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CHAPTER 1

Introduction

While in 2008, for the first time, more than half of the world’s population
has lived in urban areas, the United Nations predict a continuing urbani-
sation during the coming years [199]. In consequence, the provision of
an appropriate infrastructure – for water, power, and transportation – is
becoming a challenge for many cities.

Efficient road networks are one of the infrastructural key factors as they
facilitate the transportation of people and goods. While the demand for
traffic and transportation is increasing, the road networks often cannot
be extended at the same rate. In consequence, congestion is a widespread
problem that leads to a negative environmental and economic impact [172].
The environment suffers from vehicular emissions and noise, while traffic
jams waste people’s time and result in considerable financial losses for
the economy.
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Chapter 1 Introduction

1.1 Motivation

As urban road networks are characterised by their numerous signalised
intersections, optimised signal plans and an improved coordination can
help to use the existing road network efficiently, thereby reducing the
negative impact of traffic. Unfortunately, even the optimisation of a single
signalised intersection is a task that usually cannot be solved analytically.
Choosing adequate green times for an intersection’s traffic movements
requires a system of differential equations that in general has no closed
form solution. In order to obtain a closed form solution, the underlying
mathematical model needs to be simplified to a degree where it is no
longer generally applicable [204].

An additional difficulty results from the fact that traffic demands in
urban road networks are dynamically changing such that the signalisation
needs to be continuously adapted. Figure 1.1 illustrates the changes in
demand for the Südtangente, an arterial road at Karlsruhe, Germany,
during different weekdays. In the figure, different weekdays can be clearly
distinguished by their traffic demands. On workdays, the demand is
characterised by pronounced peaks in the morning (eastward direction)
and afternoon (westward direction) due to commuters travelling to and
from the city centre, respectively. On Fridays, the evening peak starts
earlier than on other workdays due to shorter working hours in many
offices. Compared to workdays, the traffic demand on a Saturday rises
later and shows no pronounced peaks. The number of vehicles is smaller
than on a workday with a majority of travellers being on the road during
the afternoon. The traffic demand on Sundays (or other holidays) is
similar to that of a Saturday, with a further reduced number of travellers
on the road. A weak peak can be observed in the late afternoon towards
the city centre. The traffic demand visualised in Figure 1.1 is quite
typical for arterial roads in many cities.

Figure 1.2 depicts the situation at an intersection in more detail. For
a workday’s morning and afternoon peak hour, the traffic flows for each
turning are indicated by arrows of different widths. The arrow width
is proportional to the traffic flow for the intersection’s turnings. By
comparing the figures for the morning and afternoon peak, it can be
observed that the traffic flows for several turnings significantly change
during the day.
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Figure 1.1: Traffic demand of the Südtangente at Karlsruhe, Germany
(Data provided by Tiefbauamt Karlsruhe)

Changes in demand need to be accompanied by changes in the inter-
section’s signalisation. When changes occur on a regular basis, they can
in principle be handled by a time-dependent switching of signal plans.
However, setting up sufficiently detailed schedules requires a significant
design effort and the resulting plans are inflexible and cannot cope with
irregularities: During public events like soccer matches, concerts, or trade
fairs, the traffic demand does not resemble the intra-day demand of any
regular weekday. An example is given in Figure 1.3 that shows the traffic
demand of the Südtangente on two subsequent Sundays. While June 20,
2010 has been a regular Sunday, Germany played England in the round
of sixteen in the FIFA World Cup in the afternoon of June 27, 2010. Al-
though the game took place in Bloemfontein, South Africa, it affected the
traffic in Germany. During the game, traffic counts at the Südtangente
were drastically reduced, while a slight increase can be observed for the
rest of the day due to pre- or postponed trips.

Other events that result in irregular traffic demands include holidays
that fall on a workday, demonstrations or strikes that are often announced
on short notice, or blocked roads due to incidents or weather conditions.
Events like these cannot be handled by a time-dependent switching of
signal plans, since they are difficult or even impossible to foresee at design
time. Therefore, it is necessary to shift the signal plan optimisation from

3
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(a) Morning peak (b) Afternoon peak

Figure 1.2: Traffic demands of an intersection at Hamburg, Germany
(Data provided by Schmeck Ingenieurgesellschaft mbH)

design time to the run-time of the signal system. This calls for learning
intersections that can autonomously reconfigure their signalisation on-
line.

As several intersections can be located in close vicinity within an urban
road network, their coordination is another important aspect. Figure 1.4
illustrates the effect of coordination by showing a time-distance diagram
for an arterial road of three intersections. Each line in the diagram
depicts the trajectory of a vehicle travelling along the arterial in northern
direction. Stops appear as horizontal lines in the figure.

Figure 1.4a shows that vehicles can be stopped repeatedly while trav-
elling along the arterial in case that the intersections are not properly
coordinated. By coordinating their signals, the number of stops can be
significantly reduced after the vehicles have passed the first intersection
where they arrive randomly (see Figure 1.4b).

Reducing the number of stops in a traffic network can have benefi-
cial effects on travel times, fuel consumption, and pollution emission.
Unfortunately, signal coordination is a complex problem that involves
several restrictions. In the general case, it is, e. g., not even possible to
coordinate an arterial road along both its directions [171]. In addition to
this complexity, dynamically changing traffic demands require changes
in the coordination. This calls for intersections that can self-organise to
achieve a traffic-responsive coordination within the road network.
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Figure 1.3: Traffic demand of the Südtangente at Karlsruhe, Germany,
during the 2010 FIFA World Cup in South Africa (Data
provided by Tiefbauamt Karlsruhe)

1.2 Objectives and approach
A research field that anticipates adaptive, self-organising technical sys-
tems is Organic Computing [137,139,168,201]. The anticipated technical
systems should be able to adjust autonomously to changes in their environ-
ment (like changing traffic demands) while being robust (with respect to
disturbances or failures) and flexible (with respect to externally provided
goals). Furthermore, the systems should exhibit learning capabilities and
provide self-x features like self-configuration or self-optimisation. Due to
these properties that are inspired by living organisms, such systems are
called organic.

A powerful design framework for organic systems is the observer/con-
troller architecture [23, 136, 157, 159]. As depicted in Figure 1.5, the
architecture extends a technical System under Observation and Control
(SuOC) with an observer/controller loop that continuously monitors the
underlying SuOC and reconfigures it when this becomes necessary (e. g.,
due a changing system environment).

The reconfiguration relies on a machine learning mechanism that en-
ables the observer/controller to handle environmental conditions that
were unforeseen at design time, thereby fulfilling an important require-

5



Chapter 1 Introduction

Time

D
is

ta
nc

e

(a) Uncoordinated intersections
Time

D
is

ta
nc

e

(b) Coordinated intersections

Figure 1.4: Time-distance diagram for an arterial road

ment for many adaptive systems. However, learning involves errors that
should not negatively affect the functionality or performance of the SuOC.
Many machine learning techniques rely on a preceding training phase to
learn at design time or they test alternative configurations directly in the
SuOC (thereby running the risk of reduced performance or system failure,
which in some applications might be acceptable). Since both approaches
are not satisfactory for an organic system, the observer/controller intro-
duces a two-levelled learning that combines an on-line learning and an
off-line optimisation level.

Off-line optimisation enables the observer/controller to find appropri-
ate configurations for the SuOC based on a model of the system (e. g.,
a traffic simulation). Using the model, different configurations of the
SuOC can be safely tested without affecting the productive system. Good
configurations found by model-based optimisation become available to the
on-line learning mechanism that memorises optimised configurations and
activates them when necessary. The performance of activated configura-
tions is tracked by the learning mechanism, such that their applicability
can be updated based on feedback gathered in the SuOC.

An organic system nicely fulfills the requirements of an adaptive learn-
ing intersection. The signalised intersection becomes the SuOC that is

6
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Figure 1.5: Simplified observer/controller architecture

equipped with an observer/controller monitoring the local traffic demands
and reconfiguring the signalisation accordingly. The two-levelled learning
employed by the observer/controller facilitates to shift the configuration
of signal plans from design time to run-time, thereby allowing the inter-
section to handle even irregular traffic demands. Therefore, the first two
main objectives of this thesis are:

1. Implementing the observer/controller architecture for traffic signal
control to obtain a signalised intersection with organic properties

2. Investigating two-levelled learning as an approach for machine
learning in safety- and performance-critical environments

The third main objective results from the fact that signalised inter-
sections in urban networks are located in the vicinity of each other.
This gives special importance to a coordinated operation of signals at
neighbouring intersections in order to achieve a reduction of stops in the
network which, as a result, also reduces travel times, fuel consumption,
and pollution emissions. Most existing network control systems rely on
predefined coordination schemes or achieve coordination through a cen-
tralised traffic control centre. As the centralised coordination of signalised
intersections is complex, monetarily costly, and potentially susceptible to
failures, there is a need for decentralised or hierarchical solutions that

7



Chapter 1 Introduction

shift (parts of) the decision process to the intersections [74, 134]. As
Organic Computing envisions self-organising systems that consist of lo-
cally interacting components which obtain an emerging global behaviour
without centralised control, thereby resulting in a scalable architecture
that does not suffer from bottlenecks, the third main objective of this
thesis is:

3. Developing a self-organising coordination mechanism for intersec-
tions in urban road networks

The mentioned objectives directly relate to the major contributions of
this thesis which affect the areas of Organic Computing, machine learning,
and traffic engineering.

1.3 Major contributions
The first contribution is an organic signal controller for intersections
that is based on the generic observer/controller architecture. Due to its
learning and optimisation capabilities, the controller autonomously adapts
its signalisation to dynamically changing traffic demands which results in
an improved performance with respect to a user-defined objective (like the
average vehicular delay). By shifting the configuration of signal plans from
design time to the run-time of the signal system, organic intersections can
handle traffic demands that have not been anticipated by the designing
engineer, thereby reducing the effort required for setup and maintenance.
During learning, the observer/controller autonomously creates a set of
human-readable rules that map traffic demands to signal plans, such
that an understandable, transparent system behaviour is guaranteed.
Moreover, the developed observer/controller is widely applicable since
the only prerequisite is a reconfigurable signal controller equipped with
traffic detectors.

While the first major contribution is mainly related to Organic Com-
puting and traffic engineering, the second contribution affects the field of
machine learning. The two-levelled learning mechanism that combines
on-line reinforcement learning and off-line optimisation addresses the
exploration-exploitation dilemma [186] frequently encountered in rein-
forcement learning. The dilemma arises after a reinforcement learning

8



1.3 Major contributions

mechanism accumulated some knowledge about its environment and has
to decide on either exploiting this knowledge or exploring new actions.
By opting to explore, the learner can potentially improve its long term
performance since it might find a higher rewarded action. However, the
learner runs the risk of drastically reducing its short term performance
since exploration is likely to result in bad actions. Therefore, opting to
exploit the previously learnt knowledge might be the better alternative.

Two-levelled learning addresses the exploration-exploitation dilemma
by separating exploitation and exploration. On the exploration level, an
optimisation algorithm (e. g., an Evolutionary Algorithm [62]) safely and
quickly explores potential actions, relying on a (simulation) model of the
environment in the process. On the exploitation level, a reinforcement
learning mechanism (e. g., a Learning Classifier System [37]) memorises
the exploration results, exploits the learnt actions, and updates their
performance evaluation based on a reinforcement received from the envi-
ronment. In consequence, two-levelled learning avoids costly explorations
in the environment by the clever use of an environmental model while
being applicable to a wide area of machine learning problems.

The third major contribution (that relates to the fields of Organic
Computing and traffic engineering) is a self-organising coordination
mechanism that allows for the traffic-responsive coordination of signalised
intersections in urban road networks. The mechanism dynamically creates
progressive signal systems (or green waves) in response to the current
traffic flows and is available in two architectural variants.

A completely decentralised variant establishes progressive signal sys-
tems by local communication among neighbouring intersections. Thus,
the coordination mechanism is scalable and avoids the bottleneck of a
traffic control centre. Coordinated signal plans are determined locally
according to the current traffic demand using the organic intersections’
observer/controller.

In the hierarchical variant of the mechanism, the signalised intersec-
tions remain autonomous entities that collaborate locally to establish
progressive signal systems, but a regional component supports the coor-
dination process by resolving conflicts among competing traffic streams.
Both architectures achieve a reduction of stops which is also beneficial
with respect to fuel consumption and pollution emission.
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Chapter 1 Introduction

1.4 Thesis overview
At a glance, this thesis consists of nine chapters, starting with this
introduction.

Chapter 2 introduces the basic concepts of fixed-time and traffic-
actuated signal control and defines related terms that are used through-
out this thesis. The coordination of signalised intersections is discussed
and selected network control systems are reviewed. Since these sys-
tems typically rely on simulation models, the foundations of micro- and
macroscopic traffic simulation are briefly presented.

Chapter 3 discusses optimisation approaches for signalised traffic net-
works and presents learning and self-organising control mechanisms. With
respect to signal plan optimisation, the chapter is based on a previous pub-
lication [147] and focuses on Evolutionary Algorithms as nature-inspired
heuristics. Their working principle is introduced and selected applica-
tions to off-line optimisation (at design time) and on-line optimisation
(at run-time) are reviewed. Learning Classifier Systems are introduced
as an example for a machine learning technique that can be applied to
implement learning intersections. Finally, selected self-organising control
mechanisms (that coordinate a network’s traffic signals based on local
interactions) are presented.

While the previous chapters present the state of the art in traffic signal
control and discuss learning and optimisation approaches, Chapter 4 is
dedicated to Organic Computing, a research field that investigates how
to design adaptive and self-organising technical systems. Being partly
based on [23], the chapter introduces the observer/controller architecture
that provides a generic design framework for organic systems and reviews
related frameworks.

In Chapter 5, the observer/controller architecture is implemented
to obtain an adaptive learning intersection controller. Being partly
based on [145, 146, 161], the chapter presents the monitoring of local
traffic demands by the observer and discusses the controller’s two-levelled
learning mechanism that uses a Learning Classifier System for signal plan
selection and an Evolutionary Algorithm for simulation-based signal plan
optimisation.

In Chapter 6, the performance of organic intersections is experimen-
tally evaluated. The chapter identifies crucial components in the ob-
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server/controller and presents a sensitivity study to determine their
configuration. Using the findings of the study, the organic intersection is
experimentally evaluated based on traffic simulations of several real-world
intersections.

The self-organised coordination of intersections is in the focus of Chap-
ter 7. The chapter is partly based on [145,192] and presents a decentralised
coordination mechanism that allows for the traffic-adaptive creation of
progressive signal systems in urban roads networks. The mechanism
relies on local detection data and communication among neighbouring
intersections. It is investigated in a simulation study to assess its poten-
tial savings with respect to travel time, stops, and, in consequence, fuel
consumption and pollution emission.

In Chapter 8 – that is partly based on [191] – the coordination mech-
anism is extended by a Regional Manager. Relying on a network-wide
traffic model, the manager supports the signal coordination by solving
conflicts of interest among the network’s traffic streams. As the sig-
nalised intersections remain autonomous entities that collaborate locally
to establish progressive signal systems, the Regional Manager transforms
the formerly decentralised mechanism into a hierarchical architecture.
Both system variants are experimentally compared to investigate the
possibilities and limitations of decentralised traffic control.

To conclude the thesis, Chapter 9 summarises its main contributions
and outlines promising directions for future work.

1.5 How this thesis was written
This thesis is the outcome of several years of research with financial
support by the German Research Foundation (Deutsche Forschungs-
gemeinschaft, DFG) within the Priority Programme 1183 OC. Several
chapters of the thesis are partly based on papers that have been published
with different colleagues from the research group of my doctoral adviser,
Prof. Dr. Hartmut Schmeck (Karlsruhe Institute of Technology), and
from the groups of Prof. Dr.-Ing. Christian Müller-Schloer, Prof. Dr. Jörg
Hähner (both from Leibniz Universität Hannover), and Prof. Dr. Jürgen
Branke (University of Warwick).
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CHAPTER 2

Traffic control and simulation

This chapter discusses foundations of traffic control and simulation. Sec-
tion 2.1 introduces basic signalisation concepts and defines important
terms that are used throughout this thesis. Section 2.2 focuses on fixed-
time controls and their configuration. More sophisticated traffic-actuated
controls that adapt their signalisation based on predefined conditions
are discussed in Section 2.3. Adaptive network control systems that
continuously evaluate and optimise a network’s traffic signals are in the
focus of Section 2.4. These systems typically rely on traffic models which
are discussed in Section 2.5, where foundations of micro- and macroscopic
simulation models are presented. Finally, the chapter closes with a short
summary and a contextual classification in Section 2.6.

2.1 Foundations and terms
Traffic signals are installed at an intersection in order to reduce or
eliminate conflicts among traffic movements. A traffic movement (or
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Chapter 2 Traffic control and simulation

turning movement) combines road users of the same class (e. g., motorised
vehicles, cyclists, or pedestrians) that reach the intersection on the same
approach and leave it using the same exit. Conflicts occur when different
movements intersect on their way.

Traffic lights allocate green time to the various movements. Signals that
cannot be switched separately due to their electric wiring – and therefore
show the same signalisation at any point in time – form a signal group.
Several signal groups that commonly show a green signal for a certain
period of time form a phase. Phases are the basic states of the signalisation.
When phases change, phase transitions control the switching operations
of the involved signal groups to ensure sufficient clearing times between
ending and starting traffic movements. By assigning each phase a duration
and including the relevant phase transitions, a signal plan is obtained.
The signal plan visualises the resulting green times for the intersection’s
signal groups as well as the corresponding red times.

Figure 2.1 illustrates the basic definitions. A simple example inter-
section with six signal groups is shown in Figure 2.1a. The indicated
signal groups K1 to K4 control the vehicular traffic movements at the
intersection, while the signal groups F1 and F2 provide the signalisation
for pedestrian movements. For exemplification, the signal groups have
been combined into two phases, as depicted in Figure 2.1b. A corre-
sponding signal plan is shown in Figure 2.1c, where phases and phase
transitions are highlighted. Additionally, green, red, and clearing times
for exemplary signal groups are indicated in the figure. Amber and red
with amber periods that separate the red and green periods are omitted
for simplification.

In the following sections, fixed-time and traffic-actuated controls are
briefly introduced. Comprehensive instructions on their setup, operation,
and maintenance that are relevant for Germany are available in the
Richtlinien für Lichtsignalanlagen (RiLSA, [70]).

2.2 Fixed-time control
Fixed-time controls operate based on predefined signal plans, no traffic-
responsive change of the signalisation takes place. Due to their simplicity,
fixed-time controls are still in use today. Section 2.2.1 introduces their
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Figure 2.1: Intersection with signal groups, phase sequence, and signal
plan (based on [127])
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(a) Three-armed intersection (b) Four-armed intersection

Figure 2.2: Phase systems

working principle, while Section 2.2.2 discusses the derivation of approxi-
mately delay-optimal signal timings.

2.2.1 Working principle
Fixed-time control is the oldest and simplest way to operate signalised
intersections. A fixed sequence of phases with predefined durations is
periodically repeated such that each signal group obtains the right of
way at least once within the cycle. At fixed-time controlled intersections,
the signalisation is not influenced by the current traffic flows, but is
completely predetermined by the following basic signal settings:

Phase sequence Starting with the intersection’s signal groups, phases
need to be defined and arranged in a fixed sequence. Basic phase
systems with two, three, or four phases are depicted in Figure 2.2
for three- and four-armed intersections. The phase systems mainly
differ in the handling of left-turning vehicle movements that are
either signalised separately or in combination with the opposing
traffic.
Once defined, the phases can be arranged in different sequences
that lead to different phase transitions and clearing times. As a
result, the phase sequence influences the obtainable green times.
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2.2 Fixed-time control

Cycle time The cycle time corresponds to the time available for one
iteration through the signal plan. The cycle should be short to avoid
unnecessary delays, but not too short since otherwise the clearing
times make up a too large fraction of the cycle and thereby reduce
the effectively available green times. Details on the determination of
an approximately delay-optimal cycle time are given in Section 2.2.2.

Phase durations The phase durations (or splits when defined relative
to the cycle time) determine the amount of time available for
each phase. Section 2.2.2 presents details on the determination of
approximately delay-optimal phase durations.

The basic signal settings mentioned above have to be specified by a
traffic engineer at design time. The specifications are based on past
traffic demands (obtained, e. g., from a traffic census) and incorporate
the engineer’s expert knowledge. To handle intra-day changes in traffic, a
day-time dependent switching of signal plans is commonly used. Typically,
separate signal plans are derived for day and night periods and for peak
hours occurring during the morning and evening.

Long term traffic developments, however, cannot be handled in this
way. Since fixed-time controls are known to suffer from an ageing effect
that reduces their quality over time [17], regular signal plan reviews by a
traffic engineer are required to maintain a constant signalisation quality.

An advantage of fixed-time control is that neighbouring intersections
can be easily coordinated such that vehicles can pass several nodes
without encountering a red signal. Coordination is achieved by operating
the intersections with different offsets that are defined as the difference
between a reference time and the start time of the phase serving the
coordinated traffic movement. By adjusting the offset difference among
adjacent intersections to equal the travel time between those intersections,
a coordination can be established. A prerequisite, however, is a common
cycle time for the coordinated intersections to ensure that the phases
remain synchronised over time. The cycle time is generally determined
by the most heavily used intersection, but if nodes with significantly
lower traffic demands are part of the coordination, they can operate at
an integer fraction of the cycle. In these special cases, a full coordination
is established in every second or third cycle, only.
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Figure 2.3 shows the signalisation of three coordinated intersections
with a common cycle time in a time-space diagram. The horizontal and
vertical axes represent distance and time, respectively. The illustrated
signalisation (obtained by offset adjustments) allows for an unimpeded
passage of vehicles (travelling at a constant speed) within the highlighted
green band.

Time

Distance

Cycle
length

Intersection 1 Intersection 2 Intersection 3

Figure 2.3: Coordination of traffic signals

More complex coordination schemes are possible (e. g., along both
directions of an arterial), but their applicability is strictly limited by the
distance between the coordinated intersections. In traffic networks, the
situation is even more complex since a coordination can be disadvanta-
geous for road users travelling along uncoordinated paths.

Regardless whether intersections are coordinated, a good configuration
of the basic signal settings is essential for their efficient operation. There-
fore, the following section focuses on the determination of approximately
delay-optimal cycle times and phase splits.

2.2.2 Configuration
Several authors proposed methods to obtain signal timings that are –
under certain assumptions – optimal with respect to the average vehicular
delay at a signalised intersection (see [58,100] for an overview). A method
that is widely used due to its relative simplicity has been proposed by
Webster [208]. In the following, Webster’s method is presented, starting
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2.2 Fixed-time control

with an approximation formula for the average vehicular delay at a
signalised intersection.

Approximating the average delay of a vehicle

The delay of a vehicle at an intersection compares the time the vehi-
cle needs to pass the stop line of a signalised node to the time of an
undisturbed passage with maximum allowed speed. More formally, the
vehicle’s delay combines the delay times resulting from slowing down,
waiting at a red light, and speeding up again after the stop.

Figure 2.4 visualises the delay by depicting the corresponding vehicle
trajectories in a time-space diagram: The dashed trajectory represents
a vehicle that passes the intersection’s stop line with no stop, while the
solid trajectory belongs to a stopped vehicle that slows down, waits, and
speeds up again. The resulting delay is depicted in the figure.
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Figure 2.4: Delay of a vehicle at a signalised intersection (based on [171])

The vehicular delay at a signalised intersection can be calculated by
combining the average delays of all vehicular traffic movements. Making
the simplifying assumptions that

• the vehicle arrivals are uniformly distributed and that

• all vehicles can leave the queue during the subsequent green period,
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these delays can be mathematically derived. Assuming that M corre-
sponds to a turning’s current traffic flow (in veh/h) and that S denotes
its saturation flow – which is the maximal flow (in veh/h) that could
theoretically occur assuming constant green – the average delay t′

d can
be computed as

t′
d = tC · (1 − f)2

2 · (1 − M/S)
, (2.1)

where tC denotes the intersection’s cycle time and f corresponds to the
fraction of the turning movement’s effective green time tg in comparison
to the cycle (i. e., f = tg/tC). The effective green time of a movement is
the sum of its green and amber time less the time lost due to starting
delays and reduced discharge rates during the amber period.

Although Equation 2.1 is completely based on theoretical considera-
tions (see [171] for a detailed derivation), the equation relies on strong
assumptions. At real-world intersections, vehicle arrivals are typically
not uniformly distributed. Therefore, uncleared queues commonly exist
at the beginning of red periods and lead to increased delays. Comparing
the average vehicular delay obtained using a microscopic traffic simulator
to the delay calculated with Equation 2.1, the underestimation becomes
obvious especially for higher flows (see Figure 2.5a).

To obtain a more realistic delay estimation in case of Poisson dis-
tributed vehicle arrivals, Webster conducted simulation experiments and
extended his theoretical considerations for uniformly distributed arrivals
(see Equation 2.1) with an experimentally derived term. Here, the re-
sulting formula is presented in a slightly simplified version that provides
good estimates. According to Webster, the average delay td of a vehicle
in case of Poisson distributed arrivals can be calculated as

td = 0.9 ·
[
t′
d + 1800 · g2

M · (1 − g)

]
, (2.2)

where g corresponds to the degree of saturation of a turning (i. e., g =
M/(f · S)).

Figure 2.5b compares the average vehicular delay calculated using
Webster’s formula to data obtained from a microscopic traffic simulator.
It can be observed that the formula provides a good approximation of
the simulation results provided that the chosen saturation flow estimate
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Figure 2.5: Comparison of average delays measured in a microscopic
simulator or calculated using approximation formulas (tC =
70 s, tg = 30 s)

S reflects the real-world conditions well. When the chosen value of S is
too small, the traffic flow M nearly reaches the capacity C = f · S of the
signalised turning movement and therefore the degree of saturation g =
M/C becomes nearly 1. For these cases, it is known from the literature
(and can be observed in the figure) that Webster’s formula overestimates
delays [171].

To estimate the average delay for a signalised intersection, the delays
computed for all turning movements can be combined in a weighted
sum. Assuming that Mi is the traffic flow for the i-th turning while td,i

specifies the turning’s average delay computed according to Equation 2.2,
the average delay tD of the intersection can be calculated as

tD =
∑

i (Mi · td,i)∑
i Mi

. (2.3)

The average delay of an intersection calculated according the Equa-
tion 2.3 is a widely used measure for the quality of signal programmes.
Therefore, the effects of signal timings on the resulting delay is briefly
investigated in the following.
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Effects of signal timings on the vehicular delay

Using the approximation formulas of Webster, the effect of varied green
and cycle times on the vehicular delay can be clarified. Figure 2.6a
illustrates the relationship of available green time and average delay for a
signalised turning movement of a fixed-time controlled intersection. The
figure was derived using Equation 2.2 for an assumed flow of 600 veh/h
and and a cycle time of 70 s using varying saturation flows. As expected,
increased green times lead to reduced average delays, while the reduction
of available green time below a (saturation flow-dependent) threshold
leads to a disproportionate increase of delays. It is therefore desirable to
choose the green time of a turning movement as large as possible, ensuring
that on average all arriving vehicles can be served within the green period.
At an intersection, however, the available green time for a turning is
limited by the time requirements of conflicting turning movements.
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Figure 2.6: Effect of green and cycle times on observed delays

Besides phase durations, the cycle time is an important parameter of
fixed-time controlled intersections. Its effect on the average vehicular
delay at an intersection is depicted in Figure 2.6b. The figure has been
derived using Equation 2.3 for an intersection with two conflicting turning
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movements with a flow of 600 veh/h and a saturation flow of 1800 veh/h
each. The effective green times for the phases are assumed as half of the
cycle time minus 5 s, i. e., tg,1 = tg,2 = 0.5 ·tC −5. It can be observed that
for the optimal cycle time – which is 60 s in the example – small changes
of approximately 10 s result in marginally increased delays, only. While
a further increase of the cycle time leads to slowly increasing delays, a
further decrease towards the minimal cycle time required to serve the
arriving traffic results in a rapid rise of the resulting delay. This can
be explained by the following considerations: For shorter cycle times,
the lost times (which are independent of the cycle length) make up a
larger fraction of the cycle which results in a reduced capacity of the
intersection. Overly long cycle times, on the other hand, can lead to
unused green times in one phase which unnecessarily increases the delay
for other phases. Therefore, the cycle time of an intersection should be
selected long enough to provide a sufficient capacity, but no overly long
to avoid unnecessary delays.

In his work, Webster proposed an approach for the calculation of
approximately delay-optimal signal-timings for fixed-time controlled in-
tersections that is briefly presented in the following.

Optimal signal timings with respect to the vehicular delay

Based on his approximation formula for the average vehicular delay (see
Equation 2.2), Webster derived equations to determine delay-optimal
cycle times and phase durations for fixed-time controlled intersections.
For the calculation of these timings, each phase is represented by a single
turning movement that is served by the phase and exhibits the highest
ratio of flow to saturation flow.

Cycle time According to Webster’s considerations (see [208] for a detailed
derivation), the optimal cycle time with respect to the resulting
delays can be calculated as

tC = 1.5 · tL + 5
1 − B

, (2.4)

where tL corresponds to the total lost time per cycle which sums up
the average lost times tl for all p phases and the all-red time tR of
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the cycle (i. e., tL = p · tl + tR). The lost time per phase (denoted
by tl) is the average amount of time lost due to starting delays and
a reduced discharge rate during the amber period and is estimated
to be 2 s by Webster. The all-red time tR sums up all times during
a cycle when all signals display red (or red with amber). Finally,
B sums up the fractions of traffic flow Mi and saturation flow Si

for the representative turnings of the intersection’s phases, i. e.,

B =
p∑

i=1
bi =

p∑
i=1

Mi

Si
.

Phase durations To obtain minimal average delays, the (effective) phase
durations tg,i should be in proportion to the corresponding ratios
of flow to saturation flow, i. e., the relationship

tg,1 : tg,2 : · · · : tg,p = b1 : b2 : · · · : bp = M1
S1

: M2
S2

: · · · : Mp

Sp
.

should be fulfilled. This leads to effective phase durations of

tg,i = bi

B
· (tC − tL), (2.5)

or green times (that consider lost times) of

t∗
g,i = tg,i + tl.

Equations 2.4 and 2.5 can be used to calculate approximately optimal
cycle times and phase durations for fixed-time controlled intersections.
However, Webster’s method is subject to some restrictions:

• Webster’s formulas work well whenever the traffic flow is light. For
a high degree of saturation, however, singular events can heavily in-
fluence the traffic flow. In these cases, the applicability of Webster’s
method is limited.

• Webster’s method cannot be directly applied to fixed-time traffic
signals that serve the same signal group in several phases. Ohno and
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Mine proposed a refinement of Webster’s method that is not affected
by these restrictions [143]. However, their suggested approximation
algorithm is relatively complex and involves solving several linear
programming problems.

• Webster’s method is not applicable to traffic-actuated controls.
Despite these limitations, Webster’s method is widely used to support

the configuration of fixed-time controls. In this thesis, Webster’s delay
estimation (Equation 2.3) is combined with microscopic traffic simulations
to provide fast and accurate fitness estimations for the evolutionary
optimisation of signal timings (see Chapter 5).

2.3 Traffic-actuated control
In contrast to fixed-time operated intersections, traffic-actuated controls
adapt their signalisation to the detected traffic situation. Adaptations are
controlled by predefined temporal and logical conditions that represent
the expert knowledge of the designing traffic engineer. Depending on the
controller, traffic-actuated operations include some or all of the following
modifications:
Green time adaptation The duration of signal phases can be varied within

predefined boundaries. Depending on the number of waiting vehicles
at the beginning of a phase or on gaps in the approaching traffic,
phases can be extended or shortened, respectively. However, a
green time adaptation does not influence the cycle time which is
important when traffic-actuated controls are coordinated. The
traffic-actuated controller guarantees that changes for one phase
are compensated by other phases while all minimum and maximum
phase durations are kept.
Green time adaptation is also used for public transport prioritisation.
When a public transport vehicle is detected, the corresponding phase
can be extended or conflicting phases can be shortened to allow for
an undisturbed passage of the vehicle.

On-demand phases Some traffic-actuated controls support the on-demand
inclusion of signal phases in their cycle. On-demand phases with no
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waiting vehicles can be skipped, their green time is then subdivided
among the remaining phases.

Phase sequence adaptation By changing the phase sequence, public trans-
port vehicles can be prioritised. When an approaching public
transport vehicle is detected, the controller brings forward the cor-
responding phase. Allowable phase transitions need to be predefined
by a traffic engineer.

Cycle time adaptation Finally, the cycle time can be subject to modifi-
cation if no coordinated operation is desired.

Temporal and logical conditions for the supported adaptations need to
be defined in the planning phase of a traffic-actuated control based on
the experience of a traffic engineer. During its operation, no quantitative
evaluation and therefore no optimisation of control decisions takes place.
As a consequence, traffic-actuated controls tend to loose their adaptivity
and behave like fixed-time controls in heavy traffic [30], since phases are
typically extended to their maximal duration in these conditions.

Traffic-actuated adaptation of the signalisation is usually limited to a
single intersection, but a coordinated operation of several intersections is
possible. The working principle is similar to the coordination of fixed-
time controls (see Section 2.2): After fixing the cycle time of coordinated
intersections, a coordination is achieved by adjusting the offsets for the
coordinated phases. Traffic-actuated changes of the signalisation may
affect non-coordinated phases only. The coordinated phases, however,
must always be served at a fixed time and for a specified duration during
each cycle in order to maintain the coordination.

2.4 Adaptive network control systems
Fixed-time and traffic-actuated controls are configured once at design
time. During their operation, no further evaluation of control decisions
takes place. In contrast, adaptive network control systems evaluate
and optimise their control decisions on-line. Traffic flows and signal
controls are usually modelled by the system and allow to determine
the impact of control decisions on the traffic performance. Using these
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performance measures, optimisation components search for the best
possible signalisation for the current traffic demand.

This section discusses selected adaptive network control systems. Sec-
tions 2.4.1 and 2.4.2 present SCOOT and SCATS, two well-known cen-
tralised systems. The decentralised system OPAC is discussed in Sec-
tion 2.4.3, while BALANCE and MOTION – two recently developed
approaches – are presented in Section 2.4.4. Besides the systems dis-
cussed here, several other adaptive network control systems have been
developed and are used throughout the world. More extensive overviews
and reviews are available in the literature [75,144,180].

2.4.1 SCOOT
The Split, Cycle, and Offset Optimisation Technique (SCOOT, [160]) is
one of the first adaptive network control systems that was successfully
applied in the field. Since its development, it has been used in many
installations worldwide and is still commercially available today. SCOOT
centrally computes a single cycle time for all intersections in the network
and adjusts phase durations (splits) and offsets for the individual nodes
in order to reduce delays and stops.

The operation of SCOOT relies on a mesoscopic traffic model. The
model combines data on advancing vehicles sensed by detectors at the
upstream end of approaching links with observations from previous
cycles to obtain cyclic flow profiles. In combination with information on
expected speeds, saturation flows, and the intersection’s signalisation,
these profiles can be used to calculate queue lengths, delays, and stops for
the network’s intersections. Based on these performance measures (and
in combination with the degree of saturation of links and intersections),
splits, cycle time, and offsets can be adjusted:

Splits For split adjustment, SCOOT investigates at the end of each phase
whether shortening or extending the phase reduces the degree of
saturation for the most heavily saturated approach. Depending on
the result of the check, the phase durations are adapted in small
steps of a few seconds.

Cycle time Every few minutes, the cycle time is adjusted to achieve a
degree of saturation of 90 % for the most heavily saturated intersec-
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tion. As with split adaptations, the cycle time is changed in small
steps of a few seconds.

Offset In contrast to cycle time and splits – which are adapted mainly
based on the degree of saturation – the offset is adapted once per
cycle using performance measurements derived from the cyclic flow
profiles that have been computed for the incoming links. Again,
the adaptation is performed in small steps.

By iteratively repeating the above steps, SCOOT adapts the signalisa-
tion to the current traffic flows in the network. The benefits obtainable
by SCOOT installations are documented in several studies (e. g., [126]).
However, SCOOT is also criticised for its stepwise change of control
parameters that results in a relatively slow adaptation process [75].

2.4.2 SCATS
In the Sydney Coordinated Adaptive Traffic System (SCATS, [125,175]),
regional computers perform the strategic control of traffic-actuated inter-
sections. Each regional system selects a common cycle length, splits, and
offsets for the intersections within its subnetwork. Locally, the resulting
signalisation can be modified by traffic-actuated operations. A centralised
monitoring system is solely provided for the observation of the regional
systems, their performance, and the equipment status.

In contrast to most adaptive network control systems, SCATS does not
utilise a traffic model. The cycle time is calculated to maintain a degree
of saturation between 80 % and 90 % for the most heavily saturated
approach in the subnetwork whenever this is possible. Relying on a
library of predefined controls, splits are adapted to maintain an equal
degree of saturation on competing intersection approaches. Offsets are
selected from predefined offset plans to suit the high flow movements in
the subnetwork. All updates are performed on a cycle-to-cycle basis in
order to optimise a performance criterion that can vary with the traffic
demand. SCATS might, e. g., try to achieve

• minimum stops during periods of light demand,

• minimum delay with normal demand, and
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• maximum throughput during periods of heavy demand.

SCATS is successfully used in many installations around the world
with a geographical focus on Australia. Recently, the benefits of SCATS
have been documented in a simulation study that considered an arterial
of six intersections operated by coordinated fixed-time control [211].

2.4.3 OPAC
The Optimisation Policies for Adaptive Control (OPAC, [78]) have been
developed to support the traffic-responsive control of single intersections.
In contrast to SCOOT, SCATS, and most other adaptive network control
systems, OPAC works decentralised in the sense that its control algorithm
is applied independently at each intersection. For intersection control,
OPAC relies on dynamic programming to compute a local signal switching
policy that is optimal for a short time horizon in the future. Using a
rolling horizon approach, the derived policies are continuously applied
and recalculated in short intervals. As a result, intersections are operated
acyclic and without an explicit coordination.

Although the signal switching plans derived by dynamic programming
are in theory optimal with respect to the considered horizon, OPAC
requires some adaptations in practice [78]:

• OPAC’s policy calculation requires detailed vehicle arrival data
for the entire horizon. Such data cannot usually be obtained from
available detection systems, therefore a prognosis model is needed
to substitute the missing data.

• The dynamic programming approach of OPAC requires an extensive
computational effort that prevented its application in an on-line
system. To reduce the computational requirements, a technique
called Optimal Sequential Constrained Search (OSCO) replaced
the original dynamic programming approach. Regarding OSCO,
Gartner reports that it “provides results that are very close (within
10 %) to the genuine Dynamic Programming approach” [78].

Considering the mentioned adaptations, the basic steps in OPAC’s
operation can be summarised as follows:
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1. Obtain the flow data from the intersection’s detectors and assign
this data to the head of the prognosis horizon. Estimate the flow
data for the remaining horizon using the prognosis model.

2. Calculate an optimal switching policy for entire horizon using
OSCO.

3. Implement the calculated switching policy for the head of the
horizon only.

4. Shift the horizon and repeat Steps 1 to 4.

The literature reports that OPAC can offer remarkable benefits com-
pared to traffic-actuated controllers [79]. OPAC has, however, also been
criticised for the missing explicit coordination among the intersections and
for its simple traffic model that is error-prone in case of long queues [75].
Furthermore, OPAC does not provide facilities for the prioritisation of
public transport vehicles.

2.4.4 BALANCE and MOTION
Both adaptive network control systems BALANCE (Balancing Adaptive
Network Control Method, [74]) and MOTION (Method for the Optimisa-
tion of Traffic Signals in Online-Controlled Networks, [113, 135]) have
their origins at the Technical University of Munich, where they resulted
from two EU research projects. Although both systems internally differ
and exhibit individual strengths and weaknesses, they follow the same
concept: A centralised network-wide optimisation is combined with local
traffic-actuated control. On the centralised level, a model of the network-
wide traffic demand is created. The model is used to identify the most
relevant traffic streams in the network and to optimise the coordination
and signal timings of the intersections. The resulting signalisation con-
straints are then communicated to the network nodes as frame signal
plans. The plans ensure the coordination of intersections within the
network, but leave some freedom for local adaptations of the signalisation
in the case that traffic-actuated node controllers are available.

The working principle of BALANCE and MOTION can be summarised
in the following steps:
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1. Traffic detection Data on the current traffic demand is gathered from
the detectors in the network, before it is preprocessed for later use.

2. Traffic modelling In a second step, the gathered data is used to create
a time-space representation of the current traffic demand in form of
meso- or macroscopic traffic models. In the process, missing data
and origin-destination relations are estimated, and incidents and
congestions are detected. The models are then used to predict the
future traffic development and to evaluate control decisions with
respect to the resulting delays, stops, and queues.

3. Optimisation of control parameters In a third step, the network-wide
cycle time, phase durations, phase sequences, as well as offsets are
optimised. Both BALANCE and MOTION provide Evolutionary
Algorithms to reduce delays and stops that are combined in a
single-objective fitness function (see [25] and [135], respectively).
In MOTION, evolutionary optimisation is limited to coordination
related parameters, i. e., phase sequences and offsets, while all
signalisation parameters are considered in BALANCE. Details on
the optimisation approaches are given in Section 3.1.3.

4. Inspection of obtained results In a last step, a check is performed
whether the current signalisation needs to be adapted. If the
frame signal plans obtained in Step 3 result in a significant improve-
ment with respect to the objective function, the new signalisation
is communicated to the local controllers.

The previous steps are repeated in intervals of a few minutes to achieve
an on-line adaptation of the signalisation to the current traffic demand.

Installations of BALANCE and MOTION have been evaluated in sev-
eral studies: Positive results of a field test of BALANCE at Munich are
reported by Friedrich in [74] and – focusing on evolutionary on-line opti-
misations – by Braun et al. in [25, 26]. For MOTION, Kruse summarises
the results of several field tests in [113], while Mück presents results of a
recent field test at Münster that applied evolutionary optimisations [135].
Both works report reductions in travel time compared to the systems
previously used in the test areas.
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The presentation of BALANCE and MOTION completes the discussion
of adaptive network control systems in this chapter. In the following, the
focus changes from traffic control to traffic modelling. Different types of
traffic models are introduced and their specific properties will be outlined.

2.5 Traffic models and simulation
Based on mathematical and logical abstractions of real-world traffic phe-
nomena, traffic models simulate the behaviour of vehicles in a traffic
network over space and time. Data on the simulated traffic flows is gath-
ered and can be used to asses the simulated network. Traffic simulations
therefore represent experiments performed virtually on a computer rather
than in the field. The implicit assumption, however, is that the simulation
results carry over to the real-world network despite the abstractions in
the model.

Besides their application in adaptive network control systems (Sec-
tion 2.4), traffic models have several use cases: One example are short
term traffic forecasts that support the determination of route guidance
recommendations in traveler information systems [207]. Another applica-
tion is the assessment of transportation planning alternatives, e. g., when
there are several options for building a new motorway segment [132].
Furthermore, simulation models can provide estimates on the quality of
traffic signal timings (Section 3.1).

For the different application areas, different types of models are in
use. In [60], model types are distinguished based on the used representa-
tion, the update mechanism, and the handling of randomness in traffic.
Regarding representation, simulation models are subdivided in micro-,
macro-, and mesoscopic models. Microscopic models simulate individual
vehicles and their interactions in the traffic network in great detail, while
macroscopic models take into account the relationships of speed, flow,
and density of traffic streams to simulate traffic flow. Mesoscopic models
combine features of micro- and macroscopic approaches: They simulate
individual vehicles, but model their interactions based on macroscopic
relationships.

Either type of model keeps track of a system state that represents the
network traffic by combining the states of the simulated elements. States
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can be updated in fixed or variable intervals, allowing to distinguish
between time- and event-based models: Time-based models update the
system state at fixed time intervals. In event-based models, the state
update is triggered by simulation events that can occur irregularly. When
state changes occur only infrequently, this can lead to run-time reductions.
However, traffic models are mostly time-based because of the continuously
changing traffic.

Finally, simulation models can be either deterministic or stochastic.
Deterministic models ignore variabilities in the characteristics of vehicles
and their interactions. The models assume, e. g., that all cars have the
same length, or that all drivers keep the same minimal distance between
their own car and the preceding vehicle when stopped. In stochastic
models, such properties are determined from statistical distributions using
a random number generator. The sequence of generated random numbers
depends on an initial numerical value called random seed (or simulation
seed). The random seed determines all stochastic decisions during a
simulation. Therefore, results from stochastic simulations vary with the
random seed for otherwise identical input data. Deterministic models, in
contrast, always produce identical results for the same input data.

Overviews on traffic simulation models are provided in various articles
(e. g., [24]) and textbooks (e. g., [195]). In the following, traffic models are
distinguished by their representation: Section 2.5.1 discusses the basics
of microscopic models, Section 2.5.2 is dedicated to macroscopic models.

2.5.1 Microscopic traffic simulation
Microscopic models simulate the characteristics of individual vehicles and
their interactions in a traffic network. Simulated vehicles – that exhibit
individual properties like a specific length, a predefined acceleration and
deceleration capability, or a desired speed – move within a simulated
network, where they interact with other vehicles and react on speed limits,
traffic signals, and other environmental conditions. The simulation is
based on car following and lane changing models that define how vehicles
accelerate, decelerate, change lanes, and perform passing manoeuvres.
Statistical data on the resulting traffic dynamics (like the average number
of stops of a vehicle on a signalised arterial road) can be gathered and
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used to asses network properties (like the coordination of traffic signals
along the arterial). This section presents key aspects of the simulation
process and discusses the calibration of microscopic simulation models.

Simulation model

The core of any microscopic traffic simulator is a simulation model that
specifies the analytical relationships and the necessary logic for modelling
the traffic flow. A simulation model typically employs several submodels
that define, e. g., the car following or the lane changing behaviour of the
simulated vehicles. Well known models have been introduced by Gipps
[83–85] and Wiedemann [210] and are implemented by the widespread
simulators AIMSUN [11, 45] and VISSIM [66], respectively. Instead of
presenting one of the several available models in detail, the following
discussion will focus on key aspects of microscopic models. It partly
follows the presentation of microsimulation modelling software in [60].

Traffic demands At the beginning of a simulation, the simulated traffic
network is empty. The network’s geometry is modelled by a set of links
and intersections and traffic enters the network at predefined origins (or
sources). The vehicles traverse the network and leave it again at a set
of possible destinations (or sinks). The simulated traffic demand can be
either specified by a turning-fraction based or an origin-destination based
approach.

Turning-fraction based demand The turning-fraction based approach de-
fines the inflow for each network source and routes vehicles through
the network based on turning-fractions that are specified for each
intersection. A vehicle is assigned its next turn when it enters a net-
work link based on the turning-fractions specified at the downstream
intersection.

Origin-destination based demand In origin-destination based models, the
traffic demand is determined by origin-destination matrices (O/D
matrices) that specify the flow of vehicles from each origin to each
destination. When a vehicle is generated at an origin, it gets
assigned a destination where it will exit the network. Since an O/D
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pair is usually connected by several routes, a route choice model
is used to assign one of the possible routes to a vehicle when it
enters the network. Depending on the route choice model, route
costs – like distances or travel times – can be calculated once at
the beginning of the simulation (fixed route mode) or be updated
periodically (variable route mode).

Before the determined routes can be assigned, vehicles need to be
created and entered into the network.

Traffic generation When vehicles are created, their attributes need to
be defined. Attributes include physical properties of the vehicles (like
length or maximal speed) and may also cover aspects of the driver be-
haviour (like reaction times or gap acceptance parameters). In stochastic
simulations, the mean values, deviations, and boundary values of at-
tributes can be defined for each vehicle class (i. e., for cars, buses, or
trucks). The particular characteristics for each vehicle are then sampled
according to a probability distribution.

After their creation, the vehicles need to enter the network based on the
input flows specified by the network’s traffic demand. Here, a headway
model determines the time interval between two consecutive vehicle
arrivals (called headway). Assuming that the specified input flow for an
origin is λ vehicles per second according to the current traffic demand,
the mean headway equals 1/λ seconds. Often, an exponential distribution
is used to determine the headway h (in seconds) that separates a pair of
generated vehicles using the equation

h = − 1
λ

· ln(u),

where u ∈]0, 1[ is a random number. However, the use of other probability
distributions or constant headways is possible.

The headway distribution determines the theoretical arrival time for
each vehicle. During a simulation run, it is necessary to additionally
check whether the arrival is physically feasible or not, i. e., whether there
is enough space for the generated vehicle to enter the input link.
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Vehicle movement After the vehicles entered the network, they try
to travel at their desired speed on the network links. As long as their
movement is not influenced by other vehicles, their actual speed is affected
by link-specific properties (like the link’s slope, its geometry, or its speed
limit) only. The simulation model computes the actual speed of a vehicle
as the minimum of its desired speed and the speed computed for the link
the vehicle is currently traversing.

When a vehicle is influenced by other vehicles in the network, its
behaviour is determined by car following and lane changing models. The
car following model specifies the interaction between a leader and a
follower vehicle traveling in the same lane. Generally, it can be seen as a
stimulus-response mechanism where the following vehicle reacts with a
specific sensitivity on an observed stimulus, but its reaction is delayed
by a reaction time. Most of the employed car following models are
fail-safe, i. e., a minimum safety distance between vehicles is maintained.
According to [60], the models work in three steps:

1. In a first step, the follower vehicle’s speed change in response to
the motion of its leader is calculated. The goal is to maintain
a target distance between follower and leader that depends on
their vehicle characteristics. In general, the acceleration of the
follower vehicle is a function of the speeds of the leading and
following vehicles, their distance, and the follower’s reaction time.
Additionally, the acceleration might depend on other parameters
specific to a particular car following model.

2. Since the derived acceleration must not exceed the maximum accel-
eration or desired speed specified for the follower, this is checked in
the second step.

3. Finally, the follower’s acceleration must guarantee that the fol-
lower maintains a minimum separation from the leader. If the
car-following acceleration is larger than a safe-following accelera-
tion, the safe-following acceleration is implemented.

Since traffic networks do not consist of single-laned links alone, a lane
changing model determines the behaviour of vehicles when they exit their
current lane. Whether a lane change can be performed depends on the

36



2.5 Traffic models and simulation

gap acceptance of the lane changing vehicle. It will only change lanes
if the available gap in the target lane is greater than its critical gap.
According to [60], most microscopic simulation models distinguish three
types of lane changes:

Mandatory lane changes occur whenever a vehicle must change its lane.
Among other reasons, this can be the case when the lane needs to
be changed to reach the vehicle’s destination or when a lane ends
(e. g., an on-ramp on a freeway).

Discretionary lane changes occur when vehicles change their lanes to
improve their movement. Lane changes of vehicles that cannot
travel at their desired speed because they are hindered by slower
moving vehicles in front are a typical example.

Anticipatory lane changes can occur when a vehicle anticipates slow-
downs located downstream within its current lane (e. g., due to
merges or weaves ahead). In these cases, the decision for a lane
change is based on the speed difference of the lanes at the location
of the slowdown.

By combining the previously discussed submodels, a microscopic simu-
lation model determines how vehicles move through and interact in the
simulated network. Therefore, it has a large influence on the accuracy of
the simulation, i. e., it determines how well a simulation run reproduces
the traffic conditions observed in the field. A typical microsimulation
model comes with a large set of parameters that can – at least partly – be
specified by the user of the simulator. The simulation software provides
default values for all model parameters, but these will not under all
circumstances be able to produce accurate results for a specific network.
Therefore, the model parameters need to be calibrated.

Model calibration

The adjustment of model parameters to improve the ability of a simulation
model to reproduce the driver behaviour and traffic performance observed
in the field is called calibration. Calibration is necessary since even
detailed microsimulation models do not include all variables that affect
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real-world traffic conditions. Models rely on abstractions of real-world
traffic dynamics and can therefore not be expected to work accurately
for all possible conditions. Model parameters need to be adapted such
that the resulting parameter values minimise an error measure comparing
simulated and field traffic conditions.

The details of the calibration procedure are beyond the scope of this
thesis, but it should be noted that after calibration microscopic models
provide accurate simulations of real-world traffic conditions [19]. Research
has been conducted on the automated calibration of microsimulation
models using, e. g., the simplex algorithm [105] or Evolutionary Algo-
rithms [206,222] in the process. The continuous calibration of microscopic
on-line simulations using Kalman filters has been investigated in [124].

Summary

To summarise the presentation of microscopic simulation models it should
be remembered that microscopic models simulate the characteristics of
individual vehicles and their interactions in a traffic network in great detail
to provide statistical data on the resulting traffic dynamics. Microscopic
models are widely applied in a broad variety of use cases since the
obtained simulation results are highly accurate after the models have
been calibrated. For some applications – like the simulation of traffic-
actuated signal control – their use is even indispensable. However, the
time required to perform a simulation highly depends on the number
of simulated vehicles. For the simulation of large networks, microscopic
models that are based on Cellular Automata (like the Nagel-Schreckenberg
Model [65, 140]) are recommendable due to their comparatively low
computational efforts.

2.5.2 Macroscopic traffic simulation
Macroscopic models consider the relationships of aggregated traffic char-
acteristics (i. e., speeds, flows, and densities) when simulating traffic flows.
They are based on equations on the conservation of traffic flows and
on the propagation of disturbances. Therefore, macroscopic models are
well-suited to predict the spatial and temporal development of traffic
patterns in a network.
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The oldest macroscopic traffic model is the LWR model that has been
proposed independently by Lighthill and Whitham [121] and Richards
[156] and is still popular today. As depicted in Figure 2.7, it describes
the collective vehicle dynamics at time t and position x of a road segment
in terms of

• the spatial vehicle density ρ(x, t),

• the average velocity V (x, t), and

• the traffic flow Q(x, t).

Regarding the relationship of these terms, the LWR model relies on the
basic assumption that flow and velocity are functionally dependent solely
on the traffic density.
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Figure 2.7: Traffic representation in macroscopic models (based on [35])

Theoretical considerations on the relationship of flow, density, and
velocity lead to the equation

Q(x, t) = V (x, t) · ρ(x, t), (2.6)

which states that traffic flow at time t and position x of a road segment
can be expressed as the product of density and average velocity. To
fulfil the basic assumption of the LWR model, the velocity needs to
be expressed as a function f of the density, i. e., V (x, t) = f(ρ(x, t)).
Reasonably, f should satisfy the following conditions:
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• At low traffic densities, drivers are assumed to travel with the
maximally allowed speed Vmax, therefore f(0) := Vmax.

• At the maximal traffic density ρmax, traffic comes to a halt, therefore
f(ρmax) := 0.

• The velocity is assumed to be monotonically decreasing with in-
creasing densities.

The simplest relation of density and velocity exhibiting the desired
properties is a linear function defined by the border conditions f(0) =
Vmax and f(ρmax) = 0. It is given by the equation

V (x, t) = f(ρ(x, t)) := Vmax ·
(

1 − ρ(x, t)
ρmax

)
. (2.7)

By inserting this relationship into Equation 2.6, one obtains a quadratic
relation for density and flow given by the equation

Q(x, t) = Vmax ·
(

1 − ρ(x, t)
ρmax

)
· ρ(x, t). (2.8)

The relationships of density, velocity, and flow specified in Equations 2.7
and 2.8 are depicted in Figure 2.8. Due to its importance the relation
of density and flow is also called fundamental diagram. More complex
relationships of density and velocity – that better reflect the observations
in real traffic networks – can be used in the model. However, they might
lead to inconsistencies (like negative speeds or flows for certain densities).

Using Equations 2.7 and 2.8, future traffic developments can be simu-
lated based on the continuity equation

∂ρ(x, t)
∂t

+ ∂Q(x, t)
∂x

= 0

that can be derived since no vehicles get lost within a road segment (see
[35] for a detailed derivation). For practical applications, the LWR model
is often discretised in time and space (like, e. g., in the cell transmission
model [50,51]).
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Figure 2.8: Relation of density, flow, and velocity

2.6 Summary

The chapter initially focused on basic signalisation concepts and defined
important terms to be used in the remainder of this thesis. Fixed-time
controls that use static signal plans and traffic-actuated controls that
adapt their signalisation based on predefined temporal and logical con-
ditions have been introduced. Both approaches to intersection control
reflect the expert knowledge of the designing traffic engineer and do not
evaluate or optimise their control decisions on-line. In Chapter 5, intersec-
tion controls will be extended by an observer/controller architecture that
uses methods from machine learning to implement the missing on-line
optimisation capabilities.

Following the presentation of basic concepts and control approaches,
selected examples of existing adaptive network control systems have
been discussed. Adaptive network control systems perform an on-line
optimisation of signal plans, thereby typically relying on a centralised
architecture and employing traffic models to support the optimisation
of control decisions. In contrast to the centralised optimisation of these
systems, a self-organising approach to coordination is proposed in this
thesis. In Chapters 7 and 8, the approach is introduced and evaluated.

Recapitulating the discussion of traffic models, it should be remem-
bered that different simulation types can be distinguished based on their
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representation: Microscopic models simulate individual vehicles and their
interactions in the traffic network in great detail, but at the cost of a
high computational demand and with the need of parameter calibration.
They typically operate stochastically, i. e., the simulation results vary
with the random seed for otherwise identical input data. Due to their
level of detail, microscopic models are indispensable in the evaluation of
traffic-actuated controls. In this thesis, a microscopic simulation model
substitutes the real-world road network in the SuOC during the exper-
imental evaluations. Furthermore, the introduced observer/controller
framework makes use of microscopic simulations to provide performance
estimates in the evolutionary optimisation of signal timings.

Macroscopic models employ a less detailed traffic representation, but
allow for the fast simulation of large traffic networks. The models take
into account the relationships of speed, flow, and density of traffic streams
to simulate traffic flow. Together with mesoscopic models that simulate
individual vehicles, but model their interactions based on macroscopic
relationships, they are often used in adaptive network control systems
or in the network-wide evolutionary optimisation of traffic signals, an
application that is discussed in the following chapter.
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CHAPTER 3

Optimisation, learning, and self-organisation in traffic
control systems

This chapter discusses the optimisation of traffic control systems and
presents learning and self-organising control mechanisms:

Optimisation The aim of optimisation is to find optimal solutions for a
given problem. In the context of traffic signal systems, optimisation
can be used to determine (near-)optimal timing parameters for the
signalised intersections in a network. However, optimisations can be
time-consuming and their computational requirements limit their
applicability in on-line applications with changing traffic demands.

Learning Technical systems that change their behaviour in a way that
makes them perform better in the future are said to learn [130,219].
A learning traffic signal controller might, e. g., adapt the way it
switches among the available signal groups based on delay measure-
ments at the intersection. In this example, the delay constitutes a
reinforcement signal used for reinforcement learning [186].
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Self-organisation A system in which elements interact in order to dy-
namically achieve a global function or behaviour is called self-
organising [63, 81]. The global function or behaviour has to be
achieved autonomously as the elements interact with one another.
In traffic signal control, self-organising mechanisms are often based
on simple predefined rules specifying an intersection’s reaction
to environmental changes (like an approaching vehicle platoon).
The coordination of neighbouring intersections is then obtained by
means of sophisticated vehicle detection or communication.

Regarding optimisation approaches, mathematically exact optimisation
can be distinguished from heuristics. An approach used for mathemati-
cally exact optimisation is mixed-integer linear programming [220]. In
mixed-integer linear programming, the optimisation problem needs to
be formulated as a set of linear equations with constraints which can
then be solved by an optimisation software package like CPLEX1. The
obtained solutions are optimal with respect to the mathematical problem
formulation and can – possibly with some quality loss due to abstractions
in the model – be carried over to the original problem.

Depending on the mathematical formulation, the time-requirements
for optimisations can vary significantly. Köhler et al. used mixed-integer
linear programming to optimise offsets in networks of fixed-time controlled
intersections [108,109]. While their initially proposed path-based model
required a computing time of nine hours to optimise offsets for a network
of nine intersections, an improved link-based approach is reported to
require only a few seconds for the optimisation [109].

However, mathematically exact approaches also have drawbacks: The
necessary mathematical formulation of the optimisation problem limits
their general applicability. Taking the example of [108,109], the optimisa-
tion has been limited to offsets. Other relevant signalisation parameters
need to be provided as part of the problem formulation. Furthermore, only
fixed-time controls have been considered since traffic-actuated controls
are difficult to model.

This thesis focuses on heuristics for traffic signal optimisation, since
they are more widely applicable. Heuristic approaches include Evolu-

1IBM Corporation. ILOG CPLEX website: http://www-01.ibm.com/software/
integration/optimization/cplex/
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tionary Algorithms [62], Artificial Neural Networks [93], Particle Swarm
Optimisation [101], and Ant Colony Optimisation [59] among others.
All mentioned approaches have been applied in transportation engi-
neering, but a comprehensive survey is beyond the scope of this the-
sis. The interested reader is instead referred to the overviews available
in [8, 123,147,188,194].

In the following, Evolutionary Algorithms will be discussed as an
example for optimisation heuristics (Section 3.1), while Learning Classifier
Systems represent reinforcement learning approaches (Section 3.2). Both
mechanisms will later be combined in the organic approach to traffic
signal control developed as part of this thesis. Self-organising traffic
signals systems are finally reviewed in Section 3.3.

3.1 Evolutionary Algorithms
An Evolutionary Algorithm (EA) is a randomised optimisation heuristic
that mimics biological evolution to tackle optimisation problems. The
working principle of EAs is briefly introduced in Section 3.1.1. Sec-
tions 3.1.2 and 3.1.3 present a survey of off-line and on-line applications
in traffic signal optimisation, while Section 3.1.4 investigates some gen-
eral design issues of EAs. Finally, the discussion is summarised in
Section 3.1.5.

3.1.1 Working principle
The general scheme of an EA is simple, it is depicted in Figure 3.1:
Starting with a set (called population) of randomly generated initial
solutions, an EA selects solutions with a relatively high quality from its
population as parents, which are then combined and locally modified by
crossover and mutation operators to form new offspring solutions. Based
on their quality, some of the parents and offspring are selected to form
the next generation of solutions that replaces the old population. This
process is repeated until a stopping criterion (usually a maximum number
of generations, a time limit, or some quality level) is reached. Selection,
crossover, and mutation are randomised operations, where good solutions
have a higher chance to survive and generate offspring. Therefore, the

45



Chapter 3 Optimisation, learning, and self-organisation

overall quality of solutions is likely to improve over time while the random
influence of mutation helps to prevent premature convergence on some
local optimum.
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and evaluation 
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Figure 3.1: Working principle of Evolutionary Algorithms

Although the working principle of EAs is easy to comprehend, their
implementation involves several design decisions which are extensively
discussed in introductory textbooks like [62,209]. Here, selected aspects
are briefly addressed:

Representation A first necessary step is to design a computer represen-
tation (called genotype) that represents possible solutions for the
real-world problem (the phenotypes) in the evolutionary process.
While selection, crossover, and mutation work on the genotype,
the phenotype is needed for fitness evaluations (see Figure 3.1;
genotypes are depicted by boxes while phenotypes are shown as
stickmen).
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Evaluation function The evaluation (or fitness/objective) function forms
the basis for selection and thereby guides the evolutionary search.
Since evaluations are performed frequently, functions that need a
large amount of computation time can significantly slow down the
search. Stochastic fitness functions that assign noisy fitness values
to a solution (like microscopic traffic simulations) can be used, but
require special care [169].

Selection mechanism Two selection mechanisms are working within the
general EA scheme. Parent selection is used to determine those
solutions from the population that undergo variation (crossover or
mutation) in order to create offspring. Survivor selection determines
which solutions will be included in the next generation’s population.
Both mechanisms distinguish among solutions based on their quality
to allow the better individuals to reproduce and survive. The
choice of selection mechanisms influences the selection pressure. A
mechanism that strongly favours high quality solutions results in a
high selection pressure which might lead to premature convergence
of the search. On the other hand, searches involving a selection
pressure that is too small will typically require a long time to find
near-optimal solutions.

Variation operators New candidate solutions are created from solutions
contained in the current population using variation operators.
Crossover (or recombination) is an operator that merges informa-
tion from (typically) two parents in one or two offspring solutions.
Crossover works stochastically, i. e., it randomly determines which
parts of the parents are merged. The idea is to combine the desir-
able features of the parents in the offspring solutions. In contrast
to crossover, mutation is applied to a single parent and delivers a
(slightly) modified mutant depending on the outcome of a series of
random choices.

Further aspects The design of EAs involves further aspects including
the population size or a stopping criterion. Like the choice of
representation, selection mechanisms, and variation operators, their
specification largely depends on the optimisation problem.
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Historically, different flavours of EAs were developed by different
researchers. In the 1960s, Rechenberg and Schwefel invented Evolution
Strategies [154, 173], while Holland presented Genetic Algorithms [96].
Both approaches tackle optimisation problems, but differ in the genetic
representations and operators used: While Evolution Strategies typically
use a real-valued parameter representation and primarily rely on mutation
to create offspring, Genetic Algorithms work with a binary coding and
give a stronger emphasis on recombination in their search.

Other EA variants aim at the automatic generation of computer
programs: Evolutionary Programming (developed in the 1960s by Fo-
gel et al. [68]) and Genetic Programming (invented by Koza in the
1990s [110, 111]) investigate the evolution of finite state machines or tree
structures, respectively. In agreement with contemporary terminology,
Evolution Strategies, Genetic Algorithms, Evolutionary Programming,
and Genetic Programming are subsumed under the term Evolutionary
Algorithm in this thesis.

Still today, EAs are an active area of research with several dedicated
conferences, including the Congress on Evolutionary Computation (CEC),
the Genetic and Evolutionary Computation Conference (GECCO), and
the Conference on Parallel Problem Solving From Nature (PPSN). Fur-
thermore, journals like Evolutionary Computation or the IEEE Transac-
tions on Evolutionary Computation are addressing the field.

In the following, several applications of EAs to off-line and on-line
traffic signal optimisation are presented.

3.1.2 Off-line optimisation of traffic control systems

The first work known to the author that used EAs for signal timing
determination has been published by Foy et al. in 1992 [71]. In a sim-
ulated Manhattan-type network of four two-phased intersections, cycle
length and green time splits are optimised for a fixed traffic demand. The
minimisation of the resulting vehicular delay serves as objective. Accord-
ing to Foy et al., their EA finds near-optimal solutions which proves the
feasibility of EAs for the task. In the following, a selection of more recent
approaches to evolutionary traffic signal optimisation is presented.
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Isolated intersections

In her dissertation [203], Vogel investigates the off-line optimisation of
a fixed-time controlled intersection. In contrast to other authors, Vogel
does not restrict her work to the optimisation of cycle time and phase
durations, but includes the phase sequence and system in the evolutionary
process: The EA combines the available signal groups into a sequence of
phases before cycle time and phase durations are specified.

Since a candidate phase system cannot be evaluated independently of
the remaining parameters of a controller, Vogel uses two nested evolution-
ary loops: In an outer loop, new candidate phase systems are created by
applying genetic operators (crossover and/or mutation) on the solutions
stemming from the loop’s previous iteration. Each of the candidate phase
systems is then treated in an inner optimisation loop that aims at finding
the best cycle time and phase durations for the candidate. Once the
inner loop is finished, the resulting signal plan is evaluated using an
event-based simulation software. Based on the evaluation results, the
surviving phase systems – which serve as parent solutions in the next
iteration of the outer loop – are selected and an iteration of the outer
loop is completed.

Vogel does not explicitly compare the evolved phase systems to a
reference solution, but she reports that the evolutionary approach yields
“reasonable” results. However, experiments that optimised only cycle
and phase durations of the intersection were compared to two-, three-,
and four-phased signal plans created according to Webster’s method (see
Section 2.2.2) and are reported to result in the same or a reduced average
delay.

Network-wide optimisation

While Vogel restricts her work to a single intersection, Braun et al. devel-
oped an evolutionary approach called GALOP (Genetischer Algorithmus
zur Lichtsignaloptimierung in städtischen Netzen) that focuses on the
network-wide optimisation of coordinated traffic lights [27–29]. GALOP
has been incorporated in the traffic engineering workstation CROSSIG to
allow for a seamless integration with established planning tools. While a
traffic engineer can specify constraints for the optimisation (like allowed
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phase sequences or minimum green times), GALOP evolves feasible sig-
nal plans specifying the network-wide cycle time as well as the phase
sequences, phase durations, and offsets for the network’s intersections.
For constraint handling, GALOP relies on a relative coding of param-
eters. Whenever possible, the genetic representation of a signal plan
does not contain absolute parameter values, but represents a parameter’s
value relative to the given constraints: Instead of specifying, e. g., the
cycle time tC by its duration in seconds, it is specified as a fraction ϕ,
0 ≤ ϕ ≤ 1, of the difference between the maximal feasible cycle time
tC,max and the minimal feasible cycle time tC,min. The cycle time is then
obtained by calculating tC = tC,min + ϕ · (tC,max − tC,min). Details on
the representation used within GALOP are presented in [28,29].

Since network-wide optimisations consider a large number of param-
eters, a fast simulation model is essential to allow for the evaluation
of a reasonable number of solutions within an acceptable amount of
time. GALOP uses the macroscopic flow model of the traffic control
system BALANCE (see Section 2.4.4) which has been designed to sat-
isfy the strict time restrictions associated with adaptive network control
systems. As optimisation criterion, GALOP handles a single-objective
fitness function.

Signal plans evolved with GALOP have been evaluated in a field
test [27]. The test site included six intersections located at Regensburg,
Germany, which were controlled by three time-dependent signal plans
handling the morning, day, and evening traffic, respectively. The signal
plans used in the field were compared to solutions evolved by GALOP
with respect to the resulting travel time and the induced number of
stops. Comparisons were based on floating car data and travel time
measurements stemming from vehicle re-identification. Braun et al. report
that solutions evolved by GALOP improve the morning and evening
programme especially with respect to the number of stops, while GALOP’s
day programme showed a similar performance to the signal plan used in
the field.

Parallel evaluations

The run-time of EAs can grow large when fitness evaluations are time-
consuming (e. g., because they are based upon traffic simulations). For-
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tunately, candidate solutions in an EA’s population can be evaluated
independently, thereby allowing for a parallelisation of the search process
using a master-slave EA [5,42]: While one computer – the master – keeps
track of the population and performs selection, mutation, and crossover,
several slave computers (or processors/cores of a parallel computer) run
the time-consuming fitness evaluations in parallel.

At the cost of additional computing power, a master-slave EA can
significantly reduce the run-time needed for an optimisation. However,
an efficient parallelisation in terms of invested resources depends on a
balanced distribution of workload among the participating computers and
on a small overhead for data exchange. In [89], Girianna and Benekohal
investigate the application of a master-slave EA for traffic scenarios and
analyse the run-time and efficiency of the parallel approach for different
numbers of processors and several network sizes.

Several authors rely on parallel fitness evaluations to speed up their
heuristic search: Sánchez et al. started their work on evolutionary ap-
proaches for the off-line optimisation of traffic networks in 2004 by
investigating an artificial network of four intersections [162]. An EA
is used to evolve fixed-time signal plans for the network’s intersections
based on a predefined cycle time. The cycle is split into equally-sized
fractions and the EA’s task is the network-wide selection of active signals
for all resulting time slots. To evaluate the quality of evolved solutions
(that is measured by the vehicles’ mean time at the network), a determin-
istic Cellular Automaton-based simulation model is used. The parallel
evaluation of candidate solutions relies on a master-slave EA that runs
on a computer cluster of five machines.

Recent works of Sánchez et al. still rely on the deterministic simulator
and on the parallel evaluation of solutions, but investigate simulations of
larger real-world networks [165,166]. The developed optimisation process
takes into account the phase durations (and as a result the cycle times)
of fixed-time controlled intersections, but it does no longer consider their
phase system or sequence. In contrast to other authors dealing with
network-wide optimisations, Sánchez et al. do not explicitly optimise the
coordinated operation of neighbouring intersections. No common cycle
time for (parts of) the network is enforced in the optimisation process
and no explicit offset optimisation takes place. However, a coordinated
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operation of neighbouring nodes can result from the optimisation of the
intersections’ phase durations.

As test case, a simulation model of a traffic network consisting of eleven
intersections located at Santa Cruz de Teneriffe, Spain, is investigated.
The number of vehicles that left the network during the simulation serves
as single-objective fitness function. Results show that with the evolved
traffic light timings up to 26 % more vehicles could leave the network
compared to the solutions supplied by the City Council.

In [181], Stevanovic et al. present VISGAOST, a VISSIM-based Genetic
Algorithm Optimisation of Signal Timings. VISGAOST is capable of
optimising cycle time, phase sequence, phase durations, and offsets for
a network of coordinated traffic-actuated NEMA controllers [141]. The
microscopic traffic simulation software VISSIM [66] is used to evaluate
the quality of the evolved candidate signal plans. Since microscopic
simulations are time-consuming (especially when large networks have to
be simulated numerous times), VISGAOST relies on a master-slave EA
for parallel fitness evaluations.

A specialty of VISGAOST is that not all parameters of a signal plan
are optimised at the same time. The optimisation process is split into
intervals which are dedicated to the optimisation of parameter subsets:
While some of the intervals might only consider cycle time and offsets and
keep all remaining parameters fixed, other intervals allow the variation of
other parameters or of the complete signal plan. This partial optimisation
is reported to yield better results compared to runs which always varied
all defining parameters of a signal plan.

VISGAOST has been evaluated in a simulation study for an arterial
road network of twelve intersections in Park City, USA. The network was
controlled by coordinated traffic-actuated NEMA controllers. The signal
plan used in the field and a solution found by SYNCHRO2 – a traditional
optimisation tool – served as reference solutions. The signal plan found by
VISGAOST could outperform the reference solution by at least 8 % with
respect to a single-objective fitness function that combines network-wide
delays and stops. However, the run-time required by VISGAOST using
nine computers running slave processes was 90 hours.

2Trafficware Ltd. SYNCHRO website: http://www.trafficware.com/
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Recently, VISGAOST has been extended to additionally optimise
transit priority settings that allow for a preferential treatment of public
transport vehicles [182]. The additional priority settings specify the
extension of green phases with approaching public transport vehicles as
well as the truncation of preceding phases to allow for a faster service
of priority vehicles approaching a red light. The transit priority settings
can be optimised separately or in combination with basic signal settings.
The approach has been evaluated for an arterial of seven intersections at
Albany, USA. Results show that the initial solution found by SYNCHRO
could be improved by VISGAOST with respect to the average delay per
traveller.

Multi-objective optimisation

The previous references use a single-objective fitness function, even if
several objectives (like delays and stops) are considered in the optimi-
sation. Instead of treating each objective separately, all objectives are
combined in a single evaluation function using weights to determine their
relative importance. Assuming conflicting objectives, the drawback of
this approach is that only a single optimal trade-off among the objectives
can be found, although several equally optimal other trade-off solutions
exist: In the case of more than one conflicting objective, a problem has no
single optimal solution, but a set of solutions which are all Pareto-optimal.
These solutions cannot be improved in any objective without worsening
at least one other objective (see Figure 3.2 for an illustrating example).

For multi-objective problems, multi-objective EAs have been developed
[55]. Instead of combining the different objectives into a single fitness
function and searching for a single optimal solution afterwards, multi-
objective EAs search for a set of Pareto-optimal solutions. In their
search, they rely on the concept of domination: A solution x is said to
dominate a solution y, if x is no worse than y in all objectives and if
x is strictly better than y in at least one objective. Solutions that are
non-dominated are favoured by the selection mechanism of the algorithm
and thereby guide the evolutionary search. Well-known multi-objective
EAs are NSGA-II [56], ParEGO [107], and SPEA2 [223].

Applications of multi-objective evolutionary optimisation to traffic
signal systems are discussed by Sun et al., Branke et al., and Schmöcker
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Figure 3.2: Pareto-optimal solutions (marked black) for a two-objective
minimisation problem (based on [55])

et al. among others: Sun et al. investigated the use of NSGA-II for signal
timing optimisation [185]. Delay times and stops were minimised for a
two-phased fixed-time controlled intersection. NSGA-II optimised the
phase durations based on fitness values calculated by approximation
formulas for delay (Webster [208]) and stops (Akçelik [4]). Sun et al.
conclude that multi-objective EAs have the potential to be used for
traffic signal timing optimisation.

Branke et al. optimised the operation of a VS-Plus3 controlled in-
tersection at Karlsruhe, Germany [22]. Several parameters related to
the intersection’s traffic-actuated operation are considered in a multi-
objective optimisation using NSGA-II. Objectives include combinations
of vehicular delay, pedestrian delay, and vehicular stops. In contrast
to Sun et al., the evaluation of evolved solutions relies on results of the
microscopic simulation software VISSIM [66] instead of approximation
formulas. Solutions found by NSGA-II outperformed a reference solution
provided by a traffic-engineer with respect to the considered objectives.
However, results indicate the importance of explicitly including all rele-
vant criteria as objectives, since otherwise evolved solutions tend to be
good with respect to the objectives, but at the cost of other unconsidered
criteria.

3Verkehrs-Systeme AG. VS-Plus website: http://www.vs-plus.com/
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Schmöcker et al. investigated the multi-objective optimisation of mem-
bership functions for a fuzzy logic signal controller [170]. The fuzzy logic
controller adapts an intersection’s phase durations based on local vehicle
queues and pedestrian delays. Its fuzzy rule base is predefined, but the
membership functions used for fuzzification and defuzzification are sub-
ject to optimisation. Instead of using a multi-objective EA, Schmöcker
et al. expect the designing traffic engineer to specify acceptability and
unacceptability thresholds for each objective. Based on these thresholds,
an EA searches for the Bellman-Zadeh optimal solution [18] that max-
imises the minimum acceptability with respect to all objectives. The
Bellman-Zadeh optimal solution is proven to be Pareto-optimal, while
being located in the centre of the Pareto-optimal set.

The approach has been evaluated for an intersection that is part
of a SCOOT controlled arterial (see Section 2.4.1) located at London,
UK. The intersection’s phase durations have been adapted considering
local vehicular queues and pedestrian delays as well as network-wide
delays for different vehicle classes. Compared to the intersection under
SCOOT control, the priorities for public transport or pedestrians could
be improved at the cost of an increased vehicular delay.

3.1.3 On-line optimisation of traffic control systems
In all previous references, EAs have been developed to be applied off-line
at the design stage of a traffic signal system. At design time, signal settings
are optimised considering a few typical traffic demands occurring during
the day (like morning or evening peaks), only. Therefore, run-times of
several hours for the necessary optimisations can be acceptable. However,
modern adaptive network control systems (see Section 2.4) continuously
adapt and optimise a network’s signalisation on-line, thereby allowing
for a flexible reaction to changing and unforeseen traffic demands. While
continuous optimisations can improve the performance of traffic signal
systems, the acceptable run-time for a single optimisation is drastically
reduced to a few minutes. Therefore, the on-line use of EAs has only
been investigated recently.

In evolutionary on-line optimisations, it is especially important to
speed up the fitness evaluations: In complex fitness landscapes, EAs
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typically need a large number of evaluations to evolve reasonable solutions.
Whenever these evaluations are time-consuming – which is the case
for traffic simulations – this results in a relatively large running time.
Furthermore, EAs cannot formally guarantee a minimum quality for
evolved solutions, although the expected quality can be good. Several
approaches that tackle these challenges are presented in the remainder of
this section.

Macroscopic evaluations

Almasri and Friedrich investigated the evolutionary optimisation of offsets
in signalised traffic networks [6, 7, 76, 77]. A special focus is given to
the time requirements of their approach to make it suitable for on-
line applications. Almasri and Friedrich relied on the cell transmission
model [50,51] for evaluating the solutions evolved by their EA. The model
follows a macroscopic approach, but is discretised in time and space. It
has been reported to combine accurate results with limited computing
time requirements.

Two slightly different EA variants were used to optimise the offsets
of signalised fixed-time controlled intersections with the objective of
reduced network-wide delay. Both EAs implemented a binary coding of
offset values, but their variation operators either modified the offset of
single intersections (in a predefined sequence that incorporated traffic
engineering experience) or varied offset values of several intersections
simultaneously.

The two investigated test cases were an arterial of three intersections
and a subnetwork of six intersections that is located at Hannover, Ger-
many. For the arterial network, both EAs were capable of evolving the
optimal solution (that has been determined using full enumeration) in
less than 100 CPU seconds. In comparison to offsets obtained using
the dominance method from engineering practice [171], a reduction of
10 % could be obtained. For the larger network, near optimal solutions
were obtained, but the run-time was significantly increased. Therefore,
Almasri and Friedrich report that “the limits of online adaptation are
already reached for the comparatively small test network” [7].

Girianna and Benekohal applied a master-slave EA for signal coordi-
nation in networks with oversaturated intersections [86–88,90]. In over-

56



3.1 Evolutionary Algorithms

saturated traffic conditions, vehicle queues fill intersection approaches
and thereby interfere with the operation of neighbouring upstream traffic
lights. The removal of queues and blockages becomes especially impor-
tant in these conditions. In [90], Girianna and Benekohal used an EA to
calculate the future phase durations for two-phased fixed-time controlled
intersections in an oversaturated grid network. The network was assumed
to have constant entry flows and consisted of 20 intersections. A solution
specified the phase durations (and as a result cycle times and offsets) of
all intersections in the network for several cycles in advance. The future
traffic development was determined by a set of equations that allow for
the calculation of flows and queues resulting from a candidate solution.
The objective was to maximise the number of released vehicles while
violated constraints (like queues exceeding the storage capacity of a link)
were included as penalties. The EA is reported to generate signal timings
that provide a sound handling of queues within the network.

Integration within adaptive network control systems

Recently, EAs have been integrated in the adaptive network control
systems BALANCE and MOTION (see Section 2.4.4):

BALANCE Based on the GALOP approach for the network-wide off-line
optimisation of traffic signals (see Section 3.1.2), Braun et al. developed an
evolutionary on-line system within the research project TRAVOLUTION
[25,26]. An EA optimises a frame signal plan that specifies the network-
wide cycle time as well as intersection-specific offsets, phase sequences,
and time frames bounding possible phase endings. Based on the frame
signal plan, local traffic-actuated controllers can adapt the green times
at each intersection within the specified time frames.

In TRAVOLUTION, optimisation minimises a single-objective problem
that aggregates the vehicular delay at all intersections. Evolved frame
signal plans are evaluated based on the flow model used within BALANCE.
The model consists of meso- and macroscopic components and has been
specifically designed for fast and accurate simulations, thereby making a
network-wide on-line optimisation feasible.

For evaluation, a field test at Ingolstadt, Germany, has been conducted
which included 46 intersections within the city’s main road network.
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For optimisation purposes, the intersections were grouped into three
subnetworks, so the EA can tackle the tasks within the existing time-
restrictions. The traffic model of each subnetwork is updated on-line
based on local traffic measurements reported from the intersections.
Additionally, the current traffic flows in the neighbouring subnetworks
are considered.

Evolved frame signal plans were compared to a basic scenario having
only local actuated control and to frame signal plans optimised by a
hill climber that is part of BALANCE. Floating car data (that includes
GPS-based location information and additional data from the vehicles’
CAN-bus) and automatic vehicle re-identification were used during the
field test to evaluate the vehicular delay and the number of stops. Using
the EA, the delay could be reduced by 21 % compared to the basic
scenario and by 10 % compared to the hill climber. The number of stops
was reduced by 17 % and 8 %, respectively.

MOTION While Braun et al. integrated their EA in the adaptive net-
work control system BALANCE, Mück discusses the application of an
EA within the MOTION control system [135]. A self-adaptive Evolution
Strategy has been added to MOTION to optimise the traffic light coordi-
nation in the network. The Evolution Strategy simultaneously optimises
offsets and phase sequences for the network’s intersections, selecting the
phase sequence for each intersection from predefined sets of applicable
sequences. Optimisation objective is the reduction of delays and stops
that are evaluated using a single-objective fitness function. Fitness values
are obtained from a mesoscopic traffic model. Due to the time-restriction
in on-line applications, Mück reports that solutions calculated on previous
days are included in the initial population whenever they are available.
Constraint violations are handled by a repair operator.

Results are reported for a field test at Münster, Germany, that involved
an arterial road with 13 intersections. Using the evolutionary approach,
an on-line optimisation of the coordination could be performed within the
available time frame of two minutes. Mück estimates that the optimisation
of networks of up to 30 or 40 intersections should be manageable within
this time limit. Solutions found were as good or better compared to
a finely tuned reference solution that was previously used in the field,
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although the parameterisation of the algorithm was basically limited to
weights of the fitness function.

Despite the positive results, Mück expresses some critical comments
regarding the described evolutionary approach:

Goals of a planner vs. the system optimum For the test field at Münster
it was observed that vehicles turning onto the arterial benefited
from the evolved coordination while a fraction of the vehicles that
travelled the arterial from the beginning had to suffer disadvantages.
Although this coordination might be close to the system optimum,
this is usually not intended by human planners since it leads to
discomfort for commuters. According to Mück, an improved traffic
model – that allows to distinguish the two types of travellers – could
help to solve this drawback.

Robustness of solutions When optimising the coordination within a road
network, there are typically several nearly optimal solutions of a
similar fitness. These solutions often exhibit different coordination
structures. Looking at the example of an arterial road with approx-
imately the same amount of traffic travelling in both directions,
a coordination in either direction would result in solutions of a
similar quality. In such cases, it can depend on small changes in
traffic which solution has the better fitness. As a result, a frequent
change of coordination might occur that has a negative impact on
traffic. The problem is also reported by Braun [25]. A solution to
this problem might be an additional check that verifies whether the
new coordination results in a significant improvement and discards
it otherwise.

Reproducibility of results When using adaptive network control systems
in the field, it is important that their behaviour can be understood,
tracked, and reproduced – especially in case of complaints of road
users. Evolutionary optimisation is a random process that returns
different solutions when repeatedly performed. Nevertheless, op-
timisations can be reproduced when important inputs (like the
random seed) are saved. However, guarantees for a certain quality
of obtained solutions are generally hard to give.
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Despite the criticism, Mück reports that the use of EAs within MOTION
will be investigated further.

3.1.4 Design issues in evolutionary traffic signal
optimisation

In the previous subsections, several applications of EAs for traffic signal
optimisation have been presented. The different approaches investigate
the single- or multi-objective optimisation of fixed-time controlled or
traffic-actuated intersections as well as the coordination of signals within
traffic networks. Although numerous approaches reached or improved
the quality of sophisticated reference solutions, it remains difficult to
deduce general guidelines for successful EA design since the presented
approaches rely on different representations and use a wide variety of
selection and variation operators. Nevertheless, some works explicitly
focus on design aspects in evolutionary traffic signal optimisation. These
will be briefly discussed in the following.

Number of generations and population size

The appropriate choice of the number of generations and the population
size in traffic signal optimisations has been experimentally investigated
by Abu-Lebdeh and Al-Omari [2] and by Abu-Lebdeh and Benekohal [3],
respectively. Both works use a micro-genetic algorithm (micro-GA) that
relies on a small-sized population of binary coded individuals which
quickly converges to a local optimum. Whenever this happens, the micro-
GA replaces large parts of the population by random individuals to ensure
diversity.

In [3], the influence of the population size on the performance of a
micro-GA has been experimentally investigated for a traffic scenario.
Among other aspects, the fitness that was reached after a different
number of evaluations and the dispersion of the evolved solutions’ fitness
around the mean served as indicators for a good population size. Based
on the obtained results, Abu-Lebdeh and Benekohal propose heuristic
approaches to experimentally determine the optimal population size in
preliminary tests. As a rule of thumb, a population size of

√
L – where L
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is the string length of the binary coded individuals – is proposed whenever
sufficient computational resources are available.

With respect to computational resources, Abu-Lebdeh and Al-Omari
investigate the number of generations necessary to optimise several vari-
ants of a traffic control problem that differ in size and complexity [2].
They propose to use the string length L of the binary-coded individuals
as lower bound for the number of generations of a micro-GA while the
population size is determined as

√
L. Although the authors conclude that

this choice worked well for their traffic scenario, it could not be verified
for a deceptive problem with many local optima. To what extent the
recommendations carry over to different algorithm and problem types
remains unclear.

Representation

Sánchez et al. compared crossover operators for binary and real-valued
representations of signal timings within a traffic network [163]. The two
representations coded the phase durations of the network’s traffic lights
as a sequence of real numbers or their binary Gray codes, respectively. To
create new individuals, the crossover operators split the representation of
two parents into parts and exchange the resulting sub-sequences. Since
for the binary representation splits can occur within the Gray code of a
phase duration, the operator combines and modifies the phase durations
of the parents while for the real-valued coding only a recombination takes
place. Sánchez et al. report that in their experiments the binary crossover
(in combination with a variable mutation probability) outperformed the
real-valued alternative.

The findings of Sánchez et al. contradict the results of Michalewicz,
who reports for a multi-dimensional numerical problem that “the floating
point representation is faster, more consistent from run to run, and
provides a higher precision” [128]. Therefore, other researchers (like
Braun [25]) rely on real-valued representations when optimising traffic
signal timings.

Fitness evaluation

The handling of stochastic microscopic simulations for fitness evaluation
has been investigated by Kesur [104] and Sánchez et al. [164]. Due to
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the stochastic nature of vehicle arrivals and random driver behaviour,
a microscopic simulator provides slightly different results each time a
particular signal plan is evaluated (see Section 2.5.1). For an EA, this
results in noisy fitness evaluations that are perturbed by a random error
term with zero mean. Kesur [104] investigated several techniques to
reduce the noise in stochastic fitness evaluations:

Repeated simulations By performing repeated simulations of the same
signal plan and using the mean result as fitness, the signal plan’s
“true” fitness can be estimated well. However, there is a trade-off
when simulations are time-consuming and the computing budget
is limited since an increased number of simulations per fitness
evaluation decreases the extent of the evolutionary search.

Generational reevaluation When evaluating signal plans based on a single
simulation only, a signal plan might receive a “lucky” evaluation and
will therefore be favoured by selection although its true fitness is
poor. To resolve this problem, individuals which survive unaltered
from one generation to the next can be reevaluated at the cost of
additional simulations. Kesur investigated whether reevaluations
have a positive effect on the search efficiency.

Common random numbers A comparison of different signal plans can be
based on simulation runs that use common random numbers to en-
sure the identical outcome of random choices within the simulations.
As Rathi [152] reports, microscopic simulations that are based on
common random numbers decrease the likelihood of drawing false
conclusions when comparing signal plans. Therefore, the potential
benefits of common random numbers have also been examined by
Kesur.

In his experiments, Kesur investigated three EA variants for the op-
timisation of traffic signals in two test networks. Both undersatured
and oversaturated traffic conditions were considered since microscopic
simulations exhibit a larger variability in oversatured conditions. Results
indicate that the generational reevaluation does not provide any mea-
surable benefit. Furthermore, a single simulation with common random
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numbers is found to be optimal for fitness evaluations even in oversat-
urated conditions. These findings are in compliance with the results of
Sánchez et al. [164] who also propose to use common random numbers
and avoid time-consuming repeated stochastic simulations for fitness
evaluations.

Design methodology

Regarding the design and configuration of EAs, some recommendations
available in the literature have been discussed above. However, their
general applicability remains questionable since some of the findings are
contradictory and it remains unclear whether reported results will carry
over to other algorithm or problem types. Therefore, an application-
specific configuration of EAs remains indispensable. To this end, general
design methodologies that involve iterated preliminary tests are proposed
in [209].

3.1.5 Summary
EAs are nature-inspired optimisation heuristics that mimic biological
evolution to tackle optimisation problems. Since their first application
to traffic signal optimisation in the beginning of the 1990s, several re-
searchers from different fields of science have investigated the evolutionary
optimisation of traffic signals. Initially, the focus was on off-line applica-
tions, i. e., EAs were used at the design time of a signal system. Published
works focused on single intersections as well as networks, used multi-
objective optimisation to simultaneously optimise conflicting objectives,
and investigated parallel approaches to speed up the often time-consuming
optimisation process. Only recently, the focus of the research community
shifted to on-line scenarios, where EAs optimise the signalisation at
run-time. In these scenarios, the time required for an optimisation is
a critical factor, since fast optimisations are a prerequisite for a quick
adaptation to changing traffic demands. The necessary speed-ups have
been mainly obtained by the use of fast meso- or macroscopic simulation
models. Sections 3.1.2 and 3.1.3 discussed selected examples of evolution-
ary optimisation in off-line and on-line scenarios which are summarised
in the upper and lower half of Table 3.1, respectively. However, the
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review presented here is not comprehensive. More extensive overviews
are available in [1, 123,147].

Most of the published results report EAs to be competitive to tradi-
tional optimisation approaches or hand-made signal plans, often indicating
that evolved results could even outperform the former reference solutions.
An advantage of EAs over other optimisation approaches lies in their
general applicability to problems where a fitness function for evaluating a
solution’s quality is available. In traffic engineering – where sophisticated
simulation models are at hand (see Section 2.5) – EAs can be easily
applied to a wide variety of problems. In contrast, exact optimisation
approaches require a complex mathematical problem formulation to be
applicable.

Another advantage of EAs is that optimisations can be easily accel-
erated by parallelisation: The fitness evaluations – which are typically
responsible for the largest part of an EA’s run-time – can be distributed
among several machines. Furthermore, multiple conflicting objectives
can be simultaneously handled by multi-objective EAs that evolve a set
of non-dominated trade-off solutions.

Despite the mentioned advantages, the application of EAs is not without
pitfalls. Although their working principle is easy to understand, a problem-
specific algorithm design can be challenging. The literature provides
guidelines for the design of EAs [209], but general recommendations for
specific problem classes are rare and preliminary tests are unavoidable.

Further drawbacks that hinder the application of EAs in on-line scenar-
ios are their run-time requirements in complex search spaces and missing
quality guarantees for the outcome of optimisations: Solutions to the
run-time challenge include fast simulation models (like those used in
Section 3.1.3) or parallelisation (see Section 3.1.2). The missing quality
guarantees can be tackled by a combination of EAs and other machine
learning techniques (see Chapter 5). The already large amount of suc-
cessful traffic signal optimisations indicates that these challenges can
be successfully handled in the future. Therefore, EAs are a valuable
tool that can support traffic engineers in the design and optimisation of
traffic signal systems. Leaving the area of evolutionary optimisation, the
following section focuses Learning Classifier Systems which are a widely
used reinforcement learning mechanism.
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3.2 Learning Classifier Systems
A Learning Classifier System (LCS) is a rule-based learning system that
combines techniques from reinforcement learning [186] with ideas of EAs.
LCSs learn problem-specific knowledge that is stored in a set of classifiers
that is called population or rule base. A classifier is a condition-action-
prediction rule representing a small portion of the acquired knowledge. Its
condition specifies a part of the problem domain to which the classifier is
applicable, its action identifies a possible solution, and the prediction gives
an estimate on the action’s quality considering the identified subproblem.

Classifiers are constantly updated in the learning process: Evolutionary
operators are used for modifications that aim at an adequate decom-
position of the problem domain into a set of subproblems for which
appropriate actions are known. Reinforcement mechanisms update the
classifiers’ prediction estimates based on received rewards.

Considering their working principle, Michigan and Pittsburgh Classifier
Systems can be distinguished:

Michigan Classifier Systems Using the term “cognitive system”, Hol-
land [95] laid the foundations for Michigan Classifier Systems and
presented the first detailed LCS description in collaboration with
Reitman [97]. Michigan Classifier Systems are designed for on-line
learning. They keep track of a single classifier population that repre-
sents the current knowledge of the LCS. An evaluation mechanism
estimates the utility of individual classifiers using reinforcement
learning. Based on the obtained utilities, new classifiers are created
and less useful classifiers are deleted using evolutionary mechanisms.

Pittsburgh Classifier Systems Developed in the group of De Jong at the
University of Pittsburgh [54,176,177], Pittsburgh Classifier Systems
consider learning to be an off-line optimisation process. A Pitts-
burgh Classifier System resembles a Genetic Algorithm that evolves
a population of individuals where each individual corresponds to a
set of classifiers. In each iteration, the performance of the classifier
sets is evaluated and used to guide the evolutionary search.

Here, the focus is on Michigan Classifier Systems due to the strong focus
on on-line learning in this thesis. Section 3.2.1 discusses XCS – a widely
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used Michigan Classifier System – in some detail. Section 3.2.2 presents
LCS applications for traffic signal control. Finally, the advantages and
drawbacks of classifier systems are summarised in Section 3.2.3.

3.2.1 XCS
The accuracy-based classifier system XCS [213,214] represents the state-
of-the-art regarding Michigan Classifier Systems. Introduced in 1995
by Wilson, it keeps the basic ideas of Holland’s original framework,
but simplifies it for increased understandability and performance. This
section gives a brief introduction to XCS starting with a description
of its knowledge representation and the performance component (which
defines the short-term behaviour of the system). In the further course of
the discussion, the reinforcement component (which distributes received
rewards among the classifiers) and the rule discovery component (which
improves the current knowledge by applying evolutionary operators to
the classifiers) are presented.

Performance component and knowledge representation

As Michigan-style system, XCS acquires knowledge by interacting with
an unknown environment. The system receives an environmental input,
performs an action based on its current knowledge, and receives a reward
in response. The environment can, e. g., be a maze where an XCS-
controlled robot needs to find a target position. In this scenario, the input
codes the robot’s current sensor readings, while the action corresponds
to a direction of movement that (hopefully) navigates the robot closer to
its target where (when reached) a reward is distributed. However, the
environment might also be a function (like a binary multiplexer) where
the input corresponds to a function argument and a correctly determined
function value is rewarded.

The performance component of XCS determines how actions are se-
lected based on the currently acquired knowledge on the environment.
Before discussing the action selection process in more detail, the knowl-
edge representation needs to be clarified. In XCS, the acquired knowledge
is stored in a population of classifiers. Each classifier consists of five main
components:
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Condition C The condition defines the inputs (i. e., the part of the prob-
lem domain) to which a classifier is applicable. Initially, inputs have
been limited to binary strings and conditions were defined over the
alphabet {0, 1, #} where “#” represents a don’t care symbol that
matches both zeroes and ones. Later, Wilson and other researchers
extended XCS to handle continuous-valued inputs [52, 183, 215].
Here, inputs can be vectors of real numbers and a classifier condition
is a conjunctive term over several intervals.

Action A An action specifies the classifier’s proposed reaction to an
input. Actions are typically encoded by a set of symbols (e. g.,
binary strings or labels), but approaches to handle real-valued
actions have been proposed recently [218].

Prediction ρ Assuming that a classifier’s condition is satisfied and its
action is executed, its prediction estimates the average future payoff
of the executed action. The payoff does not refer solely to the
immediate reward received from the environment, but can include
the payoff prediction of the best possible action in the next iteration.
The prediction is encoded by a real number in XCS, but recent
extensions compute the prediction by a parameterised function
(XCS-F, [119,217]).

Prediction error ε The prediction error estimates the mean absolute
deviation of a classifier’s prediction with respect to the actual
payoff.

Fitness F A classifier’s fitness is based on an inverse function of its
prediction error. It provides an estimation on the relative accuracy
of the classifier with respect to other classifiers with overlapping
conditions.

Besides these main components, each classifier maintains several ad-
ditional bookkeeping parameters that are not discussed here in detail.
Further information is available, e. g., in [37,213].

Based on the knowledge representation, the action selection of XCS can
be described. The process is depicted in Figure 3.3. Given an input, XCS
determines those classifiers with a matching condition in its population
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and stores them in the match set. The match set typically contains
classifiers that advocate different actions. Since only one action can be
executed in the environment in response to the received input, a selection
has to take place. The action selection can be based purely on predicted
payoffs (an approach followed by ZCS [212], a predecessor of XCS) or
it can additionally consider the error measures that are part of the
classifiers. XCS uses a fitness-weighted prediction average of all classifiers
advocating the same action. The obtained prediction values for all actions
are stored in a prediction array. To exploit the knowledge stored in the
classifiers, the best action can be chosen deterministically (exploitation),
but actions can also be selected randomly when the environment should
be explored (exploration). In either case, all classifiers in the match
set that advocate the selected action are stored in the action set and
the selected action is performed. Based on the success of the action,
the classifier system receives a reward that will be used to update the
predictions and error measurements of all classifiers in the action set.
The updates are performed by the system’s reinforcement component.

Environment

C    A   ρ ε F
#011 : 01   43  .01  99
11## : 00   32  .13    9
#0## : 11   14  .05  52
001# : 01   27  .24    3
#0#1 : 11   18  .02  92
1#01 : 10   24  .17  15
…

Max

#011 : 01   43  .01  99
#0## : 11   14  .05  52
001# : 01   27  .24    3
#0#1 : 11   18  .02  92

00    01  10    11
nil 42.5 nil 16.6

Discount +

Covering

Action: 01

Input: 0011

Population [P]

Match set [M]
Prediction array

Action set [A]Action 
selection #011 : 01   43  .01  99

001# : 01   27  .24    3

Reward

Previous
action set [A]-1

Delay = 1

Update ρ ε F
Genetic

operators

P

Figure 3.3: Schematic illustration of XCS (based on [214])
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Reinforcement component

The reinforcement component of XCS updates prediction error, prediction,
and fitness of classifiers in the action set based on the incoming reward.
For the update process, single-step and multi-step problems need to be
distinguished:

Single-step problems In single-step problems, every action is immediately
rewarded after its execution in the environment. For every learning
iteration, inputs are independent of the previous iteration’s input
and action.

Multi-step problems In multi-step problems, an external reward is not
necessarily distributed for every learning iteration. Additionally,
dependencies among successive problem instances can exist in the
sense that an input may depend on previous inputs and previously
executed actions. Therefore, reward propagation is necessary in
multi-step problems.

Typical single-step environments are classification problems, where
inputs have to be assigned to predefined classes. An example are Boolean
multiplexer functions that have been investigated by several authors
[39,213,214]. A Boolean multiplexer function is defined on binary strings
of length l = k + 2k. The first k bits of the input serve as an address
that indexes one of the remaining 2k bits that is returned as function
value. The classifier system has to classify l-bit inputs depending on their
multiplexer function value. This task constitutes a single-step problem,
since inputs do not depend on the classification of previous inputs and
the reward for a correct classification is immediately available.

Typical multi-step problems are mazes like those investigated by Wilson
[213,214]. Here, an artificial animal – called animat – needs to be directed
to a food source in the maze. XCS receives the animat’s sensor input and
has to decide on the animat’s movement for the next step. When the food
source is reached, a reward is distributed. In the maze, the sensory input
depends on the previous position (the previous input) and the previously
performed movement (the previous action) of the animat. Furthermore,
an obtained reward needs to be distributed among all actions that finally
led to the food.
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Depending on the type of problem at hand, classifier parameters are
updated differently. For multi-step problems, where a reward propagation
over several learning iterations is necessary, the update process is illus-
trated in Figure 3.3. The prediction, prediction error, and fitness values
of classifiers in the action set [A]−1 of the previous iteration are updated
based on a payoff P . The payoff is calculated as sum of the reward
received in the previous time step and an estimated discounted future
reward which is determined as the maximum of the current prediction
array multiplied by a discount factor.

Using the payoff P , the prediction error εj and the prediction ρj of
each classifier j in the previous action set [A]−1 are updated using the
equations

εj := εj + β(|P − ρj | − εj) (3.1)

and
ρj := ρj + β(P − ρj). (3.2)

The variable β ∈ [0, 1] is a learning rate. Higher learning rates lead
to a faster adaptation and reduced history dependence, but result in a
higher variance for fluctuating rewards.

The fitness Fj of each classifier j ∈ [A]−1 is derived from its prediction
error εj in several steps. At first, the accuracy κj is determined using
a function similar to the one depicted in Figure 3.4. Classifiers with a
prediction error below a threshold ε0 are considered maximally accurate
and are assigned the highest accuracy κ = 1. Less accurate classifiers with
a higher prediction error receive an accuracy κ < 1 that is determined
by a parameterisable power function. Using the accuracy of classifier j,
its relative accuracy κ′

j with respect to the other classifiers in [A]−1 is
calculated as

κ′
j := κj∑

i∈[A]−1
κi

and the fitness Fj is updated to

Fj := Fj + β(κ′
j − Fj). (3.3)

Besides prediction, prediction error, and fitness, the update of all
classifiers in the action set also considers several additional parameters
not discussed here, for details the reader is referred to [37,213].
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Prediction error ε
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Figure 3.4: Derivation of accuracy κ from the prediction error ε

For single-step problems, updates are performed analogously to the
multi-step case using Equations 3.1 to 3.3. However, since no reward
propagation is necessary, the payoff P is simply determined as the current
reward and the update is performed on the current action set [A].

The reinforcement component updates the prediction part of existing
classifiers based on received rewards, but it does neither create nor remove
classifiers from the population. This is the responsibility of the discovery
component.

Discovery component

In the discovery component, new classifiers are created on two occasions:

• When an empty match set is created, a covering mechanism creates
at least one classifier with a matching condition and a randomly
chosen action. The new classifier is inserted into the population
and the performance component proceeds as usual.

• Genetic operators are applied to classifiers in the action set if the av-
erage time since their last genetic modification exceeds a threshold.
In this case, parent classifiers are selected using proportionate [40]
or tournament [38] selection considering their relative fitness with
respect to other classifiers in the action set. From the selected
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parents, offspring classifiers are created using crossover and muta-
tion. After initialising the offsprings’ prediction with the currently
received reward and resetting the prediction error and fitness values,
the offspring are included in the population.

Both mechanisms support the development of the classifier population
by covering previously unknown environmental niches and by evolving
new candidates from relatively fit classifiers, respectively. But besides
classifier creation, the discovery component is also responsible for the
deletion of classifiers. Again, two types of deletion can be distinguished
in XCS:

Subsumption deletion When inserting newly created classifiers into the
population or when building the action set, subsumption deletion
can be applied. A classifier is subsumed by a more general classifier
advising the same action if the more general classifier is sufficiently
accurate (with respect to the prediction error) and experienced
(with respect to the number of applications).

Population size limit To keep the population within its size limit, a clas-
sifier is selected for deletion with a probability that is proportional
to the average size of the action sets it was part of. By this means,
classifiers in well covered environmental niches have a higher prob-
ability to be removed. Furthermore, the experience and fitness of a
classifier influence its deletion probability: If the classifier has been
applied at least θdel times and its fitness is lower than a δ-fraction of
the population’s average fitness, its deletion probability is increased.

The deletion ensures that within the population size limit only the
fittest classifiers of an environmental niche are kept. With the description
of the discovery component, the overall learning process is completely
illustrated.

3.2.2 LCSs for traffic signal control
Several authors investigated the application of Michigan- and Pittsburgh-
style classifier systems for traffic signal control.
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Michigan Classifier Systems

In the area of Michigan Classifier Systems, Cao et al. investigate the
use of ZCS – a predecessor of XCS – for traffic-actuated intersection
control [43,44]. In [43], ZCS controls the signalisation of a two-phased
intersection controller. Based on discrete queue levels for the intersection’s
approaches (representing no, small, medium, or large queues), ZCS
determines for how long one of the two signal phases will receive the
right of way. Its actions are rewarded based on the average queue at the
intersection. Later modifications of the LCS-based controller include the
previous signalisation of neighbouring intersections in the input, while
the actions are simplified to the selection of the active signal for the next
period [44].

Results obtained from microscopic simulations show that LCSs like
ZCS are in principle applicable to create traffic-actuated intersection
controllers. Over a learning period, the resulting queue lengths at the
controlled intersections [43] or the “traffic speeds” in the network [44]
could be improved compared to signal controllers randomly switching
the signalisation.

Recent works of Bull et al. investigate the use of XCS for traffic-actuated
signal control [34,174]. As in the works of Cao et al., the task of XCS is to
control the phase durations at a two-phased intersection. It receives the
(binary coded) maximal queue length associated with both signal phases
as input and decides on a possible extension of the active phase. The
extension is either a binary decision whether to keep or end the active
phase or alternatively the selection among four predetermined extension
intervals. The reward provided to the XCS is again based on the queue
length at the end of the signal phase.

The resulting XCS-based signal controller has been evaluated in mi-
croscopic simulations. Using the vehicular delay at the controlled inter-
sections as criterion, a comparison was made to fixed-time and traffic-
actuated controls for different constant and varying traffic demands. The
XCS-based controller is reported to show a competitive performance
compared to the reference controls.
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Pittsburgh Classifier Systems

Enee and Escazut investigate the use of a Pittsburgh Classifier System
to evolve control rules for a two-phased signal controller [64]. In contrast
to the Michigan-style systems discussed before, Pittsburgh Classifier
Systems resemble a Genetic Algorithm that evolves a population of
classifier sets. In [64], each classifier set can be used for intersection
control. It contains classifiers that consist of a condition specifying the
state of two traffic detectors for each of the intersection’s approaches and
the current state of the signal. A classifier’s action either switches the
current signal state or leaves signalisation unchanged for the next time
period.

In every generation evolved by the classifier system, all classifier sets
in the population are evaluated based on the vehicular delay resulting
from the repeated application of their classifiers at the intersection.
Afterwards, relatively fit sets are selected and reproduced using crossover
and mutation to form the next population of classifier sets.

Enee and Escazut do not compare the quality of the evolved classifier
sets to reference controllers, but investigate the influence of elitism
and distributed elitism on the evolutionary process. Elitism guarantees
that the m best classifier sets of a generation are included in the next
generation, while the m worst sets are discarded. In their experiments,
elitism resulted in faster convergence of the population. Distributed
elitism corresponds to the exchange of good classifier sets among the
intersections of the traffic network. Distributed elitism is reported to
result in convergence at a decreased amount of delay. Best results have
been obtained for a combination of elitism and distributed elitism.

Criticism

Although the reported results for LCS-based signal controllers are promis-
ing, some criticism is due: Pittsburgh Classifier Systems basically resem-
ble a Genetic Algorithm that evolves a population of classifier sets. As
such, they are not well-suited for on-line applications due to the large
number of required evaluations. In every new generation, each classifier
set in the population needs to be evaluated many times to get a reasonable
quality estimate for the combined performance of its numerous classifiers.
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On-line applications are, however, advisable in traffic signal control due
to the dynamic nature of traffic.

Michigan Classifier Systems are designed as on-line reinforcement learn-
ing systems that acquire their knowledge by the repeated application
of classifiers in their environment. In case of traffic-actuated intersec-
tion control, this means that bad control actions are performed at the
intersection for several times, before their bad quality is recognised. This
has a detrimental influence on the controller performance. The problem
is usually handled by introducing a learning phase for exploration that
precedes the evaluation period during which the previously acquired
knowledge is exploited.

The two-levelled learning approach presented in Chapter 5 simulta-
neously performs exploration and exploitation by using a simulation
environment that runs in parallel to the controlled environment. The
simulation is used to explore new classifiers, while the previously learnt
knowledge is exploited in the real environment. The two-levelled learning
architecture therefore allows to widely eliminate the detrimental effects
of mistakes unavoidable in the learning process.

A further objection regarding the LCS-based approaches previously
discussed is related to the missing coordination mechanisms: None of the
presented approaches explicitly coordinates neighbouring intersections
to form progressive signal systems, although the coordination of signals
can be beneficial especially in urban areas (see Chapters 7 and 8). All
approaches rely on a loose, indirect coupling of neighbouring intersections
by detecting approaching vehicles [64] or existing queues [34, 43, 174].
Only in [44], the previous signalisation of neighbouring intersections is
included in the LCS input. Whether these loose couplings help to improve
the signalisation or lead to the traffic-responsive formation of progressive
signal systems is, however, not reported.

A commonality of the discussed LCS-based approaches to signal control
is the simplicity of their scenarios. All mentioned applications implement
two-phased controllers and, therefore, the simplest possible phase system.
The classifier conditions are of a limited complexity, considering traffic
indications for maximally four one-laned approaches. At realistic inter-
sections, traffic measures need to be handled for several signal groups
and complex phase systems are common. This results in more complex
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conditions and actions for the classifier rules. Unfortunately, classifier
systems are known to need an increasing number of learning iterations
when the conditions and actions of their rules get more complex [159].

3.2.3 Summary
What should be remembered regarding LCSs is that they are rule-based
reinforcement learning systems that can be distinguished in Pittsburgh
[54,176,177] and Michigan Classifier Systems [95,97]: Pittsburgh-style
systems are closely related to Genetic Algorithms and are especially
suitable for off-line optimisation, while Michigan-style systems are on-
line learning systems. A widely used Michigan-style system is Wilson’s
XCS [213,214] which aims at learning classifiers that are on the one hand
accurate in their prediction and that are on the other hand maximally
general with respect to their condition.

An advantage of LCSs is that they are well-suited for many machine
learning tasks since their only requirement is a scalar reinforcement
feedback provided by their environment. As a result, the LCS framework
is widely applied in a large area of real-world applications in domains
such as data mining, modelling, optimisation, and control [33]. Classifiers
learnt by an LCS are easy to interpret and to understand since they are
available in a human-readable format. Therefore, the classifier population
provides a plausible, understandable model of the learnt concepts.

Drawbacks of LCSs are the number of environmental iterations neces-
sary during the learning process. Especially when classifier conditions
are complex and the number of available actions of the LCS are large,
learning can be a slow and time-consuming process [159]. This might
be an explanation for the limited complexity of LCS-based intersection
controllers previously investigated in the literature. Another drawback is
that the quality of a classifier is determined by its execution in the real
environment. As a result, bad control actions have to be executed several
times, before they can be recognised and discarded. Since this has a
detrimental influence on the LCS performance, learning periods for explo-
ration precede the productive application of LCSs in many cases. Both
issues are addressed in Chapter 5 by the introduction of a two-levelled
learning architecture that combines the LCS with a simulation-based
optimisation component.
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Regarding LCS literature and research, Lanzi’s overview [118] gives
a good account on the historical development of the field, while a good
textbook on (Michigan-syle) LCSs has been published by Butz [37].
To follow recent developments, the yearly International Workshop on
Learning Classifier Systems held in conjunction with the Genetic and
Evolutionary Computation Conference (GECCO) can be recommended.
Furthermore, a bibliography on LCSs is maintained by Kovacs4.

In the following, attention is given to self-organising traffic signal
systems that consist of locally interacting intersections which obtain a
coordination without centralised control. The intersections might learn
in their local environment or can follow a predefined logic.

3.3 Self-organisation in traffic control
In recent years, self-organisation has received growing attention in the
traffic engineering community. Self-organising signal systems try to
achieve a quick network-wide adaptation to changing traffic demands
that results from local interactions of neighbouring intersections. The
approaches can be distinguished by the communication requirements
of their intersection controllers: Communicating intersections rely on a
dedicated communication link to exchange information on traffic demands
or other data relevant for the traffic-responsive signal coordination with
their neighbours. Non-communicating intersections achieve a coupling
with their neighbours by an early detection of arriving vehicles which
typically requires more sophisticated detection equipment. Examples for
both system types are discussed in Sections 3.3.1 and 3.3.2, respectively.
The discussion is concluded with a summary in Section 3.3.3.

3.3.1 Non-communicating intersections
As examples for self-organising traffic control systems that do not rely on
a communication link among neighbouring intersections, the approaches
suggested by Gershenson et al. [48,80,81] and Lämmer et al. [114,116,117]
will be discussed in the following.

4T. Kovacs. A Learning Classifier Systems Bibliography: http://www.cs.bris.ac.
uk/~kovacs/lcs/search.html
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Platoon-based self-organisation

The self-organising traffic light (SOTL) system proposed by Gershen-
son et al. [48,80,81] relies on traffic-actuated intersection controls that
are operated using relatively simple local rules. Three different SOTL
variants with increasing complexity have been proposed for two-phased
intersections:

SOTL-request In the simplest variant, vehicles waiting at or approaching
a red light are counted. In every time step, the counts are summed
up and whenever the sum reaches a predefined threshold, the
signalisation changes and the sum is set to zero. Using this SOTL-
request rule, long vehicle queues or large platoons approaching an
intersection can quickly obtain a green signal, while small vehicle
groups have to wait for a longer period of time. However, at
high traffic densities, the rule leads to frequent changes in the
signalisation that result in increased lost times.

SOTL-phase To avoid frequent signal changes, SOTL-phase extends
SOTL-request with a constraint on the minimal phase duration:
The switching condition is only evaluated if the current phase has
been active for a certain period of time.

SOTL-platoon Finally, SOTL-platoon extends SOTL-phase with a mech-
anism regulating the size of vehicle platoons: If there are vehicles
close to the stop line of a currently green signal, the signalisation
will not be changed unless the number of approaching vehicles is
above a threshold. The additional rule ensures that the tail of a
platoon is not separated from its head unless the tail is large enough
to form a platoon on its own.

Similar to the traffic-actuated controls discussed in Section 2.3, the self-
organising traffic lights adapt their signalisation by taking into account
current vehicle queues and gaps in the approaching traffic (which are
implicitly used to detect separate platoons). However, the difference is in
the way neighbouring intersections are coordinated. While conventional
controls rely on a predefined coordination that requires a fixed cycle
length at each intersection, the self-organising traffic lights work acyclic,
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i. e., without a fixed cycle length. A coupling of neighbouring intersections
is achieved by the early detection of approaching vehicle platoons that can
be incorporated in the signalisation before their arrival at the intersection
due to the flexibility of the acyclic signalisation.

A comparison of the different SOTL approaches is available in [80, 81].
Furthermore, the SOTL-platoon approach has been evaluated for a four-
laned one-way avenue of two-phased intersections at Brussels, Belgium
[48,81]. The simulation study considered the avenue’s daily traffic demand
and compared SOTL-platoon to a fixed coordination used in the field.
Reductions of about 50 % are reported with respect to the resulting
average waiting times. While the self-organising approach is flexible and
adapts the local signalisation based on simple rules, its drawback is in
the substantial detection equipment necessary for the early detection of
arriving platoons.

Pressure-based self-organisation

Lämmer et al. [114, 116,117] propose a decentralised control principle for
traffic lights that shares the general ideas of Gershenson. The signali-
sation at an intersection is adapted based on “pressures” generated by
approaching vehicles. No predefined cycle times or phase sequences are
used: At every intersection, the signal groups are dynamically combined
in response to local traffic demands considering safety-critical constraints
(like minimum green times or clearing times), only. As a result, local
optimisations can be performed on a relatively unconstrained search
space.

As before, a coordination of neighbouring intersections is reported to
emerge from the local optimisations: Since stopped vehicle platoons would
increase the local delay, the local optimiser avoids stopping platoons
whenever this is reasonable. Therefore, a dynamic, traffic-responsive
coordination of signals results from the local optimisations.

The three main components locally controlling the intersections are
briefly sketched in the following:

Anticipation The anticipation component estimates additional delays
occurring if a signal group will receive the right of way at a later
point in time. The calculation does not only consider already
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queued vehicles, but also approaching vehicles that will have to
wait until the existing queues are cleared.

Optimisation Based on the results of the anticipation component, a
combination of non-conflicting turning movements that results in
the lowest delay at the intersection is selected by the optimisation
component. In the process, a dynamic priority is assigned to
each turning and a selection of turnings with highest priorities (or
pressures) receives the right of way.

Stabilisation Finally, the stabilisation component ensures that minor
turnings with relatively small flows do not exceed a maximal red
time. Without stabilisation, the optimisation might discriminate
minor turnings against larger traffic movements, since the savings
obtainable for minor turnings are small. Details on instabilities are
available in [115].

The self-organising approach has been evaluated in a simulation study
for a subnetwork of 13 intersections surrounding the train station “Dres-
den Mitte” at Dresden, Germany [117]. The investigated subnetwork
is operated using three predefined coordination programmes with local
traffic-actuated control provided by VS-Plus. In the study – that was
conducted using the microscopic traffic simulator VISSIM [66] – these
coordinations served as reference solution. Using the self-organising ap-
proach, a reduction of 9 % with respect to the vehicular delay could be
obtained. For public transport vehicles – that execute a higher pressure
on a signal – the delay could be shortened by 56 %. The average red
time for pedestrians and cyclists could be reduced by 36 %, since they
are served in parallel to vehicular movements whenever possible.

Judging the results of the simulation study, the self-organised emergence
of coordinations within the network works well. However, drawbacks
of Lämmer’s approach are in its detection requirements. The study
assumed an “ideal vehicle detection”, i. e., the positions of all vehicles are
known in the simulation. Further tests regarding more realistic scenarios
with incomplete detection are necessary. Furthermore, the dynamic
composition of turning movements might lead to acceptance problems
for road users since the system behaviour cannot be easily understood
from their point of view.
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3.3.2 Communicating intersections
A game-based mechanism proposed by Bazzan [13] serves as example
for a distributed approach to traffic signal coordination that relies on
communicating intersections. In the approach, intersections are modeled
as individually-motivated agents. Each agent possesses a set of predefined
signal plans to choose from. The selection process is based on local traffic
flows at the intersections as well as on the results of coordination games
that are played among neighbouring agents. In detail, individual state-
change periods, payoff-getting periods, and learning periods determine
the signal plan selection:

Individual state-change periods When a change of the local traffic flows
is detected at an intersection, an individual state-change period
takes place. In this case, the selection probabilities of the predefined
signal plans are determined considering local traffic flows only.

Payoff-getting periods During payoff-getting periods, the intersection
agents play two-player coordination games with their neighbours
in order to achieve a coordination that is beneficial for the network.
The combination of signal plans selected by the agents is rewarded
by a payoff which is determined from a payoff matrix that has to
be explicitly formalised by the designer of the system.

Learning periods During learning periods, the selection probabilities of
signal plans are adapted based on the previously received payoffs.
Giving a greater significance to recently received payoffs, a fitness
value is calculated for each signal plan. The selection probabilities
of the signal plans are then updated to represent their relative
fitness.

The principal applicability of Bazzan’s approach is demonstrated in a
simple scenario of an arterial road consisting of ten intersections. Each
intersection agent has to choose between two signal plans, each of which
favours one of the two arterial directions over the other. The distributed
approach is compared to a centralised controller that coordinates all
traffic lights in one of the arterial directions. While the centralised
coordination reduces traffic jams at the arterial when the vehicle flow is
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clearly higher in one direction, the agent-based approach proves to be
better in situations where the flow in both directions is nearly equal. In
these situations, it is advantageous that the intersection agents can break
with the coordination in order to cope with their local traffic demands
when this becomes necessary.

In contrast to the approaches discussed in Section 3.3.1, intersection
agents in Bazzan’s approach need communication capabilities to partici-
pate in the coordination games. The payoff matrices required in these
two-player games have been identified as shortcoming of the approach [14],
since they have have to be explicitly formalised by the system designer.
Their definition requires knowledge on the quality of different coordi-
nation options under different traffic demands. The definition process
is therefore time-consuming and not well-suited for on-line applications.
Another weakness of the approach is in the restriction to predefined
signal plans that limit the flexibility of Bazzan’s approach in on-line
applications. While the decentralised traffic control system proposed in
Chapter 7 also relies on communicating intersections, it does not require
predefined signal plans or prior knowledge on coordination options.

3.3.3 Summary
Self-organising traffic signal systems are characterised by a quick adap-
tation to changing traffic demands that results from a decentralised
interaction of the network’s intersections. Their traffic-responsive co-
ordination emerges from local decision processes taking place at each
intersection, without a centralised authority being involved. The coor-
dination can either rely on the early detection of approaching vehicles
(which requires sophisticated detection equipment) or on an additional
communication link for the transmission of traffic or signal plan data.
Some approaches (like those in Section 3.3.1) depend on relatively simple,
predefined local decision rules, while others (like the one discussed in
Section 3.3.2) additionally make use of learning mechanisms.

The proposed self-organising approaches are too numerous to be com-
prehensively discussed in this section. Self-organisation is not only in-
vestigated to improve traffic signals, but also to replace them. The
anticipated reservation-based mechanisms treat a signalised intersection
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as multi-agent system and assume that driver agents request an inter-
section agent to reserve time-space slots required to safely cross the
intersection [61,167,200].

To follow recent developments, the workshops on Agents in Traffic
and Transportation at the yearly Conference on Autonomous Agents
and Multiagent Systems (AAMAS) can be recommended. Furthermore,
collections on agents in traffic and transportation [15,106] and a recent
survey [14] are at hand. However, the available works have been conducted
to investigate differing research questions and exhibit a varying degree of
sophistication. Some do not strive to create a traffic control system in
the first place, but use the traffic scenario solely as distributed test case
for, e. g., reinforcement learning [49]. Other works rely on simplifying
assumptions that render the proposed solutions uninteresting for real-
world applications. Therefore, articles on self-organising traffic systems
should be reviewed with a critical attitude.
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CHAPTER 4

Organic Computing and the observer/controller
paradigm

While the previous chapters presented the state of the art in traffic signal
control and discussed learning and optimisation approaches, this chapter
is dedicated to Organic Computing and its observer/controller paradigm.
Organic Computing is a research field that investigates how to design
adaptive and self-organising technical systems, its vision is in the focus of
Section 4.1. The observer/controller paradigm provides a generic design
framework for organic systems. Since the framework forms the basis for
the adaptive learning intersection controller developed as part of this
thesis, it is introduced in Section 4.2. Section 4.3 briefly reviews related
frameworks, before the discussion is concluded in Section 4.4.

4.1 Organic Computing
The advancement of technology leads to increasingly powerful technical
systems that provide their users with functionalities and services that
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were unthinkable only a few years ago. An example are modern cars
that are endued with an increasing number of electronic components.
Numerous processors and embedded systems provide motor control (e. g.,
injection and ignition), safety (e. g., air bags), driver assistance (e. g.,
proximity cruise control), and comfort functions (e. g., parking assistance).
Often, several embedded systems are interconnected and form a complex
communication network, e. g., when a system for tyre pressure monitoring
relies on ABS sensor data.

While the advancement of technology provides increased functionality,
comfort, and safety to the user of a technical system, it poses tremendous
challenges to the system designer. For him, it becomes more and more
difficult to foresee all possible configurations and to explicitly specify the
entire behaviour of a complex system on a detailed level at design time.
In particular, when a system consists of many interacting components, it
may exhibit new, emergent properties that are difficult to anticipate.

The increasing complexity of technical systems calls for new system
architectures, since issues not anticipated in the design stage of a system
have to be dealt with at run-time. This requires adaptive systems that can
adjust themselves to changing conditions and self-organising systems that
consist of locally interacting components which obtain an emerging global
behaviour without centralised control [63, 81]. Regarding the necessity of
such systems, Schmeck [168] states that

“It is not the question whether self-organized and adaptive
systems will arise but how they will be designed.”

A research field that focuses on adaptive and self-organising systems
is Organic Computing (OC) [137, 139, 168, 201]. OC aims to design
technical systems that are trustworthy, robust (with respect to distur-
bances or failures), and flexible (with respect to externally provided
goals). Additionally, organic systems shall exhibit self-x-properties like
self-configuration or self-optimisation.

There are, however, challenges in the design of organic systems: Adap-
tation requires the capability to monitor a system and its environment
in order to influence its behaviour with respect to externally provided
goals. The process of efficient monitoring and control may demand for
machine learning and optimisation techniques, so an adaptive system
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can learn adequate responses to conditions unforeseen by its designer.
Unfortunately, learning involves unsuccessful experiments that cannot be
conducted in the productive environment, so learning in on-line scenarios
poses a first challenge to the design of organic systems.

A second challenge imposed by self-organisation are emergent properties
that arise in complex systems of interacting components where the study
of individual components reveals little about the system-wide behaviour.
Emergent properties can be desired or undesired, but they make the
behaviour of a self-organising system difficult to predict. Therefore, it may
become necessary to observe and temporarily control a self-organising
system in order to suppress unwanted emergent effects and achieve
controlled self-organisation. In OC, both challenges are addressed by the
generic observer/controller architecture.

4.2 Generic observer/controller architecture
In order to assess the behaviour of a technical System under Observation
and Control (SuOC) and – if necessary – for a regulatory feedback to
control its dynamics, it is assumed that a generic observer/controller
architecture is required. The general idea of an observer/controller has
been first proposed in [136] and was later refined [23,157,159]. The main
objectives of the architecture are

• to reconfigure the SuOC to achieve an optimal system performance
despite dynamically changing environmental conditions and

• to achieve controlled self-organisation by handling emergent effects
resulting from the interaction of the SuOC’s components.

To perform these tasks, the observer/controller has a set of sensors
and actuators to measure system variables and influence the SuOC. As
depicted in Figure 4.1, the observer collects data from the SuOC and
computes indicators characterising its global state and dynamics. This
process includes the preprocessing of monitored data, an analysis to derive
system-wide indicators, and a prediction of future developments. The
results of these steps are aggregated to situation parameters characterising
the observed or future system state.
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The situation parameters are evaluated by the controller with respect
to a user-defined goal. The controller decides whether an intervention
is required and, if so, what action would be most appropriate. This
decision is based on a mapping of situation parameters to appropriate
actions that is continuously evaluated with respect to its performance
(Level 1). Based on results of the evaluation and possibly on estimations
obtained from a simulation model, this mapping can be adapted, refined,
or extended (Level 2), making the controller a learning component.
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Figure 4.1: Generic observer/controller architecture (based on [159])

The combination of SuOC and observer/controller forms an organic
system and will be discussed in more detail in the following. Section 4.2.1
focuses on the SuOC, while Sections 4.2.2 and 4.2.3 are dedicated to the
observer and controller, respectively.
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4.2.1 System under Observation and Control
The SuOC can be an arbitrary technical system that benefits from
supervision and adaptation to changing conditions. Examples include
classically engineered systems like off-highway machines where different
working cycles can be detected to reduce the machine’s fuel consumption
[221], elevator groups where bunching effects are prevented [155], or –
as in this thesis – traffic lights that can be adapted to changing traffic
demands.

The SuOC may also consist of a large collection of autonomous objects
that interact in their environment. In this case, the observer/controller
can detect emergent phenomena resulting from the local interactions
and intervene in the SuOC in order to suppress or support (un)desired
emergent effects. Examples include service-oriented architectures that
can be combined with observer/controller components to cope with the
increasing complexity of IT systems [122]. The variety of applications
underlines the generic character of the observer/controller framework
that will now be discussed in more detail.

4.2.2 Observer
It is the observer’s task to measure and quantify the current state of the
SuOC and to predict its future development. The observation process
consists of the steps monitoring, preprocessing, data analysis, prediction,
and aggregation. An observation model customises the observer by
selecting the observable attributes of the SuOC and by determining
appropriate analysis and prediction methods.

Monitor and log file The monitor samples attributes of the SuOC accord-
ing to a given sampling rate. The observed system data consists of
individual data on the level of single elements (like a traffic detec-
tor’s vehicle count) or some global system attributes (like weather
conditions). All measured data is stored in a log file for every loop
of observing/controlling the SuOC. The stored time series form the
basis for the preprocessing, analysis, and prediction steps.

Preprocessor Typical tasks performed during preprocessing include the
smoothing and filtering of stored time series (e. g., from a traffic de-
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tector) and the extraction of derived attributes (like the calculation
of queue lengths from vehicle counts at two detector locations). The
preprocessed data is then used in the data analysis and prediction
steps.

Data analyser The data analyser provides a system-wide description of
the SuOC’s current state. The implemented analysis techniques
largely depend on the observed system and the purpose of the
observer/controller. In the context of intelligent traffic systems,
vehicular delays and stops might be estimated using a traffic model.

Predictor While the data analyser is dedicated to the current system state,
the predictor’s task is to forecast future developments. This enables
the controller to base its control decisions not only on historic data,
but also on predicted developments. Prediction techniques are
again specific to the organic system’s domain. For intelligent traffic
systems, an overview of short-term forecasting methods is provided
in [202].

Aggregator The results of the preprocessor, data analyser, and predic-
tor are handed on to the aggregator where they are combined to
situation parameters which are transmitted to the controller.

Depending on the requirements of the controller, the obtained situation
parameters can be adapted using the model of observation. The model
specifies which properties of the SuOC are observed and which sampling
rate is used for observation (this selection is obviously limited by the
available detectors and their capabilities). Furthermore, the applied
analysis and prediction methods are selected. By influencing the model
of observation, the controller can focus in detail on critical aspects within
the SuOC (like an incident blocking a road and thereby influencing the
traffic flow) even when its resources (like communication bandwidth,
processing power, or energy) are limited.

4.2.3 Controller
Based on the received situation parameters, the controller will influence
the SuOC to achieve the goals given by the user. The controller is inter-
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nally composed of two levels: Level 1 is dedicated to the on-line learning
of appropriate actions for received situation parameters. It consists of a
mapping component that assigns possible actions to known situations.
Furthermore, the performance of stored situation-action mappings that
have been applied in the SuOC is evaluated by a performance evaluation
component.

Level 2 aims at improving the mapping of Level 1 by providing off-line
optimisation capabilities. It is composed of an adaptation module and a
simulation model. Using optimisation or machine learning approaches,
the adaptation module creates additional mappings and can rely on the
simulation model in the process. The main components of both layers
are discussed in the following:

Mapping The mapping component is responsible for an immediate reac-
tion to received situation parameters. It stores previously learnt
situation-action mappings (e. g., as LCS rule base) which determine
the reaction to known situations. When no matching mappings are
available for an observed situation, an action might be deduced
from stored mappings for similar situations. This reaction can be
suboptimal, though. Therefore, an additional mapping might be
requested from the adaptation module.

Performance evaluation The performance evaluation component calcu-
lates quality updates for the situation-action mappings based on
their performance observed in the SuOC. When the execution of an
action changes the state of the SuOC, this change is subsequently
reflected in the situation parameters derived by the observer. The
controller’s performance evaluation component evaluates the change
and/or the new situation with respect to the user-specified objective
function and updates previously applied situation-action mappings
through the adaptation module. Machine learning techniques like
reinforcement learning [186] can be used here. The update of exist-
ing mappings resembles an on-line learning based on observations
in the SuOC.

Adaptation module The adaptation module’s main task is to create new
situation-action mappings and to delete mappings of insufficient
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quality. For the exploration of additional mappings, several opti-
misation or machine learning approaches can be used which are
supplemented by a simulation model that allows for the safe eval-
uation of candidate solutions. The adaptation module resembles
an off-line optimisation that is performed in parallel to the on-line
learning mentioned above.

Simulation module The simulation module supports the exploration of
new situation-action mappings. It allows to safely estimate the
effect of a new action or mapping before its application in the
SuOC. Simulation-based estimations are typically much faster than
evaluations in the real systems, but abstractions in the simulation
model can lead to imprecise results. By calibrating the model,
imprecisions can be kept small and will be quickly corrected by the
performance evaluation component.

Objective function The user-defined objective function guides the learn-
ing and optimisation processes on both levels of the controller. It
is used for fitness evaluation in the performance and adaptation
modules.

A remarkable speciality of the controller is the two-levelled design.
The combination of on-line learning (Level 1) and off-line optimisation
(Level 2) exhibits several advantages compared to other control loops or
learning mechanisms like those discussed in Section 4.3:

• The simulation-based off-line optimisation enables the controller to
find appropriate situation-action mappings without having to test
different alternatives in the SuOC. The latter could be detrimen-
tal, as testing potentially bad strategies in the SuOC can result
in an unacceptable performance or might even cause it to fail
permanently.

• Typically, simulation-based evaluations of situation-action map-
pings are significantly faster than evaluations in the SuOC. As-
suming a limited amount of time for optimisation, heuristics using
simulations can rely on a larger number of evaluations for training
and search.
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• Although optimisation on Level 2 takes time, the mapping compo-
nent of Level 1 allows for a quick reaction of the controller by acting
as a memory for learnt knowledge. Even when unknown situations
are observed, the controller can use situation-action mappings for
similar known situations to determine an immediate reaction (that
might be suboptimal, though). In parallel, the optimisation on
Level 2 can be started, so a specially optimised situation-action
mapping will be available in the future.

• The model-based optimisation on Level 2 is subject to simplifi-
cations in the model. Therefore, the best action determined by
simulations is not necessarily the best action within the SuOC. By
adapting the estimated quality of the situation-action mappings,
Level 1 can fine-tune the solutions from the adaptation module and
will correct possible inconsistencies.

Overall, the generic observer/controller architecture provides a frame-
work that is widely applicable to a large range of technical systems.
Before an adaptive learning intersection controller based on the ob-
server/controller architecture is presented in Chapter 5, related architec-
tures are briefly discussed in the following.

4.3 Related architectures
Due to the importance of autonomous control in technical systems,
several control loops similar to the generic observer/controller architecture
have been proposed in different fields. Section 4.3.1 provides some
helpful references on loops closely related to the observer/controller
architecture, while Section 4.3.2 focuses on architectures for simulation-
based optimisation and learning at run-time.

4.3.1 Control loops
The most relevant control loops for traffic signal control are adaptive
network control systems that have already been discussed in Section 2.4.
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Other related approaches include IBM’s Autonomic Computing1 and the
Operator-Controller Module developed in the Collaborative Research
Centre 6142:

Autonomic Computing IBM’s Autonomic Computing initiative focuses
on the construction of IT systems that manage themselves according
to an administrator’s goals. The system’s hardware and software
components are treated as managed elements that are equipped
with an autonomic manager executing a monitor-analyse-plan-
execute (MAPE) loop to achieve a self-management of the IT
system [102,178,179].

Operator-Controller Module To realise self-optimising mechatronic sys-
tems (that combine technologies applied in mechanical and elec-
trical engineering), an Operator-Controller Module has been pro-
posed [36,142]. The Operator-Controller Module has a strong focus
on real-time constraints. A controller featuring a predefined num-
ber of alternative control strategies directly affects the mechatronic
system. It is complemented by a reflective operator that may mod-
ify the controller and initiate switches between control strategies.
A cognitive operator gathers information concerning the system
and its environment to improve the system behaviour.

Both, the MAPE loop of Autonomic Computing and the Operator-
Controller Module differ from the observer/controller architecture in a
number of respects: In contrast to MAPE, the observer/controller puts
a strong emphasis on the importance of (two-levelled) learning. The
Operator-Controller Module, on the other hand, exhibits a two-levelled
design, but does not possess the observer’s distinct analysis and prediction
functionality. For an extensive discussion of differences that also considers
other control loops like Model Predictive Control [41] or Sense-Plan-Act
approaches in robotics [31], the reader is referred to [159]. Robotic
architectures that rely on simulation-based optimisation to improve their
behaviour at run-time are also discussed in the following.

1IBM Corporation. Autonomic Computing website: http://www.research.ibm.com/
autonomic/

2Universität Paderborn. Collaborative Research Centre 614 website: http://www.
sfb614.de/
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4.3.2 Simulation-based optimisation at run-time
Approaches that rely on a simulation-based optimisation at run-time
have been predominantly proposed in the area of robotics [20, 92, 150].
Here, special attention will be given to an approach called Anytime
Learning that bears several similarities with the two-levelled learning in
the observer/controller architecture.

Anytime Learning [92, 150] aims at controlling an agent (e. g., an
autonomous robot) in changing environments by endowing it with a
continuous learning capability. As depicted in Figure 4.2, the agent
possesses an execution system and a learning system: The execution
system controls the agent’s interaction with its environment based on
a knowledge base containing its active strategy. The learning system
attempts to improve the execution system by continuously testing new
strategies against a simulation model.
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Figure 4.2: Anytime learning system (based on [92,150])

The communication between execution and learning system is bidirec-
tional: The learning system updates the execution system’s knowledge
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base when – based on the tests performed on the simulation model – a
strategy is found that performs better than the active strategy. In the
other direction, the execution system monitors the agent’s behaviour in
the environment and dynamically modifies the learning system’s simula-
tion model whenever discrepancies are detected. In this case, the learning
process is restarted on the modified model. Whether a complete restart
is necessary or a more graceful adaptation is possible depends on the
employed learning method.

Despite the obvious similarities to the generic observer/controller archi-
tecture that also combines a knowledge base (Level 1) with a simulation-
based optimisation approach (Level 2), there are important differences:

• In Anytime Learning, discrepancies in the simulation model are
handled by adapting the model parameters and restarting the
learning process. Such a model calibration is also possible in the
observer/controller architecture (performed by the adaptation mod-
ule based on data gathered by the observer), but calibration can be
a tedious task (especially when performed on-line). Therefore, the
observer/controller architecture additionally relies on the perfor-
mance evaluation component to handle small discrepancies between
simulated and real environment using machine learning techniques
like reinforcement learning.

• In Anytime Learning, the knowledge base determining the controlled
agent’s active strategy is replaced by a new strategy from the
learning system. Therefore, a new learning process is required when
previous environmental conditions reoccur, leading to a reduced
performance during the (repeated) learning period (see the results
reported in [92]). To avoid this drawback, the observer/controller
architecture stores previously learnt situation-action mappings and
considers only the mappings matching the current environmental
conditions in the action selection.

Despite the existence of related architectures and learning approaches
in the literature, the observer/controller approach represents a new
mechanism for the autonomous control of technical systems with respect
to the goals of a human user. In the following section, its main features will
be summarised before it is applied to traffic signal control in Chapter 5.
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4.4 Summary
The increasing complexity of technical systems calls for adaptive and
self-organising architectures that relieve system designers from explicitly
specifying the entire behaviour of a complex system at design time. The
anticipated systems should be designed with respect to human needs and
have to be trustworthy, robust, and flexible. They will exhibit self-x-
properties, learn about their environment over time, survive attacks and
breakdowns, adapt to their users, and react sensibly even if they encounter
a new situation for which they have not been explicitly programmed.
Due to their life-like properties, they are called organic systems.

To create adaptive learning systems that perform well in dynamically
changing environments and to achieve controlled self-organisation by
handling emergent effects that are inherent in complex systems, a generic
observer/controller architecture has been proposed. The architecture has
a framework character and outlines the main components of an organic
system: The observer collects data from a (self-organising) SuOC and
computes some indicators characterising the system state and dynamics.
Based on these situation parameters, the controller decides whether an
intervention is required and, if so, what action would be most appropri-
ate. The decision process involves a two-levelled learning that combines
simulation-based optimisation and on-line learning.

Possible applications of the generic observer/controller architecture are
manifold. They include the control of robot swarms [131], the optimisation
of communication networks [189, 193], working cycle detection in off-
highway machines [221], and elevator control [155] among others (see [190]
for a recent survey). The works emphasise different aspects of the
framework, but not every application uses all functionalities proposed for
the observer/controller architecture. In the next chapter, the framework
is adapted to traffic signal control at an intersection, emphasising the
importance of two-levelled learning for the control task. The adaptation
constitutes one of the main contributions of this thesis.

97





CHAPTER 5

An observer/controller architecture for traffic control

The previous chapter presented the observer/controller architecture as a
generic framework for the design of organic systems. Here, the architec-
ture is implemented to obtain an adaptive learning intersection controller.
Section 5.1 provides a system overview before the observer/controller
implementation is presented in detail. Section 5.2 focuses on the SuOC
and discusses different types of traffic light controls. The observer, its
detection requirements, and the steps necessary for data processing and
analysis are discussed in Section 5.3, while Section 5.4 is dedicated to
the two-levelled learning and optimisation in the controller. Finally, the
real-world deployment of the organic system and its simulation-based
evaluation are discussed in Section 5.5.

5.1 Overview
The focus of this chapter is on an adaptive learning intersection controller
that is based on the generic observer/controller architecture. A signalised
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intersection forms the SuOC that is extended by an observer/controller
to obtain an adaptive learning system that allows for the on-line reconfig-
uration of signal plans (see Figure 5.1). The observer monitors the local
traffic demand, analyses the active signal plan’s performance, and predicts
future developments. Based on the resulting situation parameters, the
controller reconfigures the intersection’s signal plan on-line. A modified
LCS forms the controller’s first level that is responsible for on-line signal
plan selection. As reinforcement learning mechanism, the LCS keeps
track of a rule base that maps traffic demands to appropriate signal plans.
The controller’s second level is responsible for signal plan optimisation
and relies on an EA as optimisation technique. The EA evaluates the
quality of candidate solutions by microscopic simulations (or, in case of
fixed-time plans, by approximations) and provides the optimised signal
plans to the LCS where they become available for activation in the SuOC.
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Figure 5.1: An observer/controller architecture for traffic signal control

The details of the observer/controller implementation are presented in
the remainder of this chapter, starting with a discussion of the SuOC in
Section 5.2.
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5.2 System under Observation and Control
In the SuOC, a traffic light controller (TLC) is responsible for physically
setting the intersection’s traffic lights. Different TLC types may be
implemented in the SuOC. Section 5.2.1 focuses on fixed-time controls,
while traffic-actuated variants are discussed in Section 5.2.2. Finally, the
discussion of the SuOC is concluded in Section 5.2.3.

5.2.1 Fixed-time controls
Fixed-time controls (see Section 2.2) are normally configured at design
time based on historical traffic data. During their operation, the controls
do not adapt their signalisation to changing demands. Therefore, a
day-time dependent switching among several predefined signal plans
is common practice. Since no on-line evaluation or optimisation takes
place, fixed-time controls are affected by an ageing effect [17]. Long term
changes in traffic lead to a decreasing quality of control and necessitate
regular signal plan reviews by a traffic engineer. In practice, these reviews
are costly and time-consuming.

By equipping a fixed-time controller with an additional observer/con-
troller architecture, its signal timings can be adapted to changing traffic
demands. The active signal plan is evaluated and optimised at run-time,
thereby keeping a constantly high signalisation quality. In principle, all
four basic signalisation parameters can be reconfigured on-line by the
observer/controller:

Phase durations and cycle For a given signal plan, cycle time and phase
durations can be modified considering constraints like minimum
green times or maximum cycle lengths. Although cycle time and
phase durations are no safety-critical parameters (as long as they
respect the given constraints), their appropriate configuration has
a significant influence on the vehicular delay at the intersection
(see Figure 2.6). Therefore, both parameters are considered in the
experiments conducted for this thesis (see Chapter 6).

Phase sequence The phase sequence of a fixed-time controller can be con-
sidered for on-line reconfiguration to minimise the clearance times
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and to improve the coordination with neighbouring intersections.
An observer/controller might either switch among predefined phase
sequences specified at design time by a traffic engineer or might
create a new phase sequence at run-time. In the second case, a
predefined matrix of clearing times is required to guarantee safe
phase transitions. Furthermore, the consistency of the resulting
signal plan needs to be checked before its application to ensure that,
e. g., all signal groups are considered at least once within the cycle.
Within this thesis, phase sequences are not optimised at run-time.

Offset The optimisation of offsets is necessary for the coordinated opera-
tion of neighbouring intersections, an aspect that is discussed in
Chapters 7 and 8.

Equipping fixed-time controllers with an observer/controller to improve
their performance and to reduce the effort for maintenance requires
additional detectors (like inductive loops). If such detection hardware is
available, traffic-actuated controls can be used.

5.2.2 Traffic-actuated controls
Since detectors are a prerequisite for the on-line adaptation of signal plans,
the detector readings can also be used for local traffic-actuated control
(see Section 2.3). Traffic-actuated controllers adapt their signalisation
based on predefined temporal and logical conditions that represent the
knowledge of the designing traffic engineer, but neither evaluate nor
optimise their control strategy on-line.

By equipping a local traffic-actuated control with an additional obser-
ver/controller component, an on-line evaluation and optimisation can be
realised. While the traffic-actuated controller adapts the intersection’s
signalisation, the temporal and logical conditions that define its operation
are optimised on-line by the observer/controller. By using traffic-actuated
controls within the SuOC, public transport prioritisation can be realised
for organic intersections.

How a traffic-actuated controller’s temporal and logical conditions are
reconfigured on-line depends on the local TLC: When parameterisable
industry-standard controls (like VS-Plus) are used, on-line learning and
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optimisation will focus on the most relevant parameters available. These
will typically include maximum phase durations as well as aspects of the
phase extension process (like an extension step size or acceptable gaps).
Constraints for the on-line reconfiguration of these parameters need to
be defined by a traffic-engineer to ensure a safe operation of the organic
intersection.

When a TLC is not only parametrisable but also programmable, the
TLC’s logic itself might be subject to on-line optimisation using Genetic
or Evolutionary Programming (see Section 3.1.1). However, the on-line
evolution of the logic is probably not feasible in practice due to safety
issues.

5.2.3 Summary

The organic approach to intersection control proposed in this thesis
relies on fixed-time or traffic-actuated TLCs that are extended by an
observer/controller. Independent of the TLC’s type, its configuration
needs to suit the current traffic demand in order to reduce the vehicular
delay and the number of stops at the intersection. In the following,
the observer/controller architecture used for on-line reconfiguration is
discussed in detail.

5.3 Observer

It is the observer’s task to monitor and analyse the internal dynamics of
the SuOC. At a signalised intersection, the observer monitors the current
traffic demand and evaluates the active signal plan’s performance. The
resulting situation parameters are provided to the controller where they
are utilised for the on-line selection and optimisation of signal plans.
The observer comprises components for monitoring, preprocessing, data
analysis, and prediction which are discussed in Sections 5.3.1 to 5.3.4.
Section 5.3.5 focuses on the model of observation, before the observer
functionality is summarised in Section 5.3.6.
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5.3.1 Monitor and log file
The observer’s monitoring component collects detection data from the
controlled intersection and stores the resulting time series in a log file.
For this thesis, it is assumed that flows and queues can be separately
detected for the intersection’s signal groups. Technical aspects of the
required detection equipment (like the type or location of detectors) are
not in the focus of this thesis, but will be briefly discussed in the context
of preprocessing and data analysis.

5.3.2 Preprocessor
During preprocessing, the intersection’s traffic flows are estimated from
the monitored detection time series. The preprocessing results in a real-
valued vector M = (M1, . . . , Mn) containing the estimated hourly flows
for each of the intersection’s signal groups. Assuming that inductive loop
detectors are available, these flows are extrapolated from the number
of vehicles served within a rolling detection interval that considers the
traffic light’s last ne cycles. The influence of the detection interval on
the extrapolated flows is illustrated in Figure 5.2. For a signal group
of a simulated intersection, the figure depicts the mean arrival rates
configured in the simulation model as red bars. The blue lines show the
extrapolated flows for ne = 2 and ne = 10, respectively.
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Figure 5.2: Simulated and measured traffic flows for a signal group
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When the detection interval is small, extrapolation puts a strong
emphasis on recent vehicle arrivals (see Figure 5.2a). This allows for
a quick recognition of changing demands, but tends to overemphasise
random fluctuations around the mean arrival rate. Random fluctuations
are handled better for a larger value of ne, but this comes at the cost of
a slower detection of changes in the demand (see Figure 5.2b). For the
experiments conducted in this thesis, preprocessing is performed using
ne = 10. This choice keeps random influences acceptably small and yet
allows for a sufficiently quick detection of changing demands.

5.3.3 Data analyser
The task of the data analyser is to derive performance measures for
the intersection’s signal plan, so the controller can update its internal
mapping based on these real-world observations. Various measures can
be evaluated, including vehicular delays, queue lengths, or stops (see Sec-
tion 5.4). In contrast to the traffic flows derived by the preprocessor, most
performance measures cannot be obtained directly from monitored detec-
tion time series, but need supplementing traffic models or approximation
formulas.

Following the German Handbuch für die Bemessung von Straßen-
verkehrsanlagen (HBS, [69]), the average vehicular delay at the intersec-
tion is chosen as performance measure. An intersection’s average delay tD

can be derived from the average delays of its signal groups using the
equation

tD =
∑n

i=1 (Mi · tdi
)∑n

i=1 Mi
, (5.1)

where n corresponds to the number of signal groups, while Mi and tdi

denote flow and delay for signal group i, respectively.
Unfortunately, the delay tdi

of a signal group cannot be measured
directly, but needs to be estimated by integrating the number of queued
vehicles over time. Additional detection equipment (like upstream in-
ductive loops) can be required to obtain the queue measurements. To
overcome potential limitations in the detection process, a supplementary
traffic model can support the delay measurements by estimating, e. g.,
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queues beyond the detection range. However, such models are not in the
focus of this thesis.

In case of fixed-time controlled intersections, Webster’s formula (see
Section 2.2.2) can approximate the vehicular delay without the need
for additional detectors. For the approximation, only the current traffic
flows and green times at the intersection are required. (The saturation
flows used in Equation 2.2 are constant.) Flows are measured during
preprocessing and green times are configured by the observer/controller,
such that no additional detectors are necessary for delay approximation
in case of fixed-time controls.

5.3.4 Predictor
The generic observer/controller architecture contains a prediction com-
ponent to forecast future developments in the SuOC. At a signalised
intersection, predictions refer to expected future traffic developments and
can be based on current or historical traffic data [47]:

Current data A simple predictive approach that relies on current data
only is to calculate a linear curve fitting of the latest traffic mea-
surements. The extrapolated trend of this linear fit then serves
as forecast. Linear fit predictions are well-suited for short-term
predictions, but tend to loose their accuracy for longer prediction
horizons (see Figure 5.3).

Historical data Predictions based on linear fits consider current traffic
measurements only, but neglect knowledge on previous events. Us-
ing historical data, reoccurring traffic demands can be identified and
grouped into classes. A class then represents reoccurring demands
by a typical time series (see Figure 1.1). By comparing the latest
traffic measurements to the available classes, the current demand
can be automatically matched to the class that exhibits the smallest
differences to the latest measurements. The time series representing
this class is then used for forecasting. In contrast to linear fits, the
use of historical data allows for long-term predictions. Therefore, a
predictor might combine both approaches.
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Figure 5.3: Linear fit prediction

Besides the prediction techniques mentioned here, various other fore-
casting methods have been proposed [202]. Several of them can be utilised
in the observer to obtain demand predictions that can supplement the
preprocessor’s flow measurements. However, to keep the observer simple,
no prediction techniques have been implemented for this thesis.

5.3.5 Model of observation

In the generic observer/controller framework, a model of observation is
included to configure the observer. The model specifies which SuOC
properties are monitored and defines which analysis and prediction meth-
ods are applied. By limiting monitoring, data analysis, and prediction
to a subset of the available data or methods, an efficient observation is
possible even in case of limited resources (CPU and memory).

For an organic intersection controller, data analysis and prediction
techniques can be selected in response to the controller’s objective function
(see Section 5.4.3). However, since sufficient computational resources for
observation were available for the conducted experiments, an explicit
model of observation has not been implemented for this thesis.
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5.3.6 Summary
It is the observer’s task to provide the controller with a set of situa-
tion parameters indicating the SuOC’s state. For the proposed organic
intersection controller, the situation parameters consist of two main com-
ponents: The first component characterises the current traffic demand at
the intersection by specifying the traffic flow for each signal group in a
real-valued vector. The second component estimates the current vehicular
delay at the intersection to judge the active signal plan’s performance.

5.4 Controller
Based on the situation parameters received from the observer, it is
the controller’s task to provide the SuOC with an appropriate signal
plan. The on-line signal plan selection is discussed in Section 5.4.1,
while Section 5.4.2 is dedicated to off-line optimisations. Both processes
require an objective function which is in the focus of Section 5.4.3, while
Section 5.4.4 summarises the discussion of the controller functionality.

5.4.1 Level 1: Signal plan selection
This section introduces XCS-T, a novel classifier system that is designed
for the on-line signal plan selection in the controller. XCS-T is based
on the rule-based evolutionary on-line learning system XCS (see Sec-
tion 3.2.1), but incorporates modifications that are necessary to meet the
requirements of a learning signal controller.

The modifications include a real-valued knowledge representation and
affect the discovery and exploration of classifiers: XCS creates classifiers
by random covering and genetic modifications and evaluates their quality
by performing exploration steps in the system environment. Random cov-
ering and environment-based exploration are only feasible in applications
with a limited number of actions where the negative effects of exploration
are limited. Since these preconditions are not fulfilled for traffic signal
control, XCS-T replaces the covering mechanism with a simulation-based
classifier creation (that is performed by the rule adaptation module) and
introduces further necessary changes that are discussed in the following.
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Knowledge representation

As part of an organic intersection controller, it is the task of XCS-T to
provide a mapping that assigns appropriate signal plans to observed traffic
demands. The mapping is learnt on-line based on the situation parameters
provided by the observer and incorporates signal plans that have been
optimised by Level 2 of the controller. Each classifier contained in the
mapping consists of a condition matching a set of traffic demands, an
action representing a signal plan, and some quality indicators estimating
the classifier’s goodness:

Condition A classifier condition specifies to which traffic demands a
classifier is applicable. Assuming an intersection with n signal
groups, the demand provided by the observer is a real-valued
vector M = (M1, . . . , Mn) containing the traffic flow of each signal
group. To allow for continuous-valued inputs, XCS-T uses an
Ordered Bound Representation [216]: A condition is a concatenation
of interval predicates [li, ui], i = 1, . . . , n, where li, ui ∈ R are the
lower and upper bounds of the intervals, respectively. A classifier
matches an input M = (M1, . . . , Mn) if and only if li ≤ Mi ≤ ui

for all i ∈ {1, . . . , n}. Therefore, the concatenation of intervals
specifies an n-dimensional hyperrectangle containing all demands
matched by a classifier.

Action A classifier’s action corresponds to a signal plan. Signal plans
can be represented differently, depending on the type of TLC used
in the SuOC and the parameters under optimisation. When – like
in Chapter 6 – the signal timings of a fixed-time controller are
considered, an action corresponds to a vector specifying the phase
durations.

Prediction, prediction error, and fitness The quality of a classifier can
be judged from its prediction, prediction error, and fitness values.
These values are updated based on the performance measurements
provided by the observer, i. e., based on the vehicular delay tD at
the intersection.

Besides these core parts, each classifier comes with some additional
bookkeeping parameters. These parameters are not discussed here in
detail, since they serve the same purpose as in Wilson’s XCS [213,214].
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Performance component

Using its population, XCS-T selects a signal plan suitable for the observed
traffic demand following the process known from XCS (see Figure 3.3):
Classifiers matching the observed traffic demand are selected from the
population for inclusion in the match set. A prediction array is calculated
and the signal plan with the best fitness-weighted delay prediction on
average is chosen deterministically (exploitation). Classifiers advocating
the chosen signal plan are transferred from the match set to the action
set before the signal plan is returned to the SuOC.

Once activated at the intersection, the selected plan is kept active for
an activation interval of at least nc cycles before its performance (in
terms of the resulting vehicular delay) is evaluated by the observer and
reported to Level 1 of the controller. The activation interval needs to be
selected carefully (see Section 6.5): It should not be overly long to allow
for a fast reaction to changing demands, but it should be long enough to
base the signal plan’s evaluation on a reasonably long observation period.
Based on the observed vehicular delay, the classifiers in the action set
are updated by the reinforcement component of XCS-T.

Reinforcement component

The reinforcement component updates the prediction, prediction error,
and fitness for all classifiers in the action set. Since the vehicular delay tD

for a signal plan is available as immediate reward, the XCS update mech-
anism for single-step problems is utilised. However, the delay should be
minimised by XCS-T, while XCS is designed to select accurate classifiers
with a maximal prediction. To obtain a maximisation problem, a payoff
P = c − tD for a sufficiently large constant c is used (instead of P = tD)
when updating the action set. Prediction, prediction error, and fitness
are then updated using Equations 3.1 to 3.3.

Discovery component

While the performance and reinforcement components of XCS-T are
widely unchanged from XCS, substantial modifications are required for
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the discovery component that is responsible for the creation and deletion
of classifiers.

Creation of classifiers Although XCS is designed as on-line learning
system, its classifier discovery process is unsuitable for an adaptive traffic
control system due to several reasons:

Environment-based exploration In XCS, the quality of newly discovered
classifiers created by random covering or genetic operators is ex-
plored in the system environment. However, in an adaptive traffic
control system, a random creation of classifiers and the activation
of their signal plans at the controlled intersection would result in
drastically increased delays in the vast majority of cases. Creating
classifiers randomly and performing explore steps in the SuOC is
therefore no feasible option.

Simulation-based exploration Instead of relying on environment-based
exploration, it is possible to perform exploration steps in simulation
and exploit the learnt knowledge in the SuOC. Simulation-based
exploration helps to judge the quality of classifiers without affecting
the controlled intersection, but does not allow for a targeted classi-
fier creation. When the number of available actions is large (like in
signal control where thousands of signal plans can be selected), the
creation of well-performing classifiers remains a time-consuming
process when the standard discovery mechanism of XCS is applied.

Learning at design time Sometimes learning is performed in a test period
at design time. Once XCS has “finished” learning, the learnt
knowledge is merely exploited at run-time. Learning at design time
is feasible only if classifiers covering all environmental inputs can be
learnt during the test period. In a traffic control application, this
assumption is not fully reasonable: While the traffic demands of
regular weekdays can be learnt from simulations based on historical
data, serious effort is required to learn signal plans covering long-
term developments in traffic or unusual demands resulting from
unforeseen events.
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Since learning at design time does not suit the observer/controller
architecture and exploration-based learning is not an option, the discovery
component had to be modified. XCS-T does not rely on random covering
or genetic operators for classifier discovery. Classifiers are created on
demand instead: Whenever an observed traffic situation is not matched
by any classifier in the controller’s mapping (Level 1), the rule adaptation
module on Level 2 (see Section 5.4.2) is activated to obtain an optimised
signal plan including an estimation of its performance. The signal plan
is then used to create a new classifier.

Let the unmatched traffic demand be denoted by M = (M1, . . . , Mn).
The new classifier’s condition is designed to match demands similar to
M . For i = 1, . . . , n, the interval predicates [li, ui] are defined as

[min(Mi − wi, 0), min(Mi + wi, Ci)],

where wi ∈ R
+ is a similarity tolerance and Ci denotes the capacity of sig-

nal group i. The minimum calculated for the upper interval boundary ui

ensures that the classifier’s signal plan is never operated in oversaturated
conditions, while the similarity tolerance influences the classifier’s applica-
bility to varying traffic demands. The signal group-specific tolerance wi is
the product of the signal group’s number of lanes and a lane tolerance w
(given in veh/h). The lane tolerance w needs to be selected carefully (see
experiments in Section 6.5): Small values create specific classifiers that
match only few demands, resulting in a large number of classifiers and
optimisations. Large values, on the other hand, will create overly general
classifiers.

The new classifier’s action comprises the signal plan optimised on
Level 2. The initial prediction ρI is based on the plan’s evaluation
that has been provided by the simulation module. Thereby, the effect
of the classifier is known although it has not yet been applied. The
initial prediction error εI and fitness FI are initialised pessimistically.
Prediction, prediction error, and fitness are adapted by the reinforcement
component after the classifier becomes part of an action set. Therefore,
initial imprecisions in the quality indicators are corrected on-line.

Unfortunately, the evolution of signal plans in the rule adaptation
component takes some time. Therefore, a new classifier for an unmatched
demand M = (M1, . . . , Mn) is not immediately available. To allow for an
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immediate reaction of XCS-T in case of an empty match set, an existing
classifier is selected from the population and its condition is widened:

Selection The signal plan of each classifier cl ∈ [P ] has been optimised for
a specific traffic demand Mcl when it was created by the adaption
module. As a signal plan that has been optimised for a demand
similar to M is most likely to perform well in the current situation,
the classifier system computes the Euclidean distance d(Mcl, M)
for each classifier cl ∈ [P ] and selects the classifier cl∗ with the
minimal distance for widening.

Widening To cover the unmatched demand M , the selected classifier cl∗

is copied and widened. Assuming that cl∗’s condition is given by
the interval predicates [l∗

i , u∗
i ], i = 1, . . . , n, the predicates of the

widened copy are replaced with

[min(l∗
i , Mi), max(u∗

i , Mi)].

Before the copy is included in the population, a capacity check
ensures that its signal plan can handle the observed traffic demand.
The check computes the capacity Ci of each signal group i con-
sidering the plan’s (maximal) green times (see Section 2.2.2) and
discards the widened copy if the traffic flow Mi exceeds Ci for any
signal group. In this case, other classifiers cl ∈ [P ] with increasing
distance d(Mcl, M) are considered for widening. If no classifier
in the population can be widened without violating the capacity
constraint, a default signal plan is activated.

The widening of closely located classifiers enables an immediate re-
sponse to an unknown traffic demand, while the capacity check ensures
that the selected plans can handle the observed demand. However,
widened classifiers potentially cause a suboptimal vehicular delay and
their delay prediction becomes less accurate the more their condition is
relaxed. The loss of accuracy is detected by the reinforcement component,
but only after the classifier has been applied in the SuOC. The removal
of (widened) classifiers with a relatively low accuracy is the task of the
discovery component’s deletion mechanism.
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Deletion of classifiers The discovery component of XCS-T is not only
responsible for the creation of classifiers, but also for their deletion.
Classifiers are removed from the population on two occasions:

Subsumption deletion A classifier is deleted when it can be subsumed
by a more general classifier that advocates the same action and
is sufficiently accurate and experienced. Subsumption reduces
the number of classifiers, but makes the classifier system more
vulnerable to environmental changes as the more-specific, subsumed
classifiers are not available as “fallback solution” [40]. As the
population size reduction obtainable in the traffic control scenario
is limited due to the large number of different signal plans, XCS-T
does not apply subsumption deletion.

Population size limit When the population exceeds its size limit, XCS-T
deletes classifiers in well-covered environmental niches that exhibit
a lower than average fitness. The deletion mechanism is known
from XCS (see Section 3.2.1).

With the discovery component that is responsible for the creation and
deletion of classifiers, the on-line learning on Level 1 of the controller has
been discussed completely. The optimisation of signal plans on Level 2 is
in the focus of the following section.

5.4.2 Level 2: Signal plan optimisation
Level 2 of the controller supports the on-line signal plan selection by
providing optimised signal plans. Optimisations are performed by the
adaptation module that relies on the simulation module to evaluate the
quality of candidate signal plans (see Figure 5.1).

Adaptation module

The adaptation module is implemented by an EA (see Section 3.1)
or, more precisely, by the Evolution Strategy given in Algorithm 5.1.
The genetic representation of signal timings, the variation and selection
operators, and further aspects of the algorithm are discussed in the
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following. The problem-specific configuration of the search heuristic is
presented in Section 6.4.

Algorithm 5.1: Evolution Strategy (based on [9])
Generate μ initial parents and determine their objective function
values.
repeat

for λ times do
Choose two parents at random.
Recombine the selected parents.
Mutate the preliminary offspring obtained from
recombination.
Determine the offspring’s objective function value.
Put the offspring into the offspring population.

end
Select the μ best individuals either from the offspring population
((μ, λ) strategy) or from the union of the parent and offspring
population ((μ + λ) strategy).
The selected individuals represent the new parents.

until Stopping criterion is satisfied.

Representation For optimisation, the signal timings for the controlled
intersection need to be represented by a genotype. Following the work of
Braun [29], a relative coding is used. Cycle time and phase durations of the
signal plan are separately stored in a genotype vector (x0, x1, . . . , xn) ∈
[0, 1]n+1, where x0 codes the cycle length while xi, i = 1, . . . , n, represents
the duration of phase i:

Cycle time The cycle time tC is obtained from the genotype by inter-
preting x0 as fraction of the difference between a maximum and a
minimum cycle time, i. e.,

tC = tC,min + x0 · (tC,max − tC,min).

The maximum cycle time is assumed to be tC,max = 120 s. The
minimum cycle time tC,min depends on the intersection. It is
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obtained by summing the minimum phase durations and the time tT

required for phase transitions.

Phase duration The phase durations are coded as fractions of the cycle.
For each phase i, its duration di is calculated from the genotype as

di = di,min + xi∑n
j=1 xj

·
(

tC − tT −
n∑

j=1
dj,min

)
,

where di,min is the minimum duration of phase i. The relative
coding of phase durations ensures that each phase i is assigned its
minimum green time di,min and, additionally, a fraction of the green
time available for distribution. The fraction corresponds to the
phase’s relative weight in the genotype, while the distributable green
time is the portion of the cycle not reserved for phase transitions
or minimum phase durations.

The relative coding has the advantage that each genotype represents
a valid signal plan: The cycle length is guaranteed to lie in the inter-
val [tC,min, tC,max] while each phase is assigned at least its minimum
duration. Therefore, no repair operators or penalty functions are required
to handle invalid solutions. Furthermore, a predefined cycle length can
be enforced easily which is especially useful for the coordinated operation
of neighbouring intersections that is discussed in Chapters 7 and 8.

Evaluation function After decoding an evolved genotype to a signal
plan, the plan’s performance needs to be evaluated. Like on Level 1,
the objective considered for evaluation is the vehicular delay at the
intersection (see Equation 5.1). Delay estimates are provided by the
simulation module which is discussed later in this section.

Selection mechanism Selection mechanisms are required for choosing
parent individuals that undergo variation and for selecting survivor
individuals that are carried over to the next generation:

Parent selection As typical for Evolution Strategies, parent individuals
are randomly drawn from the population using a uniform distri-
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bution [62,209]. Thereby, parent selection is not biased by fitness
values.

Survivor selection Survivor individuals are deterministically chosen based
on their rank: After creating λ offspring and estimating their fitness,
the best μ individuals are selected to form the next generation.
Selection can consider only the offspring ((μ, λ) strategy) or might
select the best individuals from the union of parents and offspring
((μ + λ) strategy).

Variation operators To create offspring from the parent individuals,
the following variation operators have been implemented:

Mutation The mutation of a parent individual x = (x0, . . . , xn) is re-
alised by adding a random noise Δxi to each xi, i = 0, . . . , n. The
value of Δxi is randomly chosen according to a Gaussian distribu-
tion N(0, σ) with zero mean and a standard deviation (or step size)
of σ. Mutating the parent x results in an offspring x′ = (x′

0, . . . , x′
n)

with x′
i = xi + N(0, σ).

Using a self-adaptive Evolution Strategy, the standard deviation σ
is included in the evolutionary process. As strategy parameter, it
becomes part of each individual and is mutated in each time step.
Therefore, the mutation mechanism is specified by adapting σ using
the formula

σ′ = σ · eN(0,τ)

and mutating the individual afterwards using the obtained σ′ as
standard deviation, i. e.,

x′
i = xi + N(0, σ′).

Following [62], the learning rate τ for the strategy adaptation is
chosen inversely proportional to the square root of the problem size,
i. e., τ = 1/

√
n + 1.

Crossover When recombining two parent individuals x = (x0, . . . , xn, σx)
and y = (y0, . . . , yn, σy) to create one offspring z = (z0, . . . , zn, σz),
discrete recombination is used for the signal timings, i. e., for each
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position i ∈ {1, . . . , n}, zi is randomly chosen as xi or yi. The strat-
egy parameters are recombined using intermediary recombination,
i. e., σz = (σx + σy)/2. Discrete recombination preserves the diver-
sity within the phenotype space, while intermediate recombination
ensures a cautious adaptation of strategy parameters [62].

Further aspects Further aspects include the creation of a start popu-
lation, the determination of suitable sizes for the parent and offspring
population, and the selection of a stopping criterion. All choices aim at
finding (near-)optimal signal timings in a minimum amount of time:

Start population The start population is initialised randomly, but might
include the best known signal plan (provided by XCS-T) or – if
applicable – a plan calculated according to Webster’s method (see
Section 2.2.2) to guide the evolutionary search.

Population size The ratio of the parent and offspring population size
determines the selection pressure. For (μ, λ) selection, the μ/λ
ratio is typically in the range of 1/5 to 1/7 [62, 209]. For (μ + λ)
selection, it can be sufficient to create a single offspring (resulting in
a steady-state Evolution Strategy), but usually λ is at least as large
as the parent population (i. e., λ ≥ μ). The minimum size of the
parent population depends on the optimisation problem. Together
with the selection pressure, it is investigated in a sensitivity study
(see Section 6.4).

Stopping criterion Since the optimised signal timings should be made
available to the selection mechanism quickly, a maximum number
of evaluations is chosen as stopping criterion.

Simulation module

An aspect that has not yet been discussed is the fitness evaluation of
evolved signal plans by the simulation module. The module is configured
according to the traffic demand measured in the SuOC and considers
the signal timings that are specified by the candidate plan. In this
thesis, evaluations are performed using a microscopic traffic simulator or,
alternatively, Webster’s approximation:
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Microscopic simulation A microscopic simulator (see Section 2.5.1) is
the most general way to evaluate the quality of a candidate signal
plan. This thesis uses AIMSUN (Advanced Interactive Microscopic
Simulator for Urban and Non-Urban Networks, [11, 45]) as simula-
tion model. In AIMSUN, fixed-time and traffic-actuated controls
can be simulated and a variety of objectives is available for eval-
uation (including measures that are difficult to obtain outside of
a simulated environment). However, a price to pay for this gener-
ality is that simulation-based evaluations are noisy and relatively
time-consuming. In consequence, several questions regarding the
handling of stochastic results need to be investigated, including the
number of repeated simulations and their duration. These issues
will be discussed in Section 6.3.

Webster approximation When available, approximation formulas are an
alternative to microscopic simulations since they can be computed
significantly faster than simulations and provide deterministic re-
sults. Unfortunately, approximation formulas are available for some
special cases, only. In Chapter 6, the average delay at a fixed-time
controlled intersection is estimated by Webster’s formula that has
been introduced in Section 2.2.2.

With AIMSUN simulations and Webster approximations, two alterna-
tive evaluation mechanisms are available for the experiments conducted in
this thesis. Before the experimental evaluation is discussed in Chapter 6,
some general thoughts on possible objective functions are presented in
the following.

5.4.3 Objective function
Both levels of the controller require an objective function to guide the
selection (Level 1) and optimisation (Level 2) of signal plans. The
objective function needs to be defined by a traffic engineer. In its most
general form, it is given as performance index

PI =
n∑

i=1
ωi,1oi,1 + ωi,2oi,2 + · · · + ωi,moi,m,
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where n corresponds to the number of signal groups and m to the number
of objectives. The variables ωi,j and oi,j specify the weight and value of
objective j for signal group i, respectively.

Following [69], the average vehicular delay at the intersection is used
as performance index within this thesis. It is obtained by summing
the average delays for the intersection’s signal groups weighted by their
relative flows (see Equation 5.1). However, the performance index is not
limited to delays. Other objectives can be included, the only prerequisite
is that they can be measured by the observer or estimated by its data
analysis component. By adapting an objective’s weight, its importance
can be adjusted for the different signal groups. Whenever a signal group
has, e. g., a limited queuing space, its queues can be heavily weighted in
the performance index. Furthermore, the performance index can model
derived objectives as weighted combination of available measures, e. g.,
the vehicular fuel consumption can be approximated from available delays
and stops.

Although several objectives can be included in its definition, the perfor-
mance index itself constitutes a single-objective function. All considered
objectives are combined to a single fitness value using a weighted sum.
The reason for this restriction is in the automatic selection of signal plans
performed on Level 1 of the controller: Multi-objective functions that
treat several contradicting objectives separately have a set of Pareto-
optimal solutions which represent different trade-offs among the objectives.
To automatically select a single signal plan from this Pareto-optimal
set, the importance of the objectives needs to be weighted. The weights
can either be defined explicitly (like with a single-objective function) or
implicitly by selecting the Bellman-Zadeh solution [18] which is located
in the centre of the Pareto-optimal set. Since the necessity of weights in
the automatic signal plan selection limits the benefits of multi-objective
functions, the performance index is restricted to a single fitness value.

5.4.4 Summary
Based on the situation parameters provided by the observer, the controller
evaluates and reconfigures the intersection’s signalisation. Signal plans
are optimised based on simulations, their quality for different demands
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is learnt on-line. To perform learning and optimisation, the controller
has a two-levelled structure: On Level 1, XCS-T (a classifier system that
is based on Wilson’s XCS) maps signal plans to traffic demands. The
mapping is continuously updated using performance evaluations provided
by the observer. On Level 2, signal plans are optimised by an EA based
on traffic simulations. The simulation-based optimisation allows to safely
explore candidate plans.

The combination of on-line learning and off-line optimisation is novel.
It allows for autonomous learning in scenarios where complex actions (like
signal plans) have to be learnt while exploration in the environment is
infeasible. Two-levelled learning is therefore not limited to signal control,
but is applicable to a wide range of applications. The combination of
a classifier system for on-line learning and an EA for off-line optimisa-
tion proposed here is the first successful implementation of two-levelled
learning for a technical system.

5.5 Implementing organic intersections
The previous sections introduced an adaptive intersection controller with
on-line learning capabilities that is based on the observer/controller
framework. In the following, the controller’s deployment at a real-world
intersection is discussed (Section 5.5.1) and its implementation for the
conducted simulation studies is presented (Section 5.5.2).

5.5.1 Real-world deployment

The proposed observer/controller architecture for signalised intersections
advances the state of the art because of its on-line learning and optimisa-
tion capabilities. Although this thesis focuses on these organic properties
and not on issues related to the architecture’s real-world deployment, the
principal applicability of the proposed observer/controller at a real-world
intersection is briefly discussed here. Issues that need to be considered
include the hardware requirements for detection and computation as well
as the operational safety of on-line learning.
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Detection requirements

It is the observer’s task to monitor the intersection and to provide
its traffic demand and signal plan performance to the controller: The
measured demand is characterised by the average flow of the intersection’s
signal groups for some time period in the past. Assuming a separate
detection for each signal group, the required flows can be determined
using inductive loop detectors.

The performance evaluation of a signal plan is more complicated since
it is based on the vehicular delay at the intersection. A delay estimate
cannot be obtained directly from the intersection’s detectors, but requires
a traffic model that sums up the waiting times for the queued vehicles.
Therefore, queues at the intersection need to be detectable which requires
a combination of stop-line and upstream detectors (when using inductive
loops) or more sophisticated detection devices (like video detectors). In
case of fixed-time controls, Webster’s formula (see Section 2.2.2) can be
used to obtain a delay estimate from the intersection’s traffic flow and
signal timings. For the necessary flow measurements, a single inductive
loop per signal group is sufficient.

Computational requirements

Considering the hardware required to operate the observer/controller, an
embedded PC that is based on energy efficient hardware is assumed to
be available at the controlled intersection.

The SuOC observation – that involves the calculation of average flows,
the estimation of delays, and possibly traffic predictions – is not com-
putationally demanding. This is also true for the signal plan selection
performed on Level 1 of the controller which can be computed quickly for
reasonable mapping sizes. However, the optimisations on Level 2 can be
demanding when evaluations are based on microscopic simulations. Here,
the computational power of an embedded PC is required to guarantee a
reasonable optimisation time of a few minutes.

Regarding the embedded PC’s energy consumption, it should be noted
that the vehicles’ reduced fuel consumption and pollution emissions will
justify the additional effort.
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Safety of operation

Not only technical feasibility, but also operational safety is important
when discussing the deployment of an organic intersection controller. It
has to be guaranteed that the adaptation and learning capabilities of
the controller cannot result in an invalid signal plan: Conflicting traffic
movements must not be assigned the right of way simultaneously, all
signal groups have to be included in the cycle with at least their minimum
green time, clearing times between signal groups have to be kept, and
so on. To this end, it is important to notice that the built-in safety
mechanisms of a TLC remain functional when it is reconfigured by the
observer/controller. The observer/controller is merely an extension that
provides learning and optimisation capabilities, but is not required for
the operation of the signalised intersection.

Regarding learning and optimisation in the observer/controller, a
traffic engineer needs to specify parameters that are considered for on-
line adaptation. For the selected settings, feasibility constraints (like
allowable phase transitions or clearing times) have to be provided. Signal
plans learnt by the observer/controller can be guaranteed to be valid
with respect to the given constraints. This allows for operational safety.

Summary

Regarding its detection and hardware requirements, the proposed ob-
server/controller architecture is applicable in a real-world setting: While
its detection requirements are similar to those of a traffic-actuated con-
troller (see Section 2.3), the observer/controller requires more powerful
hardware to perform signal plan optimisations. Such hardware is avail-
able, the effort required for its integration and its energy demand are
expected to be compensated by the reduced fuel consumption and pollu-
tion emission at the controlled intersection.

To guarantee the operational safety of an organic intersection, a traffic
engineer has to select the TLC parameters considered for on-line adap-
tation and needs to specify constraints on their feasibility. The on-line
reconfiguration of signal plans is then guaranteed to comply to the given
constraints.
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5.5.2 Simulation-based evaluation
The experiments conducted in Chapters 6 to 8 have not been performed
in a real-world traffic network, but are based on simulations. This section
briefly outlines technical aspects of the underlying implementation and
discusses issues resulting from the use of a simulated SuOC.

Technical aspects

In the conducted simulation studies, the microscopic traffic simulator
AIMSUN serves as SuOC and as simulation module within the ob-
server/controller.

AIMSUN as part of the SuOC As part of the SuOC, AIMSUN provides
a simulated traffic network that substitutes its real-world counterpart. A
Java [91] implementation of the observer/controller architecture monitors
and controls the simulated SuOC on-line. To this end, AIMSUN provides
a programming interface – the AIMSUN API – that allows to read data
from a running simulation and to influence the elements of the simulation
model. Using the API, it is possible to obtain data like a detector time
series from a running simulation or to adapt the timings of a traffic
signal. AIMSUN’s API is available for the C/C++ [184] and Python [16]
programming languages, but not for Java. Therefore, the simulation
model cannot be directly accessed from the observer/controller.

To monitor and control the simulated SuOC, an API module has been
implemented in C/C++ that obtains the current state of AIMSUN’s
network elements in every simulation step (see Figure 5.4). Using the Java
Native Interface [120], a Java representation of the simulated network
is created. By accessing this representation, the observer/controller can
monitor and control all elements of the simulated network. The simulation
progress is instantly reflected in the network’s Java representation, while
changes made by the controller are reflected in the simulated network in
the next simulation step.

AIMSUN as part of the observer/controller Within the observer/con-
troller architecture, the rule adaptation module on Level 2 of the controller
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Figure 5.4: Interface between AIMSUN and observer/controller

can be supported by a simulation component. In the experiments con-
ducted for this thesis, the core of this module is an EA that requires
quality estimates to evaluate the evolved signal plans. These estimates
can be obtained from simulations.

When the evaluation of candidate solutions is based on traffic sim-
ulations, the EA makes use of AIMSUN as the controller’s simulation
component (see Figure 5.4). For automated simulations, AIMSUN pro-
vides a Scripting Interface for Python that allows to open a network
model, to modify the model’s parameters (like traffic demands or signal
timings), and to start a simulation.

Unfortunately, AIMSUN’s Scripting Interface cannot be accessed di-
rectly from the EA, since the observer/controller has been implemented
in Java. Therefore, the EA communicates traffic demands and candidate
signal plans to a Python script using a communication socket. The script
configures the simulated network accordingly using AIMSUN’s Scripting
Interface, starts the simulation run, and communicates the results to the
EA.
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Issues resulting from a simulated SuOC

Using a simulated SuOC to evaluate the proposed observer/controller
architecture for traffic control requires careful considerations to ensure
that obtained results can be carried over to real-world networks.

Availability of data Microscopic traffic simulators offer a wide variety of
statistical information on the simulated network and its elements, but only
a subset of this data is available from detectors installed in the real-world
network. To ensure that the proposed organic approach remains applica-
ble in the real-world, it is important to restrict the observer/controller’s
monitoring to data obtainable from real-world detectors.

Considering the proposed observer/controller architecture, the required
traffic measures can be obtained in a real-world setting (see Section 5.5.1).
In the conducted simulations (see Chapter 6), the observer therefore
monitors only data detectable at a real-world intersection. However,
it is important to note that the mentioned restrictions apply only to
the observer/controller, but not to an evaluation performed after the
simulation run. Here, all statistical data provided by the simulator can be
used including, e. g., data on the fuel consumption or pollution emission
of vehicles that is not available to the observer/controller in its decision
process.

Validity of simulations When a simulated SuOC replaces a real-world
network, it is important that the simulation resembles the real-world with
sufficient accuracy. Since microscopic simulators in general and AIMSUN
in particular are successfully used by researchers and practitioners in
a wide range of applications including the evaluation of signal systems
[57,99,132], it seems reasonable to consider microscopic simulations as
sufficiently exact for the experiments conducted here.

Although a calibration of model parameters is usually required to
reproduce a network’s traffic dynamics in great detail (see Section 2.5.1),
the experiments presented in Chapters 6 to 8 are based on uncalibrated
network models. As this thesis does not aim at creating an optimal
intersection controller for a specific real-world intersection or network,
but focuses on evaluating the adaptation and learning capabilities of the
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observer/controller architecture, the use of uncalibrated network models
seems justifiable here.

Time synchronisation Assuming a sufficiently accurate simulator, a
simulated SuOC has important advantages: The observer/controller
components and their configuration can be safely tested and evaluated.
Furthermore, the time requirements for experimentation can be reduced,
since microscopic simulations can be performed at different speeds in-
cluding simulations that run significantly faster than wall-clock time.
However, it is important to synchronise the simulation of the SuOC
with the observer/controller. Therefore, the simulated SuOC runs in
wall-clock time when optimisations are performed on Level 2 of the ob-
server/controller architecture. This ensures that the same amount of time
passes in the simulated SuOC as it would pass at a real-world intersection
during optimisation.

Dual use of simulator Another issue arises from the dual use of AIM-
SUN in the SuOC and as simulation module within the observer/control-
ler, since the simulation module might resemble the SuOC too closely.
To avoid that results from the simulation module are more exact than
they would be at a real-world intersection, countermeasures are taken:
Firstly, the simulation module is configured based on traffic flows detected
within the SuOC. The traffic demands defined in the model (which are
accessible only in simulation) are not taken into account (see Availability
of data). This restricted use of data resembles the real-world situation.
Secondly, the SuOC and the simulation module make use of different
random seeds to ensure stochastic differences between both simulations
(see Section 2.5.1).

Summary

When using a simulated SuOC to evaluate the proposed observer/con-
troller architecture, several issues need to be considered to ensure that
obtained simulation results carry over to a real-world setting. These
issues include the availability of detection data at a real-world intersec-
tion or the time synchronisation of SuOC and observer/controller. The
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conducted simulation studies keep these issues in mind. With the neces-
sary precautions, a simulated SuOC allows for a relatively fast testing of
different implementation alternatives, while the findings obtained from
the simulation-based evaluation of the observer/controller are expected
to reflect the results from a real-world setting with sufficient accuracy.
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CHAPTER 6

Experimental validation of organic intersections

A simulation study has been conducted to evaluate the performance
of the organic intersection controller presented in the previous chapter.
As test case, the study considers two intersections located at Hamburg,
Germany. Both are presented in Section 6.1.

Section 6.2 is dedicated to general aspects regarding the design of exper-
iments and provides an overview of the sensitivity study that has been con-
ducted to determine a reasonable configuration of the observer/controller
architecture. The study pays special attention to the architecture’s
adaptation and learning capabilities: Sections 6.3 and 6.4 discuss the
configuration of the simulation module and the EA which in combination
form the controller’s optimisation level. The configuration of the LCS
responsible for signal plan selection is in the focus of Section 6.5.

Using the results of the sensitivity study, the organic controller has been
experimentally evaluated. Results of the simulation-based evaluation are
discussed in Section 6.6.
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6.1 Test case
In the evaluation of the observer/controller architecture, two intersections
located at Hamburg, Germany, serve as test case:

Alsterkrugchaussee / Deelböge / Borsteler Chaussee (K3) Intersection K3
is a four-armed junction that is equipped with 25 signal groups,
ten of which serve motorised traffic movements. For the traffic-
actuated control of a subset of these signal groups, six inductive
loop detectors are available.

Kollaustraße / Nedderfeld (K7) Intersection K7 is a three-armed junction
that is controlled by a fixed-time controller. The intersection is
equipped with 17 signal groups, seven of which serve motorised
traffic movements.

Simulation models of both intersections have been created in the
microscopic traffic simulator AIMSUN [11, 45] based on detailed site
plans of the real-world junctions (see Figure 6.1). In the models, traffic
demands are programmed for a time period beginning at 6 a. m. and
ending at 7 p. m. The simulated demands are taken from a traffic census
that has been kindly provided by Schmeck Ingenieurgesellschaft mbH. For
a regular workday, the census reports vehicle counts for the intersections’
turnings with a resolution of 15 min. Furthermore, the vehicle types “car”
and “truck” are distinguished. Figure 6.2 summarises the demands for
K3 and K7.

Reference signal plans for comparison have been provided by Landes-
betrieb Straßen, Brücken und Gewässer (LSBG), Hamburg. At both
intersections, signal plans are changed based on the time of day. From
5 a. m. to noon, intersections are controlled by a morning plan that is
replaced by an afternoon programme running till 8 p. m. (7 p. m. on
Fridays). For both, morning and afternoon plans at Intersections K3
and K7, signal groups are served in several phases such that Webster’s
green time optimisation technique (see Section 2.2.2) is not applicable.
Webster’s delay formula (Equation 2.3) can be applied to estimate the
effect of changed signal timings on the vehicular delay, though.

In the simulations, both intersections have been modelled as fixed-time
controlled. For the traffic-actuated Intersection K3, the simulated fixed-
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Figure 6.1: Simulation models of Intersections K3 and K7
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Figure 6.2: Traffic demands for Intersections K3 and K7 (Data provided
by Schmeck Ingenieurgesellschaft mbH)
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time plan assigned the maximal extension to the actuated signal groups.
Since a subset of at most four signal groups is affected, this simplification
is assumed to have only a minor influence on the performance of the
reference plan. The simplification is necessary, since the simulation of a
traffic-actuated control based on a proprietary control logic would have
required an additional plug-in for the AIMSUN simulation environment
that was not available.

Before the organic intersection controller is evaluated using the simu-
lation models of K3 and K7 as test case, a reasonable configuration of
the observer/controller architecture has been determined in a sensitivity
study. The study and all evaluations have been conducted using AIMSUN
v. 5.1.11 running under Microsoft Windows Vista 64-bit. A single core of
a 2.5 GHz Intel Core 2 Quad processor equipped with 8 GB RAM served
as computing platform for the observer/controller. Its evaluation followed
established experimental design guidelines that are briefly recapitulated
in the following section.

6.2 Experimental design
When it comes to experimentation, it is important to have a clear idea
of what is to be studied and how the experiment is to be designed and
analysed. Therefore, Section 6.2.1 reviews general guidelines for the
design of experiments before Section 6.2.2 provides an overview of the
conducted sensitivity study.

6.2.1 Guidelines for experimental design
Regarding the design of experiments, Montgomery [133] proposes the fol-
lowing general guidelines for pre-experimental planning, experimentation,
and data analysis:

1. Problem statement When planning an experiment, it is important to
have a clear idea of what is to be studied. Preparing a list of
problems or questions that should be addressed by the experiment
contributes to a better understanding of the studied phenomenon or
system. Furthermore, the experiment’s overall objective should be
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kept in mind: An experiment can aim at factor screening or factor
optimisation to characterise and configure factors that influence
the system performance. Other objectives include the confirmation
of assumed system properties or the study of a system’s robustness
with respect to the variation of factor levels.

2. Response variables A system’s output or performance is characterised
by a set of response variables. In pre-experimental planning, re-
sponse variables that provide useful information with respect to the
problem statement need to be identified. Since variables or their
measurements can be noisy, response variables can also include the
average or standard deviation of a system characteristic.

3. Factors, levels, and ranges Factors that may influence the performance
of a system or process can be classified as either design factors or
nuisance factors. Design factors are factors selected for study in
the experiment, while nuisance factors are not of interest (or are
uncontrollable) in the current experiment although they may affect
the response variables.
When the design factors are identified, the ranges over which the
factors will be varied and the specific levels considered in the
experiments have to be defined. The experiment’s overall objective
influences the choice of levels and ranges: For factor screening,
ranges over which the design factors are varied are usually broad,
while the number of factor levels is kept small. When the screening
is finished, a subsequent factor optimisation might investigate the
configuration of important design factors with smaller ranges and
more levels.

4. Experimental design When the previous steps of pre-experimental
planning have been performed, an experimental design needs to
be chosen. The design specifies how the factors are varied in
a sequence of runs. Although one-factor-at-a-time designs are
common, they do not consider interdependencies among the factors.
Therefore, factorial experimental designs that vary several factors
at a time constitute a better approach. However, factorial designs
for k factors, each at two levels, generally require 2k runs, i. e.,
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the number of runs grows rapidly. Therefore, fractional factorial
designs that use only a subset of runs are another important type
of experimental design.

5. Experiment The experiment is conducted following the chosen experi-
mental design.

6. Data analysis To draw objective conclusions, data derived in the ex-
periment can be analysed using graphical methods or statistical
techniques like hypothesis testing or confidence interval estima-
tion. Sometimes, an empirical model that expresses the relationship
among important design factors and response variables can be
obtained.

7. Conclusion and recommendation Based on the results of data analysis,
conclusions regarding the problem statement and recommendations
on further actions are given. Often, recommendations lead to sub-
sequent experiments for confirmation testing or for the refinement
of a hypothesis. Therefore, experimentation is an iterative process.

The guidelines for planning, conducting, and analysing experiments
serve as blueprint for the sensitivity study that has been conducted for
the observer/controller.

6.2.2 Sensitivity study
The observer/controller framework for signalised intersections allows for
the autonomous reconfiguration of signal plans at run-time. The archi-
tecture thereby frees the traffic engineer from the often tedious task of
specifying several signal plans for typical traffic demands. However, the
observer/controller itself is a complex system that needs to be config-
ured once before it can autonomously adapt the signalisation of various
intersections.

Figure 6.3 depicts a simplified cause-effect diagram for the observer/con-
troller architecture. Grouped according to the architecture’s main com-
ponents, the figure shows selected factors influencing the performance
of an organic intersection. While the factors listed for the SuOC are
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uncontrollable except for the signal plan, the factors listed for the ob-
server/controller are potential design factors.

SuOC Observer 

LCS EA 
Controller 

Hardware (TLC / signalisation / detection) 

Traffic demand 
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Stops 

Stopping criterion 

Population size 

Fitness evaluation 

Selection / variation operators 
Performance component 

(Match set creation) 

Discovery component 
(Creation and widening) 

Reinforcement component 
(Learning rate, accuracy determination) 

Preprocessing (Detection interval) 

Prediction (Short-term / long-term) 

Data analysis (Delay estimation) 

Monitoring (Frequency) 

Simulation module 

Approximation 
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Figure 6.3: Simplified cause-effect diagram for the observer/controller

To determine a reasonable configuration for the most important design
factors, a sensitivity study has been conducted. The study focuses on the
controller and starts with the configuration of the simulation module.

6.3 Simulation module
The simulation module estimates the fitness of signal plans to guide the
evolutionary search. It thereby influences the quality of evolved solutions
and the time required for an optimisation run. In this thesis, fitness
estimations are based on microscopic simulations that allow to evaluate
fixed-time and traffic-actuated signal plans with respect to a wide variety
of objectives. However, this flexibility comes at a cost:

• Microscopic simulations are noisy. The obtained quality estimates
do not depend on the effectiveness of the signal plan alone, but are
influenced by the stochastic nature of the simulation.

• Microscopic simulations have high run-time requirements, especially
when accurate estimations are required.
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The trade-off between estimation quality and the time required for
simulation can be influenced by the simulator’s configuration in a number
of respects:

Simulated duration While extensive simulations can reduce the influence
of stochastic fluctuations and can therefore provide a more reliable
fitness estimation, they increase the necessary execution time for an
evaluation. The trade-off between estimation quality and execution
time caused by different simulated durations is investigated in
Section 6.3.1.

Repeated simulations In a stochastic simulation, the random seed deter-
mines the outcome of all random choices during the simulation
period and therefore influences the simulation results. A way to
reduce deviations is to average the results of several simulation
runs that use different random seeds. Section 6.3.2 investigates
whether it is beneficial to average several short simulations instead
of running a single but time-consuming simulation.

Simulation seed When comparing signal plans based on the outcome
of stochastic simulations, differences in the observed performance
are not only due to different signal timings, but can be partly
attributed to fluctuations in the experimental conditions (e. g., when
simulations exhibit different vehicle arrival patterns). A common
random seed for the simulator can help to keep such fluctuations at
a minimum. Therefore, the benefit obtainable by comparing signal
plans based on common random numbers will be investigated in
Section 6.3.3.

6.3.1 Simulated duration
In microscopic simulations, the estimation quality that can be obtained
from a simulation run depends on the run’s simulated duration that
can be subdivided into an optional warm-up period and the mandatory
simulation period. During warm-up – which precedes the simulation
period – traffic is normally simulated, but no traffic statistics are recorded.
The warm-up period fills the initially empty network with traffic such
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that results gathered during the succeeding simulation period are not
influenced by start-up effects.

To determine the minimal simulated duration that allows to accurately
estimate a signal plan’s quality, the relation of simulated duration, exe-
cution time, and result variability is in the focus of a first experiment. A
second experiment investigates the simulated duration’s influence on the
correctness of signal plan rankings.

Execution time and standard deviation of simulation results

The relation of simulated duration, required execution time, and the
resulting standard deviation of delay estimates is investigated in a factor
screening experiment that considers the duration of the warm-up and
simulation periods as design factors.

Simulations have been conducted using no warm-up period, a warm-up
of 900 s, or a warm-up of 1800 s, while the simulation period has been
varied between 1800 s and 14 400 s in steps of 1800 s. For each factor
combination, 100 replications using different random seeds have been
simulated. Furthermore, signal plans in under- and oversaturated traffic
conditions have been considered, since microscopic traffic simulations are
known to exhibit a larger variability when flow is close to, or exceeds,
capacity [104].

As response variables, the average delay measurements, their standard
deviation, and the required execution time have been investigated. The
goal of the experiment is to determine factor combinations for signal
plans in under- and oversaturated conditions that provide precise delay
estimates, but require minimal execution time.

Signal plans in undersaturated conditions As example of a signal plan
operating in undersaturated conditions, the morning plan of Intersec-
tion K3 has been simulated for the traffic demand observed at 11 a. m.
Figure 6.4 shows the influence of different warm-up and simulation peri-
ods on the execution time required for 100 fitness evaluations. Execution
time measurements have been used for a linear regression, the resulting
regression functions are shown in the figure.

The observed linear relation of simulated duration and execution time
has been expected, since the time requirements of a microscopic simulator
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Figure 6.4: Influence of the simulation period on the execution time

strongly depend on the number of vehicles that are handled in each
simulation step (see Section 2.5.1). However, it should be noted that
there is an overhead for starting the simulation and simulating the
warm-up period. The overhead corresponds to the y-intercept of the
regression functions which increases approximately linearly with the
warm-up duration.

Besides execution time requirements, the obtainable quality of results
is an important aspect. To this end, Figure 6.5 depicts the median delay
and the standard deviation of the delay measurements at Intersection K3
for each investigated factor combination. Qualitative statements derived
from the figure are expected to carry over to other intersections in
undersaturated conditions.

Figure 6.5a shows that the median delay remains widely unaffected by
the simulated duration. Delay measurements are randomly distributed
around the true average delay even for short warm-up and simulation
periods. However, the simulated duration does affect the standard de-
viation of the simulation results (see Figure 6.5b). As expected, longer
simulation periods lead to more consistent results and reduce the influ-
ence of the simulation’s random seed. However, the standard deviation
cannot be linearly reduced with the simulation period. When using
microscopic simulations as fitness function, it is therefore important to
select a sufficiently large simulation period to benefit from the initially
strongly reduced deviations, but to avoid overly long simulations unless
reduced random noise is much more important than execution time.
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(b) Standard deviation of measured delays

Figure 6.5: Influence of the simulated duration on measured delays for
a signal plan in undersaturated conditions (based on 100
replications)

Regarding the use of an additional warm-up period, Figure 6.5b does
not indicate a beneficial effect on the standard deviation of measured
delays. This is probably due to the small size of the test network that
consists of a single intersection, only. In undersaturated conditions, such
small networks quickly fill with traffic, making extensive warm-up periods
obsolete. With respect to the execution time, an additional warm-up
period is nearly as costly as a regular simulation period of the same
length, since the same simulation model is used during warm-up, but
no traffic statistics are recorded. Therefore, warm-up periods are not
beneficial in undersaturated conditions and should be avoided when the
simulated network consists of a single intersection.

Signal plans in oversaturated conditions The previous experiment has
been repeated for oversaturated conditions by simulating the morning
plan of Intersection K3 during the morning peak hour. Again, the length
of the warm-up phase and the simulation period have been considered
design factors, while the average delay measurements and their standard
deviation have been investigated as response variables. Figure 6.6 sum-
marises the obtained results for Intersection K3. Qualitative statements
derived from the figure are expected to carry over to other intersections
in oversaturated conditions.
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Figure 6.6: Influence of the simulated duration on measured delays for a
signal plan in oversaturated conditions (based on 100 replica-
tions)

Figure 6.6a depicts the median delay for the different simulated du-
rations. In contrast to the undersaturated case (see Figure 6.5a), the
median of the delay measurements increases with the length of the simu-
lation period in oversaturated conditions. While the delays would grow
infinitely large in reality, they are bounded due to the network size (that
limits the queue lengths) in the simulations. The increase can be observed
for every investigated warm-up duration, but is strongest for the tests
without a warm-up period. Without warm-up, queues are still building
up during the simulation which lowers the average delay determined
for the simulation period. Therefore, the use of a warm-up period is
recommended in case that a correct delay estimate is required.

Compared to the undersaturated scenario, the standard deviation of
the delay measurements is significantly higher for the oversaturated case
(compare Figures 6.5b and 6.6b). However, the effect of extending the
simulation period is similar in both cases: The simulation period should
be selected sufficiently large to benefit from the initially strongly reduced
deviations, but overly long simulations should be avoided unless reduced
random noise is much more important than execution time.

Figure 6.6b also depicts the effect of a warm-up period on the standard
deviation of delays. For the test without warm-up, a low standard
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deviation is observed when considering short simulation periods. Due
to the missing warm-up, oversaturated conditions cannot built up fully
within a short simulation. As a result, delays measured for different
replications exhibit a relatively low variability. As the simulation period
increases, delays measured for simulations without warm-up approach
those measured in the tests with a preceding warm-up (see Figure 6.6a).
Therefore, the apparent initial advantage of a missing warm-up period
gets lost over time.

Tests with a preceding warm-up period are mainly unaffected by such
start-up effects. Best results in terms of a low standard deviation are
obtained for a warm-up period of 1800 s.

Summary The conducted experiment has investigated the relation of
simulated duration, required execution time, and the resulting standard
deviation of delay estimates. Results confirm a linear relation between
simulated duration and execution time which was to be expected for a
microscopic simulation environment.

With respect to the standard deviation of delay measurements, sim-
ulations are found to exhibit a larger variability when flow is close to,
or exceeds, the capacity of the simulated signal plan. Longer simulation
periods can reduce the standard deviation of delay estimates. However,
since the relation is not linear, the simulation period should be sufficiently
long to benefit from the initially strongly reduced deviations, but not
overly long to save on execution time.

The use of a preceding warm-up period does not have a positive effect
for the investigated single node networks when considering signal plans
in undersaturated conditions. Neither the delay estimates nor their
standard deviation are positively affected by a preceding warm-up. For
signal plans in oversaturated conditions, a preceding warm-up period
of 1800 s is recommended to obtain correct delay estimates and reduce
random noise.

Ranking of signal plans

The previous experiment considered the standard deviation as measure
for the variability of delay estimations. To investigate the influence of
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the simulated duration on the ranking of candidate signal plans (which
is important in case of evolutionary optimisation due to the employed
rank-based survivor selection), a second experiment has been conducted.

The experiment considers the duration of the warm-up and simulation
periods as design factors and uses the same factor levels as before. To
investigate the ranking quality, a set of fixed-time signal plans for Inter-
section K3 has been simulated during the morning peak hour. Based on
the vehicular delay estimates obtained after each considered warm-up
and simulation period, signal plan rankings are obtained. The quality of
these ranking is determined by comparison to a reference ranking.

To obtain the reference ranking, each signal plan in the set has been
simulated using 100 replications with different random seeds, a simulated
duration of 14 400 s, and a preceding warm-up of 1800 s. The reference
ranking has then been computed based on the mean delay estimate
obtained for each signal plan.

When comparing the rankings obtained for the different warm-up and
simulation periods to the reference ranking, signal plans are investigated
pairwise: Each time a ranking assigns signal plan s1 a better rank than
plan s2 while the reference ranking ranks plan s2 better than s1 (or the
other way around), this is considered as a wrongly ranked pair. The
quality of the ranking is determined by the percentage of wrongly ranked
pairs which is the response variable for the conducted experiment.

Figure 6.7 summarises the obtained results for two sets of signal plans.
The first set (called random set) contains 50 randomly selected signal
plans. Like in the beginning of an evolutionary optimisation, the plans
exhibit a widely varying fitness in terms of average delay. Therefore,
ranking should be a comparatively simple task. The second set (called
converged set) consists of 15 plans from the last generation of a short
evolutionary search. The plans in this set are of a similar quality and
should be more difficult to rank.

Ranking random signal plans Figure 6.7a depicts the percentage of
incorrectly ranked pairs when evaluating the random set using varying
simulated durations. The figure shows that rank errors are quickly
reduced as the simulated duration increases. While the initial reduction
rate is high, the beneficial effect on the ranking error is nearly lost as
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(b) 15 converged signal plans

Figure 6.7: Influence of the simulated duration on the ranking of signal
plans

the simulated duration increases further. The findings are consistent
with the non-linear relation of simulated duration and standard deviation
observed previously (see Figures 6.5b and 6.6b).

With respect to a preceding warm-up period, no beneficial effects can
be deduced from the figure although several signal plans in the random set
operate in oversaturated conditions during the morning peak. For these
plans, a preceding warm-up period is recommended to obtain correct
delay estimates (see Figure 6.6). Correct delay estimates are, however,
no necessary precondition to obtain a correct ranking, since the ranking
considers the relative quality of signal plans, only.

Ranking converged signal plans While signal plans of a widely varying
quality can be ranked quite accurately based on short simulations, the
situation becomes more difficult for plans that exhibit a similar vehicular
delay (like those occurring in the later generations of an evolutionary
search). Figure 6.7b depicts the percentage of incorrectly ranked pairs for
15 similar signal plans. All plans operate in undersaturated conditions
and have been obtained by an evolutionary optimisation that considered
Intersection K3 during the morning peak hour.
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As for the random set, an increasing simulated duration leads to a
non-linear error rate reduction when ranking the converged set. However,
a higher percentage of incorrectly ranked pairs is observed for nearly all
considered simulated durations (compare Figures 6.7a and 6.7b). There-
fore, significantly longer simulations are required to reach a predefined
ranking quality when a set of similar signal plans is considered.

With respect to a preceding warm-up period, no benefit can be deduced
from Figure 6.7b. While the lowest error rate for short simulation periods
is obtained without a preceding warm-up, the error rates observed for
different warm-up periods converge as the simulation period increases.
This resembles the influence of a preceding warm-up period on the
standard deviation of signal plans in undersaturated conditions (see
Figure 6.5b). For a set of converged signal plans, a low variability in the
delay estimates helps to improve the ranking.

Approximation-based ranking Instead of using time-consuming stochas-
tic simulations to rank a set of signal plans, rankings can be based on
an approximation formula when fixed-time plans are considered. Since
approximation-based quality estimates can be computed quickly, they
are an interesting alternative to simulations if the resulting ranking turns
out to be sufficiently accurate.

To evaluate the quality of approximation-based fitness rankings, the
random and converged signal plan sets have been ranked with Webster’s
delay formula. Since Webster’s formula (see Equation 2.3) is only applica-
ble to undersaturated conditions, a degree of saturation g < 1 is required
for each signal group (otherwise the signal plan cannot handle the traffic
demand). Since this requirement cannot be guaranteed especially for
signal plans contained in the random set, a degree of saturation g = 0.99
has been assumed for oversaturated signal groups.

For the random set, the percentage of incorrectly ranked pairs for
the Webster approximation is 22.4 %. Compared to a simulation-based
ranking, this error rate is remarkably high. A simulated duration of only
600 s is sufficient to obtain a better ranking quality (see Figure 6.7a). For
the converged set, an error rate of 22.9 % has been observed. A lower
error rate can be reached using simulation-based rankings, however, a
simulated duration of at least 4500 s is required (considering the test
without warm-up, see Figure 6.7b).
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In contrast to rankings that are based on simulations, the approxima-
tion-based ranking produces similar error rates for the converged and
random sets. This strange behaviour is due to a weakness of Webster’s
formula that overestimates the delay when an intersection (or a signal
group) is nearly saturated (see Section 2.2.2). For the randomly selected
signal plans, this leads to an unduly bad rating for some plans and
as a result to an increased number of wrongly ranked pairs. In the
course of evolution, these critical candidates are typically discarded
from the population such that the converged set (that does not contain
oversaturated plans) can be ranked with a relatively high accuracy.

Summary When ranking a set of signal plans based on microscopic
simulations, the error rate depends on the simulated duration in a non-
linear way. An increasing simulated duration initially reduces the ranking
error, but overly long simulations have a limited beneficial effect, only.
The optimal duration depends on the similarity of the considered signal
plans: Plans of a similar quality have to be simulated for a longer period
than plans of a widely varying fitness. In any case, a preceding warm-up
does not show a beneficial effect on the ranking quality.

When fixed-time plans are considered, rankings can also be based on
Webster’s delay approximation formula. The formula can be evaluated
quickly, but is applicable to undersaturated conditions, only. Here, the
ranking error resembles that of a simulation-based ranking for medium
simulated durations.

6.3.2 Repeated simulations
Instead of increasing the simulation period to reduce the variability
of simulation results and improve the signal plan ranking, it might be
beneficial to calculate the average result of several shorter simulations to
obtain a solution’s fitness. However, the overhead in execution time for
the additional starts of the simulation environment and – if applicable –
the additional warm-up periods have to be considered.

Table 6.1 summarises the results of an experiment that considers the
number of repeated simulations and their simulation period as design
factors. The standard deviation of the vehicular delay measurements and
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the time required for executing the simulations serve as response variables.
Tests have been performed for undersaturated and oversaturated traffic
conditions using the morning plan of Intersection K3. The table lists
the response variables for 100 fitness evaluations, where an evaluation is
based on

• a single simulation with a simulation period of 14 400 s,

• the average result of two simulations of 7200 s, or

• the average result of four simulations of 3600 s,

respectively. No warm-up period has been used in the experiment.

Table 6.1: Influence of repeated simulations on standard deviation and
execution time (uncorrected overhead)

Undersaturated demand Oversaturated demand
Std. deviation Exec. time Std. deviation Exec. time

1 × 14 400 s 0.1560 297 s 1.0338 516 s

2 × 7200 s 0.1478 330 s 1.4775 533 s
(−0.0082) (+33 s) (+0.4437) (+17 s)

4 × 3600 s 0.1458 394 s 1.5964 575 s
(−0.0102) (+97 s) (+0.5626) (+59 s)

Considering the standard deviation of obtained delay estimations, Ta-
ble 6.1 indicates a slightly beneficial effect of repeated simulations in
the undersaturated scenario. However, this improvement comes at the
cost of increased execution times since the overhead for the additional
starts of the simulation environment has not been considered. For the
oversaturated scenario, repeated simulations result in an increased stan-
dard deviation. Therefore, a single simulation run with a long simulation
period is to be preferred over several shorter runs in oversaturated condi-
tions. The single run combines the lowest standard deviation and the
shortest execution time.

To check whether repeated simulations remain beneficial in undersatu-
rated conditions when the overhead in execution time is considered, a
follow-up experiment has been conducted. The simulation period of the
repeated simulations has been reduced to 6475 s (instead of 7200 s) and
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to 2350 s (instead of 3600 s) such that the resulting execution time is
approximately the same for all factor combinations. The results of this
second experiment are summarised in Table 6.2.

Table 6.2: Influence of repeated simulations on standard deviation and
execution time (corrected overhead)

Undersaturated demand
Std. deviation Execution time

1 × 14 400 s 0.1560 297 s

2 × 6475 s 0.1580 307 s
(+0.0020) (+10 s)

4 × 2350 s 0.1948 302 s
(+0.0388) (+5 s)

With the corrected simulation periods, the slight benefit of repeated
simulations that has initially been observed is lost. Despite the undersat-
urated traffic conditions, the standard deviation of the obtained delay
estimates is slightly increased when repeated simulations with short sim-
ulation periods are performed. Therefore, it is recommended to use a
single but longer simulation run for the evaluation of candidate solutions
in both undersaturated and oversaturated conditions. These observations
comply to the recommendation of Kesur [104].

6.3.3 Simulation seed
When ranking signal plans based on stochastic simulations, the literature
reviewed in Section 3.1.4 recommends to configure the simulator with
the same random seed to reduce the variability of simulation results:
The random seed determines all random choices made in the course of a
stochastic traffic simulation, i. e., it defines the generation and movement
of all simulated vehicles (see Section 2.5.1 for details). The aim of using
common random numbers (CRN) when ranking signal plans is to perform
the tests under identical conditions, i. e., the signalisation should be
subjected to the same traffic flow pattern. The following experiments
investigate the benefits of CRN for different simulated durations and for
signal plans operating in under- and oversaturated conditions.
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Common random numbers and simulated duration To test whether
CRN are beneficial when ranking signal plans based on AIMSUN sim-
ulations of varying length, 50 randomly selected fixed-time plans for
Intersection K3 have been ranked based on their vehicular delay during
the morning peak hour: All signal plans have been simulated for different
random seeds to obtain a ranking based on independent random numbers
(IRN), while all simulations for the CRN-based ranking use the same
seed. Figure 6.8 depicts the percentage of wrongly ranked signal plans
for both rankings and varying simulated durations.
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Figure 6.8: Influence of random seeds on the ranking of signal plans

The figure indicates a reduced error rate for rankings based on CRN
especially when the simulated duration is short. The effect can be
observed for the test without warm-up, but is also present with a preceding
warm-up period. For longer simulated durations, the benefit of CRN is
lost.

Common random numbers in under- and oversaturated conditions
To investigate the benefit of CRN in more detail, two signal plans have
been simulated using a fixed set of 100 random seeds. Afterwards, the
plans have been ranked based on the resulting delay estimations:

• CRN-based rankings have been obtained for the 100 replications
that use the same random seed.
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• IRN-based rankings have been obtained by considering the 9900
combinations of different random seeds.

For IRN and CRN rankings, the percentage of wrong classifications has
been determined under the assumption that the correct ranking of both
signal plans can be obtained by comparing the mean vehicular delays of
all simulations.

In the conducted experiment, the morning plan of Intersection K3
and a modified version of this signal plan have been compared based
on AIMSUN simulations. Both signal plans have been simulated for
the same set of 100 random seeds. Simulations ran without warm-
up for a simulated period of 7200 s. Undersaturated conditions (at
11 a. m.) and oversaturated conditions (during the morning peak) have
been investigated separately. Table 6.3 summarises the obtained mean
delays that reflect the true ranking of both signal plans. Results show
that the morning plan performs slightly better than its modification for
under- and oversaturated conditions.

Table 6.3: Mean delay estimates (and their standard deviation) for ranked
signal plans

Undersaturated Oversaturated
conditions conditions

K3 morning plan 19.1 s (0.21 s) 33.3 s (1.58 s)
K3 modified plan 19.5 s (0.22 s) 34.3 s (1.24 s)

Based on the signal plans’ mean delays, the percentage of wrong
classifications has been determined when ranking the plans based on
CRN and IRN, respectively. The results are summarised in Table 6.4.

Table 6.4: Influence of random seeds on the error rate of signal plans
rankings

Undersaturated Oversaturated
conditions conditions

CRN 6.0 % (6/100) 8.0 % (8/100)
IRN 9.2 % (907/9900) 29.2 % (2895/9900)
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For AIMSUN simulations, the use of CRN is beneficial when compar-
ing signal plans: The advantage is relatively limited in undersaturated
conditions where the vehicular delays exhibit a small standard deviation,
only. However, a remarkable benefit can be obtained in oversaturated
conditions, where the use of CRN is strongly recommended. The above
results are consistent with the findings of Rathi [152] and Kesur [104]
who investigated the benefit of CRN for the TRAF-NETSIM [153] and
MSTRANS [103] simulators (see Section 3.1.4).

Summary When ranking signal plans based on AIMSUN simulations,
CRN can reduce the ranking error. The use CRN is most beneficial when
simulation results suffer from a high variability, i. e., when the simulated
duration is limited or when the considered signal plans are operating in
oversaturated conditions.

6.4 Evolutionary Algorithm
To successfully evolve near-optimal signal plans with an EA, one has
to identify a suitable configuration for the EA’s design factors. In
a sensitivity study, factors that largely influence the outcome of the
evolutionary search have to be identified, before appropriate levels for
these factors can be determined.

The following sections identify suitable EA configurations for varying
fitness landscapes: Section 6.4.1 focuses on the deterministic landscape
that results from the use of Webster’s approximation, while EA configu-
rations for simulation-based (and therefore noisy) fitness functions are in
the focus of Section 6.4.2. Section 6.4.3 investigates advanced aspects
related to simulation-based optimisations that include the handling of
random seeds and simulated durations throughout the search. The find-
ings for approximation- and simulation-based landscapes are summarised
in Section 6.4.4.

6.4.1 Approximation-based fitness landscape
A first sensitivity study considers optimisations that rely on Webster’s
approximation formula (see Section 2.2.2) to evaluate the quality of
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fixed-time signal plans. Webster’s formula gives deterministic results and
can be computed quickly such that an extensive evolutionary search is
feasible.

The study’s goal is to determine a suitable EA configuration that allows
to evolve near-optimal signal timings. The basic EA framework is given by
the self-adaptive Evolution Strategy that is defined in Algorithm 5.1. The
EA’s parent and offspring population size (that determine the selection
pressure) and the selection strategy are considered as design factors.
Using a factorial experimental design, the factor level combinations given
in Table 6.5 are investigated. Each combination is tested in 50 replicated
optimisation runs to account for the stochastic character of the search.

Table 6.5: EA configurations for the approximation-based fitness land-
scape

Design factor Considered levels
Start population Random
Population size

(μ, λ) selection μ = 16, λ ∈ {48, 64, 80, 96, 112}
(μ + λ) selection μ = 16, λ ∈ {24, 32, 48, 64, 80}

Selection strategy (μ, λ), (μ + λ)
Mutation operator Gaussian perturbation, self-adaptive step size
Crossover operator Discrete crossover
Evaluation function Webster approximation
Stopping criterion Max. 1552 evaluations

Signal plan optimisations are conducted for Intersection K3, use the
average traffic demand of the morning peak hour (7:30 a. m. till 8:30 a. m.),
and aim at minimising the average vehicular delay. A reference signal
plan for this demand has been obtained by enumerating all feasible signal
timings. The reference plan exhibits an average vehicular delay of 25.98 s
which is considered to be optimal.

Figure 6.9 visualises the vehicular delays for the investigated factor
combinations in form of a boxplot. Each factor combination is repre-
sented by one box. On each box, the central mark indicates the median
of the measured delays, the edges of the box are the 25th and 75th
percentiles. Whiskers extend to the most extreme measurements that
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are not considered outliers. A measurement is an outlier if it is larger
than q3 + 1.5 · (q3 − q1) or smaller than q1 − 1.5 · (q3 − q1), where q1 and
q3 are the 25th and 75th percentiles, respectively. Outliers are plotted
individually.

Figure 6.9 depicts the vehicular delays of the best evolved signal plans.
For (μ, λ) strategies, these signal plans might not be part of the final
generation. The following conclusions can be drawn from the figure:
Population size The most suitable size of the offspring population de-

pends on the selection strategy. When (μ, λ) selection is applied,
surviving individuals are selected among the offspring, only. In
consequence, the offspring population needs to contain relatively
fit individuals that can guide the search. This becomes more likely
with an increasing population size. However, a large offspring pop-
ulation limits the number generations that can be evolved before
reaching the stopping criterion. A population size of λ = 96 (that
allows to evolve 16 generations) constitutes the best investigated
trade-off (see Figure 6.9a). The setting corresponds to a μ/λ ra-
tio of 1/6 which is within the literature recommendations for the
selection pressure in (μ, λ) strategies (see Section 5.4.2).
For (μ + λ) selection, the influence of the offspring population is
limited (see Figure 6.9b). Near-optimal signal plans are evolved
for all investigated population sizes. As parent and offspring popu-
lations are considered during survivor selection, the fitness of the
parent population cannot decrease throughout the search. However,
smaller offspring populations allow to evolve more generations be-
fore the stopping criterion is reached. In consequence, population
sizes of λ ≤ 32 provide the most stable results.

Selection strategy Considering the different selection strategies, (μ + λ)
selection is recommended. None of the investigated factor combina-
tions for (μ, λ) selection can outperform the best (μ + λ) strategies.

In conclusion, signal plans for the deterministic fitness landscape can
be optimised successfully by a self-adaptive Evolution Strategy. Based
on the results of the sensitivity study, a (μ + λ) selection scheme is
recommended as it allows to evolve (near-)optimal signal timings in
combination with various population sizes.

152



6.4 Evolutionary Algorithm

(16,48) (16,64) (16,80) (16,96) (16,112)
26

26.5

27

27.5

28

28.5

29

29.5

30

Population size

A
vg

. d
el

ay
 [s

]

(a) (μ, λ) selection

(16+24) (16+32) (16+48) (16+64) (16+80)
26

26.5

27

27.5

28

28.5

29

29.5

30

Population size

A
vg

. d
el

ay
 [s

]

(b) (μ + λ) selection

Figure 6.9: Comparison of EA configurations for the approximation-based
landscape

6.4.2 Simulation-based fitness landscape – Basic
configuration

Sometimes, e. g., in the traffic-actuated case, signal plans have to be
evaluated by simulation. Although traffic simulations are widely applica-
ble due to their flexibility, they are also time-consuming and noisy (see
Section 6.3). Therefore, EA configurations suitable for simulation-based
landscapes are investigated in a separate sensitivity study.

The study’s experimental setup is similar to the approximation-based
case: The self-adaptive Evolution Strategy (Algorithm 5.1) needs to
be configured to evolve delay-minimal signal plans. The parent and
offspring population size and the selection strategy are considered to be
design factors. In contrast to the previous study, EA runs are limited
to a maximum of 400 fitness evaluations to attribute for the large time
requirements of traffic simulations. In consequence, the parent and
offspring populations are chosen smaller than in the previous study. The
investigated factor levels are summarised in Table 6.6.

To account for the stochastic character of the evolutionary search, each
factor combination is evaluated in 50 replicated EA runs. Runs minimise
the average vehicular delay at Intersection K3 for the average demand
of the morning peak hour (7:30 a. m. till 8:30 a. m.) and obtain delay
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Table 6.6: EA configurations for the simulation-based fitness landscape

Design factor Considered levels
Start population Random
Population size

(μ, λ) selection μ = 8, λ ∈ {32, 40, 48}
(μ + λ) selection μ = 8, λ ∈ {16, 24, 32}; μ = 16, λ ∈ {24, 32, 40}

Selection strategy (μ, λ), (μ + λ)
Mutation operator Gaussian perturbation, self-adaptive step size
Crossover operator Discrete crossover
Evaluation function AIMSUN simulations
Stopping criterion Max. 400 evaluations

estimates from AIMSUN simulations that use a simulation period of
3600 s without a preceding warm-up. After each run, the best evolved
signal plan is simulated for ten different random seeds and a simulated
duration of 14 000 s to determine its true average delay which serves as
response variable.

Figure 6.10 summarises the obtained delays in a boxplot and lists the
25th, 50th (median), and 75th percentiles for the different strategies
(best values are highlighted by bold font). Due to the different fitness
landscape, the depicted delay values are not comparable to Figure 6.9. In
contrast to the approximation-based landscape, a delay-minimal signal
plan is unknown here. From Figure 6.10, the following conclusions can
be drawn for simulation-based signal plan optimisations:

Population size The most suitable population sizes depend on the selec-
tion strategy. For (μ, λ) selection, the best signal plans are evolved
for λ = 32. The literature recommends larger offspring populations,
but in the investigated scenario, the number of evaluations is strictly
limited. In consequence, larger offspring populations overly reduce
the number of evolvable generations.

For (μ + λ) selection, the combination of small parent and offspring
populations (i. e., μ = 8 and λ ∈ {16, 24}) gives the best results.
The lowest 25th, 50th (median), and 75th percentiles are obtained
for these factor combinations.
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Selection strategy In contrast to the approximation-based landscape,
(μ, λ) selection is competitive in the simulation-based case. As
(μ, λ) strategies discard the parents during survivor selection, they
are less susceptive to random noise.
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Strategy → (8,32) (8,40) (8,48)
↓ Percentile

25th 21.08 21.15 21.13
50th 21.45 21.65 21.93
75th 22.19 22.88 22.64

Strategy → (8+16) (8+24) (8+32) (16+24) (16+32) (16+40)
↓ Percentile

25th 20.86 21.04 21.01 21.11 21.13 21.05
50th 21.23 21.36 21.80 21.62 22.02 21.38
75th 22.38 21.86 22.51 22.39 23.42 22.89

Figure 6.10: Comparison of EA configurations for the simulation-based
landscape

Based on these findings, a self-adaptive Evolution Strategy with (μ+λ)
selection and population sizes μ = 8 and λ = 24 is recommended as basic
EA configuration for the simulation-based fitness landscape considering
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the given run-time restrictions. Now, the configuration will be further
refined.

6.4.3 Simulation-based fitness landscape – Advanced
configuration

While the previous section identified a suitable configuration for the EA,
specific aspects related to the simulation-based evaluation of signal plans
have not been addressed:

Simulated duration Traffic simulations are time-consuming. While the
required execution time for a simulation linearly increases with
the simulated duration, longer simulated durations decrease the
random seed’s influence (see Section 6.3.1). This leads to a trade-off:
Shorter simulations allow for a more extensive search within a given
time budget, but they come at the cost of increased random noise.
Therefore, the optimal simulated duration depends on the amount
of noise that is acceptable for the EA. This amount might vary as
the population improves and converges throughout the search.

Simulation seed The outcome of a microscopic simulation is affected by
the simulator’s random seed. Section 6.3.3 has shown that signal
plan rankings are less error-prone when they are based on the
same simulation seed (CRN-based ranking). A simple way to take
advantage of this observation in an evolutionary search is to keep
the simulation seed fixed throughout the optimisation. A fixed seed
allows for fair signal plan comparisons, but might bias the search
in favour of the seed-specific experimental conditions. More robust
signal plans might be evolved when the simulation seed is varied
with the generations. To benefit from CRN in the case of varied
seeds, time-consuming reevaluations that reduce the extent of the
search can be required, though.

Border case signal plans The EA’s rank-based survivor selection deter-
ministically selects the μ best signal plans for the next generation.
Errors in the signal plan ranking affect the evolutionary process
only in case that a wrongly ranked pair has ranks r1 > μ and
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r2 ≤ μ. Therefore, it might be beneficial to reevaluate signal plans
with a rank close to μ with a longer simulated duration. Assuming
a limited optimisation time budget, reevaluations reduce the extent
of the search, though.

The different strategies for handling simulation-based fitness evalua-
tions within the EA are investigated in the following experiments.

Simulated duration

When conducting a simulation-based signal plan optimisation, traffic
simulations determine the fitness landscape for the evolutionary search
and are responsible for the largest share of the EA’s run-time. Unfor-
tunately, short simulations and low levels of noise cannot be obtained
simultaneously (see Section 6.3.1). To reduce random noise in fitness
evaluations, their simulated durations have to be increased which in turn
increases the required execution time. As an EA benefits from both,
numerous and accurate fitness estimates, a limited time budget poses
questions regarding the efficient use of simulations:

1. Should the time available for optimisation be spent on relatively
few, but accurate simulations, or is it better to perform a larger
number of less accurate simulations?

2. Are there stages within an evolutionary search during which an EA
is especially susceptive to noise?

To address both questions, different strategies for distributing a simula-
tion time budget throughout an evolutionary search have been compared.
Comparisons are based on the outcome of 50 optimisation runs that
consider the morning peak demand of Intersection K3 and aim at finding
a signal plan that minimises the average vehicular delay. After each
optimisation, the best signal plan found by the EA has been simulated
for ten different random seeds and a simulated duration of 14 000 s per
seed to determine its true average delay.

Based on the findings of Section 6.4.2, optimisations use population
sizes of μ = 8 and λ = 24 and (μ + λ) selection. Fitness evaluations use a
fixed seed throughout the search. To allow for a fair comparison of signal
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plans, surviving plans are reevaluated after a change in the simulated
duration. Simulations are performed with no warm-up, as a preceding
warm-up period does not reduce the ranking error (see Section 6.3.1).

The time budget for traffic simulations has been set to 1 440 000 sim-
ulated seconds per optimisation. This budget can be freely allocated
throughout the optimisation, resulting in a varying number of generations
available for different allocation strategies. Strictly, the budget should
be based on execution time instead of simulated duration as the start
of a simulation produces a time overhead of approximately 0.3 s per
simulation (see Figure 6.4). However, balancing the execution times of
EA runs is difficult as the time requirements of a simulation depend
on the number of simulated vehicles which (for a fixed traffic demand)
depends on the simulated signal plan. Therefore, execution times vary
slightly, but unpredictably, among EA runs.

Table 6.7 lists the distribution strategies that have been investigated in
the experiment. Figure 6.11 additionally depicts graphical illustrations.
The investigated strategies are partly based on previous findings by
Branke [21], who argues that an EA is especially susceptive to noise in
the beginning and at the end of a run: In the beginning, the initially
diverse population quickly converges towards a region of the search space
that looks promising. In the end, the nearly converged population needs
to reach a (local) optimum of the fitness function. High levels of noise
caused by short simulated durations can misguide the EA in both phases,
but the end of the search is considered to be especially critical. The
investigated strategies can be subdivided into the following groups:

Constant (C) strategies The first group of strategies (depicted in Fig-
ure 6.11a) applies a constant simulated duration throughout the
search. The strategies implement different trade-offs among simu-
lated duration and noise.

Final generation (F) strategies Based on Branke’s findings, strategies in
this group support the correct selection of the optimisation’s end
result. To obtain highly accurate fitness estimates in the final
generation, this generation is evaluated with a simulated duration
of 10 800 s. For all previous generations, the simulated duration is
kept constant (see Figure 6.11b).
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Increasing (I) strategies For the third group of strategies, the simulated
duration is linearly increasing. As the population converges, the
increased simulated duration should help to discriminate signal
plans of similar quality. The strategies in this group are depicted
in Figure 6.11c.

Decreasing-increasing (DI) strategies The fourth group of strategies re-
duces the random noise in the beginning and in the end of the
search. The strategies apply a linear decrease in the simulated
duration that is followed by a linear increase (see Figure 6.11d).

Table 6.7: Strategies for distributing the simulated duration on genera-
tions

Simulated
Strategy Generational distribution Eval. Gen. duration (total)

C1 10 × 5400 s 248 10 1 339 200 s
C2 13 × 4500 s 320 13 1 440 000 s
C3 16 × 3600 s 392 16 1 411 200 s
C4 21 × 2700 s 512 21 1 382 400 s
C5 33 × 1800 s 800 33 1 440 000 s
F1 8 × 5400 s + 1 × 10 800 s 232 9 1 425 600 s
F2 9 × 4500 s + 1 × 10 800 s 256 10 1 353 600 s
F3 12 × 3600 s + 1 × 10 800 s 328 13 1 411 200 s
F4 16 × 2700 s + 1 × 10 800 s 424 17 1 404 000 s
F5 25 × 1800 s + 1 × 10 800 s 640 26 1 440 000 s
I1 1800 s–6300 s (900 s/2 gen.) 336 12 1 360 800 s
I2 1800 s–5400 s (600 s/2 gen.) 448 14 1 411 200 s

DI1 6300 s–2 × 2700 s–6300 s 312 10 1 418 400 s
DI2 3600 s–6 × 1800 s–7200 s 408 14 1 425 600 s
DI3 5400 s–9 × 1800 s–5400 s 480 17 1 440 000 s

Figure 6.12 depicts a boxplot of the obtained results and shows the
25th, 50th (median), and 75th percentiles for the different distribution
strategies. For the C-strategies, obtained deviations in the signal plan
quality are relatively large: An overly long simulated duration spends
the simulation time budget on too few fitness evaluations which leads to
a premature termination of the search (Strategy C1). Shorter simulated
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Figure 6.11: Strategies for distributing the simulated duration on gener-
ations

durations allow for a more extensive search by treating evaluation quality
for quantity. However, the increasingly noisy evaluations hinder the
correct ranking of signal plans in general and the selection of the best
signal plan in particular (Strategies C4 and C5). In consequence, the best
constant strategies balance simulated duration and noise (Strategies C2
and C3). Nevertheless, constant strategies are not recommended for
budgeted optimisations due to their large deviations.

Deviations are reduced for the F-strategies that increase the simulated
duration for the final generation of a run. The temporary increase reduces
the extent of the search only slightly, but allows for a more accurate
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selection of the best signal plan. For Strategies F4 and F5, this leads
to a remarkable improvement of the delay median and the observed
deviations. Strategy F4 constitutes the best overall strategy that exhibits
the lowest 25th, 50th (median), and 75th percentiles (indicated by bold
font). Strategies F1 to F3 perform similar to their constant counterparts.
While F1 (like C1) suffers from a premature termination of the search,
Strategy F2 and F3 cannot outperform their good constant counterparts.

Neither the I- nor the DI-strategies can compete with the best F-
strategies. The varying simulated durations consume portions of the
simulation time budget that are better spent on a more extensive search.
Additionally, changes in simulated duration require the reevaluation
of surviving parent signal plans. The reevaluation does not support
exploration, but is necessary to ensure a reasonable signal plan ranking
within a generation (see Section 6.3.1).

In summary, the most successful strategies combine short simulations
throughout their search with an increased simulated duration in the final
generation of a run. Short simulations allow for an extensive search
despite the given budget limitations, while accurate evaluations in the
final generation support the selection of the best signal plan. The im-
portance of the final generation(s) has also been observed by Branke.
A benefit of additionally supporting the initial stages of a search (as
suggested in [21]) could not be verified, though. The reason is in the
investigated selection schemes: In contrast to the overlapping (μ + λ)
selection strategy investigated here, Branke considers a non-overlapping
generational approach without elitism that does not require the reevalua-
tion of surviving solutions after a change in the estimation accuracy. As
reevaluations are costly and limit the extent of the search, distribution
strategies that reduce changes in estimation accuracy are favoured for
overlapping selection strategies.

Simulation seed

Besides simulated duration, the handling of simulation seeds constitutes
a second aspect that needs to be considered for simulation-based fitness
evaluations. The simulation seed determines the simulator’s random
decisions and affects a simulation’s outcome. In the following, different
seed handling strategies are investigated:
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Fixed simulation seed A promising and yet simple strategy uses the same
simulation seed throughout the evolutionary search. Due to the
fixed seed, signal plans are always compared in a CRN-based ranking
that has been found to reduce ranking errors (see Section 6.3.3).
However, a fixed seed might bias the search towards the seed-specific
vehicle arrival pattern which might result in less robust signal plans.

Varying simulation seeds To avoid a seed-specific bias, the simulation
seed can be varied every i generations. Several strategies for treat-
ing the fitness of surviving signal plans after a seed change are
promising:
Keep fitness (KF) strategies This group of strategies evaluates a

signal plan once at creation and keeps its fitness unchanged
throughout evolution. Costly reevaluations are thereby avoided,
but rankings are based on different seeds if the ranked plans
have been created in different generations.

Discard fitness (DF) strategies The second group of strategies re-
evaluates the fitness of a surviving signal plan after a change
of the simulation seed. The plan’s previous fitness is dis-
carded. This ensures a CRN-based ranking, but requires the
reevaluation of surviving signal plans.

Average fitness (AF) strategies Like in the previous group of strate-
gies, signal plans are reevaluated after a change of the simu-
lation seed. The difference is that a plan’s previous fitness is
not discarded, but used to compute an averaged fitness for the
signal plan. An averaged fitness improves the confidence in
the plan’s quality estimate, but does not allow for CRN-based
rankings.

The different seed handling strategies are compared based on the
outcome of 50 optimisation runs. As previously, the runs consider the
morning peak demand of Intersection K3 and aim at finding a signal plan
that minimises the average vehicular delay. After each optimisation, the
best signal plan found by the EA is simulated for ten different random
seeds and a simulated duration of 14 000 s per seed to obtain an accurate
estimation of its average delay that is independent of the simulation seed.
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As in the previous experiment, optimisations apply the Evolution
Strategy introduced in Algorithm 5.1 with (μ+λ) selection and population
size μ = 8 and λ = 24. Simulations are performed without a preceding
warm-up period, using a constant simulated duration of 2700 s throughout
the search and of 10 800 s for the final generation. This corresponds to the
most successful distribution strategy identified in the previous experiment
(Strategy F4).

Table 6.8 lists the seed handling strategies that have been considered
in the experiment. Numbers attached to the strategy names indicate
the frequency of seed changes: When applying, e. g., the KF2-strategy,
the simulation seed is changed every second generation. To allow for a
fair comparison, the strategies have to keep a simulation time budget
of 1 440 000 s in total. For the DF- and AF-strategies that reevaluate
surviving signal plans, the number of generations has been reduced to
keep the given budget.

Table 6.8: Strategies for handling the random seed

Simulated
Strategy Simulated duration Eval. Gen. duration (total)
FIXED 16 × 2700 s + 1 × 10 800 s 424 17 1 404 000 s
KF1 16 × 2700 s + 1 × 10 800 s 424 17 1 404 000 s
KF2 16 × 2700 s + 1 × 10 800 s 424 17 1 404 000 s
KF4 16 × 2700 s + 1 × 10 800 s 424 17 1 404 000 s
DF1 12 × 2700 s + 1 × 10 800 s 416 13 1 382 400 s
DF2 14 × 2700 s + 1 × 10 800 s 424 15 1 404 000 s
DF4 15 × 2700 s + 1 × 10 800 s 424 16 1 404 000 s
AF1 12 × 2700 s + 1 × 10 800 s 416 13 1 382 400 s
AF2 14 × 2700 s + 1 × 10 800 s 424 15 1 404 000 s
AF4 15 × 2700 s + 1 × 10 800 s 424 16 1 404 000 s

Figure 6.13 depicts a boxplot comparing the different seed handling
strategies and gives the obtained 25th, 50th (median), and 75th percentiles
for the different strategies (best values are highlighted by bold font).
Strategies that vary the simulation seed throughout their search do not
clearly outperform the fixed strategy that combines low delays and small
deviations. It can be concluded that a fixed seed does not introduce a
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bias that negatively affects the robustness of evolved signal plans. The
observation is consistent with earlier findings of Rathi [152], Sanchez
et al. [164], and Kesur [104] who investigate seed handling strategies for
different simulators (see Section 3.1.4).

Consequently, strategies that change the simulation seed throughout
their search (i. e., KF-, DF-, and AF-strategies) exhibit a trend towards
lower delays and smaller deviations when the change frequency is re-
duced. Among the strategies that reevaluate surviving signal plans (i. e.,
DF- and AF-strategies), averaging the survivors’ quality estimates gives
(slightly) better results than discarding their previous values. Among the
strategies that do not apply a survivor reevaluation (i. e., FIXED- and
KF-strategies), the fixed strategy benefits from a CRN-based signal plan
ranking (that is recommended in Section 6.3.3).

In summary, keeping the simulation seed fixed throughout the evolu-
tionary search is the best investigated seed handling strategy. A fixed
seed does not introduce a bias in favour of its specific traffic-conditions,
does not require costly reevaluations, and allows for a CRN-based signal
plan ranking that reduces the ranking error.

Border case signal plans

Finally, the EA’s rank-based survivor selection has been revisited to
investigate whether the reevaluation of border case signal plans (i. e.,
plans with a rank in [μ − i + 1, μ + i] for a small i) can improve the
evolutionary search. For border case plans, small fitness deviations due
to random noise decide on their survival. Therefore, a reevaluation based
on an increased simulated duration can help to better discriminate the
border cases. Assuming a fixed simulation time budget, the necessary
reevaluations reduce the extent of the evolutionary search, though.

In the following, different reevaluation strategies are compared. As
in the previous experiments, comparisons are based on the outcome
of 50 optimisation runs that consider the morning peak demand of
Intersection K3 and aim at finding a signal plan that minimises the
average vehicular delay. After each optimisation, the best signal plan
found by the EA is simulated for ten different random seeds and a
simulated duration of 14 000 s per seed to determine its true average
delay.
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Based on previous findings, optimisations are performed with the
Evolution Strategy introduced in Algorithm 5.1 using population sizes of
μ = 8 and λ = 24 and (μ + λ) selection. A simulated duration of 2700 s
throughout the search is combined with an increased duration of 10 800 s
for the final generation (Strategy F4). All simulations are conducted
without a preceding warm-up period. The simulation seed has been kept
fixed throughout the search.

Table 6.9 lists the investigated reevaluation strategies that keep a
simulation time budget of 1 440 000 simulated seconds per optimisation.
Strategy BC0 does not reevaluate the border case signal plans and
serves as reference. The BCn-t strategies reevaluate n (= 2i) border
cases for a simulated duration of t seconds (for n ∈ {2, 4, 6} and t ∈
{3600 s, 5400 s, 7200 s}).

Table 6.9: Strategies for reevaluating border cases

Simulated
Strategy Simulated duration Eval. Gen. duration (total)
BC0 16 × 2700 s + 1 × 10 800 s 424 17 1 404 000 s
BC2-3600 14 × 2700 s + 1 × 10 800 s 404 15 1 375 200 s
BC4-3600 13 × 2700 s + 1 × 10 800 s 404 14 1 396 800 s
BC6-3600 12 × 2700 s + 1 × 10 800 s 400 13 1 404 000 s
BC2-5400 14 × 2700 s + 1 × 10 800 s 404 15 1 425 600 s
BC4-5400 12 × 2700 s + 1 × 10 800 s 376 13 1 404 000 s
BC6-5400 11 × 2700 s + 1 × 10 800 s 370 12 1 436 400 s
BC2-7200 13 × 2700 s + 1 × 10 800 s 378 14 1 396 800 s
BC4-7200 11 × 2700 s + 1 × 10 800 s 348 12 1 396 800 s
BC6-7200 9 × 2700 s + 1 × 10 800 s 310 10 1 339 200 s

Figure 6.14 visualises the obtained results in a boxplot. Additionally,
the figure gives the 25th, 50th (median), and 75th percentiles for the
different strategies (best values are highlighted by bold font). Results
indicate that increasing the number n of reevaluations is not beneficial.
An increase leads to a raising vehicular delay that can be observed
independent of the simulated duration t. As the quality difference of
reevaluated plans is expected to grow with n, the benefit of reevaluations
for survivor selection is diminished.
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Similarly, an increase in the simulated duration t leads to increased
delays. Overly long simulated durations are not required to discriminate
the reevaluated signal plans, but reduce the extent of the evolutionary
search. As the best investigated reevaluation strategies do not outperform
the reference strategy, it is recommended to abstain from a reevaluation
of border case signal plans.

6.4.4 Summary
In Section 6.4, EA configurations that are suitable for signal plan opti-
misation have been identified. The investigated scenarios apply either
an approximation-based fitness function or rely on traffic simulations to
evaluate a signal plan’s fitness.

In the approximation-based scenario, Webster’s delay formula (see
Section 2.2.2) approximates the average vehicular delay for a signal
plan. The formula is only applicable for fixed-time plans, but provides
deterministic quality estimates and can be evaluated quickly. Near-
optimal signal plans have been evolved using the Evolution Strategy
introduced in Algorithm 5.1. A recommended configuration applies
(μ + λ) selection and runs for 64 generations using a population size of
μ = 16 and λ = 24. Using this configuration, optimal signal timings are
evolved in the vast majority of cases (see Section 6.4.1).

A signal plan’s fitness can also be estimated from (microscopic) traffic
simulations. Simulations can handle various signal controllers and are
flexible with respect to the considered quality criteria, but they are
time-consuming and provide noisy estimations. Their time requirements
limit the extent of an evolutionary search in on-line applications, while
random noise negatively affects the survivor selection. Assuming that
400 fitness evaluations with a simulated duration of 3600 s are acceptable,
Section 6.4.2 identified (μ+λ) selection with population sizes of μ = 8 and
λ = 24 as suitable basic configuration for simulation-based optimisations.

Using this basic configuration, additional design factors related to
simulation-based evaluations have been investigated in Section 6.4.3.
These factors include the handling of simulated durations and simulation
seeds, as well as the reevaluation of border case signal plans. The
simulated duration determines the trade-off among required execution
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time and estimation accuracy. A given simulation time budget is best
spent by combining short simulations throughout the search and long, but
accurate, simulations in the final generation of a run. The most successful
configuration uses no warm-up and simulated durations of 2700 s and
10 800 s, respectively. The use of a fixed simulation seed throughout
the search constitutes the best seed handling strategy. A fixed seed
allows for a CRN-based signal plan ranking and does not require costly
reevaluations. Finally, a reevaluation of border cases signal plans (that is
intended to improve the survivor selection in the presence of noise) could
not lead to significant improvements.

6.5 Learning Classifier System
Besides an EA, the LCS is the most important component of an organic
traffic controller as it implements the controller’s on-line learning mecha-
nism. Thus, the careful configuration of its parameters can significantly
affect the controller’s performance.

Table 6.10 lists potential design factors for the LCS. Most of the
factors are known from Wilson’s XCS (see Section 3.2.1), others have
been newly introduced with XCS-T (see Section 5.4.1). To determine a
reasonable LCS configuration, a factor screening experiment has been
conducted. In the experiment, factors known from XCS are treated as
held-constant factors. Their levels have been chosen based on literature
recommendations [40] combined with problem-specific knowledge:

Classifier creation The prediction of newly created classifiers is initialised
according to the delay estimation obtained from the EA. Therefore,
a predefined initial prediction ρI is not required. Prediction error
and fitness are pessimistically initialised: The initial prediction
error εI = 25 s exceeds the expected error of the delay estimation
by far. The initial fitness (that can vary in [0, 1]) is chosen as
FI = 0.01.

Classifier deletion The population size has been limited to a maximum
of N = 200 classifiers. This size allows to cover the traffic demands
during the study and leaves room for some special events. Should
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Table 6.10: Potential design factors for the LCS

Potential design factors Considered levels

XCS

Classifier creation
Prediction ρI ← EA estimation
Prediction error εI = 25
Fitness FI = 0.01

Classifier deletion
Population size N = 200
Min. experience θdel = 20
Fraction of mean fitness δ = 0.1

Classifier update
Learning rate β = 0.2
Accuracy determination α = 0.1, ε0 = 2, ν = 5

XCS-T Activation interval nc ∈ {1, 2, 3}
Similarity tolerance (per lane) w ∈ {40, 60, 80}

it become necessary, classifiers are deleted with a probability that
is proportionate to their action set size estimate. The deletion
probability of a classifier is increased if its experience exceeds
θdel = 20 and its fitness is below a δ-fraction of the population’s
mean fitness.

Classifier update Classifier updates apply the learning rate β and the
accuracy determination parameters α and ν with their respective
standard settings (see Table 6.10), but use a problem-specific error
tolerance ε0: Classifiers with a prediction error below ε0 = 2 s are
considered to be accurate.

Parameters newly introduced with XCS-T (see Section 5.4.1) are con-
sidered to be design factors that are investigated in a factor screening
experiment:

Activation interval Once XCS-T has selected a signal plan, the plan is
kept active for (at least) nc cycles: While this activation interval
should be sufficiently large to evaluate the signal plan’s performance
based on a reasonably long observation period, it should not be
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overly large to allow for a fast reaction to changing demands. In
the experimental study, nc has been set to one, two, or three cycles.

Similarity tolerance When XCS-T encounters an unmatched traffic de-
mand, its discovery component obtains an optimised signal plan
from the EA. The optimised plan is stored in a classifier that covers
the traffic demand considered during optimisation. The similarity
tolerance defines the width of the classifier’s interval predicates. A
small tolerance results in specific classifiers that match only few
demands which leads to large populations and numerous optimi-
sations. A large tolerance, on the other hand, results in overly
general classifiers that negatively affect the performance. In the
experimental study, similarity tolerances of 40, 60, and 80 vehicles
per hour and lane have been tested.

In the following factor screening experiment, the EA supporting the
classifier discovery within XCS-T relies on Webster approximations and
is configured based on the findings in Section 6.4.1: A self-adaptive
Evolution Strategy running for 64 generations and applying (μ + λ)
selection for μ = 16 and λ = 24 provides optimised signal plans to
XCS-T.

As in previous experiments, Intersection K3 serves as test case for the
factor screening. The intersection is simulated for six hours during the
morning period (from 6 a. m. till noon). During this period, the traffic
demand remarkably varies (see Figure 6.2a) which allows for a realistic
assessment of different configurations. At the beginning of a simulation
run, the classifier population of XCS-T is empty.

Different XCS-T configurations are assessed based on the average
vehicular delay that is recorded during the simulation. The size of the
classifier population and the number of signal plan optimisations are
considered as additional criteria. To compensate the stochastic influence
of random vehicle arrivals and the optimisation-based classifier discovery,
all response variables have been averaged over ten runs.

As the activation interval and the similarity tolerance are considered to
be independent factors, their settings have been investigated separately.
Section 6.5.1 summarises the results for the activation interval, findings
for the similarity tolerance are presented in Section 6.5.2. Section 6.5.3
concludes the discussion by summarising the obtained findings.
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6.5.1 Activation interval
The activation interval defines the number of cycles a signal plan is
kept active before it is evaluated and eventually replaced by XCS-T.
The effect of different activation intervals is illustrated in Figure 6.15.
The figure exemplifies XCS-T activations for the morning demand at
Intersection K3. Activations are depicted as vertical lines on the time
axis. The line colour indicates whether XCS-T left the active signal plan
unchanged (grey) or replaced it with a different plan (red). The blue line
gives the active signal plan’s cycle time. Grey bars in the background
indicate the simulated traffic flow (in total for the intersection).

Depending on the number of cycles between XCS-T activations, the
average activation interval lasts from 1.2 min (nc = 1, Figure 6.15a) to
3.6 min (nc = 3, Figure 6.15c). However, not every XCS-T activation
results in a changed signalisation. On average, signal plans have been
changed every 3.3 min (nc = 1), 6 min (nc = 2), or 7.2 min (nc = 3) to
adapt the signalisation to changing demands. It should be noted that
signal plan changes can be beneficial even though Figure 6.15 shows
a constant demand: The depicted traffic flows (grey bars) show the
averaged 15 minute demands taken from the traffic census, but do not
reflect stochastic fluctuations in the simulation.

The cycle time development depicted in Figure 6.15 shows that signal
plan changes performed by XCS-T reflect the variations in demand: While
high traffic flows are accompanied by long cycles (that reduce the influence
of lost times), XCS-T selects shorter cycles in periods of lower demands
(to avoid unused green times). This reasonable relation of traffic flow and
cycle length can be observed for all investigated activation intervals, but
shorter activation intervals cause smaller (but more frequent) cycle time
changes.

Figure 6.15 illustrates the behaviour of XCS-T for different activation
intervals, but does not directly allow to draw conclusions on the obtained
performance. To this end, vehicular delays obtained for different activa-
tion intervals (and a medium similarity tolerance w = 60) are summarised
in Figure 6.16. The figure depicts the mean vehicular delay averaged over
ten replicated runs. Additional error bars indicate the 25th and 75th
percentiles.
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Averaged over the simulation period, the vehicular delay ranges from
22.9 s (for nc = 1) to 23.8 s (for nc = 3). Best results are obtained for
the shortest activation interval that causes frequent LCS activations,
thereby allowing for a timely reaction to changing demands. While the
delay differs only slightly for activation intervals of one or two cycles (see
Figures 6.16a and 6.16b), a decreased performance is observable for three
cycle intervals (Figure 6.16c). Therefore, the LCS activation frequency
should not exceed two cycles.

The choice of the activation interval does not only influence the obtain-
able delay reduction, but affects the number of evolutionary optimisations
as well as the size of the LCS population. Small classifier populations are
desirable for reasons of efficiency as they require less memory for storage
and can be handled with less computational power (e. g., when comput-
ing the match set). For the same reason, the number of evolutionary
optimisations should be kept at a necessary minimum.

Table 6.11 shows the average population sizes and the average number
of optimisations for the investigated activation intervals. Results indicate
that smaller populations and fewer optimisation are achieved for longer
activation intervals that cause a less frequent activation of the LCS and
are therefore less sensitive to fluctuations in demand.

Table 6.11: Influence of the activation interval on the classifier population
size and the number of optimisations

Activation interval
1 cycle 2 cycles 3 cycles

Population size (avg.) 121.3 93.5 79.3
Optimisations (avg.) 70.0 53.0 43.6

Based on the results in Figure 6.16 and Table 6.11, an activation
interval of two cycles (i. e., nc = 2) is recommended. A one-cycle interval
reduces the average delay for the simulation period by 0.1 s, only, but
requires 32 % more optimisations.
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6.5.2 Similarity tolerance
The similarity tolerance is a second parameter that has been newly
introduced with XCS-T. It defines the width of interval predicates for
new classifiers, thereby affecting the applicability of optimised signal
plans obtained from the EA.

Average vehicular delays for different similarity tolerance levels (and an
activation interval of nc = 2) are summarised in Figure 6.17. As before,
the figure depicts the vehicular delay averaged over ten replicated runs.
Additional error bars indicate the 25th and 75th percentiles.

Depending on the chosen similarity tolerance, the vehicular delay aver-
aged over the simulation period is in the range of 22.7 s (for w = 40 veh/h)
to 23.7 s (for w = 80 veh/h). The lowest delay is obtained for the smallest
tolerance level. Delays increase with an increasing tolerance, since a small
similarity tolerance ensures that classifiers only match traffic demands
that are similar to the demand considered during the optimisation of their
signal plan. However, small similarity tolerances come at the cost of large
classifier populations and require many optimisations (see Table 6.12)
which is not desirable for reasons of computational efficiency. Consider-
ing the resulting trade-off between computational effort and obtainable
delay reduction, a medium similarity tolerance (i. e., w = 60 veh/h) is
recommended. A smaller tolerance gives a delay that is reduced by 0.3 s,
only, but requires about 60 % more optimisations. A larger tolerance, on
the other hand, leads to a relatively large increase in delay.

Table 6.12: Influence of the similarity tolerance on the classifier popula-
tion size and the number of optimisations

Similarity tolerance
40 veh/h 60 veh/h 80 veh/h

Population size (avg.) 158.1 93.5 61.2
Optimisations (avg.) 85.1 53.0 36.1

6.5.3 Summary
The on-line signal plan selection at an organic intersection is performed
by XCS-T, a classifier system that implements Level 1 of the controller
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(see Section 5.4.1). XCS-T is based on Wilson’s XCS, but introduces an
activation interval and a similarity tolerance as novel design factors. Since
both factors affect the performance and the computational requirements
of XCS-T, their configuration has been investigated in a factor screening
experiment. The experiment identified an activation interval of nc = 2
cycles and a similarity tolerance of w = 60 vehicles per hour and lane as
the best trade-off among the obtainable average vehicular delay and the
required computational effort.

The investigations on the configuration of XCS-T conclude the sensi-
tivity study of the controller. Combined with the findings on suitable
EA configurations in Section 6.4, the controller is well configured. Its
performance will be evaluated in the following section.

6.6 Simulation results
To assess the potential benefits of organic signal control, the observer/con-
troller architecture has been tested in a simulation study. The study
is conducted for Intersections K3 and K7 located at Hamburg (see Sec-
tion 6.1). Both intersections are simulated for 13 hours (from 6 a. m. to
7 p. m.) using a workday demand that has been recorded during a traffic
census. Their time-dependent field signal plans serve as reference for
comparison. To allow for an on-line evaluation and optimisation, it is
assumed that both intersections are equipped with additional detectors
for measuring the traffic flows.

The observer/controller optimises cycle length and phase durations at
its intersection, but keeps phase sequence of the reference signal plans un-
changed. By obeying predefined minimum phase durations and operating
with unchanged phase transitions, a safe signalisation for all road users
(motorised vehicles, cyclists, and pedestrians) is ensured. Unless other-
wise stated, the observer/controller is configured according to the findings
in Sections 6.4 and 6.5. Experimental setups for approximation-based
and simulation-based signal plan optimisations have been investigated.

The assessment of the observer/controller architecture relies on the
average vehicular delay as measure of effectiveness. The delay obtained
for the simulation period is compared to the delay resulting from the field
signal plans. Comparisons consider the average results of ten replicated
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simulation sets to account for stochastic influences. Each simulation
set has its own random seeds and consists of three consecutive days
(labelled Day 1, Day 2, and Day 3). At the beginning of Day 1, the LCS
population is empty. For Days 2 and 3, the classifier population learnt
on the previous day(s) is available.

In addition to the average vehicular delay, statistics on the develop-
ment of the LCS population size and the number of optimisations are
presented. Results obtained for Intersections K7 and K3 are summarised
in Sections 6.6.1 and 6.6.2, respectively. Section 6.6.3 concludes the
discussion of the observer/controller architecture.

6.6.1 Results for Intersection K7
The observer/controller architecture has been evaluated at Intersection K7
for two experimental setups. While signal plan optimisations are based on
Webster approximations in the first experiment, AIMSUN simulations are
used to evaluate the signal plan quality in the second experiment. Results
of both setups are summarised in Figures 6.18 and 6.19, respectively.
The figures depict the development of the average vehicular delay for
the simulation period. Plotted delays are an average of ten replicated
simulation sets. Delays of the reference signal plan and the organic
signalisation (labelled OTC for Organic Traffic Control) are depicted in
red and blue colours, respectively. Additional error bars give the 25th
and 75th percentiles for the delay measurements.

Webster approximation

When considering the organic signalisation based on Webster approxi-
mations, Figure 6.18a shows an improvement over the field signal plans
already on Day 1. Delays are reduced over the whole simulation period,
the overall reduction is about 13.7 % compared to the reference solution.
Considering that the observer/controller had to learn a suitable signal
plan mapping from scratch, the reduction indicates powerful on-line learn-
ing capabilities. Shifting the signal plan selection and optimisation from
design time to run-time turns out to be feasible: The observer/controller
can quickly reduce the vehicular delay compared to the reference solution
for the low traffic period preceding the morning peak. In contrast to the

174



6.6 Simulation results

field plan that suits high traffic volumes, the evolved signal plans are
well adapted to the low demands in this period. The observer/controller
performs slightly better than the reference plan during the morning peak,
but clearly improves for the rest of the morning. At noon, when the refer-
ence plans are switched, the observer/controller performance drops to the
reference plan’s level, but quickly improves for the remaining afternoon.
Especially the peaks observed for the reference plan are handled well.

On Days 2 and 3 (depicted in Figures 6.18b and 6.18c), the ob-
server/controller benefits from the previously learnt mapping and achieves
overall delay reductions of 14.3 % and 14.9 %, respectively. Compared to
Day 1, the required number of optimisations is significantly reduced (see
Table 6.13a) as many observed traffic demands are already covered by the
existing mapping. However, fluctuating vehicle arrivals and an updated
signalisation result in unmatched demands that cause the creation of ad-
ditional classifiers and trigger signal plan optimisations. As the classifier
population reaches its size limit early on Day 2, the additional classifiers
activate the deletion mechanism of XCS-T. This is indented to get rid
of (low fitness) classifiers in well-covered niches. By choosing a larger
population size limit, the number of signal plan optimisations on Days 2
and 3 could be further reduced.

Table 6.13: Classifier population size and optimisations for Intersec-
tion K7

(a) Webster approximation (N = 200)

Day 1 Day 2 Day 3
Population size (avg.) 164.7 200.0 200.0
Optimisations (avg.) 84.7 37.6 37.5

(b) AIMSUN simulation (N = 300)

Day 1 Day 2 Day 3
Population size (avg.) 257.4 300.0 300.0
Optimisations (avg.) 130.9 34.7 29.2
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AIMSUN simulation

A second experiment has evaluated the observer/controller for the case
that the simulation module relies on traffic simulations. The experimental
setup is based on the findings in Sections 6.4.2, 6.4.3, and 6.5 with two
exceptions: Firstly, the maximum LCS population size is increased to
N = 300 classifiers to ensure that the population can hold the classifiers
created on Day 1 in their entirety. Secondly, evolutionary optimisations
are stopped after twelve generations to avoid a queuing of optimisation
tasks.

Average vehicular delays obtained in the experiment are depicted in
Figure 6.19. Table 6.13b presents statistics on the development of the
classifier population and on the number of required optimisations. In
comparison to a Webster-based simulation module, a slightly higher re-
duction of the vehicular delay has been obtained for AIMSUN simulations
(compare Figures 6.18 and 6.19). The improvement can be attributed to a
reduced ranking error achieved by simulation (see Section 6.3.1) or might
be a side-effect caused by the dual use of the simulator (see Section 5.5.2).
However, additional optimisations conducted for the simulation-based
setup in combination with the larger population size limit are a more
likely cause.

Table 6.13 shows that on Day 1, optimisations are more frequently
conducted when AIMSUN simulations replace Webster approximations
in the simulation module. As a simulation-based optimisation can require
several minutes to finish, XCS-T can be activated while the adaptation
module is still running. In this case, it is possible that XCS-T triggers an
additional optimisation that would not have been required if the active
optimisation’s result had already been included in the mapping. The
additional optimisations result in a fine-grained situation-mapping that is
likely to cause the observed improvements. On Days 2 and 3, the larger
population size limit of the simulation-based setup reduces the number
of required optimisations to a level similar (Day 2) or even below (Day 3)
that observed for the approximation-based setup.

As the two-levelled learning mechanism applied by the observer/control-
ler successfully reduces the vehicular delay for Intersection K7 compared
to the field signal plans, a more complex test case is investigated next.
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6.6.2 Results for Intersection K3
The second test case investigated in the observer/controller evaluation is
Intersection K3. Compared to the three-armed Intersection K7, K3 is a
four-armed junction that is equipped with more signal groups and has
to serve higher traffic demands (see Section 6.1). Like in the previous
experiment, two experimental setups have been investigated. The first
setup relies on Webster approximations in the controller’s simulation
module, the second setup uses AIMSUN simulations.

Webster approximation

Average vehicular delays obtained for the first experimental setup are
summarised in Figure 6.20. The figure depicts vehicular delays averaged
over the ten replicated simulation sets. Additional error bars indicate
the 25th and 75th percentiles for the delay measurements.

Like at the smaller Intersection K7, the observer/controller can reduce
the vehicular delay at Intersection K3 for nearly the whole simulation
period. Only at the beginning of the morning peak, it performs slightly
worse than the reference plan. In this period, the traffic demand rises
steeply such that the observer’s preprocessor reports flows that lie below
the actual demand. The inaccurate situation parameters cause a subopti-
mal signal plan selection by the controller. To improve the preprocessing,
the observer could apply a shorter rolling horizon (compare Figure 5.2)
or make use of historical time series.

Despite the suboptimal performance at the beginning of the morn-
ing peak, the average vehicular delay at the intersection is reduced by
more than 20 % compared to the field plans. On Days 2 and 3, the
observer/controller achieves delay reductions similar to those obtained
on Day 1 which indicates a good system performance when learning from
scratch.

Statistics on the classifier population size and the number of optimisa-
tions are summarised in Table 6.14a. Compared to Intersection K7 (see
Table 6.13a), additional optimisations are required which, in consequence,
lead to a larger classifier population. The surplus of optimisations is due
to a larger input space caused by the higher number of signal groups
serving motorised traffic. While the classifiers’ interval predicates have to
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cover ten signal groups at Intersection K3, seven predicates are sufficient
for Intersection K7. Nevertheless, the additional optimisations can be
handled without problems.

Table 6.14: Classifier population size and optimisations for Intersec-
tion K3

(a) Webster approximation (N = 200)

Day 1 Day 2 Day 3
Population size (avg.) 186.8 200.0 200.0
Optimisations (avg.) 99.4 59.8 58.5

(b) AIMSUN simulation (N = 400)

Day 1 Day 2 Day 3
Population size (avg.) 283.2 379.3 400.0
Optimisations (avg.) 145.1 49.8 32.6

AIMSUN simulation

A second experiment has evaluated the observer/controller for the case
that the simulation module relies on AIMSUN simulations. The experi-
mental setup is based on the findings in Sections 6.4.2, 6.4.3, and 6.5, but
with two exceptions: To ensure that the mapping can hold all classifiers
created on Day 1, its maximum size is increased to N = 400 classifiers.
Furthermore, the queuing of optimisation tasks is reduced by stopping
an evolutionary search after twelve generations.

Figure 6.21 depicts the average vehicular delay obtained in the ex-
periment. Like in the previous test, the observer/controller can reduce
the vehicular delay at Intersection K3 for nearly the whole simulation
period. Despite an increased delay in the beginning of the morning peak
due to a slow reaction of the observer, the overall reduction compared
to the reference signal plans is about 20 % and thereby similar to the
approximation-based setup.

Statistics on the development of the classifier population and on the
required optimisations are given in Table 6.14b. In comparison to an
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approximation-based simulation module, the simulation-based setup re-
quires an increased number of optimisations and – in consequence – a
larger classifier population on Day 1 (compare Tables 6.14a and 6.14b).
The phenomenon has already been observed for Intersection K7 and is
due to the time requirements of simulation-based optimisations. In con-
trast, the simulation-based setup requires fewer optimisations on Days 2
and 3. Due to the higher population size limit, traffic demands are more
frequently matched by existing classifiers such that optimisations are
triggered less often than in the approximation-based scenario.

6.6.3 Summary
In Section 6.6, the observer/controller architecture for traffic control has
been evaluated in a simulation study. The study compares the field signal
plans of two intersections located at Hamburg, Germany, to an organic
signalisation. Comparisons consider typical workday traffic demands and
use the vehicular delay as measure of effectiveness.

In the study, significant delay reductions for both test cases are achieved
by the observer/controller. Although improved detection capabilities
have to be assumed, the obtained results demonstrate the potential of two-
levelled learning for signal control, thereby proving that the anticipated
shift from design time to run-time configuration is feasible. However,
intersections in road networks are typically not operated as stand-alone
systems, but have to be coordinated to avoid unnecessary stops. Therefore,
self-organising coordination mechanisms for organic intersections are
discussed in the following chapter.
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Strategy → C1 C2 C3 C4 C5↓ Percentile
25th 21.20 20.98 21.04 21.12 21.13
50th 21.71 21.33 21.36 21.57 21.96
75th 22.46 21.94 21.86 24.40 24.82

Strategy → F1 F2 F3 F4 F5↓ Percentile
25th 21.41 20.98 20.89 20.86 20.90
50th 21.87 21.56 21.12 21.07 21.20
75th 22.85 22.01 21.78 21.27 21.51

Strategy → I1 I2 DI1 DI2 DI3↓ Percentile
25th 21.01 20.97 21.11 21.01 20.88
50th 21.25 21.18 21.40 21.29 21.20
75th 21.82 21.74 22.05 21.72 21.65

Figure 6.12: Comparison of vehicular delays for different distribution
strategies
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25th 20.86 20.97 20.83 20.91
50th 21.07 21.12 21.04 21.04
75th 21.27 21.75 21.59 21.42

Strategy → DF1 DF2 DF4 AF1 AF2 AF4↓ Percentile
25th 21.00 21.01 21.01 20.97 20.82 20.87
50th 21.24 21.21 21.19 21.17 21.12 21.10
75th 21.59 21.54 21.44 21.54 21.33 21.28

Figure 6.13: Comparison of vehicular delays for different seed handling
strategies
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Strategy → BC0 BC2- BC4- BC6-
↓ Percentile 3600

25th 20.86 20.92 21.01 21.01
50th 21.07 21.21 21.31 21.26
75th 21.27 21.43 21.82 21.79

Strategy → BC2- BC4- BC6- BC2- BC4- BC6-
↓ Percentile 5400 7200

25th 20.82 20.90 21.03 21.04 20.98 21.20
50th 21.16 21.14 21.30 21.26 21.34 21.47
75th 21.66 21.63 21.85 21.72 21.78 22.06

Figure 6.14: Comparison of vehicular delays for different reevaluation
strategies
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(c) nc = 3

Figure 6.15: Influence of the activation interval on cycle time changes
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Figure 6.16: Influence of the activation interval on the vehicular delay
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Figure 6.17: Influence of the similarity tolerance on the vehicular delay
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Figure 6.18: Average vehicular delay at Intersection K7 (Webster approx-
imation)
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(b) Day 2
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Figure 6.19: Average vehicular delay at Intersection K7 (AIMSUN simu-
lation)
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Figure 6.20: Average vehicular delay at Intersection K3 (Webster approx-
imation)
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6.6 Simulation results
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Figure 6.21: Average vehicular delay at Intersection K3 (AIMSUN simu-
lation)
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CHAPTER 7

Decentralised coordination of organic intersections

The observer/controller evaluates and optimises an intersection’s signali-
sation at run-time, thereby reducing the local vehicular delay. In urban
road networks, where several intersections are located in close vicinity, a
good signalisation does not result from appropriately configured phase du-
rations and cycle times, only, but depends largely on another signalisation
parameter: the offset.

Offsets specify the difference between a reference time and the start
time of a coordinated phase (see Sections 2.2 and 2.3). By adjusting
the offsets of neighbouring intersections, a progressive signal system
(PSS, also called green wave, see Figure 2.3) can be established. When
the offsets within a road network are optimised to suit the network’s
demand, a reduction of journey times, stops, and, in consequence, of fuel
consumption and pollution emission can be obtained.

To decide which traffic streams in a network should be coordinated,
locally available detection data is hardly sufficient. In consequence, an
exchange of information among signalised intersections becomes necessary.
It can be realised either implicitly (by an early detection of approaching
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Chapter 7 Decentralised coordination of organic intersections

vehicles) or explicitly (by communication) and results in one of the
following system architectures:

Centralised systems Many adaptive network control systems rely on a
traffic control centre to adapt the network’s signalisation (like, e. g.,
SCOOT, see Section 2.4.1). The control centre gathers detection
data from the network, incorporates the data in its traffic model,
computes appropriate signal timings and offsets, and adapts the
signal plans accordingly. Thereby, a network-wide data pool is
available to the control centre, but the necessary data communica-
tion and the centralised coordination are computationally complex,
monetarily costly, and potentially susceptible to failures [74,134].
This abets a trend towards decentralised or hierarchical systems
that shift (parts of) the decision process to the intersections.

Decentralised systems A coordination of signals can also be achieved with-
out a control centre. Decentralised approaches are implemented,
e. g., by OPAC (see Section 2.4.3) and by the self-organising net-
work control systems discussed in Section 3.3. A coordination is
achieved with the help of a communication link among neighbouring
intersections or by an early detection of arriving vehicle platoons.
In both cases, the signalised intersections determine their signal-
isation based on the limited information that is locally available
(which results in an implicit coordination without fixed offsets in
the non-communicating case).

Hierarchical systems Hierarchical architectures are a compromise be-
tween centralised and completely decentralised systems. Some
decisions are taken locally (e. g., by an intersection that adapts its
phase durations), while others are taken by higher level instances
(e. g., an offset optimisation conducted by a regional control centre).
BALANCE and MOTION are two examples of adaptive network
control systems that rely on a hierarchical system architecture (see
Section 2.4.4).

Centralised, decentralised, and hierarchical system variants have also
been proposed for the observer/controller [23, 190]. A single central
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observer/controller (like in Figure 7.1a) is well-suited for isolated sys-
tems with a clearly defined purpose (like a signalised intersection) where
the composing subsystems exhibit restricted situation and configuration
spaces. Larger and more complex systems (like traffic networks) are
characterised by a drastic increase of the situation and configuration
space. Such systems are difficult to handle by a single centralised ob-
server/controller due to the computational complexity of the control task.
Here, a decentralised or hierarchical problem decomposition (as shown in
Figures 7.1b and 7.1c) is recommendable.
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Figure 7.1: Distribution schemes for the observer/controller architecture
(based on [23])

The following chapters focus on the decentralised and hierarchical
coordination of traffic signals in road networks. In the remainder of
this chapter, the observer/controller architecture for traffic control is
extended by a self-organising coordination mechanism. The mechanism is
called DPSS (for Decentralised Progressive Signal Systems), relies on local
communication among neighbouring intersections, and is introduced in
Section 7.1. Section 7.2 summarises the results of a sensitivity study that
investigates the mechanism’s configuration. An experimental evaluation
is in the focus of Section 7.3. The section compares the mechanism’s
performance to uncoordinated organic intersections. Finally, Section 7.4
concludes the discussion, before the Regional Manager, a hierarchical
extension to the DPSS mechanism, is introduced in Chapter 8.
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7.1 The DPSS mechanism
As the observer/controller framework evaluates and optimises signal plans
locally at each intersection, it stands to reason that the coordination of
organic intersections should also be a decentralised process. Decentralised
coordination schemes eliminate the large effort that is necessary to con-
nect intersections to a control centre and to continuously communicate
detection and signalisation data between control centre and intersections.

As stated by Mück [134], centralised control is actually infeasible for
some intersections due to their location. Furthermore, some networks
contain only a few critical intersections that would largely benefit from
adaptive control, while most intersections can be handled well by fixed-
time or traffic-actuated controls. In these cases, coordinating the whole
network from a control centre is not cost-effective.

Besides technical and economical reasons that favour decentralised
solutions, systems that do not rely on a single centralised component – and
thereby avoid a single point of failure in their architecture – can benefit
from an increased robustness. Friedrich acknowledges that “distributed
intelligence” can reduce the fault liability of traffic control systems, while
on the other hand their adaptation to local fluctuations in the traffic flow
can be improved [74].

The remainder of this section presents a decentralised collaboration
mechanism for signalised intersections that is called DPSS (for Decen-
tralised Progressive Signal Systems). The DPSS mechanism extends
organic intersections with local communication capabilities and enables
them to coordinate their signalisation in response to the network’s current
traffic demand. It constitutes a three step process that has been originally
introduced in [145,192].

In a first step, the network’s intersections determine partners that
collaborate to form a PSS. The decentralised mechanism that leads to
the creation of partnerships is presented in Section 7.1.1. Once the
partnerships are established, the collaborating intersections negotiate
a common cycle time which is a prerequisite for coordination. The
corresponding consensus algorithm is discussed in Section 7.1.2. In a
third step, the partners select signal plans that respect the common cycle
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7.1 The DPSS mechanism

time, calculate offsets, and finally establish the coordination. Section 7.1.3
presents this completing step of the coordination process.

The remainder of the section investigates traffic-responsive PSS updates
in Section 7.1.4 and discusses requirements, possibilities, and limitations
of the DPSS mechanism in Section 7.1.5.

7.1.1 Determining collaborating intersections
The identification of traffic streams that should be served by a PSS is
a crucial step when establishing a coordinated signalisation within a
road network. Coordination schemes are subject to many restrictions.
The coordinated signalisation of one traffic stream often impedes the
coordination of several other streams. Restrictions already apply for an
arterial road where a bidirectional coordination can only be achieved in
special cases due to dependencies that exist among the distances between
intersections, progression speeds, and offsets [94]. The selection of traffic
streams for coordination gets even more complicated in traffic networks
where numerous conflicts of interest exist among the network’s traffic
streams. Therefore, it is important to select the coordinated streams
carefully and adapt the coordination to changes in demand.

To determine a sequence of intersections that can establish a PSS
improving the network’s traffic flows, the DPSS mechanism applies an
heuristic to identify the strongest traffic streams in a network. The
heuristic considers the intersections’ turning flows, relies on local commu-
nication among neighbouring intersections, and assumes that intersections
have synchronised clocks.

With the help of their synchronised clocks, the signalised intersections
simultaneously determine which of their motorised turning movements
exhibits the strongest traffic flow. Let intersection j determine the
turning from upstream intersection i to downstream intersection k as its
strongest turning movement. For intersection j, it should be beneficial
to coordinate the longest signal phase serving the selected turning from
i to k with the respective upstream intersection i, thereby creating a
coordinated phase. To initiate the partnership, intersection j informs its
desired predecessor i that it would like to be i’s successor in a PSS. After
all intersections informed their desired predecessor, a local matching
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takes place. Each intersection j checks whether it was chosen by its
downstream intersection k as k’s desired predecessor. If this is the case, j
acknowledges the partnership with k. Other intersections that registered
with j receive a reject message and no partnership is established with
these intersections.

Based on the acknowledged partnerships, each intersection can de-
termine whether it is part of a PSS and which of its neighbours is its
predecessor or successor in the system. The first (last) intersection of a
PSS knows its special position since it has no predecessor (no successor)
but a successor (a predecessor). Intersections that were not integrated in
a PSS did not send or receive any acknowledgements. These intersections
can repeat the above process with their second most heavily used turn-
ing movement and other intersections not participating in a PSS. For
all established PSSs, the collaborating intersections by now know their
partners and can start to negotiate a common cycle time.

7.1.2 Determining a common cycle time
As discussed in Section 2.2.1, a common cycle time is a prerequisite to
ensure that the signalisation at neighbouring intersections remains coor-
dinated over time. Due to its influence on the coordinated intersections’
capacities, the common cycle time needs to be selected carefully: For a
short cycle length, the constant lost times make up a large fraction of the
cycle which results in a reduced capacity of the intersection. An overly
long cycle length, on the other hand, can lead to unused green times that
increase the vehicular delay. Therefore, the common cycle time for the
PSS has to be long enough to provide all participating intersections with
sufficient capacities, while it should be as short as possible to reduce the
induced delay.

Figure 2.6b exemplifies the cycle time’s influence on the vehicular
delay at a signalised intersection. The figure illustrates that a deviation
from an optimal cycle length results in an increased delay. However, the
observable increase is not symmetric. While longer cycles cause slowly
increasing delays, a decrease towards the minimal cycle length results in
a steep rise. Therefore, the cycle time for a PSS should equal the largest
optimal cycle at a coordinated intersection.
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To determine a common cycle time for the PSS that fits this require-
ment, each intersection i keeps tracks of its own desired cycle time (DCTi)
and an agreed cycle time (ACT ) for the PSS. The desired cycle time
DCTi is the cycle length intersection i would prefer for the current traffic
demand if it was not participating in a PSS. It is determined by activat-
ing the intersection’s LCS for the current demand (see Section 5.4) and
storing the selected signal plan’s cycle length as DCTi. As the objective
of the LCS is to minimise the local vehicular delay, the determined cycle
length will be close to optimal. Small deviations that result from the
selection procedure are not considered critical as they lead to marginally
increased delays, only (see Figure 2.6b).

The agreed cycle time ACT is the common cycle length for the co-
ordinated intersections. It is the maximum of the desired cycle times
of all intersections i in a PSS (i. e., ACT := max(DCTi)) and can be
determined by a decentralised echo algorithm [46], assuming that each
intersection i stores its knowledge on the agreed time locally as ACTi:
The first intersection in the PSS updates its desired cycle time DCT1,
sets ACT1 := DCT1, and sends ACT1 to its successor in the PSS. The
succeeding intersections i, i = 2, . . . , n, where n is the last intersection in
the PSS, successively update their desired cycle time DCTi by activating
their LCS, setting

ACTi := max(DCTi, ACTi−1)

= max
(

DCTi, max
j∈{1,...,i−1}

(DCTj)
)

= max
j∈{1,...,i}

(DCTj),

and sending ACTi to the next intersection in the PSS. This process
continues until the last intersection n of the PSS is reached. By then,
ACTn equals the maximum desired cycle time in the PSS. ACTn is now
propagated back to the beginning of the PSS, such that each intersection i
in the PSS can replace its knowledge on the agreed cycle time by ACTn

(i. e., ACTi := ACTn for i = 1, . . . , n − 1). At the end of this process, all
intersections in the PSS have agreed on the same ACT that guarantees
a sufficient capacity while being as short as possible.
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7.1.3 Determining offsets and establishing coordination

After the intersections that participate in a PSS have been determined
and all participants have agreed on a common cycle time, appropriate
signal plans respecting the ACT can be selected, offsets can be calculated,
and a coordinated signalisation can be established.

Selecting signal plans under cycle time constraints

For a coordinated operation, an organic intersection needs to handle the
cycle time constraint defined by the agreed cycle time. Therefore, the
selection mechanism of XCS-T has been modified. The modification works
as discussed in Section 5.4.1, but adapts the selected signal plan’s cycle
by proportionally extending the plan’s phase durations while keeping
its phase transitions unchanged. Thereby, a signal plan with a cycle
length of ACT and unchanged phase splits (apart from rounding errors)
is obtained. Since the agreed cycle time is the maximum of the desired
cycle times at the individual intersections within a PSS, the adapted
signal plan has at least the same capacity as the original plan and is thus
applicable for the observed traffic demand.

Before the adapted signal plan is activated at the intersection, it is
associated with the classifiers in the action set. The classifiers are copied
and the adapted plan replaces the action of each copy. The prediction
error and the fitness of the copies are reset to εI and FI , respectively, and
all bookkeeping parameters are reinitialised as well. The only value that
is kept from the original classifiers is their respective prediction. After
the copies have been updated, they are included in the XCS-T population
for future use. Furthermore, they replace the original action set such that
their prediction values are updated during the next activation of XCS-T.

The extended classifier selection of XCS-T ensures that returned signal
plans suit the current demand (by keeping the phase splits of an appropri-
ately selected plan) while the predefined cycle time constraint is satisfied.
Once the intersections of a PSS have independently chosen their signal
plans, their coordination is completed by calculating appropriate offsets.
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Calculating offsets

When calculating offsets for the coordinated signals, no restrictions exist
for the first intersection in a PSS. For each succeeding intersection i,
i = 2, . . . , n, the offset oi depends on

• the predecessor’s offset oi−1,

• the time di−1,i vehicles need to travel from intersection i − 1 to
intersection i, and

• the time qi needed to serve queued vehicles for the coordinated
phase.

Furthermore, the absolute point in time sabs when the first intersection
initially activates its coordinated phase must be known to all successors.
Again, all necessary information is successively propagated through the
PSS from intersection to intersection: The first intersection communicates
sabs and its offset (without loss of generality o1 := 0) to its successor. In
the following, the intersections i, i = 2, . . . , n, successively calculate their
own offset relative to the first intersection in the PSS using the formula

oi := (oi−1 + di−1,i − qi) mod ACT.

Here, it is assumed that the time di−1,i is stored locally at each intersection
for all its neighbours j (one of which is intersection i−1). This assumption
is reasonable, since di−1,i can be estimated from the distance of the
neighbouring intersections and the speed limits of their connecting links.
The time qi required to serve queued vehicles is derived from the average
queue length.

Once the offset calculation at intersection i is finished, the values of
sabs and oi are forwarded to the succeeding intersection in the PSS until
the last intersection is reached and the coordination can be established.

Establishing a coordinated signalisation

To establish the calculated offset at an intersection without inappropri-
ately interfering with the active signalisation, a transitional signal plan is
activated for exactly one cycle after the currently active plan’s cycle has
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ended. The transitional plan is obtained by proportionally adapting the
phase durations of the active plan (but keeping the phase transitions).
The transitional plan’s cycle time tC is given by the equation

tC := (sabs + oi − pi − eabs) mod ACT.

In the equation, sabs + oi defines the point in time when the coordinated
phase of intersection i has to start. Correspondingly, the coordinated
signal plan needs to be activated at time sabs + oi − pi, assuming that
pi marks the start of the coordinated phase within the cycle. This
leaves tC seconds that have to be bridged by a transitional plan after
the currently active plan has ended at time eabs. If the calculated
transitional cycle length tC cannot be realised because it is shorter than
the minimum cycle tC,min, it can be redefined as tC := tC + ACT . Once
the transitional signal plans have been activated and replaced at all
coordinated intersections, the PSS is established.

7.1.4 Updating progressive signal systems
Due to the dynamic nature of traffic, an established coordination needs
to be reassessed from time to time. Instead of periodically starting a
complete recalculation of the network’s coordination without considering
the prevailing traffic conditions, the DPSS mechanism reacts on the
following events that represent relevant changes in traffic demand:

1. A coordinated intersection can reduce its vehicular delay by chang-
ing its signal plan. Its observer/controller has identified a plan that
respects the agreed cycle time of the PSS, but has a predicted vehic-
ular delay that is more than a signal plan tolerance of sptol seconds
below the active plan’s delay.

2. A coordinated intersection i increases its desired cycle time DCTi

due to changes in traffic such that DCTi > ACT .

3. A coordinated intersection i with DCTi = ACT reduces its desired
cycle time due to changes in traffic.

4. For a coordinated intersection, the turning exhibiting the strongest
traffic flow has changed.
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In Case 1, the changing intersection i switches to the newly selected
plan. Considering the start p′

i of the coordinated phase in the new plan’s
cycle, the plan needs to start (pi − p′

i) mod ACT seconds later than the
active plan to keep the intersection’s offset oi unchanged. The necessary
shift is obtained by a transitional signal plan. Within the PSS, no further
changes are required. The established partnerships, the agreed cycle time,
and the computed offsets remain unchanged.

For Cases 2 and 3, the agreed cycle time ACT needs to be adapted. The
intersection responsible for the change announces the necessity of an ACT
update to the first intersection in the PSS. As a result, this intersection
starts the echo algorithm to determine a new common cycle time ACT ′

(see Section 7.1.2). Since implementing ACT ′ would temporarily disrupt
the coordination and small deviations from the optimal cycle length
barely affect the vehicular delay (see Figure 2.6b), the update is only
executed if ACT ′ differs from ACT by more than an agreed cycle time
tolerance of ACTtol seconds (i. e., if |ACT ′ − ACT | > ACTtol). In this
case, Step 3 of the DPSS mechanism is executed (see Section 7.1.3) which
results in an updated PSS with the same collaborating intersections.

In Case 4, the relative importance of traffic movements has changed
such that the partnerships should be reassessed by recalculating the
coordination from Step 1 (see Section 7.1.1).

7.1.5 Discussion
The DPSS mechanism that has been introduced in Sections 7.1.1 to 7.1.4
allows for a decentralised coordination of organic intersections that is
adapted at run-time in response to changing traffic demands. The
remainder of Section 7.1 discusses technical requirements of the DPSS
mechanism, before it focuses on limitations of decentralised network
control systems. The section will be concluded with a brief comparison
to other self-organising approaches.

Requirements

The DPSS mechanism extends the observer/controller framework for
intersections. In addition to the observer/controller’s hardware require-
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ments (see Section 5.5), the DPSS mechanism has its own requirements
regarding traffic detection, communication, and time synchronisation.

Turning-based detection Step 1 of the DPSS mechanism assumes that
traffic flows are known for each turning movement of a signalised
intersection. As traffic is typically detected at signal group level –
but not for individual turning movements – this assumption can
be critical (e. g., when a signal group serves a shared lane that is
used by several turnings). In this case, the traffic flow detected
for a signal group can be either attributed to the group’s main
turning or it can be assigned to the different turnings according
to estimated turning fractions. Thereby, the DPSS mechanism
becomes applicable for signal group-based detection and induces
no additional detection requirements.

Synchronised clocks To implement the DPSS mechanism, all intersections
need synchronised clocks. This requirement can be fulfilled with
the help of time synchronisation protocols like the Network Time
Protocol (NTP) [129].

Local communication As all three steps of the DPSS mechanism involve
the transfer of data among neighbouring intersections, a local
communication capability constitutes an additional requirement.
Fortunately, the DPSS mechanism is not demanding with respect to
bandwidth or communication latencies. As the amount of commu-
nicated data is limited and the time span between establishing or
updating PSSs is orders of magnitude larger than typical latencies
for communication and processing, communication links can be
implemented using standard network protocols and hardware.

Limitations

The DPSS mechanism is a decentralised heuristic for the coordination of
traffic signals that is based on local traffic demands and local communica-
tion among neighbouring intersections. It has no access to a network-wide
traffic model and is therefore subject to some limitations.

Within the DPSS mechanism, PSSs are derived by concatenating
the strongest turning movements of neighbouring intersections (see Sec-
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tion 7.1.1). The resulting coordinated traffic streams are “virtual” in
the sense that the actual routes of the drivers within the network are
unknown, i. e., vehicles can enter or leave a coordinated stream at any
intersection. In consequence, there are special cases for which an es-
tablished PSS does not coincide with an actual traffic stream in the
network.

An example is given in Figure 7.2 that depicts two traffic streams that
pass an arterial road of two intersections. In the depicted example, the
turning from west to east is the most heavily used turning movement at
both intersections. In consequence, the DPSS mechanism coordinates the
signalisation along the arterial in eastbound direction although only a
minority of road users actually travels the arterial from west to east. Here,
the DPSS mechanism is misled and coordinates a virtual traffic stream.
However, Figure 7.2 shows an illustrating example that is not typical
for real-world networks. In the vast majority of cases, a coordination
established by the DPSS mechanism will coincide with the network’s
traffic streams.

500 veh/h 

470 veh/h 

30 veh/h 

480 veh/h 

480 veh/h 

Figure 7.2: Limitations of the DPSS mechanism

Assuming that the network’s traffic streams and the established co-
ordination coincide, the greedy determination of collaborating partners
leads to another limitation. Step 1 of the DPSS mechanism (discussed
in Section 7.1.1) treats the strongest traffic stream within a network
preferentially. As a coordinated signalisation of the strongest stream can
impede the coordination of several other streams that in sum serve more
vehicles, this greedy approach can lead to a suboptimal coordination
with respect to the network-wide number of stops. This issue is discussed
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in more detail in Chapter 8, where it is addressed by an hierarchical
extension to the DPSS mechanism.

Despite the inherent limitations of a decentralised heuristic, the DPSS
mechanism allows for a traffic-responsive signal coordination that reduces
the network-wide number of stops. Before the achievable reduction is
experimentally evaluated, the DPSS mechanism will be situated in the
context of other adaptive network control systems.

Comparison

Unlike the centralised or hierarchical network control systems discussed
in Section 2.4, the DPSS mechanism does not require a computationally
complex network-wide offset optimisation at a control centre to establish
a coordinated signalisation. All decisions regarding signal timings and off-
sets are taken locally at the intersections. The DPSS mechanism thereby
avoids the cost and effort necessary for continuously communicating detec-
tion and signalisation data between intersections and control centre and
allows for adaptive signal control in networks where centralised system
architectures are infeasible or not cost-effective [134]. Furthermore, a
potential fault liability is reduced by eliminating the control centre as
single point of failure [74].

Due to its decentralised working principle, the DPSS mechanism is
closely related to other self-organising traffic systems. It bears similarities
to Bazzan’s game-theoretic approach (see Section 3.3.2) that achieves
coordination with the help of communicating intersections. Bazzan’s
intersections select their signal plan from a predefined set in response to
local demands and play coordination games to establish a coordinated
signalisation. In contrast to this game-theoretic approach, the DPSS
mechanism learns and optimises its signal plans at run-time (and is
therefore not restricted to a predefined set of plans). Furthermore, it
does not require any prior knowledge on coordination options (which is a
prerequisite for the definition of payoff matrices).

Other decentralised traffic control systems like OPAC (discussed in
Section 2.4.3), the SOTL mechanism of Gershenson et al., or the pressure-
based approach of Lämmer et al. (both discussed in Section 3.3.1) do
not rely on a communication link, but achieve an implicitly coordinated
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signalisation by reacting on vehicle platoons. Reactions are based on
predefined switching schemes and require an early detection of arriving
platoons. In contrast, the DPSS mechanism establishes an explicit
coordination of neighbouring intersections that optimise their signal
plans at run-time. Both system philosophies have specific advantages and
drawbacks: While the platoon-based signalisation of non-communicating
intersections helps to reduce delays and stops, signalisation changes are
no longer predictable for road users and human planners. Furthermore,
the apparent benefit of a communication-free system comes at the cost
of sophisticated vehicle detection capabilities at each intersection.

Compared to the discussed state-of-the-art systems, the DPSS mech-
anism is novel as it combines an on-line learning and optimisation of
signal plans with an explicit traffic-responsive coordination of neighbour-
ing intersections that is achieved without a traffic control centre. In
the following section, the DPSS mechanism will be configured based on
the results of a sensitivity study before its performance is evaluated in
simulation.

7.2 Sensitivity study
The DPSS mechanism introduces several potential design factors that
affect the performance of an established coordination:

Check frequency A coordinated signalisation within a road network has
to be adapted to changes in the network’s traffic demand. Therefore,
the DPSS mechanism periodically checks and updates established
PSSs (see Section 7.1.4). The frequency of these checks affects the
mechanism’s reactivity in the presence of changes.

Agreed cycle time tolerance (ACTtol) When established PSSs are reas-
sessed by the DPSS mechanism, the coordinated intersections re-
negotiate their agreed cycle time. If the new agreed cycle time ACT ′

differs from the currently established cycle length ACT by more
than ACTtol seconds, the PSS is updated. The update requires
transitional signal plans that temporarily disrupt the coordination
(see Section 7.1.3). This results in a trade-off between the ben-
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efit gained from the update and the loss due to the temporary
disruption.

Signal plan tolerance (sptol) Another parameter that influences the re-
assessment of an established coordination is the signal plan tolerance.
The tolerance defines a threshold for local signal plan changes (see
Section 7.1.4). If a different signal plan with the same cycle length
is expected to reduce the local vehicular delay by more than sptol

seconds, the plan is changed. However, the change temporarily
disrupts the coordination of the affected intersection such that sptol

has to be selected carefully.

Before the potential design factors are investigated in more detail,
the test network considered in the simulation study is presented in
Section 7.2.1. The frequency of coordination checks is in the focus
of Section 7.2.2, while a factor screening experiment determines the
configuration of the agreed cycle time tolerance ACTtol and the signal
plan tolerance sptol in Section 7.2.3.

7.2.1 Test case
The test network used in the sensitivity study consists of five signalised
intersections that are located in 250 m to 350 m distance along an ar-
terial road (see Figure 7.3). The intersections support twelve turning
movements. Their approaches are one-laned, but the arterial road seg-
ments provide an additional side-lane for left-turns. Each intersection
is operated by a three-phased fixed-time signal plan. Traffic leaving the
arterial by a left-turn is served in Phase 1, arterial traffic and all vehicles
turning right to leave the arterial are handled by Phase 2. Phase 3 serves
traffic arriving from the side roads. The intersections are equipped with
an observer/controller that adapts their signalisation at run-time. The
observer/controller is configured based on the findings in Sections 5.3,
6.4, and 6.5, its configuration is summarised in Table 7.1.

A sequence of varying traffic demands with a total duration of four
hours has been implemented to provide a dynamic environment for
the sensitivity study (see Table 7.2). While the most heavily used
origin/destination (O/D) pair is E → W (see Figure 7.3 for O/D labels)
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W E 

Phase 1 Phase 2 Phase���

Figure 7.3: An arterial road with three-phased intersections

Table 7.1: Observer/controller configuration for the sensitivity study

Design factor Factor level
Observer

Detection interval ne = 10
Controller – Level 1

Start population Empty
Prediction, error, and fitness ρI ← EA estimation, εI = 25, FI = 0.01
Deletion factors N = 200, θdel = 20, δ = 0.1
Reinforcement factors β = 0.2, α = 0.1, ε0 = 2, ν = 5
XCS-T factors nc = 2, w = 60

Controller – Level 2
Start population Random
Population size μ = 16, λ = 24
Selection operator (μ + λ)
Evaluation function Webster approximation
Stopping criterion 1552 evaluations (i. e., 64 generations)
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during the first half of the simulation, the predominant traffic direction
is reversed with the beginning of the simulation’s second half. After
the first and third simulated hour, the traffic demand in the network is
increased, but the predominant traffic direction is kept. For a coordinated
operation, the changes in demand require local signal plan updates that
also affect the agreed cycle time of an established PSS. Furthermore, the
organic intersections need to update their partnerships after the first half
of the simulation period.

Table 7.2: Traffic demands for the arterial road network

Traffic demands for 1st 2nd 3rd 4th
O/D pairs (in veh/h) hour hour hour hour
W → E 250 300 500 650
E → W 500 650 250 300
Others 10 10 10 10
Total 2050 2250 2050 2250

For the sensitivity study, the arterial road network has been simulated
in AIMSUN v. 5.1.11 running under Microsoft Windows Vista 64-bit on
a 2.5 GHz Intel Core 2 Quad processor equipped with 8 GB RAM. The
four available CPU cores are shared among the network’s five signalised
intersections.

7.2.2 Update frequency
The timely detection of changes in demand is a prerequisite for a traffic-
responsive signalisation. In the DPSS mechanism, established PSSs
are periodically reassessed based on the checklist in Section 7.1.4. As
changes are initiated only when the relative importance of traffic streams
has changed or when the tolerances ACTtol or sptol are exceeded, a
reassessment can be performed frequently without running the risk of
unnecessarily disrupting an established coordination.

Figure 7.4 exemplifies the reassessment of a coordinated signalisation for
the arterial road network which has been simulated for a check frequency
of five minutes with tolerances ACTtol = 5 s and sptol = 10 s. A red
vertical line indicates changed partnerships, green lines depict changes
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of the agreed cycle time (solid line) or of a local signal plan (dashed
line). Grey vertical lines represent reassessments that have not changed
the coordination. Additionally, the agreed cycle time of an established
coordination is shown in blue, while grey bars in the background visualise
the simulated traffic volume.
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Figure 7.4: Coordination updates for the arterial road network (5 min
check frequency, ACTtol = 5 s, and sptol = 10 s)

The figure shows that coordination partnerships of the arterial’s inter-
sections change twice in the course of the simulation. The first change
occurs shortly after the start of the simulation when the arterial is co-
ordinated in westbound direction. Another change in the beginning of
the simulation’s second half establishes an eastbound coordination. Both
changes are reasonable when considering the network’s traffic demands
given in Table 7.2.

Once a PSS has been established, its agreed cycle time is occasion-
ally updated. Especially during the first simulated hour, updates are
performed rather frequently because the local observer/controller com-
ponents are still populating their mappings. Once these start-up effects
are overcome, the agreed cycle time roughly follows the network’s traffic
demands. Shortly after a decrease (or increase) of demand, the agreed
cycle time is decreased (or increased) to accommodate the change. In
periods of constant demands, a reassessment does usually not affect the
agreed cycle time. Local signal plan changes not affecting the coordi-
nation are performed rather infrequently due to the large signal plan
tolerance used for the example. The influence of different tolerance levels
on the performance of the DPSS mechanism is now investigated in more
detail.
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7.2.3 Agreed cycle time tolerance and signal plan
tolerance

Whether or not the network’s signal coordination is updated during a
reassessment depends on the chosen levels for the agreed cycle time toler-
ance and the signal plan tolerance. Both tolerances have to be selected
carefully: If their levels are too small, minor fluctuations are sufficient
to trigger frequent coordination updates that are accompanied with dis-
ruptions caused by transitional signal plans. Overly large tolerances, on
the other hand, inhibit a sensitive reaction on changing demands. The
trade-off is investigated in a sensitivity study.

The study is conducted for the arterial road network and considers the
agreed cycle time tolerance ACTtol and the signal plan tolerance sptol

as design factors. Both factors are investigated in a factorial screening
experiment for the factor levels ACTtol ∈ {2 s, 5 s, 10 s} and sptol ∈
{5 s, 10 s}. The network-wide travel time and the network-wide number
of stops serve as response variables that have to be minimised. Both
response variables have been averaged over ten simulated replications
with different random seeds to attribute for the stochasticity of the
experimental setup.

Figure 7.5 summarises the results of the sensitivity study. The figure
depicts the travel times and stops recorded over the simulation period.
Results for each factor combination are averaged over the ten conducted
replications, additional error bars indicate the measurements’ 25th and
75th percentiles.

The development of travel times and stops over the course of the
simulation follows a pattern that is similar for all factor combinations.
In the beginning, both response variables can be reduced as the ob-
server/controller components populate their initially empty mappings
and establish a coordinated signalisation. Temporarily increased travel
times and stops are observed after the hourly changes in the simulated
traffic demand as the organic intersections need to adapt their signalisa-
tion. The increase is most apparent in the beginning of the simulation’s
second half as here the predominant traffic stream is abruptly changed
such that new coordination partnerships are required.

Considering the obtained travel times and stops, conclusions regard-
ing recommended tolerance levels can be drawn. For local signal plan
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(a) ACTtol = 2 s, sptol = 5 s
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(b) ACTtol = 2 s, sptol = 10 s
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(c) ACTtol = 5 s, sptol = 5 s
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(d) ACTtol = 5 s, sptol = 10 s
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(e) ACTtol = 10 s, sptol = 5 s
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Figure 7.5: Travel times and stops for the arterial road network
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changes, a relatively large tolerance of sptol = 10 s is beneficial. When
comparing factor combinations with the same agreed cycle time tolerance
but different signal plan tolerances, lower travel times and fewer stops are
obtained for (nearly) all experiments that apply sptol = 10 s instead of
sptol = 5 s. The only exception are the two factor combinations depicted
in Figures 7.5e and 7.5f, where the travel time is slightly increased by
0.1 s/km.

Small signal plan tolerances decrease the threshold for local signal plan
changes. Local changes affect the signalisation of a single coordinated
intersection, but do not have any effect on the agreed cycle time or
the partnerships within a PSS. Nevertheless, the study shows that the
threshold for local changes should be large, as XCS-T’s signal plan
selection is based on relatively inaccurate delay predictions when signal
plans have to be adapted to suit a given cycle time constraint (see
Section 5.4.1 for a detailed discussion of XCS-T’s signal plan selection
under cycle time constraints).

Regarding the agreed cycle time, Figure 7.5 shows that an increasing
tolerance is accompanied with an increasing number of stops within
the network. The observation holds independent of the chosen signal
plan tolerance (compare Figures 7.5a, 7.5c, and 7.5e and Figures 7.5b,
7.5d, and 7.5f, respectively). The observed travel times do not exhibit a
clear relation to the cycle time tolerance. As the lowest travel times are
obtained for the same factor combination that also exhibits the lowest
number of stops (i. e., ACTtol = 2 s and sptol = 10 s, see Figure 7.5b),
this combination is used in the experimental evaluation of the DPSS
mechanism.

7.3 Comparison to uncoordinated organic
intersections

To assess the DPSS mechanism, the performance of coordinated and unco-
ordinated organic intersections has been compared in a simulation study.
Section 7.3.1 describes the investigated test case and the experimental
setup, before evaluation results are discussed in Section 7.3.2.
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7.3.1 Test case
The comparison of coordinated and uncoordinated organic intersections
has been conducted for the Manhattan network depicted in Figure 7.6.
The network consists of six intersections that each support twelve turning
movements. The connecting road segments have a length of 250 m to
350 m, are two-laned, and provide an additional side-lane for left-turns.
Each intersection is controlled by an observer/controller that reconfigures
a fixed-time signal plan. The plan combines the intersection’s eight signal
groups in four phases. Phases 1 and 3 serve left-turning vehicles, while
Phases 2 and 4 serve vehicles going straight ahead or turning right (see
Figure 7.6).

NW N NE 

WN 

WS 

SW S SE 

EN 

ES 

Phase 1 Phase 2 Phase 3 Phase 4 Phase 1 Phase 2 Phase 3 Phase 4 

Figure 7.6: A Manhattan network with four-phased intersections

In the simulation study, the network has been simulated for four hours
with varying demands. Throughout the complete simulation period,
several strong traffic streams travel the network in east-, west-, north-,
and southbound directions. Changes in their demand have been designed
to resemble the real-world where peak hours and changing major travel
directions (to and from the city centre) can be observed.

Table 7.3 summarises the simulated demand for the Manhattan network.
During the first simulated hour, the eastbound streams (starting at
origins WN and WS and ending at destinations EN and ES , respectively)
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are most heavily travelled. This remains unchanged for the second hour
during which the initial demand is increased by 25 %. With the beginning
of the third simulated hour, the traffic demand is reset to its initial level,
but the most heavily travelled streams change their directions. Finally,
the demand is again increased for the fourth hour of a simulation.

Table 7.3: Traffic demands for the Manhattan network

Traffic demands for 1st 2nd 3rd 4th
O/D pairs (in veh/h) hour hour hour hour
WN → EN 900 1125.0 450 562.5
EN → WN 450 562.5 900 1125.0
WS → ES 900 1125.0 450 562.5
ES → WS 450 562.5 900 1125.0
NW ↔ SW 350 437.5 350 437.5
N ↔ S 350 437.5 350 437.5

NE ↔ SE 350 437.5 350 437.5
Others 10 12.5 10 12.5
Total 5600 7000 5600 7000

The Manhattan network provides the test case for a simulation-based
comparison of coordinated and uncoordinated organic intersections. For
the comparison, the intersections’ observer/controller components have
been configured based on the findings of the previous sensitivity studies.
Table 7.1 summarises the applied configuration. For coordinated inter-
sections, the DPSS mechanism uses a check frequency of five minutes, an
agreed cycle time tolerance of ACTtol = 2 s, and a signal plan tolerance
of sptol = 10 s. This configuration corresponds to the recommendations
in Section 7.2.

Comparisons are based on the average travel time and the average
number of stops observed for the network and for selected traffic streams.
Additionally, fuel consumption and pollution emissions have been evalu-
ated. The fuel consumption of simulated vehicles is calculated with the
help of AIMSUN’s fuel consumption model [196]. Calculations are based
on consumption rates at constant speeds of 90 km/h and 120 km/h and
incorporate data from an additional factor table to account for the accel-
eration, deceleration, and idling of simulated vehicles. Consumption rates
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7.3 Comparison to uncoordinated organic intersections

and factor tables have been configured based on data taken from [197]
(consumption rates) and [67] (factor tables). For this setup, the model
reflects the fuel consumption of vehicles built in 1994. Unfortunately,
more recent data has not been available. Since 1996, the fuel consumption
of vehicles sold in the EU is determined according to the New European
Driving Cycle (NEDC, EU Directives 80/1268/EWG and 93/116/EWG)
that no longer incorporates the required consumption rates at constant
speeds.

As a vehicle’s Carbon Dioxide (CO2) emission is (for a given type of
fuel) directly proportional to its fuel consumption [198], the emission of
this harmful greenhouse gas can be estimated using data provided by
the fuel consumption model. Other pollutants like Carbon Monoxide
(CO), Nitrogen Oxides (NOx), and un-burnt Hydrocarbons (HC) have to
be treated by a separate pollution emission model, as their emission is
not directly linked to fuel consumption. CO, NOx, and HC are emitted
especially during high load and idling periods of petrol and diesel engines
(i. e., when vehicles are standing with running engines or when they have
to accelerate after a stop). All three pollutants are harmful to the human
health. CO reduces the blood’s Oxygen carrying capacity, while HC and
NOx affect the human respiratory system and contribute to ground level
Ozone formation [198]. Therefore, the emission of the three pollutants has
been estimated with the help of AIMSUN’s pollution emission model [196]
using data available in [149].

In the following, comparative results based on the above mentioned
response variables are presented. As in the preceding sensitivity study
(Section 7.2), all simulations have been conducted using AIMSUN v. 5.1.11
running under Microsoft Windows Vista 64-bit on a 2.5 GHz Intel Core 2
Quad processor equipped with 8 GB RAM. The four available CPU cores
are shared among the network’s signalised intersections.

7.3.2 Simulation results
The test network has been simulated for coordinated and uncoordinated
organic intersections. In the uncoordinated case, the observer/controller
components adapt the signal plans of their respective intersections in-
dependently. In the coordinated case, intersections apply the DPSS
mechanism and collaborate to set up PSSs.
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For the Manhattan network, the DPSS mechanism establishes two
parallel PSSs. In the first half of the simulation, the two eastbound
traffic streams are most heavily travelled and are thus served by PSSs.
When the traffic demand changes at the beginning of the simulation’s
second half, the DPSS mechanism adapts the coordination accordingly
and establishes two PSSs for the westbound streams.

Network-wide travel times and stops

Figure 7.7 illustrates how the coordination affects the network by com-
paring network-wide travel times and stops for the coordinated and the
uncoordinated case. Depicted results are averaged over ten simulation
runs with different random seeds to attribute for stochastic influences in
the experimental setup. Error bars are omitted for improved readability.
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Figure 7.7: Travel time and stops for uncoordinated and coordinated
signalisation (DPSS) in a Manhattan network

Compared to an uncoordinated signalisation, the DPSS mechanism
reduces the network-wide number of stops for nearly the whole simulation
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period. Exceptions occur in the beginning of the simulation’s first and
second half when the number of stops reaches a level similar to that
of uncoordinated intersections. During these periods, a coordinated
signalisation has not yet been established (first half) or is not yet adapted
to changed demands (second half). Despite the temporary decline, the
coordination reduces the network-wide stops by 9.3 % over the simulation
period.

Regardless of this considerable reduction, the network-wide travel
times are mostly unaffected by coordination. Figure 7.7 shows that
travel times obtained for the DPSS mechanism fluctuate at the level of
an uncoordinated signalisation for most of the simulation period. An
increase can be observed for the beginning of the simulation’s second
half, when the coordinated signalisation has to be adapted to changed
demands, but for the complete simulation period travel times are neither
increased nor reduced.

The DPSS mechanism’s effect on travel times is limited as the coor-
dination tends to increase the coordinated intersections’ cycle length
(see Section 7.1.2). Instead of being operated with their optimal cy-
cle, coordinated intersections have to utilise the longer agreed cycle
time of their PSS. This increases their vehicular delay and limits the
observer/controller’s flexibility to react on local fluctuations in traffic.
Delay savings due to a reduced number of stops for the coordinated
phase can compensate this increase, but cannot reduce the vehicular
delay below the uncoordinated level. In consequence, travel times cannot
be reduced by the same amount that is achieved for stops.

Travel times and stops for selected traffic streams

While Figure 7.7 visualises travel times and stops for the complete network,
Figure 7.8 illustrates the effect of a coordinated signalisation on traffic
streams. The figure depicts travel times and stops for both directions
of the network’s northern arterial. While the arterial is coordinated in
eastbound direction during the first half of the simulation period, its
westbound traffic stream is served by a PSS in the simulation’s second
half. Whenever a PSS is established, travel times and stops for the
coordinated direction are considerably reduced (compare the simulation
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period’s first half in Figure 7.8a and its second half in Figure 7.8b).
Travel times and stops for the less heavily travelled opposite direction are,
however, increased compared to an uncoordinated signalisation (compare
the simulation period’s fist half in Figure 7.8b and its second half in
Figure 7.8a). Considering the complete simulation period, stops are
reduced by 14.5 % and 13.2 % for the east- and westbound streams, while
the overall travel times remain mostly unaffected (see Table 7.4).
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Figure 7.8: Travel time and stops for uncoordinated and coordinated
signalisation (DPSS) within selected streams

Table 7.4: Reduction of travel time and stops obtained by the DPSS
mechanism

Travel time Stops
Network 0.0 % 9.3 %
Stream WN → EN 1.2 % 14.5 %
Stream EN → WN −2.1 % 13.2 %

Fuel consumption and pollution emission

In addition to travel time and stops, the fuel consumption and pollution
emissions of the simulated vehicles have been evaluated. Figure 7.9
depicts fuel consumption rates for coordinated and uncoordinated signals
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over the course of the simulation period. The depicted data is averaged
over ten replications and shows that consumption rates can be reduced
by coordination. Whenever the DPSS mechanism decreases the number
of stops for the network, the fuel consumption is also decreased (compare
Figures 7.7 and 7.9). Averaged over the simulation period, a reduction
of 6.1 % (from 12.8 l/km 12.1 l/km) has been achieved. The rates might
seem high, but can be explained the density of intersections in the network
and the fact that AIMSUN’s fuel consumption model does not reflect
recent advances in engine development.

A decreased fuel consumption directly leads to a reduction of CO2
emissions [198], but the emission of other pollutants can be reduced by
coordination as well. For the test network, a CO reduction of 3.9 %, a HC
reduction of 2.4 %, and an NOx reduction of 7.1 % have been obtained
by avoiding unnecessary stops.
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Figure 7.9: Fuel consumption for uncoordinated and coordinated signali-
sation (DPSS) in a Manhattan network

7.4 Summary
In urban road networks, intersections cannot optimise their signal plans
independently of their neighbours. Due to the close proximity of neigh-
bouring intersections, a coordinated signalisation is a prerequisite to avoid
unnecessary stops. It can be established either implicitly (by the early
detection of arriving vehicle platoons) or explicitly (by communication
and offset adaptation).
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With the DPSS mechanism, a decentralised coordination mechanism
has been introduced. It relies on local communication to achieve a self-
organised coordination of organic intersections. In response to detected
traffic demands, the DPSS mechanism determines which intersections
should form PSSs, negotiates a common cycle time, computes the neces-
sary offsets, and establishes the coordination.

As signal plans are selected and optimised locally at run-time while
a traffic-responsive coordination is established completely decentralised,
the DPSS mechanism constitutes a novel approach. Compared to an
uncoordinated organic signalisation, the DPSS mechanism can achieve a
considerable reduction of stops, thereby contributing to a reduced fuel
consumption and lowered pollution emissions.

Despite the promising results, the DPSS mechanism is subject to some
restrictions. Due to its limited local knowledge on the network-wide
demand, the mechanism constitutes a heuristic that greedily favours the
strongest streams in a network. As this can impede the coordination
of several other streams that in sum serve more vehicles, the resulting
coordination can be suboptimal – an issue that is addressed in the
following chapter.
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Hierarchical coordination of organic intersections

The DPSS mechanism that has been introduced in the previous chapter
achieves a traffic-responsive coordination of organic intersections. The
intersections optimise their coordinated signalisation locally. Thereby, a
computationally complex and monetarily costly coordination in a traffic
control centre is substituted by decentralised interactions. However, the
DPSS mechanism has no information on network-wide demands such
that conflicts of interest among traffic streams cannot be solved optimally.
The difficulty is in selecting the coordinated streams, as the coordination
of one stream can impede the coordination of several others.

Figure 8.1 illustrates an example that misleads the DPSS mechanism.
The figure depicts traffic streams in a Manhattan network of six intersec-
tions. Each stream is represented by an arrow, the arrow width being
proportional to the traffic flow of the particular stream. In the example,
two traffic streams run from west to east, while three streams run from
north to south. In sum, approximately the same amount of traffic travels
in east- and southbound direction. Other traffic is neglected to keep the
example simple.
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Figure 8.1: Traffic flows in a Manhattan network

For the depicted demand, the DPSS mechanism greedily establishes a
PSS for the central southbound stream which is most heavily travelled.
As this inhibits a coordination of both eastbound streams, further PSSs
are afterwards established for the two remaining southbound streams.
In consequence, vehicles travelling along one of the three southbound
streams benefit from coordination when they pass the stream’s second
intersection without a stop. (Vehicles arrive randomly at the first inter-
section, compare Figure 1.4b.) However, a higher reduction of stops could
be obtained by coordinating the eastbound streams. Here, travellers in
each stream can pass two intersections without an additional stop such
that more stops are avoided in total.

For a better treatment of similar cases, the DPSS mechanism is ex-
tended by an additional hierarchical component that is called Regional
Manager (RM). The RM combines traffic flow measurements of several
intersections and uses the resulting regional model to solve conflicts of
interest among traffic streams. Thereby, it substitutes the first step
of the DPSS mechanism (Determining collaborating intersections, see
Section 7.1.1). Since the organic intersections remain responsible for their
signalisation and autonomously determine the agreed cycle times and
offsets for PSSs by local communication, the former decentralised system
is now hierarchically organised (as illustrated in Figure 7.1c).

The remainder of this chapter is dedicated to the discussion of this
hierarchical system. The presentation is partly based on a previous
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publication [191]. Section 8.1 introduces the working principle of the
RM and discusses its technical requirements, before the RM’s relation to
other hierarchical network control systems is investigated. Section 8.2
experimentally compares decentralised and hierarchical signal coordina-
tion in a simulation study to investigate possibilities and limitations of
decentralised traffic control. Finally, the chapter is concluded with a
summary in Section 8.3.

8.1 The Regional Manager
The RM’s task is to determine a set of traffic streams for coordination
that minimises the network-wide number of stops. To obtain a near-
optimal set of streams, the RM relies on three steps. In a first step,
traffic flow measurements at the organic intersections are aggregated in
a graph model that represents the region’s traffic flows. The regional
model forms the basis for the RM’s further operations, its availability
is an important difference to the DPSS mechanism that relies on local
demands, only. Section 8.1.1 discusses the creation of the model.

Based on the model, the RM analyses the region’s traffic flows and
identifies strong traffic streams that are candidates for coordination.
This second step is in the focus of Section 8.1.2. Unfortunately, PSSs
cannot be simultaneously installed for every candidate stream as the
coordination of one stream typically inhibits the coordination of several
others. Therefore, the RM combines non-conflicting streams to stream
systems and selects the most promising system in a third step that is
discussed in Section 8.1.3.

8.1.1 Building the network graph
To obtain a model of the regional traffic flows, the RM combines subgraphs
that represent individual intersections into a single network-wide graph.
Each subgraph describes the turning movements of an intersection with
their traffic flows. More specifically, a subgraph contains one vertex for
each outgoing section, one vertex for each incoming section, and one
edge for each turning movement. Edges are directed and weighted, their
weight corresponds to the current traffic flow of the represented turning.
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Subgraphs are created by organic intersections which transmit them
to the RM where they are connected to a regional graph by merging
vertices that represent the same section. Figure 8.2a illustrates the
motivational Manhattan network of six intersections with their subgraphs.
In the figure, edge weights are omitted for improved readability. For
the north-western intersection, adjacent sections that will be merged
are individually coloured to ease their re-identification in the regional
graph that is depicted in Figure 8.2b. Based on the regional demand
represented by graph’s edge weights (omitted in the figure), the RM
determines candidate traffic streams for coordination in the following
step.

(a) Network with subgraphs (b) Regional graph representation

Figure 8.2: A Manhattan network and its graph representation

8.1.2 Determining candidate traffic streams
In its second step, the RM identifies the largest traffic streams within the
network. These streams are candidates for coordination as many drivers
directly benefit from their coordinated signalisation.

To determine the candidate streams, the RM executes Algorithm 8.1.
Using the regional graph G = (V, E) created in the previous step, the
algorithm iteratively connects adjacent graph edges to candidate streams
after the edge set has been sorted with respect to the edge weights
(Line 1).
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Algorithm 8.1: Determine traffic streams
Data: A set E of edges (resulting from Step 1)
Result: A set S of streams

1 Sort E w. r. t. edge weights.
2 repeat
3 Choose edge e = arg maxweight(E).
4 Remove e from the edge set E.
5 Create a new empty stream s, add e to s.
6 Set edge e∗ := e.
7 repeat
8 Choose preceding edge ep of e∗ with

ep = arg maxweight(Predecessors of e∗).
9 Add ep to stream s.

10 Set e∗ := ep.
11 until e∗’s intersection contains an edge e∗∗ with

e∗∗.weight() > e∗.weight()
12 Repeat Lines 6–11 for the subsequent edges of e.
13 Remove all edges of stream s from E.
14 Set s.weight() to the number of benefiting vehicles.
15 Add stream s to set of streams S.
16 until E is empty or e.weight() ≤ threshold t.

When building the streams (Lines 2–16), Algorithm 8.1 chooses an
unprocessed edge e with maximum weight from the edge set E (Line 3),
removes e from E (Line 4), and adds e to the traffic stream s that is
currently under construction (Line 5).

Starting from the first turning e∗ in the stream (that is currently e∗ = e,
see Line 6), the algorithm iteratively determines the best predecessor
turning by selecting the adjacent edge with highest weight from the
particular candidates (Lines 7–11). The selected edge ep is included in
the stream s (Line 9) as predecessor of e∗ and the iteration continues
with e∗ = ep as the stream’s first turning. The addition of predecessors
is stopped if e∗ does not represent the most heavily travelled turning at
its intersection (Line 11), as in this case the corresponding intersection
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prefers a different coordination. Once the predecessor turnings have
been added to the stream, successor turnings are analogously included
by starting from the stream’s last turning (Line 12). Afterwards, the
stream s is completed.

Before the completed stream is included in the set S of candidate
streams (Line 15), its edges are removed from the edge set E (Line 13)
as their represented turnings cannot be included in another coordinated
stream. Furthermore, a weight is assigned to the stream (Line 14). The
weight estimates the number of vehicles that benefit from the stream’s
coordination. For a stream s = (e1, . . . , en) that incorporates n turnings,
it is estimated as

s.weight() :=
n∑

i=2
ei.weight(),

i. e., vehicles are assumed to benefit from a coordinated signalisation once
they have passed the stream’s first signalised turning, where they arrive
randomly.

Once the completed stream s has been added to the stream set, the
construction of streams continues for the reduced edge set E until the
remaning edges do no longer serve considerably large traffic flows.

To illustrate the stream set S resulting from Algorithm 8.1, Figure 8.3
depicts selected streams for the Manhattan network that has served as
motivational example. The figure shows constructed streams as connected
sequences of red edges in the network’s regional graph. Some streams in
S are conflicting, i. e., they cannot be coordinated simultaneously. Before
the selection of conflict-free subsets will be discussed, the run-time of
Algorithm 8.1 is analysed.

... 

Figure 8.3: Candidate traffic streams in a Manhattan network
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Algorithm 8.1 has a run-time complexity of O(m log(m)) with m being
the number of edges in the regional graph. The time is required for sorting
(Line 1). During the execution of Lines 2–16, every edge is looked at a
constant number of times, only. Edges included in a stream are removed
(Lines 4 and 13) and will not be considered in later iterations. The
repeated execution of Lines 6–11 and 12 can be performed in linear time
using a suitable data structure, since the degree of vertices is bounded by
a constant when representing intersections. Furthermore, since each edge
is part of at most one stream, evaluating the benefits of all constructed
streams (Line 14) can be done in linear time.

The complexity of Algorithm 8.1 can be denoted in the same way
depending on the number of intersections, since the number of turnings –
which are represented as edges in the graph – depends linearly on the
number of intersections. In consequence, Algorithm 8.1 constitutes a
computationally efficient heuristic that identifies a set of strong traffic
streams in a road network. The set serves as input for the third step of
the regional coordination.

8.1.3 Determining stream systems
In a third step, the RM determines subsets of non-conflicting streams
(so-called stream systems). Traffic streams in the same stream system
must not intersect each other or run in different directions on the same
roads. In other words, each signalised intersection can be part of at most
one stream to guarantee that the streams within a stream system can be
coordinated simultaneously. Among the identified stream systems, the
RM determines one system that minimises the network-wide number of
stops. This system will be implemented in the road network.

Figure 8.4 illustrates three stream systems that could have been ob-
tained for the Manhattan network example. As before, streams are
depicted as connected sequences of red edges. Each of the depicted
stream systems is non-conflicting. However, the systems differ in their
savings (that depend on the network’s traffic flows and are not shown in
the figure).

To create promising stream systems, the RM executes Algorithm 8.2 on
the previously identified set S of traffic streams. The algorithm identifies
non-conflicting subsets of streams without generating the power set of S.
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... 

Figure 8.4: Candidate stream systems in a Manhattan network

In a preprocessing step (Lines 1–8), an incompatibility function J : S ×
S → {0, 1} is constructed that allows to quickly identify conflicting
streams in later stages of the algorithm. For each intersection i, traffic
streams that include one of i’s turnings are identified (Line 4). Pairs
of these streams are conflicting and are thus marked correspondingly
(Lines 5–7). Once the preprocessing is completed for all intersections, the
constructed function J indicates the (in)compatibility of arbitrary pairs
(s, s′) of streams in S. A value of J(s, s′) = 0 indicates a non-conflicting
pair of streams, while a value of J(s, s′) = 1 indicates a conflict. It should
be noted that J(s, s) = 1 for each stream s ∈ S.

Using the function J , stream systems are iteratively created by greedily
including the best non-conflicting and unprocessed traffic streams that
are available. To quickly access the best streams throughout the iterative
process, S is sorted with respect to the streams’ weights (Line 9). A set
U contains the unprocessed streams. Initially, it is a copy of S (Line 10).
The algorithm terminates when each stream in S has been included in a
stream system, i. e., the algorithm terminates when U is empty (Line 29).

To obtain non-conflicting stream systems, Algorithm 8.2 relies on two
nested loops. In every iteration of the outer loop (Lines 11–29), a stream
system Z is created. A set T keeps track of streams that are not in
conflict with any stream in Z. Initially, Z is empty such that T equals
S (Lines 12 and 13). In Lines 14 and 15, the best unprocessed stream
s1 is added to Z. After its inclusion, s1 is removed from the set U of
unprocessed streams (Line 16). Streams that are in conflict with s1 are
removed from T (Lines 17–19). Here, the incompatibility function J from
preprocessing helps to identify conflicting streams.

After the inclusion of the first stream, the inner loop in Lines 20–27 is
processed. The loop iterates over the set T and determines the best non-
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conflicting stream that can be added to the stream system Z (Line 21).
The stream is added to Z (Line 22) and can be removed from U as it has
been processed (Line 23). Subsequently, the set T is updated by removing
streams in conflict with the newest addition to Z (Lines 24–26). The
inner loop ends when T is empty, i. e., when no non-conflicting streams
are available for addition. Now, Z is completed and can be added to the
set R that collects the created stream systems.

Using suitable data structures, Algorithm 8.2 has a complexity of
O(m2), with m being equal to the number of edges in the regional graph.
The preprocessing (Lines 1–8) needs time O(m2), since the number r of
streams containing the same intersection is bounded by a constant (the
intersection’s number of turnings). Furthermore, at most O(m) entries of
the function J are set to 1 during preprocessing. Therefore, the amortised
complexity of the inner loop in Lines 20–27 is O(m), and the loop in
Lines 11–29 can be executed in time O(m2).

The result of Algorithm 8.2 is a set R of stream systems. To determine
the benefiting vehicles for a stream system Z ∈ R, the number of vehicles
benefiting from the coordination of each stream s ∈ Z is summed up,
i. e.,

Z.weight() :=
∑
s∈Z

s.weight().

Based on the obtained values, the best stream system is selected for
implementation in the road network. The RM communicates the resulting
partnerships to the intersections where a common cycle time, appropriate
signal plans, and offsets for the PSSs are determined locally using Steps 2
and 3 of the DPSS mechanism (see Sections 7.1.2 and 7.1.3).

8.1.4 Discussion
The RM constitutes an extension to the DPSS mechanism that supports
the coordination of signalised intersections in a road network. The
remainder of this section will discuss the RM’s technical requirements,
before it focuses on the remaining limitations of hierarchical control.
Finally, the RM will be situated in the context of other network control
systems.
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Algorithm 8.2: Determine stream systems
Data: A set S of streams (determined during Step 2)
Result: A set R of generated stream systems

1 Construct a function J : S × S → {0, 1}.
2 Set J to 0 for all arguments.
3 foreach Intersection i do
4 Determine the streams si,1, . . . , si,r containing i.
5 foreach j, k ∈ {1, . . . , r} do
6 Set J(si,j , si,k) := 1.
7 end
8 end
9 Sort S w. r. t. the number of benefitting vehicles.

10 Set U := S.
11 repeat
12 Set T := S.
13 Create an empty stream system Z.
14 Choose stream s1 with s1 = arg maxweight(U).
15 Add s1 to Z.
16 Remove s1 from U .
17 foreach Stream s′ with J(s1, s′) = 1 do
18 Remove s′ from T .
19 end
20 repeat
21 Choose stream s2 with s2 = arg maxweight(T ).
22 Add s2 to Z.
23 Remove s2 from U .
24 foreach Stream s′ with J(s2, s′) = 1 do
25 Remove s′ from T .
26 end
27 until T is empty.
28 Add Z to R.
29 until U is empty.
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Requirements

Since the RM extends the DPSS mechanism, it has the same minimum
requirements regarding traffic detection, communication, and time syn-
chronisation that are needed for decentralised control (see Section 7.1.5).

Additionally, a regional control centre is required such that the RM
can select the coordinated traffic streams. To build the necessary regional
model (Step 1, see Section 8.1.1), the intersections need to communicate
their traffic flow measurements to the RM. Thus, they have to be con-
nected to the control centre via a communication link. The link is also
required during Step 3 (see Section 8.1.3) as the RM has to inform the
intersections on the coordinated streams.

Both steps are periodically executed in intervals of a few minutes. The
amount of communicated data is limited and delays of several seconds
during data transmission are not critical. In consequence, the RM has no
special requirements regarding communication bandwidth and latencies.

Regarding the RM’s computational requirements, a standard PC is
sufficient for the on-line coordination of typical traffic networks that
consist of several dozen signalised intersections. The computationally
expensive Steps 2 and 3 can be implemented efficiently with respect to
the number of intersections in the network (see Sections 8.1.2 and 8.1.3
for a run-time analysis).

In summary, the technical requirements for the RM are moderate
and should be justified by the benefits of a hierarchically coordinated
signalisation (see Section 8.2). Nevertheless, the RM is still subject to
some limitations.

Limitations

Despite its regional model, the RM can be misled by virtual streams.
The regional graph is based on flow measurements at the signalised
intersections, but the routes of the vehicles are a-priori unknown and
have to be derived from the model. In special constellations, the traffic
streams identified by Algorithm 8.1 may not coincide with the actual
streams in the network. A corresponding problem has been observed for
the DPSS mechanism and is discussed in Section 7.1.5.

A second limitation of the RM results from the complexity of the
optimisation problem and the run-time restrictions prevalent in an on-
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line system. To allow for an efficient implementation, the RM identifies
traffic streams and stream systems by a greedy approach. Thus, the
stream system selected for coordination is not guaranteed to be optimal.
However, as changing traffic flows and random fluctuations affect the
performance of a coordinated signalisation, near-optimal (but up to
date) solutions are preferred over optimal solutions for outdated traffic
demands.

Comparison

Despite its limitations, the RM has several advantageous properties that
become clear when the approach is situated in the context of centralised
and hierarchical network control systems.

In contrast to centralised systems (like SCOOT, see Section 2.4.1),
the organic intersections remain autonomous entities even when their
coordination is supported by the RM. The intersections continue the
on-line optimisation of their signal plans and can negotiate coordination
updates (like a changed agreed cycle time) without any involvement of
the RM.

The limited dependency on the RM has two important advantages
compared to centralised systems: Firstly, the RM does not constitute a
single point of failure. The DPSS mechanism remains functional without
the RM even though the performance of the coordination can suffer
(graceful degradation). In centralised systems, a network’s signalisation
is widely dependent on a functional control centre.

The second advantage affects the communication among intersections
and control centre. As the RM is active periodically in intervals of several
minutes, only, and as the amount of transmitted data is limited, the
approach works for unreliable or slow communication links with limited
bandwidth. In centralised systems, where detection and signalisation data
has to be continuously transmitted among control centre and intersections,
the communication links are vital, but often error-prone [74].

Considering its architecture, the RM is more closely related to hier-
archical systems like BALANCE or MOTION (see Section 2.4.4). Both
systems rely on a control centre to optimise frame signal plans for the
network’s intersections, but allow for local traffic-actuated adaptations.

232



8.2 Experimental evaluation

Compared to these systems, the RM puts an even stronger emphasis on
distributed intelligence. Instead of a merely traffic-actuated operation,
the organic intersections evaluate and optimise their signalisation on-line.
Unfortunately, both philosophies could not be compared experimentally
for this thesis as neither an AIMSUN implementation of BALANCE or
MOTION nor reference networks have been available. The following
experimental evaluation will therefore focus on a comparison of the DPSS
mechanism with and without the support of the RM.

8.2 Experimental evaluation
To study the potential benefits of the RM that supports the signal
coordination with data on the regional traffic demand, a decentralised
coordination (by the DPSS mechanism) and a hierarchical coordination
(supported by the RM) have been compared in a simulation study. The
experimental setup of the study is presented in Section 8.2.1. Then,
Section 8.2.2 discusses the obtained results.

8.2.1 Test case
In the simulation study, the Manhattan network that served as test
case for the evaluation of the DPSS mechanism has been revisited (see
Figure 7.6). The network consists of six intersections that each support
twelve turning movements. The connecting road segments have a length
of 250 m to 350 m, are two-laned, and provide an additional side-lane
for left-turns. Each intersection is equipped with an observer/controller
responsible for the traffic-responsive reconfiguration of a fixed-time signal
plan. The plan combines the intersection’s eight signal groups in four
phases. Phases 1 and 3 serve left-turning vehicles, while Phases 2 and 4
serve vehicles going straight ahead or turning right.

The simulated traffic demand has been designed to resemble the moti-
vational example that misleads the DPSS mechanism (see Figure 8.1).
Table 8.1 lists the simulated demands for all O/D pairs in the network.
During the first half of the four hour simulation period, the most relevant
traffic streams are south- and eastbound. The strongest stream starts at
origin N and ends at destination S (see Figure 7.6 for O/D labels), but
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Table 8.1: Traffic demands for the Manhattan network

Traffic demands for 1st half 2nd half
O/D pairs (in veh/h) → ← → ←
WN ↔ EN 775 345 345 775
WS ↔ ES 775 345 345 775
NW ↔ SW 430 175 175 430
N ↔ S 1035 345 345 1035

NE ↔ SE 430 175 175 430
Others 10 10 10 10
Total 5630 5630

both eastbound streams (starting at origins WN and WS , respectively)
are also heavily travelled. In the second half of the simulation period, all
traffic flows change their direction such that most traffic is north- and
westbound.

Using the simulation model as test case, the DPSS mechanism with
and without the RM as hierarchical extension is compared to an unco-
ordinated organic signalisation that serves as reference scenario. The
intersection’s observer/controller components are configured as in earlier
studies. The applied levels for all design factors are available in Table 7.1.
For coordination, the DPSS mechanism uses a check frequency of five
minutes, an agreed cycle time tolerance of ACTtol = 2 s, and a signal plan
tolerance of sptol = 10 s. All settings correspond to recommendations of
earlier sensitivity studies.

The comparison of the decentralised and hierarchical coordination
considers travel times and stops for the network and for selected traffic
streams as response variables. Additionally, fuel consumption and pollu-
tion emissions are evaluated and compared. To account for the stochastic-
ity of the experimental setup, all comparisons are based on the average of
ten replicated simulation runs with different random seeds. The necessary
simulations have been conducted using AIMSUN v. 5.1.11 running under
Microsoft Windows Vista 64-bit on a 2.5 GHz Intel Core 2 Quad processor
equipped with 8 GB RAM.
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8.2.2 Simulation results
The test network has been simulated for coordinated and uncoordinated
organic intersections. In the coordinated case, intersections apply the
DPSS mechanism either with or without the RM supporting the coordi-
nation. When not supported by the RM, the DPSS mechanism creates
a PSS serving the traffic stream from origin N to destination S during
the first half of the simulation period. As this inhibits a coordination of
both eastbound streams, further PSSs are afterwards established for the
two remaining southbound streams. In contrast, both eastbound streams
are coordinated when the DPSS mechanism is supported by the RM.

When the traffic demand changes at the beginning of the simulation’s
second half, the signal coordination needs to be adapted. During this
period, the DPSS mechanism coordinates the three northbound streams,
while the RM establishes PSSs for the two westbound streams.

Network-wide travel times and stops

The different PSSs that are established by the DPSS mechanism when
it is operated with and without the RM affect the performance of the
signalisation. Figure 8.5 depicts the network-wide travel times and stops
resulting from the different coordination schemes. The depicted data
is averaged over ten replications. Error bars are omitted for improved
readability.

Compared to the uncoordinated reference solution, both coordination
mechanisms can reduce the number of stops for nearly the complete sim-
ulation period. The abrupt change of the traffic demand in the beginning
of the simulation’s second half temporarily affects their performance, but
once the change is detected, the coordination is updated and the stops
are reduced to their previous levels. As expected for the investigated
test case, the DPSS mechanism achieves the highest reduction of stops
when it is supported by the RM. Over the simulation period, 15.7 % of
the network-wide stops are saved in comparison to the reference solution.
Without the RM, the DPSS mechanism achieves a reduction of 7.6 %.

Despite the reduction of stops, the network-wide travel times are mostly
unaffected by coordination. Without the RM, travel times are reduced by
2.4 % compared to the uncoordinated reference. With the RM, a slight
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Figure 8.5: Travel time and stops for uncoordinated and coordinated
signalisation (DPSS/RM) in a Manhattan network

increase of 0.6 % has been observed. Due to long cycle lengths and a
reduced flexibility of the coordinated intersections, travel time savings
resulting from a reduced number of stops for the coordinated phases are
partly compensated. This effect has been observed in earlier experiments
and is discussed in Section 7.3.2.

Travel times and stops for selected traffic streams

To illustrate the different effects of decentralised and hierarchical coordi-
nation, selected traffic streams have been evaluated with respect to travel
times and stops.

North- and southbound streams Figure 8.6 compares the travel times
and stops that have been measured for the Streams N → S and S → N .
Without the support of the RM, the DPSS mechanism establishes a PSS
for Stream N → S during the first half of the simulation. During this

236



8.2 Experimental evaluation

period, the stream is the most heavily travelled stream in the network. Its
coordination successfully reduces travel times and stops for southbound
travellers (see Figure 8.6a), but increases both measures for the less
heavily travelled opposite direction (see Figure 8.6b).
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Figure 8.6: Travel time and stops for the uncoordinated and coordinated
signalisation (DPSS/RM) of selected north- and southbound
streams

During the simulation’s second half, the situation is reversed due to
the changed traffic demand. The DPSS mechanism establishes a PSS for
Stream S → N which is most heavily travelled after the change. The
PSS reduces the travel time and stops for northbound travellers (see
Figure 8.6b), but the reduction comes at the cost of increased values for
the less heavily travelled opposite direction (see Figure 8.6a).

Considering the complete simulation period, the DPSS mechanism
reduces travel times and stops for both streams. Table 8.2 summarises
the reductions compared to an uncoordinated signalisation.

In contrast to a decentralised coordination, the RM does not establish
PSSs for the north- or southbound streams. In consequence, measured
travel times and stops for these streams approximately resemble those
observed for an uncoordinated signalisation (see Figure 8.6 and Table 8.2).
The network-wide benefits of an hierarchical coordination result from the
coordination of the east- and westbound streams.
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Table 8.2: Reduction of travel time and stops compared to an uncoordi-
nated signalisation of selected north- and southbound streams

Travel time Stops
N → S S → N N → S S → N

DPSS 1.3 % 2.3 % 14.4 % 15.6 %
RM −2.5 % 0.4 % 1.4 % 4.4 %

East- and westbound streams Figure 8.7 depicts results obtained for
the Streams WN → EN and EN → WN . Without the support of the
RM, the DPSS mechanism does not establish PSSs for these streams. In
consequence, the measured travel times and stops approximately resemble
those obtained by an uncoordinated signalisation.
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Figure 8.7: Travel time and stops for the uncoordinated and coordinated
signalisation (DPSS/RM) of selected west- and eastbound
streams

The RM coordinates the eastbound stream during the first half of
the simulation period, while the opposite direction is served by a PSS
during the simulation’s second half. Whenever a PSS is established,
travel times and stops for the coordinated direction are considerably
reduced (compare the simulation period’s first half in Figure 8.7a and
its second half in Figure 8.7b). Travel times and stops for the less
heavily travelled opposite direction are, however, increased compared
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to an uncoordinated signalisation (compare the simulation period’s fist
half in Figure 8.7b and its second half in Figure 8.7a). Considering the
complete simulation period, stops are reduced by 26.5 % and 23.6 % for
the east- and westbound streams, while the overall travel times remain
mostly unaffected. All results are summarised in Table 8.3.

Table 8.3: Reduction of travel time and stops compared to an uncoordi-
nated signalisation of selected east- and westbound streams

Travel time Stops
WN → EN EN → WN WN → EN EN → WN

DPSS −0.6 % 0.0 % 1.1 % 1.7 %
RM 0.6 % 0.6 % 26.5 % 23.6 %

Fuel consumption and pollution emission

To assess the environmental impact of decentralised and hierarchical
signal coordination, AIMSUN’s environmental models have been used to
evaluate the vehicles’ fuel consumption and their emission of pollutants.
The models have been configured based on data taken from [67,149, 197]
(see Section 7.3.1 for details).

Figure 8.8 depicts the fuel consumption over the simulation period and
shows that both coordination mechanisms reduce the fuel consumption
compared to an uncoordinated signalisation. The highest reduction
of 1.2 l/100km (or 8.9 %) is obtained by the RM. Without the RM’s
support, the DPSS mechanism still achieves a considerable reduction of
0.5 l/100km (or 3.8 %).

The temporal development of the fuel consumption closely resembles the
development of the network-wide number of stops (compare Figures 8.5
and 8.8). Once a coordinated signalisation is established in the beginning
of the simulation period, stops and, in consequence, fuel consumption rates
are reduced. After the change in traffic demand in the beginning of the
simulation’s second half, both measures are temporarily increased until
the coordination is adapted to the new demand. The close relation is due
to the additional fuel that is required to re-accelerate a stopped vehicle.
Therefore, a network-wide reduction of stops does not only improve the
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Figure 8.8: Fuel consumption for uncoordinated and coordinated signali-
sation (DPSS/RM) in a Manhattan network

comfort for the drivers, but is also beneficial for environmental reasons.
The reductions reported for fuel consumption directly map to the

emission of Carbon Dioxide (CO2) that is proportional to the quantity of
fuel consumed [198]. The emission of other pollutants is summarised in
Table 8.4. The decentralised and the hierarchical coordination are both
able to reduce the emission of pollutants compared to an uncoordinated
signal system, but better results with respect to all pollutants are obtained
by the RM. Again, the higher reduction of stops achieved by a supporting
RM explains the higher reduction of emissions. CO, NOx, and HC are
emitted especially during high load and idling periods of petrol and
diesel engines, i. e., when vehicles are standing with running engines or
when they have to accelerate after a stop. These periods are reduced by
coordination.

Table 8.4: Network-wide reduction of pollution emissions compared to
an uncoordinated operation

CO NOx HC
DPSS 2.8 % 4.2 % 2.3 %
RM 5.2 % 9.8 % 2.9 %

In summary, both presented traffic-adaptive coordination mechanisms
have a beneficial impact on the traffic network. Especially, the number of
stops, the fuel consumption, and pollution emissions can be reduced by
coordination. For the investigated test case – that exploits a weakness
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of the DPSS mechanism – the hierarchical coordination shows a better
performance.

8.3 Summary
The RM constitutes an extension to the DPSS mechanism that can further
improve the coordination of traffic signals. With the RM’s support, the
optimisation of a network’s signalisation is tackled hierarchically. On
a regional level, the RM determines traffic streams for coordination.
The corresponding PSSs are subsequently established by the organic
intersections with the help of local interactions.

The hierarchical problem decomposition allows for a better consid-
eration of conflicts of interest among traffic streams. To obtain the
necessary regional view on the network’s demands, the RM combines
the intersections’ flow measurements in a regional model. Based on the
model, strong traffic streams in the network are identified and combined
into a non-conflicting stream system that, when coordinated, minimises
the network-wide number of stops.

While a regional model is a common property of centralised or hierar-
chical network control systems, the hierarchical extension of the DPSS
mechanism differs from these systems by its strong emphasis of local
on-line optimisation. The RM is solely responsible for the selection of the
coordinated traffic streams, as this is a task that strongly benefits from
a regional model. The relevant coordination parameters are, however,
determined in a decentralised process among the organic intersections.
The intersections also remain responsible for the optimisation of their own
signal plans. This constitutes a difference even to existing hierarchical
systems like BALANCE or MOTION (see Section 2.4.4) that allow for
local traffic-actuated adaptations within the close boundaries of a frame
signal plan, only.
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CHAPTER 9

Conclusion

Motivated by the vision of adaptive learning intersections that collaborate
to optimise their signalisation, this thesis has introduced a self-organising
observer/controller framework for signal control. This chapter concludes
the work by summarising its major contributions in Section 9.1. Sec-
tion 9.2 collects remaining open issues and outlines directions for future
research, before the thesis is closed with final remarks in Section 9.3.

9.1 Summary
To get closer to the idea of autonomous self-organising intersections, the
thesis progressed in several steps. The initial step focused on a single
signalised intersection. With the help of the generic observer/controller
architecture [23, 157, 159], the intersection has been endowed with the
ability to evaluate and optimise its signalisation at run-time. The step and
its contributions to traffic signal control are summarised in Section 9.1.1.

At an intersection, it is crucial to ensure that a learning observer/con-
troller does not negatively affect the signalisation by learning errors. The

243



Chapter 9 Conclusion

issue has been addressed by the two-levelled learning mechanism that is
embodied in the generic observer/controller architecture. By combining
on-line reinforcement learning and simulation-based off-line optimisation,
this thesis has presented the first successful implementation of two-
levelled learning for the observer/controller framework. The mechanism
and its implications for Organic Computing and machine learning are
recapitulated in Section 9.1.2

Once the single intersections have become autonomous entities, the
focus of the thesis has been broadened to road networks. In networks, the
traffic-responsive coordination of signals is an important aspect. Following
the trend towards distributed intelligence, the thesis introduced a self-
organising coordination mechanism. The mechanism relies on locally
collaborating intersections and works completely decentralised. However,
it can be converted into a hierarchical system by the addition of a
Regional Manger. The manager resolves conflicts of interest among traffic
streams based on a network-wide traffic model, thereby supporting the
coordination process. Both variants of the coordination mechanism and
their contributions to traffic signal control are summarised in Section 9.1.3.

9.1.1 Organic intersections
The signalisation of today’s fixed-time or traffic-actuated signal controls
is widely predetermined at design time. A fixed-time signal plan is
configured to suit an expected average traffic demand that is derived
from past experience. Changes in demand are handled by time-dependent
schedules that switch among a small number of precalculated plans. In
comparison, traffic-actuated controls are more flexible and can adapt
their signalisation. Their behaviour is determined by predefined temporal
and logical conditions, though. At run-time, no further evaluation or
optimisation of the signalisation takes place.

Both fixed-time and traffic-actuated controls are not well prepared to
handle unexpected traffic demands that can be caused by road works
or incidents in the network or that can result from public events like
sport matches, concerts, or strikes. The handling of such events requires
to shift the optimisation of signal plans from the design time to the
run-time of the signal system. To this end, the thesis adapted the
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generic observer/controller framework proposed for Organic Computing
[23, 157, 159] to signal control. A fixed-time or traffic-actuated signal
controller is extended by an observer/controller that monitors the local
traffic flows, evaluates the performance of the active signal plan, and
adapts the signalisation when necessary. The adaptation relies on a
two-levelled learning mechanism that combines on-line reinforcement
learning and off-line simulation-based optimisation.

The optimisation of an intersection’s signalisation at run-time is not
only advantageous in the presence of special events, but can also be
beneficial in the more frequent case of regularly reoccurring traffic de-
mands. To this end, two intersections at Hamburg, Germany, have been
investigated in a simulation study. The study considered the typical
work-day traffic at both intersections and compared their time-dependent
field signal plans to the signalisation of the observer/controller frame-
work. Results show that the observer/controller considerably reduces the
average vehicular delay throughout the day.

A price to pay for the obtained reduction are increased computational
requirements for the selection and optimisation of signal plans. Since
evolutionary optimisations are particularly demanding, a study has inves-
tigated the use of approximation- and simulation-based fitness functions.
Approximation-based signal plan evaluations are relatively fast, but not
as flexible as traffic simulations. Since simulations are computationally
demanding and noisy, special care is required when configuring the simu-
lation environment. To this end, the thesis has investigated strategies
for the handling of simulated durations, random seeds, and reevaluations
throughout an evolutionary search. Assuming a limited time budget, the
best found strategy improves the quality of the evolved signal plans con-
siderably. Although the concrete findings are simulator-specific, insights
on the advantage of a fixed random seed and the benefit of accurate
evaluations in the final generations of a run should carry over to other
noisy problems as well.

Despite the careful investigations, the observer/controller framework
requires the computational power of an embedded PC that needs to be
connected to the intersection’s signal controller. A real-world evalua-
tion of the framework would thus require a close collaboration with a
manufacturer of signal controls and is beyond the scope of this thesis.
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However, simulations prove the principal applicability of the proposed
observer/controller for on-line signal plan optimisation. The obtained
delay reductions are expected to carry over to a real-world setting.

9.1.2 Two-levelled learning
The observer/controller’s two-levelled learning mechanism combines a
Learning Classifier System (LCS) for on-line signal plan selection with
an Evolutionary Algorithm (EA) for off-line signal plan optimisation. As
rule-based reinforcement learning system, the LCS learns a mapping of
traffic demands to signal plans. The mapping is continuously revised and
updated based on reinforcement from the signalised intersection, while
optimised signal plans for unknown demands are provided by the EA.
The EA’s search is based on a model of the controlled intersection such
that candidate signal plans can be evaluated without a negative influence
on the real intersection that forms the System under Observation and
Control (SuOC).

The combination of reinforcement learning and optimisation addresses
several weaknesses of the individual mechanisms: The first issue is related
to the run-time requirements of EAs. Depending on the evaluation
function, evolutionary optimisations can be time-consuming which hinders
their use in many on-line applications. Here, the on-line optimisation
of traffic signals is a prominent example that has only been addressed
recently (see Section 3.1.3). Although two-levelled learning cannot speed
up the optimisation process, the LCS provides an intelligent memory
that stores and adapts the optimisation results. Thereby, EAs become
applicable in scenarios where their time requirements would otherwise be
problematic.

In contrast to EAs, Michigan-style LCSs have been designed with on-
line applications in mind. However, they are known to require numerous
learning interactions before they can satisfyingly solve a complex task.
This is problematic in scenarios where environmental reinforcement is
scarce. Considering a signalised intersection, the vehicular delay of a
signal plan is available only after the plan has been active for at least one
cycle, i. e., typically after one minute or later. Since the problem exhibits
numerous potential actions, the situation gets even worse. Two-levelled
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learning addresses this issue by an additional EA that supports the LCS.
The EA determines suitable actions off-line based on a model. Thus, the
task of the LCS is reduced to learn correct classifier conditions for the
provided actions and to correct model errors based on environmental
reinforcement.

A second issue that is simultaneously addressed by the model-based
optimisation of signal plans is the exploration-exploitation dilemma [186].
A learning mechanism can either exploit its previously learnt knowledge
and perform the best known action or it can explore a new alternative
to get better over time. The risk of exploration is that most explored
actions will have a detrimental outcome which is problematic for the
productive system. With two-levelled learning, action exploration is
performed by the EA based on a model. Thus, negative effects on the
productive system are avoided as the LCS can exploit relatively good
situation-action mappings that will be adapted based on reinforcement
when necessary.

In this thesis, two-levelled learning in the observer/controller has been
successfully applied for the first time. Although the implementation
contains some problem-specific components (like the widening mechanism
with its capacity check, see Section 5.4.1), two-levelled learning can be
adapted to a wide area of safety- and performance critical applications that
have been inept for on-line optimisation and learning before. Recently,
the two-levelled mechanism has been applied for the optimisation of
protocol parameters in communication networks [193].

9.1.3 Self-organised coordination
With the help of the observer/controller framework and its two-levelled
learning mechanism, a signalised intersection autonomously optimises its
signalisation at run-time. In a road network, interdependencies among
neighbouring intersections need to be considered, though. A coordinated
signalisation (that results in progressive signal systems or green waves)
is important to reduce the number of stops and, in consequence, travel
times, fuel consumption, and pollution emissions.

To allow for the traffic-responsive coordination of organic intersections,
the self-organising DPSS mechanism has been introduced. Neighbouring
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intersections communicate their traffic flows, decide on coordination part-
nerships, negotiate a common cycle time, and establish a coordinated
signalisation by adapting their offsets accordingly. The DPSS mecha-
nism works decentralised and achieves a considerable reduction of stops
compared to an organic, but uncoordinated signalisation. Compared
to other self-organising coordination mechanisms like those discussed in
Section 3.3, the DPSS mechanism does not require sophisticated sensor
equipment for the early detection of arriving vehicle platoons and is not
restricted to a limited number of signal plans to choose from.

Due to its decentralised working principle, the DPSS mechanism can be
misled to establish a suboptimal coordination for some traffic demands,
though. To address this issue, a hierarchical extension – the Regional
Manager (RM) – has been proposed. The RM collects data on the
traffic flows at the organic intersections and creates a regional traffic
model that is used to identify a set of non-conflicting traffic streams for
coordination. The selected streams are subsequently coordinated by the
DPSS mechanism. The coordinated intersections remain autonomous
entities and continue to optimise their signalisation locally.

In situations where the DPSS mechanism is misled by a network’s traf-
fic demands, a supporting RM can resolve conflicts of interest among the
traffic streams such that a better reduction of stops is achieved. Unlike
most centralised network control systems, the RM does not require a
continuous and often error-prone transmission of detection and signalisa-
tion data among control centre and intersections. Moreover, the strong
emphasis on distributed intelligence and local optimisation distinguishes
the RM from other hierarchical control systems that merely allow for
local traffic-actuated operations. Thereby, the DPSS mechanism and its
regional extension contribute to the state of the art in adaptive network
control.

9.2 Outlook
With the introduction of an observer/controller that autonomously adapts
an intersection’s signalisation by two-levelled learning and that moreover
supports the self-organised coordination of organic intersections, the
objectives of this thesis have been successfully addressed. However, as
stated by Müller-Schloer et al. [138]
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“[...] good research answers some questions while – and this
is more important – posing new ones.”

This outlook discusses new questions and ideas for future research that
arise from the insights gained in this thesis. Application-specific aspects
are discussed in Section 9.2.1, while ideas that are more generally related
to the observer/controller architecture are summarised in Section 9.2.2.
Finally, Section 9.2.3 explores the potentials of collaborative learning and
self-organisation in road networks.

9.2.1 Traffic signal control
To further improve the organic intersections proposed in this thesis,
three extensions are considered most promising. Firstly, the support
of long-term predictions based on learnt historical time series would
enable intersections to proactively adapt their signalisation with respect
to expected developments. Thereby, the handling of reoccurring changes
(like peak hours) can be improved. The required forecast techniques
are well established [47], their incorporation in the observer/controller
framework does not pose a conceptual challenge [205].

A further improvement should be obtainable by incorporating all basic
signalisation parameters in the optimisation process. In the conducted
experiments, the phase durations, the cycle time, and – in the coordinated
case – the offset of a signalised intersection have been considered. By
utilising a predefined set of allowable phase transitions, the phase sequence
can be incorporated as additional parameter that allows to minimise
the green times which are lost during phase transitions. Thereby, the
vehicular delay at a signalised intersection can be further reduced, but
road users have to get accustomed to the changing sequences.

Another aspect that has been discussed, but not experimentally in-
vestigated, is the use of traffic-actuated controls within the SuOC. As
the observer/controller requires detection capabilities anyway, it would
be a logical consequence to utilise the detection data for traffic-actuated
control. By adapting the temporal and logical conditions that define the
signalisation, the observer/controller provides the missing on-line learning
and optimisation capabilities. Although the handling of traffic-actuated
controls in the SuOC does not present a conceptual challenge, technical
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hurdles caused by deficiencies of the simulator’s programming interface
hindered an experimental evaluation within this thesis.

9.2.2 Observer/controller architecture
Regarding the generic observer/controller architecture, promising direc-
tions for future research include a faster on-line learning, the improved
support of changing system objectives, and the incorporation of auto-
mated calibration techniques for the controller’s simulation model.

Learning speed

Important characteristics of the observer/controller architecture are its
learning and optimisation capabilities. Although the generic framework
does not explicitly specify suitable mechanisms, LCSs have been widely
used to implement the controller’s on-line learning capabilities (see,
e. g., [159, 193]). As rule-based reinforcement learners, LCSs are well-
suited to provide a situation-action mapping, but they are also known to
require plenty of learning interactions. This poses a serious difficulty for
applications where reinforcement is scarce.

In this thesis, scarce reinforcement signals have been addressed by
two-levelled learning. Other approaches improve the learning speed of
LCSs by distribution [10, 12, 53, 82, 158] or deduction [72]. Distributed
classifier systems divide a given problem into subproblems, assign each
subproblem to an LCS, and combine the individual results to reach a
decision for the original problem. Deduction mechanisms infer general,
but accurate classifiers by intelligently combining rules from the existing
population.

As neither distribution nor deduction avoid a negative influence of
learning errors on the controlled system, both approaches cannot replace
two-levelled learning. Nevertheless, distributed or deductive classifier
systems can speed up the controller’s on-line learning whenever the
application allows for a problem decomposition or can be handled by
binary classifiers. First investigations in this direction have been presented
in [72, 158], but the transfer to a complex real-world problem (like traffic
signal control) and the combination with a simulation-based optimisation
heuristic remain challenging open issues.
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However, the refinement of LCSs is not the only possible way to speed
up two-levelled learning. Other learning and optimisation techniques
(like Gaussian processes [151] for on-line learning or Particle Swarm
Optimisation [101] for off-line optimisation) constitute building blocks
that can be combined in future versions of the two-levelled mechanism.

Flexibility

An issue that has not been explicitly addressed in previous observer/con-
troller research is flexibility with respect to changing objectives: An
observer/controller acts according to a user-defined objective function.
When the objective changes, the change needs to be reflected in the
controller’s situation-action mapping.

A simple way to support changing objectives is to keep track of a
separate situation-action mapping for every objective and switch among
them. However, only the active mapping is improved by two-levelled
learning such that the quality of the mappings differs. A mapping for an
objective that is pursued only infrequently will thus be of a relatively low
quality. Rarely used objectives are, however, often related to exceptional
situations where a good performance is of special importance. Considering
signalised intersections as example, throughput maximisation is important
in case of a high demand, while the goal is to minimise delays in the
majority of situations.

Due to the importance of flexibility in many OC scenarios, the develop-
ment of an observer/controller implementation with an improved support
of changing objectives is an interesting direction for future research.

Model calibration

One of the outstanding features of the observer/controller framework is
the combination of on-line learning and model-based off-line optimisa-
tion. This two-levelled mechanism works best when the output of the
model closely resembles the observations in the SuOC. In this thesis, the
controller’s LCS detects and corrects potential discrepancies based on re-
inforcement observed in the SuOC. Unfortunately, the correction requires
the activation of incorrectly evaluated actions in the SuOC and does not

251



Chapter 9 Conclusion

correct the causative model error. By integrating an automated calibra-
tion mechanism into the observer/controller, the model error could be
addressed directly. The on-line calibration of simulation models has been
successfully addressed in varying application areas including robotics [20]
and microscopic traffic simulation [124]. The transfer of these results into
an observer/controller could improve the framework.

9.2.3 Self-organised collaboration
Further potential for improvement lies in the collaboration of distributed
observer/controller components. In the context of traffic signal control,
collaborative learning, optimal coordination, and dynamic route guidance
are among the most promising research directions.

Collaborative learning

When distributed observer/controller components have to learn similar
tasks, collaboration is a promising approach to speed up the learning
process. Collaborative learning can be implemented with the help of a
public situation-action mapping or by the exchange of learnt rules.

A public mapping is shared and commonly updated by several ob-
server/controllers [73]. Compared to a private mapping maintained by
a single learner, the public mapping receives a much higher number
of updates in the same time span. Thus, learning can be accelerated
whenever several observer/controller components are occupied with the
same task.

Rule exchange [32] constitutes a second approach for collaborative
learning. Here, the observer/controller components maintain their indi-
vidual situation-action mappings, but exchange selected mapping entries
to benefit from each others’ experience. In contrast to the use of a public
mapping, rule exchange can to some extent consider individual properties
of the collaborating learners.

The integration of collaborative learning techniques into a group of dis-
tributed observer/controller components is an interesting field of research.
In a road traffic network, several organic intersections could utilise the
existing communication infrastructure to exchange learnt signal plans.
The heterogeneity of signalised intersections will be a challenge, though.

252



9.3 Final remarks

Optimal signal coordination

The hierarchical coordination of signalised intersections proposed in this
thesis is based on a heuristic approach. Although experiments show that
the mechanism works well, it cannot guarantee an optimal coordination.
As the mathematically exact optimisation of offsets is possible [108,109],
it would be interesting to replace the RM’s heuristic. In contrast to the
heuristic that merely identifies a set of non-conflicting traffic streams,
the offset optimisation algorithm provides a set of optimal offset for the
network’s intersections. However, it requires a predefined signal plan
for every intersection as input. Furthermore, the signal plans need to
have a common cycle length. Although a combination of local signal
plan selection and decentralised cycle time negotiation with a regional
offset optimisation is promising, extensive modifications to the current
hierarchical system will be required.

Dynamic route guidance

Another way to benefit from collaborating intersections in a road network
is to setup a system for dynamic route guidance. Similar to SCOOT [98]
or MOTION [112], organic intersections can combine their data on
traffic flows and green times to support the traffic-responsive routing of
vehicles through the network. Utilising the communication infrastructure
assumed for the DPSS mechanism, internet routing protocols like Distance
Vector Routing or Link State Routing (see, e. g., [187]) can be adapted
to implement a self-organised routing mechanism. Thereby, organic
intersections are no longer limited to react on observed traffic flows, but
can additionally influence the route choice of the drivers. First steps
towards dynamic route guidance have been presented in [148], but further
investigations with respect to an improved incident detection are required.

9.3 Final remarks
Despite the numerous questions remaining for further research, this thesis
has made first steps towards a network of autonomous, self-organising
intersections. Its major contribution is a successful application of the
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observer/controller architecture in the context of a signalised road net-
work. With the help of the observer/controller, the optimisation of signal
plans has been shifted from the design time to the run-time of a signal
system, while a self-organising collaboration mechanism keeps track of
the network’s signal coordination. As a result, vehicular delays and stops
in a network can be reduced while the robustness of the signal system
with respect to changing demands is improved.

The observer/controller’s core feature is a newly developed two-levelled
learning mechanism that combines on-line reinforcement learning and
model-based off-line optimisation. In this thesis, the mechanism has been
successfully applied to a complex and highly relevant real-world problem.
However, two-levelled learning is not restricted to traffic control, but can
be applied to numerous safety- and performance critical environments.
As many of these environments have been inept for on-line optimisation
and learning before, two-levelled learning opens new application domains
for machine learning and Organic Computing.
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