisely fulfilled

R1ds1 + R2ds2 = 0. (12.48)

Using eqn. (12.48) in eqn. (12.47) the virtual work can be equivalently
written as an integral either along the first curve, or along the second
curve

δW =

∫
s1

R1 · (δρ1 − δρ2)ds1 =

∫
s2

R2 · (δρ2 − δρ1)ds2. (12.49)

For symmetry reasons we can use the following:

δW =
1

2

{∫
s1

R1 · (δρ1 − δρ2)ds1 +

∫
s2

R2 · (δρ2 − δρ1)ds2

}
. (12.50)

Now taking into account the developed contact kinematics between
curves – only point-wise contact between curves with regard to the CPP
procedure – we can define forces acting point-wisely via the Dirac delta
function D(sI − sp

I) along curve sI at the contact (projection) point sp
I

RI(sI) = RID(sI − sp
I). (12.51)

Thus, the virtual work in eqn. (12.50) is immediately transformed into

δW = Sym {R1 · (δρ1 − δρ2)} =
1

2
{R1 · (δρ1 − δρ2) + R2 · (δρ2 − δρ1)} . (12.52)

The force vector R1 should be defined as the energy conjugate vec-
tor, i.e. force components and variation of coordinates (12.38) are con-
jugated pairs representing that the scalar product in eqn. (12.52) leads
to the virtual work. For arbitrary large motions of curves the force vec-
tor should be expressed via the vectors ri in eqns. (12.25a), (12.25b),
(12.25c) exploiting then the full metic tensor in eqn. (12.26). Thus, we
can define R1 in a contravariant form as

R1 = Riri = Ri
phys

ri√
gii

, (12.53)
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where the physical components Ri
phys are introduced as

R1
phys = T (s1) − tangential force along τ 1,

R2
phys = N(r) − normal force along e1,

R3
phys = Rϕ(ϕ) − rotational (torsional) force along g1.

(12.54)

Thus, the full force in the basis of a first curve, see Fig. 12.8, is written
as

R1 = T1

[
(1 − rk1 cos ϕ1) τ 1 + κ1r g1√

g11

]
+ N e1 + Rϕ1

g1 =

= T1
(1 − rk1 cos ϕ1)√

g11
τ 1 + N e1 +

(
Rϕ1

+ T1
κ1r√
g11

)
g1. (12.55)

Since the coordinate vectors ri are changing, the tangential component
T on a curve has then a contribution projected on both τ 1 and g1 vectors
at r 	= 0. However, the force at the projection point of the first curve with
r = 0 is expressed as follows

R1 = T1τ 1 + Ne1 +
M1

r
g1 1 ↔ 2. (12.56)

The force N is a mutual normal force between two curves acting along
the common normal vector e1 = −e2 (thus, subscript is omitted) and

Rϕ =
M1

r
represents a force acting at a distance r. This force results in

an equivalent rotational moment M1 at the projection point acting along
the τ 1 axis of the first curve (plane e1, g1), see Fig. 12.8. The moment is
appearing due to the dimension reduction and can be interpreted as a
moment in a 1D-Cosserat continuum. Using symmetry the correspond-
ing components with the index (...)2 are acting on the second curve.

Now, the virtual work in eqn. (12.52) taking into account eqn. (12.37)
for the variation of the relative displacement vector is transformed into

δW = Sym{R1 · (δρ1 − δρ2)} = −Sym{Riδξjgij} = −Sym

{
Ri

phys√
gii

gij δξj

}
, (12.57)

where the scalar product is expressed via the full metric tensor gij in
eqn. (12.26) and, for a while, convective coordinates denoted as s =
ξ1, r = ξ2, ϕ = ξ3. Expressing eqn. (12.57) in the basis of a curve via the
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physical components we obtain:

δW = −Sym
{
T1

√
(1 − rk1 cos ϕ1)2 + (rκ1)2 δs1 + N δr + M1 δϕ1 (12.58a)

+T1
κ1r

2√
(1 − rk1 cosϕ1)2 + (rκ1)2

δϕ1 + M1κ1 δs1

}
. (12.58b)

The minus sign appears as the expression in eqn. (12.37) is given for
(δρ2 − δρ1). The weak form expressed in the basis ri with arbitrary r

contains – due to the non-orthogonality of the coordinate vectors ri –
the last mixed terms in eqn. (12.58b). One can also obtain this result
using eqn. (12.37) together with eqn. (12.55) directly. At the projection
point on a curve (r = 0) the variational equation becomes

δW = Sym

⎧⎨
⎩T1δs1︸ ︷︷ ︸

δWT

+ Nδr︸︷︷︸
δWN

+ M1(δϕ1 + κδs1)︸ ︷︷ ︸
δWM

⎫⎬
⎭ . (12.59)

Exploiting the variations of convective coordinates at r = 0 in
eqn. (12.39) the variational equation can be written in vector form as

δW = Sym

⎧⎪⎪⎨
⎪⎪⎩T1(δρ2 − δρ1) · τ 1︸ ︷︷ ︸

δWT

+ N(δρ2 − δρ1) · e1︸ ︷︷ ︸
δWN

+
M1

r
(δρ2 − δρ1) · g1︸ ︷︷ ︸

δWM

⎫⎪⎪⎬
⎪⎪⎭ . (12.60)

We obtain the weak form allowing to describe the:

1. normal interaction between curves (part δWN );

2. relative tangential interaction independently along each curve (part
δWT );

3. relative moment interaction independently for each curve (part
δWM ).

The last two positions are the obvious achievement of the current
covariant description, because

• it is not possible within the previously known models, see the
overview in Wriggers [188], to distinguish independently the full 3D
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relative motion including the relative normal, tangential and rota-
tional motions along each curve;

• only the current covariant description allows to define the moment
interaction between curves in an energy consistent form as the full
relative motion is included.

Remark.
Interaction in the circumferential direction is considered to be essential
in the mechanics of wire ropes, see [30]. Thus, the developed model
can be directly applied to the analysis of contact interaction inside the
wire ropes and similar objects.

Remark.
The weak form presented in eqns. (12.59), (12.60) is obtained with the
assumption of a small distance r and thus by construction is suitable
for the case of edge-to-edge contact. For the case of beam-to-beam
contact the value r includes the geometrical parameters of a beam and,
therefore, is not small for arbitrary beams. In such a case as well as
in a case with extremely curved geometry (e.g. for high-order FE with
exact geometry) the full variational equation (12.58a), (12.58b) should
be taken.

The developed theory produces an open question:

How to define additional constitutive equations for the moments
M1 and M2. Some proposals considered in Section 12.5 are devoted to
constitutive equations, however, it is clear that a non-frictional problem
can be characterized only by the functional δWN , while the full sticking
case will require all parts of the functional δW in the correspond-
ing variational equations (12.58a), (12.58b), or in the case of small r in
(12.59).

12.5 Contact constraints and constitutive equations
for contact tractions

Two major approaches are used in contact mechanics to enforce contact
constraints and to define contact tractions:
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• The Lagrange multiplier method allows to define the contact trac-
tions as separate unknowns and the contact constraints are en-
forced via additional Lagrange multipliers. This leads to a formu-
lation known in the optimization theory as a saddle-point problem.
Then all constraints are exactly enforced.

• The penalty method allows to define the contact constraints via
specifically defined and a-priori convex penalty functions. Thus,
the method is enforcing the contact constraint only approximately.

However, since the penalty method can be mechanically interpreted
as a specification of an additional interface law acting on the contact
area and coupled with contact constraints then the question, especially
in experimental contact mechanics, still remains open whether to in-
terpret this approach as an approximate mathematical method to en-
force contact constraints, or to interpret it as a specification of an ad-
ditional constitutive law for contact interfaces. The following discus-
sion is illustrating some difficulties. The normal contact constraints
have a geometrical interpretation as non-penetration, and, so far, can
be satisfied via a stable numerical algorithm with Lagrange multipliers.
However, the tangent constraints including e.g. exact satisfaction for
the Coulomb friction law have many numerical problems arising from
the proved non-uniqueness of the solution (see the discussion in Eck
and Jarušek [35] (1998)). Actually all stable numerical algorithms for
Coulomb friction for large displacement problems are mainly based ei-
ther on the penalty method, or on the Augmented Lagrangian method.
Moreover, there are many experimental proofs for the existence of elas-
tic tangent deformations and, therefore, are motivating to work with the
penalty method interpreting it as an additional constitutive law for con-
tact interfaces.

Thus, in the current contribution we exclusively will work with the sec-
ond approach, namely, we are specifying the constitutive equations for
contact tractions coupled with contact constraints.
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12.5.1 Normal contact. Specification of constitutive laws for
the traction N coupled with contact constraints for
the variable r

The following situations with the curve-to-curve contact kinematics may
arise for different mechanical models, namely,

• beam-to-beam contact,

• a special case of solid-to-solid contact when contact is appearing
along sharp edges.

These two cases are influencing the specification of normal contact
constraints for the variable r and, in due course, the specification of
constitutive laws for a normal traction N . They are now considered sep-
arately.

12.5.1.1 Case of beam-to-beam contact

Beam models in mechanics are characterized as a line with correspond-
ing cross sections. The line represents a reduction of a 3D solid to a 1D
line, though in 3D space, according to the chosen kinematical hypothe-
sis (e.g. Bernoulli, Timoshenko, Reissner). Thus we can always define
for each I-th curve a function RI(ϕI) defining a cross section of the
beam in our coordinate system, i.e. in the direction normal to a curve in
the plane spanned by the vectors νI , βI .

First, we define a mutual penetration of two beams as a part of in-
tersection of two cross sections R1(ϕ1) and R2(ϕ2) along coordinate r

as

p = r − (R1(ϕ1) + R2(ϕ2)). (12.61)

A constitutive relation coupled with the corresponding contact con-
straints for the normal force N mutual for both curves can be written
as:

N =

{
0 if p > 0 no contact

εN(r − (R1(ϕ1) + R2(ϕ2)) if p ≤ 0 contact.
(12.62)
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12.5 Contact constraints and constitutive equations for contact tractions

Here, a parameter εN is defining a penalty parameter, or a stiffness
for the normal interaction. If a penetration p is positive then the curves
are out of contact. For the negative penetration the contact force N is
defined as a linear elastic force.

However, even for the beam-to-beam contact some difficulties may
arise for complex shapes of the cross-section used in practice (e.g. for
I, �, �-shaped domains). In those cases taking the edge-to-edge
contact instead of specifying R1(ϕ1) and R2(ϕ2) may lead to a simpler
procedure.

12.5.1.2 Case of Edge-to-Edge contact

The case is representing a situation when 3D solid bodies are contact-
ing along their sharp edges. Assuming that the parameterizations of
both edge curves are separately given we can define the following con-
stitutive equation for the normal traction:

N =

{
0 if ϕ /∈ [ϕ0, ϕ1] no contact

−εNr if ϕ0 ≤ ϕ ≤ ϕ1 and p = r ≤ 0 contact.
(12.63)

Here, the normal force is acting along the common normal e1, see
Fig. 12.8, and is defined in proportion to the distance r (representing
the penetration into the edge) if the corresponding vector e1 is laying
inside the sector defined in plane ν1 C1 β1 via the angles ϕ0 and ϕ1. As
in the previous case εN is defining a penalty parameter, or a stiffness for
the normal interaction.

12.5.2 Tangential contact. Specification of constitutive laws
for tractions TI coupled with contact constraints for
the variables sI

The specification of constitutive laws for tangential variables sI is unique
for the curve-to-curve kinematics, i.e. is common for both beam-to-beam
and edge-to-edge cases. One of the advantages of the current theory is
the possibility to specify the contact law separately for each curve. For
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Figure 12.8: Contact tractions in the spatial coordinate system. Edge-to-Edge contact
case.

tangential contact the sticking case and the sliding case should be dif-
ferentiated. Thus we give a definition of tangential sticking as follows:

• if ṡ1 = 0 then the first curve is tangentially sticking along the
second curve;

• if ṡ1 	= 0 then the first curve is tangentially sliding along the sec-
ond curve.

This definition is symmetric with regard to the choice of the curves,
therefore, can be repeated in the sense the first curve ↔ the second
curve. Using the elasto-plastic analogy for the Coulomb friction law we
can specify the constitutive law for tangential friction between curves as
elasto-plastic one (allowing elastic deformations for a sticking case) in
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12.5 Contact constraints and constitutive equations for contact tractions

the following rate forms:

Ṫ1 =

⎧⎨
⎩

−ε1ṡ1 if |T1| < μ1|N | tangential sticking along 2nd curve.

−μ1|N | ṡ1

|ṡ1| if |T1| ≥ μ1|N | tangential sliding along 2nd curve.

(12.64)

Here,
ε1 – tangential stiffness along the first curve;
μ1 – coefficient of friction along the first curve.

Applying then the return-mapping scheme to eqn. (12.64) we can get
a trial tangential force as

ΔT
(trial)
1 = −ε1Δs1 =⇒ T

(trial,n+1)
1 = T

(n)
1 − ε1(s

(n+1)
1 − s

(n)
1 ), (12.65)

T
(n)
1 , s

(n)
1 – tangential force (resp. arc-length coordinate)

for the previous converged load step;
T

(trial,n+1)
1 , s

(n+1)
1 – tangential force (resp. arc-length coordinate)

in the current iteration.

After the return-mapping step we get the real tangential force as

T1 =

{
T

(trial,n+1)
1 if |T (trial,n+1)

1 | < μ1|N1| sticking.

T
(sl,n+1)
1 = μ1|N1|sign(T

(trial,n+1)
1 ) if |T (trial,n+1)

1 | ≥ μ1|N1| sliding.

(12.66)

All equations (12.64), (12.65), (12.66) are, of course, symmetric con-
cerning choice of the curves 1 ↔ 2.

12.5.3 Rotational contact. Specification of a constitutive law for
the rotational moment MI coupled with contact constraints
for the variables ϕI

The moment M1 appearing in the current theory is energetically cou-
pled with the variable ϕ1, and therefore, is responsible for the rotational
motion along the τ 1 axis (plane e1 C1 g1). A specification of this mo-
ment allows e.g. to describe a full sticking case specifying the rotational
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sticking in addition to the tangential sticking to prevent the motion of the
first curve relative to the second curve. The rotational sticking can be
defined as follows:

• if ϕ̇1 = 0 then the first curve is rotationally sticking along the sec-
ond curve, i.e. rotation along the τ 1-axis is not possible.

• if ϕ̇1 	= 0 then the first curve is rotationally sliding along the sec-
ond curve, i.e. can be rotated along the τ 1-axis.

This definition is again symmetric with regard to the choice of the
curves 1 ↔ 2. One of the simplest way to define the constitutive relation
M1 is by using an analogy to the Tresca friction law, but now defined
for the angular variable ϕ1. We can specify the following relation for
rotational friction between curves in rate form:

Ṁ1 =

⎧⎨
⎩

−εM
1 ϕ̇1 if |M1| < M cr rotational sticking along 2nd curve.

−μM
1

ϕ̇1

|ϕ̇1| if |M1| ≥ μM
1 M cr rotational sliding along 2nd curve.

(12.67)

Here,
εM
1 – is a rotational stiffness for the first curve;

μM
1 – is a coefficient of rotational friction for the first curve;

M cr – is a critical given value for the rotational moment after which the
curve begins to rotate. The simplicity of this law is emphasized by the
independence of the critical moment M cr on any other parameters, e.g.
a normal contact force. Applying then the return-mapping scheme to
eqn. (12.67) we can get a trial rotational moment as

ΔM
(trial)
1 = −εM

1 Δϕ1 =⇒ M
(trial,n+1)
1 = M

(n)
1 − εM

1 (ϕ
(n+1)
1 − ϕ

(n)
1 ),
(12.68)

similar to the scheme (12.65). The return-mapping step is constructed
fully similar to (12.66)

M1 =

{
M

(trial,n+1)
1 if |M (trial,n+1)

1 | < M cr sticking;

M
(sl,n+1)
1 = μM

1 sign(M
(trial,n+1)
1 ) if |M (trial,n+1)

1 | ≥ M cr sliding.

(12.69)
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Remark.
Full sticking will require the enforcement of both tangential sticking and
rotational sticking.

12.6 Rate of contact forces in a covariant form

For the further linearization it is necessary to obtain the frame-indifferent
rate of the force vector R1. As is known, the rate in the form of covariant
derivatives is a frame indifferent one. Following its formal definition the
total time derivative of a vector can be written in a covariant form

dR

dt
=

dRiri

dt
= ∇jR

iξ̇jri, (12.70)

where the components in the coordinate system r1, r2, r3 are defined as
follows:

∇jR
i =

∂Ri

∂ξj
+ RkΓi

jk, (12.71)

where again the Christoffel symbols representing the derivation of co-
ordinate vectors are necessary. All necessary derivations have been
established in Section 12.3.2 via the direct derivation of coordinate vec-
tors. Thus, the main step now is to express all constitutive relations pre-
sented in Section 12.5 in the form of covariant derivatives with respect
to a metrics given by gij in eqn. (12.26).

12.6.1 Covariant form for sticking

All sticking cases, discussed in Section 12.5 are characterized by the
proportionality of the force rate components Ṫ , Ṅ , Ṁ to the correspond-
ing velocity components ṡ, ṙ, ϕ̇. Summarizing, we can write in a vector
form as

dR

dt
= −D(v2 − vt

1) =⇒ ∇jR
iξ̇jri = −diξ̇

iri. (12.72)

Here, the tensor expressed in the mixed metrics D = diri⊗ri is given
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by the diagonal matrix containing the stiffness parameters ε1, εN , εM
1

D =

⎡
⎣ ε1 0 0

0 εN 0

0 0 εM
1

⎤
⎦ . (12.73)

Remark.
Since the rate forms given in the definition of constitutive laws, see
eqns. (12.64) and (12.67) are coinciding with derivatives of the corre-
sponding trial forces in eqns. (12.65) and (12.68) for the return-mapping
scheme in eqns. (12.66) and (12.69) we can directly use the vector form
in eqn. (12.72) for the forthcoming linearization.

12.6.2 Covariant form for sliding

Similar to the sticking cases the rate for the sliding cases can be written
in a proportional form, however, the form suitable for the linearization
should contain the linearization of the real forces given in eqns. (12.66)
and (12.69) of the return-mapping scheme. Thus, we will linearize the
weak form directly for the sliding cases in the next section.

12.7 Linearization of the weak form

Numerical solution schemes for contact between bodies are realized via
a Newton type iterative solver, thus a knowledge about derivatives of the
functional δW is required. This procedure known as linearization will be
taken in a covariant form, i.e. provided in a coordinate system exploiting
covariant derivatives. We start with the full form in eqn. (12.57) without
any simplification on small distance r and curvature. For the lineariza-
tion the total time derivative in a form of the covariant derivative operator
in eqn. (12.44) is used:

Ls,r,ϕ[δW ] = Ls,r,ϕ[Sym{R1 · (δρ1 − δρ2)}] =

= Sym{Ls,r,ϕ[R1] · (δρ1 − δρ2)}+ Sym{R1 ·Ls,r,ϕ[(δρ1 − δρ2)]}. (12.74)
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12.7 Linearization of the weak form

The second term contains derivatives of the variations and remains
in the same form for the sticking and sliding cases for the real force
vector R1. This part represents a tangent matrix due to the geometrical
nonlinearity of contact interaction, while the first term in eqn. (12.74)
represents a constitutive relation for the contact force.

12.7.1 First part, representing geometrical nonlinearity

The derivatives in eqn. (12.46a) and the full expression for the force in
eqn. (12.55) are used to obtain the part representing the geometrical
nonlinearity.

Sym{R1 · Ls,r,ϕ[(δρ1 − δρ2)]} = (12.75a)

Sym{
(

T1

[
(1 − rk1 cos ϕ1) τ 1 + κ1r g1√

g11

]
+ N e1 + Rϕ1 g1

)
· Ls,r,ϕ[(δρ1 − δρ2)]} =

= −Sym{ T1 [rk1κ1 sin ϕṡ1δs1 − k1 cos ϕ1(ṡ1δr + ṙδs1) (12.75b)

+ rk1 sin ϕ1(ṡ1δϕ1 + ϕ̇1δs1)]
(1 − rk1 cos ϕ1)√

(1 − rk1 cos ϕ1)2 + (rκ1)2

+N [k1 cos ϕ1(1 − rk1 cos ϕ1)ṡ1δs1 − r(κ1ṡ1 + ϕ̇1)(κ1δs1 + δϕ1)]

(12.75c)

+

(
Rϕ1 + T

rκ1√
(1 − rk1 cos ϕ1)2 + (rκ1)2

)
[−k1 sin ϕ1(1 − rk1 cos ϕ1)ṡ1δs1 (12.75d)

+ (ṙδϕ1 + ϕ̇1δr) + κ1(ṡ1δr + ṙδs1)] }.
The long expression can be tremendously simplified if we consider

the linearized term at r = 0:

Sym{R1 · Ls,r,ϕ[(δρ1 − δρ2)]} = (12.76a)

= −Sym{− T1 k1 cosϕ1 (ṡ1δr + ṙδs1) (12.76b)
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+N [k1 cos ϕ1 ṡ1δs1] (12.76c)

+
M1

r
[−k1 sin ϕ1 ṡ1δs1 + (ṙδϕ1 + ϕ̇1δr) + κ1(ṡ1δr + ṙδs1)] }. (12.76d)

For finite element implementations it is rather convenient to give a
tensor form directly leading to the corresponding tangent matrices. In
order to derive this form all pairs containing derivatives and variations
of coordinates in eqns. (12.76b), (12.76c) and (12.76d) are transformed
using eqns. (12.35) and (12.39). The following example for ṙδs1 is illus-
trating the simple transformation procedure for two scalar products into
a tensor product:

ṙδs1 = (v2−vt
1)·e1(δρ2−δρ1)·τ 1 = (δρ2−δρ1)·τ 1⊗e1(v2−vt

1). (12.77)

Transformation of the linearized equation (12.76a) according to this
pattern leads to

Sym{R1 · Ls,r,ϕ[(δρ1 − δρ2)]} = (12.78a)

= −Sym{(δρ2 − δρ1) · [ (− T1 k1 cos ϕ1 (τ 1 ⊗ e1 + e1 ⊗ τ 1)+ (12.78b)

+N k1 cos ϕ1 (τ 1 ⊗ τ 1)+ (12.78c)

+
M1

r

(
−k1 sin ϕ1 τ 1 ⊗ τ 1 +

e1 ⊗ g1 + g1 ⊗ e1

r

)
] (v2 − vt

1) }. (12.78d)

The term with κ1 is disappearing because of the following transformation

(ṙδϕ1 + ϕ̇1δr) + κ1(ṡ1δr + ṙδs1) −→
e1 ⊗ g1 + g1 ⊗ e1

r
− κ1(τ 1 ⊗ e1 + e1 ⊗ τ 1) + κ1(τ 1 ⊗ e1 + e1 ⊗ τ 1) =

=
e1 ⊗ g1 + g1 ⊗ e1

r
.
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12.7.2 Constitutive part for sticking

Due to the Remark 12.6.1 in Section 12.6.1 we can use the rate equation

given in eqn. (12.72) keeping in mind the equivalence of operators
d

dt
∼

Ls,r,ϕ. We are starting with a tensor form as

Sym{Ls,r,ϕ[R1] · (δρ1 − δρ2)} = −D(v2 − vt
1) · (δρ1 − δρ2) = (12.79)

= Sym{diξ̇
iri · δξjrj} = Sym{digij ξ̇

iδξj}
and then obtaining

= Sym{ε1

(
(1 − rk1 cosϕ1)

2 + (rκ1)
2
)

ṡ1δs1 + εr ṙδr+ (12.80a)

+εM
1 r2 ϕ̇1δϕ1 + r2

κ1

(
ε1 ṡ1δϕ1 + εM

1 ϕ̇1δs1

)}. (12.80b)

Remark.
Obviously in a case of not equal stiffnesses for the spatial curve ε1 	= εM

1

the symmetry is destroyed. Due to the coupled kinematics for the spatial
curve, see the velocity vector in eqn. (12.33), we are restricted to take
ε1 = εM

1 , otherwise the sum of force rates along r1 and r2 will not be
parallel to the relative velocity vector along the curve. For the latter we
can take then

εM
1 = ε1. (12.81)

Taking into account this remark after grouping
eqns. (12.80a) and (12.80b) the following form is obtained:

Sym{Ls,r,ϕ[R1] · (δρ1 − δρ2)} =

Sym
{

ε1(1 − rk1 cos ϕ1)
2 ṡ1δs1 + εr ṙδr + ε1r

2 (ϕ̇1 + κ1ṡ1)(δϕ1 + κ1δs1)
}

. (12.82)

Now for the tensor form we will use the non-reduced equations for the
convective velocities in eqn. (12.36) and their variational analog. The
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final result has a simple form as

Sym{Ls,r,ϕ[R1] · (δρ1 − δρ2)} =

= Sym
{

(δρ2 − δρ1) · (ε1 τ 1 ⊗ τ 1 + εr e1 ⊗ e1 + ε1 g1 ⊗ g1) (v2 − vt
1)
}

, (12.83)

leading to a constitutive part of the tangent matrix in the sticking case.

12.7.3 Constitutive part for tangential sliding

The tangential sliding force obtained in the computation via the return-
mapping scheme in eqn. (12.66) can be written then in vector form as:

R = −μ|N | r1√
g11

. (12.84)

Inserting this into the first term of the linearized weak form in
eqn. (12.74) we obtain:

Sym

{
Ls,r,ϕ

[
−μ|N | r1√

g11

]
· (δρ1 − δρ2)

}
= (12.85)

= Sym

{
Ls,r,ϕ

[
μ|N |√

g11

]
r1 · (δρ2 − δρ1)

}
+ (12.86a)

+Sym

{
μ|N |√

g11
Ls,r,ϕ [r1] · (δρ2 − δρ1)

}
. (12.86b)

The first term (eqn. (12.86a)) is transformed as

(1st) = Sym

{
μ1

(−εrṙ√
g11

− |N |(−k1 cos ϕ1(1 − rk1 cosϕ1)ṙ

(
√

g11)3
+

+ |N |rk1 sin ϕ1(1 − rk1 cos ϕ1)ϕ̇1 − κ
2
1rṙ

(
√

g11)3

)
·

[(1 − rk1 cos ϕ1)
2δs1 + r2

κ1(κ1δs1 + δϕ1)] } (12.87a)

and after taking at r = 0

= Sym {μ1(−εr + |N |k1 cos ϕ1)ṙδs1} . (12.87b)
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One can prove that the second term (eqn. (12.86b)) taking its value at
r = 0 is transformed then as

(2nd) = Sym {−μ1|N |k1 cosϕ1ṙδs1} . (12.88)

Summing eqns. (12.87b) and (12.88) we obtain the simple value for the
linearized constitutive part in the case of tangential sliding

Sym

{
Ls,r,ϕ

[
−μ|N | r1√

g11

]
· (δρ1 − δρ2)

}
= −Sym{μ1εrṙδs1} = (12.89a)

or in tensor form

= −Sym{(δρ2 − δρ1) · εrμ1τ 1 ⊗ e1(v2 − vt
1)} (12.89b)

12.7.4 Linearized part for rotational sliding

The rotational sliding force representing the moment obtained in the
computation via the return-mapping scheme in eqn. (12.69) can be writ-
ten then in vector form as:

R = Rϕ1
g1 =

M1

r
g1 = −μM

1 sign(ϕ̇1)
1

r
g1. (12.90)

Inserting this into the linearized weak form we obtain:

Ls,r,ϕ[δWM ] =

= Sym

{
Ls,r,ϕ

[
−μM

1 sign(ϕ̇1)
1

r
g1

]
· (δρ1 − δρ2) (12.91a)

−μM
1 sign(ϕ̇1)

1

r
g1 · Ls,r,ϕ[(δρ1 − δρ2)]

}
(12.91b)

The first term is transformed as

(1st) = Sym{μM
1 sign(ϕ̇1)

r
[k1 sin ϕ1(1 − rk1 cos ϕ1)ṡ1δs1

−(κ1ṡ1 + ϕ̇1)δr − ṙ(κ1δs1 + δϕ1)]}. (12.92)

The second term is representing the geometrically nonlinear part and
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can be taken directly from eqn. (12.75d) for the sliding value of M1

(2nd) = Sym{μM
1 sign(ϕ̇1)

r
[−k1 sinϕ1(1 − rk1 cos ϕ1) ṡ1δs1

+(ṙδϕ1 + ϕ̇1δr) + κ1(ṡ1δr + ṙδs1)] }. (12.93)

The sum of the two terms is zero. Thus, the tangent matrix for a
rotational sliding due to the Tresca model is zero.

12.8 Finite element implementation

In this section we present the structure of the iterative solution scheme
for a Newton type method and describe the implementation of the de-
veloped theory based on the simplest finite element with linear shape
functions.

12.8.1 Linear element for edge-to-edge contact

Let us consider two edges from contacting bodies covered with a finite
element mesh possessing linear approximations. We construct a possi-
ble contact pair taking a linear approximation through nodes r

(1)
1 and r

(2)
1

for the edge ρ1(ξ
1) from one body and a linear approximation through

nodes r
(1)
2 and r

(2)
2 for the edge ρ2(ξ

2) from another body. A pair of ρ1(ξ
1)

and ρ2(ξ
2) defined by four nodes, see Fig. 12.9 gives us a contact ele-

ment:

ρI(ξI) =
1 − ξI

2
r
(1)
I +

1 + ξI

2
r
(2)
I , I = 1, 2, −1 ≤ ξI ≤ 1. (12.94)

A nodal vector for the contact element is defined as follows:

{x}T =
{
x

(1)
1 , y

(1)
1 , z

(1)
1 , x

(2)
1 , y

(2)
1 , z

(2)
1 , x

(1)
2 , y

(1)
2 , z

(1)
2 , x

(2)
2 , y

(2)
2 , z

(2)
2

}T

(12.95)

In almost all parameters the relative displacement vector ρ2 − ρ1 is re-
quired, therefore, a matrix approximation operator A(ξ1, ξ2) introduced
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r
1

(1)

r (2)

r2
(1) r

2
(2)

1

ξ

ξ 1

2

.

Figure 12.9: Two linear edges define a contact pair – a contact finite element with
linear approximations.

as

A(ξ1, ξ2) =

⎡
⎢⎢⎣

−1 − ξ1

2
0 0 −1 + ξ1

2
0 0

0 −1 − ξ1

2
0 0 −1 + ξ1

2
0

0 0 −1 − ξ1

2
0 0 −1 + ξ1

2

1 − ξ2

2
0 0

1 + ξ2

2
0 0

0
1 − ξ2

2
0 0

1 + ξ2

2
0

0 0
1 − ξ2

2
0 0

1 + ξ2

2

⎤
⎥⎥⎦ (12.96)

gives us the approximation of the aforementioned vector as

ρ2(ξ2) − ρ1(ξ1) = Ax. (12.97)

For arbitrarily curved lines and arbitrarily large displacements it
is necessary to compute the following geometrical parameters of
the contact:

1. The closest point projection (CPP) procedure for convective vari-
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12. COVARIANT APPROACH FOR CURVE-TO-CURVE CONTACT

ables, see in eqn. (12.22). The procedure gives as results the ξ1
p , ξ

2
p

as projection points and the first local coordinates. The correspond-
ing arc-lengths s1, s2 can be computed using the Jacobian J(I).

2. The Jacobian for the corresponding transformation becomes ξI →
sI

J(I) =
dsI

dξI
=

√
ρI,ξI

· ρI,ξI
=

√√√√ 3∑
j=1

(
∂xj

∂ξI

∂xj

∂ξI

)
.

3. Local coordinate vectors of the Serret-Frenet frame:

• a unit tangent vector τ I

τ I =
∂ρI

∂sI
=

∂ρI

∂ξI

1

J(I)

Then a curvature kI in eqn. (12.9) and a torsion κI in eqn. (12.10)
can be computed.

• a binormal vector from eqn. (12.9) as

βI =
ρ̇I × ρ̈I

|ρ̇I × ρ̈I |
• a normal vector as

νI = βI × τ I

4. The distance between curves at projection points as a second co-
ordinate r:

r = |ρ2(ξ
p
2) − ρ1(ξ

p
1)|

5. Coordinate vectors for the local coordinate system:

e1 =
ρ2(ξ

p
2) − ρ1(ξ

p
1)

r
, g1 = τ 1 × e1

6. The angle ϕI as the third coordinate defined via

450



12.8 Finite element implementation

cosϕI = (eI · νI), sin ϕI = (eI · βI).

For the element with linear approximations (both, curvature k
and torsion κ are zero) the procedure is simplified.

1. Tangent vectors for the corresponding linear segments

ρ̇1(ξ1) =
r
(2)
1 − r

(1)
1

2
−→ τ 1 =

ρ1

|ρ1|

ρ̇2(ξ2) =
r
(2)
2 − r

(1)
2

2
−→ τ 2 =

ρ2

|ρ2|
2. The coordinate vector e1 is derived by its definition to be orthogonal

to both tangent vectors, therefore, via the cross product

e1 = τ 1 × τ 2.

3. The coordinate vector g1 is derived via a cross product

g1 = τ 1 × e1.

4. The closest point projection procedure is resolved exactly. The pro-
jection points ξp

1 , ξ
p
2 (first coordinates) are defined via the following

linear system:

⎧⎪⎪⎨
⎪⎪⎩

(ρ̇1 · ρ̇1)ξ1 − (ρ̇1 · ρ̇2)ξ2 =
1

2
(r

(1)
2 + r

(2)
2 − r

(1)
1 − r

(2)
1 ) · ρ̇1

−(ρ̇2 · ρ̇1)ξ1 + (ρ̇2 · ρ̇2)ξ2 =
1

2
(r

(1)
2 + r

(2)
2 − r

(1)
1 − r

(2)
1 ) · ρ̇2

The determinant of the system can be transformed as

det = (ρ̇1 · ρ̇1)(ρ̇2 · ρ̇2) − (ρ̇1 · ρ̇2)
2 = |ρ̇1 × ρ̇2| 	= 0

leading to the known condition “tangent vectors should not be
parallel”, see Sect. 12.2.2.1.
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5. Local searching procedure.
If any of projection points is laying outside the corresponding seg-
ment i.e.

if ξp
1 /∈ [−1, 1], or ξp

2 /∈ [−1, 1] then

a contact element is excluded from the computation at the current
iteration.

6. The closest distance between lines (the second coordinate r) is
defined as

r =
1

2
(r

(1)
2 + r

(2)
2 − r

(1)
1 − r

(2)
1 ) · e1

7. Definition of the coordinate increments. Since the straight line has
an infinite number of normal vectors, the third coordinate ϕI can
be defined arbitrarily, e.g. via “the orientation node“ similar to the
definition of linear finite element for beams. However, all coordinate
increments are defined via displacement increment vectors.

Defining a displacement increment vector for the first curve as Δu1

and resp. Δu2 for the second curve all increments for convective co-
ordinates are computed from the incremental analog of eqn. (12.35)

⎧⎪⎨
⎪⎩

Δs1 = (Δu2 − Δu1) · τ 1

Δr1 = (Δu2 − Δu1) · e1

Δϕ1 = (Δu2 − Δu1) · g1

r

1 ↔ 2.

They are directly used for the corresponding return-mapping
schemes in eqns. (12.65), (12.66), (12.68), (12.69).

12.8.2 Structure of tangent matrices

Several situations should be distinguished for the curve-to-curve contact
element. The first situation is based on the definition of the penetration
p for the specific case either for edges, or for beams, see Section 12.5.
Thus, for the case no contact with positive penetration p > 0 the con-
tact element is excluded from the computation in the current iteration.
The situations for tangential as well as for rotational sticking and sliding
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should be distinguished for each line separately leading to the algo-
rithmization of as many as four different situations based on the corre-
sponding return-mapping algorithm. For the numerical examples with
linear solid-shell elements and edge-to-edge contact elements, the ma-
trices are simplified due to the linear shape functions and small penetra-
tion, i.e. all curvatures kI = 0 and torsions κI = 0 as well as penetration
r = 0 are zero. For the numerical example with curvilinear beam-to-
beam contact elements we are concentrating on the non-frictional case
and show the full tangent matrix for the normal part only, all parameters
such as curvature, torsions are computed as well and the coordinate r
is also taken into account because it contains implicitly the size of the
cross sections of the beams.

12.8.2.1 Tangent matrix for the normal force N

The tangent matrix for normal forces is constructed from one part with
the normal force N representing the geometrical nonlinearity as pre-
sented in Sect. 12.7.1 and from another part containing εr from Sec-
tion 12.7.2. The tangent matrix represents the linearization of the nor-
mal force which is always present for contact for both, sticking and slid-
ing cases. Thus, eqn. (12.75c) together with the part in eqn. (12.83)
containing a normal stiffness εr should be discretized, namely

(δρ2 − δρ1) · (εr e1 ⊗ e1) (v2 − vt
1) (12.98a)

+N Sym{ (δρ2 − δρ1) · [k1 cos ϕ1(1 − rk1 cos ϕ1)ṡ1δs1

−r(κ1ṡ1 + ϕ̇1)(κ1δs1 + δϕ1)] (v2 − vt
1)} (12.98b)

Rates and variations of coordinates are transformed using eqns. (12.36)
for arbitrary geometry. Following the transformation pattern given in
eqn. (12.77) and using the approximation operator A in eqn. (12.97)
we can obtain the following matrix:
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KN = εr AT [e1 ⊗ e1]A (12.99)

+ N AT [Sym
{

k1 cosϕ1

(1−rk1 cosϕ1)
τ 1 ⊗ τ 1 − 1

rg1 ⊗ g1

}
]A. (12.100)

This matrix consists of a main part eqn. (12.99) together with a curvature
and a rotational part given in eqn. (12.100). In the case of a linear ap-
proximation and edge-to-edge contact approach the matrix is simplified
only to the main part as

KN = εr AT [e1 ⊗ e1]A. (12.101)

The matrix represents both segments.

12.8.2.2 Tangent matrices for tangential sticking

This part is computed and then added to the global matrix if the tangen-
tial sticking case is determined within the corresponding return-mapping
scheme for the certain I-th segment:

K
T, st
I = εI AT [τ I ⊗ τ I ]A. (12.102)

The matrix is taken only for the I-th tangentially sticking segment.

12.8.2.3 Tangent matrices for tangential sliding

This part, see eqn. (12.89b), is computed and then added to the global
matrix if the tangential sliding is determined within the corresponding
return-mapping scheme for the I-th segment:

K
T, sl
I = −εr μ1 AT [τ 1 ⊗ e1]A. (12.103)

The matrix is then taken only for the I-th tangentially sliding segment.

12.8.2.4 Tangent matrices for rotational sticking

This matrix includes a part representing the geometrical nonlinearity
from eqn. (12.76d) for the linear segment ( kI ≡ 0, κ1 ≡ 0 ) and a
constitutive part for the rotational sticking from eqn. (12.83). This part is
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computed and then added to the global matrix if the rotational sticking
is determined within the corresponding return-mapping scheme for the
I-th segment:

K
M, st
I = AT

[
ε1 g1 ⊗ g1 − M1

r2
(e1 ⊗ g1 + g1 ⊗ e1)

]
A (12.104)

The matrix is then only for the I-th rotationally sticking segment.

Here, ε1 represents a rotational stiffness, see Remark in Sect. 12.7.2.

12.8.2.5 Tangent matrices for rotational sliding

These matrices are zero, because the sliding contribution is computed
according to the Tresca model independent of other parameters and
remains constant, see proof in Section 12.7.4.

Remark.
The tangent matrices are representing only the contact kinematics ac-
cording to the developed theory and, therefore, must be added to the
global tangent matrices. Thus, finite element models can be enriched
with a contact possibility. The full finite element model must contain then
finite elements describing the behavior of a continuum according to the
selected model, e.g. shell, solid-shell and beam elements.

12.8.3 Residual vector

The residual vector represents discretization of the weak form. For the
considered linear finite element the weak form in eqn. (12.60) should
be discretized with special attention to its symmetrical structure. We
consider this procedure separately for each part for normal, tangential
and moment interactions.
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12.8.4 Part for normal interaction

The normal part δWN according to the symmetry 1 ↔ 2 is fully written
as

δWN = Sym {N(δρ2 − δρ1) · e1} =

=
1

2
{N(δρ2 − δρ1) · e1 + N(δρ1 − δρ2) · e2}. (12.105)

We note that the normal force N is mutual for both curves and vectors
defining the shortest distance are satisfying e2 = −e1, see definition in
eqn. (12.11). Introducing the approximation operator A we obtain:

δWN =
1

2
{N(Aδx) · e1 − N(Aδx) · (−e1)}

= N(Aδx) · e1

= {δx}TN [A]T{e1}. (12.106)

The last line in eqn. (12.106) is written using the square and figure
brackets to emphasize the vector-matrix notation after the discretiza-
tion. Thus, this part of the residual for the normal interaction becomes
then

{RN} = N [A]T{e1} (12.107)

12.8.5 Part for tangential interaction

The tangential part is written as

δWT = Sym{T1(δρ2 − δρ1) · τ 1}
=

1

2
{T1(δρ2 − δρ1) · τ 1 + T2(δρ1 − δρ2) · τ 2}. (12.108)

Now the tangential forces T1, T2 are defined independently according to
the corresponding return-mapping algorithms. The tangent vectors τ 1

and τ 2 are individual for each segment as well. Thus, the discretization
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leads to

δWT =
1

2
{T1(δρ2 − δρ1) · τ 1 + T2(δρ1 − δρ2) · τ 2}

=
1

2
{T1(Aδx ) · τ 1 − T2(Aδx ) · τ 2}

=
1

2
{δx}T [A]T (T1{τ 1} − T2{τ 2}). (12.109)

The residual for the tangtential part is written then as

{RT} =
1

2
[A]T(T1{τ 1} − T2{τ 2}). (12.110)

12.8.6 Part for moment (rotational) interaction

The part for the moment interaction starting from the equation

δWM = Sym

{
M1

r
(δρ2 − δρ1) · g1

}
(12.111)

is discretized completely similar to the tangential part. The residual for
the rotational part is written then as

{RM} =
1

2 r
[A]T (M1{g1} − M2{g2}). (12.112)

The full residual vector is finally constructed as the sum of all parts:

{R} = {RN} + {RT} + {RM} (12.113)

12.9 Numerical examples

In this section, first, a comparison of the non-frictional edge-to-edge
contact formulation, see Section 12.5.1.2, with a special case of Equi-
librium of elastica problem is presented for the verification. This case
is also compared with the beam-to-beam contact formulation, see Sec-
tion 12.5.1.1. Afterwards, an example with edge-to-edge contact for two
intersecting beams is analyzed in details.
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A “solid-shell” bilinear finite element, see [59], is chosen to model
the behavior of the beams, thus modeling beams with rectangular cross
section directly. A contact element with two linear segments, see im-
plementation details in Section 12.8, is used to enrich the model with
edge-to-edge contact.

In order to study beam-to-beam contact in detail, it is necessary, first
to choose a proper finite element model for the beam itself and discuss
then the consistency with our model concerning the rotational moment
M1, i.e. it should be consistently transfered to the corresponding rota-
tional degrees of freedom. The consistent application of the developed
contact theory for the curvilinear beam contact requires the application
of high order finite element techniques, see e.g. [152], or as an al-
ternative the iso-geometrical technique, see e.g. [72]. However, the
development of such a curvilinear finite beam element together with a
curvilinear beam-to-beam contact element especially for the arbitrary
frictional case as well as further numerical analysis are outside of the
scope of the current publication. This is planned to be discussed in de-
tail in a following article. Some details are available in [44], [43] and can
be summarized as follows:

1. The finite beam element model is based on Reissner theory. The
finite element then contains six degrees of freedom per node: 3
displacements and 3 rotations. The stiffnesses of the mid-line Cn

with regard to a load vector containing axial and two shear forces
and the stiffnesses Cm with regard to a moment vector contain-
ing torsional and two bending moments represent the mechanical
properties of the beam. In a beam coordinate system they have the
following form:

Cn =

⎡
⎣ EA 0 0

0 GAs1
0

0 0 GAs2

⎤
⎦ , Cm =

⎡
⎣ GIt 0 0

0 EI2 0

0 0 EI3

⎤
⎦ , (12.114)

where EA is the axial stiffness, GAs1
, GAs2

are shear stiffnesses,
GIt is the torsional stiffness, EI2, EI3 are bending stiffnesses.

2. Finite rotations are taken into account within the finite element for-
mulation according to Ibrahimbegovic [73].
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3. The iso-geometrical technique, see [72], has been exploited to ob-
tain C1-continuous approximations for the curvilinear beams.

4. Beam-to-beam contact elements are obtained using the same ap-
proximation functions for the contact pairs in consistent fashion.

12.9.1 Bending of a flexible beam by a rigid beam.
Non frictional case

The first flexible beam, see Fig. 13.4 modeled with 50 solid-shell finite
elements is positioned in the XOY -plane and clamped at the left end.
Material parameters: Linear Hooke’s material with Young’s modulus
E = 2.1 · 104 and Poisson ratio ν = 0.3. Geometrical parameters: length
1.0 and square cross section 0.02 × 0.02 – units are consistent. The
second beam with the same cross section is rigid (only one solid-shell
element) and is positioned parallel to the OY -axis under the right end of
the first beam. The first flexible beam is turned at 45o along the OX-axis
such that during further loading it is contacting with the rigid beam only
along the lower edge. Thus, only edge-to-edge contact is realized dur-
ing the deformation process. In the case of modeling with bi-linear solid-
shell elements, the displacement vector u = {−1.0000, 0.0000, 0.6366}T

is applied with 1000 equal increments (load steps) to all nodes of the
rigid beam. The contact between beams is assumed to be non-frictional
with a penalty parameter εN = 2.1 · 105. All nodes of the flexible beam
are constrained along the OY -axis to prevent bouncing along the rigid
beam. During the loading process the first flexible beam is sliding along
the rigid beam. Thus, a quasi 2D-deformation is realized, see the dia-
gram of deformation in Fig. 12.11.

12.9.1.1 Verification – Equilibrium of the elastica problem

The analytical solution of the current evolution contact problem is hardly
possible, however, the final deformed state (for non-frictional problem)
can be formulated as an equilibrium of the elastica problem which was
a subject of interest since centuries for many researchers starting with
Leonhard Euler. The equilibrium of the elastica problem in 2D can be
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formulated via the famous equation:

EJ
dϕ

ds
= M, (12.115)

where ϕ is angle between a tangent line and the X-axis, s is the stan-
dard arc-length parameter, and M is a bending moment. Eqn. (12.115)

shows the well known proportionality of the curvature κ =
dϕ

ds
to the

bending moment M with bending stiffness. EJ as a proportionality co-
efficient. The definition of tangent angle ϕ and the differential depen-
dences of a shear normal force Q and and a tangential force N on the
moment M should be taken into account in order to obtain then the
deformed line. Though, several analytical approaches to solve the equi-
librium of the elastica problem are known in literature, e.g. solutions via
elliptic integrals see e.g. in Popov [145], we are going to solve the prob-
lem directly via a finite difference scheme. Our special problem can be
formulated as a Boundary Value Problem (BVP) (we adapt the stiffness
to our “solid-shell” formulation by setting EJ/(1 − ν2) instead of EJ) for
the following system of Ordinary Differential Equation (ODE):⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

EJ

1 − ν2

dϕ

ds
= M + Nx cosα − Ny sin α

dx

ds
= cosϕ

dy

ds
= sinϕ

(12.116)

with boundary conditions⎧⎪⎪⎨
⎪⎪⎩

ϕ(0) = 0; ϕ(sc) = α

x(0) = 0; x(sc) = xc

y(0) = 0; y(sc) = yc, 0 ≤ s ≤ 1.

(12.117)

where coordinate system is chosen at the clamped end; N is a contact
force between beams, x(sc) and y(sc) are Cartesian coordinate of the
contact point appeared at length sc; α is the angle between the beam
tangent vector and the X-axis. In order to solve the system (12.116)
the aforementioned differential dependences between forces and bend-
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ing moment M should be taken account. However, in order to avoid
the direct solution of BVP we will solve it approximately by reformula-
tion BVP into the Initial Value Problem (IVP) Moreover, some values we
will use from the finite element solution. Namely, the following steps of
verification are fulfilled for comparison of the solutions:

1. From the finite element solution a final force N and an angle α
at the contact point (xc, yc) are defined. For the current problem
N = 2.8092 and α = 35.5346o are obtained at xc = 0 yc = 0.6366.

2. The system (12.116) is solved with given N and α as the Initial
Value Problem with the following initial conditions

⎧⎪⎪⎨
⎪⎪⎩

ϕ(0) = 0;

x(0) = 0;

y(0) = 0, 0 ≤ s ≤ 1.

(12.118)

3. The obtained deformed line is then compared with deformed line
from FE solution.

Remark.
The current approach of solution for BVP as IVP allows to satisfy the
boundary conditions at the contact point x(sc) = xc and y(sc) = yc only
approximately.

The simple explicit Euler finite difference scheme is applied then to
solve the problem with Δs = 0.001. Comparison of the deformed central-
lines is presented in Fig. 13.5. As mentioned in Remark 12.9.1.1, the
deformed line is not passing through the contact point xc, yc.

12.9.1.2 Computations with curvilinear beam-to-beam contact

For a further comparison of the final deformed configuration the beam
finite element model shortly described at the beginning of the Sec-
tion 13.2 is used. Only four C1-spline continuous finite elements are
used to model the elastic beam. The same material data is taken. In
order to obtain a model mechanically equivalent to the solid-shell one,
the same stiffness characteristics as given in eqn. (12.114) have been
taken. Namely, the cross section A and all area moments of inertia

461



12. COVARIANT APPROACH FOR CURVE-TO-CURVE CONTACT

in eqn. (12.114) are taken to be the same as for the square section
of the solid-shell finite element model. However, the cross section for
the beam is taken to be circular for the contact algorithm as shown in
eqn. (12.62) with constant radius for both beams R = R1 = R2. The
radius R is computed from the equivalency of the cross section area for
the solid-shell and the circular section. Now, the displacement vector u

is applied only with 100 load steps to all nodes of the rigid beam, see
Fig. 12.12. The verification with the analytical solution is also presented
in Fig. 13.5. The problem is analyzed with both tangent matrices for
normal interaction and presented in Table 13.2 for the following cases:

• Solid-shell FE model with “edge-to-edge” contact elements;

• Curvilinear beam FE model with “beam-to-beam” contact. Normal
contact matrix for arbitrary large distance r and curvature with parts
in eqns. (12.99) and (12.100).

• Curvilinear beam FE model with “beam-to-beam” contact for linear
contact elements with only one part as given in eqn. (12.101).

FE model No. of elem. No. of load steps Global No. of iterations
1 50 1000 3986
2 4 100 396
3 4 100 428

Table 12.1: Comparison of solution for 1) linear solid-shell elements; 2) curvilinear
beam elements with full contact matrix; 3) curvilinear beam elements with “linear”
contact matrix.

During the loading process the flexible beam is undergoing large de-
formations (from a straight beam into a curved beam) as well as large
sliding, especially at the end of the loading process, see diagram in
Fig. 12.11. This leads, on one side, to the necessity of a relatively
large number of bi-linear solid-shell elements (50 elements) and, on the
other side, to a relatively small load step size (resp. a large number
of load steps) in order to describe the sliding over segments correctly.
Steps 7 − 10 presented in Fig. 12.11 are crucial during the loading pro-
cess because the beam undergoes large deformations and large slid-
ing. Namely this part of loading requires small load steps for linear
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elements. For the beam-to-beam element the number of equilibrium it-
erations per load step is increasing from 4 to 11 during the last load
steps. A relatively small advantage using the full matrix compared with
the reduced one is observed in the global number of iterations – 396
against 428 iterations, see Table 13.2. This can be explained by the fact
that the beam possesses a small curvature at the contact point together
with a small radius for the circular cross section. A crucial example
can be constructed by taking “a soft” beam, scaling all shear moduli in
eqn. (12.114) with a factor 10−4. Then displacements are now applied
in only 75 load steps of the same size as in the previous example. The
final configuration is presented in Fig. 12.13 (visual non-smoothness is
just the result of incomplete visualization – only element-wise tube sur-
faces are constructed during postprocessing via Matlab which is used
here). In the example shear softening leads to high curvatures at con-
tact points, thus the influence of the curvature part should be more pro-
nounced. That is essentially true!!! – no convergence after the 70th load
step has been found with using the linear matrix given in eqn. (12.101)
and 297 global iterations are necessary taking all parts into account in
eqns. (12.99) and (12.100).

The advantage of C1-spline continuous beam finite elements com-
pared to the linear solid-shell finite elements is obvious – only four ele-
ments are sufficient to describe efficiently the highly deformed configu-
ration.

The small differences between deformed lines obtained for the solu-
tions using “solid-shell” and beam finite elements as well as using the a
finite difference scheme for the Equilibrium of the elastica problem are
explained by the different kinematical hypotheses which are the basis of
the corresponding theories for the three compared solutions and by the
application of different numerical approaches.

12.9.2 Analysis of contact for intersecting beams

Two clamped beams of unit length intersecting each other are chosen
to study various combinations of parameters within the developed the-
ory such as the tangential and the rotational sticking including various
sticking and sliding cases of two lines. The “first” lower beam is parallel

463



12. COVARIANT APPROACH FOR CURVE-TO-CURVE CONTACT

to the OY -axis and the “second” upper beam is parallel to the OX-axis
at the initial configuration, see the position in Fig. 12.15. Both beams
are turned at 45o along their central-lines in order to provide initial con-
tact only along the edges at a distance 0.75 from both clamped ends.
Now two beams are flexible, made of the same material: linear Hooke’s
material with Young’s modulus E = 2.1 · 104 and Poisson ratio ν = 0.3;
and possessing the same geometrical parameters: length L = 1.0 and
square cross section A = 0.02 × 0.02. The beams are modeled with 50
solid shell elements and edge-to-edge contact elements are supplied.

The prescribed displacement uz = 0.5 in vertical OZ-direction is pre-
scribed at the upper node of the lower beam, see Fig. 12.15. The vertical
displacement is applied in 100 increments. In the following always the
top view along the OZ-axis for both initial and deformed final configura-
tions are presented for different combinations of parameters.

12.9.2.1 Non-frictional contact

For non-frictional contact only the normal tangent matrix in eqn. (12.101)
is taken into account together with the corresponding normal force N in
eqn. (12.63). The penalty parameter is taken as εN = 2.1 · 106. Con-
vergence is reached with 391 global iterations for 100 load steps. Both,
relative sliding along the “first” lower beam increasing ξ1 and along the
“second” upper beam increasing ξ2 are observed, see Fig. 12.17.

12.9.2.2 Full sticking (tied) contact

Full sticking, or tied contact, is enforced using all tangential and rota-
tional sticking conditions (corresponding penalty for both lines ε1 = ε2 =

2.1 · 106) without the return-mapping scheme. Convergence is reached
with 375 global iterations for 100 load steps. The result is presented in
Fig. 12.18. To study the influence of various parts for the enforcement
of full sticking (tied) condition the following cases are computed:

1. Tied contact enforced by tangential and rotational sticking.

2. Tied contact enforced only by tangential sticking.

3. Tied contact enforced only by rotational sticking.
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It is interesting to note that the same final configuration presented in
Fig. 12.18 is reached for all three cases. To emphasize this effect, an
angle between the vectors �a and �b defining the edge directions for ele-
ments as depicted in Fig. 12.15 is studied. This angle is equal to 45o

at the initial undeformed state and is then changing during the deforma-
tion, see Fig. 12.16. However, one can see that the angle remains the
same for all kinds of enforcement. The explanations for this effect ap-
pear, however, obvious: full sticking (tied contact) can be enforced only
by rotational sticking because the corresponding tangent matrix g⊗g re-
sponsible for the g direction is orthogonal to the vector e direction, and
therefore, is leading to the sticking of the intersecting lines. The reason
for the constant angle lays in the application of solid-shell finite elements
which are by construction not capable to transmit the moment applied
to the edge. However, the large opportunities for coupling this moment
between curves either with classical beams or with classical shell finite
elements possessing both rotational degrees of freedom and, in due
course, moments remain open.

12.9.2.3 Partial tied contact – sticking only along one line

Now, partial tied contact is modeled along only one line. First, partial
tangential sticking is enforced along the upper edge of the “first” lower
beam by setting the tangential penalty parameter ε1 = 2.1 · 105 without
applying the return-mapping scheme, while the non-frictional contact is
assumed for the lower edge of the “second” upper beam by setting ε1 =

0.0, see Fig. 12.19. Convergence is reached with 386 global iterations
for 100 load steps. Then, partial tangential contact is enforced along the
second line with the same values only changing the beam 1 ↔ 2, see
Fig. 12.20. Convergence is reached with 379 global iterations for 100
load steps in the latter case.

One can notice that during the loading for the non-frictional case,
see Fig. 12.17, the “first” lower beam is undergoing large relative slid-
ing along the “second” beam increasing ξ2, while the “second” beam is
undergoing only a small relative sliding – expressed in tangential coor-
dinates – ξ2 >> ξ1. Thus, partial tied contact with a locked variable ξ1

supplying ε1 = 2.1 · 105 looks similar to the non-frictional case – com-
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pare Fig. 12.17 and Fig. 12.19. In due course, partial tied contact with a
locked variable ξ2 supplying ε2 = 2.1 · 105 looks similar to the full sticking
case – compare Fig. 12.18 and Fig. 12.20.

12.9.2.4 Sliding contact

Finally, the four considered cases non-frictional, full sticking and two par-
tial sticking cases lead to “an envelope” in which frictional cases with all
possible coefficients of friction μ1 and μ2 are contained. In Fig. 12.21
a top view of this envelope (shadowed) and the “first” lower beam posi-
tioned inside this envelope are given. The computation is provided for
tangential sliding with coefficients of friction: μ1 = 0.001 and μ2 = 0.05.
Convergence is reached with 419 global iterations for 100 load steps.
The choice of rather small coefficients of friction is found to show that
two beams are visually positioned inside the envelope constructed by
the deformed configurations for four extremal cases. We have to note
that in the sliding case especially for large deformations considerable
convergence difficulties appear for large coefficients of friction and the
application of the Augmented Lagrangian scheme has shown to be more
efficient in this case.
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Figure 12.10: Bending of a flexible beam by a rigid beam – initial and final configura-
tions applying solid-shell finite elements and edge-to-edge contact elements
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Figure 12.11: Diagram of deformation for equal load steps. Displacements of the rigid
beam are prescribed.
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Figure 12.12: Bending of a flexible beam by a rigid beam applying beam finite elements
and beam-to-beam contact elements
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Figure 12.13: Bending of a flexible “soft” beam by a rigid beam applying beam finite
elements and beam-to-beam contact elements
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Figure 12.14: Comparison of the deformed central-lines for a) 50 bilinear solid-shell
finite elements together with edge-to-edge contact; b) finite difference solution for “the
equilibrium of the elastica problem” ; c) 4 C1-continuous curvilinear Reissner beam
finite elements and beam-to-beam contact
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applied displacement
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b

Figure 12.15: Intersecting deformable beams. Initial configuration and loading condi-
tion.
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Figure 12.16: Evolution of the angle between edges with vectors �a and�b for contacting
elements during deformation. Tied contact enforced: a) by tangential and rotational
sticking (Full stick); b) only by tangential sticking (Tangential stick); c) only by rotational
sticking (Rotational stick). d) Non-frictional contact.
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Figure 12.17: Non-frictional contact. Undeformed and deformed configurations.

Figure 12.18: Full sticking (tied) contact. Undeformed and deformed configurations.
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Figure 12.19: Partial tied contact. Tangential sticking is enforced along the upper beam
with a penalty of ε1 = 2.1 · 105, however, non-frictional contact is supplied for the lower
beam. Undeformed and deformed configurations.

Figure 12.20: Partial tied contact. Tangential sticking is enforced along the lower beam
with a penalty of ε2 = 2.1 · 105, however, non-frictional contact is supplied for the upper
beam. Undeformed and deformed configurations.
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Figure 12.21: Sliding contact—tangential sliding with coefficients of friction: μ1 = 0.001
and μ2 = 0.05 is considered. The “lower” beam lays inside the envelope (shadowed)
constructed by four extremal cases: 1) non-frictional contact, 2) full sticking (tied) con-
tact, 3) partial tied contact for the “lower” beam and 4) partial tied contact for the
“upper” beam.

Remark.
The considered effect with partial sticking and sliding can be considered
as a result appearing during interaction between two beams possessing
anisotropic surfaces with different properties (e.g. one beam has a very
rough surface while the other has a very smooth surface).

Another possibility to apply the developed curve-to-curve contact ap-
proach is to model a hinge slider joint between two beams. In this joint
the partial sticking as well as different elastic and friction properties can
be prescribed by the construction.
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12.10 Conclusion

A geometrically exact theory for curve-to-curve contact situations is pro-
posed in the current contribution. The development begins consistently
with the Closest Point Projection (CPP) procedure providing a shortest
distance between curves as a natural measure of normal contact inter-
action. The CPP procedure leads to a special local coordinate system
in which convective coordinates are used directly as measures of con-
tact interaction between curves: normal, tangential and rotational. The
existence and uniqueness of the CPP procedure is studied in detail –
projection domains with a-priori unique solution are constructed in this
coordinate system for curves with varying geometry.

Several achievements appear to be novel for the line-to-line contact
description:

1. consideration of any relative motion including normal, tangential
and rotational components separately for each curve is possible;

2. rotational interactions including corresponding rotational moments
between curves can be considered consistently.

The Coulomb friction law for tangential interaction and the Tresca friction
law for rotational interaction are considered as examples for constitutive
relations between curves. All necessary linearizations for the iterative
solution scheme are provided as covariant derivation in the introduced
coordinate system for arbitrary large distances between curves. This
leads to a closed form of tangent matrices independent of the approxi-
mation used for the finite elements.

The verification section contains the comparison between beam-to-
beam and edge-to-edge finite element models as well as verification
with a famous “Equilibrium of Euler elastica problem” computed via fi-
nite difference scheme. The further numerical examples are illustrating
the ability to describe various kinematics for curve-to-curve contact sit-
uations e.g. partial sticking of a single curve. Though, “solid-shell” finite
elements are predominantly used for the beam contact in this paper,
the current theory can be efficiently applied for the beam finite element
models with rotational degrees of freedom. The necessity to use the full
matrices for the cases with high curvature at contact points has been
shown in the case of the “soft” beam.
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Geometrically exact theory for contact
interactions of 1D manifolds.
Algorithmic implementation with
various finite element models∗

Abstract
The intuitive understanding of contact between bodies is based on the
geometry of adjoining bodies. A more sophisticated approach of an ad-
vanced analysis including the application of various numerical methods
is to take advantage of the geometry of an analyzed object and describe
the problem in the best coordinate system. The best coordinate system
to describe contact interaction in all its geometrical details is a coordi-
nate system attached to the geometrical features of contacting bodies.
This leads to a systematical analysis of geometrical situations leading to
contact pairs – surface-to-surface, line-to-surface, point-to-surface, line-
to-line, point-to-line. Each contact pair is inherited with a special coordi-
nate system based on its geometrical properties. The current contribu-
tion is concentrating on contact between 1D manifolds in 3D space – this
is the majority of edge-to-edge, beam-to-beam, cable-to-edge etc. con-
tact cases. The geometrically exact curve-to-curve contact approach is
then systematically combined together with various finite element ap-
proaches – classical finite elements, isogeometric beam finite elements
and also with a new developed solid-beam approach. Examples illus-

∗The chapter is published in [96] A. Konyukhov, K. Schweizerhof Geometrically exact theory for
contact interactions of 1D manifolds. Algorithmic implementation with various finite element models,
Computer Methods in Applied Mechanics and Engineering, doi:10.1016/j.cma.2011.03.013, Available
online 2 April 2011.
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trating the diversity of various finite element combinations e.g. within
knot mechanics are shown.

Keywords
curve-to-curve contact geometrically exact contact knot mechanics
solid-beam

13.1 Combination with various finite element models
of the continuum

There are several questions in further applications of the curve-to-curve
approach to contact between bodies:

1. combination of classical 3D finite element discretization with the
edge-to-edge approach;

2. combination of finite beam elements with the beam-to-beam algo-
rithm;

3. development of special “solid-beam” elements with beam-to-beam
algorithm which allow to take into account 3D effects also for beam
type elements.

Combination of 3D finite elements with an edge-to-edge contact ap-
proach is rather straightforward. The continuum is discretized with solid
or solid-shell elements and the chosen edge-to-edge contact algo-
rithm is applied. Application with solid-shell elements, however with
bilinear shape functions, is considered in detail in [96]. The consistent
application with an isogeometric approach for the 3D-continuum would
require the iso-geometrical technique, see Hughes et.al. [72], or high
order finite element techniques for shells, see Rank et.al. [152].

We consider here isogeometric techniques for beams and special
cable like structures.

13.1.1 Combination of finite beam elements
with the beam-to-beam contact algorithm

For a beam-to-beam algorithm we have to select a special finite beam el-
ement formulation allowing both finite rotations and enrichment with ar-
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bitrary curvilinear geometry. An extensive development is given e.g. in a
complete series of articles by Ibrahimbegovic [73], Ibrahimbegovic [74],
Ibrahimbegovic and Taylor [75]. The kinematics of deformation is sub-
jected to the Reissner or the Timoshenko hypothesis; finite rotations are
represented via quaternions. A short overview of the necessary equa-
tions is given in the following. The variational equation is given by

Wint =
1

2

∫
L

εTn+κTm ds0 =
1

2

∫
L

εTΛCn ΛTε+κTΛCmΛTκ ds0, (13.1)

where ε is a strain measure for the mid-line of the curvilinear beam, κ

is a bending strain for the curvilinear beam. Finite rotations are repre-
sented by the matrix Λ given by the Rodrigues formula. In the current
approach, the matrix Λ, the update of Λ as well as κ within the iteration
scheme are computed via quaternions operating with an incremental
rotation vector Δw, see details in [73]. The matrix Cn represents the
stiffnesses of the mid-line with regard to a load vector n containing axial
and two shear forces. The matrix Cm represents the bending stiffnesses
with regard to a moment vector m containing torsional and two bending
moments. In a beam coordinate system they have the following form:

Cn =

⎡
⎣ EA 0 0

0 GAs1
0

0 0 GAs2

⎤
⎦ , Cm =

⎡
⎣ GIt 0 0

0 EI2 0
0 0 EI3

⎤
⎦ , (13.2)

where EA is the axial stiffness, GAs1
, GAs2

are shear stiffnesses, GIt

is the torsional stiffness, EI2, EI3 are bending stiffnesses. The finite
element then contains six degrees of freedom: 3 displacements and 3
rotations. Thus, for the numerical algorithm, both a displacement vector
u and an incremental rotation Δw have to be approximated.

13.1.1.1 C1-continuous isogeometric approximation of the curve

For further implementation, we are using two types of approximation:

• C1-continuous cubic spline in Hermite form;

• a special NURB spline representing the circular geometry exactly.
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Hk(t)
∂Hk

∂t

∂2Hk

∂t2

H3
0 (t) 1 − 3t2 + 2t3 −6t + 6t2 −6 + 12t

H3
1 (t) t − 2t2 + t3 1 − 4t + 3t2 −4 + 6t

H3
2 (t) t3 − t2 3t2 − 2t 6t − 2

H3
3 (t) 3t2 − 2t3 6t − 6t2 6 − 12t

Table 13.1: Hermite functions Hi(t), t ∈ [0, 1] and their derivatives are forming a
shape function space for smooth contact elements.

The Hermite type interpolation leads to the following finite element:

x(t) = x(1)H3
0(t) + m(1)H3

1(t) + m(2)H3
2(t) + x(2)H3

3(t), (13.3)

where H3
i (t), 0 ≤ t ≤ 1 are Hermite polynomials, see Table 13.1. x(1),

x(2) are two nodes and m(1), m(2) are tangent vectors at corresponding
nodes. Defining then the tangent vectors via a chord interpolation from
nodes of the neighboring elements we obtain the following structure of
the finite element, see Fig. 13.1:

x(t) = x(1)

(
H3

0 (t) − H3
2 (t)

2

)
+ x(2)

(
H3

3 (t) +
H3

1 (t)

2

)
− x(3)

H3
1 (t)

2
+ x(4)

H3
3 (t)

2
(13.4)

Finally, the finite element is defined by nodes x(1) and x(2) i.e. all
parameters such as forces, moments etc. are computed for the param-
eter 0 ≤ t ≤ 1 , see Fig. 13.1. Nodes x(3) and x(4) are taken from the
neighboring element to keep C1-continuity on element boundaries. The
displacement vector u(t) and the vector of infinitesimal rotation Δw are
approximated in the same fashion.

Equation (13.4) gives an approximation which is valid only for inner
points of the curve. For boundary nodes the corresponding tangent
vector m(i) should be given according to the geometry.

This type of approximation is falling into a simplest type of NURBS
approximation written in a very general form via Bernstein’s polynomials
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.

x (1)
x (2)

x

x

(3)

(4)

t 1

0

Figure 13.1: Approximation for the spline beam element. The beam element is given
by nodes x(1) and x(2). Nodes x(3) and x(4) are taken from the neighboring element to
keep C1-continuity on element boundaries.

of order n

x(u) =
w0b0B

n
0 (t) + w1b1B

n
1 (t) + ...wnbnB

n
n(t)

w0Bn
0 (t) + w1Bn

1 (t) + ...wnBn
n(t)

. (13.5)

This description of a spline has many advantages due to the additional
degrees of freedom because of additional weights wi. It leads to multiple
possibilities to control the geometry, e.g. to represent a certain geom-
etry exactly. A large number of special literature, however, is available
containing all NURBS properties in detail, see e.g. Farin [38], Piegl and
Tiller [143]. An example of a special NURB spline of the second order
representing exact geometry of a circle is used in further implementa-
tion. For the quarter of a circle it has the following weights w0 = 1,
w1 = 1, w2 = 2, see Fig. 13.2.

A NURBS type contact is performed as two spline segments from
the potentially contacting curves defining a beam-to-beam contact pair
leading to a contact element possessing twice as many nodes, e.g. a
contact element for the 4-nodes spline element is the 8-nodes curve-to-
curve contact finite element.

13.1.2 Development of special “solid-beam” elements for
the beam-to-beam algorithm

Beam finite element models are representing the dimension reduction
from the 3D continuum into a 1D manifold. The costs of this are addi-
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0 1

1

w0

w1

w
2 =1

=1

=2

Figure 13.2: Quadratic NURBS approximation for the quarter of a circle. Weights are
w0 = 1, w1 = 1, w2 = 2.

tional rotational degrees of freedom and as a consequence for large ro-
tations a costly update procedure for finite rotation parameters as well as
for bending strains. For the cases of special beam-to-beam contact like
cables possessing a particular elliptic geometry for their cross-sections
it is rather attractive to construct a special 3D finite beam element. This
element can be constructed as follows, see Fig. 13.3:

1. the mid-line of the beam is taken, first, with e.g. linear approxima-
tion. It is defined then by nodes 1 and 2;

2. the left cross-section is defined to be elliptic with the reference main
axes defined by nodes 1-3 and 1-4;

3. the right cross-section is defined to be elliptic with the reference
main axes defined by nodes 2-5 and 2-6;

Thus, an approximation of the 6-nodes “solid-beam” element is de-
fined by the following shape functions:
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21

3

4

5

ξ

ϕ

r

6

Figure 13.3: “Solid-Beam” with elliptic cross-sections defined by 6 nodes. Definition of
local variables.

x =

6∑
i=1

N(ξ, r, ϕ)xi = (13.6)

= x1(1 − ξ)[1 − r(cosϕ + sin ϕ)]

+ x2ξ[1 − r(cosϕ + sinϕ)]

+ x3(1 − ξ)r cos ϕ

+ x4(1 − ξ)r sin ϕ

+ x5ξr cos ϕ + x6ξr sin ϕ

with 0 ≤ ξ ≤ 1; 0 ≤ r ≤ 1; 0 ≤ ϕ ≤ 2π (13.7)

The nodal locations xi = (xi, yi, zi) are given in a global Cartesian
coordinate system.

Contact for the solid-beam element is performed as follows: two
mid-line segments from the potentially contacting solid-beam element
are defining a beam-to-beam contact pair leading to the 4-nodes beam-
to-beam contact finite element.
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Remark.
Extension of the solid-beam approximation into a NURBS type approx-
imation can be obtained, if the linear shape functions defining the ap-
proximation of a mid-line and depending on the variable ξ in eqn. (13.6)
will be changed into corresponding shape functions of NURBS type, e.g.
into those defined via Hermite functions in eqn. (13.4).

13.2 Numerical examples

13.2.1 Bending of a flexible beam by a rigid beam

Here the three finite element approaches are analyzed with the example
“Bending of a flexible beam by a rigid beam” proposed in Konyukhov
and Schweizerhof [96], see Fig. 13.4. This example is constructed as
follows:

The first flexible beam with unit length 1.0 is positioned in the XOY -
plane and clamped at the left end. The material parameters are: Linear
Hooke’s material with Young’s modulus E = 2.1 · 104 and Poisson ra-
tio ν = 0.3. The second beam with the same cross section is rigid
(only one solid-shell element) and is positioned parallel to the OY -axis
under the right end of the first beam. The total displacement vector
u = {−1.0000, 0.0000, 0.6366}T is applied with equal increments (load
steps) to all nodes of the rigid beam. The contact between beams is
assumed to be non-frictional with a penalty parameter εN = 2.1 · 105. All
nodes of the flexible beam are constrained along the OY -axis to prevent
bouncing along the rigid beam. During the loading process the first flex-
ible beam is sliding along the rigid beam. Thus, a quasi 2D-deformation
is realized.

The following cases are computed now representing various combi-
nations discussed in Section 13.1:

1. 50 solid-shell finite elements and edge-to-edge contact;

2. 4 C1-continuous isogeometric beam elements and beam-to-beam
contact;

3. 20 linear “solid-beam” element and beam-to-beam contact.
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Figure 13.4: Bending of a flexible beam by a rigid beam – initial and final configurations
applying solid-shell finite elements and edge-to-edge contact elements
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Beam-To-Beam
Solid-Beam

Figure 13.5: Comparison of the deformed central-lines for a) 50 bilinear solid-shell fi-
nite elements together with edge-to-edge contact; b) 4 C1-continuous curvilinear beam
finite elements and beam-to-beam contact; c) 20 linear solid-beam finite elements to-
gether with beam-to-beam contact.
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For the first case, analyzed in detail in [96], the flexible beam (with a
square cross section 0.02×0.02) is turned at 45o along the OX-axis such
that during further loading it is contacting with the rigid beam only along
the lower edge. Thus, only edge-to-edge contact is realized during the
deformation process.

For the second case, also analyzed in detail in [96], a mechani-
cally equivalent beam model with the same stiffness characteristics is
taken. Namely, the cross section A and all area moments of inertia in
eqn. (13.2) are taken to be the same as for the square section of the
linear solid-shell finite element model. However, the cross section for
the beam is taken to be circular for the contact algorithm as shown in
eqn. (12.62) with constant radius for both beams R = R1 = R2. The
radius R is computed from the equivalency of the cross section area for
the solid-shell and the circular section.

The third case is geometrically equivalent to the second one, i.e. the
cross section is circular, however, the stiffness properties will be com-
puted directly for the solid-beam element with its stiffness matrices.

FE model No. of elem. No. of load steps Global No. of iterations
1 50 1000 3986
2 4 100 396
3 20 100 752

Table 13.2: Comparison of solution for 1) linear solid-shell elements and edge-to-edge
algorithm; 2) curvilinear beam elements and beam-to-beam algorithm; 3) linear solid-
beam elements and beam-to-beam algorithm.

Remark.
An energy norm together with the relative tolerance εconv = 10−12 has
been used as a convergence criterion in all computations.

During the loading process the flexible beam is subjected to large
deformations, especially at the end of the loading process. This leads,
on one side, to the necessity of a relatively large number of bilinear solid-
shell elements (50 elements) and, on the other side, to a relatively small
load step size (resp. a large number of load steps) in order to describe
the sliding over segments correctly. For the solid-beam case the local
contact searching is performed according to the beam-to-beam case
(larger area than edge-to-edge) – this allows to work with less elements
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(20 FE) than for the solid-shell elements (50 FE). However, 20 linear
solid-beams elements are resulting in a stiffer behavior than the first
two models, see Fig. 13.5. This leads to a fairly large number of global
iterations – 752. The number of iterations per load step is increasing
towards the end of the deformation process to 18 per load step. We
have to note again that in Fig. 13.5 the beam-to-beam case is shown for
the mid-line; but both edge-to-edge and solid-beam cases are shown for
contact lines (the point of intersection of both lines is at x = 0).
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Beam-To-Beam
Solid-Beam

Figure 13.6: “Soft” cable. Comparison of the deformed lines for a) 4 C1-continuous
curvilinear beam finite elements and beam-to-beam contact; b) 20 linear solid-beam
finite elements together with beam-to-beam contact.

13.2.1.1 Bending of a flexible beam (smooth “soft” cable) by a rigid beam

Convergence for a “soft” cable depending on the type of approximation
has been studied in [96], where shear softening has been defined by
setting the shear stiffnesses kGA with a scale coefficient k = 10−4. This
leads to “the softening” of the shear forces. For the solid-beam approach
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this effect can be defined as orthotropy inherited with the curvilinear
coordinate system ξ, r, ϕ. In this case both orthotropic shear moduli Gξr,
Gξϕ are scaled with the same factor k = 10−4. The result is presented
in Fig. 13.6 for the displacement vector u = {−0.3000, 0.0000, 0.1910}T

(only 30% compared to the previous case). The figures shows a good
correlation, however, linear solid-beam elements are requiring (again
due to stiffer behavior) a larger number of iterations, see Table 13.3.

FE model No. of elem. No. of load steps Global No. of iterations
1 4 30 93
2 20 30 260

Table 13.3: Comparison of solutions for “soft” cable case with curvilinear beam el-
ements together with beam-to-beam algorithm (FE model 1) and linear solid-beam
elements together with beam-to-beam algorithm (FE model 2).

13.2.2 Contact between rings

Two equal rings represented by two intersecting circles in orthogonal
planes are contacting each other, see Fig. 13.7. The distance between
both is selected so that each circle is passing through the center of cur-
vature of the other one. The radius of the midlines for rings is R0 = 1.0,
the radius of a circular cross-section is r = 0, 2. The material is linear
elastic with E = 200 and ν = 0.3. The cross section of the left ring is
fixed – all displacements and rotations of the last left node resp. cross
section are fixed. Both rings are meshed with 5 NURBS-elements each,
the corresponding linear skeleton is shown in Fig. 13.7. The situation is
more general than the simplest node-to-node contact – the spline ele-
ments are positioned along the ring so that in the reference configuration
the shortest distance between rings is found between the middles of the
spline elements. The assumption of non-frictional contact leads further
to oscillations at the contact point, therefore, frictional sticking contact
is assumed with high coefficients of friction μ1 = μ2 = 1.0 enforcing
sticking behavior at the contact point.
The displacement u = 1.273 in the last right node of the right ring is
applied with increments Δu1 = 0, 001. The rings are contacting with
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u = 1.05 − 0.2 − 0.2 = 0.6. The penalty parameter for contact is taken
as 108. The final configuration before disconvergence is presented in
Fig. 13.7. Computation with such small load steps is motivated to reach
the highly deformed final configuration, however, even in this definitely
not yet strongly deformed case severe convergence problems are ob-
served with total number of iterations 8713. The possible reason for this
is the rather small number of elements and that a linear material law
taken into account. The ill-conditioning of the tangent matrix due to the
large penalty in comparison with the elastic module is also influencing
convergence.
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Figure 13.7: Contact between rings. a) reference linear skeleton; b) reference smooth
(real) configuration after visualization; c) deformed configuration after visualization.
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13.2.3 Tying of a knot

A knot is a method for fastening or securing linear material such as rope
by tying or interweaving. Wikipedia

A knot is a perfect example requiring both a robust smooth cable
element, and a robust curve-to-curve contact algorithm. Since many
centuries knots have been in professional usage for climbers, fishermen,
sailors and others. Among the huge number of knots, see the Ashley
book of knots [7], there are binding knots and bends. The binding
knots are used to constrict and hold objects together, and the bends
serve to unite or join two ropes. In order to fulfill the security conditions
such type of knots must not show relative sliding of ropes and must not
spill or capsize (destroying the shape of a knot) under tension.
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Figure 13.8: Geometry of a knot. Boundary conditions of symmetry and loading by
prescribed displacement u.

From our knowledge there is no investigation yet of such a problem in
the computational mechanics community, therefore the current example
is a trial to begin to study this problem. We start with the most com-
mon Reef Knot, or Square Knot, see Fig. 13.8. This knot however is
reported to be dangerous – There have probably been more lives lost
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as a result of using a Square Knot as a bend to tie two ropes together
than from the failure of any other half dozen knots combined [7, p. 258].
The knot is modeled as follows, see the visualization via Matlab in
Fig. 13.8:

• A spline forming a loop is passing through 33 characteristic nodes.
Thus, each cable is modeled with 32 C1-smooth spline beam ele-
ments.

• Two loops are positioned initially without contact to form an opened
Reef Knot, see Fig. 13.8.

• Material is linear elastic with E = 200 and ν = 0.3.

• Cross section of both cables is circular with the radius r = 1.

• Dirichlet boundary conditions are applied at points A and B in order
to supply the symmetry boundary conditions in plane XOZ.

• The displacement vector along the OX-axis is applied incremen-
tally at both ends of both cables.

Different loading situations are studied:

1. beams are modeled as “soft” cables with a coefficient k = 10−4 in
eqn. (13.2), see Sect. 13.2.1.1. and displacements are free along
the OY -axis, see Fig. 13.8;

2. beams are modeled as a “soft” cables, displacements are pre-
scribed along the OY -axis in order to tie the knot, see Fig. 13.8.

Remark.
During modeling it has been found that only C1-smooth spline finite
elements are capable to represent the result. Higher order finite ele-
ments (quadratic, cubic), but without C1-continuity are showing discon-
vergence during the first crossing of element boundaries.

If both ends are free to move in the XOZ plane as in case 1 then the
stretching of them leads to opening the knot, namely both ends of the
knots are moving outwards, see Fig. 13.9. A proper tying of the knot is
thus enforced by additional application of the tying displacement along
the OY -axis in case 2, see Fig. 13.10.
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Figure 13.9: Both ends are free in the XOZ plane. Opening of the knot is observed
though both ends are pulled.

The result is rather showing “an unusual behavior”. A more careful
analysis recovers that the effect of untying the knot is caused by the
CPP procedure. In the final position shown in the picture the tangents
of the cables at contacting points are becoming almost parallel. In this
position the CPP procedure becomes unstable because the correspond-
ing Jacobian is close to zero. This leads to the necessity to develop an
improved contact algorithm for the problem of parallel tangent vectors.

13.3 Conclusion

The contribution proposes a geometric view on contact appearing be-
tween bodies possessing different geometry. The presented geometri-
cally exact theory is based on description of all kinematical and mechan-
ical relations up to the solution methods in a proper coordinate system
in a covariant form before any discretization. Selection of such a co-
ordinate system is based on the Closest Point Projection procedure for
which the solvability criterion allows a classification of all geometrical
situations as well as a way to select such a coordinate system. Special
attention is given to the case of 1D-manifolds namely to the curve-to-
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Figure 13.10: Additional displacements along the Y -axis are applied to tie the knot.

curve contact case. This case is considered together with several finite
element models such as 3D solid-shell finite elements and finite beam
elements. A special solid-beam finite element for elliptic cross-sections
is developed to consider 3D continuum behavior in beam-to-beam con-
tact. As a specific example a soft cable behavior is described within
the orthotropy inherited with a curvilinear coordinate system. Various
finite element techniques including isogeometric techniques have been
employed. The numerical examples are selected to illustrate the pos-
sibility of the geometrically exact curve-to-curve contact formulation to
work together with various combinations of finite element formulations.
Interesting examples are knots for which the C1 continuous isogeometric
elements proved to be favorable.
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Conclusions and outlook

The thesis contains a geometrical view on contemporary methods in
computational contact mechanics. A unified systematic approach to
deal with a certain geometrical situation and enrich it with mechanical
properties such as anisotropy for adhesion and friction for surfaces as
well as for curves is developed. The main goal of the development is the
description of all kinematical and mechanical relations up to the solution
methods in a proper coordinate system in a covariant form before any
the discretization. Selection of such a coordinate system is based on
the Closest Point Projection procedure for which the solvability criterion
allows a classification of all geometrical situations as well as a way of
the selection of such a coordinate system. Many numerical features for
computational contact mechanics such as the solution of a patch test,
smoothing of contact surfaces, contact algorithms for rigid surfaces, an
algorithm for the transfer of history variables through element bound-
aries, an algorithm for updating of history variables for isotropic and
anisotropic cases are developed in the thesis in combination with a co-
variant approach.

Several chapters are devoted to the coupled anisotropic adhesion
friction model as a generalization of the classical Coulomb friction law. It
is shown that the geometrical microstructure of surfaces can be defined
by the adhesion tensor. The computational result has been validated in
experiments. This opens the possibility to formulate many contact inter-
face laws and construct computational algorithms in a covariant form.

Another important finding of the thesis is a novel approach for curve-
to-curve contact interaction which is straightforwardly applied to both
edge-to-edge and to beam-to-beam contact. This further opens the pos-
sibility together with the iso-geometrical technique to study systemati-
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cally the behavior of structures including ropes and cables with multiple
contact such as nets, fabrics etc.

Not all existing numerical methods to enforce contact conditions have
been considered, however, the thesis is aimed to show the elegancy
to formulate these methods in the most suitable geometrical way in a
covariant form considering the discretization.
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