

Lei Liu

Organic Service-Level Management
in Service-Oriented Environments

Organic Service-Level Management
in Service-Oriented Environments

by
Lei Liu

KIT Scientific Publishing 2011
Print on Demand

ISBN 978-3-86644-730-1

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe
www.ksp.kit.edu

KIT – Universität des Landes Baden-Württemberg und nationales
Forschungszentrum in der Helmholtz-Gemeinschaft

Dissertation, Karlsruher Institut für Technologie
Fakultät für Wirtschaftswissenschaften
Tag der mündlichen Prüfung: 15. Juli 2011
Referenten:	 Prof. Dr. Hartmut Schmeck
		 Prof. Dr. Hannes Hartenstein

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Organic Service-Level Management
in Service-Oriented Environments

Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften

(Dr. rer. pol.)

von der Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

Dipl.-Inform. Lei Liu

Tag der mündlichen Prüfung: 15.Juli 2011
Referent: Prof. Dr. Hartmut Schmeck
Korreferent: Prof. Dr. Hannes Hartenstein

2011 Karlsruhe

IX

Thesis Summary
Dynamic Service-oriented Environments (SOEs) are characterized by a large number
of heterogeneous and interconnected service components applying the design para-
digm of service-orientation. On the one hand, the runtime behaviour of an SOE is de-
termined bottom-up by individual service components involved in the environment.
On the other hand, an SOE is expected to support the business as a whole. Therefore,
a top-down business-driven IT service management is desirable to master the continu-
ous changes within and outside of an SOE.

Nowadays, Service Level Agreements (SLAs) are utilised in IT service manage-
ment as a common means to govern the relationship between a service provider and a
service consumer. However, existing approaches consider a given SLA only in the
local context of a single service component. They do not cover the fact that a service
component may rely on a complex structure consisting of a range of underlying ser-
vice components. This leads to a situation, where related service components are con-
sidered only in a local and isolated context. Correlations between related SLAs are
disregarded by existing service management approaches to a large extent.

The present thesis aims at meeting this challenge by providing an automated and
multi-level service level management framework based on controlled self-
organisation. With a range of given end-to-end operational requirements on the whole
IT infrastructure, the introduced framework is expected to autonomously propagate
the requirements throughout the complete IT infrastructure. Each related service com-
ponent is given an appropriate set of operational requirements in accordance with its
capabilities, which it has to enforce locally.

Therefore, the framework is designed conceptually on two levels. On the global
level, related service components within an SOE collaborate with one another to co-
ordinate their runtime behaviour. In particular, each service component arranges its
part to contribute to the end-to-end requirements, so that the overall requirements can
be guaranteed by the complete IT infrastructure. On the local level, the arranged re-
quirements are enforced by the respective service component as its operational objec-
tives. It configures its local resources according to the requirements, so that the result-
ing runtime behaviour of the component complies with the specified requirements.

To facilitate global collaboration, in particular with respect to the distributed, au-
tonomous, and loosely coupled nature of service components, the present thesis mod-

X

els an SOE as a Multi-Agent System (MAS). Each service component is extended
with an autonomous management agent that represents the interests of the respective
component in the MAS. This management agent carries out collaborative activities on
behalf of the respective service component on the global level.

Collaboration between two related service components is done by means of auto-
mated bilateral multi-issue negotiation of SLAs. To this end, this thesis introduces a
comprehensive negotiation model to guide two management agents to move across
their negotiation spaces to reach a mutually acceptable agreement, even if both agents
do not share their negotiation preferences.

Resulting SLAs determine the service level targets that a service consumer de-
mands from its service provider. Hence, to enforce the agreed terms in SLAs, the pre-
sent thesis adopts the generic observer/controller architecture proposed by the Organic
Computing research community to establish SLA-driven self-organisation on a ser-
vice component locally. By doing this, a management agent is aware of the runtime
behaviour of the corresponding service component and can proactively perform cor-
rective actions to maintain the runtime behaviour with respect to the SLA.

At last, to evaluate the automated and multi-level service level management
framework, the present thesis designed and implemented a simulation-based test bed
for SOEs. Based on this simulated evaluation environment, a range of evaluation ex-
periments has been conducted, particularly with respect to the performance of the in-
troduced negotiation model. The experimental results are promising, in particular with
respect to negotiation convergence and efficiency of resulting SLAs. In particular, a
real-world scenario from the university context was built in the evaluation environ-
ment to evaluate the feasibility of the proposed framework.

XI

Acknowledgements
Writing a PhD thesis is a long journey that takes years. And it is not possible to make
it alone. While undertaking this PhD thesis project, I have felt extremely fortunate that
I have so many people – mentors, colleagues, friends, and my family – to support and
encourage me.

Foremost, I would like to profoundly thank my doctoral advisor, Prof. Dr. Hartmut
Schmeck, for his invaluable support and guidance throughout the last years. He has
been my mentor during the whole PhD thesis and supported me throughout all the
stages of the thesis with his long experience in research. In particular, I enjoyed the
large freedom he gave me to conduct research in the field that I am interested in. My
sincere thanks to him.

Furthermore, I would like to thank Prof. Dr. Hannes Hartenstein, from Karlsruhe
Institute of Technology (KIT), who served as second reviewer of my thesis in the ex-
amination committee. I am also thankful for his timely review of the thesis despite his
busy schedule. Furthermore, I would like to thank Prof. Dr. Andreas Oberweis and
Prof. Dr. Svetlozar T. Rachev, both from Karlsruhe Institute of Technology (KIT), for
serving as examiner and chairman, respectively, in the examination committee.

I also want to thank my friends and colleagues in the research group Efficient Al-
gorithms for the discussions, advice, help, and inspiration I received during my doc-
toral days. In particular, I appreciate the valuable and inspiring discussions with Flori-
an Allerding, Prof. Dr. Jürgen Branke, Christian Hirsch, Dr.-Ing. Sanaz Mostaghim,
Friederike Pfeiffer, Holger Prothmann, Dr. Urban Richter, Stefan Thanheiser, Dr.
Frederic Toussaint, Dr. André Wiesner, and Micaela Wünsche. My sincere thanks to
them.

I am also grateful to my long-time friends – Yue Cao, Haipeng Chen, Qing Gong,
Lin Jia, Pengyun Ren, and Honggang Zhu. Thank you folks, for enriching my life in
Karlsruhe with so many beautiful moments.

Last but not least, I would like to thank my family for their continuous support and
encouragement. My wife, Chaojun, stood by me every step of the way and encouraged
me continuously during the last years. I feel the same gratefulness to my sisters, Fang
and Yan, and my parents-in-law. It is very hard to find words to express my gratitude
to my parents, who always put their absolute trust in me and stand by my side with

XII

their advice, endless patience, and encouragement. Hence, this thesis is dedicated to
all of them for their invaluable support.

Karlsruhe, August 2011 Lei Liu

XIII

Table of Content
THESIS SUMMARY .. IX

ACKNOWLEDGEMENTS .. XI

TABLE OF CONTENT ... XIII

PART I MOTIVATION AND STATE-OF-THE-ART ..1

CHAPTER 1 INTRODUCTION ...3

1.1 Motivation ..3

1.2 Approach ..8

 Scenario and Objectives..9 1.2.1

 Approach ...13 1.2.2

1.3 Contributions ..15

1.4 Thesis Outline ...16

CHAPTER 2 STATE-OF-THE-ART ...19

2.1 Service-oriented Computing ...19

 Service-orientation ..21 2.1.1

 Service-oriented Architecture ...25 2.1.2

 Cloud Computing ..29 2.1.3

 Service-oriented Infrastructure ...32 2.1.4

 Concluding Remarks ..35 2.1.5

2.2 Self-organisation...37

 Overview ...37 2.2.1

 Self-organising SOA ...40 2.2.2

 Approaches with Self-organisation ...42 2.2.3

 Concluding Remarks ..51 2.2.4

2.3 Multi-Agent Systems ..53

 Overview ...53 2.3.1

 Coordinating Agents ...55 2.3.2

 Negotiation between Agents ...58 2.3.3

XIV

 Concluding Remarks .. 70 2.3.4

2.4 Summary .. 71

PART II ARCHITECTURE DESIGN ... 73

CHAPTER 3 FUNDAMENTALS .. 75

3.1 Service-oriented Environments.. 76

 Multi-layered Architecture ... 77 3.1.1

 Provider/Consumer Relationship ... 83 3.1.2

3.2 Service Level Agreements ... 85

 Overview .. 86 3.2.1

 Formal SLA Model .. 89 3.2.2

 Quality of Service .. 93 3.2.3

 Life Cycle of SLAs .. 98 3.2.4

3.3 Bilateral Multi-issue Negotiation... 104

 Basic Negotiation Model ... 105 3.3.1

 Conceding Strategies.. 107 3.3.2

3.4 Generic Observer/Controller Architecture ... 111

 Observer ... 112 3.4.1

 Controller ... 116 3.4.2

 Application of the Generic Architecture .. 118 3.4.3

3.5 Summary .. 121

CHAPTER 4 SCENARIO AND REQUIREMENT ANALYSIS ... 125

4.1 Target Scenario .. 125

4.2 Problem Analysis ... 129

4.3 Requirements Analysis .. 133

4.4 Summary .. 137

CHAPTER 5 ORGANIC SERVICE-ORIENTED ENVIRONMENTS ... 139

5.1 Agent-oriented Design ... 140

 Management Overlay with Autonomous Agents ... 141 5.1.1

XV

 Collaboration between Management Agents ..146 5.1.2

 Design Rationale ...152 5.1.3

5.2 Management Agent ..155

 Architecture ..155 5.2.1

 High-Level Controller...161 5.2.2

 Collaboration Manager ...164 5.2.3

 Observer ..171 5.2.4

 Controller ..183 5.2.5

 Design Rationale ...188 5.2.6

5.3 Summary ..190

CHAPTER 6 COLLABORATION BETWEEN AGENTS ...193

6.1 Collaboration Overview ...194

6.2 Negotiation Scenarios ...198

6.3 Design Considerations ..201

6.4 Mathematical Model ...206

6.5 Negotiation Protocol ...212

6.6 Negotiation Space ...219

 Composition Patterns ..220 6.6.1

 Decomposing QoS Requirements ...226 6.6.2

 Composing QoS Parameters ...243 6.6.3

 Determining Negotiation Space ..250 6.6.4

6.7 Negotiation Strategy ...253

 Conceding Strategy ...254 6.7.1

 Trade-off Strategy ...256 6.7.2

 Concluding Remarks ..267 6.7.3

6.8 Summary ..268

PART III EVALUATION ...271

CHAPTER 7 EVALUATION ENVIRONMENT ..273

XVI

7.1 Overview.. 274

7.2 Simulation Model .. 276

7.3 Logic Simulation ... 279

7.4 Workload Simulation ... 283

7.5 Summary .. 287

CHAPTER 8 EVALUATION RESULTS .. 289

8.1 Experimental Design ... 289

8.2 Automated Bilateral Negotiation ... 294

 Negotiation Behaviour ... 295 8.2.1

 Efficiency of Resulting SLAs .. 306 8.2.2

 Performance Analysis .. 310 8.2.3

 Concluding Remarks .. 316 8.2.4

8.3 Multi-Level Service Level Management ... 318

 Scenario and Experiment Set-up .. 318 8.3.1

 Propagating the End-to-End SLM Process .. 321 8.3.2

 Renegotiating SLAs ... 326 8.3.3

8.4 Summary .. 331

PART IV CONCLUSION AND OUTLOOK .. 333

CHAPTER 9 CONCLUSION AND OUTLOOK .. 335

9.1 Summary .. 335

9.2 Outlook .. 339

BIBLIOGRAPHY ... 343

1

Part I

Motivation and State-of-the-Art

3

Chapter 1 Introduction

“The world is in relentless change; the only way to respond to it is through changes.”
(I Ching – Book of Changes, The Great Treatise II, ~1000 B. C.)

1.1 Motivation

Today’s businesses are situated within a global and competitive market with continu-
ous changes. As such, they have to arrange backend enterprise IT to streamline and
automate business processes to adapt to continuous requirement changes [Dav98].
Alignment between business and IT in support of business agility is one of the central
topics for modern businesses to improve their competitive strength in the market
[SSW10]. A consistent alignment of business and IT provides businesses with a ro-
bust platform for executing business processes in a reliable, scalable, integrated, and
unified manner [BBWL05].

In order to reach synergistic business/IT alignment in spite of existing legacy sys-
tems, an appropriate approach should provide an adaptive layer between the agile
business process and the less flexible IT infrastructure. Service-oriented Architectures
(SOA) provide the necessary architectural model to facilitate the business/IT align-
ment in the desired way. In comparison to existing paradigms for developing enter-
prise systems, the central focus of SOA is to encapsulate business capabilities as ser-
vices [PH07]. By adopting services in enterprise systems, SOA facilitates manageable
growth of large-scale enterprise systems. It provides a simple but scalable paradigm to
link business capabilities in IT infrastructure with overall business processes.

Applying SOA helps large organisations to get clear IT Governance with coordi-
nated architecture and infrastructure evolution [But05]. Driven by this, Forrester Re-
search expected already in 2007 that about 75% of Global 2000 organisations were
going to implement SOA by the end of 2007 [HF07]. By the end of 2009, 74% of the-

P a r t I – C h a p t e r 1.1 � Motivation

4

se organisations are using SOA productively; among all the organisations being sur-
veyed, this number is about 56% [HLA10]. This shows the potential of SOA to
streamline strong business/IT alignment, especially for organisations with large-scale
distributed IT infrastructure.

While SOA makes IT infrastructures more flexible, it increases simultaneously the
complexity of the resulting system – sometimes to such an extent that undertaking
SOA projects causes more cost and efforts than conventional approaches would. It is
not without cause that voice came up like “SOA is dead” [Man09], which has caused
a large debate in the field [KL09]. Most of all, businesses implementing SOA are frus-
trated by additional complexity in service-oriented systems.

Fiadeiro denotes this type of complexity in collaborative service-oriented systems
as “social complexity”, which “arises not from the size of applications but from the
number and intricacy of interactions” [Fia07]. The increasing number of autonomous,
distributed, and mostly heterogeneous components in service-oriented systems raises
the need to manage large scale IT systems as a whole. Fiadeiro quoted Erickson on the
challenge to manage systems with high social complexity [Fia07]:

“When you build an application you look at it in isolation. When you build
a service, you have to look at who will use it and how they will use it. It re-
quires new skills and a new mindset.”

Erickson’s statement characterises the situation of a highly connected and hetero-
geneous environment with complex consumer/provider relationships between compo-
nents. To cope with the increasing social complexity, “being able to monitor and con-
trol systems or environments is an important part of designing software intensive sys-
tem” [Fia07]. In other words, software/hardware components involved in software
intensive systems must be measurable and manageable, which is addressed by SOA
Governance as well as SOA Management.

SOA Governance provides organisational measures to reduce inherent complexity
of IT infrastructure at design time. It is the logical evolution as well as specialisation
of IT Governance [WR04] in the context of service-oriented environments [SS07].
SOA Governance intends to ensure alignment between business and enterprise IT by
defining “an enforceable set of policies for building, deploying, and managing ser-
vices” [Win06]. Those policies define guidelines for carrying out top-down to-be
analysis with respect to business requirements, such as determining organisation
structure, clarifying responsibilities, or defining service level objectives.

P a r t I – C h a p t e r 1 � Introduction

5

SOA management is responsible for managing and controlling technical compo-
nents at runtime. By applying various management standards (such as the Web Service
Distributed Management (WSDM) standards published by the OASIS [BV06, WS06]
and the Web Services for Management (WS-Management) standard by the DMTF
[DMTF10a]), technical components can be managed by several management systems
with a single set of instrumentation. Together with traditional management systems,
such emerging management standards help to increase manageability of a service-
oriented system.

In short, SOA Governance defines from top-down operational objectives for the
underlying IT infrastructure. SOA Management determines from bottom-up runtime
behaviour of technical components within the IT infrastructure. Hence, in order to
align runtime behaviour of the IT infrastructure with the business requirements, an
additional component is needed. In the context of business/IT alignment, Service Lev-
el Management (SLM) is responsible for this task, as illustrated by the non-functional
view in Figure 1-1.

Figure 1-1: End-to-end Service Level Management

Office of Government Commerce (OGC) defines SLM as:

“…the process responsible for negotiating Service Level Agreements, and
ensuring that these are met. SLM is responsible for ensuring that all IT
Service Management Processes, Operational Level Agreements (OLAs),
and underpinning Contracts, are appropriate for the agreed Service Level
Targets. SLM monitors and reports on Service Levels, and hold regular
Customer reviews.” [RL07]

business

IT infrastructure

service access point
between business and IT

business processes

service consumers

business realm

IT realm

SOA governance

SOA management

functional viewnon-functional view

service level
management

alignm
ent

en
ab

lin
g

business requirements
(i.e. KPIs)

runtime operation
behaviour

P a r t I – C h a p t e r 1.1 � Motivation

6

According to this definition, SLM ensures that all IT service management process-
es defined in SOA Governance are appropriate to agreed service levels between the
business and the IT infrastructure. Among other things, SLM includes negotiating
Service Level Agreements (SLAs) between consumers and providers, as well as en-
forcing SLAs with suitable management approaches at runtime.

Therefore, the alignment problem between a business’s operational objectives and
an IT infrastructure’s runtime behaviour can be transferred to an end-to-end Service
Level Management problem. That is, how top-down operational objectives of a busi-
ness and operational execution of its supporting IT infrastructure can be aligned in an
efficient and effective way.

The term end-to-end refers to the fact that service levels defined by SLM cover the
operational behaviour of the entire underlying infrastructure. Such end-to-end service
levels are associated with service access points between the business as service con-
sumer and the business processes – the topmost components of the underlying IT in-
frastructure - as service providers, as shown in the functional view in Figure 1-1. To
address the end-to-end characteristic between business and IT, Koch cited the state-
ment of Weill: “The business doesn't care about 99.9 per cent uptime unless you're
talking about the uptime of a business process or an end-to-end capability” [Koc07].

The essential challenge for establishing end-to-end SLM is the complex structure of
IT infrastructure involved in a business process. Although IT infrastructure operates
as a black box for business, it involves a set of technical components to complete a
single business process. For example, a business process may invoke several Web
services. A Web service may in turn involve several technical components to com-
plete its execution, such as a Web server for hosting it, or a database server for man-
aging data. Hence, each technical component of an IT infrastructure may have the
roles service consumer and service provider simultaneously. Such recursive functional
dependences between technical components exist across the complete service-oriented
system and set up a kind of functional dependence chains across the IT infrastructure.

The existence of such functional dependence chains determines that the runtime
behaviour of a business process at the top of an IT infrastructure depends on all relat-
ed technical components in support of it. Hence, although the performance of a top-
most business process is determinant for end-to-end SLM, it still has to incorporate all
underlying components into the corresponding SLM process. However, current man-
agement approaches support end-to-end SLM only to a limited extent:

P a r t I – C h a p t e r 1 � Introduction

7

� Traditional approaches for SOA Management provide – if at all – only very
limited capabilities to support business/IT alignment. They focus mainly on
specific systems and applications with respect to particular management as-
pects, such as fault management, configuration management, and performance
management [HAN99]. These approaches are crucial to enforce agreed service
levels at runtime, however only in a local context. Due to high heterogeneity of
these management approaches, they cannot provide comprehensive support to
manage all related technical components at runtime. This is, however, one of
the prerequisites to enable end-to-end SLM in service-oriented environments.

� Further, existing management approaches do not prevent human participants
from being strongly involved in managing such environments. They have to
design, implement, configure, and maintain complex distributed IT landscape
with dozens of distributed and heterogeneous technical components. In addi-
tion to the fact that human participants are the leading cause of failures, cost
for maintaining large-scale IT infrastructure is reported to be five to ten times
the purchase price of software and hardware [PBB+02].

� A comprehensive SLM framework demands support for negotiating service
levels between related technical components. Recursive functional dependenc-
es between technical components determine that the corresponding negotiation
process should be carried out in a multi-layered manner. Starting from business
processes at the top of the IT infrastructure, a negotiation process should be
propagated top-down systematically across the complete IT infrastructure. Cur-
rently, this propagation process is in the majority of cases initiated and accom-
plished manually. That is, human participants have to negotiate SLAs in a
point-to-point manner for each consumer/provider pair.

� Furthermore, the common practice in SLM is to establish generic point-to-
point SLAs for each provider/consumer pair. Such a generic SLA prevents a
provider from differentiating its service offers by providing value-added ser-
vices to specific consumers.

� In practice, negotiating SLAs can be a very complex process involving a group
of stakeholders from both providers and consumers to determine their expecta-
tions and responsibilities [Lab02]. This process often lasts over a long period,
depending on complexity of services, number of parties involved, relationships

P a r t I – C h a p t e r 1.2 � Approach

8

between these parties, expectations of all parties, and prior experience of the
parties with SLA negotiation.

Hence, existing SOA management approaches are not yet mature enough to support
comprehensive end-to-end SLM largely. Limited support for automated end-to-end
SLM in service-oriented environments reduces agility of these environments at
runtime. One of the characteristic advantages of SOAs in comparison to conventional
distributed computing approaches is their flexible and agile response to changes in
their environments. Therefore, demands on flexible and fully automated end-to-end
SLM arise continuously, as more and more businesses begin to apply SOA to increase
efficiency of their IT landscapes. This remains one of the key challenges to enable
adaptive SOAs with respect to continuous changes in their environments [PTDL07].

1.2 Approach

As motivated in Section 1.1, SLM is the core concept to control quality of service de-
livery within service-oriented environments. In dynamic and fully automated service-
oriented environments, it is desirable to utilise SLM across all related technical com-
ponents to align business needs and IT capabilities. However, high social complexity
within such service-oriented environments prevents an active and consistent realisa-
tion of end-to-end SLM.

A plausible way out of this dilemma is to provide technical components with the
ability to organise themselves – so-called self-organisation. That is, software compo-
nents are expected to organise autonomously their activities considering given opera-
tional objectives and thus leave human participants in most cases uninvolved. To cope
with increasing cost and administrative overhead for managing such systems, there are
growing expectations that technical components within a service-oriented system can
adapt flexibly to changes in their environments on their own, in particular with respect
to non-functional requirements in terms of service levels [BKM+04, BMK+05].

Hence, in order to realise automated end-to-end SLM in a service-oriented envi-
ronment, the major approach of the present thesis is:

With appropriate adoption of self-organisation, technical components in
support of a service-oriented environment can collaborate with one anoth-
er in order to produce a desired runtime behaviour complying with re-
quirements given by the business, even in the presence of high social com-

P a r t I – C h a p t e r 1 � Introduction

9

plexity within the environment. Using such an approach, a service-oriented
architecture is expected to respond adaptively to changes in its environ-
ment – with respect to both functional and non-functional aspects of those
changes.

To establish this concept within service-oriented environments, a technical compo-
nent must have two fundamental capabilities:

� Being able to organise itself with respect to given operational objectives: A
service provider has the responsibility to deliver its services complying with
service level targets specified in SLAs. Hence, a technical component should
be capable to organise itself to guarantee agreed service level targets.

� Being able to collaborate with other components: The IT infrastructure sup-
porting SOA contains more than one component. To ensure that the emerging
runtime behaviour of the IT infrastructure is aligned with requirements of the
business, it is desirable that all components have to coordinate their runtime
behaviour in a seamless way.

The remainder of this section reviews the problems for enabling end-to-end SLM
with self-organisation, and outlines the challenges. Moreover, it introduces the
measures to meet the challenges with respect to the two fundamental capabilities of a
self-organising technical component as described above.

 Scenario and Objectives 1.2.1

The clear claim of this thesis is to automate end-to-end SLM within a service-oriented
environment. Ideally, given business requirements should be propagated autonomous-
ly and independently across all service providers within the environment, so that they
can collaboratively fulfil the business requirements that a business has on its IT infra-
structure in an efficient way. The term “efficient” means that each service provider
can guarantee its service delivery without over- and underutilisation of its resources.

Hence, in order to achieve the desired balance, service providers and service con-
sumers are required to collaborate with one another. On the one hand, a service con-
sumer has to specify its expectations on the quality of service delivery; on the other
hand, a service provider has to be aware of its capabilities to deliver services. As such,
SLM is concerned with bringing the consumer’s expectations and the provider’s ser-
vice capabilities together. Figure 1-2 illustrates briefly the typical process of SLM

P a r t I – C h a p t e r 1.2 � Approach

10

along with interactions between service providers and service consumers. A more de-
tailed description of SLM is given in Section 3.2. In general, the life cycle of SLM
consists of the following five phases:

� Requirements/”As-Is” Analysis: In this phase, SLM maintains a status quo by
doing quantitative assessments on what a service consumer expects and what a
service provider can deliver. The result of this phase is clear definitions in
terms of quantitative measures.

� Negotiating SLAs: With the result from the analysis phase, a service consumer
and a service provider begin to negotiate with each other. The goal in this
phase is to find a compromise on the determined service objectives from the
analysis phase. In this way, a service consumer and a service provider can find
appropriate trade-offs between their interest conflicts.

� Applying SLAs: In this phase, a service provider applies the negotiated SLA to
configure its local resources. The main aspect of the provider is to ensure the
required quality of service delivery with an appropriate amount of resources.
For a service consumer, it documents the agreed SLA locally, in order to check
compliance of the quality of service delivery with the agreed service objectives
at runtime. At the end of this phase, a service consumer begins to invoke the
service of its provider.

� Enforcing SLAs: At runtime, SLM is responsible for enforcing the agreed SLAs
between a consumer and a provider. In this phase, a service provider has to

Figure 1-2: Service Level Management with consumer-facing IT providers

Se
rv

ic
e

Le
ve

l
M

an
ag

em
en

t

requirements
/ „as-is“
analysis

negotiating
SLAs

applying
SLAs

enforcing
SLAs

improving
SLAs

service consumer

service provider

as-Is state

SLAs

offers

offers

SLAs

requirements requirements

runtime state history

runtime state

P a r t I – C h a p t e r 1 � Introduction

11

achieve consistently the service levels specified in the SLAs. Therefore, the
key responsibility of SLM in this phase is to evaluate runtime events from both
service consumer and service provider and quantify quality of service delivery
in terms of predefined metrics. If necessary, SLA can take appropriate actions
to ensure that SLAs are continuously met by the provider.

� Improving SLAs: SLM is a continuous process. On-going interactions between
the SLM process, the consumer, and the provider increase visibility of SLA
compliance of service delivery. Historical information collected in the previous
phase provides the foundation for continuous improvement of service levels.
Using such information, SLM can identify problems as well as determine relat-
ed aspects for improvements. If necessary, it performs correcting actions to
solve problems while taking changing requirements from the environment into
consideration.

Hence, SLM is an on-going process with permanent interactions between service
providers and service consumers. In doing so, IT infrastructure can guarantee that ser-
vices are being delivered consistently in compliance with business requirements, so
that business can achieve its desired objectives and outcomes. To automate such an
SLM process with continuous and iterating life cycles, a sophisticated approach must
address the following challenges:

� Awareness of runtime state: SLM has to ensure that consumer’s expectations
are met consistently by the provider. Hence, it must be aware of operational
events from both consumer and provider and evaluate those events to estimate
effectiveness of the SLM process. This provides the prerequisite for proactive
reactions to problems.

� Self-adaptive SLM: As aforementioned, SLM is an on-going process with con-
tinuous improvements, in particular with respect to changing requirements
from the business. In addition, with continuous monitoring of runtime states,
SLM is aware of the compliance of service delivery with regard to SLAs.
Hence, an automated SLM approach has to respond to changes or problems re-
actively or even proactively at runtime.

� Automated negotiation support: negotiating SLAs between providers and con-
sumers is the core of SLM. With negotiated SLAs, a service consumer and its
provider can balance their interest conflicts. On the one hand, this ensures that
business requirements of a consumer can be met. On the other hand, a service

P a r t I – C h a p t e r 1.2 � Approach

12

provider delivers its service efficiently, in particular with respect to the amount
of resources needed for service delivery. Therefore, an automated SLM ap-
proach must provide support for automated negotiation of service levels.

� Involving related underpinning components: business processes are consumer-
facing. That is, it has direct interactions with the business as a service consum-
er. Hence, runtime behaviour of business processes is the determinant factor for
controlling the end-to-end SLM process between business and IT. However,
each business process is supported by a range of technical components from
the IT infrastructure. The runtime behaviour of a business process depends on
the behaviour of all underpinning components. Therefore, the end-to-end SLM
should involve all related technical components in the process. This is the only
way to ensure that IT as a whole can deliver the required services in alignment
with desired objectives of the business.

� Mapping business requirements to IT-centric metrics: Section 1.1 describes the
recursive functional dependences between technical components based on pro-
vider/consumer relationships. Hence, it requires that an end-to-end SLM ap-
proach should provide a top-down mechanism to link business requirements to
underlying IT-centric metrics. By creating such links recursively across the en-
tire service-oriented environment, business requirements can be gradually bro-
ken down into IT-centric service levels for each supporting component.

� Autonomy of technical components: each technical component within a service-
oriented environment is autonomous. That is, a service-oriented component has
the full freedom to make its own decisions without external interventions.
Therefore, it has full control over its own runtime behaviour. From the view-
point of an automated SLM approach, it is required that each technical compo-
nent can keep its autonomy independent from other related components in the
environment.

� Heterogeneity of technical components: as discussed in Section 1.1, a service-
oriented environment is heterogeneous. Each technical component in the envi-
ronment may differ from other components in many ways, such as technical
standards they utilise, organisational models they rely on, and management
standards they use. Hence, a comprehensive approach for end-to-end SLM
should provide the possibility to include all related components into the pro-
cess with reasonable efforts – in spite of their heterogeneous natures.

P a r t I – C h a p t e r 1 � Introduction

13

� Adaptive management of technical components in compliance with service lev-
els: since technical components are autonomous, they are required to manage
themselves in compliance with service levels defined in the SLM process. With
self-organising capabilities, each technical component ensures that its runtime
behaviour for service delivery complies with the agreed service levels.

In a word, to enable automated end-to-end SLM in a service-oriented environment,
each technical component is expected to collaborate with related technical compo-
nents to arrange service levels between them and organise itself in compliance with
the arranged service levels. In this process, the approach has to take characteristics of
a service-oriented environment into consideration, in particular, autonomy and high
heterogeneity of technical components in the environment.

 Approach 1.2.2

The focus of this thesis is to find appropriate approaches to facilitate end-to-end SLM
within service-oriented environments. That is, how service levels can be established
and enforced between each pair of service consumer and service provider at runtime,
so that the overall runtime behaviour of the IT infrastructure can satisfy the end-to-
end requirements of the business. In particular, this thesis investigates how a technical
component can be included in the global SLM process in an automated manner.

Therefore, this thesis does not address how a technical component can be instru-
mented to deliver management capabilities at runtime, in particular from the view-
point of distributed system management. Instead, it is assumed that each technical
component is locally instrumented for management purposes by utilising a number of
management technologies. Furthermore, it is assumed that each technical component
exposes a manageability interface to external applications. Through those manageabil-
ity interfaces, a management application can communicate with the corresponding
technical component. Activities, such as reading management metadata, monitoring
runtime events, configuring management objects, are done through the manageability
interface. These assumptions assure that an external management component can
monitor and control each technical component at runtime.

Another assumption on the IT infrastructure is the extended and consistent imple-
mentation of service-orientation on all technical components. That is, the service con-
cept is not restricted to business processes or Web services. Underlying technical
components in support of Web services, in particular hardware components, such as

P a r t I – C h a p t e r 1.2 � Approach

14

physical servers or network connectivity components should be service-oriented, too.
Technically, this assumption is reasonable and realistic, in particular with respect to
the emergence of Cloud Computing. As later discussed in Section 2.1.3, Cloud Com-
puting promotes the provision of infrastructure components as network services.
Thorough enforcement of the design principles of service-orientation across the entire
IT infrastructure ensures that the approach described in this thesis can be applied to
each technical component in the IT infrastructure, from business-facing processes
down to IT-centric infrastructure components.

To realise automated end-to-end SLM in a service-oriented environment, as dis-
cussed in the motivation, this thesis proposes an approach on two different levels:

� On the local level, a technical component organises itself according to service
levels it agrees upon with its consumer(s). To establish controlled self-
organisation on a technical component, this thesis utilises the generic Observ-
er/Controller (O/C) architecture from the Organic Computing research com-
munity [BMM+06]. Section 3.4 provides a detailed insight into the generic
O/C architecture. With the generic O/C architecture, each technical component
is expected to control adaptively its runtime behaviour in compliance with
SLAs it closes with its service consumers.

� On the global level, a technical component collaborates with related compo-
nents in its environment – either service consumer or service provider respec-
tively – to coordinate their runtime behaviour. With recursive collaborations
between related components top-down from business-centric processes to IT-
centric components, requirements on business processes can be gradually bro-
ken down into requirements on each technical component. These IT-centric re-
quirements derived from business requirements are in turn applied to each
component individually by its local O/C architecture.

Concisely, the key characteristic of the approach is to enable end-to-end SLM by
facilitating collaboration between all related technical components in a service-
oriented system. Collaborative activities between technical components are carried out
by means of automated negotiation of SLAs between service providers and service
consumers. In this way, end-to-end service level requirements can be automatically
propagated across the complete landscape without any manual efforts of human par-
ticipants. In addition, SLAs as abstracted and homogeneous messages ensure that the

P a r t I – C h a p t e r 1 � Introduction

15

proposed approach can be applied to technical components, in spite of their heteroge-
neous implementations.

1.3 Contributions

In brief, this thesis contributes to the current research in the field of automated Service
Level Management for service-oriented systems. Among other things, this thesis
makes the following major contributions:

� This thesis analyses the characteristics of service-oriented systems and outlines
the objectives for enabling automated SLM in service-oriented systems. As the
main environment for applying the approach, this thesis reviews the concept of
service-orientation and its applications in the enterprise IT. In particular, it
places an emphasis on the recent development in Service-oriented Computing
(SOC), especially on Cloud Computing. Moreover, this thesis also reviews the
research areas of self-organisation and Multi-Agent Systems (MAS) that are
closely related to the approach of the present thesis. Among other things, it re-
views the existing concepts in MAS to enable collaboration between agents.

� This thesis proposes an architecture that enables end-to-end SLM in service-
oriented systems. Based on the generic observer/controller architecture intro-
duced in the Organic Computing community, this thesis extends the architec-
ture with the necessary capabilities to accelerate collaboration between tech-
nical components. In particular, it addresses how the extended observ-
er/controller architecture can be applied to technical components to achieve au-
tomated end-to-end SLM in a service-oriented system.

� This thesis investigates the characteristics of SLAs in service-oriented systems
and introduces an automated negotiation model to facilitate collaboration be-
tween technical components. There is a range of existing mechanisms that can
be applied to realise negotiation between technical components. Hence, the de-
sign of a particular negotiation mechanism is subject to the characteristics of
end-to-end SLM within a service-oriented system. The present thesis reviews
the specific requirements of end-to-end SLM on automated negotiation and de-
signs an automated negotiation model with respect to this requirement analysis.

� This thesis designs and implements a high-level simulation environment for
evaluating solutions for service-oriented systems. In order to evaluate the pro-

P a r t I – C h a p t e r 1.4 � Thesis Outline

16

posed approach, an appropriate evaluation environment has to be able to deliv-
er an operating service-oriented system that can be flexibly adjusted in accord-
ance with objectives of particular evaluation experiments. Since physical envi-
ronments satisfy this requirement only to a limited extent, a high-level simulat-
ed environment is designed and implemented in the present thesis. The result-
ing simulation environment is able to produce realistic runtime behaviour of a
service-oriented system with respect to both functional and non-functional as-
pects of such a system.

� This thesis evaluates the proposed approach and outlines the application of au-
tomated SLM to manage a service-oriented system. In the simulated evaluation
environment, the present thesis evaluates the proposed automated negotiation
model towards its performance and efficiency. Moreover, the present thesis al-
so evaluates the applicability of the proposed multi-level SLM approach with a
real world scenario from the university.

1.4 Thesis Outline

The present thesis is organised with respect to a conventional software engineering
approach. Beginning with motivation and state-of-the-art for end-to-end SLM, the
design of the proposed architecture is introduced and evaluated within a simulation
environment. The last part of this thesis summarises the work and provides an outlook
on possible further development of the concept.

Figure 1-3 illustrates the roadmap of the present thesis. The first part, Motivation
and State-of-the-Art (Part I), motivates the main problem addressed by the present
thesis and reviews the current development in the related research fields.

Chapter 1 introduces the recent development within SOC and enlightens the need
to establish a self-organising SLM for service-oriented system. Chapter 2 reviews the
main research fields that are closely related to the approach of this thesis. It reviews
the most recent development in the field of SOC, which is the target application field
of the thesis. In addition, it reviews various approaches that aim at establishing self-
organisation in technical components. At last, it discusses existing approaches in
MAS to facilitate collaboration between agents, which plays a key role in the ap-
proach of this thesis.

P a r t I – C h a p t e r 1 � Introduction

17

The second part, Design (Part II), introduces the design of the architecture to enable
self-organising SLM in a service-oriented system. Chapter 3 introduces the fundamen-
tal means to realise the multi-level framework to enable automated SLM. Among oth-
er things, it establishes a common understanding of service-oriented environments as
well as the process involved in SLM for the present thesis. In addition, it introduces
the basic model to enable automated negotiation between a service consumer and a
provider and outlines the generic observer/controller architecture in detail.

Chapter 4 reviews a real service-oriented scenario from the university context and
analyses the requirements and challenges that the self-organising SLM approach of
this thesis has to address.

Chapter 5 introduces a reference architecture to enable automated end-to-end SLM
in a service-oriented environment. In particular, this chapter outlines how the concepts
described in Chapter 3 can be combined to establish a framework for realising auto-
mated end-to-end SLM.

Chapter 6 focuses on collaboration between a service consumer and its providers,
which is crucial for establishing service relationships dynamically. Particularly, this
chapter is concerned with the underlying automated negotiation model and introduces
the negotiation protocol to facilitate bilateral negotiation between management agents.
Moreover, this chapter describes a range of negotiation strategies that can be applied
to find optimised SLAs in the course of negotiation.

The third part, Evaluation (Part III), is concerned with evaluating the proposed
framework to enable automated end-to-end SLM.

Chapter 7 focuses on the evaluation environment to assess the feasibility of the ne-
gotiation-based SLM approach. Among other things, this chapter outlines the overall
architecture of the evaluation environment and describes how the simulation environ-
ment can produce the runtime behaviour of a service-oriented system both on the
macroscopic and microscopic level.

Chapter 8 is concerned with the evaluation results of the present thesis. It outlines
the design considerations of the evaluation environment and provides the evaluation
results to show the feasibility of the proposed approach in this thesis.

The last part, Conclusion and Outlook (Part IV), summarises the thesis and de-
scribes how the proposed approach has addressed the design objectives determined in

P a r t I – C h a p t e r 1.4 � Thesis Outline

18

Chapter 4. In addition, this part outlines the possible research directions and exten-
sions of the proposed framework for future work.

Figure 1-3: Structure of the present thesis

Chapter 1:
Introduction

Chapter 2:
State-of-the-Art

Chapter 3:
Fundamentals

Chapter 4:
Scenario and Requirement Analysis

Chapter 5:
Organic Service-oriented Envrionments

Chapter 6:
Collaboration between Agents

Chapter 7:
Evaluation Environment

Chapter 8:
Evaluation Results

Chapter 9:
Conclusion and Outlook

Part I: Motivation and State-of-the-Art

Part II: Design

Part III: Evaluation

Part IV: Conclusion and Outlook

motivation and approach

architectural design

evaluation results

19

Chapter 2 State-of-the-Art

“The one who knows others is learned; the one who knows oneself is enlightened. ”
(Tao Te Ching, Laozi, ~ 470 B.C.

The present thesis envisions automating SLM processes between all related service
providers and service consumers in a service-oriented environment. The approach to
realise this vision is to combine local self-organisation of a technical component with
global collaboration between components, as described in Section 1.2. Hence, this
chapter provides an overview on current research in the related research fields, in par-
ticular with respect to service-oriented systems and self-organisation.

Section 2.1 introduces the concept of service-orientation and its application in en-
terprise IT. In particular, this section places an emphasis on the recent development in
Cloud Computing that provides the ideal environment for applying the approach of
this thesis due to its service-oriented design. Section 2.2 focuses on approaches realis-
ing self-organisation. Among other things, the observer/controller architecture from
the Organic Computing research community is highlighted in this section. The last
section, Section 2.3, addresses the foundation of Multi-Agent Systems (MASs). In
particular, this section is concerned with automated negotiation between agents in
MAS and provides an overview on how negotiation can be applied in service-oriented
environments.

2.1 Service-oriented Computing

Service-oriented Computing (SOC) is an emerging distributed computing model to
build business applications that usually span several organisational units. It provides
the fundamental means to design, implement, deliver, and consume business capabili-
ties as Services. As the name SOC already says, services play a key role within SOC.

P a r t I – C h a p t e r 2.1 � Service-oriented Computing

20

In the context of SOC, services are self-contained units that provide business capabili-
ties via well-defined interfaces.

However, such units of business capabilities exist already in other similar compu-
ting paradigms, such as objects in object-oriented programming or components in
component-oriented programming. To distinguish the concept of services from other
encapsulation mechanisms, design and implementation of a service must follow the
design paradigm of service-orientation. That is, how such self-contained units can be
built on top of given business capabilities. To this end, service-orientation defines a
range of design principles, such as using abstracted and well-defined interfaces to re-
alise loose coupling between related components, or using coordinated interactions to
implement value-added service compositions on top of basic services.

In this way, business capabilities become reusable services that can be invoked dy-
namically by other components. Figure 2-1 illustrates the relationships between all the
artefacts of Service-oriented Computing.

Figure 2-1: Artefacts of service-orientation

Service-oriented Architecture (SOA) specifies the way in which such flexible and
reusable services are organised to implement end-to-end business solutions. In gen-
eral, an SOA defines the architectural model that organises the various artefacts to
realise required business functionalities at a conceptual level, such as business pro-
cesses, (Web) services, applications, and components. Based on this conceptual mod-
el, service-oriented applications can be implemented. Each service-oriented applica-
tion consists of a combination of technologies, products, platforms, and various other
parts. Due to different operational contexts of such applications, each deployed SOA

service service-
orientation

Service-oriented
Architecture

service-oriented
application

Service-oriented
Computing

applies as
design principles

concrete imple-
mentation

uses as primary means
to build applications

specifies as
distinguishing
characteristics

P a r t I – C h a p t e r 2 � State-of-the-Art

21

is always unique. Nevertheless, there is usually a common set of technologies, in par-
ticular standardised communication protocols, to ensure the interoperability between
different SOA implementations.

The remainder of this section focuses on the design principles of service-
orientation, and outlines their impact on developing business applications. In addition,
the reference architecture of SOA is introduced to show the essential architectural
parts that are highly relevant to the approach introduced in this thesis. At last, this sec-
tion gives an insight into service-oriented infrastructure, in particular Cloud Compu-
ting, which utilises the concept of service-orientation to provide a novel way to deliv-
er and consume hardware-based services.

 Service-orientation 2.1.1

As the requirements for tighter alignment between business and IT infrastructure in-
crease permanently, the design paradigm of service-orientation emerges as the ulti-
mate solution. In a business, IT infrastructure is responsible to deliver business solu-
tions to automate business processes. The widely established approach to build busi-
ness solutions adopts the concept of “separation-of-concerns.” It consists of several
tasks, including identifying business tasks to be automated, defining business re-
quirements for these tasks, and building appropriate business capabilities to satisfy the
defined requirements. However, business solutions built in this way are less flexible
and reusable, because business capabilities are closely tied to specific business scenar-
ios and requirements associated with them. In case of changed business requirements,
significant changes to these business solutions are often not avoidable.

To reduce the time needed to adapt business applications to changing requirements,
the design paradigm of service-orientation has emerged. It is concerned with reusable
and flexible encapsulation of business capabilities as services. By applying service-
orientation to enterprise IT, business requirements are no longer met by building or
extending existing business applications. Instead, new requirements are addressed by
changing the composition of existing services in accordance with these requirements.
This kind of agility enables IT infrastructure to adapt to changing conditions in busi-
ness and its environment on demand [CGH+05].

The idea of encapsulating business capabilities as logic units is not new. Similar
approaches, such as Object-oriented Programming or Component-oriented Program-

P a r t I – C h a p t e r 2.1 � Service-oriented Computing

22

ming, uses this concept, too. To distinguish services from objects or components, ser-
vice-orientation defines a set of design principles. Service-orientation addresses main-
ly the way in which such business capabilities can be encapsulated as reusable ser-
vices for remote access. Box defined four fundamental tenets for creating services, in
particular in comparison with object-orientation [Box04]:

� Boundaries are explicit: each service has an explicit boundary to the outside
world. Services interact with each other explicitly by exchanging messages
through the boundaries. Such an explicit boundary allows each service to do
implementation-independent interactions with predefined messages.

� Services are autonomous: autonomy of a service appears in several facets
throughout a service development process, in particular during deployment and
versioning. During this process, each service is expected to behave reasonably
as an independent entity. In other words, each service is free to choose the plat-
form, middleware, or coding languages to implement its logic.

� Services share schema and contract, not class: each service interacts with its
consumers through messages specified by schema and behaviour defined by
contract. A service contract defines the structure and ordering constraints of
messages exchanged between a service and its consumer. Hence, contracts are
used to verify message integrity at runtime. In addition, in order to ensure long-
term relationships between a service and its consumers, contracts and schema
have to remain stable over time. In contrast, the respective service provider can
change its service implementations autonomously.

� Service compatibility is determined based on policy: both service consumer and
service provider have policies on operational requirements to control interac-
tions between them. Therefore, they express their capabilities and requirements
in terms of policy expressions. Before a provider and a consumer enter a long-
term relationship, they must be able to satisfy each other’s policy requirements.

Box’s definitions emphasise the explicit boundaries between services and the au-
tonomous behaviour of services behind the boundaries. Erl extended this view on ser-
vice-orientation towards design principles concerned with adopting services in enter-
prise IT, in particular with respect to federated interoperability and vendor independ-
ence of services. Based on analysis of best practices and similar design approaches,
Erl summarises the following eight design principles for service-orientation – with a
partial overlap with the definitions of Box [Erl08]:

P a r t I – C h a p t e r 2 � State-of-the-Art

23

� Standardised service contracts: similar to the previous definition of Box, each
service shares a formal contract with its consumers. A formal contract can be
composed of legal and technical information, such as interaction interface, con-
straints, usage policies, and so on.

� Service loose coupling: a service and its consumers retain a minimal level of
coupling. The term coupling refers to the level of dependence between a ser-
vice and its consumer. Ideally, a service and its consumers depend on each oth-
er only on the base of an agreed service contract. This ensures maximal flexi-
bility of the resulting architecture in case of changes.

� Service abstractions: from the viewpoint of a service consumer, a service oper-
ates as a black box. The only information of a service available to its consum-
ers is the published service contract. This design principle helps to reduce de-
pendence between a service and its consumer and thus makes the loose cou-
pling between them possible.

� Service reusability: this principle requires that the design of a service cannot be
bound to a particular process task. Instead, a service has to attain an effective
level of reusability to become generic enough for being involved in other pro-
cesses. This ensures that the resulting service-oriented environment can be ex-
tended and adapted beyond particular business solutions.

� Service autonomy: similar to the previous definition given by Box, service au-
tonomy emphasises the governance by the underlying implementation by a ser-
vice provider.

� Service statelessness: the essential difference between service-orientation and
object-orientation is that a service has no state. Runtime state information is
only specifically bound to the current process instance. This principle allows a
service to be integrated into different business processes without any changes
to the underlying implementation.

� Service discoverability: this aspect is new in comparison to the previous defini-
tions given by Don Box. Discoverability is the prerequisite to facilitate con-
sumption of a service by potential service consumers. It can be done by auto-
mated interpretation and evaluation of abstract service contracts that provide
metadata on the target services to potential service consumers.

� Service composibility: a service composition represents coordinated consump-
tion of a set of services. This allows service providers to produce value-added

P a r t I – C h a p t e r 2.1 � Service-oriented Computing

24

services on top of a set of underlying services. In fact, this principle is the di-
rect result of service reusability and statelessness.

While the definitions of Box are restricted to a single service, the definitions given
by Erl have extended their view to the architectural design principles.

Figure 2-2 summarises the relationships between all design principles discussed in
this section. Standardised service contracts abstract implementation details of a ser-
vice and provide metadata about the service for discovery purpose. Service abstrac-
tion allows a service to operate as a black box and thus retain its autonomy in the
course of interactions with its consumers. To achieve a loose coupling between a ser-
vice and its consumers, the service is expected to reduce its dependence with its con-
sumers. This is ensured by the principles of service abstraction, autonomy, and state-
lessness. Service abstraction specifies that the service only shares interface infor-
mation with its consumers and no implementation details. Service autonomy specifies
that each service is responsible for its own runtime behaviour. That is, from the view-
point of service implementation, a service and its consumers are fully independent
from each other. This also requires that a service is stateless. Only stateless services
can be easily disconnected from existing service consumers and be connected to other
potential consumers. In this way, a service increases its reusability for other potential
consumers. Together with service discoverability, statelessness, and reusability, ser-
vices can be composed to value-added services. This possibility addresses the design
principle of service composibility.

Figure 2-2: Relationships between the design principles of service-orientation

By reviewing the service principles, it is obvious that service autonomy is of par-
ticular interest for SLM. With service autonomy, a service has awareness and full con-

standardized
service contracts

service loose
coupling

service abstraction

service reusability

service autonomy
service

statelessness
service

discoverability

service
composibility

is used to enable
discoverability

allows abstraction
with abstracted

service interface

facilitates
Service autonomy
with abstracted
service interface

decrease dependence
with abstracted
service
interface

allows
integration
of a service
in various
service compositions

provide the possibility
to discover
services for
compositions enables

facilitates loosely
coupling with
independent services

P a r t I – C h a p t e r 2 � State-of-the-Art

25

trol over all its local resources. Such control exists in all facets of service develop-
ment, in particular during deployment and versioning. It allows a service to specify
independently the underlying implementation logics required to realise the business
capabilities exposed by the service contract. By doing so, a service can autonomously
govern its local resources to tune runtime behaviour of its business capabilities – e.g.,
reliability, availability, and performance in compliance with SLAs closed with its ser-
vice consumers. In this context, services are similar to the behaviour of agents in mul-
ti-agent systems that are further discussed in Section 2.3.3.

 Service-oriented Architecture 2.1.2

Service-oriented Architecture defines an architectural style that has services as core
architectural elements. It provides a set of standardised messaging protocols, interface
definitions, workflow modelling languages, as well as management policies. These
artefacts of SOA address the necessary connecting pieces to compose services to
business processes that satisfy given business requirements. As aforementioned, SOA
has different objectives than service-orientation. Service-orientation focuses on the
abstracted design principles for defining how services can be constructed out of given
business capabilities. It does not address the way, in which such services can be com-
posed to realise a particular business process. In contrast to this, SOA provides the
architectural framework around services. By using the artefacts specified by SOAs,
business can compose the required business logic out of existing services without hav-
ing to care about the barriers caused by heterogeneous technical platforms.

Although it has been applied by numerous organisations, there is no widely accept-
ed definition for SOA. Instead, there is a number of competing definitions proposed
by various industrial consortia and software vendors. Each definition has its emphasis
on different aspects. The W3C defines a Service-oriented Architecture as “a set of
components which can be invoked, and whose interface descriptions can be published
and discovered” [HB04]. This definition addresses the basic parts of an SOA as a set
of discoverable and callable components. However, it restricts an SOA as a set of
components that exist already in other similar design paradigms. Furthermore, the
W3C’s definition of SOA covers mainly development and deployment aspects and
addresses less architectural aspects of service-oriented systems [SW04].

The OASIS defines SOA as “a paradigm for organizing and utilizing distributed
capabilities that may be under the control of different ownership domains“

P a r t I – C h a p t e r 2.1 � Service-oriented Computing

26

[MKL+06]. In addition, the OASIS views SOA as an ecosystem that provides “a me-
dium for exchange of value between independently acting participants. Participants
(and stakeholders in general) have legitimate claims to ownership of resources that are
made available via the SOA; and the behaviour and performance of the participants
are subject to rules of engagement which are captured in a series of policies and con-
tracts.” [ELMT09]. It is noteworthy that this definition uses the term participant to
denote the artefacts within an SOA. In comparison to the narrow definition given by
the W3C, the OASIS’ definition includes not only services, but also machines and
people in the context of SOA. Each of those participants has some control and influ-
ence on the overall service-oriented system. Furthermore, this definition clarifies the
architectural aspect of SOA that provides the space between participants to facilitate
interactions between them. It also implies that in order to enable consistent communi-
cation between participants, SOA needs a number of standards and policies to guide
interactions between services and their consumers. Such policies determine the behav-
iour and performance of participants during their interactions with other stakeholders.

Erl defines SOA as “a form of technology architecture that adheres to the principles
of service-orientation. When realised through the Web services technology platform,
SOA establishes the potential to support and promote these principles throughout the
business process and automation domain of an enterprise” [Erl05]. This definition
emphasises the capabilities of services in compliance with the design principles of
service-orientation introduced in 2.1.1. In addition, it clarifies the relationship be-
tween Web services and SOA. That is, as a subset of services, Web services provide
the necessary means to help to realise SOA. Further similar definitions on SOA are
given by Colan [Col04], the Open Group [OG09], Papazoglou and van den Heuvel
[PH07], as well as Sprott and Wilkes [SW04].

The variety of definitions shows that it is not trivial to give a precise and commonly
accepted definition of SOA. It depends on different views on target systems employ-
ing service-orientation. For the present thesis, it is sufficient that an SOA definition
can address the following characteristics:

� SOA provides an architectural paradigm for organising a network of inde-
pendently participating artefacts including services, machines, and people that
operate, use and govern these services and machines. Each artefact may affect
or be affected by the system.

P a r t I – C h a p t e r 2 � State-of-the-Art

27

� In a system applying SOA, none of the participating artefacts owns the system.
Instead, each of them controls and influences part of the system.

� Services follow the design principles of service-orientation.

� SOA provides the necessary standards and policies to facilitate interactions be-
tween services and their consumers. These policies place unique requirements
on the infrastructure to ensure interoperability in a heterogeneous environment.

With the SOA definition as guidance, the more interesting aspect is what an SOA-
based system can look like. To address this aspect, several organisations have worked
on various reference models as well as reference architectures to provide architectural
patterns for building SOA-based systems [KE09]. The W3C defines Web Services
Architecture as an architectural model that identifies the functional components within
such an architecture and specifies relationships between those components
[BHM+04]. However, the architectural model of the W3C focuses mainly on the im-
plementation details of Web services in support of SOA. In particular, it outlines the
Web Services Architecture stack as a set of layered and interrelated technologies. To
this end, it identifies the necessary communication protocols (such as HTTP and
SMTP) together with a number of emerging standards (e.g., XML for encoding in-
formation, SOAP for transporting messages, WSDL for describing interfaces, etc.). A
standard-based Web Service Architecture stack increases interoperability between
heterogeneous components in a service-oriented environment. However, it provides
less information on how such a service-oriented environment should be built. Similar-
ly, the reference architecture foundation hosted by the OASIS uses a similar view to
provide the fundamental model of SOA [MKL+06, ELMT09]. However, in compari-
son to the W3C approach, the OASIS reference architecture provides only abstract
and fundamental models on the meta-level. Other than the W3C approach, one cannot
use directly the OASIS reference architecture to implement SOA-based systems.

A more concrete reference architecture intended to support understanding, design,
and implementation of SOA-based systems is provided by Arsanjani et al. of the Open
Group [AZE+07, AK09]. This reference architecture provides the blueprint of an
SOA-based system, including integral architectural parts of an SOA. For organisations
implementing SOA, they can directly use this reference architecture to make architec-
tural and design decisions.

The reference architecture of the Open Group divides a service-oriented architec-
ture into nine independent layers, five horizontal layers and four vertical crossover

P a r t I – C h a p t e r 2.1 � Service-oriented Computing

28

layers, as illustrated in Figure 2-3. The five basic layers are from top-down the con-
sumer interfaces and business processes layers with consumer concerns, the services
layer, the service components layer, and the operational systems layer with provider
concerns. The operational systems layer is composed of technical infrastructure need-
ed to operate an SOA-based environment, e.g., operational hosting environments of
system components. The service components layer consists of software components
that provide implementation of services. The services layer includes all services de-
fined within the given service-oriented environment. The business process layer con-
tains service orchestrations and compositions in compliance with business require-
ments. At last, the consumer interface layer provides interfaces to connect the IT ca-
pabilities with end users, such as Web portals, or rich clients.

Figure 2-3: SOA Reference Architecture of the Open Group (see [AK09])

The four vertical layers cut across the five basic layers and support the aspects of
integration, quality of service, information, and governance in the environment. The
integration layer provides the fundamental communication platform to connect ser-
vice providers with service consumers. The quality of service layer provides the nec-
essary capabilities to support the life cycle processes of non-functional policies, e.g.,
reliability, availability, and security. The information layer focuses on the information
aspects of the entire service-oriented environment and provides the basis for creating
business intelligence, e.g., by using data warehouse. The governance layer ensures
that the entire service-oriented environment is aligned with defined corporate and IT
policies, guidelines, and standards.

Other layered approaches similar to the Open Group’s reference architecture are the
Integrated Service-oriented Architecture (iSOA) introduced in the Karlsruhe Integrat-

operational
systems

service
components

services

business
processes

consumer
interfaces

integration

Q
uality of Service

inform
ation

governance

P a r t I – C h a p t e r 2 � State-of-the-Art

29

ed InformationManagement (KIM) project [FLM+06, KIM10] and the extended Ser-
vice-oriented Architecture (xSOA) proposed by Papazoglou [Pap05]. The reference
architecture iSOA distinguishes between four different architectural parts: technical
infrastructure for providing infrastructural support, basic services for offering simple
business functionalities, application services for provisioning value-added service
compositions, and a service portal for enabling interactions with end users.

However, both iSOA and xSOA do not include the underlying physical and hard-
ware-centric components in the architecture. For real world implementation of SOA in
support of dynamic business, agility of IT infrastructure is important to guarantee a
consistent and comprehensive support of service-oriented solutions. The emerging
trend to combine the design paradigm of service-orientation with IT infrastructure, as
later introduced in Section 2.1.4, provides the prerequisite to increase agility of the
complete service-oriented solution, including hardware-centric components.

 Cloud Computing 2.1.3

Cloud Computing is the emerging paradigm for provisioning infrastructure services
over the Internet. The basic idea behind Cloud Computing is to provide scalable and
flexible computing resources on demand to satisfy real-time usage requirements on
computing resources of business [Hay08]. In comparison to traditional computing re-
sources, such as local installed software and hardware components, Cloud Computing
provides a shift in the geography of computation. Instead of getting computing tasks
done locally, Cloud Computing processes computing tasks on unseen computing re-
sources in the cloud, possibly scattered around the globe.

As pointed out by Erdogmus [Erd09] and Vaquero et al. [VRM+08], there are a
number of definitions of Cloud Computing with different focuses on this technology,
such as in [BYV08, Dej08, McF08, AFG+09, BYV+09, Gee09]. Most of the defini-
tions outline the major characteristics of Cloud Computing: virtualisation, Internet
centric, scalability, pay-per-use, and service/infrastructure SLAs. This thesis aligns
itself to the definition given by Buyya, Yeo, and Venugopal [BYV08] that covers
most of these characteristics and suffices for the purpose of the present thesis:

A Cloud is a type of parallel and distributed system consisting of a collec-
tion of inter-connected and virtualized computers that are dynamically
provisioned and presented as one or more unified computing resource(s)

P a r t I – C h a p t e r 2.1 � Service-oriented Computing

30

based on service-level agreements established through negotiation between
the service provider and consumers.

According to this definition, Cloud Computing can be considered with respect to
the following aspects:

� On demand service provisioning: Cloud Computing provides a vast resource
pool with on-demand resource allocation. This is the most significant differ-
ence of Cloud Computing in comparison to traditional enterprise IT. From this
point of view, Cloud Computing follows the idea of Utility Computing
[BCL+04], where infrastructure providers make computational resources avail-
able and customers can rent computational resources as needed.

� Abstraction via virtualisation: Virtualisation provides the technological foun-
dation for Cloud Computing. Computational resources on demand imply that
infrastructure providers can dynamically change resource allocation of a par-
ticular consumer or transparently moving an existing consumer from one phys-
ical server to another. This requires service consumers to be decoupled from
the underlying hardware, which is not possible without virtualisation. By or-
ganising physical resources, (e.g., storage, computing power, network connec-
tivity) in a resource pool, virtualisation allows service providers to get an ab-
stract and logical view on those resources. Individual requirements from con-
sumers on computational resources can be satisfied by providing resources di-
rectly from the virtualised and logical resource pool. As summarised by Baun
et al. [BKNT10], from the viewpoint of infrastructure providers, virtualisation
allows them to realise greater ROI by improving the average resource utilisa-
tion rate of hardware components. From the viewpoint of consumers, they can
achieve more dynamic on providing their applications on top of scalable and
high available computational resources.

� SLA-driven: Provisioning infrastructure services in Cloud Computing is con-
trolled by SLAs negotiated between infrastructure providers and consumers. In
this case, underlying computational resources are dynamically managed by
terms defined in SLAs. For example, an SLA may define how quickly incom-
ing requests should be processed, or how much a respective consumer should
be priced for using particular services. For infrastructure providers, SLA-driven
management of resources allow them to relocate efficiently computational re-
sources to individual consumers to fulfil their requirements. On the other hand,
dynamically negotiated SLAs ensure that consumers are fairly priced for cloud
services they consume on the base of pay-per-use.

P a r t I – C h a p t e r 2 � State-of-the-Art

31

� Network-centric: Infrastructure services provided in Cloud Computing are ac-
cessible over network or Internet, depending on the type of the clouds
[AFG+09]. In general, depending on the accessibility of services provided in
the cloud, a cloud infrastructure can be either private, hybrid, or public
[AFG+10].

� Self-healing: physical resources in clouds are managed transparently to con-
sumers. Various software and hardware components are autonomously recon-
figured, orchestrated, and consolidated as virtualised resources to consumers.
Based on the concept of virtualisation, a virtualised instance can be replaced in
case of failures by a new as well as backup instance. All failover measures of
virtualised resources are performed autonomously and transparently in the
background.

� Service-oriented provisioning: computational resources in clouds are provided
as services. Clouds, especially public clouds, provide necessary interfaces
based on standardised communication protocols, such as Web services or
RESTful services, to their consumers. This allows asynchronous and message-
based communication between service providers and service consumers
[BKNT10c].

To sum up, Cloud Computing provides architectural and technical foundations to
provision IT infrastructures, software platforms, and applications as network-centric
services. Meanwhile, there have been a number of cloud providers on the market, such
as Amazon Elastic Compute Cloud (Amazon EC2) providing virtual servers, Amazon
Simple Storage Service (Amazon S3) providing online storage, or Microsoft SQL Az-
ure providing fully relational database in the cloud [BKNT10a].

To get a better overview on various technologies and services in the cloud, Baun et
al. worked out a architecture stack for Cloud Computing, as illustrated in Figure 2-4
[LKN+09, BKNT10b]. They distinguish between four different layers in the architec-
ture stack. The lowest layer in the stack manages a set of hardware-centric resources,
such as storage, network connectivity, or computing power (e.g., automated setup and
tear-down, demand-based scaling, fail-over, etc.). These resource sets are provided as
virtualised infrastructure services (i.e., IaaS) to upper software-related layers.

The PaaS layer provides programming and execution environments (e.g., Java or
.NET environments) for running applications. The SaaS layer contains all applications
provided to end-users. The applications services offer basic business capabilities that
can be further orchestrated by applications to provide value-added functionalities.

P a r t I – C h a p t e r 2.1 � Service-oriented Computing

32

Figure 2-4: Cloud Architecture Stack (see [BKNT10b])

The topmost layer in the stack, HuaaS, helps to involve human intelligence into
service offers. It is well known that in spite of advancement in Artificial Intelligence,
there are tasks (e.g., pattern recognition) that cannot be efficiently processed by com-
puters. HuaaS allows in such case to incorporate human intelligence into software-
based services to solve given problems, as promoted e.g. in the Amazon Mechanical
Turk service [BC06].

 Service-oriented Infrastructure 2.1.4

The evolution of enterprise architectures from traditional two/three-tier architectures
to Service-oriented Architectures is driven by increasing demands on tight alignment
between business and enterprise IT in face of ever-changing market environments.
Recent research so far focuses mainly on software-centric aspects to increase agility
of related IT infrastructure. That is how service-oriented applications can respond
quickly and efficiently to changes in business. The service-oriented approach to or-
chestrate atomic capabilities to business processes, as promoted in SOA, can solve
this problem effectively – from the viewpoint of functional aspects.

However, from the viewpoint of non-functional aspects, such as performance or
availability, software-based adaptation is not sufficient to improve the agility of the
whole IT infrastructure. For example, to satisfy an unexpected peak of service re-

Infrastructure as a Service (IaaS)
infrastructure services

resource set
virtual resource set

physical resource set

Platform as a Service (PaaS)
programming environment

execution environment

Software as a Service (SaaS)
applications

application services

Human as a Service (HuaaS)
crowdsourcing

P a r t I – C h a p t e r 2 � State-of-the-Art

33

quests for a given business process, adapting service compositions has only limited
efficiency. In this case, the underlying technical components in support of the respec-
tive business process must be reconfigured to get rid of increasing requests, such as by
assigning more computational capacities to the process. Hence, it is obvious that in
order to provide highly agile IT infrastructure, hardware-centric components should
be included in the comprehensive SOA, too. That is, applying the design principles of
service-orientation to link service levels of higher-level business processes with those
of the underlying hardware-centric services, such as network connectivity, storage,
and servers. The resulting IT infrastructure is denoted as Service-oriented Infrastruc-
ture (SOI).

SOI is characterised by defining and provisioning IT infrastructure in terms of ser-
vices. That is, hardware-related SOI undergoes the same life cycle as software-related
SOA to design, implement, provision, operate, and manage services. The resulting
infrastructure services run on top of a pool of physical resources governed by a cen-
tralised management system that keeps the balance between service delivery and ser-
vice demand.

Cloud Computing provides the suitable example to demonstrate how such an SOI
can work. As outlined in 2.1.3, Cloud Computing provides virtualised hardware com-
ponents, technology platforms, and network-centric applications as services. These
services can be orchestrated as needed to provide appropriate runtime environments
for an SOA-based system. Varia has demonstrated the simplicity and strength of SOI
to run applications on top of orchestrated Cloud services [Var08]. Based on a set of
Amazon Cloud services, he built an application to do pattern-matching across millions
of Web documents. In each run, his application draws the necessary computational
resources on demand (up to hundreds of virtual servers), runs a parallel computation
on them, and then shuts down all involved virtual servers after task completion to free
resources in the Cloud. All of these tasks are done transparently through abstracted
Web service interfaces. This scenario demonstrates clearly the strength of service-
oriented infrastructure to construct highly agile and resilient network-enabled
applications.

Although the idea of applying design principles of service-orientation to the hard-
ware-centric infrastructure emerged only a few years ago, there are already several
efforts in industry and academia towards realisation of SOI. The most representative
works are the SOI Reference Framework proposed by the Open Group [OG08], the

P a r t I – C h a p t e r 2.1 � Service-oriented Computing

34

SLA@SOI project supported by the EU [The08], and Intel’s research on SOI with a
prototypical implementation [CLC+06].

Figure 2-5: SOI reference model by the Open Group (see [OG08])

Figure 2-5 illustrates the SOI reference model proposed by the Open Group with all
its conceptual building parts [OG08]. Business Requirements capture all business re-
quirements from both the business and the IT in terms of SLAs, such as business pro-
cess performance, security requirements, cost models, and so on. Based on those giv-
en business requirements, Business Process Monitoring derives a set of rules, cost
models, and other artefacts to control the Infrastructure Management Framework.
Service Level Requirements are derived from given business requirements. They de-
fine service levels for each service delivered by the infrastructure. The Infrastructure
Management Framework consists of a set of software, processes and procedures to
plan, build, and run IT resources in accordance with Service Level requirements and
other business rules. By doing this, this framework governs the underlying physical
resources and encapsulates them as services. The Physical Services represent hard-
ware-related resources on the atomic level, such as storage, computing power, and
operating systems. On top of those atomic physical resources, Virtualised Services
abstract physical resources by providing interfaces to enable consistent access to
them. Infrastructure Services compose virtualised services to provide unique capabili-
ties with value-added functionalities. The IT manages all services and the underlying

business
requirements

infrastructure service

software-related services

business
process
monitoring
(business
rules, cost
models,…)

service level
requirements

infrastructure
management
framework
(service
governance,
resource
management,
orchestration,
…)

physical service

services
exposed

to ITvirtualized service

P a r t I – C h a p t e r 2 � State-of-the-Art

35

IT infrastructure via the particular management services exposed by the Infrastructure
Management Framework.

In short, the Open Group’s reference model provides a functional view on service-
oriented infrastructure and specifies the necessary integral parts with less reference to
SOA. Driven by high-level business requirements, SOI has to define appropriate ser-
vice levels to satisfy overall business demands. Provisioning physical resources as
services is controlled by centralised management systems with the fundamental ap-
proach of virtualisation. With increasing degree on abstraction, SOI provides access to
physical services, virtualised services, and composed infrastructure services.

Another comprehensive framework considering interactions between SOI and SOA
is proposed by the EU’s SLA@SOI project. Initialised with the vision to provide “a
business-ready service-oriented infrastructure empowering the service economy in a
flexible and dependable way,” the research project aims to provide fundamental sup-
port to enable service-oriented economy. IT-based service can be flexibly traded and
consumed as economic good between loosely coupled service consumers, service
providers, and infrastructure providers. To gain the desired flexibility, SLA@SOI uti-
lises a holistic SLA management framework in combination with adaptive SLA-aware
infrastructure. The multi-layer SLA management framework provides support to spec-
ify, negotiate, and monitor SLAs between related stakeholders in an end-to-end man-
ner. The behaviour of corresponding infrastructural resources is then controlled and
enforced by negotiated SLAs. More details on SLA@SOI are available on the project
website [SLA10]. The difference between the approaches utilised in SLA@SOI and
the SOI reference model of the Open Group are their different scopes of their frame-
works. While SLA@SOI intends to provide a comprehensive SLA-driven framework
covering both hardware-centric and software-centric services, the Open Group’s SOI
reference model focuses mainly on essential parts to enable hardware-centric services,
i.e., an implementation guide for enterprise IT.

 Concluding Remarks 2.1.5

The emergence of service-orientation facilitates the shift of enterprise IT from prod-
uct-oriented economy to service-oriented economy. Applying service-orientation to
enterprise IT, businesses can gain increasing agility in their enterprise IT. Section 2.1
outlines the basic concept of service-orientation and reviews the development of Ser-
vice-oriented Computing in the last years. The largest benefit of adopting SOA is that

P a r t I – C h a p t e r 2.1 � Service-oriented Computing

36

enterprise applications can flexibly reorganise themselves in response to changes in
their environments. However, SOA addresses the desired agility only for changing
functional demands from business. In order to get service-oriented applications re-
sponsive to changing demands in the environment, the design principles of service-
orientation are applied to hardware-related IT infrastructure, too. The resulting Ser-
vice-oriented Infrastructure provides business on demand access to computational re-
sources within a single data centre or across several data centres in an adaptive
manner.

In brief, service-oriented enterprise IT has the following characteristics that are of
interest for the purpose of this thesis:

� Consistent service-orientation across IT infrastructure: service-orientation is
not limited to software-related enterprise applications any more. The occur-
rence of SOI allows business to apply the same design principles of service-
orientation consistently across the complete IT infrastructure, down to physical
resources.

� Distributed components: with consistent application of service-orientation, a
business process can run on top of an IT infrastructure distributed across organ-
isational boundaries. In particular, the emergence of Cloud Computing facili-
tates the shift from locally installed data centres into Clouds possibly scattered
across the globe.

� Autonomy of technical components: artefacts within a service-oriented IT infra-
structure are autonomous. Each technical component operates in the IT infra-
structure as a black box with standardised and abstracted interfaces. IT capabil-
ities, independent of their types (such as computing power or business capabil-
ity), can be consumed via such interfaces in a standardised way. Behind the ab-
stracted interfaces, each technical component is autonomously responsible to
design, implement, deploy, and manage its service.

� Heterogeneity of IT infrastructure: artefacts within a service-oriented IT infra-
structure are heterogeneous, from the viewpoint of technology platforms, or-
ganisational affiliations, and management standards. However, heterogeneous
service consumers and service providers can interact with one another, as long
as they leverage interoperable communication standards for their interactions.

� SLA-driven IT infrastructure: a service-oriented IT infrastructure is driven by
SLAs. Each pair of service consumer and service provider arranges their ex-
pectations and obligations with an SLA. Such an SLA defines exact conditions,

P a r t I – C h a p t e r 2 � State-of-the-Art

37

under which the corresponding service is delivered. A service provider enforc-
es the arranged SLAs at runtime by allocating its local technical resources in
accordance with the terms agreed in the SLAs.

Hence, in the remainder of this thesis, the term service-oriented environment (SOE)
is used to denote a complete IT infrastructure, from software-centric business process-
es down to hardware-centric infrastructural components. All technical components
within an SOE are expected to conform to the design principles of service-orientation.
This ensures that all technical components can interact with one another unambigu-
ously via standardised communication protocols. Therefore, these technical compo-
nents are referred to as service components in the remainder of this thesis.

2.2 Self-organisation

Today’s technical systems become more and more complex. Especially, the increasing
combination of traditional mechanical engineering and electronic engineering in tech-
nical systems let human efforts to maintain such technical systems get out of hand.
For example, the latest breakdown statistics of the German automobile club ADAC
shows, meanwhile around 40 per cent of all registered car breakdowns are reducible to
electronic problems [ADA10]. To cope with increasing complexity of technical sys-
tems, there is a considerable amount of research efforts in industry and academia fo-
cusing on the capability of technical systems to self-organise themselves.

This section focuses on the concept of self-organisation. After a short introduction
on self-organisation in Section 2.2.1, Section 2.2.2 provides an insight into approaches
adopting self-organisation in technical systems, in particular from the viewpoint of
SOA. Section 2.2.3 focuses on some generic approaches to establish self-organisation
in technical systems, including the aforementioned research efforts from the Organic
Computing community, while Section 2.4 summarises the section.

 Overview 2.2.1

Self-organisation is a phenomenon often seen in nature. In the thesis of Gershenson
[Ger07], he summarises works on self-organisation from different disciplines, such as
in cybernetics [VF60, Ash62], mathematics [Len64], computer science [HG03,
MMTZ06, Pol08], etc. Analogically, it is not trivial to give a common definition pre-

P a r t I – C h a p t e r 2.2 � Self-organisation

38

cisely on self-organisation. For distributed systems with interconnected and autono-
mous components, Richter adopts the following definition made by Gershenson to
describe self-organisation [Ric10]:

A system described as self-organising is one, in which elements interact in
order to dynamically achieve a global function or behaviour.

Another similar definition is made by Camazine et al. to format self-organisation as
emergent effects on the global level resulting from local interactions between auton-
omous components [CDF+01]:

Self-organisation is a process in which pattern at the global level of a sys-
tem emerges solely from numerous interactions among the lower-level
components of the system. Moreover, the rules specifying interactions
among the system’s components are executed using only local information,
without reference to the global pattern.

Both definitions capture an important aspect of a self-organising system: the behav-
iour of a system emerges from interactions of underlying low-level components of the
system. In particular, this global behaviour is not the result of an external influence.
Instead, it is caused by interactions between a set of interconnected low-level compo-
nents within the system. With the motto “the whole is greater than the sum of its
parts,” interactions between interconnected components contribute collaboratively to
the global behaviour of the system.

The other important aspect of a self-organising system is the local view of each
component. Each component in the system has no global view on the overall behav-
iour of the system. Instead, they make decisions to interact with other components or
to control their own behaviour only based on information available locally. This is in
fact one characteristic advantage of self-organisation in contrast to centralised control
systems. In case of changes, centralised control system often needs a large amount of
computational time to find an optimal solution from the global view, in particular for
systems with large state space. For components with local self-organisation, global
management problems can be delegated to a set of distributed components. Hence,
such delegation restricts the size of the state space that a single component has to deal
with. From this viewpoint, self-organisation allows reducing necessary response time
of a single component to solve problems.

The increasing need for self-organisation within technical systems can be explained
threefold:

P a r t I – C h a p t e r 2 � State-of-the-Art

39

� Firstly, from the viewpoint of economic aspects, self-organisation helps to re-
duce operational cost for maintaining technical systems and increase so the
ROI of IT infrastructure. As pointed out by Patterson et al., meanwhile the cost
for maintaining IT infrastructure is five to ten times the purchase price of soft-
ware and hardware [PBB+02]. A similar statistic is also given by Ganek et al.
[GHS+04]. They figured out that four out of five IT dollars are spent on opera-
tions, maintenance, and minor enhancements.

� Secondly, from the viewpoint of human aspects, self-organisation is expected
to eliminate the need for human interventions at runtime. Apart from the fact
that over 40 per cent of all errors within technical systems are caused by human
participants, each system administrator spends in average 25 per cent to 40 per
cent of the time to determine problems and solve them [GHS+04].

� Lastly, from the viewpoint of complexity aspects, self-organisation provides
means to cope with increasing complexity of technical systems. As already
mentioned in Section 1.1, increasing connectivity between components chal-
lenges traditional engineering approaches to build distributed systems. As
pointed out by Zambonelli and Rana [ZR05], the large amount of networked
components makes it impossible to rely on a priori information about their exe-
cution context. In addition, the high dynamic and decentralisation of such com-
ponents make it difficult for engineers to perform a strict micro level control
over them.

Therefore, in order to cope with increasing complexity in technical systems, such
system should be able to self-organise their internal activities and thus reduce the
number of necessary human interventions at runtime. According to Zambonelli and
Rana, such self-organising technical systems are expected to [ZR05]:

� adaptively self-configure their execution parameters depending on the current
characteristics of the operational environment,

� In addition, survive the unpredictable dynamics of the operational environment
by preserving specific structural properties and quality levels.

Hence, it is necessary to get an appropriate balance between design and runtime
self-organisation of engineering technical systems. Prokopenko addressed the possible
design space for self-organising applications [Pro08]. He figured out the contradictory
character between design and self-organisation. The former approach often follows a
top-down process to break down given requirements step-by-step to concrete state-

P a r t I – C h a p t e r 2.2 � Self-organisation

40

ments with predictable outcomes, where the latter involves nondeterministic sponta-
neous dynamics with emergent features.

A promising balance between design and self-organisation is provided by generic
architectures to enable self-organisation within technical systems. By applying such
generic architectures, the role of software engineers changes to ensure that the result-
ing system can correctly evolve in compliance with predefined operational goals. In
this way, a technical system can deal with unpredictable dynamics from the system’s
environment. For example, this is achievable by utilising appropriate reinforcement
learning techniques to associate unpredictable dynamic situations with adequate ac-
tions. Section 2.2.3 introduces some representative approaches to enable self-
organisation in technical systems.

 Self-organising SOA 2.2.2

As pointed out by Liu, Thanheiser, and Schmeck, an SOE has inherent social com-
plexity due to the large number of interacting components and the highly dynamic
behaviour of components within the environment [LTS09a, LTS09b]. This makes it
impossible to manage such an SOE at runtime by relying on a priori information about
the environment at design time. Furthermore, the large number of distributed and het-
erogeneous service components prevents establishing a consistent management ap-
proach across the complete environment. Hence, it is reasonable to incorporate self-
organisation into service components of an SOE. With self-organisation, components
are expected to organise their activities autonomously and thus leave human partici-
pants in most cases uninvolved.

In the last few years, a considerable amount of research has been conducted to ena-
ble self-organisation within SOA. In general, there are two major research directions
in the community. One research direction focuses on the self-adaptation of global
structures of an SOE to address changes from business, such as discovering, compos-
ing, and invoking appropriate Web services in a fully/partly automated manner. The
other research direction focuses on the adaptive and SLA-driven management of a
particular service component. Most of these research efforts investigate how resource
management can be performed efficiently in compliance with given SLAs.

Garlan et al. designed a generic approach to enable architecture-based self-
adaptation with a reusable adaptation infrastructure [GCH+04]. Their framework uti-

P a r t I – C h a p t e r 2 � State-of-the-Art

41

lises a common set of architectural styles that can be applied to a distributed system at
runtime to change its behaviour. By monitoring the target system at runtime, their
framework is aware of the system’s behaviour. If the framework detects any violation,
such as broken server links, the adaptation infrastructure autonomously triggers ap-
propriate adaptation strategies to solve problems. Such a strategy applies a new ap-
propriate architectural style to the target system to change its behaviour with respect
to detected failures in the system. For example, in case of a broken server link, the
affected client can be relocated to another server group. In other words, in the ap-
proach of Garlan et al., self-organisation is realised by changing the architecture of the
target system in dependence upon the current operational context. Similar approaches
can be found in [OGT+99, FHS+06, WH07, HWH08].

Kim and Lin proposed an approach to combine intelligent agents with technical
components [KJ06] to enable automated composition of semantic services. By con-
sulting additional metadata provided by semantic descriptions of a service, an agent
can autonomously orchestrate several existing semantic Web services and invoke the
resulting service composition. To this end, each agent uses a centralised service bro-
ker agent to compose semantic services to satisfy given functional requirements. Simi-
lar centralised approaches are [ADK+05], [NPTT06], and [GKS+08].

The works cited above focus mainly on realising self-organisation by changing ar-
chitectures of target systems in an automated and centralised manner, as surveyed by
Rao and Su [RS05]. A more general way in compliance with the distributed nature of
services is to enable automated service composition in a decentralised way, such as
the approach proposed by Falou et al. [FBMV09]. Their model utilises a set of service
agents, where each of them has a number of services organised in a graph. In order to
provide a service composition satisfying given functional requirements, each of these
service agents proposes a partial plan out of the graph it has. Then these agents coor-
dinate with each other to generate the best global plan based on the partial plans sub-
mitted by each agent. Similar decentralised approaches with multi-agent systems are
[CDS06], [MKB06].

These works are majorly concerned with adaptive behaviour of an SOE on the
global level rather than on the local level. Since an SOE is composed of a set of un-
derlying service components, it is desirable to have such components self-organise
their runtime parameters in dependence of the current operational context. That is,
each technical component can monitor its own behaviour and perform adaptive recon-

P a r t I – C h a p t e r 2.2 � Self-organisation

42

figuration to react to changes in their environments [MFZH99]. Activities, such as
configuring local resources or adjusting resource capacity are carried out autonomous-
ly and independently by technical components.

Many works are done in this research field, such as [Kon00], [LYFA02], [Hua04] ,
[PSGS04], and [BDHT06] - just to name a few of them. A representative work is done
by Buchard et al. [BHK+04] in the context of Grid Computing. They proposed an
SLA-aware architecture for a plan-based virtual resource manager. To support SLAs
between a resource and its consumers, a resource manager can establish runtime re-
sponsibility with advanced reservations throughout the lifetime of a computational
job. By doing this, the corresponding grid infrastructure can easily allocate failures or
outages of resources and process corrective measures if needed to solve them.

It is noteworthy that automated resource management has been applied to technical
systems of modern daily life. For example, the online e-mail service Hotmail that
serves over 350 million people worldwide with over 1.3 billion inboxes utilises auto-
mated deployment and configuration management in its IT infrastructure [Haa09].
Running on over 10,000 servers spread around the globe, Hotmail applies closed con-
trol loops with permanent monitoring of underlying software/hardware infrastructure.
This allows Hotmail to correlate changes of a particular server’s configuration auto-
matically with corresponding effects on the overall behaviour of the system. Such cor-
relation enables Hotmail to automate the process to detect, isolate, and trouble-shoot
failures by itself [Hof06]. Similar automated management approaches can be found in
other server applications, see [XHL+03, Hua04, BBK+05, WSW+05]. More overview
on existing approaches to enable self-organisation in service-oriented systems is given
by Salehie and Tahvildari [ST09] in a survey.

 Approaches with Self-organisation 2.2.3

This section focuses on the engineering aspect of self-organising systems and pro-
vides an insight into some representative approaches that intend to establish self-
organisation within technical systems.

Organic Computing

As outlined in Section 1.1 and Section 2.2.1, increasing (social) complexity of tech-
nical systems demands new engineering approaches. The traditional top-down design

P a r t I – C h a p t e r 2 � State-of-the-Art

43

principles to develop technical systems based on given functional behaviour do not
suffice the continuously changing context, within which these technical systems have
to operate. In these deterministic technical systems, unknown situations at runtime can
lead to behavioural problems due to missing procedures to deal with them. On the
other hand, a set of connected technical systems may result in new and emergent
properties on the global level that are difficult to anticipate at design time. Hence, it is
necessary to find an appropriate balance between the top-down deterministic behav-
iour and the bottom-up emergent behaviour of technical systems.

The desired balance between top-down control over technical systems and bottom-
up self-organisation of technical systems is addressed as one of the central research
interests of the research initiative Organic Computing. The term Organic Computing
(OC) is firstly introduced in 2002 by a workshop focusing on future technologies to
engineer technical systems. In 2003, the vision of OC is manifested in a joint position
paper published by the section of computer engineering (Technische Informatik) of
the Gesellschaft für Informatik (German Association for Informatics, GI) and the In-
formationstechnische Gesellschaft (German Association for Information Technology)
[ACE+03]. In 2005, the German priority research programme Organic Computing
granted by the German Research Foundation (Deutsche Forschungsgemeinschaft,
DFG) is launched. Within the project period of six years until 2011, a range of granted
projects work on various topics on controlled self-organisation. In particular, these
projects investigate theoretical foundations addressing emergence and self-
organisation within technical systems (such as in [MSS08], [BS08]) and establish
technological foundations to design technical systems with controlled self-
organisation (such as using the generic observer/controller architecture introduced in
[MS04, BMM+06, RMB+06]). Another emphasis of the priority programme is to ap-
ply design principles of OC in technical systems. Herein, a set of projects in the pri-
ority programme are engaged in realising technical systems with controlled self-
organisation across a range of technical domains, such as organic traffic control
[PRT+08, TPR+08] and system-on-chip design [BZS+06]. Information on the priority
programme and the projects funded in the programme is available on the Website of
the priority programme [OC10].

OC claims to incorporate controlled self-organisation into technical systems. The
term controlled indicates the difference of self-organisation claimed in OC from other
similar approaches. Rather than realising fully self-organising technical components,

P a r t I – C h a p t e r 2.2 � Self-organisation

44

organic technical systems provide a designated interface to the outside world, in par-
ticular to the higher control instance in the outside world, e.g., human participants.
Through this interface, a control instance of the higher level (e.g., a human being) has
the possibility to influence operational behaviour of an OC system by setting an ex-
ternally provided goal. With respect to such a goal, an OC system controls its behav-
iour to adapt to environmental changes, even in the presence of unanticipated and pos-
sibly undesired emergent behaviour.

To enable adaptive behaviour of an OC system, it is crucial that the underlying
technical system is monitored and controlled continuously. To this end, a generic ob-
server/controller architecture is introduced in OC to provide a reference architecture
determining the necessary components for establishing controlled self-organisation.
Figure 2-6 illustrates the simplified view of the generic observer/controller architec-
ture according to Richter [Ric10]. This generic architecture is introduced in detail in
Section 3.4.

Figure 2-6: Simplified view of the generic observer/controller architecture (see [Ric10])

As illustrated in Figure 2-6, the generic observer/controller architecture utilises a
closed control loop to monitor and control the underlying technical system(s). In gen-
eral, the architecture contains the following components:

� System under Observation and Control (SuOC): SuOC defines the scope of
technical systems that are actively managed by the corresponding observer and
controller. Hence, an SuOC has clear boundaries to its environments. The

organic system

input outputSuOC

observer controllerReports

ob
se

rv
es

controlslearning

system status
goals

P a r t I – C h a p t e r 2 � State-of-the-Art

45

runtime behaviour of the system within the boundaries are monitored and con-
trolled by the observer and the controller.

� Observer: the observer monitors runtime events of the SuOC, collects relevant
attributes about runtime behaviour of the system, and aggregates them to situa-
tion parameters. Situation parameters concisely describe the observed runtime
behaviour from the viewpoint of the observer.

� Controller: the controller receives situation parameters that represent the cur-
rent operational context of the SuOC, analyses them, and decides whether the
current runtime behaviour complies with the given external goal. If not, it per-
forms corresponding corrective actions upon the underlying system to influ-
ence its behaviour with respect to the desired operational goal. The results of
such interventions are in turn observed by the observer, which leads to another
control loop between observer, controller, and SuOC.

� External goal: the behaviour of the observer and the controller is determined
by the external goal. An external goal defines the desired state space, within
which the SuOC has to operate. Any deviation from optimal states leads to cor-
responding corrective actions of the controller through the closed control loop.

An important aspect of the generic observer/controller architecture is learning.
Learning is a characteristic property of technical systems that are capable to deal with
situations that are unknown a priori at design time. In OC, continuous execution of
control loops over the underlying technical system(s) allows the observer and control-
ler to build up their knowledge base about the target system. In particular, through
permanent monitoring of the target system, the controller can get feedback on the per-
formance of actions it executed. This kind of trial-and-error feedback enables the
controller to get accurate correlation between situations and actions and to build up its
own knowledge about the underlying systems through learning.

To summarise, Organic Computing focuses on increasing complexity in a range of
interconnected technical systems, from traffic light control, to robot control, to enter-
prise servers. With the generic observer/controller architecture, Organic Computing
allows incorporating controlled self-organisation into technical systems. In contrast to
fully self-organising technical systems, the generic observer/controller architecture
provides human participants with an abstracted, dedicated, and consolidated interface,
through which they can influence the runtime behaviour of organic systems.

P a r t I – C h a p t e r 2.2 � Self-organisation

46

Autonomic Computing

With a similar focus on self-organising systems, Autonomic Computing (AC) was
firstly introduced by IBM’s Autonomic Computing initiative as its response to in-
creasing complexity in computer systems, in particular in complex enterprise server
systems [GHS+04]. In the manifesto given by P. Horn [Hor01], complex computer
systems are compared to a complex human body that has an autonomic nervous sys-
tem to regulate the body without self-conscious actions of the human. Hence, IBM
suggests that complex computer systems should also have autonomic properties that
can maintain regular administration tasks by themselves. By doing this, complex
computer systems are expected to reach the same level of self-regulation as the hu-
man’s nervous system does while hiding the increasing system complexity from end
users and system administrators.

In the meantime, the concept of Autonomic Computing has evolved to a widely ac-
cepted concept for dealing with increasing system complexity. Various research in
industry and academia has focused on solutions and technologies that exhibit the self-
x properties [HMC08]. However, there is still a lack of a commonly accepted defini-
tion of “Autonomic Computing.” Lin, Macarthur, and Leaney have tried to establish a
common definition for AC [LML05]. They carried out a survey on publications in the
field and studied various definitions for Autonomic Computing. The most commonly
referenced definitions in the literature contain the following self-x properties that an
Autonomic Computing system must have (see also [KC03] and [BBC+03]):

� Self-configuring: self-configuring is a system’s capability to configure itself
dynamically, such as adding components from the system or applying software
updates, to achieve the desired operational goals.

� Self-healing: from the perspective of reactive systems, self-healing is the sys-
tem capability to discover, diagnose, repair, and recover from system faults
when they occur. From the viewpoint of predictive systems, self-healing con-
tains mechanisms to predict and thereby prevent system faults by monitoring
vital parameters of the target system.

� Self-optimizing refers to the capability to measure system performance against
predefined objectives and to attempt to improve performance by controlling ef-
ficiently allocation and utilisation of resources available in the system.

� Self-protecting describes the capability of a system to anticipate and detect ex-
ternal malicious attacks and to protect itself in case of attacks. It means that the

P a r t I – C h a p t e r 2 � State-of-the-Art

47

system must be aware of potential threats and be able to take actions to avoid
completely or at least mitigate partly the effects caused by external attacks.

To support these self-x properties, an autonomic system should be aware of itself
(self-awareness) and of the environment around it (context-awareness). The system
monitors its internal state by collecting management information from its functional
components and evaluates the collected data to identify its vital status. Furthermore, a
network-enabled system is not isolated from its environment. For example, a Web
service is related to its hosting environment, or to other Web services involved in the
same business process. More or less, functional states of the related systems have im-
pact on the system itself. Therefore, an autonomic system knows the way to interact
with its neighbouring systems for sharing functional state information. To achieve
cooperation between different systems in a possibly heterogeneous environment, the
autonomic system must implement open standards to enable an unobstructed commu-
nication with other systems.

Figure 2-7: Structure of an autonomic element in Autonomic Computing (see [KC03])

In order to build autonomic systems with the aforementioned self-x properties,
IBM proposed a reference model with a closed control loop consisting of four pro-
cessing steps: monitor, analyse, plan, and execute (MAPE) ([KC03, IBM05]), as illus-
trated in Figure 2-7. The reference model for autonomic systems consists of the fol-
lowing building blocks:

� The managed element represents the underlying system that should be man-
aged by an autonomic manager. A managed element (e.g., a Web server, a da-
tabase, a device, etc.) provides a standardised manageability interface for the
autonomic manager, so that the manager can sense and effect behaviour of the
managed element.

autonomic manager

monitor execute

analyse plan

knowledge

managed element

P a r t I – C h a p t e r 2.2 � Self-organisation

48

� By using various sensors that connect with the managed element, the monitor
function collects data (for example, instrumentation metrics or runtime events),
filters it, aggregates it and reports the results that represent the current runtime
state of the managed element to the analyse function.

� The analyse function correlates the data being reported by the monitor. Based
on this, it tries to model complex situations of the managed element.

� The analysis result is consumed by the plan function, which selects or con-
structs appropriate actions matching the current runtime state of the managed
element based on the analysis and on predefined operation policies.

� The execute function controls the execution of an action plan using effectors,
which are connected to the managed element via its manageability interface.

� The knowledge component holds the accurate rules base of the managed ele-
ment. That is, which action should be executed under which circumstances to
get the operational state of the system to comply with given requirements. Such
rules may come from external sources, such as human experts from their day-
to-day operation of the system. Otherwise, they can also be collected by the au-
tonomic manager independently through continuous observation of manage-
ment actions at runtime, e.g., by adopting reinforcement learning in the control
loop [DCCC06].

One of the ultimate goals of AC is to automate management processes of complex
distributed systems applying the traditional multi-tier architectural pattern. To this
end, IBM has developed several reference implementations of the MAPE control
loop, such as the Autonomic Computing Toolkit [IBM06] and the Agent Building and
Learning Environment (ABLE) [BSP+02]. Both toolkits provide the foundation to
build an autonomic manager in the reference model for specific artefacts within a
multi-tier architecture. For example, Melcher and Mitchell extend the Autonomic
Computing Toolkit to create network services with autonomic service configuration
[MM04]. Bigus et al. uses the ABLE environment to tune Apache Web servers auto-
matically [BSP+02]. Rutherford et al. build the MAPE control loop into the applica-
tion tier to enable reconfiguration of application servers at runtime [RAC+02].

The research cited above focuses on incorporating autonomic behaviour into par-
ticular server components. Alternatively, some approaches in the research community
seek to build autonomic behaviour into the entire multi-tier system instead of particu-
lar server components within the system. For example, Ungaonkar et al. utilises a

P a r t I – C h a p t e r 2 � State-of-the-Art

49

global autonomic manager to determine the appropriate resource allocation among all
tiers to improve the overall performance of the system [USC+08]. Wang et al. follow
a similar way to provide autonomic multi-tier service delivery in an virtualised envi-
ronment [WDCL08].

To conclude, the main application domain of AC is enterprise server systems.
There is a considerable amount of similar research investigating autonomic behaviour
of server components within complex distributed systems. In particular, many of the
works focus on efficient allocation of computational resources, such as computing
power, storage, or network, to multiple applications.

Viable System Model

Organic Computing and Autonomic Computing introduced in the previous sections
have strong technical focuses. However, as mentioned at the beginning of Section
2.2.1, self-organisation is also studied in many other natural sciences, e.g., in cyber-
netics. A representative work in this research field is the Viable System Model (VSM)
developed by S. Beer in the 1970s [Bee79, Bee81, Bee85]. He developed the VSM
model to describe the essential parts of a viable system, with strong reference to an
organisation, such as a business with a set of interconnected organisational units. In
the VSM, a viable system is one that is robust against internal malfunction or external
disturbance, i.e., it has the ability to respond and adapt to unexpected stimuli, allowing
the system to survive in a changing and unpredictable environment [BSTL06]. To
maintain the viability of the overall system, the VSM identifies five interconnected
and hierarchically arranged subsystems, as illustrated in Figure 2-8:

� System 1 (operation): All the operating components in the system are referred
to as System 1. In other words, System 1 in a viable system may have several
instances. Each instance in System 1 is autonomous and can operate according
to its local environmental situation with limited view to the environment.

� System 2 (coordination): System 2 establishes the necessary communication
channel to facilitate coordinating activities between various System 1 instances.
Through appropriate stabilising and coordinating facilities such as schedule or
standardised information in System 2, System 1 instances can reduce possible
conflicts between one another.

� System 3 (control): System 3 is responsible for immediate supervision and con-
trol of all activities in System 1 instances from a local perspective. In addition,

P a r t I – C h a p t e r 2.2 � Self-organisation

50

it also supervises the coordination activities of the System 2. So far, with Sys-
tem 1, 2, 3, the system is capable of dealing with immediate internal concerns
taking place in the local environment.

� System 4 (intelligence): To adapt to changes in the global environment, the
VSM employs a further System 4 to control and predict the overall system be-
haviour based on information collected from both global and local environ-
ments. To this end, System 4 creates a model of system capabilities of the en-
tire local organisation based on information collected by System 3. In addition,
System 4 generates a model of its global environment via interactions with its
environment. Based on internal system capabilities and external environmental
changes, System 4 develops actions plans for the whole organisation.

� System 5 (policy): System 5 guarantees the balance between the internal opera-
tional state and the given external operational goal. With given operational pol-
icies, System 5 supplies and enforces logical policies to the entire system.
From this point-of-view, it creates an interface for superior systems to control
the system behaviour externally. With System 4 and System 5, the entire sys-
tem is capable of controlling itself based on externally given policies as well as
on situations in the global environment.

Furthermore, the VSM can be applied in a recursive manner - in other words, each
System 1 may contain a viable subsystem consisting of all five subsystems mentioned
before.

Beers developed the VSM model as an application of system theory in the field of
organisation management. Although the VSM is founded in cybernetics, Beers claims

Figure 2-8: The Viable System Model, (see [Bee79, Bee81, Bee85])

environment

P a r t I – C h a p t e r 2 � State-of-the-Art

51

that VSM is more generally concerned with “the existence of laws or principles of
control that apply to all kinds of complex systems, whether animate or inanimate,
technical or societary” [Bee85]. Indeed, the VSM has been applied in technical sys-
tems as intelligent control paradigm to enable adaptive runtime behaviour. It is obvi-
ous that VSM can be used to design business processes due to the tight connection
between business processes and enterprise organisations. For example, Vidgen uses
the VSM as the theoretical and practical base for designing enterprise process archi-
tecture [Vid98]. According to him, the VSM has a significant contribution “to make in
helping enterprises to align purpose, policies, and organisation structure such that
identity and viability are maintained.”

A more general application of the VSM is given by Herring and Kaplan, who con-
struct on the base of VSM a viable system architecture as a reference architecture to
engineer complex applications with adaptive control [HK00, HK01]. Similarly, Bus-
tard et al. incorporate the VSM to develop design models of an autonomic system and
its environment [BSTL06]. In those approaches, the VSM is used to refine the design
of an autonomic system to ensure that it contains adequate management controls.

 Concluding Remarks 2.2.4

This section focuses on the concept of self-organisation. First, an insight is provided
into the current development of approaches to enable self-organisation within tech-
nical systems. Because of the increasing complexity of technical systems, there is cur-
rently a considerable amount of efforts in both industry and academia on research of
self-organisation. All those efforts have the ultimate goal to get technical systems to
cope with increasing complexity with minimal intervention of human participants us-
ing self-organisation. Next to the approaches OC, AC, and VSM introduced in this
section, a range of other approaches such as the HP Converged Infrastructure [HP10],
the Microsoft Dynamic System Initiative [Mic04], or the Forrester Organic IT
[GRS+02] shows the large interests of vendors in the research field of self-
organisation.

The three approaches introduced in this section are representative for the current
research on self-organisation. While the generic observer/controller architecture of
OC and the MAPE control loop of AC are more technology-oriented, the VSM has its
origin in organisation system theory and provides more high-level guidelines on how
viable systems can be designed.

P a r t I – C h a p t e r 2.2 � Self-organisation

52

Furthermore, the underlying concepts of OC and AC are similar to each other, in
particular with respect to the similar constructs of the generic observer/controller ar-
chitecture and the MAPE control loop. However, the application domains of both
concepts differ strongly, as pointed out by Richter [Ric10]. As aforementioned in Sec-
tion 2.2.3, AC focuses on management scenarios in IT systems with interconnected
and diverse components. A large amount of research done in AC discusses concepts
on monitoring and controlling runtime behaviour of enterprise server systems. In par-
ticular, most of this work deals with efficient resource management, where an auto-
nomic manager dynamically allocates technical resources among several servers in
accordance with strategies established by human participants.

In contrast to AC, OC focuses on technical systems with large collections of intel-
ligent devices that provide services to humans and adapt themselves to the current
requirements of their execution environment [Sch05]. That is, OC focuses more on
technical systems and their interactions among one another. For example, traffic light
control is one of the domains, to which the concept of OC is applicable. With decen-
tralised coordination of traffic lights across several urban road nodes, OC shows
promising results to reduce average waiting time of vehicles [TPR+08]. Furthermore,
in comparison to AC, OC emphasises interactions between technical systems and hu-
man participants. Through explicit interfaces, human participants can influence
runtime behaviour of the observer/controller architecture by performing corrective
actions if necessary. In this context, a self-organising system remains under control of
human participants. Therefore, OC promotes the establishment of controlled self-
organisation within technical systems. This differs from the vision of AC with focus
on capabilities of self-management.

An important aspect that is not explicitly addressed by both OC and AC is collabo-
ration between self-organising technical systems. Although both approaches envision
the possibility to arrange several managing elements (either observer/controller in-
stances or autonomic managers) in a hierarchical manner [BMM+06, IBM05], where
a higher managing element can delegate management tasks to lower managing ele-
ments, they do not address how collaboration can take place among managing ele-
ments to impact their local behaviour. This missing aspect is however addressed by
the VSM. In spite of its focus on organisational theories, the VSM addresses interac-
tions of essentials parts of a viable system with its environment. In particular, the
VSM identifies subsystems that are influenced by such interactions with the environ-

P a r t I – C h a p t e r 2 � State-of-the-Art

53

ment. Hence, it is reasonable to use the VSM as a complement to OC/AC to guide the
design of collaboration mechanisms between self-organising systems.

2.3 Multi-Agent Systems

With its origins in distributed artificial intelligence, the concept of Multi-Agent Sys-
tems (MAS) is concerned with a collection of autonomous agents that have the ability
to cooperate, coordinate, and negotiate with each other [Woo02]. Given the distribut-
ed and dynamic nature of service-oriented systems and the autonomy of components
in such systems, MAS provides a promising way to model the social relationships be-
tween components within SOA. Hence, this section provides a brief overview on
agents in MAS and discusses the possibility to combine MAS with SOA. Further-
more, this section outlines the ways, in which agents can collaborate with each other,
in particular how agents with conflicting interests can negotiate with one another to
solve conflicts.

 Overview 2.3.1

The concept of MAS has been intensively studied since about 1980. It gained wide-
spread recognition since about the mid-1990s, driven by the increasing connectivity in
technical systems, such as large-scale distributed systems (e.g., the Internet). In par-
ticular, MAS is considered as the appropriate software paradigm to understand and
build a wide range of so-called artificial social systems. An artificial social system
contains a number of autonomous systems that are capable of interacting with one
another. Such interactions are done not only by simply exchanging data, but also by
carrying out social activities analogously to humans’ daily life, such as communica-
tion, coordination, negotiation, and so on [Woo02].

Hence, it is obvious that research of MAS has both microscopic and macroscopic
focuses. The microscopic focus studies the autonomous behaviour of an agent. That
is, how each agent can satisfy given design objectives by deciding by itself what ac-
tions are to be executed for which situations. Macroscopic research is interested in
social behaviour of autonomous agents within a society of agents, so that they can
work together to solve problems in spite of possible conflicts. The remainder of this
section provides a brief insight into both aspects. Among other things, this section

P a r t I – C h a p t e r 2.3 � Multi-Agent Systems

54

explains common characteristics of agents and outlines possible ways they can inter-
act with one another.

In spite of the significant research efforts on agents and MAS, there is no common
definition for agents. H. Nwana pointed out that the term agent has been an umbrella
term for a heterogeneous body of research and development in the field [Nwa96]. This
leads to a role-specific classification of agents [Kin95] that confuses the common un-
derstanding of agents. For the purpose of the present thesis, the definition of
Wooldrige and Jenning seems to be appropriate. After having taken a range of similar
definitions into consideration, they defined an agent as a hardware or (more usually)
software-based computer system that has the following properties [WJ95]:

� Autonomy: agents operate on their own behalf without any direct intervention
of other agents. Therefore, agents control their actions and internal states by
themselves.

� Social ability: agents can interact with other agents via some kind of communi-
cation language.

� Reactivity: agents perceive their environment and respond to changes in the en-
vironment in a timely manner.

� Proactivity: agents do not simply react to changes in their environment. Instead,
they can behave goal-directed by taking the initiative.

In short, an agent is an autonomous system that behaves proactively on behalf of its
owner. An agent is aware of changes in its environment, e.g., by perceiving infor-
mation from the environment, and it performs reactive actions to respond to such
changes. In addition, an agent lives in a society of agents. It has the necessary social
abilities to interact with other agents in its environment, for example in order to solve
problems collaboratively.

The key characteristic distinguishing MAS from traditional artificial intelligence is
its emphasis on social behaviour of autonomous agents. That is, how agents com-
municate with each other, how they coordinate their activities to solve problems, and
how they negotiate among one another to eliminate conflicts. Therefore, research on
social behaviour of agents covers mainly macroscopic aspects. That is, rather than
investigating the behaviour of a particular agent, the related research focuses on issues
concerning the entire agent society. The shift of research from individual agents to an
agent society is driven by increasing connectivity and scale of technical systems.

P a r t I – C h a p t e r 2 � State-of-the-Art

55

Green et al. summarises the main motivations for the increasing interest in the social
behaviour of agents in a society [GHN+97]:

� To solve problems that are too large for a centralised single agent to deal with,
e.g., due to limited resources or risk of single point of failure

� To provide a way to facilitate interoperations among multiple existing systems
and to link knowledge of them, e.g., between various expert systems or deci-
sion support systems

� To provide a way to cope with inherent distribution of technical systems, e.g.,
traffic light control in urban road networks

� To provide conceptual clarity and simplicity of design based on the modularity
of MAS

The prerequisite for successful interactions between agents is communication. It is
only possible through explicit usage of an agent communication language (ACL),
such as the Knowledge Query and Manipulation Language (KQML) or the ACL de-
veloped by the Foundation for Intelligent Physical Agents (FIPA) [CDD02]. Analo-
gous to speech act, ACL, such as KQML, is comprised of two parts: an outer language
to define various acceptable performatives, such as perform, tell, reply, etc.; and an
inner language for expressing message content. In this way, agents can exchange in-
formation among one another to coordinate their activities at runtime.

In addition, M. Wooldridge pointed out that there are two general ways to support
interactions between agents, a centralised way and a distributed way [Woo02]. First,
agents can utilise a centralised blackboard as shared storage, where they can submit or
retrieve any information. The other way is to use peer-to-peer message passing. For
example, agents can share information through the publish/subscribe pattern, where
an agent can decide selectively the set of information that it is interested in.

Agent communication languages provide the prerequisite to enable interactions be-
tween agents, in particular to coordinate their activities at runtime. The following sec-
tions provide an overview on the major approaches to facilitate coordination and ne-
gotiation between agents.

 Coordinating Agents 2.3.2

Coordination is the key to facilitate teamwork between agents in MAS. Green et al.
pointed out that coordination helps to prevent chaos within MAS [GHN+97]. Limited

P a r t I – C h a p t e r 2.3 � Multi-Agent Systems

56

views, goals, and knowledge of an agent may interfere with other agents’ activities
instead of supporting them. Hence, coordinating activities between agents from a
global point of view is vital to prevent chaos caused by conflicts between agents and
to meet global constraints at the same time. In general, depending on the degree of
cooperation, researchers distinguish between two types of agents in MAS [Woo02]:

� Cooperative agents: cooperative agents follow the same interest. In this case,
all agents are constructed by a single designer to help each other whenever pos-
sible. Thus, the common interest of the MAS is to increase the social welfare of
the entire MAS other than welfare of individual agents. For example, by con-
sidering an SOE as a MAS and the service components in the SOE as agents,
then it is obvious that technical components within the same organisation are
interested in providing optimal performance to support business goals. In this
case, all technical components are cooperative in their interactions with one
another.

� Self-interested agents: the more general case is that agents in a MAS represent
different individuals or organisations. In that case, it is not reasonable to as-
sume that all agents are benevolent. Instead, agents are assumed to act in order
to defend their own interest, even - where applicable - at the cost of other
agents. Using the example of SOA, if a service-oriented application consumes
a PaaS service in the public cloud, then it is reasonable, if both components
share different interests. As the application is interested in improving its per-
formance with low cost, the interest of the PaaS is to increase its profit as much
as possible.

Both cooperative and self-interested agents need to be coordinated at runtime. In
order to exploit possibilities provided by MAS to solve collaboratively given prob-
lems by a collection of agents, there are still coordination problems to solve. That is,
how activities of agents with different capabilities can be coordinated, so that each of
them can contribute to sort out a given problem.

As summarised by Green et al. [GHN+97], a range of approaches have been pro-
posed in the last years to address coordination problems in MAS. Organisational co-
ordination leverages an agent that has a wider perspective of the system, including the
organisational structure of the system. Hence, this agent can act in a classic mas-
ter/slave manner to perform centralised coordination among slave agents. That is, the
master agent collects information from other agents, creates action plans based on the
given problem and the capabilities of slave agents, and assigns tasks to individual

P a r t I – C h a p t e r 2 � State-of-the-Art

57

agents to guarantee global coherence. In this centralised approach, a master agent with
a global view on the organisational structure of the MAS is required. This is however
not always possible in realistic applications with distributed agents. In particular, this
approach assumes cooperative agents that are willing to share their intentions and be-
liefs, which is only valid in limited scenarios.

Alternatively, agents can also utilise a decentralised approach to coordinate their
activities, such as by following the Contract Net Protocol proposed by Smith [Smi80].
In this approach, a decentralised market structure is assumed, with agents either as
manager or as contractor. The basic idea of a Contract Net is that if an agent cannot
solve a problem locally with its resources, it can decompose the problem into sub-
problems (as manager) and try to find other appropriate agents (as contractors) that
have the necessary resources and are willing to solve such sub-problems. To this end,
the manager utilises a contracting mechanism to assign sub-problems to contractor
agents. The contracting mechanism includes, among other things, announcing tasks by
the manager agent to potential contractor agents, submitting bids by interested con-
tractor agents in response to the announcement, evaluating the submitted bids by the
manager agent, and awarding contracts to contractor agents with most promising bids.

Due to its simplicity and flexibility, Contract Net is often utilised in MAS to realise
dynamic task allocation. As Contract Net does not require that each agent has to re-
spond to task announcement messages, agents are free to decide whether they should
bid, e.g., in dependence of their current load. Hence, it is obvious that Contract Net
can realise a kind of load balancing between agents, which allows efficient resource
utilisation in the MAS.

The limitation of Contract Net is its restricted support for negotiation. In fact, the
Contract Net Protocol is rather a coordination protocol than a negotiation protocol, as
determined by Smith [Smi80]. There is no negotiation process between a manager
agent and its contractor agents. On the one hand, a manager agent has no minimal
condition on the potential bidders; on the other hand, the bidders do not get a second
chance to submit their bids again. Hence, there is no mutual decision between a man-
ager agent and its contractor agents, which is however characteristic for negotiation
purpose. Other approaches to coordinate activities of agents in MAS are to use multi-
agent planning [WC09] or similar decentralised approaches [ME05], but they are out
of the scope of this thesis.

P a r t I – C h a p t e r 2.3 � Multi-Agent Systems

58

 Negotiation between Agents 2.3.3

In the field of computer science, in particular in MAS, negotiation is utilised to find
mutually beneficial agreements on given negotiation objectives between negotiation
parties. This section provides an overview on existing research in the field, with a fo-
cus on negotiation in SOEs.

Overview

In general, negotiation is defined as “a process by which a joint decision is reached by
two or more agents, each trying to reach an individual goal or objective” [HS00].
Raiffa specifies that such a process is concerned with “situations in which two or
more parties recognise that differences of interest and values exist among them and in
which they want (or in which one or more are compelled) to seek a compromise
agreement through negotiation” [Rai82].

From the both specifications, a negotiation process contains the following structural
aspects (cf. [Rai82, BS97, Reb01, LWJ03, Bue06]):

� Negotiator: each negotiation involves two or more parties, i.e., negotiators,
which have conflicting interests on a given set of negotiation objectives. Con-
flicts between negotiators are prerequisite for a negotiation situation; otherwise,
involved parties can easily find an agreement by simply selecting a mutually
agreed optimum of negotiation objectives. Depending on the number of partic-
ipating negotiators in the negotiation process, Büttner differentiates between
bilateral, one-sided multilateral and double-sided multilateral negotiations
[Bue06]. In bilateral negotiation, two negotiation agents interact with each oth-
er (e.g., a service consumer and a service provider). One-sided multilateral ne-
gotiation involves a single master agent and a set of slave agents (e.g., a single
service consumer and several service providers or vice versa). This type of ne-
gotiation corresponds to the auction mechanism applied in eBay, where a set of
buyers bid for an article of a single seller. Analogously, double-sided multilat-
eral negotiation involves on both sides a set of agents that interact among as
well as between one another.

� Negotiation issues: all negotiation issues span the negotiation space, within
which negotiators try to reach a consensus about the issues. In a negotiation
process, negotiators can either negotiate over a single issue from the negotia-
tion space each time (single-issue negotiation), or handle all negotiation issues

P a r t I – C h a p t e r 2 � State-of-the-Art

59

in a single negotiation round simultaneously (multi-issue negotiation, e.g., all
issues defined in an SLA).

Because negotiation is a complex task, in particular with respect to the high degree
of dynamic of negotiation processes, various computational models are developed to
facilitate negotiation process. The level of automation of these models varies from
fully automated to partly automated [Reb01]. In a fully automated negotiation, auton-
omous agents can interact without external interventions to reach an agreement. In
partly automated models, human participants are required to make final decisions with
decision supports given by such models.

In fact, automated negotiation has been subject of intensive research over the last
few decades, especially in the field of MAS with respect to their decentralised nature.
Various approaches and models from different domains, such as game theory, eco-
nomic models (e.g., auctions), and learning mechanisms from artificial intelligence
are applied to facilitate automated negotiation. In general, automated negotiation re-
search consists of the following aspects:

� Negotiation protocols to guide interactions between negotiation parties. Rosen-
stein and Zlokin [RZ94] define a protocol as “the public rules by which agents
will come to agreements”. More specifically, a negotiation protocol specifies
“the rules of the negotiation, the rules by which the agents will come to a con-
sensus, agreeing to carry out one of the deals in the negotiation set” [RZ94].
Negotiation protocols are designed to support negotiation processes in particu-
lar target scenarios. For example, the simplest form of such a protocol can be
auctions for allocating goods, tasks, or resources. The different types of auc-
tions, such as English auctions, Dutch auctions, or First-price sealed-bid auc-
tions [Woo02], vary in their protocol design, in particular, the number of nego-
tiation rounds, the way bidders interact with an auctioneer, and mechanisms to
determine the auction winner at the end.

� Given a negotiation protocol, the second aspect, negotiation strategy, is con-
cerned with how an agent should behave in a negotiation process. First, negoti-
ation strategies specify decision-making models that provide support to negoti-
ators for determining their actions for given situations in the course of negotia-
tion (i.e., accept/reject an offer, or propose a counter offer). The goal of negoti-
ation strategy design is to reach an agreement after a negotiation process, while
ensuring that a negotiator’s individual welfare is assured in the negotiation.
Therefore, selecting an appropriate negotiation strategy is critical for a negotia-

P a r t I – C h a p t e r 2.3 � Multi-Agent Systems

60

tor with respect to its negotiation behaviour and, hence, to the outcome of the
negotiation. Among other things, a negotiation strategy influences the willing-
ness of a negotiator to cooperate with other negotiators.

Designing mechanisms to support automated negotiation depends strongly on the
characteristics of particular negotiation scenarios. For example, a suitable protocol for
English auctions is not necessarily applicable to multilateral negotiation scenarios
with multiple issues. Hence, negotiation mechanisms have to be designed in compli-
ance with requirements of the target problem domains. In addition to such specifically
characterised requirements, negotiation mechanisms should have the following desir-
able properties (cf. [Woo02], [LWJ03], and [San00]):

� Pareto Efficiency: a negotiation outcome is then Pareto efficient (or Pareto op-
timal), if there is no other outcome that improves one negotiator’s utility with-
out deteriorating that of another one. Obviously, if an outcome maximises the
overall social welfare of all negotiators, i.e., the sum of all negotiators’ utilities,
it is Pareto efficient. In this case, if the sum of all negotiators’ utilities is max-
imised, a negotiator can only increase its utility by decreasing another negotia-
tor’s utility.

� Computational Efficiency: an ideal negotiation mechanism should be computa-
tionally efficient. In other words, a negotiation mechanism should be designed
in a way negotiators need as little computation as possible to take an active part
in a negotiation process.

� Communicational Efficiency: communicational efficiency addresses communi-
cation cost between negotiators in the course of negotiation. It is desired that a
negotiation process generates only reasonable communication traffic as neces-
sary. For example, broadcasting to all involved negotiators for exchanging ne-
gotiation messages is not reasonably efficient, if the same task can be complet-
ed using dedicated end-to-end communication.

� Distribution: distribution is another desired property of negotiation mecha-
nisms, in particular with respect to increased robustness and availability of
such distributed mechanisms. In comparison to centralised mechanisms, a dis-
tributed negotiation mechanism reduces the risk of a single-point-of-failure and
avoids a performance bottleneck.

� Individual Rationality: a negotiation mechanism is individually rational to an
agent, if the resulting utility of an agent from negotiation is not less than the
utility that the agent would get without negotiation. In other words, because

P a r t I – C h a p t e r 2 � State-of-the-Art

61

agents that do not participate in a negotiation get no additional utility, a negoti-
ation process with individual rationality provides agents with an incentive to
participate in a negotiation process.

All these properties are desirable for an efficient negotiation protocol/strategy.
However, these properties should be considered relatively and always in the respec-
tive context of target negotiation scenarios. For example, communicational efficiency
and distribution are two conflicting properties: a distributed negotiation protocol re-
quires generally more communication efforts than a negotiation protocol with a cen-
tralised mediator. On the other hand, a distributed negotiation protocol increases the
robustness of a negotiation process and, hence, is preferable in contrast to a central-
ised approach. From this point-of-view, the properties discussed afore provide com-
mon design guidance for negotiation mechanisms and have to be individually priori-
tised according to the requirements of particular negotiation scenarios.

Automated Negotiation

As afore mentioned, automated negotiation builds often the foundation for automating
processes to solve conflicts between various parties within an MAS. Hence, there is a
considerable amount of research on approaches to facilitate automated negotiation in
MAS.

Büttner reviewed most of the current approaches and classified them using the fol-
lowing criteria [Bue06]:

� Information situation: each negotiation agent has its preferences on the negotia-
tion issues. However, it is not automatically assumed that each agent is also
aware of preferences of its negotiation partners. Information situation refers to
the amount of information that an agent has about itself, its negotiation partners,
and its environment. Hence, knowledge about the information situation is cru-
cial for designing negotiation mechanisms. It is obvious that an agent that
knows the preferences of its negotiation partners behaves differently than an
agent that is not aware of the preferences of its partners. Lomuscio,
Wooldridge, and Jennings distinguish between complete and incomplete in-
formation situation [LWJ03]. In a complete information situation, all agents are
aware of the negotiation preferences of their negotiation partners. Analogously,
in an incomplete information situation, each agent has only partial or even no
information about its negotiation partner, or its environment. In this case, each
agent can only presume the negotiation behaviour of its partners based on in-

P a r t I – C h a p t e r 2.3 � Multi-Agent Systems

62

formation it observes in the course of negotiation, for example incoming offers
proposed by its partners.

� Negotiation time: negotiation behaviour of agents in the course of negotiation
is influenced by time. Suitably selected time limits for negotiation places ap-
propriate pressure on agents, e.g., to force agents to make larger concessions as
the predefined negotiation deadline is approaching. Stuhlmacher and Cham-
pagne investigated impacts of time pressure on negotiation behaviour of agents
[SC00]. To this end, they examined impact factors by leveraging a variety of
methods, including objective measures (e.g., number of offers), and construct-
ed measures (e.g., utility). They found out that time pressure has little impact
on the utility of the negotiators’ first offers. They justified this with the argu-
ment that subjective time pressure has little influence at the beginning of nego-
tiation. Such influence increases only as the given deadline approaches. Fur-
thermore, although agents under time pressure tend to make more concessions
in utility, it results, however, in less exploration in the negotiation space than
with less time pressure. This leads to implications for the quality of the result-
ing agreements.

� Mediation: a mediated negotiation process between negotiation parties is car-
ried out via a trusted third party, the so-called mediator. To enable an accurate-
ly mediated negotiation, each party submits its preferences to a mediator. The
mediator makes decisions based on information submitted by the negotiators.
Obviously, in a mediated negotiation process, trust between the mediator and
other agents plays an important and fundamental role for a successful negotia-
tion. In contrast, a non-mediated negotiation is conducted via direct peer-to-
peer interactions between negotiators. In this case, a trusted third party is not
involved in the negotiation process.

� Negotiation Access: a public negotiation process is open to all parties that are
interested to take part in the negotiation process. In a closed negotiation pro-
cess, only selected/invited parties are allowed participating in the negotiation.
No additional participants can join the negotiation process as soon as it has
been triggered.

� Theoretical foundations: agents need negotiation strategies to guide their be-
haviours in the course of negotiation. To design such negotiation strategies,
various theory foundations from AI and mathematics have been utilised, such
as fuzzy logic, optimisation, game theory, etc. Jennings et al. categorised three
general theoretical foundations to design negotiation strategies [JFL+01]:

P a r t I – C h a p t e r 2 � State-of-the-Art

63

o Game theory: approaches based on game theory (e.g., work done by Zlot-
kin and Rosenschein [ZJ89]) aim at finding optimal strategies among a set
of rational and autonomous agents by analysing the equilibrium conditions
of all possible deals. To do this, each agent is equipped with a utility func-
tion to estimate the value of achieving a goal and the price for this. Using
such utility functions, a pay-off matrix with utility values for each outcome
for each agent can be calculated. This pay-off matrix is known to both ne-
gotiation partners a priori before the negotiation process. In the course of
negotiation with alternating offers and counter offers, each agent tries to
choose the deal based on the pay-off matrix to maximise its outcome. From
this viewpoint, game theory provides a good foundation to investigate stra-
tegic interactions between self-interested agents. Nevertheless, it does not
suffice for realistic scenarios, as pointed out by Nwana [Nwa96]. The as-
sumption that in a negotiation all participating agents are rational is not re-
alistic in the real world. Furthermore, this approach requires that the pay-
off matrix is available a priori. This requirement is obviously rarely true in
most negotiation scenarios, where agents have only an incomplete infor-
mation situation about their negotiation partners.

o Heuristic: heuristic-based approaches aim to reduce computational cost and
accelerate the negotiation process by searching the negotiation space in a
non-exhaustive manner (e.g., the model proposed by Sierra, Faratin, and
Jennings [SFJ97]). The key idea of such an approach is to model the deci-
sion-making process of an agent heuristically. The negotiation space is
spanned by all possible agreements for agents. The value of each possible
agreement to an agent is estimated by a utility function. Hence, generating
an offer for the opposing agent turns out to be a task of searching for an
appropriate agreement in the negotiation space. Each agent uses appropri-
ate decision-making mechanisms to search for possible offers. Faratin et al.
classified two general decision-making mechanisms: responsive and delib-
erative [FSJB99]. The former mechanism generates offers by manipulating
utility of agreements. That is, an agent uses the responsive mechanism to
concede by moving from its optimum agreement and thus reducing its ex-

P a r t I – C h a p t e r 2.3 � Multi-Agent Systems

64

pectation of utility. The latter mechanism is to find trade-offs that are more
attractive to the opposing agent, e.g., by providing offers that are closer to
the opponent’s last offer. In comparison to approaches based on game theo-
ry, heuristic-based approaches are based on realistic assumptions about tar-
get negotiation scenarios, in particular incomplete information situation be-
tween agents. This makes this approach applicable to a wider range of pos-
sible application domains. However, outcomes of heuristic-based ap-
proaches are in the majority of cases only suboptimal. This is majorly
caused by the fact that an agent’s search for offers does not explore the full
negotiation space due to their limited information situation.

o Argumentation-based: both game-theoretic and heuristic approaches as-
sume that agents’ preferences are fixed in the course of negotiation. How-
ever, in some real world scenarios, agents can benefit from revising their
preferences during negotiation. Nevertheless, the negotiation process of
humans is accompanied by on-going acquisition of new information, and a
revision of preferences based on newly acquired information. Hence, an
argumentation-based approach aims to address this by augmenting a com-
mon negotiation protocol with an additional argumentation protocol that al-
lows exchanging supplementary information in addition to offers between
agents [RRJ+03]. Such additional information may have a number of pos-
sible forms to explain the opinion of an agent. For example, if an agent re-
jects an offer, it can inform its negotiation partner, why the offer is not ac-
ceptable. Upon receiving such argumentation, the negotiation partner can,
e.g., identify the region in the negotiation space that is less promising for
the opponent. Alternatively, such argumentation may persuade the negotia-
tion partner to alter its preferences and thus change its negotiation space.
Due to its additional ability to enable flexible dialogues, an argumentation-
based approach gains increasing popularity in the research. Rahwan re-
views in his thesis [Rah04] a range of existing argumentation-based ap-
proaches and figures out that such approaches are more complex than
game-theoretic and heuristic-based approaches, and add a considerable
overhead to the negotiation process.

P a r t I – C h a p t e r 2 � State-of-the-Art

65

From the discussion in this section, it is clear that there is no universal approach to
facilitate automated negotiation in every application domain. Rather, there is a set of
possible approaches that are modelled based on different assumptions about the envi-
ronment and the agents in the negotiation. Hence, for each application domain, the
corresponding approach to support automated negotiation should be individually cho-
sen based on characteristics of the target problem domain.

Negotiation in Service-oriented Environments

In MAS, negotiation is essential to solve conflicts between agents, e.g., between
sellers and buyers. With negotiation, self-interested agents can find mutually accepta-
ble agreements that are beneficial to both sides. The same scenario applies also to
SOEs, where service providers and service consumers have to reach agreements re-
garding service delivery. In particular, a dynamic and liberated SOE needs a service
market, where service providers can advertise services they provide, and consumers
can request services they need. It is obvious that in a highly dynamic SOE where cus-
tomers’ demands continuously change, fixed quality of service delivery reduces large-
ly the competitiveness of corresponding service providers. Hence, to better fulfil de-
mands that service consumers have, service providers deliver their services with dif-
ferent quality levels for different prices. As pointed out by Elfatatry and Layell
[EL04], negotiation in SOEs is used as a means to tailor software needs dynamically
for service consumers.

Elfatatry and Layell have done conceptual work on how negotiation can be carried
out in an SOE. Figure 2-9 depicts the three phases of negotiation that they identified
in their work. They divided the negotiation process into three main phases: prenegoti-
ation, negotiation, and delivery. The prenegotiation phase is concerned with prepara-
tion tasks for the main negotiation phase, in particular identifying a set of potential
service providers that satisfies the functional and non-functional requirements of a
consumer. Service selection determines the target service type with functional re-
quirements. Since potential service providers deliver their services with different qual-
ity levels, they need to be further filtered during provider selection by using non-
functional attributes. At the end of this phase, initialisation information, including a
list of service providers and the consumer’s expectations on service delivery (e.g.,
QoS, cost, etc.), is forwarded to the next phase. In the negotiation phase, service con-
sumer interacts with potential service providers to agree upon quality of service deliv-

P a r t I – C h a p t e r 2.3 � Multi-Agent Systems

66

ery. An issue that must be addressed in this phase is the way to compose functionali-
ties of several service providers. That is, given a set of functional requirements and a
number of service providers, negotiation should provide a way to coordinate these
providers to get the best composition that meets the desired requirements. If the nego-
tiation phase results in a set of service contracts with respective service providers, the
service delivery phase is concerned with applying the agreed contracts at runtime. In
this phase, service delivery of providers is observed and evaluated. Such information
can be used in the next prenegotiation phase to select potential service providers.

Figure 2-9: Conceptual negotiation model in SOA (see [EL04])

A similar conceptual model is provided by Lin [Lin08], too. In contrast to the ab-
stract negotiation model proposed by Elfatatry and Layell, Lin focused in his model
on the process aspect of automated negotiation between service providers and service
consumers, and modelled the negotiation process using a range of UML diagrams. In
particular, he modelled the collaboration between various stakeholders within a nego-
tiation process in a much more fine-granular level of details than the rather abstracted
model of Elfatatry and Layell.

Both works focus mainly on the negotiation process between service consumers
and service providers in an SOA in a software-centric manner. As discussed in Sec-
tion 2.1, increasing support for service-oriented infrastructure facilitates establishment
of service-orientation across the complete IT infrastructure. Hence, it is desired to use
negotiation as the fundamental measure to enable loosely coupled provider/consumer

• service selection
• provider selection
• predicting service usage

• functional composition
• management of dependences
• negotiation convergence

• contract enactment
• formulation and update of trust

prenegotiation

negotiation

delivery

initialization
information

contract

P a r t I – C h a p t e r 2 � State-of-the-Art

67

relationships across the complete IT infrastructure down to the hardware-centric layer.
This aspect is covered by the EU’s SLA@SOI project [The08, SLA10].

The SLA@SOI project proposes a multi-level SLA management approach for ser-
vice-oriented infrastructures [TYB08]. In their approach, SLA is used as a means to
specify conditions under which a service provider provisions its services. Objectives
of such an SLA cover a variety of IT management areas, such as service and applica-
tion management. Based on automated negotiation between corresponding service
providers and service consumers, the SLA@SOI project aims at realising stepwise
mapping of high-level SLA requirements onto low-level SLAs for hardware-centric
components.

Figure 2-10 illustrates the top-down SLA management process in an SOE. The over-
all management process involves several stakeholders in such an environment, includ-
ing consumers, software providers, service providers, and infrastructure providers.
Given the recursive nature of an SOE, high-level SLA requirements from customers
are mapped to low-level SLAs for hardware-centric components step-by-step in the
negotiation phase. After that, negotiated contracts are monitored and enforced bottom-
up to ensure delivery of business processes to customers as agreed in contracts.

In a word, the SLA@SOI project is concerned with integrated provisioning of ser-
vices in an SOE that involves a set of stakeholders (service provider/consumer, infra-
structure provider, etc.), various service level aspects (security, performance, etc.),
and considerations of the complete service life cycle (engineering, provisioning, nego-
tiation, monitoring, etc.). Negotiation is explicitly used as a measure to control
runtime behaviour of particular hardware-centric components with low-level runtime
requirements derived from high-level business requirements.

The work discussed so far is mainly conceptual work. Negotiation is considered
mainly as a means to facilitate dynamic relationships between service providers and
consumers. Hence, no insight is provided into the negotiation process, in particular
how negotiation between related service provider and service consumer can be carried
out to realise automated SLA management in an SOE. To date, there is a range of on-
going research on SLA management, but most of the relevant issues regarding auto-
mated negotiation are still open, as pointed out by Theilmann, Yahyapour, and Butler
[TYB08]. The remainder of this section provides a brief overview on this work.

P a r t I – C h a p t e r 2.3 � Multi-Agent Systems

68

The foundation for SLA management is to model SLAs computationally. To this
end, several approaches have been proposed. WS-Agreement [ACD+07] provides an
extensible framework for specifying agreements between negotiation parties within
SOA. Next to the capabilities to model SLAs, WS-Agreement also includes a simple
negotiation protocol that covers only a simple one-shot negotiation scenario. That is, a
negotiator makes an offer to its opponent, and the opponent can either accept or reject
the offer. No further multi-rounded negotiation in the form of counter offers is sup-
ported in WS-Agreement. Similar approaches for specifying and monitoring SLAs for
Web services can be found in Web Service Level Agreement (WSLA) by Keller and
Ludwig [KL03] as well as Web Service Management Network Agent (WSMN) by
Sahai et al. [SMS+02]. These frameworks focus on providing approaches to create
and monitor SLAs rather than to automate negotiation of SLAs at runtime.

Yan et al. proposed an agent-based approach to facilitate negotiation of SLAs for
service compositions [YKL+07]. The focus of their work is to establish agreements on
QoS constraints for individual services in the composition. Hence, they introduced a
compatible iterated negotiation protocol to enable coordinated negotiation between
agents with respect to given end-to-end QoS requirements. Based on this protocol,
agents are able to find a set of appropriate SLAs for individual services, which can
conjointly guarantee the QoS constraints for the overall service composition. In addi-

Figure 2-10: Overview of the SLA management process in SLA@SOI (see [TYB08])

customer

software provider

service provider

infrastructure provider

business process

business use

SL
ASLA

SLA SLA

SLA SLA

SLA virtual
resources

physical
resources

SLASLA
software software

SLA negotiation

monitoring/
arbitration

Service-oriented
Architecture

Service-oriented
Infrastructure

monitoring/
adjustment/
altering

P a r t I – C h a p t e r 2 � State-of-the-Art

69

tion, they design the necessary Web service interfaces with respect to their negotiation
protocol.

Another similar approach for negotiating SLAs for Web services is proposed by
[ZMCW08]. They applied the negotiation model proposed by Sierra, Faratin, and Jen-
nings [SFJ97]. As the negotiation protocol, they used a subset of the existing FIPA
Contract Net Interaction Protocol [FIP02a] and constructed a specification schema for
specifying negotiation policies on the basis of WS-Policy[VOH+07]. Their work fo-
cused on architectural design of the overall negotiation process and, hence, lacked in-
depth investigation of negotiation strategies.

Ludwig et al. introduced a framework for automated SLA negotiation in service
grids using dedicated third-party negotiators [LBKF06]. In their work, they applied
the WS-Agreement specification and modelled the stakeholders involved in a negotia-
tion process, i.e., service providers for arranging agreements, service providers for
negotiation protocol, and service providers for decision-making support, as stand-
alone third-party negotiation service providers. Based on these dedicated service pro-
viders for negotiation purposes, related service providers and service consumers in the
grid apply the FIPA Iterated Contract Net Interaction Protocol to reach consensus on
quality of service delivery [FIP02b].

All works cited above consider the SLA negotiation problem between consumers
and providers as a bilateral, multi-issue, private, and non-mediated negotiation pro-
cess. In these approaches, negotiation information, e.g., negotiation preference, is pri-
vate to the respective negotiators and, hence, not shared with others.

Another way to carry out automated negotiation between related service compo-
nents is to use the aforementioned mediated negotiation, where both negotiation par-
ties delegate their negotiation-related activities to a trusted third party, the mediator.
Comuzzi and Pernici introduced such an approach [CP05]. In their work, both service
consumer and service provider submit their preferences on QoS parameters together
with their negotiation strategies to a dedicated mediator. The negotiation mediator
performs negotiation based on this information and delivers the resulting SLAs back
to the respective service components. In case one negotiating party does not trust the
negotiation mediator, a specific semi-automated negotiation model is designated, so
that the other party can utilise the mediator for partial negotiation support.

In contrast to non-mediated negotiation, mediated negotiation requires specific in-
frastructure support. Furthermore, both service components must a priori establish

P a r t I – C h a p t e r 2.3 � Multi-Agent Systems

70

trust relationships with the third-party mediator, before the actual negotiation process
can take place. However, such a network of trust relationships is not always available,
in particular in an SOE that spans several organisational boundaries.

Next to the works cited above, there is a set of other similar research on automated
negotiation conducted in the field of SOA or Grid Computing. Most of this work con-
centrates only on SLA negotiation within the context of composite services and,
hence, addresses issues of bilateral SLA negotiation between service provider and
service consumer only to some limited extent. Further issues concerning the design
paradigm of service-orientation are not taken into account at all, such as autonomy,
dependences between services, and dynamism. In addition, existing works in the field
lack an in-depth investigation of efficiency and effectiveness of such negotiation
models.

Beyond that, the present thesis desires to propose a controllable and business-
driven negotiation model with respect to global business objectives. The resulting
SLAs should help to enforce these business objectives on the global level. For exam-
ple, if the global business objective is defined as maximising customer satisfaction,
the negotiation process should place focus on finding agreements with high availabil-
ity and short response time. In this case, cost does not play a critical role in the nego-
tiation. From this point-of-view, a comprehensive SLA negotiation framework across
all related service components in support of a service-oriented system is desired
[LS10], which takes global business objectives as high-level goal into consideration.

 Concluding Remarks 2.3.4

This section reviews the basic concept of multi-agent systems, and provides a com-
mon accepted definition on agents with some characteristic properties. Furthermore,
an insight is provided into existing mechanisms to enable interactions between agents
in MAS. In particular, existing approaches to coordinate activities of a set of agents in
MAS are reviewed. To solve possible conflicts between agents in their interactions,
the research community of MAS developed a considerable amount of negotiation
mechanisms. This section places an emphasis on the theoretical foundations adapted
to enable automated negotiation, namely game theoretic, heuristic, and argumentation-
based approaches. As aforementioned, each approach has its merits and drawbacks.
Hence, a given problem domain has to be analysed to select the suitable negotiation
technique.

P a r t I – C h a p t e r 2 � State-of-the-Art

71

Furthermore, this section correlates the characteristics of autonomous agents to
those of services in an SOE. The distributed and autonomous nature of services corre-
sponds strongly to the characteristics of agents in MAS. Nevertheless, the W3C states,
“a Web service is an abstract notion that must be implemented by a concrete agent.
The agent is the concrete piece of software or hardware that sends and receives mes-
sages, while the service is the resource characterised by the abstract set of functionali-
ty that is provided” [W3C04]. In this definition, the W3C correlates the concept of
services with agents. This correlation is of particular interest for the present thesis,
especially from the viewpoint of the agent-oriented design of the architecture later
discussed in detail in Section 5.1.

2.4 Summary

This chapter reviews the state-of-the-art of three main research fields that relate
strongly to the present thesis. Section 2.1 reviews at first the concept of service-
orientation and explains the design paradigm of Service-oriented Computing. Fur-
thermore, this section outlines the current development in the fields of Cloud Compu-
ting and Service-oriented Infrastructure. These technological evolutions introduce the
concept of service-orientation also to hardware-centric components in IT infrastruc-
ture, which is crucial for the present thesis. Thorough realisation of service-orientation
across the complete IT infrastructure provides the prerequisite to apply the concept
proposed in this thesis to an SOE.

Section 2.2 reviews the concept of self-organisation and outlines the typical prob-
lems to engineer self-organising applications. In addition, this section provides a brief
insight into existing approaches to establish self-organisations in technical systems,
including OC, AC, and the VSM. These approaches are compared with one another
regarding their capabilities and possible application domains. Furthermore, this sec-
tion gives an overview on existing approaches to realise self-organisation in SOEs.

The last focus of this chapter is, in Section 2.3, to review the concept of Multi-
Agent Systems. MAS has been intensively studied in the last few decades, in particu-
lar with respect to the interaction-related aspects between agents. That is, how agents
can be coordinated, so that they can solve a global problem collaboratively. To this
end, a considerable amount of research has been done to facilitate social interactions
between agents. This section places an emphasis on existing approaches to enable co-

P a r t I – C h a p t e r 2.4 � Summary

72

ordination and negotiation between agents. Such techniques are of particular interest
to the present thesis, among other things, from the viewpoint of collaboration between
various service components in SOA. Furthermore, this section illustrates the charac-
teristics of agents, which correspond strongly to those of services in an SOE. This cor-
relation between MAS and SOC stimulates strongly an agent-oriented design of the
concept proposed in this thesis, which is discussed later in detail.

73

Part II

Architecture Design

75

Chapter 3 Fundamentals

“A journey of thousand miles begins with the first step; the highest eminence is to be
gained step by step.”

(Tao Te Ching, Laozi, ~ 470 B.C.

The focus of the present thesis is to provide a multi-level framework to enable auto-
mated end-to-end Service Level Management between business and enterprise IT.
SLM defines the fundamental concept to bring requirements of business and capabili-
ties of IT infrastructure together. Appropriate realisation of multi-level SLM facili-
tates efficient allocation of technical resources in compliance with business require-
ments. This contributes to a strengthening of competitive advantages on the market.

The concept of SLM revolves mainly around SLAs. It covers the complete life cy-
cle of SLAs, from negotiating SLAs at design time to enforcing them at runtime. In
the context of SLM, SLAs are mutually accepted contracts between a service provider
and its consumer(s). They specify rights and obligations of providers and consumers
to enable successful cooperation between them. With automated negotiation of SLAs
as well as self-organisation of individual service components in order to fulfil agreed
SLAs, they provide the fundamental means to facilitate collaboration between service
components in a coordinated manner.

Hence, this chapter is concerned with the fundamental means to realise the two-
level approach introduced in Section 1.2. As stated there, the approach combines the
local SLA-driven self-organisation with the global automated SLA negotiation to en-
able automated multi-level SLM in SOEs. Section 3.1 provides a common under-
standing of an SOE and outlines its main architectural layers. Section 3.2 gives an
overview on the basic concept of SLAs in the context of service-oriented systems, in
particular the formal model and the life cycle of SLAs. Section 3.3 introduces the
basic model to enable bilateral multi-issue negotiation between agents, particularly
with respect to automated negotiation of SLAs between service provider and consum-

P a r t I I – C h a p t e r 3.1 � Service-oriented Environments

76

er. Section 3.4 focuses on the local SLA-driven self-organisation of a technical com-
ponent. It introduces the detailed observer/controller architecture to establish con-
trolled self-organisation of a service component in compliance with negotiated SLAs.
The last section concludes the chapter and address how the fundamental means intro-
duced in the chapter relate to one another.

3.1 Service-oriented Environments

Service-orientation allows IT components to expose their business and technical ca-
pabilities to their environment as reusable services, while keeping their autonomy
concerning the internal realisation and maintenance of these capabilities. Section 2.1
reviews the current development of service-orientation in the context of enterprise IT,
in particular service-oriented applications on top of SOAs and SOIs. In particular, the
trend towards virtualisation technologies facilitates the implementation of service-
orientation in enterprise IT, which results in new service-oriented technologies, such
as Cloud Computing.

Traditionally, SOA is regarded as software-centric approach to connect business
with enterprise IT. That is, SOA specifies how business processes can be composed
out of a set of services that encapsulate capabilities provided by external business ap-
plications. On the other hand, SOI is regarded as hardware-centric approach to pro-
vide operational environments for software applications. It addresses how underlying
hardware components, such as network connectivity, computing power, or storage can
be virtualised and managed as reusable services for business applications. Obviously,
both concepts themselves address only part of a service-oriented enterprise IT. How-
ever, both concepts together cover all artefacts that typically make up enterprise archi-
tectures. Hence, as stated in Section 2.1.5, the present thesis uses the term service-
oriented environment (SOE) to denote the entire operational environment of business
processes in the IT infrastructure that adopt the design principles of service-
orientation in its technical realisation.

An SOE involves a set of artefacts across the business/IT stacks of enterprise IT.
For example, the business-related artefacts of such an SOE are business process, busi-
ness governance, or capacity management, which aim at facilitating business-driven
support on top of enterprise IT. IT-related artefacts like applications, servers, plat-
forms, and hardware build technically the operational foundations in support of busi-

P a r t II – C h a p t e r 3 � Fundamentals

77

ness. Because of the high variety of artefacts involved in an SOE, this section pro-
vides a general multi-layered architecture to describe SOEs. In particular, it outlines
the provider/consumer relationships between service components that characterises
the service-oriented nature of such an environment.

It is worth noting that the multi-layered architecture introduced in this section fo-
cuses mainly on the technical aspects of an SOE. Because of the high synergy be-
tween business and enterprise IT, this section focuses partly on the impact of business
objectives on the IT stack, in particular from the viewpoint of business-driven IT
management. Other business-related aspects, such as Corporate Governance [SV97]
are out-of-scope of the present thesis.

 Multi-layered Architecture 3.1.1

An SOE consists of a set of possible technical artefacts in support of business, and
applies service-orientation. Each service component in an SOE has in general two
views. From the viewpoint of a provider, a service component has one or more busi-
ness/technical capabilities that can be delivered as services to customers. From the
viewpoint of a consumer, a service component has to make use of services from other
components to enable its functional requirements. Based on such provider/consumer
relationships, business can builds up service-oriented applications synergising busi-
ness and enterprise IT.

Combining the reference architectures introduced in Section 2.1 for SOA and SOI,
the present thesis introduces a multi-layered architecture of an SOE with essential
concerns. This multi-layered architecture intends to establish a common understand-
ing of an SOE for the present thesis. Figure 3-1 illustrates the multi-layered architec-
ture with five horizontal layers and three vertical layers. The layers in the architecture
separate effectively various concerns of an SOE.

It is noteworthy that the architecture depicted in Figure 3-1 covers only technical
aspects and part of business aspects within an SOE. Organisational aspects, such as
organisational memberships of the artefacts involved, are not considered in the multi-
layered architecture. The common case is that all artefacts belong to the same organi-
sation. However, along with the shift of enterprise IT towards service-oriented sys-
tems, an SOE may involve components from other organisations. Hence, one organi-
sation might completely be a service consumer, and another a service provider.

P a r t I I – C h a p t e r 3.1 � Service-oriented Environments

78

Figure 3-1: Multi-layered architecture of a service-oriented environment

The five horizontal layers of the multi-layered architecture contain all functional
components that are required to provide business capabilities to end users. From the
top down, the layers have decreasing business values and increasing IT focuses:

� The business layer represents end users that consume business capabilities pro-
vided by enterprise IT to carry out their day-to-day activities in their organisa-
tions. Hence, the business layer has end-to-end functional as well as non-
functional requirements on the underlying process layer. These requirements
are derived from the business and its environment, for example, business pro-

business
layer

process
layer

service
layer

application
layer

Infrastruc-
ture
layer

task 1 task 2 task 3

service mgmt.
layer

service level
mgmt. layer

semantic
layer

Service-oriented Environment

component

application

hardware

operating
system
virtualized
hardware

application
server

software
platform

P a r t II – C h a p t e r 3 � Fundamentals

79

cesses, legal restrictions, market conditions, and so on. The underlying enter-
prise IT has to arrange its components to meet these requirements. This shows
the supporting role of enterprise IT in business.

� The process layer builds up the connecting piece between the business and the
enterprise IT. On the one hand, the process layer takes over functional as well
as non-functional requirements that the business layer has on the entire enter-
prise IT. On the other hand, it orchestrates services from the underlying service
layer to meet requirements from the business layer. Hence, the process layer
provides the fundamental means to guide end users through various activities
involved in business processes. In particular, business process engines adopting
standards for modelling business processes (e.g., Business Process Modelling
Notation (BPMN) or Business Process Execution Language (BPEL)) allows
agile changes in business processes by modifying the corresponding models at
runtime. From this viewpoint, the process layer establishes an adaptation layer
between the dynamic business layer and the comparatively less flexible service
layer. This capability is crucial to enable business-driven IT infrastructure, in
particular to get business demands of the business layer and technical capabili-
ties of the underlying enterprise IT seamlessly aligned. Furthermore, because
of the specific role of the process layer between the business and the enterprise
IT, it plays an important role with respect to IT Service Management. It is ob-
vious that the runtime behaviour of the process layer directly influences user
experience of the business layer that interacts with the enterprise IT. Hence,
non-functional requirements on quality of service delivery of the process layer
should be considered as the end-to-end non-functional requirements on the
complete enterprise IT, including the process layer and all underlying layers.

� The service layer establishes an abstract layer on top of the physical implemen-
tations of business capabilities provided by the application layer. Hence, the
service layer is composed of services delivered by various organisations. Each
service component in this layer complies with the design principles of service-
orientation, in particular service abstractions and service autonomy. These de-
sign principles allows services being discoverable, remotely executable, and
able to be choreographed into business processes at runtime. It is noteworthy
that services in the service layer are not restricted to Web services, which are
the most popular representation of services in SOA. Instead, services may dif-
fer from one another in their types, realisation, interaction style, and so on. The
present thesis distinguishes between two different types of services that a busi-
ness process can invoke: services with user interfaces for human participants

P a r t I I – C h a p t e r 3.1 � Service-oriented Environments

80

and services with programming interfaces (so called APIs). The former service
type provides a necessary frontend interface (e.g., rich clients or Web portals)
to allow end users in the business layer to interact with the corresponding pro-
cesses. Such user interfaces are essential to support interactive human activities
in a business process [TGWD09]. The latter service type is associated with re-
usable business capabilities that are encapsulated as services. These business
capabilities are realised by the underlying backend applications, such as busi-
ness unit specific components, project specific components, or other enterprise
scale components.

� The application layer is the layer within the architecture that is responsible for
realising business capabilities and maintaining runtime behaviour of exposed
services with respect to quality of service delivery. Hence, each application in
the application layer reflects both the QoS and functionality of the services it
exposes. On the one hand, each application represents a stakeholder in the lay-
ered architecture and ensures that its implementation along with services from
the underlying IT infrastructure align with its service descriptions. Given the
recursive nature of the SOA, an application can build its implementation on top
of other applications from the same layer. By applying this recursive scheme,
the application layer can be divided into several sub-layers, such as a sub-layer
with software components, a sub-layer concerning applications, and a sub-layer
with container-based servers (e.g., application server or Web server). On the
other hand, each application represents an enforcement point for ensuring con-
formance of runtime behaviour of a particular service with agreed SLAs. In
particular, container-based server applications play a key role in influencing
non-functional behaviour of software components at runtime. To this end, each
server application has a range of configuration possibilities to determine direct-
ly QoS of corresponding software components they host (e.g., response time,
availability, throughput, etc.).

� The infrastructure layer provides the necessary technical environment to host
applications in the application layer, including software platforms (.NET, Java,
etc.), operating systems, and underlying hardware-centric components (net-
work connectivity, computing power, storage, and so on). Hence, similar to the
application layer, the infrastructure layer can be divided into several sub-layers,
too. On the bottom is the sub-layer with hardware components in support of
service-oriented applications. These hardware components are normally virtu-
alised, so that they can be organised in resource pools with on demand resource
allocation. The sub-layer with virtualised hardware components provides an

P a r t II – C h a p t e r 3 � Fundamentals

81

abstraction layer to enable unified and consistent access to underlying hetero-
geneous hardware components. Hence, the sub-layer with operating systems
can access virtualised computational resources in a consistent and transparent
manner. On top of operating systems, software platforms are responsible to set
up basic execution environments for the application layer.

The design principles of service-orientation are inherent in the multi-layered archi-
tecture. Components in the various layers provide a range of possible service types
(e.g., implementation services, hosting services, Web services, and so on) to other
components in the same or upper layers. For example, Web services or frontend ap-
plication services are service providers for business processes in the upper process
layer. Similarly, software components providing technical implementations to services
in the service layer consume in turn hosting services from the sub-layer of container-
based servers. From this viewpoint, service-orientation is one of the common proper-
ties that each component in an SOE has.

Accordingly, service-related aspects are integral parts of such a multi-layered archi-
tecture to describe an SOE. There are no separate stakeholders for these aspects in the
horizontal layers, as introduced previously. Instead, layers addressing service-related
aspects cut across all horizontal layers in the architecture (as illustrated in Figure 3-1):
the service management layer covers capabilities, functionalities, and processes for
managing services over their entire life cycle. The service level management layer
regulates all provider/consumer relationships between related technical components
using mutually agreed contracts. The semantic layer ensures that all components in-
volved in the SOE have a common understanding on service-related issues, such as
QoS terms, their metrics, and measurement of these metrics at runtime.

Service management is essential for businesses that adopt service-orientation to de-
sign and implement components in their enterprise IT, e.g., business processes, IT
applications, or hardware components. Hence, the service management layer provides
a set of organisational and technical capabilities for managing services in the way that
they can provide expected values to their consumers. These capabilities cover the en-
tire life cycle of a service, including strategy, design, implementation, operation, and
continuous improvement. To this end, a range of possible measures, such as appropri-
ate organisational structures, processes, or management systems, are utilised to coor-
dinate and control the life cycle of a service. Such management tools can span the
complete organisation (e.g., processes to guarantee organisation-wide service strate-
gy) or be restricted to particular service components in the architecture (e.g., man-

P a r t I I – C h a p t e r 3.1 � Service-oriented Environments

82

agement systems to control one or more service components). Hence, it is important
that the service management layer continuously links service management processes
of related components closely together, from the process layer down to the infrastruc-
ture layer. This is vital to enable consistent management and maintenance of services
in accordance with requirements from the business layer.

A tighter relationship between service providers and service consumers is formed
by SLAs. As a fundamental means to regulate expectations of service consumers and
capabilities of service providers on quality of service delivery, SLAs ensure that
runtime behaviour of service provides complies with QoS terms agreed in contracts
with their consumers. Hence, while service management is concerned with particular
service component(s) in the architecture, service level management deals with provid-
er/consumer relationships between related components across the architecture, in par-
ticular with respect to their non-functional runtime behaviour. The service level man-
agement layer is cutting across all horizontal layers. It provides a consistent founda-
tion to facilitate comprehensive SLM between related providers and consumers at
runtime. To this end, this layer provides a service the necessary means to negotiate,
establish, and document operational targets of service delivery with their consumers,
and enforce them by monitoring and producing reports on services’ ability to deliver
the agreed service levels. Given the recursive nature of the SOA and the continuous
adoption of service level management from the process layer down to the infrastruc-
ture layer, the service level management layer allows services providers to tailor their
capabilities with respect to requirements that the business layer has on the entire en-
terprise IT.

Semantics is of great importance for all stakeholders in an SOE. One of the prereq-
uisites for successful collaboration between related service providers and service con-
sumers is their unambiguous understanding of terms involved in their collaboration. In
particular, from the viewpoint of service level management, both service provider and
service consumer must have the same definitions for QoS issues that are specified in
an SLA. Hence, the semantic layer provides the necessary ontologies about the SOE,
in particular for terms involved in service level management (such as QoS issues, time
units, related metrics, and so on). By establishing such global ontologies in an SOE,
components can unambiguously collaborate with one another to facilitate service level
management across the entire IT landscape.

P a r t II – C h a p t e r 3 � Fundamentals

83

As aforementioned, the target of the multi-layered architecture in this section is to
establish a common understanding of major architectural layers and building blocks of
an SOE. In comparison to other similar reference architectures of SOA, as introduced
in Section 2.1, the architecture introduced in this section focuses mainly on two as-
pects. The first one is the connection between the underlying enterprise IT in support
of service-oriented applications and the business layer with end users of the enterprise
IT. This connection allows modelling and establishing business-driven management
of the entire IT landscape. The second aspect is the focus on service-related artefacts
in a service-oriented enterprise IT. That is, services are treated as first-class citizen in
the landscape to increase the agility of the entire enterprise IT. Furthermore, it is
noteworthy that the multi-layered architecture introduced in this section is not claimed
to be complete concerning all possible artefacts within an SOE. There are certainly
aspects, such as service integration or service governance, which are not included in
this multi-layered architecture. For the purpose of the present thesis emphasising on
service level management, this architecture indeed includes all service-related build-
ing blocks in an SOE. Hence, this abstracted multi-layered architecture suffices for
further analysis in the present thesis.

 Provider/Consumer Relationship 3.1.2

An SOE is characterised by provider/consumer relationships between related compo-
nents. By consistently adopting service-orientation across the complete IT landscape,
services build the conjunction part between related technical artefacts in the multi-
layered architecture. Given the recursive nature of an SOE, runtime behaviour of the
process layer depends on behaviour of all underlying layers in support of the process
layer. Throughout all underlying layers, a single business process involves a set of
service components that span a hierarchical dependence chain based on recursive
provider/consumer relationships, where the business process is the root of the chain.

Therefore, the provider/consumer relationship plays a fundamental role for proper
functionality of service-oriented systems. Figure 3-2 shows the relationships between
major stakeholders in an SOE that are involved in a provider/consumer relationship.

The core of a provider/consumer relationship is of course the service provider and
the service consumer. However, before they can interact with each other, a service
consumer has to retrieve a service provider that can fulfil its functional and non-
functional requirements. To this end, service providers publish meta-level information

P a r t I I – C h a p t e r 3.1 � Service-oriented Environments

84

about their services (i.e., service contracts) to a service broker. Using this meta-level
information, a service broker can respond to inquiry requests, i.e., both functional and
non-functional requirements on the target service type, from service consumers.

Figure 3-2: Provider/consumer relationship in a service-oriented environment

After a service consumer has identified the service provider it wants to interact
with, they have to reach an arrangement on service levels. To this end, SLAs are used
to document service level targets and responsibilities of a service provider and its ser-
vice consumer during their interactions. By doing this, a service provider can ensure
that delivery of its services is aligned with business requirements and meets the ex-
pectations of the consumer in terms of service quality.

The present thesis utilises a multi-level SLA approach. That is, next to the explicit
service level SLA assigned to each provider/consumer relationship, there is a frame-
work agreement on the provider level. Alternatively, such a framework agreement can
also be closed on the business unit or even corporate level. The function of such a
framework agreement is to cover all generic and static service level issues appropri-
ately for each service of the service provider (or respectively of the business unit or of
the corporate unit). For example, a framework agreement can regulate the legal as-
pects of all related electronic SLAs on the service level that are stable over the time.
Section 3.2.1 is going to discuss the needs of such a multi-level approach in detail.

Such a multi-level structure allows a separation of concerns within all SLAs. On
the one hand, each SLA is clearly defined and has a manageable size without having

service
provider

relates to

provider level SLA

service level SLA

service service
instance

service
consumer

service
contract

service broker

consumer
instance

se
rv

ic
e

le
ve

l
se

rv
ic

e
di

sc
ov

er
y

se
rv

ic
e

in
te

ra
ct

io
n

coverscovers

provides
has

has

publish
services
to discover

services
request services

provider/
consumer
interaction

covers

has

P a r t II – C h a p t e r 3 � Fundamentals

85

to duplicate unnecessary contents in each agreement. On the other hand, moving ge-
neric parts that are less variable from service level SLAs to higher-level SLAs reduces
the need for frequent updates of SLAs, which is usually associated with additional
administrative overhead.

With established provider level and service level SLAs, interactions between a ser-
vice provider and a service consumer can take place. It is assumed that a service pro-
vider offers a range of various services to potential consumers. However, for each
provider/consumer relationship, there is only a single service involved. By all means,
it is possible that a service provider and a service consumer have more than one pro-
vider/consumer relationship between each other. Hence, for each provider/consumer
relationship, there is a dedicated service instance of the corresponding service at the
side of the service provider. Respectively, the service consumer has a consumer in-
stance of the corresponding provider/consumer relationship. By using such a service-
provisioning concept on the instance level, a service provider can provide a single
service with differentiating capabilities, i.e., different performance or security levels.
Analogously, a consumer instance allows a service consumer to consume simultane-
ously several services from different service providers. Hence, the actual interaction
between a service provider and its consumer takes place between the service instance
and the corresponding consumer instance. Hence, the service level SLA is associated
with the respective service instance and the consumer instance. Their behaviour at
runtime is decisive for management processes involved in the SLM.

In the remainder of this thesis, except for explicit annotations, the terms service
provider and service instance, service consumer and consumer instance are used as
synonymously. In particular, in the discussion of automated negotiation of SLAs, ser-
vice levels of a provider/consumer relationship refer to IT-related non-functional as-
pects between a service instance and its corresponding consumer instance.

3.2 Service Level Agreements

This section outlines the basic idea of SLAs and their impacts on service-oriented sys-
tems. Furthermore, this section provides an insight into formal approaches for model-
ling SLAs electronically, which is crucial to enable automated negotiation between
related components. Then, a set of common QoS parameters associated with service-

P a r t I I – C h a p t e r 3.2 � Service Level Agreements

86

oriented systems are introduced in this section. The last part of this section covers the
life cycle of an SLA in the context of SLM.

 Overview 3.2.1

Service-orientation is increasingly adopted to build mission-critical distributed appli-
cations spanning several autonomous organisations, for example, applications for
supply chain management in industry or applications for scientific computing in aca-
demia. As already mentioned in the motivation (see Section 1.1), such a service-
oriented system depends not only on the functionality, but also the quality of services
involved in the system (e.g., performance and availability). Hence, in order to operate
a service-oriented system in a predicable way, contracts are used to govern relation-
ships between related service consumers and service providers. In particular, such
contracts define mutual responsibilities of consumers and providers with respect to
quality of service delivery. Hence, these service contracts are considered as a predict-
able level of assurance with respect to quality of service delivery of the provider.

In the context of SLM, such clauses are referred to as Service Level Agreements
(SLAs). An SLA is a written contract between IT service provider and its consumer(s)
that defines the key service targets and responsibilities for both sides. ITIL defines an
SLA as [RL07]:

…an agreement between an IT service provider and a customer. The SLA
describes the IT service, documents service level targets, and specifies the
responsibilities of the IT service provider and the customer. A single SLA
may cover multiple IT services or multiple customers.

Given the definition above, SLA are used to regulate obligations and rights of ser-
vice providers and service consumers in their interactions. In fact, SLAs play an im-
portant role in IT service management. McConnell and Siegel summarise the strategic
values of SLAs for providers and consumers [MS04a]:

� The related parties have an explicit agreement that specifies the scope of the
cooperation, the related services, the desired performance of the provider, the
measurements to assess provider performance, and the penalties for agreement
violation. The clarity of SLAs removes much of the ambiguity in the provid-
er/consumer relationship.

P a r t II – C h a p t e r 3 � Fundamentals

87

� SLAs help customers to control their cost reasonably by allocating their IT
spending efficiently based on differentiated service provisioning.

� SLAs help providers to allocate their resources efficiently based on consumer
demands. SLA-driven resource management helps to avoid over- or underutili-
sation of their resources.

In traditional IT service management, an SLA is a written document between a ser-
vice provider and its consumer(s). The content of an SLA varies from case to case,
depending mainly on requirements and capacities of particular agreement parties, in
particular, service provider, service consumers, and end users.

Nevertheless, in analogy to commerce contracts, an SLA in general covers both
technical and business aspects of service delivery. Next to the meta information about
an SLA, e.g., scope of agreements, period of validity of an agreement, and service
descriptions, an SLA defines a range of technical service level targets, where each
service level target addresses one QoS parameter about the service delivery, e.g., re-
sponse time, availability, or security level. Furthermore, an SLA specifies metrics to
assess the degree that service delivery complies with the agreed service level targets.

The other focus of an SLA is to specify business aspects of the contract. Among
other things, an SLA provides details on charging formulas used, charging period,
reference to external charging policies, as well as invoicing procedures. Furthermore,
an SLA specifies procedures to do service reporting and reviewing: how often service
reports should take place, content of service report, and frequency of service review-
ing meetings to manage changes of SLAs. An important aspect during service level
management is to determine responsibilities of the various parties involved in the
agreement. In addition, an appropriately negotiated agreement should give a provider
appropriate incentive to guarantee its service delivery quality. On the other hand, it
should provide a consumer with the necessary incentive to consume the specified ser-
vice(s) as contracted. Hence, an agreement specifies penalties for both service con-
sumer and service provider. If a service consumer violates limits agreed in an SLA,
e.g., maximal number of requests submitted per time unit or maximal amount of data
processed per time unit, then a consumer is required to pay a higher price. Vice versa,
if a service provider cannot deliver its service(s) as arranged in the agreement, e.g.,
minimal throughput per time unit, or maximal response time, then the corresponding
consumer receives compensation for contract violation by the provider.

P a r t I I – C h a p t e r 3.2 � Service Level Agreements

88

SLAs determine obligations, permissions, and responsibilities between a service
provider and its consumer(s). It is obvious that in order to enable SLA-driven business
scenarios between technical systems, electronic contracts mirroring paper documents
exchanged between businesses are required. Indeed, there is a range of possible ap-
proaches that provide the basic concepts for modelling electronic SLAs between tech-
nical systems, e.g., WS-Agreement introduced in detail in Section 3.2.2. Electronic
SLAs provide technical systems with the possibilities to create, negotiate, apply, and
enforce restrictions on behaviour of providers and consumers in an automated and
flexible manner.

However, a potential obstacle to prevent the application of such electronic contracts
is the legal implications of electronic SLAs. For the purpose of this thesis, it is there-
fore important to investigate how such obstacles can be overcome in service-oriented
systems, where electronic SLAs lay the cornerstone for the approach of this thesis.

First, it is obvious that legal aspects of SLAs cannot be completely ignored for ser-
vice-oriented systems. In particular, in the context of Cloud Computing, SLAs closed
between a cloud service provider and its consumers must cover legal aspects. It is cru-
cial that cloud service providers are trustworthy enough for their consumers, that
businesses would outsource their critical business data to external cloud services.
Hence, cloud service providers must be able to demonstrate that those business data
are processed and stored in the way that their consumers specify. Such guarantees are
given on the one hand by means of technical measures, which are specified in SLAs,
such as using certain security standards. On the other hand, SLAs must be legally
binding for both service providers and their consumers, before service consumers en-
ter into partnerships with cloud service providers. This additionally enforces the guar-
antee levels that technical measures can provide.

The concept of incorporating legal aspects into electronic SLAs will fail, as long as
the question if intelligent agents can be held accountable for contracts they close is not
clarified. Furthermore, an important advantage that electronic SLAs offer is that they
can be dynamically negotiated and adjusted at runtime in dependence of the current
operational context. However, legal aspects of electronic SLAs are rather fixed and
restrictive, as opposed to what electronic SLAs allow.

Therefore, a more promising way to combine legal binding with flexible electronic
SLAs is to use multi-level SLAs, as introduced in Section 3.1.2. That is, service pro-
vider and service consumer can adopt one or more additional high-level SLAs signed

P a r t II – C h a p t e r 3 � Fundamentals

89

by human representatives on top of electronic SLAs negotiated by software agents.
This enables businesses to address legal constraints in their interactions, while they
can still benefit from the flexibility and simplicity provided by intelligent agents.

High-level SLAs, which are framework agreements for the underlying electronic
SLAs, are in general non-electronic. Such contracts are usually arranged and signed
by human representatives from the agreement parties. The main purpose of high-level
framework agreements is to govern legal aspects of all interactions, in particular soft-
ware-based automated negotiation, between intelligent agents from related businesses.
Among other things, a framework agreement specifies the scope of automated negoti-
ation, including acceptable penalties, required capabilities, and administrative bounda-
ries of intelligent agents. Furthermore, a framework agreement also defines accounta-
bilities and responsibilities of all parties involved in the agreement, which are legally
binding with respect to traditional contracts exchanged between businesses.

In the remainder of the present thesis, it is assumed that legal aspects are covered
by framework agreements that are closed a priori, before automated negotiation be-
tween related service components takes place. Hence, the scope of the present thesis is
restricted to electronic SLAs with technical aspects (e.g., QoS parameters) of interac-
tions between service providers and service consumers. Correspondingly, the follow-
ing subsections discuss the conceptual model of SLAs, common QoS parameters used
in SLAs, and the typical life cycle of SLAs within SOEs.

 Formal SLA Model 3.2.2

The prerequisite of automated negotiation and enforcement of SLAs is to model and
describe them formally in a common language that is unambiguously understandable
for intelligent agents. As mentioned in Section 2.3.3, there have been several efforts in
the research field that intend to provide the foundation to facilitate agreement set-up
between service providers and service consumers, such as WSMN [SMS+02], WSLA
[KL03], or SLAng [SLE04]. The most recent effort is the WS-Agreement specifica-
tion [ACD+07] published by the Open Grid Forum as a proposed recommendation,
which incorporates a range of existing concepts proposed in the WSLA framework.
WS-Agreement specification focuses on creating and monitoring SLAs between a
service provider and its service consumer. This section introduces the basic formal
SLA model defined in the WS-Agreement.

P a r t I I – C h a p t e r 3.2 � Service Level Agreements

90

Figure 3-3 illustrates the distinct parts of an agreement defined in the WS-
Agreement specification. The optional name section provides the possibility to specify
a name for the agreement, so that it can be uniquely identified if needed. The context
section contains meta-data about the entire agreement. Among other things, it pro-
vides information about both negotiation parties, namely the agreement initiator that
initialises the negotiation request and the agreement responder that responds to the
negotiation request. In addition, the context section specifies the service provider,
which is normally either an agreement initiator or an agreement responder. Another
focus of the context section is to specify the lifetime of an agreement, in particular, the
expiration time of the agreement, when it is no longer valid.

Figure 3-3: Structure of a service level agreement (see [ACD+07])

In order to better control the content of an agreement at runtime, WS-Agreement
uses agreement templates with predefined context information. Hence, the context
section can optionally provide information about the template, based on which this
agreement is created. It is noteworthy that the context section is extendable by default.
It is therefore possible to add further domain specific information about the agreement
to the context section. For example, it can contain a reference to the framework
agreement that settles the general legal restrictions. By extending the context section
with custom information, it can provide further expressive information on the respec-
tive agreement.

The main body of an agreement is composed of terms. A term refers to some con-
sensus or obligations of a party. The WS-Agreement defines two types of terms: ser-
vice terms and guarantee terms. A service term contains information about services,
to which the agreement pertains and to which the guarantee terms apply. To this end,
a service term consists of references to the respective service and its service descrip-
tions that provide further functional information about the service. Furthermore, it is

agreement
name

terms

service terms

guarantee terms

context

P a r t II – C h a p t e r 3 � Fundamentals

91

possible to extend a service term with domain-specific service properties, which can
be used to describe its non-functional aspects.

Guarantee terms are the part in an agreement that specifies assurances about quali-
ty of service delivery given by a service provider to its consumer(s). Each guarantee
term is associated with one or more service terms to determine their scope. For exam-
ple, the service scope can contain a single operation of a service or multiple services
to which the guarantee term applies. Each guarantee term contains a service level ob-
jective determining a particular service attribute, such as average response time, ser-
vice availability, or service throughput. To each service level objective, the guarantee
term specifies also its service level target that provides quantitative assertion on the
respective service level objective.

A further aspect addressed by a guarantee term is business values of the respective
service. The WS-Agreement specification determines four general business value
types: importance, penalty, reward, and preference. The element importance is used
to express the relative importance of meeting an objective. The elements penalty and
reward are used to state the penalty of not meeting an objective and the reward of
meeting an objective. The element preference allows both parties to specify a list of
possible alternatives concerning the service level objective. In addition to these four
business value types, a range of custom business values can be defined in a guarantee
term, which allows service providers and their consumers to arrange their domain-
specific business values.

Table 3-1 illustrates a simple XML document sample in accordance with the WS-
Agreement specification.

The sample document is an agreement offer sent from the service consumer Com-
petenceFieldsWorkflow (cf. line 5) to the service provider PersonService (cf. line 6).
The given agreement expires at the end of 2011. The agreement covers the operation
Read of the Web service PersonService (cf. lines 14 and 15).

The guarantee term (cf. lines 18 and 19) in the agreement offer provides an assur-
ance over response time for the operation Read. It defines that each request must be
pressed within 10 seconds (i.e., response time of the provider must be less than 10
seconds, cf. lines 22~25).

P a r t I I – C h a p t e r 3.2 � Service Level Agreements

92

Table 3-1: Sample SLA based on the WS-Agreement specification

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <wsag:AgreementOffer sag:AgreementId="negotiation_sample_PersonService_offer"
 xmlns:tns="http://www.w3.org/2005/08/addressing"
 xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement"
 xmlns:wsrf-bf="http://docs.oasis-open.org/wsrf/bf-2"
 xmlns:xml="http://www.w3.org/XML/1998/namespace"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.ggf.org/graap/2007/03/ws-
agreement.xsd"
 xsi:type="wsag:AgreementType">
 3 <wsag:Name>PersonService_Negotiation_Sample</wsag:Name>
 4 <wsag:Context>
 5 <wsag:AgreementInitiator>CompetenceFieldsWorkflow<wsag:AgreementInitiator/>
 6 <wsag:AgreementResponder>PersonService</wsag:AgreementResponder>
 7 <wsag:ServiceProvider>PersonService</wsag:ServiceProvider>
 8 <wsag:ExpirationTime>2011-12-31T12:00:00</wsag:ExpirationTime>
 9 </wsag:Context>
10 <wsag:Terms>
11 <wsag:All>
12 <wsag:ExactlyOne>
13 <wsag:All>
14 <wsag:ServiceDescriptionTerm wsag:Name="Read"
15 wsag:ServiceName="PersonService"/>
16 </wsag:All>
17 </wsag:ExactlyOne>
18 <wsag:GuaranteeTerm wsag:Name="ServiceResponseTime"
19 wsag:Obligated="ServiceProvider">
20 <wsag:ServiceScope Name="PersonService">Read</wsag:ServiceScope>
21 <wsag:ServiceLevelObjective>
22 <wsag:KPITarget>
23 <wsag:KPIName>ResponseTime</wsag:KPIName>
24 <wsag:Target><10s</wsag:Target>
25 </wsag:KPITarget>
26 </wsag:ServiceLevelObjective>
27 <wsag:BusinessValueList>
28 <wsag:Penalty>
29 <wsag:AssesmentInterval>
30 <wsag:TimeInterval>Weekly</wsag:TimeInterval>
31 </wsag:AssesmentInterval>
32 <wsag:ValueUnit>EUR</wsag:ValueUnit>
33 <wsag:ValueExpr>1</wsag:ValueExpr>
34 </wsag:Penalty>
35 <wsag:Reward>
36 <wsag:AssesmentInterval>
37 <wsag:TimeInterval>Daily</wsag:TimeInterval>
38 </wsag:AssesmentInterval>
39 <wsag:ValueUnit>EUR</wsag:ValueUnit>
40 <wsag:ValueExpr>0.5</wsag:ValueExpr>
41 </wsag:Reward>
42 </wsag:BusinessValueList>
43 </wsag:GuaranteeTerm>
44 </wsag:All>
45 </wsag:Terms>
46 </wsag:AgreementOffer>

P a r t II – C h a p t e r 3 � Fundamentals

93

In order to provide incentives for the provider to fulfil this guarantee term, the
agreement specifies business values for the provider and the consumer. In the exam-
ple, the offer states that for any violation of the guarantee term in the period of a
week, the service provider is obligated to pay a penalty of one EUR (cf. lines 28~34).
Otherwise, if the service provider can deliver the service in compliance with the guar-
antee term, it is going to receive an additional reward of 0.5 EUR, in addition to the
actual service cost (cf. lines 35~41).

 Quality of Service 3.2.3

SLAs uses service level objectives to determine the scope of non-functional attributes
that are of interest for both contract parties. Hence, it is necessary for both parties to
specify which non-functional attributes should be included in an SLA, so that the
quality of service delivery can be assessed at runtime. In fact, Quality of service
(QoS) of technical systems has been subject of active research for several decades.
The international quality standard ISO 9000:2005 describes quality as “degree to
which a set of inherent characteristics fulfils requirements” [ISO05]. Starting from
related research concerning real time issues in telecommunication networks, QoS pro-
vides the basic means to address non-functional aspects of technical systems. In the
context of this thesis, the definition given by ISO refers to the quality of service deliv-
ery of a service provider that provides distinguishing features to fulfil functional re-
quirements of its service consumers. Hence, in order to estimate the degree of re-
quirement fulfilment by a service provider, QoS consists of a set of non-functional
attributes to estimate quality of service delivery of the provider.

In the field of SOC, QoS plays the fundamental role to allow service providers and
service consumers to express their non-functional requirements and capabilities. In
particular, SLAs utilise QoS to specify service level objectives and their targets.
Hence, one prerequisite for using QoS in SOEs is to determine the set of non-
functional attributes that are of interest either to service providers or to service con-
sumers. Van Moorsel analysed the quantitative metrics to evaluate Internet-based ser-
vices [Moo01]. He recognised that there are different types of QoS parameters with
respect to their objectives. By considering the multi-tier architecture of Internet appli-
cations, van Moorsel proposed the terms Quality of Business, Quality of Experience,
and Quality of Service. Respectively, each type of quality has a different focus for
evaluating quality of service delivery. While Quality of Service is concerned with

P a r t I I – C h a p t e r 3.2 � Service Level Agreements

94

technical metrics, the other two quality types address more end-to-end aspects of In-
ternet-based services on service level. That is, they concentrate on experience that
business and end user perceive during their interactions with an IT-based system. By
using this categorization, van Moorsel distinguished explicitly between QoS parame-
ters from the perspective of service providers and QoS parameters from the perspec-
tive of service consumers.

Cubera, Khalaf, and Mukhi investigated QoS in SOEs and identified the necessary
protocol stack to support QoS in SOA-based systems, including WS-Agreement, WS-
Security, and WS-Coordination [CKM08]. Based on their analysis, they summarised
that the use of middleware protocols in support of QoS and the aggregation of QoS
parameters in service compositions are two areas that require active research and de-
velopment. However, they do not investigate the set of QoS parameters that are of
interest for SOEs. Cardoso et al. reviewed the common QoS parameters involved in
service compositions (i.e., workflows and Web service-based business processes)
[CSM+04]. For each identified quantitative QoS parameter, such as task response
time, cost, and reliability, they specified the measures to estimate those QoS metrics.
Furthermore, they also provide formulas to estimate composite values of several QoS
parameters of services that are orchestrated by using workflow patterns, such as se-
quential or parallel execution of tasks.

The work of Cubera et al. and Cardoso et al. focuses mainly on QoS parameters in
workflows. In contrast, Menascé reviews research issues associated with QoS evalua-
tion of Web services in SOEs [Men02]. To this end, he analyses the issues both from
the perspective of a service provider and that of a service consumer, and figures out
the differences between these two perspectives on QoS parameters. From his view-
point, in order to differentiate services from various service providers, users and pro-
viders need to engage in QoS negotiation. With negotiated QoS, consumers and pro-
viders can enter into long-term relationships with consequent enforcement of agreed-
upon SLAs. However, he did not analyse the set of QoS parameters associated with
Web services.

The variety of research on QoS issues shows that determining the set of non-
functional attributes to assess quality of service delivery depends on respective per-
spective and problem domain. Perspective specifies from which viewpoint QoS is ob-
served. In addition, problem domain specifies the specific environment, within which
QoS is evaluated. Hence, it is not possible to define a common set of non-functional

P a r t II – C h a p t e r 3 � Fundamentals

95

attributes exhaustively that are of interest for all stakeholders and problem domains.
The remainder of this section introduces a set of common QoS parameters that are
frequently referred to in the context of service delivery. As aforementioned, the list of
QoS parameters introduced in the following is by no means complete.

Runtime-related QoS parameters: this category contains all non-functional attrib-
utes that can be used to estimate runtime behaviour of a technical system. On the other
hand, those parameters also reflect the experience of service consumers with related
service provisioning. Depending on the different alignments of QoS parameters, there
are two general sub-categories, namely performance-related and dependability-related
parameters.

Performance-related QoS parameters are measured over a range of service invoca-
tions during some predefined sampling period. They indicate the abilities of a service
provider to provision the desired services. Thus, performance-related QoS parameters
are measured on the level of service operations. In the context of service-oriented ap-
plications, the following QoS parameters are often used:

� Response time indicates the average time units between the point in time tinputtinput,
at which a service request is received, and the point in time toutputtoutput, at which the
respective response is sent by a service provider within a given measurement
period. Sometimes, this QoS parameter is also referred to as completion time of
a request. To estimate the average response time of a service, one has to ob-
serve the start and end points in time of nn requests, and calculate the durations
and their average, namely Pn

i=1(t
i
output ¡ tiinput)=n

Pn
i=1(t

i
output ¡ tiinput)=n.

� Throughput indicates the average number of requests completed by a service
within a given time period. To this end, it is necessary to estimate the number
of requests nn processed within a given measurement period tt, then the average
throughput of a service is determined by n=tn=t per time unit.

Dependability-related QoS parameters state the probability that a service provider
runs into exceptions at runtime. Hence, in contrast to performance-related parameters,
these QoS parameters are measured on the service level. In general, the following
QoS parameters are of particular interest for service-oriented applications:

� Availability indicates the probability that a service is up and running within a
given measurement period. To calculate the availability of a service, it is nec-
essary to observe the total time tuptup during which the service is up and the total
time tdowntdown during which the service is down during the measurement period.

P a r t I I – C h a p t e r 3.2 � Service Level Agreements

96

Then the availability of a service during a given measurement period is deter-

mined by tup

tup+tdown

tup

tup+tdown
 per cent.

� Reliability indicates the ability of a service to perform its predefined operations
for a given measurement period. In general, reliability can be measured by us-
ing Mean Time Between Failure (MTBF) as well as Mean Time To Repair
(MTTR). MTBF indicates the average number of time units it takes until the
next failure occurs. Hence, if nfailuresnfailures failures occur during a measurement pe-
riod t = tup + tdownt = tup + tdown, then MTBF can be calculated with MTBF = tup=nfailureMTBF = tup=nfailure
time units. Correspondingly, MTTR indicates the average number of time units
it takes to repair a failure in the service, and can be estimated by using
MTTR = tdown=nfailureMTTR = tdown=nfailure time units.

Configuration-related QoS parameters: this category contains non-functional at-
tributes that relate to the configuration management of a service. Other than the QoS
parameters discussed previously, configuration-related QoS parameters are mostly
qualitative and therefore cannot be expressed by metrics. In the context of SOEs, con-
figuration-related QoS parameters often cover standards that a service complies with
(e.g., communication standards, such as HTTP, FTP, or SMTP; or various versions of
a particular standard, such as SOAP 1.1 or SOAP 1.2). Such QoS parameters are cru-
cial to establish interoperable communication between service providers and service
consumers.

Business-related QoS parameters: this category contains QoS parameters that cover
especially economic aspects of a service. Hence, such QoS parameters are in general
quantitative, unambiguous, and precise.

� Cost indicates the price for a service being invoked by a service consumer.
Since a service provider intends to differentiate its service delivery by provid-
ing its service with different service quality levels for different prices, cost is
usually determined by other QoS parameters. To this end, a service consumer
and a service provider have to unambiguously agree upon the related service,
the range of acceptable values of related QoS parameters (such as availability,
performance, and so on), and the base for calculating cost (e.g., either per re-
quest or per time unit).

� Penalty indicates the cost for a service provider, if it cannot deliver its services
in compliance with the agreed quality guarantees. Similar to cost, penalty needs
to be explicitly specified between a service consumer and a service provider. In

P a r t II – C h a p t e r 3 � Fundamentals

97

particular, they have to determine under which circumstances a service provid-
er has to face the penalty.

Security-related QoS parameters: this category contains QoS parameters necessary
to guarantee trustworthiness between service providers and service consumers. In par-
ticular, for service-oriented applications, where critical business data is passed across
technical systems spanning organisational boundaries, security-related QoS parame-
ters are crucial for service consumers to ensure secure access to business information.

� Authentication specifies the way in which a service provider and a service con-
sumer can verify their identities mutually. For example, WS-Security defines
mechanisms to use either user name tokens, X.509 certificate tokens, or SAML
tokens to verify identities of communication partners.

� Authorisation determines which principals can access critical information and
data of a service. As a QoS parameter, authorisation defines access control pol-
icies of a service. When a service consumer tries to access information provid-
ed by a service, the access control process checks that the respective consumer
is authorised to access the resource based on the principle of least privilege.

� Auditability indicates the possibility to trace interaction history between a ser-
vice provider and a service consumer. By tracing the complete information
about every step in the course of interactions, technical systems can verify ac-
cess to their resources and detect eventual security threats using such infor-
mation.

� Data encryption specifies how technical systems can encrypt messages in their
communication channels as well as in their local data storage. By using this
QoS parameter, a service provider can express all possible mechanisms it sup-
ports (such as using symmetric keys or public keys), and a service consumer
can express a list of desired encryption mechanisms to secure its data.

A critical issue of using QoS parameters to specify service level objectives in an
SLA is consistent interpretation of these QoS parameters across the entire SOE. For
example, the QoS parameters response time and completion time refer to the same
non-functional attribute of a service. Without further semantic information, it is im-
possible for a service provider or consumer to distinguish between these two terms.
Furthermore, service level targets specified in an SLA depend strongly on the inter-
pretation of corresponding service level objectives. For example, a service level target
for availability with the same value but different time units is ambiguous for both con-
tract parties. Hence, it is important that a service consumer and a service provider

P a r t I I – C h a p t e r 3.2 � Service Level Agreements

98

must have the same understanding on QoS parameters specified in an SLA. In addi-
tion, in order to enable automated negotiation of SLAs between service providers and
service consumers, it is also important that both parties can achieve the necessary lev-
el of understanding with respect to the corresponding QoS parameters.

This requirement is covered by a common ontology for QoS with rich semantic in-
formation, such as QoSOnt proposed by Dobson, Lock, and Sommervile [DLS05].
They developed an extensible ontology around the core of a base QoS ontology to
enable semantic description of QoS. The basic element in the based QoS ontology is a
QoS attribute that can be either measurable (e.g., performance) or immeasurable (e.g.,
security standards). Respectively, there is a set of quantitative metrics to estimate val-
ues of measureable attributes. Furthermore, QoSOnt also addresses the units associat-
ed with a QoS attribute and provides the necessary conversion rules to convert values
of the same QoS attribute with different units. Starting from the base QoS ontology,
Dobson et al. demonstrated in their work how a domain-specific QoS ontology could
be built.

In comparison to the abstract QoS model presented by Dobson et al., Mabrouk,
Georgantas, and Issarny worked out a more concrete QoS model for SOEs [MGI09].
Similar to the work of Dobson et al., they defined the necessary constructs to specify
quality attributes, their taxonomy, and the way they can be estimated. Based on these
basic constructs, they build further ontologies to specify quality attributes related to
infrastructural components, applications services, and users.

In the remainder of this thesis, it is assumed that service consumers and service
providers have the same understanding of QoS parameters denoted in an SLA. That is,
service level objectives specified in an SLA are interpreted consistently across all ne-
gotiation parties. For example, this can be ensured by using a single QoS ontology
service that is deployed globally within the respective SOE.

 Life Cycle of SLAs 3.2.4

The previous sections introduced the concept of SLAs and outlined the main con-
structs of SLAs to regulate expectations and obligations of service providers and ser-
vice consumers within their interactions. Another important aspect about SLAs is their
dynamics at runtime. That is, how an SLA is constructed, negotiated, enforced, and

P a r t II – C h a p t e r 3 � Fundamentals

99

terminated at runtime. Obviously, dynamics of SLAs are tightly associated with the
process of Service Level Management, as introduced in Section 1.2.1.

Figure 3-4 depicts the states of an SLA in relationship to the phases of SLM.

Figure 3-4: Life cycle of SLAs in service-oriented environments

As shown in the picture, an SLA runs through a range of possible states in the
course of SLM:

� Negotiating SLAs: in this phase, a service consumer and a service provider seek
to find a mutually acceptable agreement on a set of predefined QoS parameters.
The process can be triggered by either the service consumer or the service pro-
vider, depending on the protocol applied in the negotiation. For example, the
set of QoS parameters can be retrieved from a given SLA template made avail-
able by a human administrator.

o Initialising: in this state, the initiator of a negotiation process (either a service
provider or a service consumer) determines the set of QoS parameters for ne-
gotiation, retrieves initial values of related QoS parameters from the previous-
ly determined negotiation space, prepares the SLA offer with the initial values,
and sends the initial offer to its negotiation partner.

o Negotiating: this state indicates that the current SLA is being negotiated be-
tween a service consumer and its provider. Depending on the negotiation pro-
tocol applied, there can be either a single-round or a multi-round negotiation.

initializing

negotiating negotiated

rejected withdrawn

aborting aborted

establishing established observing observed

violated

terminating

terminated

completing

annulling

annulled

completed

negotiating SLAs applying SLAs enforcing/
improving SLAs

terminating
SLAs

P a r t I I – C h a p t e r 3.2 � Service Level Agreements

100

In a single-round negotiation, the recipient of an SLA offer can only decide to
accept or reject the incoming offer. The recipient cannot respond with a coun-
ter offer. A multi-round negotiation allows negotiation parties to send counter
offers to each other. In this case, the state of an SLA remains negotiating until
the end of the negotiation process.

o Negotiated: if a negotiation party is satisfied with conditions of an incoming
SLA offer, it is going to accept it. In this case, the negotiation party changes
the SLA state to negotiated to signal its willingness to accept the offer.

o Rejected: if a negotiation party rejects an incoming offer, then it changes the
SLA state from negotiating to rejected. In this case, the active negotiation
process will be terminated by the corresponding negotiation party.

o Withdrawn: in order to provide negotiation parties with the ability to exit a
negotiation process, a negotiation party can withdraw its SLA offer. That is, it
can suggest its negotiation partner to terminate the negotiation process by
withdrawing its proposed agreement. The respective negotiation partner can
decide independently, whether to follow the suggestion or to deny it. Hence,
the negotiation partner can either abort and terminate the negotiation process
or return to the process.

o Aborting: if an SLA offer is rejected or withdrawn by a negotiation party, the
state of the corresponding SLA is changed to aborting. By doing this, both
negotiation parties have the possibility to free resources utilised in the negoti-
ation process and prepare themselves for the termination of the negotiation
process.

o Aborted: the SLA state aborted signals that both negotiation parties are ready
to terminate the negotiation process. Form this point in time, both negotiation
parties can exit the respective negotiation process. Thus, the negotiation pro-
cess is terminated.

� Applying SLAs: if both negotiation parties have expressed their willingness to
accept a mutually negotiated SLA offer, they are going to apply it to their local
technical infrastructures.

P a r t II – C h a p t e r 3 � Fundamentals

101

o Establishing: an SLA with the state establishing designates that the corre-
sponding service component (either provider or consumer) is applying the
SLA to its underlying technical system. That is, for a service provider, it has
to configure its local resources in accordance with QoS terms specified in the
SLA so that it can ensure the negotiated service levels at runtime. During this
phase, it is possible for either of the negotiation parties to withdraw a negoti-
ated agreement. For example, if a service provider experiences any problems
while configuring its local resources that prevent it from guaranteeing the ne-
gotiated service level, it can withdraw the agreement to avoid runtime dis-
turbance proactively. It is noteworthy that this action should be associated
with certain penalty for the party that withdraws a negotiated agreement.

o Established: after both negotiation parties have configured their local tech-
nical components in compliance with the negotiated agreement, they change
the state of the SLA to established, which signals their readiness to start ac-
tive invocations of services offered by the service provider.

� Enforcing/Improving SLAs: in this phase, the applied SLAs are actively moni-
tored and enforced at runtime. To this end, the quality of service delivery of the
provider is continuously monitored and controlled by both the provider and the
consumer.

o Observing: this SLA state indicates that both service provider and service
consumer are configuring their monitoring infrastructures according to condi-
tions derived from the SLA, so that they can, at runtime, monitor the compli-
ance of the service delivery of the provider.

o Observed: the state observed shows that the negotiated SLA is monitored and
controlled actively by both service provider and service consumer. During
this phase, the corresponding monitoring infrastructure can use various pat-
terns, such as the publish/subscribe pattern, to actively capture runtime events
of the underlying technical system and process them to consolidated QoS val-
ues indicating the current service delivery status of the service provider.

o Violated: if either service provider or service consumer detects any SLA vio-
lation at runtime, they change the state of the corresponding agreement to vio-

P a r t I I – C h a p t e r 3.2 � Service Level Agreements

102

lated. This leads to an adaptation of the negotiated SLA by starting a renego-
tiation process, in which the service provider and the service consumer affect-
ed by the violated SLA begin to find a more appropriate replacement that bet-
ter fits the up-to-date operational context. Alternatively, a contract partner can
decide to terminate the violated SLA without a renegotiation process.

o Annulling: it is of course possible for a negotiation party to exit an active
partnership regulated by an SLA. For example, if a service provider has tech-
nical difficulties to guarantee the agreed service levels or a service consumer
decides to abort its operation earlier than planned, they can annul an observed
SLA by sending an annulment request to their contract partner. In this case,
the state of the corresponding SLA is changed to annulling. The contract
partner is free to decide whether to accept the annulment or deny it and go
back to the observed state.

o Annulled: this state indicates that both contract partners have agreed to annul
the applied SLA. In this case, both service provider and service consumer can
start their internal process to terminate the annulled SLA.

o Terminating: before service provider and service consumer terminate an ac-
tively observed SLA, they switch the state of the SLA to terminating. This
state indicates that the technical systems affected are preparing to terminate
the corresponding SLA. To this end, the service provider is going to free all
technical resources allocated to guarantee the given SLA. In addition, both
service provider and service consumer reconfigure their monitoring infra-
structures to free any additional resources.

o Terminated: if the service provider and the consumer have finished reconfig-
uring their local components and are ready to terminate the corresponding
SLA, they change the state of the SLA to terminated. In this case, the contract
partners exit the loose provider/consumer relationship and the corresponding
SLM process is terminated.

� Terminating SLAs: each agreed SLA has a negotiated period of validity. If the
agreed contract comes to a natural end and no further contract is negotiated,
then the related SLA will be terminated, too.

P a r t II – C h a p t e r 3 � Fundamentals

103

o Completing: similar to the terminating state in the last phase, the completing
state shows that the related SLA has been successfully guaranteed in the peri-
od of validity specified in the SLA. Hence, after an SLA comes to its prede-
fined end, the affected service provider and consumer have to free their local
resources allocated to support the completed SLA.

o Completed: after the related service provider and consumer have freed all al-
located resources, they change the state of the SLA to completed. Hence, the
corresponding service provider and consumer can exit their partnership and
terminate the corresponding SLM process.

By considering the life cycle of SLAs introduced in this section, it is obvious that a
well-functioning and fully automated SLM requires active support from the following
viewpoints:

� Both the service provider and the service consumer must have the ability to
perform automated negotiation over a set of non-functional QoS parameters.
By supporting this, a service provider and a service consumer have the possi-
bility to enter an active partnership regulated by automatically negotiated SLAs.

� The underlying technical systems must support SLA-driven resource manage-
ment. This is crucial for a service provider to offer differentiated quality of ser-
vice delivery in an efficient manner. That is, a service provider can proactively
avoid over- or under-utilisation of its resources at runtime.

� The underlying technical systems must provide the necessary manageability in-
terfaces to allow exporting runtime events to external monitoring infrastructure,
so that an active and proactive monitoring of agreement compliance at runtime
can be carried out.

� There must be a continuous process to monitor vital signs of the underlying
technical systems and perform necessary corrective control actions to get the
system behaviour compliant with the agreed SLAs.

Hence, in order to enable a fully automated and end-to-end SLM across the entire
SOE, the points discussed above are functional requirements that must be addressed
by the approach proposed in the present thesis. Chapter 4 will discuss the functional
requirements on an automated SLM approach in detail.

P a r t I I – C h a p t e r 3.3 � Bilateral Multi-issue Negotiation

104

3.3 Bilateral Multi-issue Negotiation

The main negotiation scenario considered in the present thesis is automated SLA ne-
gotiation between a service provider and a service consumer. Figure 3-5 depicts a
sample negotiation scenario in an SOE. In this scenario, a provider and a consumer
negotiate over two QoS parameters, cost and response time. The negotiation spaces of
the negotiation parties overlap partly, as illustrated in Figure 3-5. The service provider
and the service consumer seek to find a mutually acceptable agreement in the com-
mon area of their negotiation spaces. Since both negotiation parties are not aware of
negotiation preferences of their opponent, the key challenge in this negotiation scenar-
io is how the negotiation parties can find the overlapping area in their negotiation
spaces and further find an agreement in this area.

Figure 3-5: Sample negotiation scenario between a service provider and a consumer

By considering the negotiation scenario illustrated in Figure 3-5, it has the follow-
ing characteristics:

� The service consumer and the service provider have conflicting interests on the
QoS parameters involved in the negotiation.

� Each negotiation process involves only one service provider and one service
consumer. That is, the negotiation scenario is bilateral.

� The negotiation parties argue over the whole set of QoS parameters at the same
time. That is, they consider in each negotiation round all QoS parameters, in-
stead of arguing over them one after another. This allows the negotiation par-

negotiation space
consumer

se
rv

ic
e

co
st

Response Time

negotiation space
provider

best case
for consumer

best case
for provider

worst case
for consumer

worst case
for provider

agreed contract

P a r t II – C h a p t e r 3 � Fundamentals

105

ties to make trade-offs between two or more QoS parameters. Hence, the nego-
tiation scenario contains a multi-issue negotiation.

To sum up, the present thesis is concerned with scenarios leveraging bilateral mul-
ti-issue negotiation between a service consumer and one of its service providers. Sec-
tion 6.3 justifies the choice of this negotiation type in detail. As mentioned in Section
2.3.3, there is a large number of existing approaches for enabling automated negotia-
tion. In the remainder of this section, one representative approach to support bilateral
multi-issue negotiation, the service-oriented negotiation model proposed by Sierra et
al. [SFJ97], is introduced in detail. This negotiation model builds the theoretical foun-
dation for further investigation of negotiation behaviours of autonomous service com-
ponents in this thesis.

 Basic Negotiation Model 3.3.1

On the basic negotiation model of Raiffa [Rai82], Sierra et al. introduced a service-
oriented negotiation model to formally describe a negotiation process between two or
more parties [SFJ97]. In their model, a negotiation involves two (i.e., bilateral) or
more (i.e., multilateral) parties. All parties collaborate with one another to reach mu-
tually acceptable agreements on predefined negotiation issues (e.g., cost, penalty, per-
formance, and so on). Communication between negotiation parties is governed by a
commonly acknowledged negotiation protocol, until either they reach a consensus
regarding negotiation issues or the negotiation process is aborted due to certain con-
straints (e.g., a predefined negotiation deadline tmaxtmax is exceeded).

Sierra et al. models a bilateral negotiation between two agents aa and bb on multiple
negotiation issues f1; 2; :::; ngf1; 2; :::; ng. For each negotiation issue j 2 f1; 2; :::; ngj 2 f1; 2; :::; ng, there is a
continuous value range with xj 2 [minj;maxj]xj 2 [minj;maxj]. The value range defines the set of
valid values of xjxj that a negotiation party can assign to the corresponding issue. The
value ranges of all negotiation issues span the negotiation space of a negotiation party
in the course of a negotiation.

Obviously, an agent’s value range of the issue jj overlaps with the one of its oppo-
nent for the same issue, i.e., [minc

j;maxc
j]\ [minp

j;maxp
j] 6= ;[minc

j;maxc
j]\ [minp

j;maxp
j] 6= ; for an issue jj, otherwise

both agents are not able to reach an agreement on jj. Furthermore, an offer that is sent
from agent aa to agent bb at time tt is denoted as xt

a!b = (xt
a!b[1]; x

t
a!b[2]; :::; x

t
a!b[n])xt

a!b = (xt
a!b[1]; x

t
a!b[2]; :::; x

t
a!b[n]) with

a;b2fc;pg , t2 [1; tmax]a;b2fc;pg , t2 [1; tmax], and a 6= ba 6= b. Correspondingly, xt
a!b[j]xt
a!b[j] represents the value of

the issue jj in the offer xt
a!bxt
a!b. Based on these definitions, a negotiation thread between

P a r t I I – C h a p t e r 3.3 � Bilateral Multi-issue Negotiation

106

agents aa and bb is defined as a finite sequence of fx1
s1!d1

; x2
s2!d2

; :::; xti
si!di

; :::; xtk
sk!dk

gfx1
s1!d1

; x2
s2!d2

; :::; xti
si!di

; :::; xtk
sk!dk

g,
where si;di 2fc;pgsi;di 2fc;pg, si 6= disi 6= di, si+1 = disi+1 = di, t1; t2; :::; tk 2 [1; tmax]t1; t2; :::; tk 2 [1; tmax], and ti · tjti · tj if i · ji · j.

Each agent ii has a utility function V i
j : [minj;maxj] ! [0;1]V i
j : [minj;maxj] ! [0;1] that assesses the prefer-

ence agent ii has for a value of the negotiation issue jj in its value range. To reflect the
relative importance of a particular issue jj to an agent ii, each negotiation issue jj is as-
signed with a weight !i

j!i
j with

Pn
j=1 !i

j = 1
Pn

j=1 !i
j = 1. Based on these definitions, an agent’s utili-

ty function V iV i to estimate the quality of a given agreement xt
a!bxt
a!b is defined as:

V i(xt

a!b) =
nX

j=1

!i
j ¢ V i

j (xt
a!b[j])V i(xt

a!b) =
nX

j=1

!i
j ¢ V i

j (xt
a!b[j])

.

It is obvious that negotiation parties have conflicting interests in negotiation issues.
For example, a service consumer prefers higher availability with low cost, while its
provider tends to offer services with lower availability for high price. Hence, in the
course of negotiation, two negotiation agents have to move stepwise towards each
other by leaving their respective optimum in the negotiation space. As a consequence,
for a negotiation issue j 2 f1; 2; :::; ngj 2 f1; 2; :::; ng, conflicting interest of agents on the same is-
sue can be expressed by (3.3.1), where t; t0 2 [1; tmax]t; t0 2 [1; tmax], a; b 2 fc; pga; b 2 fc; pg, and a 6= ba 6= b:

 V a
j (xt

a!b[j]) · V a
j (xt0

a!b[j]), i® V b
j (xt

a!b[j]) ¸ V b
j (xt0

a!b[j])V a
j (xt

a!b[j]) · V a
j (xt0

a!b[j]), i® V b
j (xt

a!b[j]) ¸ V b
j (xt0

a!b[j]) (3.3.1)

A bilateral negotiation process alternates between two negotiation parties by ex-
changing offers and counter offers. In each negotiation round, each agent has to de-
cide which action it should take for the incoming offer. That is, it can either accept the
incoming offer or propose a counter offer to its opponent. For an offer sent from agent
bb to agent aa at time tt , Sierra et al. introduced an interpretation function to support
decision-making of an agent aa for the incoming offer xt

b!axt
b!a:

 Ia(t + 1; xt
b!a) =

(
accept if V a(xt

b!a) ¸ V a(xt+1
a!b)

xt+1
a!b otherwise

Ia(t + 1; xt
b!a) =

(
accept if V a(xt

b!a) ¸ V a(xt+1
a!b)

xt+1
a!b otherwise

 (3.3.2)

In other words, for each incoming offer xt
b!axt
b!a to agent aa, it generates a counter offer

xt+1
a!bxt+1
a!b. If the counter offer has equal or less utility than the incoming offer, then agent aa

accepts the offer; otherwise, agent aa sends its counter offer xt+1
a!bxt+1
a!b to its negotiation

partner. This alternate process runs, until either a mutually acceptable SLA is found or
one of the negotiators terminates the process due to predefined termination rules, such
as the predefined deadline tmaxtmax is exceeded.

P a r t II – C h a p t e r 3 � Fundamentals

107

 Conceding Strategies 3.3.2

In order to reach a compromise on the negotiation issues, both negotiation agents have
to move from their optimum in favour of their opponents. To this end, Sierra et al.
defined a tactic-based conceding strategy in their model [SFJ97]. A tactic is defined as
“a set of functions that determine how to compute the value of an issue (…), by con-
sidering a single criterion (time, resource, …)” [SFJ97]. In the case an agent has to
consider more than one criterion to compute the value of an issue, they proposed a
weighted combination of tactics covering all given criteria to generate values. By tak-
ing common issues of negotiation processes into consideration, they developed three
families of tactics:

� Time-dependent tactics model the fact that an agent is likely to concede more
strongly as a given deadline approaches. As time constantly proceeds towards
the given deadline, an agent may get more conceding pressure than at the be-
ginning of the negotiation progress.

� Resource-dependent tactics model the pressure to reach an agreement in rela-
tionship to some limited resources, e.g., money, or other potential negotiation
partners in the environment. In fact, time-dependent tactics are a subset of re-
source-dependent tactics. Resource-dependent tactics allows involving more
resources with different usage patterns other than the one of time, whereas time
proceeds straightforwardly towards its deadline.

� Behaviour-dependent tactics enable an agent to align its negotiation behaviour
to its negotiation partner. In a competing environment, an agent using imitative
tactics can avoid being exploited by its negotiation partner and thus getting dis-
advantaged in a negotiation process; however, in a cooperative environment,
agents can utilise imitative tactics to move more rapidly towards each other and
thus reach a more satisfying agreement by negotiation.

Considering characteristics of SLA negotiation scenarios (see Section 6.2), it is ob-
vious that time-dependent and behaviour-dependent tactics are the most applicable to
these scenarios. In a bilateral multi-issue negotiation between a service consumer and
its provider, the only resource constraint is time – a given deadline defines the maxi-
mal amount of time units that an agent can spend to reach an agreement with its coun-
terpart. Therefore, in the following, the function models for time-dependent as well as
behaviour-dependent tactics are introduced. For a detailed introduction of all other
function families please refer to [SFJ97].

P a r t I I – C h a p t e r 3.3 � Bilateral Multi-issue Negotiation

108

Given a negotiation deadline tmaxtmax, time t with 0 · t · tmax0 · t · tmax, and an issue jj for an
agent aa with xj 2 [mina

j ;maxa
j]xj 2 [mina

j ;maxa
j], the value proposed by agent aa to agent bb at time tt is

determined by:

 xt
a!b[j] =

(
mina

j + ®a
j (t) ¢ (maxa

j ¡ mina
j) if V a

j is decreasing

mina
j + (1 ¡ ®a

j (t)) ¢ (maxa
j ¡ mina

j) if V a
j is increasing

xt
a!b[j] =

(
mina

j + ®a
j (t) ¢ (maxa

j ¡ mina
j) if V a

j is decreasing

mina
j + (1 ¡ ®a

j (t)) ¢ (maxa
j ¡ mina

j) if V a
j is increasing

 (3.3.3)

The utility function V a
jV a
j is decreasing, if utility of the issue jj decreases, as its value

increases. Vice versa, V a
jV a
j is increasing, if utility of the issue jj increases, as its value

increases. In addition, ®a
j (t)®a
j (t) with 0 · ®a

j (t) · 10 · ®a
j (t) · 1 defines a range of time-dependent

functions with ®a
j (t) · ®a

j (t
0)®a

j (t) · ®a
j (t

0) for t; t0 2 [0; tmax]t; t0 2 [0; tmax] and t · t0t · t0 , ®a
j (0) = 0®a
j (0) = 0 , and

®a
j (tmax) = 1®a
j (tmax) = 1. This ensures that calculated values using (3.3.3) are always located

within the value range of xjxj, i.e., xt
a!b[j] 2 [mina

j ;maxa
j]xt

a!b[j] 2 [mina
j ;maxa

j]. Furthermore, ®a
j (t)®a
j (t) deter-

mines the extent of concession of the agent aa in dependence of the negotiation time tt .
That is, the larger the value of ®a

j (t)®a
j (t), the more concession the agent aa will grant in fa-

vour of its negotiation partner.

Sierra et al. identified two families of functions to estimate the value of ®a
j (t)®a
j (t) in de-

pendence of tt:

 ®a
j (t) =

(
·a

j + (1 ¡ ·a
j) ¢ (t

tmax
)1=¯ polynomial functions

e(1¡ t
tmax

)¯ ¢ln ·a
j exponential functions

®a
j (t) =

(
·a

j + (1 ¡ ·a
j) ¢ (t

tmax
)1=¯ polynomial functions

e(1¡ t
tmax

)¯ ¢ln ·a
j exponential functions

. (3.3.4)

In (3.3.4), ¯̄ is a parameter to control the time-dependent degree of convexity of the
function. ·a

j·a
j defines a constant determining the initial value of issue jj in the initial

offer at time t = 0t = 0. That is, if V a
jV a
j is decreasing, then the initial value x0

a!b[j]x0
a!b[j] of issue jj

is mina
j + ·a

j ¢ (maxa
j ¡mina

j)mina
j + ·a

j ¢ (maxa
j ¡mina

j) . If V a
jV a
j is increasing, then the initial value is

mina
j + (1 ¡ ·a

j) ¢ (maxa
j ¡mina

j)mina
j + (1 ¡ ·a

j) ¢ (maxa
j ¡mina

j).

Figure 3-6 illustrates the curves of both families of functions with ·a
j = 0:2·a
j = 0:2 and

varying ¯̄. The curves show that the function families given in (3.3.4) have different
conceding behaviour for the same ¯̄. For ¯ > 1¯ > 1, a polynomial function concedes more
quickly than an exponential one (i.e., the corresponding curve rises more quickly than
the one of an exponential function with the same ¯̄); In contrast, for ¯ < 1¯ < 1, a polyno-
mial function waits longer than an exponential function with the same ¯̄, before it be-
gins to concede.

Time-dependent tactics use negotiation time as the single criterion to compute val-
ues of issues in the next offer. Because negotiation time as a parameter does not differ

P a r t II – C h a p t e r 3 � Fundamentals

109

from negotiation to negotiation, a negotiation agent behaves homogeneously in all
negotiation threads, as long as it uses the same function to calculate counter offers.
Hence, negotiation behaviour of such an agent does not take the negotiation behaviour
of its counterpart into consideration.

Figure 3-6: Polynomial and exponential functions to compute the value of ®a

j (t)®a
j (t) (see [SFJ97])

Such undesired behaviour of an agent can be avoided by adopting behaviour-
dependent tactics in the decision-making processes. A behaviour-dependent tactic al-
lows an agent to generate offers with respect to its opponent’s behaviour. Sierra et al.
identified three different types of behaviour-based tactics to compute an issue’s value:

� Relative Tit-for-Tat: an agent aa reproduces in percentage terms the behaviour of
its opponent performed ± ¸ 1± ¸ 1 steps ago, namely the relationship between the
offers of its counterpart, agent bb , at time tn¡2±tn¡2± and time tn¡2±+2tn¡2±+2:

xtn+1

a!b[j] = min(max(
x

tn¡2±

b!a [j]

x
tn¡2±+2

b!a [j]
¢ xtn¡1

a!b [j];mina
j);maxa

j); n > 2±xtn+1

a!b[j] = min(max(
x

tn¡2±

b!a [j]

x
tn¡2±+2

b!a [j]
¢ xtn¡1

a!b [j];mina
j);maxa

j); n > 2±

� Random absolute Tit-for-Tat: similar to the tactic with relative Tit-for-Tat, but
in absolute terms. That is, this tactic considers the absolute difference between
the offers of the agent bb at time tn¡2±tn¡2± and time tn¡2±+2tn¡2±+2 to calculate the corre-
sponding value in the counter offer:

x
tn+1

a!b[j] = min(max((x
tn¡2±

b!a [j]¡x
tn¡2±+2

b!a [j]) +x
tn¡1

a!b [j];mina
j);maxa

j); n > 2±x
tn+1

a!b[j] = min(max((x
tn¡2±

b!a [j]¡x
tn¡2±+2

b!a [j]) +x
tn¡1

a!b [j];mina
j);maxa

j); n > 2±

� Average Tit-for-Tat: an agent uses the change in percentage between the cur-
rent offer of the agent bb , i.e., xtn

b!a[j]xtn
b!a[j], and the offer proposed ¸¸ 1¸¸ 1 time units

ago, i.e., xtn¡2¸

b!a [j]x
tn¡2¸

b!a [j], to compute its next offer:

xtn+1

a!b[j] = min(max(
x

tn¡2¸

b!a [j]

xtn
b!a[j]

¢ xtn¡1

a!b [j];mina
j);maxa

j); n > 2¸xtn+1

a!b[j] = min(max(
x

tn¡2¸

b!a [j]

xtn
b!a[j]

¢ xtn¡1

a!b [j];mina
j);maxa

j); n > 2¸

P a r t I I – C h a p t e r 3.3 � Bilateral Multi-issue Negotiation

110

Depending on the type of imitation, behaviour-based tactics enable an agent to
align its negotiation behaviour to that of its opponent.

At runtime, different negotiation tactic delivers different values for the same issue jj
in the counter offer. Hence, in order to involve more than one tactic to generate a
counter offer, the final value for the issue jj is estimated as the weighted combination
of all values of related negotiation tactics. That is, for a finite set of tactics
f1; 2; :::; mgf1; 2; :::; mg, each tactic kk is executed separately to calculate a value ¿k¿k. Then the final
value for the issue jj in the counter offer is determined by:

 xtn+1

a!b[j] =
mX

k=1

°k ¢ ¿k, where
mX

k=1

°k = 1xtn+1

a!b[j] =
mX

k=1

°k ¢ ¿k, where
mX

k=1

°k = 1 (3.3.5)

Thus, given a negotiation thread fx1
a!b; x

2
b!a; x

3
a!b; :::; x

n
b!agfx1

a!b; x
2
b!a; x

3
a!b; :::; x

n
b!ag between management

agent aa and management agent bb , where xn
b!axn
b!a is the last offer that agent aa receives

from its counterpart bb , the agent can utilise (3.3.5) to compute the value of an issue jj
in the offer. Furthermore, given a finite set of tactics f1; 2; :::; mgf1; 2; :::; mg, each issue can have
different negotiation behaviour by weighting the corresponding tactics differently in
the calculation. From this viewpoint, at time tt , an agent has a local strategy matrix ¡¡
to determine assignment of tactics f1; 2; :::; mgf1; 2; :::; mg to a particular issue j 2 f1; 2; :::; pgj 2 f1; 2; :::; pg:

 ¡t
a!b =

2
666664

°11 °12 ¢ ¢ ¢ °1m
...

...
...

...
°j1 °j2 ¢ ¢ ¢ °jm
...

...
...

...
°p1 °p2 ¢ ¢ ¢ °pm

3
777775¡t

a!b =

2
666664

°11 °12 ¢ ¢ ¢ °1m
...

...
...

...
°j1 °j2 ¢ ¢ ¢ °jm
...

...
...

...
°p1 °p2 ¢ ¢ ¢ °pm

3
777775 (3.3.6)

By dynamically changing the value of °ij°ij for one or more issues in the strategy ma-
trix (3.3.6) in the course of negotiation, an agent can flexibly align its negotiation be-
haviour with its environment. For this purpose, Sierra et al. defined a negotiation
strategy as a function of an agent’s mental state MSt

aMSt
a and its strategy matrix ¡t

a!b¡t
a!b at

time tt:

 ¡t+1
a!b = f(¡t

a!b;MSt
a)¡t+1

a!b = f(¡t
a!b;MSt

a)

That is, an agent can review in each negotiation round its mental state – state in-
formation that an agent perceives from its own operation as well as from its environ-
ment – to adjust its negotiation strategy dynamically by changing the weights of par-
ticular tactics in the strategy matrix. The simplest form of a negotiation strategy is to

P a r t II – C h a p t e r 3 � Fundamentals

111

define an initial strategy matrix at the beginning and keep ¡t
a!b = ¡t+1

a!b¡t
a!b = ¡t+1

a!b in the course
of negotiation.

Concisely, the tactic-based negotiation model introduced by Sierra et al. represents
a comprehensive method to determine the degree of concession of an agent dynami-
cally at runtime. The basis for decision-making to compute QoS values of a counter
offer can either be negotiation time remaining until a given negotiation deadline or
imitation of the opponent’s negotiation behaviour. Combining several tactics linearly
enables an agent to use several criteria simultaneously to support its decision-making
process. In addition, by changing weights of particular tactics in the course of negotia-
tion, an agent can adapt its negotiation behaviour to the most recent context of the
environment.

3.4 Generic Observer/Controller Architecture

Dynamic SOEs contain a set of technical components that are interconnected with one
another based on loosely coupled provider/consumer relationships. Such a dynamic
environment is characterised by a large number of heterogeneous service components
and their interactions with one another. Performance of the entire service-oriented
system is determined bottom-up by runtime behaviour of individual components in the
system. From the viewpoint of business, IT systems involved in an SOE are expected
to support given business requirements as a whole. That is, business demands a holis-
tic understanding and management of IT systems to fulfil business objectives. Such
top-down business-driven IT management is desirable in order to cope with a continu-
ously changing environment, within which business has to operate.

As motivated in Section 2.2, self-organisation of technical systems provides an ef-
ficient means to deal with increasing complexity within service-oriented systems.
Business-driven IT management requires that such bottom-up self-organisation must
be accompanied with top-down control derived from business objectives. To achieve
such controlled self-organisation, each technical component is endowed with an addi-
tional observation and control layer called observer/controller architecture, as intro-
duced briefly in Section 2.2.3 [Sch05].

It is noteworthy that the present thesis adopts the generic observer/controller archi-
tecture introduced by the Organic Computing initiative. Of course, the desired proper-
ty of controlled self-organisation can be realised by using other similar approaches,

P a r t I I – C h a p t e r 3.4 � Generic Observer/Controller Architecture

112

such as the MAPE control loop of Autonomic Computing or the VSM. However, in
comparison to other approaches, the observer/controller architecture envisions native
support for controlled self-organisation. To this end, it provides a generic architectural
pattern to enable agent-based design of technical systems. Furthermore, the generic
observer/controller architecture provides a particular interface to facilitate interactions
between human participants as a high-level control instance and the underlying tech-
nical systems. This functional design addresses one of the central aspects of an SOE
that involves a large amount of interactions between human participants (e.g., admin-
istrators or end users) and technical systems. Based on these considerations, the pre-
sent thesis leverages the generic observer/controller architecture to support multi-
layered and self-organising SLM in service-oriented systems. The remainder of this
section introduces the observer/controller architecture in detail. This section is mainly
based on [BMM+06, RMB+06, Ric10].

 Observer 3.4.1

In the generic observer/controller architecture, the observer is responsible to monitor
runtime events of the SuOC, consolidate them, draw particular behaviour patterns of
the underlying systems in the SuOC based on these consolidated events, and predict
their behaviour in the future.

To this end, the observer collects raw data from the SuOC and pre-processes the
collected data by removing irrelevant and noisy data. Based on the pre-processed data,
the observer can perform different analysis methods on the data to get an overview of
the current operational state of the SuOC. In addition, it can use the collected data to
predict future development of the operational state of the SuOC. Both prediction and
analysis results are aggregated to build a system-wide fingerprint of the SuOC, which
serves as the base for decision making of the controller, concerning how to influence
runtime behaviour of the SuOC.

Figure 3-7 depicts the generic constructs of the observer to realise the desired capa-
bilities, in particular the capabilities to characterise runtime behaviour and to predict
future behaviour of the SuOC.

P a r t II – C h a p t e r 3 � Fundamentals

113

Figure 3-7: Generic observer architecture (see [Ric10])

Among other things, the observer involves the following generic components:
� Model of observation: the components defined in the observer are generic. That

is, they are expected to be able to process a range of possible events and data
that the underlying SuOC delivers. This generic approach however has two
possible drawbacks that may affect the performance of the observer negatively.
On the one hand, the SuOC may deliver a large amount of runtime information
to the observer that cannot be processed within reasonable time with reasonable
resources by the components. On the other hand, the aggregated situation pa-
rameters can contain in addition to necessary information a set of unused situa-
tion information that increases the state space unnecessary, within which the
controller has to operate. Hence, it is desired that the observation behaviour of
the observer can be adjusted depending on the current operational focus of the
controller. To this end, the observer employs an additional component, the
model of observation, which determines the operation mode of particular com-
ponents in the observer with respect to the preferences of the controller. The
controller provides feedbacks on the situation parameters it gets from the ob-
server, in particular information that it needs to make decisions. Based on such
evaluation information from the controller, the component model of observa-

controllerNegotiation

model selection

observer

m
odelofobservation

system under observation and control (SuOC)

raw data

monitor log file

data
analyser

(m
etrics)

aggregator

predictor

time space pattern

cluster detector

…

emegence detector

situation
param

ters

cluster
prediction

…

statistics

system data individual data

action

select

select

select

select

pre-processor

P a r t I I – C h a p t e r 3.4 � Generic Observer/Controller Architecture

114

tion specifies the range of raw data the observer should collect from the under-
lying SuOC (e.g., scope of data, sampling frequency, etc.) and appropriate tools
to process collected data. By doing this, it ensures that the observer can provide
the information that is most relevant to the controller for decision-making. Fur-
thermore, it allows efficient operation of the observer and the controller, in par-
ticular in case both of them have only limited local resources (i.e., computa-
tional resource, storage, etc.) to use at runtime.

� Raw data: the SuOC is instrumented to deliver information about its runtime
behaviour to external authorised management applications. For example, in the
context of SOEs, instrumentation information may be metrics about service in-
vocations (number of invocations, duration of each invocation, communication
partner (s), etc.) or specific runtime events (warnings, errors, or other signifi-
cant occurrences). To collect such instrumentation information from the target
SuOC, the observer can uses the manageability interface it offers. For example,
a SuOC can provide its runtime information on a publish/subscribe basis. Al-
ternatively, the observer can also poll the SuOC for changes on a regular basis,
such as heartbeat testing on the SuOC.

� Monitor: this component is one of the two components that connect the generic
observer/controller architecture to the SuOC. The monitor is responsible for
perceiving the SuOC by collecting runtime information specified by the obser-
vation model. It is noteworthy that runtime information exposed by the SuOC
depends strongly on the type of instrumentation of the SuOC. This determines
the type and the amount of available information that the monitor can request.
The generic observer/controller architecture distinguishes between two general
raw data types: system data and individual data. System data describes the
global behaviour of the underlying SuOC, while individual data refers to a par-
ticular component within the SuOC.

� Log file: The SuOC’s runtime information collected by the monitor is archived
in the log file in a chronological order. Historical information stored in the log
file is particularly of interest for the data analyser as well as the predictor,
which can do time series analysis based on archived data to address the long-
term aspects of runtime behaviour of the SuOC.

� Pre-processor: The pre-processor is responsible to remove unnecessary and
noisy data from the collected runtime information and perform data consolida-
tion on the cleaned data. The observation model controls how the pre-processor
processes the raw data. For example, the pre-processor can derive response

P a r t II – C h a p t e r 3 � Fundamentals

115

time of a particular service request by using the point in time at which the re-
quest is sent and the point in time at which the corresponding response is re-
ceived. Hence, the pre-processor prepares raw data for further processing by
the data analyser and the predictor. This helps to reduce the amount of data that
the components in the processing pipeline have to deal with in the next step.

� Data analyser: the data analyser intends to understand the pre-processed system
information and draw conclusions about how the SuOC behaves currently as
well as during a limited time window in the past. To this end, the data analyser
utilises a set of mathematical as well as statistical models to analyse the system
behaviour of the SuOC. For example, the data analyser can perform time series
analysis on the historical data to understand the development of a particular
system attribute in the past. In addition, the data analyser can utilise the emer-
gence detector to discover emergent effects on the global level of the SuOC.
These analysis tools result in a series of quantitative metrics that characterises
the system behaviour of the SuOC during the last sampling period.

� Predictor: in order to give the controller the possibility to make anticipatory
decisions for a limited time window into the future, the observer/controller ar-
chitecture utilises an additional component to predict future behaviour of the
SuOC. To this end, the predictor consumes the consolidated information from
the pre-processor as well as the data analyser. Based on this information, it per-
forms quantitative prediction using different mathematical and statistical mod-
els for a given time horizon (short-term, middle-term, or long-term prediction).
The resulting data reflects the observer’s expectation of the development of
particular system attributes for a given time horizon – based on the observer’s
most recent understanding of the system behaviour of the SuOC.

� Aggregator: the last processing step in the observer is performed by the aggre-
gator. It is responsible for consolidating quantitative metrics delivered by the
pre-processor, the data analyser, and the predictor into a set of data vectors.
Furthermore, the aggregator has the last possibility to filter results and remove
noise. The output of the aggregator is composed of situation parameters that
represent the understanding of the observer of the current system behaviour of
the SuOC based on runtime information it collects.

In a short, the observer is the part in the generic architecture that perceives the sys-
tem behaviour of the SuOC at runtime. To this end, it utilises a set of components,
including the pre-processor, the data analyser, the predictor, and the aggregator to
process stepwise metrics and events the monitor collects from the SuOC. The process

P a r t I I – C h a p t e r 3.4 � Generic Observer/Controller Architecture

116

to handle collected information is a process of data consolidation. This results in a set
of situation parameters that reflect clearly the current state and dynamics of the SuOC.
This consolidation process reduces the state space that the controller has to deal with
to a reasonable extent. It enables the controller to make efficient decisions based on
cleaned and appropriately consolidated situation parameters.

 Controller 3.4.2

With the situation parameters prepared by the observer, the controller is the part in the
observer/controller architecture that establishes controlled self-organisation in the
SuOC. To this end, the controller has three interfaces outwards. One interface to the
observer allows the controller to be aware of the current operational state of the Su-
OC. The second interface to human participant(s) makes the controller controllable for
high-level goals. The third interface to the SuOC gives the controller the possibility to
influence the behaviour of the underlying SuOC if necessary. The intelligence to ena-
ble self-organisation is provided by autonomous learning mechanisms that map in-
coming situation parameters to selected actions on the SuOC.

Figure 3-8 illustrates the main constructs of the controller with two-level learning.
That is, the controller organises its learning process on two levels with a different de-
gree of abstraction: a first level that learns offline, based on an abstracted simulation
model and a second level that learns online, evaluating the results of actions with the
real-world system.

Level 1 is responsible to make ad hoc decisions on actions to execute upon the Su-
OC –depending on given situation parameters delivered by the observer. To this end,
level 1 utilises online learning to build up and maintain its knowledge base on the Su-
OC. Hence, level 1 holds a repository of rules that map situation parameters of the
SuOC into possible actions that can be executed for the given situations. In this case,
the repository of rules represents the up-to-date understanding of the controller of the
SuOC. Such knowledge reflects the experience of the controller with the SuOC so far.

To choose an action for given situation parameters, level 1 utilises an action selec-
tor that implements a mapping function FiFi to select the best suitable action AiAi for the
current situation CiCi. The mapping function intends to provide quick response to in-
coming situation parameters in real time. Therefore, it does not involve any learning
mechanisms in its mapping process. Instead, evaluating actions selected and executed

P a r t II – C h a p t e r 3 � Fundamentals

117

by the controller is done in the evaluation component with a time-shift of ¢t¢t. The
evaluation component uses history information, in particular the archived action AiAi
executed at time t and the situation parameters at time t + ¢tt + ¢t, to check the perfor-
mance of the corresponding rules. Rules that induce positive effects in the SuOC, i.e.,
desired changes of the operational state, receive rewards from the evaluation compo-
nent. This results in an update of fitness values of corresponding rules in the mapping.

Figure 3-8: Generic controller architecture with two-level learning (see [Ric10])

Level 2 is the part in the controller that generates rules for previously unknown sit-
uations in the SuOC using offline learning. The state space of the SuOC may contain
situations that the controller is not aware of, in particular in the early stages of the
self-organising process. In this case, the controller has to generate new rules that
combine unknown situations with appropriate actions by applying various machine-
learning mechanisms, such as learning classifier systems (LCSs), reinforcement learn-
ing (RL), and so on. To this end, level 2 contains an adaptation module and a simula-
tion model. The adaptation module applies online learning based on existing rules in
level 1.

controller

level2

model selection

observer

m
odelofobservation

system under observation and control (SuOC)

raw data

evaluation

simulation
model

goal/objective function

adaptation modulesituation
param

ters

action Ai

select

mapping action situation
parameters

level1

History

History

∆t

action selector

Ci Ai
Fi

P a r t I I – C h a p t e r 3.4 � Generic Observer/Controller Architecture

118

However, the accuracy of new rules generated by the adaptation module cannot be
guaranteed. This uncertainty is especially not desired in critical application domains,
where wrong rules may result in serious damages, as in the case of traffic control.
Hence, in addition to online learning, the adaptation module in combination with the
simulation model performs a second offline learning loop, where possible impacts of
newly generated rules are predicted within the simulation model of the SuOC. This
type of offline learning using simulation models decouples the time-intensive learning
process from the real-time control process with prompt response. In addition, impacts
of newly generated rules are verified in the simulation model, before they are applied
to the real SuOC. This additional step prevents damage to the underlying SuOC
caused by inaccurate rules.

In a word, the controller is the part in the generic architecture that influences
runtime behaviour of the SuOC with respect to operational goals given by high-level
control instances, such as human participants. To accurately correlate situations of the
SuOC with appropriate actions, the controller combines online and offline learning to
build up its knowledge about the SuOC, while keeping the probability for making
wrong decisions caused by inaccurate rules as low as possible. Various learning
mechanisms, such as reinforcement learning, or neural networks, enable the controller
to evolve its knowledge about the underlying SuOC continuously, in particular in case
of changes in the SuOC itself or in its environment. Based on this knowledge base, the
controller can select the most suitable action for a given situation of the SuOC that
guides system behaviour of the SuOC in the desired direction with respect to opera-
tional goals provided by human participants.

 Application of the Generic Architecture 3.4.3

The generic observer/controller architecture provides the fundamental architectural
pattern to design technical systems that expose the behaviour of controlled self-
organisation. How the observer/controller architecture should be applied to technical
systems depends strongly on the characters of the respective application domains.
Hence, the scheme to apply the generic architecture may vary from fully centralised
self-organisation to fully distributed self-organisation. In addition, individual compo-
nents in the generic architecture must be adjusted to match the particular application
domain, within which the SuOC has to operate.

P a r t II – C h a p t e r 3 � Fundamentals

119

Hence, for software engineers, their task changes from implementing an application
explicitly with all predictable eventualities to implementing the specified components
of the generic observer/controller architecture in the application that enable controlled
self-organisation, in particular to balance the degree of top-down control with the de-
gree of bottom-up self-organisation. Following the instructions first outlined by
Schmeck [Sch05], Richter summarises the main challenges to engineer organic
systems [Ric10]:

� It should be ensured that self-organising systems based on OC principles do not
show unwanted (emergent) behaviour. This is particularly important for safety
critical systems. Therefore, engineers have to derive an appropriate set of rules
and behaviour patterns for an organic system. Such rules should enable the or-
ganic system to control its behaviour on the local level in such a way that the
system shows the desired behaviour on the local level while eliminating unde-
sired behaviour at the global level.

� It should be ensured that the overall system behaviour of an organic system is
monitored and influenced by human participants. Therefore, an organic system
should have a user interface for its human users, so that corrective actions can
be performed to control the system, as needed.

� An organic system should provide context sensitive information via its user in-
terface. That is, it has to filter information and services appropriately, accord-
ing to the current situation or the user’s needs, before such information and
services are presented to human participants.

Furthermore, an organic system should have the appropriate degree of freedom to
realise its adaptive behaviour. However, organic systems with too much degree of
freedom may operate out of control and result in uncontrollable situations on the
global level. Hence, it is crucial to determine the necessary degree of freedom for or-
ganic systems. That is, system engineers have to determine an appropriate balance
between external control and internal self-organisation.

A further question that has to be addressed is the appropriate definition of the Su-
OC. The generic observer/controller architecture does not provide a statement on the
granularity of the underlying SuOC, i.e., technical systems in the SuOC. For example,
in a traditional multi-tier server application, each single component within the archi-
tecture can be an SuOC. Alternatively, components of the same tier (e.g., the presenta-
tion tier, the business logic tier, or the database tier) can be organised as a single Su-

P a r t I I – C h a p t e r 3.4 � Generic Observer/Controller Architecture

120

OC. Additionally, it is also possible that a single observer/controller instance manages
the components of all tiers. That is, the complete multi-tier server application is con-
trolled as an SuOC.

Obviously, different granularity levels have both pros and cons. An SuOC involv-
ing less technical systems has a controllable state space that allows efficient monitor-
ing and control at runtime. However, due to limited correlation to other server com-
ponents that are out of scope of an observer/controller instance, it can only make deci-
sions based on information it collects from the local SuOC. Therefore, due to the lim-
ited view of the global operational context, it is possible that such decisions are only
suboptimal on the global level. This deficit can be eliminated by a global observ-
er/controller instance over the complete server landscape. This guarantees the observ-
er/controller instance can make optimal decisions on the global level. However, due to
a too large state space an observer/controller instance has to deal with, it may need
more time and computational resources to find optimal solutions, which is less desira-
ble in time-critical systems.

To this end, Branke et al. suggest three general approaches to apply the generic ob-
server/controller architecture in technical systems - depending on corresponding
scenarios [BMM+06]:

� Central approach: a single observer/controller instance for the entire technical
system. For example, Wuensche et al. apply the observer/controller architec-
ture to machine management systems in off-highway machines [WMS+10]. By
using a centralised observer/controller instance, all interconnected components
within a single off-highway machine (e.g., traction drive, power take-off, or
hydraulic system) are monitored and controlled as a whole SuOC in real time.
Input from the SuOC is composed of a set of information about the machine
and its environment (e.g., fuel, driver interactions, or changing subsoil). Based
on this monitored information, the observer/controller instance can adjust par-
ticular components in the machine to keep efficiency of the whole machine at a
desired level (e.g., to reduce overall fuel consumption of the machine).

� Decentral approach: an observer/controller instance for each component in a
technical system. For example, Prothmann et al. applied the generic architec-
ture to road traffic signals in an urban area in a fully distributed manner
[PBS+09]. In their approach, traffic light controllers are extended by observ-
er/controller instances that reconfigure the controllers depending on the current
traffic volume. In addition, an organic traffic light controller has the possibility

P a r t II – C h a p t e r 3 � Fundamentals

121

to collaborate with neighbouring controllers in a decentralised manner. This
decentralised collaboration between related traffic light controllers allows more
traffic-responsive signal systems that take traffic volumes of several intercon-
nected intersections into consideration.

� Multi-level approach: an observer/controller instance on each component as
well as one for the entire technical system. In this way, a hierarchy with multi-
level observer/controller instances is built. Tomforde et al. proposed a hierar-
chical application of the generic observer/controller architecture to improve
performance of interconnected self-configuring traffic light controllers
[TPB+10], as a further improvement of the decentralised approach proposed by
Prothmann et al. [PBS+09]. On top of a set of collaborative organic traffic light
controllers, a global observer/controller instance is adopted to coordinate be-
haviour of individual controllers that have only a locally limited view. Such a
hierarchical approach enables coordination of related observer/controller in-
stances on the global level and therefore helps to improve the quality of deci-
sions made by each individual observer/controller instance. Similarly, Becker
et al. utilise a multi-level approach with several observer/controller instances to
facilitate decentralised energy management in smart home [BAR+10]. In their
approach, each intelligent household appliance is controlled by a local observ-
er/controller instance, and a centralised observer/controller instance coordi-
nates the interconnected local observer/controller instances from a global
viewpoint. The local observer/controller instance consists of simple soft-
ware/hardware modules to control the corresponding devices. The centralised
observer/controller instance captures runtime information of local devices, such
as power charges of each appliance, a device’s degree of freedom, or other re-
lated device profiles. Based on this information, the centralised observ-
er/controller instance can create a global schedule that specifies and predicts
the behaviour of power consumption of related appliances. For example, such
power forecast is of particular interest to avoid an unexpected peak in the elec-
tricity network caused by simultaneous charging of all appliances.

3.5 Summary

The focus of the present thesis is to provide a framework enabling self-organising
multi-level Service Level Management in an SOE. To this end, the framework is ex-
pected to combine local objective-driven self-organisation within a single service

P a r t I I – C h a p t e r 3.5 � Summary

122

component with global collaboration between related service components, as de-
scribed in Section 1.2. Hence, this section is concerned with the fundamental means
that relate strongly to the proposed approach in the present thesis.

Figure 3-9 illustrates the relationship between the fundamental concepts introduced
in this chapter. The target application domain of the present thesis is an SOE. In com-
parison to existing models for software-centric SOAs, SOEs in the present thesis con-
sists of both software-centric and hardware-centric service-oriented components with-
in enterprise IT, where each technical component provides particular service(s) to oth-
er components in the environment.

Figure 3-9: Fundamental concepts for multi-level self-organising SLM

Hence, Section 3.1 aims at establishing a common understanding of SOEs with re-
spect to recent development in the field of service-oriented infrastructure, in particular
Cloud Computing. To this end, the section reviews an SOE from both a macroscopic
viewpoint and a microscopic viewpoint. The macroscopic view identifies the major
building blocks of an SOE, which results in a multi-layered architecture with five hor-
izontal and three vertical architectural layers. The microscopic view focuses on the
characteristic provider/consumer relationship between service components and identi-
fies the main artefacts involved in consuming services by a service consumer.

Based on the model of SOEs, the other three concepts are concerned with Service
Level Management in SOEs. Hence, Section 3.2 addresses the essentials of Service
Level Agreements. In particular, the section describes a formal SLA model that is re-
quired to model electronic service level contracts. The other focus of the section is put
on the life cycle of SLAs and the roles of service consumers and service providers in
the life cycle. In addition, this section also provides an overview on common QoS
parameters in an SOE.

Service Level Management

Service-Oriented Environments

bilateral multi-issue
negotiation

generic observer/controller
architectureService Level

Agreements establish

enforce

P a r t II – C h a p t e r 3 � Fundamentals

123

By considering the life cycle of SLAs between service consumers and service pro-
viders, there are two essential activities involved in the life cycle: negotiating SLAs
and enforcing SLAs at runtime. Therefore, Section 3.3 addresses the former issue and
introduces a formal model to facilitate automated bilateral negotiation with multiple
issues. Section 3.4 introduces the generic observer/controller architecture from the
Organic Computing research community, meant to enable controlled self-organisation
of service components in an SOE. That is, the generic observer/controller architecture
is expected to enable SLA-driven management of the underlying service component
(i.e., from the viewpoint of system management).

To conclude, this chapter outlines the essential fundamentals to enable self-
organising SLM in SOEs. On top of the multi-layered architecture for an SOE, this
chapter covers the basic concepts of SLAs and introduces the two fundamental ap-
proaches to support SLA negotiation and SLA enforcement at runtime. The following
chapters in the remainder of Part II focus on the design of the proposed approach and
describe its architecture and implementation in detail.

125

Chapter 4 Scenario and Requirement Analysis

“Learning without reasoning leads to confusion, thinking without learning
 is wasted effort.”

(Analects of Confucius, Confucius, 551 B.C.-479 B.C.

So far, the vision of self-organising SLM in SOEs has been introduced on an abstract
level. For example, the layered architecture introduced in Chapter 3 identifies the ma-
jor building blocks and architectural layers of SOEs. Now, the present chapter intro-
duces a real service-oriented scenario from the university context and analyses the
challenges and requirements that the self-organising SLM approach of this thesis has
to face.

Correspondingly, this chapter is organised as follows: Section 4.1 introduce a real
scenario from the university context to demonstrate the direct relevance of self-
organising SLM to SOEs. Based on this scenario, Section 4.2 identifies the main prob-
lems and challenges that a self-organising SLM approach has to address in its design.
Section 4.3 outlines the main functional and non-functional requirements of the ap-
proach, while Section 4.4 summarises the chapter.

4.1 Target Scenario

In 2005, the Karlsruhe Institute of Technology (KIT, former University of Karlsruhe)
launches a university-wide integration project called Karlsruhe Integrated Infor-
mationManagement (KIM) [KIM10]. The vision of the KIM project is to provide a
portal-based information centre for employees and students by integrating a range of
information distributed throughout the campus, such as study-related information
from the central administration or literature information from the library. From within
the central information portal, students can perform a range of activities related to

P a r t I I – C h a p t e r 4.1 � Target Scenario

126

their studies, such as browsing lecture timetables, subscribing to workspaces of par-
ticular lectures, and enrolling for exams.

Figure 4-1: Sample scenario of a service-oriented environment (SOE)

One of the services that are implemented by the KIM project is the competence
field process, as symbolically illustrated in Figure 4-1. The process is described in
detail in Section 8.3.1. Figure 4-1 is by no ways complete. For simplicity and clarity,
it contains only essential provider/consumer relationships from the implemented sce-
nario. Briefly, the competence field process allows employees at KIT to assign them-
selves to particular competence fields. The technical realisation of the competence
field process is simple. It is provisioned as a business process within a Web portal.
Internally, the competence field service involves two underlying Web services to get
the necessary information. The person service provides the capability to deliver per-
sonal information (e.g. name, surname, affiliation, etc.) to the process. The compe-
tence field Web service enables the process to store and retrieve competence infor-

business
domain

process
domain

service
domain

application
domain

infrastructure
domain storage

infrastructure
domain

computing
power

Web server database
server

person
service

competence field
service

competence
field process

business

storage
organisational
boundary Service

SLA

SLA

SLA

SLA SLA SLA

SLA

storage

SLASLA

LDAP server Web server

SLASLA

P a r t II – C h a p t e r 4 � Scenario and Requirement Analysis

127

mation of a particular employee. The Web services in turn consume services from the
application layer. That is, both Web services are hosted by a Web server with two
separate server instances. In addition, the person service leverages a LDAP server to
authenticate service requests. Similarly, the competence field service utilises a data-
base server to manage its application-specific data. In turn, all servers in the applica-
tion domain consume services from the underlying infrastructure layer. At runtime,
the Web server consumes computing power and storage services from the infrastruc-
ture layer for hosting Web services. Similarly, the database server consumes storage
service in the infrastructure layer to store data.

The scenario shows clearly the layered architectural style of service-oriented sys-
tems, as introduced in Section 3.1.1. The business layer consists of end users (e.g.,
university employees or students) of the competence field process. The business pro-
cess in turn build its implementation on top of two separate Web services that con-
sume hosting services and data management services from the application layer. The
Web server and the database server leverage technical capabilities from the infrastruc-
ture layer, i.e., computing power and storage, to accomplish their functions.

In addition, the scenario clarifies the provider/consumer relationship between ser-
vice providers and service consumers in SOEs. Such provider/consumer relationships
are not restricted to business processes and their supporting Web services. Indeed, by
extending the narrow definition of Web services to services that provide “a means of
delivering value to consumers by facilitating outcomes customers want to achieve
[RL07]”, relationships such as those between Web services and their hosting Web
Server are provider/consumer relationships, too. In these provider/consumer relation-
ships, proper functionality of service consumers relies strongly on that of providers.

The recursive nature of service-orientation, where a service provider (e.g., the per-
son service) can be consumer of other service providers (e.g., the Web server), corre-
lates all related provider/consumer relationships to a hierarchical structure. On top of
the hierarchy is the relationship between a business process and its end users, which in
turn involves the relationships between the business process and its underlying Web
services. Such recurrence continues top-down to the hardware-centric infrastructure
layer, where infrastructural components do not depend functionally on other compo-
nents. That is, they do not need to consume other services to carry out their desired
capabilities.

P a r t I I – C h a p t e r 4.1 � Target Scenario

128

This hierarchical dependence chain determines that the operational behaviour of a
business process, for example the competence field process, relies not only on the re-
lated Web services, but also on all technical components from all underlying layers
that are involved in the hierarchical dependence chain. It also determines the correla-
tion between the non-functional behaviour of different technical components in the
hierarchy. For example, the performance of a business process is partly dependent on
the performance of Web services it invokes.

To keep runtime behaviour, in particular non-functional behaviour, of business
processes manageable and in compliance with business objectives, service levels are
utilised to regulate the requirements of the consumer and the capabilities of the pro-
vider in a relationship. In the example of the competence field process, the business
layer, i.e., end user, closes an SLA with the competence field process. Because of the
hierarchical dependence chain between the process and its underlying IT components,
this SLA places non-functional end-to-end requirements on the business process and
the underlying technical components. That is, all technical components in the hierar-
chical functional chain are involved to support collaboratively the end-to-end SLA
between the process and its end users, as illustrated in Figure 4-1. The end-to-end
SLA closed between the competence field process and end users is supported by
SLAs between the process and the involved Web services. The SLA between the pro-
cess and the Web service is supported by the SLA between the Web service and the
Web server. This scheme is applied recursively down to the infrastructure layer.

Hence, the vision of this thesis is to enable automated SLM between related com-
ponents in a hierarchical functional chain, so that they can jointly contribute to the
desired behaviour of a business process at the top of the chain. That is, in case of the
present scenario, given a set of end-to-end non-functional requirements on the compe-
tence field process, the proposed approach can autonomously propagate correspond-
ing requirements of the process to all related components by means of automatically
negotiated SLAs.

Appropriately negotiated SLAs help technical components determine their opera-
tional targets at runtime. By enabling SLA-driven management of the corresponding
components, technical components get the possibility to align their local resource con-
figurations to requirements of their consumers, which leads to efficient allocation of
resources avoiding over- or underutilisation. For example, if the database server needs
more computational resources, it only needs to increase its local resources for the par-

P a r t II – C h a p t e r 4 � Scenario and Requirement Analysis

129

ticular service instance, or if necessary, arrange with its computing power provider to
get more computational resources.

4.2 Problem Analysis

Service-orientation provides the fundamental means to orchestrate business data and
applications to business processes in a loosely coupled manner. Technically, applying
service-orientation to traditional n-tiered applications is not problematic with the new-
est shift in IT, as promoted in Cloud Computing. This can be done by tearing apart
traditional n-tier architectures and spinning each tier into the corresponding layer in
the SOE. With further specialisation of third party IT providers in the cloud, it is even
imaginable to deploy the layers of an SOE across several cloud infrastructures, as long
as the business objectives of the business layer can be met by the underlying layers.
As mentioned in the motivation section 1.1, an architecture with loosely coupled lay-
ers greatly increases flexibility and resilience of the resulting service-oriented applica-
tions. If one involved service in the architecture is heavily used, it is merely necessary
to replicate and load-balance the affected service in the system. Other parts in the cor-
responding service-oriented applications remain unaffected from this procedure.

Hence, the problem within SOE consists not in technologies and their capabilities
to realise service-oriented applications, but rather in approaches to manage such a dis-
tributed service-oriented infrastructure that is dispersed across several organisational
and technological boundaries. The design paradigm of service-orientation does not
provide adequate ways to enable tightly coupled control over the services and re-
sources involved in the environment. Changes applied to a single service in the envi-
ronment can raise unexpected outcomes in other related components in the depend-
ence chain.

Hence, despite the benefits of service-orientation to align business and enterprise
IT, in particular in terms of flexibility and ability to scale on demand, service-
orientation exhibits a set of characteristics that complicate management tasks of ser-
vice-oriented systems. Parts of these characteristics are inherited from traditional dis-
tributed paradigms; others are more specific to service-oriented systems. In the fol-
lowing, the problems and challenges to enable self-organising SLM are addressed in
accordance with characteristics of a service-orientated environment.

P a r t I I – C h a p t e r 4.2 � Problem Analysis

130

Service autonomy: As one of the fundamental design principles for service-
orientation, autonomy refers to the desired behaviour of services to be responsible for
their own operational state. Therefore, services may autonomously vary their imple-
mentation, deployment, operation, and management independently of their consumers.
Generally, service autonomy raises the question of how to establish a proper opera-
tional state on the system level, especially in presence of possible failures in the un-
derlying service components along the dependence chain. Service autonomy prevents
technical components from actively influencing behaviour of other components in the
dependence chain. This makes a tightly coupled control over several services and re-
sources in certain circumstances (e.g., different organisational units) partly or even
completely impossible.

Dependence is a phenomenon frequently observed in service-oriented applications.
As already discussed in the target scenario in Section 4.1, dependence exists bi-
directionally between service providers and service consumers. In the abstract layered
architecture for SOEs, services build the conjunction part between a consumer and its
underlying providers in the architecture. In this context, services top-down along with
business processes, applications, and infrastructural components build a vertical func-
tional dependence chain between functionally interrelated components in the envi-
ronment. All components involved in the dependence chain are functionally depend-
ent on each other.

Apart from direct functional dependences, there are weak dependences between
components that are indirectly related to each other. A weak dependence occurs, if
two independent components functionally depend on the same component in the sys-
tem (e.g., two Web services running on the same application server) or if they support
the same component (e.g., a Web server and a database server supporting the same
Web service). Weak dependence does not play a critical role for proper operation of
service-oriented applications. However, since runtime behaviour of a consumer de-
pends on all its providers, providers with weak dependences to one another can use
such information to exploit possibilities to decompose and allocate the overall non-
functional requirements of the consumer in terms of QoS metrics among them.

Decentralisation and distribution: service-orientation can be regarded as an evo-
lution of traditional concepts of distributed applications. It imposes decentralisation
by utilising business capabilities provisioned by various distributed organisational
units. Related components are distributed across organisational boundaries with dif-

P a r t II – C h a p t e r 4 � Scenario and Requirement Analysis

131

ferent technology standards. From a system management point-of-view, decentralisa-
tion requires appropriate management approaches to cope with the distributed nature
of service-oriented applications and to avoid drawbacks like resource bottlenecks or
single-point-of-failure. Furthermore, management approaches have to move away
from centralised monitoring and control. This requires implicitly that distributed man-
agement systems have to coordinate and cooperate with each other to reach global
objectives.

Dynamism can be partly derived from service autonomy: the open architecture of
SOE allows for introducing/removing services as autonomous functional units to/from
the system at any time, while each service is free to adapt its behaviour autonomously
to environmental changes. A similar level of dynamism can be observed in the envi-
ronment on the system level, in particular with respect to global emergent behaviour
resulting from behaviour of local components. Dynamism complicates the efforts of
management applications to monitor and control technical components. Continuous
changes require agile reactions of management applications.

Heterogeneity and interoperability. IT landscape of service-oriented applications
is heterogeneous with respect to the variety of types of components in the environ-
ment, i.e., business process, service, applications, and infrastructure components.
Each of them differs from one another with respect to their platforms, technologies,
and capabilities. Although industry standards help to reduce the impact of heterogene-
ous technologies on system management approaches, this characteristic remains a
challenge for designing generic self-organising management approaches. Further-
more, the decentralised and distributed nature of service-oriented systems determines
that these management approaches have to deal with heterogeneous interfaces when
interacting with target technical components, while keeping their own capabilities to
collaborate with one another.

Robustness. As aforementioned, a self-organising approach for SLM has to face a
dynamic and decentralised environment. Both characteristics make it difficult to en-
sure the overall optimal behaviour of the approach, which can only exist in a static
and centralised environment. Hence, the self-organising approach has to balance be-
tween optimal but strongly restricted central management and suboptimal but robust
decentralised management of technical components.

Scalability. A service-oriented application may scale from simple applications lev-
eraging a few services to large-scale enterprise-level applications involving a set of

P a r t I I – C h a p t e r 4.2 � Problem Analysis

132

back-end systems (e.g., CRM, ERP, and so on) and a range of organisational units. It
is obvious that approaches that works well in a small environment are not necessarily
applicable to a large-scale environment, in particular from the viewpoint of agile re-
sponses to changes in the environment. Hence, a solution for enabling self-organising
SLM has to be able to deal flexibly with various scalability levels of the targeted ser-
vice-oriented applications.

Transparency. This characteristic refers to the willingness of an autonomous tech-
nical component to reveal information about itself and to accept external operational
objectives. The background for this request is the necessary collaboration between
interrelated components at runtime. In such a scenario, a component can decide au-
tonomously if it is willing to reveal its internal information and choose the way to re-
veal it. Depending on the different degrees of willingness, technical components can
be generally distinguished between

� fully transparent - if a component reveals its (consolidated) internal infor-
mation to other components and is ready to cooperate with them,

� partly transparent - if a component only reveals part of its internal information
to components with functional dependences,

� and non-transparent - if a component acts as a black box that does not expose
any internal information except the predefined service messages.

From the viewpoint of service autonomy, each component can autonomously de-
termine their degree of transparency. This presents a problem for the self-organising
SLM approach of this thesis that is forced to enable collaboration between related dis-
tributed components. If a technical component is not willing to expose information
and react on instructions, it is not possible for an external component to influence its
behaviour.

To sum up, service-oriented applications can benefit from the design paradigm of
service-orientation, in particular with respect to agility of service-oriented systems to
respond to changes; however, it does not address necessary means to manage such
SOE. It is obvious that centralised management approaches are not suitable for large-
scale service-oriented applications. The distributed nature of large-scale service-
oriented systems and dependences between technical components in such systems
demand decentralised and collaborative management of those components. On the
other hand, autonomy and heterogeneity of those components prevent an active col-
laboration between them. In particular, non-transparent components are impossible to

P a r t II – C h a p t e r 4 � Scenario and Requirement Analysis

133

integrate into such a collaborative management federation. Hence, the self-organising
approach for SLM proposed in this thesis must appropriately address these issues in
its design, which are summarised by means of functional requirements of the ap-
proach in the following section.

4.3 Requirements Analysis

The previous two sections outlined the target scenario and the main problems that
must be addressed by the approach for self-organising SLM in this thesis. Before the
architecture for self-organising SLM is introduced in the next chapter, this section
outlines the general requirements on its design. In particular, the requirements are de-
rived from the problems identified in Section 4.2. This section is partly based on the
joint work of Liu and Schmeck [LH06].

While reviewing the target scenario, it is obvious that requirements for establishing
automated end-to-end SLM can be considered on both local and global levels. Re-
quirements on the local level are concerned with capabilities of particular components
in an SOE, while requirements on the global level focus on collaboration between
components in such an environment. Hence, in the following, the requirements are
specified on these two levels.

At the local level, it is firstly required that a service component needs to know it-
self. The knowledge of a service component about itself can be acquired at two levels
– the meta-level and the instance level. At the meta-level, a component should know
its functionalities, its interfaces to the external world, and a way to describe them. For
example, Web Service Description Language [CCMW01] (WSDL) provides a meta-
model to describe syntactically interfaces of a service. A further example of such a
meta-model is OWL-S [MBH+04] that specifies is a Web service ontology based on
Ontology Web Language (OWL) [MGVH04] and describes semantically what a ser-
vice does, how it works, and how to access it. At the instance level, a service compo-
nent should have detailed knowledge about its internal components and their runtime
state. This is the basic requirement for a managed service component to be self-aware.
To this end, the component must be technically instrumented to expose runtime man-
agement information and provide a set of interfaces to access them. For example,
Common Information Model (CIM) [DMTF99] provides a syntactical as well as se-
mantic base for modelling management objects using object-oriented constructs.

P a r t I I – C h a p t e r 4.3 � Requirements Analysis

134

Based on CIM, external management applications can access management infor-
mation of an instrumented component via common communication protocols, such as
HTTP or FTP. It is noteworthy that various management approaches based on CIM,
such as Web-Based Enterprise Management (WBEM), have been applied to a range
of technical systems, including various operating systems (e.g., Windows), business
applications (e.g., SAP business applications), and hardware-centric components. Via
suitable manageability interfaces, external management applications (such as the ob-
server/controller instance) can monitor and control the runtime behaviour of the corre-
sponding components.

Secondly, It is required that a service component should be able to control its own
behaviour to meet its own operational goal. A service component has an operational
goal that can be specified either internally during initialisation or by a related compo-
nent in the environment as part of an agreement. Furthermore, if a service component
is involved in a business process, there will be some global goals for the whole busi-
ness process. In this case, a component has to adjust itself to contribute to the given
global goal. Generally, there are two possible ways to adjust a service’s behaviour:
Either a service component can configure its own parameters locally or it can rely on
its dependences (i.e., service providers) in its environment. For example, in order to
increase the performance of a service instance, a service component can increase the
amount of resources assigned to this specific instance; or it can adjust its performance
by influencing the behaviour of its providers, such as encouraging them to increase
the processing priorities of its requests. It is noteworthy that this requirement relies on
the previous requirement of manageability interfaces. Modifying runtime configura-
tion of a particular service component is generally carried out via such manageability
interfaces.

Thirdly, it is required that a service component should be able to take over external
directives and align its behaviour to these directives, if applicable. For a service com-
ponent in SOEs, external directives are only requests and the requestor cannot assume
that the target service component is going to follow them. According to the service
design principle of autonomy, a service component can autonomously determine how
to deal with such directives, depending on its internal policies with respect to the
types of these directives. For example, service components that belong to a single or-
ganisation are, in all probability, going to cooperate rather than compete with each
other. That is, in this case, the service components are willing to follow global busi-

P a r t II – C h a p t e r 4 � Scenario and Requirement Analysis

135

ness objectives to ensure that these objectives can be met. However, if two service
components belong to two different organisations, such as a business consumer and an
external IT provider, then they are expected to behave in a more self-interested man-
ner. In this case, their relationships can only be governed by a service level agree-
ment. It is noteworthy that both of them are required to align their behaviour to this
agreement, which acts as external directive for both contract parties.

Briefly, the first three requirements are concerned with capabilities of service com-
ponents to organise themselves from a local perspective. In order to be self-aware, a
service component needs to be correspondingly instrumented to expose management
information and to receive control instruments. Furthermore, a service component is
aware of its own capabilities that can be expressed with help of various modelling
languages, such as WSDL or OWL-S. In addition, each service component is ex-
pected to organise itself with respect to internal objectives and, if applicable, external
directives. This allows realising controlled self-organisation on local components.

The requirements on the global level focus on the abilities of service components to
communicate and collaborate with one another in the environment. Functional and
non-functional dependences between related distributed service components demand
intensive collaboration between them to ensure desired behaviour of the complete en-
terprise IT at the global level, where service components are expected to exchange
messages among one another to facilitate collaboration.

Hence, it is required that a service component should be able to expose meta-level
information, and if applicable, part of its instance-level information to other related
components. The meta-level information is crucial for other elements to determine the
capabilities of a particular service component in the environment, in case that a rela-
tionship should be established between them. This is especially important for service
discovery at design time, where a service consumer looks for its potential service pro-
viders with respect to a set of search criteria (e.g., functional, non-functional, or QoS
requirements). At runtime, a service component can get an overview about its envi-
ronment based on information exchanged with its dependences and take actions, if
necessary, to ensure its operational goal. Furthermore, establishing automated SLM
has to take into consideration the willingness of a service component to expose its
runtime information. This should allow service components that do not expose in-
stance-level information to other related components to participate in the global col-

P a r t I I – C h a p t e r 4.3 � Requirements Analysis

136

laboration. This is crucial for enabling automated SLM in SOEs, where each related
component must be included in the solution, despite its willingness.

Secondly, it is required that a service component should be context-aware. A ser-
vice component should at least know its neighbourhood (i.e., its service providers and
service consumers with provider/consumer relationships) in an SOE. The previous
requirement on exposing meta-level and instance-level information provides the foun-
dation for a service component to discover its neighbourhood. Such information al-
lows service components to get an overview over existing components in its environ-
ment (e.g., to discover potential service providers/consumers). Through regular ex-
change of information with its neighbourhood, a service component is aware of its
environment and take necessary actions, if the environment changes. Furthermore, a
service component must have knowledge about specific infrastructure services (i.e., a
global ontology service or a central service registry) available in the environment, of
which it may make use, if necessary. This requirement is the prerequisite to enable
collaboration between related service components. By doing this, a service component
can identify the appropriate collaboration partner at runtime, and respond to changes
in its environment with respect to its operational objectives.

Thirdly, it is required that a service component should be able to establish and
maintain relationships with other service components in the SOA. The previous two
requirements provide the basis for building new relationships between related compo-
nents in the environment. The most essential relationship in an SOE is a provid-
er/consumer relationship, which is regulated by one or more service level agreements
between a service consumer and its service provider. In this case, both parties must
understand the terms specified in the agreements and, if necessary, negotiate them
with each other. Once two parties can close an agreement, they must abide by the de-
fined terms to maintain their relationship. It is necessary to remark that a component
that is not willing to expose its runtime information to other related components must
be covered by this requirement, too. That is, relationships should not only be built be-
tween cooperative, but also between self-interested and therefore less cooperative ser-
vice components.

Lastly, it is required that a service component should use interoperable communi-
cation standards while building up relationships with related service components. The
largest obstacle to facilitate intensive collaboration between related service compo-
nents is the high degree of heterogeneity of those components. Base on the design

P a r t II – C h a p t e r 4 � Scenario and Requirement Analysis

137

principle of service autonomy, service components may differ from one another in
their design, implementations, technical realisation, and other related artefacts. An
effective way to overcome this obstacle is to utilise interoperable communication
standards, such as WS-* specifications, SOAP, XML, etc. These communication
standards allows service components to communicate using predefined and standard-
ised vocabularies, which are in turn individually interpreted and implemented by par-
ticular service components.

To conclude, these four requirements are concerned with collaboration between re-
lated components on the global level to guarantee the desired global behaviour of the
entire IT infrastructure. By consuming information exposed by other service compo-
nents, a service component is aware of its environment, in particular its (potential)
service providers and service consumers. Based on this information, related service
components can use interoperable communication protocols to build up provid-
er/consumer relationships.

4.4 Summary

The focus of this chapter is to review the target scenario of this thesis, analyse the ex-
isting problems to establish self-organising SLM in SOEs, and specify the require-
ments on the architecture to enable self-organising SLM. To this end, this chapter re-
views a real service-oriented scenario from the university context to demonstrate how
end-to-end SLM works in an SOE. Hierarchical dependence chains between related
service components demand a comprehensive approach that includes all related com-
ponents systematically in a global SLM process. However, inherent characteristics of
SOEs, in particular those derived from the design paradigm of service-orientation
prevent an effective implementation of such a comprehensive SLM approach. In par-
ticular, service autonomy and service heterogeneity require additional considerations
in the architecture design for enabling self-organising SLM. Such considerations are
analysed and specified in terms of functional requirements at both the local and global
levels. Requirements at the local level are mainly concerned with monitoring and con-
trol of the behaviour of particular service components, while requirements at the glob-
al level focus on collaborations between related components. Based on these require-
ments, the following chapter describes the architecture to enable self-organising SLM
in SOEs, the core of this thesis.

139

Chapter 5 Organic Service-oriented Environments

“Bringing forth novel ideas continuously lays a corner stone for moving forwards the
human beings.”

(I Ching – Book of Changes, The Great Treatise I)

Today's ever paced and changing business world calls for consistent support of busi-
ness by enterprise IT. Emerging technologies, in particular SOC, drive a further con-
vergence of existing isolated IT systems towards integrated enterprise-level business
applications. In this context, the design paradigm of service-orientation provides the
fundamental means to construct business logics on top of distributed capabilities pro-
visioned by various IT systems. This leads to a tighter alignment between business
and IT. However, this design paradigm does not address necessary means to handle
system complexity resulting from increasing integration of technical systems, such as
a large amount of interactions between related systems or continuous changes in a
system and its environment. In particular, existing engineering approaches lack suffi-
cient support to predict and handle all eventualities of an SOE at runtime. Hence, hu-
man participants are still strongly involved in managing large-scale distributed sys-
tems, in order to cope with increasing system complexity.

As motivated in Section 1.2, a plausible way out of this dilemma is to utilise soft-
ware components exhibiting the capabilities of controlled self-organisation. Such
software components are able to operate autonomously in their environment, while
still being under control of human participants in the system. Automating tasks to
monitor and control software components establishes a range of self-x properties in
the system. These self-x properties allow corresponding software components to adapt
their behaviour transparently to their up-to-date operational context in the environ-
ment. At the same time, the behaviour of these self-organising technical systems can
still be influenced by human participants through external policies or high-level sys-
tem objectives.

P a r t I I – C h a p t e r 5.1 � Agent-oriented Design

140

This chapter introduces a reference architecture to enable automated end-to-end
SLM in SOEs. In software engineering, a reference architecture serves as “an archi-
tectural blueprint for constructing software systems targeting particular problem do-
main(s) with specific functional, behavioural, and quality attribute requirements”
[KCB03]. It outlines a set of necessary software components, their externally viewa-
ble interfaces, as well as interrelationships between them (e.g., data flows). The major
effort of this chapter is to apply the design paradigm of Organic Computing, i.e., the
generic observer/controller architecture, to an SOE. In this way, the resulting architec-
ture is expected to establish a framework for self-organising end-to-end SLM, while
keeping the system complexity hidden from human participants.

Hence, the remainder of this chapter is organised as follows. Section 5.1 outlines
the agent-oriented design of the framework on the macroscopic level. The distributed
and autonomous nature of service components stimulates usage of design principles
from multi-agent systems to facilitate collaboration between them. Hence, this section
justifies the agent-oriented design of the architecture and provides an insight into col-
laboration between service components in the context of end-to-end SLM. Section 5.2
focuses on the architecture of a management agent on the micro level. It addresses the
integral parts of the architecture in detail and provides a rationale with respect to the
design requirements discussed in Section 4.3. Section 5.3 concludes the chapter.

5.1 Agent-oriented Design

As discussed in Section 2.3, a multi-agent system is characterised by its autonomously
operating agents and social-like interactions between these agents. Interactions are not
carried out simply by exchanging data, but by performing social activities similar to
humans’ daily life, such as coordination or negotiation. Furthermore, software archi-
tectures based on multi-agent systems are open and dynamic in the sense that agents
operate in a changing environment, which they can join or leave at any time. The high
degree of architectural similarity between MAS and SOEs makes it promising to in-
vestigate how far the concepts of MAS and SOEs can be combined to facilitate col-
laborations between service components. It is noteworthy that the term collaboration
is not limited to simple provider/consumer relationships between service components,
as described in Section 3.1.2. Moreover, the term covers necessary interactions be-

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

141

tween service components to achieve some given tasks jointly, in particular from the
viewpoint of end-to-end SLM.

Hence, this section is concerned with the agent-oriented design of the architecture.
Section 5.1.1 introduces the agent-oriented design of a management overlay that aims
at facilitating collaborations between related service components. Section 5.1.2 focus-
es particularly on collaborative activities between service components to enable SLM.
Section 5.1.3 provides a rationale for the agent-oriented design with respect to prob-
lems and design requirements discussed respectively in Section 4.2 and Section 4.3.

 Management Overlay with Autonomous Agents 5.1.1

Services in SOEs are limited with respect to their ability to collaborate actively with
other services. That is, services applying the design paradigm of service-orientation
are passive in their nature, until they are invoked by other service components in the
environment. Before a service is actively consumed, it is not aware of its consumers
and possible interactions with them. In other words, services are not designed to oper-
ate in an extensively autonomous manner, which is however one of the prerequisites
to enable self-organisation in an SOE.

Furthermore, the design paradigm of service-orientation does not address how a
service can design and carry out its social activities with other related components.
Hence, they are not expected to collaborate proactively with other related service
components to reach some global objectives, such as providing jointly composed ser-
vices to meet given functional requirements. However, in order to reduce administra-
tive efforts of human participants in an SOE, service components are indeed expected
to self-organise their own activities, including carrying out social interactions with
related components. In the light of the emphasis of MAS on facilitating social interac-
tions between agents, it is of particular interest to investigate how far the concept of
MAS can be applied to design a self-organising SOE.

The idea of combining the concepts of MAS and SOC has been intensively studied
in the research community for years. Petsch, Nissen, and Traub investigates the poten-
tial of applying intelligent agents in SOA [PNT06]. They found out that there are two
general ways to consider relationships between agents and services, namely agents as
service providers and agents as service brokers. In the former category, agents operate
as Web services. Indeed, the W3C defines a Web service as “an abstract notion that

P a r t I I – C h a p t e r 5.1 � Agent-oriented Design

142

must be implemented by a concrete agent. The agent is the concrete piece of software
or hardware that sends and receives messages, while the service is the resource char-
acterised by the abstract set of functionality that is provided.” That is, an agent is con-
sidered as a service provider for a particular service. Based on abstracted service inter-
faces, agents can autonomously implement their services that can be consumed by
other components in the environment.

In the second category, intelligent agents are utilised to monitor, control, and or-
chestrate services, from the viewpoint of a service broker. Advanced research in MAS
aims to facilitate autonomy, social ability, reactivity, and proactivity of software
agents. These capabilities help services to be aware of themselves and their environ-
ments and to operate actively in such environments. In contrast to the passive opera-
tion mode determined by the design paradigm service-orientation, agent-oriented de-
sign provides services with the necessary intelligence to operate more actively in their
environments. In particular, the fact that services can only realise their values in an
SOE affirms the importance of social abilities of services. This allows services to re-
spond collaboratively to external demands and changes at runtime. Indeed, most of the
research in this category focuses on automated orchestration of services matching giv-
en functional and non-functional requirements, as introduced in Section 2.2.2. By ap-
plying the agent-oriented design, service components are expected to become more
dynamic, flexible, and robust [LKH06].

The focus of the present thesis is to enable end-to-end SLM in SOEs. Hence, the in-
terrelated nature of services determines that they must, on the one hand, collaborate
globally with other related services. On the other hand, services must be capable of
performing autonomous actions locally to meet their operational objectives, i.e. their
service levels. By comparing these requirements with the characteristics of the multi-
level SLM approach of the present thesis, it becomes reasonable to apply agent-
oriented design to the architecture to enable multi-level SLM.

The result of applying the agent-oriented design in an SOE is a management over-
lay, as illustrated in Figure 5-1. As the name says, the management overlay operates
on top of an SOE. The management overlay separates the management concern from
the operational context of an SOE. That is, activities associated with service level
management are carried out mainly in the management overlay, in particular by intel-
ligent agents deployed in the management layer. In the remainder of this thesis, these

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

143

agents are referred to as management agents to distinguish them from agents offering
services to other components.

Figure 5-1 illustrates the management overlay with abstracted service components
and their management agents. In the abstract model, each technical component in a
real SOE, e.g. a Web service or a database server is abstracted to a service component
in the figure with incoming/outgoing relationships to other components. An incoming
relationship indicates that the corresponding component consumes services from other
components. Analogously, an outgoing relationship indicates that the component de-
livers services to other components in the system. For simplicity, without loss of gen-
erality, it is assumed that each service component from layer nn consumes only ser-
vices provided by service components located in layer n¡ 1n¡ 1 and delivers services to
service components in layer n + 1n + 1.

The challenge is to determine how management agents can be attached to service
components in the underlying environment. The vertical dependence chain, as dis-
cussed in Section 4.1, requires a compatible management approach in the overlay.
Considering the three architectural patterns specified by the generic observ-
er/controller architecture (cf. Section 3.4.3), the centralised approach would imply that
the complete underlying environment is organised by a single management agent.
This approach does not satisfy the fine-granular and dynamic nature of service-

Figure 5-1: Management overlay with autonomous management agents

M management agent S service component provider/consumer
relationship

observation/control

P a r t I I – C h a p t e r 5.1 � Agent-oriented Design

144

oriented systems. Therefore, it involves the risk of losing control over the complete
system due to a ‘single-point-of-failure’. The decentralised approach satisfies the fine-
granular and scalable nature of service-oriented systems. However, since the decen-
tralised approach implies that management agents may operate independently from
each other, it does not provide the ability to reproduce the aforementioned dependence
chains between service components. Hence, the multi-level approach provides the
necessary support with respect to the fine-granular and scalable nature of SOA. In
addition, constructing hierarchical structures between related management agents al-
lows the management overlay to reflect vertical functional links between correspond-
ing service components in the underlying environment. Therefore, all management
agents, i.e., observer/controller instances of these agents, are organised in a multi-
level manner corresponding to that of their underlying components.

Consequently, each service component in the operational layer is monitored and
controlled by a dedicated management agent in the management overlay. The connec-
tion between a service component and its dedicated management agent is implement-
ed individually by the management agent. That is, management agents utilise individ-
ual manageability interfaces offered by corresponding service components to com-
municate with them. It is noteworthy that such manageability interfaces can be heter-
ogeneous. Service components are free to design and implement their instrumentation
mechanisms internally by applying various management standards, such as CIM or
WBEM. These manageability interfaces provide external management agents an in-
sight into the runtime behaviour of their corresponding service components. In addi-
tion, such interfaces enable management agents to perform, if necessary, corrective
actions on these components to influence their behaviour. The way, in which a man-
agement agent communicates with its service component, depends on the particular
implementation of manageability interfaces of the component, e.g., by using WSDM
or WS-Management. Section 5.2.1 discusses the internal architecture of a manage-
ment agent in detail.

As a result, the structure of the underlying service-oriented layer, in particular the
hierarchical structure spanned by vertical dependence chains between service compo-
nents is fully mapped to the management overlay. That is, two management agents are
related to each other, if their corresponding service components in the service-oriented
layer have a direct provider/consumer relationship with each other. Thus, management
agents are aware of other related management agents in their environment. This al-

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

145

lows them to carry out context-aware collaboration with respect to corresponding rela-
tionships in the underlying operational layer. In particular, management agents can
determine their collaboration partners precisely, with which they can jointly fulfil
some given functional and non-functional requirements. It is noteworthy that two col-
laborating management agents are not equivalent with respect to their roles in collabo-
ration. In other words, a management agent has either the role of a provider agent or a
consumer agent, depending on the role of the service component it manages. Such
distinction of roles is important for management agents to determine their activities in
the course of collaboration, as later discussed in Section 5.1.2.

The management overlay along with the underlying SOE separates three essential
concerns of multi-level SLM, namely operational context, management context, and
environment context. With respect to the operational context, each service component
delivers service(s) to other service components in its environment, e.g., encapsulated
business capabilities, hosting services, or platform/infrastructure support. Managing
those service components is achieved by management agents in the overlay, with re-
spect to the management context of the environment. In addition, each management
agent maintains information about its immediate neighbourhood in the overlay, which
has direct influence on its behaviour. In particular, a management agent’s limited view
of the environment restricts the number of communication partners, with which it has
to interact. This restriction of environment context helps to reduce communication
efforts of a management agent and induces a less complex state space that it has to
deal with at runtime.

The organisation of the management overlay is designed in accordance with the de-
sign paradigm of service-orientation. The autonomous nature of each management
agent corresponds to that of a service, as defined in the design paradigm. Despite the
high similarity between management agents and services (e.g., service abstraction,
loosely coupling, service reusability, etc.), the largest motivation of applying service-
orientation in the management overlay is the resulting homogeneous collaboration
environment for management agents. Communication between management agents is
carried out via standardised Web service protocols, such as the specifications of the
Web services technology stack discussed in [BHM+04]. In particular, specifications
for enabling distributed management (e.g., WSDM) and electronic contracts (WS-
Agreement) are of particular interest to management agents. By using these specifica-
tions, management agents can unambiguously exchange messages among one another.

P a r t I I – C h a p t e r 5.1 � Agent-oriented Design

146

The management overlay establishes a homogeneous and scalable collaboration
layer on top of heterogeneous SOEs. On the one hand, as discussed in Section 3.1,
recursive functional dependences determine that all related service components have
to collaborate with one another to ensure desired functionalities on the global level.
That is, they have to coordinate their activities in a way, in which service providers
support their consumers to accomplish their operational objectives. On the other hand,
management agents are autonomous with respect to their behaviour in the manage-
ment overlay. Each management agent is only responsible to its corresponding service
component in the underlying service layer. In other words, a management agent repre-
sents interests of its respective service component in the management overlay. There-
fore, related agents in the management overlay have to facilitate collaborations with
one another, so that their respective service components can achieve a given opera-
tional objective in a well-coordinated manner.

The following section is concerned with collaboration between management
agents. Among other things, Section 5.1.2 investigates the character of the manage-
ment overlay and determines appropriate collaboration mechanisms in the overlay.

 Collaboration between Management Agents 5.1.2

So far, the previous section has outlined the necessity to establish collaboration be-
tween related management agents in the management overlay. Different organisations
may design service components in an SOE for varying purposes. This leads to the fact
that service components do necessarily share common operational objectives. Howev-
er, in order to deliver value-added services (e.g., business processes) to end users with
given operational objectives, service components have to be orchestrated. That is, var-
ious service components have to collaborate with one another, so that they can act
strategically to achieve desired outcomes on the global level.

Furthermore, a dynamic runtime environment demands that service components
have to adapt their runtime behaviours dynamically in accordance with their environ-
ment. Hence, their management agents are expected to act autonomously to decide
what to do at runtime, rather than having all situations as well as corresponding reac-
tions hard-coded in their implementations. In particular, related management agents
have to coordinate their activities to control runtime behaviour of their respective ser-
vices components.

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

147

Hence, this section is concerned with issues related to collaboration between man-
agement agents. In detail, this section addresses:

� organisational patterns to organise management agents in the overlay,

� possible forms of collaboration between management agents,

� and how management agents can collaborate with one another to facilitate end-
to-end SLM in an SOE.

Organisational patterns applied to a multi-agent system have significant impact on
the collaborative behaviour of the agents at runtime. As pointed out by Carley and
Gasser [CG99], they determine roles of various agents, relationships between them,
and a structure to organise them. In addition, an organisational pattern specifies how
agents can interact with one another to realise a particular goal on the global level.
Hence, appropriate organisational patterns are crucial to organise a group of inde-
pendent agents systematically to exhibit more complex behaviour patterns on the
global level.

The basis for choosing the appropriate organisational pattern for a management
overlay is the recursive provider/consumer relationship in the underlying SOE. As
discussed in Section 4.1, recursive provider/consumer relationships span a hierar-
chical dependence chain between related service components across an SOE. The ex-
ample of the competence field process illustrated in Figure 5-2 shows this depend-
ence. In the sample scenario shown in Figure 5-2, the provider/consumer relationship
between the business process and its end users is governed by an end-to-end SLA.
This SLA specifies guarantees with respect to quality of service delivery of the busi-
ness process. As aforementioned, the business process operates on top of a range of
service components in the IT infrastructure. Therefore, the negotiated agreement be-
tween the process and its end users determines the desired runtime behaviour of both
service providers in the service domain to some extent. Both service providers run in
turn on top of their supporting servers from the application layer.

Such a recursive consumption scheme is applied top-down until the lowest layer of
an SOE, whose components do not have any further providers for their part. In this
way, the top-down hierarchical dependence chain spans a finite tree structure involv-
ing all supporting service components for a particular business process. The business
process itself builds the root of the tree. Each connection between two nodes in the
tree structure indicates that a service component of an upper layer consumes some
service from a service component of a lower layer. By doing this, a service component

P a r t I I – C h a p t e r 5.1 � Agent-oriented Design

148

can delegate part of the implementation of its functionalities to a service component in
the lower layer.

From this consideration, it is imperative for a service component to make sure that
its service providers deliver their services in an acceptable range, in particular with
respect to objectives specified by its consumers. Therefore, to enable a consistent and
holistic service level management across all related service components, all related
components in the hierarchical dependence chain must be included in the correspond-
ing SLM processes. As pointed out by Liu, Thanheiser, and Schmeck [LTS07,
TLS07], the hierarchical dependence structure of an SOE requires a hierarchical or-
ganisational pattern to facilitate collaborations between management agents. The
management agent of a business process forms the root of the hierarchy. Management
agents of service components that do not consume any other services form the leaves

Figure 5-2: Hierarchical provider/consumer relationships by means of a sample SOE

business
domain

process
domain

service
domain

application
domain

infrastructure
domain

infrastructure
domain

organisational
boundary

service
provider/
consumer
instance

SLA

provider/
consumer
relationship

competence
field service

provider

consumer

person
service

consumer

provider

business

consumer

competence
field process

consumer

provider

Web server

consumer

provider

storage

provider
computing

power

Web server database
server

storage

provider provider

consumer

provider provider

LDAP server

provider

conssumerrconssumerr

provider

prooviderrprooviderrprovviderprovvider

field process
conssumerr

field service
connsumerconnsumer

prooviderr provvider

service
consuumerconsuumer

provvider proovider

provviderprovvider

server
consumerconsuumer

provviderprovvider providerprovider

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

149

of the hierarchical tree. All other management agents form intermediate nodes be-
tween the root and the leaves.

At runtime, the agent of a business process triggers collaborations between man-
agement agents within a hierarchical dependence chain. This is determined by the fact
that as the root of a hierarchical chain, a business process closes a service level
agreement with its end users. Since a business process delegates part of its functionali-
ties to its providers, it has to ensure that not only itself but also its service providers
must operate in conformance with quality terms defined in the agreement. Therefore,
their respective management agents have to collaborate with one another to coordinate
their activities. In this way, a service consumer can ensure that its underlying service
components can jointly enforce quality terms specified by the agreement.

Recursive provider/consumer relationships in a hierarchical dependence chain re-
quire that the initial collaboration triggered by a business process has to be propagated
top-down to all related service components in the lower layers. For example, as shown
in , a Web service provider of the competence field process, e.g., the person service,
depends functionally on servers located in the application layer. Hence, its manage-
ment agent has to collaborate with agents of those servers, so that they can cooperate
to ensure overall runtime behaviour of the person service. In this way, all service
components are gradually involved in the global collaboration, top-down, and lay-
er-by-layer.

In addition, it is worth noting that not all participating management agents involved
in the collaboration are equivalent in their roles. The management agent for a service
consumer plays the master role in the collaboration. That is, it has to fulfil binding
QoS terms in the agreements it closes with its consumers. To this end, it has to in-
volve its providers by delegating part of the specified QoS obligations to them. That
is, the management agent has to encourage its supporting providers to commit to cer-
tain non-functional obligations, so that it in turn can meet its assurance to its consum-
ers. Therefore, management agents of service providers play a slave role in the course
of collaboration. They are expected to respond to requests of their consumers regard-
ing quality of service delivery. By doing this, a service component (i.e., with the mas-
ter role) with the help of its supporting service components (i.e., with the slave role)
can ensure to deliver its service in compliance with quality terms it has agreed on with
its consumer.

P a r t I I – C h a p t e r 5.1 � Agent-oriented Design

150

Hence, the objective of each service component in the collaboration is to coordinate
its activities and those of its service providers appropriately with respect to its opera-
tional objectives. It is therefore of particular interest to determine how management
agents can cooperate with one another. Among other things, an appropriate collabora-
tion allows a master management agent influencing the runtime behaviour of its slave
management agents, while these slave management agents can maintain their autono-
my and individuality in the collaboration. In other words, slave management agents
are not expected to give up control over their local resources partly or even complete-
ly to their master agent in the collaboration.

Furthermore, it is worth noting that existing collaboration mechanisms in MAS,
such as task sharing, cannot be applied directly to management agents. First, task
sharing implies that slave agents are going to execute any task that the master agent
distributes to them. In this way, they lose a large part of their control over their local
resources. Secondly, task sharing requires that slave management agents are homoge-
neous to a wide extent. Only so, they can accomplish assigned subtasks unambiguous-
ly. This is however not achievable in a heterogeneous SOE. In addition, task sharing
does not provide any assurance on non-functional aspects of how the tasks are accom-
plished. In contrast, in an SOE, it is desirable that collaboration between management
agents should help to maintain long-term relations between related service compo-
nents, in particular in terms of service contracts. In this way, a service consumer can
reach certain stability in the construct of its underlying service providers.

Therefore, the present thesis uses the concept of SLAs in a uniform way, in particu-
lar in the context of multi-level SLM within an SOE. SLAs only contain abstract
terms regarding quality of service delivery, as discussed in Section 3.2. Hence, under
the assumption that related service components use the same QoS ontology model,
SLAs are generic enough to unambiguously transfer information regarding service
levels between service components. Therefore, they are suited to be used as homoge-
neous messages between a set of collaborating heterogeneous management agents.

If a service provider has negotiated an SLA with its consumer, it can interpret the
agreement individually in its local context. In this sense, negotiation is of particular
importance for service providers. Via negotiation, they do not simply follow requests
from their consumer. Instead, they can give their views on negotiation issues. From
this point of view, a slave management agent does not lose its autonomy in the collab-
oration. Furthermore, a negotiated SLA between a service consumer and its provider

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

151

regulates the obligations and prohibitions of them in the course of their interactions.
Therefore, a negotiated SLA as a contract leads to a long-term relationship between
the related components.

Collaboration between related management agents is concerned with establishing
SLAs between related service components. Figure 5-3 illustrates collaboration be-
tween the management agent for a consumer, i.e., the master agent, and the agents for
its providers, i.e., the slave agents.

At the beginning of the collaboration, a service consumer receives an SLA with a
set of non-functional requirements. These requirements represent the overall require-
ments on the runtime behaviour of the consumer and its providers. That is, both the
consumer and the providers are requested to coordinate their activities so that they can
jointly meet these requirements. The master agent decomposes the incoming require-
ments into a range of sub-requirements, depending on individual capabilities of its
providers. These sub-requirements are then submitted to the corresponding manage-
ment agents as base for further negotiation. In the negotiation phase, the master agent
and the slave agents exchange offers and counter offers between one another, until
they find mutually acceptable agreements. In the last stage of collaboration, the pro-
viders commit to the negotiated agreements with their consumer. From this point in
time, they build a long-term relationship with each other regulated by the closed
agreements, whereupon the consumer begins to invoke functionalities offered by its
providers. The suitable negotiation protocol with detailed description of collaborative
activities between a service consumer and its providers is defined in Section 6.5.

Figure 5-3: Collaboration between master/slave management agents

C

requirements
decomposition

SLA

P1 Pn

C

requests
announcement

SLA

Pm… …

C

negotiation

SLA

C

SLA

req. req. req. com. com. com.

commitment

C consumer agent Pm provider agent req. QoS requirements com. QoS commitment

P1 PnPm… … P1 PnPm… … P1 PnPm… …

P a r t I I – C h a p t e r 5.1 � Agent-oriented Design

152

In a word, collaboration between management agents is carried out in the form of
negotiation. Within negotiation, both master agent and slave agents maintain their au-
tonomy. Differences of opinions between collaborating management agents are settled
by using negotiation. Offers exchanged in the course of negotiation only contain plat-
form-independent SLAs, which can be interpreted individually by management agents
in their local context. Once a consumer finishes negotiating an SLA with its provider,
they establish a long-term provider/consumer relationship. Both contract parties are
expected to contribute jointly to enforce the negotiated SLA.

 Design Rationale 5.1.3

Extracting management-related concerns from the operational service-oriented layer
into a separate management overlay enables a clear separation between management-
centric and service-centric communication. In the management overlay, communica-
tion between various management agents allows them to cooperate with one another
to coordinate activities of their respective service components in the underlying ser-
vice-oriented layer.

In the management overlay, each management agent simultaneously has a local and
a global context. Locally, each management agent interacts with its corresponding
service component in the underlying layer to provide self-organising capabilities.
Globally, each management agent is situated in an environment consisting of other
related management agents with functional dependences. These management agents in
the neighbourhood are potential cooperation partners at runtime. To facilitate coopera-
tion at runtime, each management agent exposes a range of services to other manage-
ment agents in the overlay while keeping its internal autonomous behaviour unaffect-
ed. To this end, service-orientation is applied to the management overlay to improve
the interoperability of the management agents and its responsiveness at runtime.

Furthermore, employing design principles of service-orientation in the management
overlay keeps it flexible with respect to changes in the underlying service-oriented
layer. Any changes in the service-oriented layer result in respective change(s) in the
management overlay. For example, if a new service component is introduced to the
service-oriented layer, its corresponding management agent is added to the manage-
ment overlay, too. Furthermore, the open architecture of the service-oriented man-
agement overlay allows integrating further management agents with specific capabili-

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

153

ties into the management overlay. For example, a management agent can provide de-
cision support service in case of uncertainties/conflicts to other management agents.

In addition, as pointed out by Liu, Thanheiser and Schmeck [LTS07], in order to
cope with complexity associated with distributed SLM, there are three general strate-
gies: abstraction, delegation, and variability reduction. By considering these strate-
gies, the agent-oriented design of the management overlay reduces the complexity of
the multi-level SLM approach in the following way:

� Abstraction: Using abstract SLAs hides implementation details from other
management agents. SLAs contain only abstracted information on particular
QoS parameters regarding service delivery of a service provider. Hence, terms
specified in an SLA have no direct reference to the underlying technical details
of a respective service component, e.g., configurations of local resources.
Therefore, both management agents in the collaboration can keep their negotia-
tion on an abstract level, without having to consider underlying technical de-
tails, which obviously imposes additional complexity in SLM processes.

� Delegation: Negotiation allows a service consumer delegating part of its re-
sponsibility to its service providers. Through collaboration, a master manage-
ment agent can coordinate its activities with those of its slave management
agents. By doing this, all management agents can ensure that the overall
runtime behaviour of the consumer complies with its external objectives. From
the viewpoint of SLM, delegation helps a provider to reduce its efforts to en-
force external objectives.

� Variability reduction: This strategy focuses on reducing system complexity by
downsizing the system variability. An abstract SLA covers a limited part of
service level objectives that a respective service component exposes. From the
viewpoint of other management agents, this reduces the variability that those
agents have to deal with to a minimal extent.

In addition, applying service-orientation and agent-oriented design to the manage-
ment overlay addresses a large part of the architectural design challenges discussed in
Section 4.2. Among other things, this approach covers the following challenges:

� Decentralisation and distribution: In an organic SOE, distributed management
agents organised in compliance with the design principles of service-
orientation enables decentralised control of a service-oriented application. This
streamlines decentralised control essentially to cope with the inherent distribut-
ed characteristic of an SOE.

P a r t I I – C h a p t e r 5.1 � Agent-oriented Design

154

� Dynamism: A management overlay employing the design principles of service-
orientation reveals the dynamic characteristics of SOA-based systems. Various
approaches from service-orientation help the management overlay to cope with
high dynamism of the underlying service-oriented layer, such as the WS-
Discovery specification for discovering services. Any ad-hoc change in the un-
derlying SOE can be reflected to the management overlay on the fly. In this
way, the management overlay is kept up-to-date with the underlying landscape.

� Heterogeneity and interoperability: The underlying service-oriented layer is
heterogeneous with respect to technical platforms and supporting technologies.
The design paradigm of service-orientation resolves the problems caused by
heterogeneity by employing a set of standards, such as XML, SOAP, and
WSDL. Applying service-orientation and abstract SLAs to the management
overlay ensures that communication and collaboration between management
agents in the overlay can take place independently of their heterogeneous tech-
nical implementations.

� Scalability: any change in the underlying service-oriented system results in an
analogous change in the overlay. This allows the management overlay to scale
in accordance with the underlying SOA-based system.

� Service autonomy: Using agent-oriented design in the management overlay al-
lows service components to retain their autonomy in the SLM processes. Relat-
ed management agents representing interests of corresponding service compo-
nents collaborate among one another to guarantee some given external objec-
tives jointly. Hence, negotiation allows a management agent to solve conflicts
with other related management agents, in particular in case of different opera-
tional objectives. From this viewpoint, service components can maintain their
autonomy to control their local technical resources.

� Dependence: Management agents are aware of their direct neighbourhood with
related agents in the environment. They use this dependence information to de-
termine their collaboration partners and their roles in the collaboration, i.e., ei-
ther the master agent that distributes requests or the slave agent that responds to
incoming requests. In this way, the functional dependence chain in an SOE is
fully considered in the SLM processes.

However, in comparison to traditional centralised management solutions, the de-
centralised and distributed architecture of the management overlay implies some limi-
tations. Obviously, decentralised control applied in the management overlay requires

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

155

more communication and coordination efforts, which may negatively affect the per-
formance of the whole system. In contrast to this, a centralised management system
can make decisions based on globally available information and resources.

Moreover, each management agent has only a limited view of the entire system,
which may lead to suboptimal decisions without reference to global objectives. Deci-
sions made by a management agent optimally address the local situation of the under-
lying service component. However, these decisions may not be optimal with respect to
other related service components on the global level. However, these limitations are
compensated by the robustness that the management overlay has, in contrast to single-
point-of-failure of centralise management solutions.

5.2 Management Agent

Management agents are the part in an organic SOE that connects the management
overlay with the underlying SOE. On the global level, a management agent collabo-
rates with other related agents in the management overlay to coordinate their activi-
ties. On the local level, a management agent controls its underlying service compo-
nent autonomously in compliance with SLAs negotiated with its providers/consumers.

Hence, this section is concerned with the internal architecture of a management
agent. It outlines how the functional parts of the architecture work together to estab-
lish collaboration on the global level as well as locally controlled self-organisation on
a particular service component. Therefore, Section 5.2.1 provides an insight into the
overall architecture of a management agent. The sections 5.2.2 to 5.2.5 introduce the
functional parts of the architecture in detail. Section 5.2.6 undertakes a review on the
architecture with respect to the design requirements, summarised in Section 4.3.

 Architecture 5.2.1

As discussed in Section 5.1, a management agent is responsible to collaborate with
other related management agents to coordinate their activities as well as those of their
respective service components via negotiation. In addition, a management agent has to
establish controlled self-organisation in the underlying service component driven by
the negotiated SLA. Hence, a management agent is composed of two major parts: one
for conducting global collaboration and the other for locally realising SLA-driven

P a r t I I – C h a p t e r 5.2 � Management Agent

156

self-organisation. This section focuses on these two parts and, on a higher level, ad-
dresses the major functional parts of the architecture for a management agent. This
section is based partly on the work by Liu, Thanheiser, and Schmeck [LTS07] as well
as [LTS08].

Figure 5-4 depicts the high-level architecture of a management agent. In the archi-
tecture, the SuOC of a management agent represents the local operational context of a
management agent. It contains all operative service components that carry out prede-
fined business capabilities, such as a business process that provides process-level sup-
port to end users, or a Web server that provides hosting services for Web services.
Business capabilities define functionalities that a service component offers to other
service components in the service-oriented layer. A consumer can access business
capabilities through their service interfaces.

A service interface separates the invocation aspect of a service component from its
operational aspect. As defined in accordance with the design principles of service-
orientation, a service interface abstracts technical implementations of a service com-
ponent for potential service consumers. A service consumer can only access a provi-
sioned service via its predefined service interface. This explicit separation between a
specified service access point and its underlying technical implementation allows a
service provider and its consumer to define artefacts explicitly related to service invo-
cation, such as SLAs. These artefacts only refer to runtime behaviour of a service ex-
perienced by a service consumer at the service access point, which are determinative
for estimating metrics for SLM processes.

One prerequisite for involving a service component into the global management
context is that this service component has to provide manageability capabilities to its
management agent. Only via these manageability capabilities, a management agent
can monitor the operational state of its respective service component and influences
its runtime behaviour by reconfiguring it in an automated manner. These manageabil-
ity capabilities can be exposed via an abstracted and standardised management inter-
face, where external management applications like a management agent can access
them (e.g., in alignment with WS-Management or WSDM). Similar to the role of a
service interface, a management interface represents the single access point for exter-
nal management applications to get access to management functionalities.

In addition, it is worth noting that both a service interface and a management inter-
face do not have any reference to the global context or other operative components in

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

157

the environment. In particular, management capabilities provided by a management
interface operate only on the technical resources of the SuOC in a local context, such
as increasing the amount of resources assigned to a particular service instance, or de-
creasing the priority of incoming requests from a particular consumer instance. Simi-
larly, a management interface provides only access to the runtime information of the
local SuOC, i.e., the underlying service component. Hence, the local focus of a man-
ageability interface limits the state space that a management agent needs to deal with
at runtime. This limitation leads to an efficient decision-making process of the agent.
Furthermore, strict definition of the management domain in the SuOC allows a clear
design of the management agent. This helps to avoid undesired dependencies between
management agents due to overlap of their management domains.

A management agent operates on top of the SuOC. Communication between a
management agent and its SuOC is achieved by using the aforementioned managea-
bility interface of the SuOC. Via this interface, a management agent collects runtime
information from its underlying service component. Monitored information gives a
management agent an insight into the operational states of the underlying SuOC.
However, such management information is generally composed of a large amount of

Figure 5-4: Architecture of the management agent

management agent

Co
lla

bo
ra

-
tio

n

lo
ca

l O
/C

ar

ch
ite

c-
tu

re

hi
gh

-
le

ve
l

co
nt

ro
l Web service

interface

controller

high-level controller

observer

collaboration manager

global business
objectives

maximal customer
satisfaction, cost
minimising...

collaboration
interface

lo
ca

l
op

er
at

io
n

co
nt

ex
t SuOC

(process / service / application / …) service interface

management
interface

control
actions

control
actions

runtime
information

SLAs

exposes

exposes

exposes

collaboration
model

observation
model

control
model

situation
parameters

P a r t I I – C h a p t e r 5.2 � Management Agent

158

raw data describing operational states of the SuOC, e.g., information about processing
incoming requests (request arrival time, queuing time, processing time, and comple-
tion time). This raw data with less quality provide a management agent with a very
restricted view of the current state of the SuOC. Hence, a management agent utilises a
set of further components internally to process incoming management information, to
consolidate it, to analyse it, and to make decisions to perform necessary corrective
actions on the SuOC, with respect to given objectives. On the other hand, a manage-
ment agent needs further components to interact with other related agents in the man-
agement overlay. Hence, the remainder of this section describes the main components
of a management agent bottom-up and outlines interactions between them.

The local O/C architecture on top of the SuOC is the component that performs local
management activities immediately on the SuOC, if necessary. To this end, the local
O/C architecture is composed of two components - the observer and the controller, as
specified in the observer/controller architecture introduced in Section 3.4. Both com-
ponents operate in the local context of the SuOC with no reference to other compo-
nents in the environment. They make decisions only based on locally available infor-
mation the observer collects from the underlying SuOC. In turn, actions that the con-
troller chooses for execution only affect the SuOC itself. It is not desired that the con-
troller considers runtime states of components from other SuOCs during its decision-
making process. It is a necessary design decision to maintain the autonomy of tech-
nical components in the service-oriented layer. Following this restriction consequent-
ly, each management agent has a clearly defined management domain consisting of
the underlying SuOC. Each agent has the necessary authority to control the underlying
service component without breaking its autonomy.

The observer measures, quantifies, analyses, and predicts runtime behaviour based
on raw management data collected from the underlying service component. As such,
the observer uses manageability capabilities provided by the SuOC to collect low-
level management information at runtime. As aforementioned, such raw data provides
poor information about the current system-wide status of the SuOC, in particular with
respect to QoS parameters. Obviously, it is not possible to use raw management data
directly to draw conclusions about operational states of the service component.

Hence, this raw management data must be consolidated to a system-wide finger-
print that depicts system states of the respective service component on the global lev-
el. For example, a fingerprint may make an assertion about whether the current SLA is

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

159

violated by a provider. To this end, the observer utilises a range of analysis tools to
consolidate the raw management data. This process may include steps:

� to consolidate collected raw data with respect to given management objectives,

� to search pre-processed data for recognisable patterns with help of various
mathematical and statistical methods,

� or to forecast the next system-wide behaviour of the observed component.

In addition, in order to assess conformance of current operational states of a service
component with the service contract it closes, the observer is aware of the correspond-
ing SLA. QoS parameters defined in an SLA represent target values of the operational
states, where consolidated management data represents actual values of the state. Us-
ing these values, the observer can determine conformance of the current operational
states with those target values defined in the SLA. The observer forwards the resulting
fingerprint consisting of the current operational states and SLA conformance infor-
mation as so-called situation parameters to the controller.

Upon receiving situation parameters from the observer, the controller has to choose
the best appropriate actions accordingly. The ultimate goal of the controller is to guide
the SuOC to show the desired behaviour in compliance with its operational objectives.
To this end, the controller is composed of two integral subcomponents. The heart of
the controller is an adaptation module that utilises various learning algorithms to cor-
relate situations with appropriate actions. For example, a learning classifier system
can be used to classify incoming situation parameters and to map particular situa-
tion(s) to appropriate actions in a learning-by-doing manner. However, in critical
business applications, wrong control actions can lead to serious damages in the busi-
ness. Hence, the second subcomponent in the controller is responsible to generate ac-
curate classifier rules by learning algorithms based on offline simulation models. As
such, the controller can test the accuracy of particular rules offline before they are ap-
plied for live control on the real SuOC.

The controller and the observer together enable an underlying service component
to adapt to its operational environment in accordance with given operational objec-
tives specified in an SLA. As aforementioned, this type of adaptive control is carried
out in the local context of the underlying service component. Hence, a management
agent has to collaborate with other related management agents to coordinate their ac-
tivities. To this end, the collaboration manager operates on the global level to facili-
tate collaborating activities with other related management agents. It helps a manage-

P a r t I I – C h a p t e r 5.2 � Management Agent

160

ment agent to understand its role and responsibilities in the global management over-
lay. Such global context is incorporated by the local O/C architecture to support its
local decision-making.

The collaboration manager has an understanding about its environment. That is, it
is aware of other related management agents that have provider/consumer relation-
ships to the current management agent. These related management agents are potential
collaboration partners of the current agent. The focus of collaboration between two
related management agents is to negotiate and establish an SLA between them, which
gives a consumer some assurances regarding quality of service delivery. For a service
provider, an appropriately negotiated agreement makes it possible to perform proac-
tively SLA-driven management of its local technical resources. Such configuration
takes place not only during initialisation of the whole environment, but also during
operation at runtime.

Service-oriented design of a management agent is addressed by the collaboration
interface based on Web services. Thus, management agents can take advantages of the
Web service technology stack to enable reliable, interoperable, and robust communi-
cation among one another. Furthermore, the service-oriented collaboration interface
decouples related management agents from one another, which results in increasing
flexibility and scalability of the entire management overlay. In combination with other
approaches such as dynamic discovery, the collaboration interface helps to keep the
management overlay up-to-date without any manual procedures.

Until now, the local O/C architecture and the collaboration manager provide a
management agent with the necessary abilities to self-organise. However, a manage-
ment agent still lacks an appropriate interface for human participants to influence its
behaviour as well as that of its service component. For example, it is assumed that a
business intends to provide their IT services with maximal customer satisfaction.
Hence, the related service components should correspondingly configure their local
resources to enhance service level objectives that are directly related to user experi-
ences, such as reduced response time or increased availability.

Hence, a management agent uses an additional component, the high-level control-
ler, to realise the interface to human participants. As input, the high-level controller
receives business objectives from human participants. It is noteworthy that business
objectives express only abstract business goals that are less correlated with the under-
lying technical implementations of a service component. A possible business objec-

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

161

tive may be to maximise customer satisfaction, or to maximise financial profits of the
IT infrastructure. These business objectives are translated by the high-level controller,
depending on its knowledge about correlations between high-level business objectives
and low-level technical details.

Therefore, the high-level controller influences the behaviour of the local O/C archi-
tecture and the collaboration manager, while they in turn control the behaviour of the
underlying service component in the SuOC. Hence, from given business objective(s),
the high-level controller derives an observation model for the observer, a collabora-
tion model for the collaboration manager, and a control model for the controller, re-
spectively. These models specify how the corresponding components have to behave
at runtime. For example, an observation model states the set of management infor-
mation that the observer has to collect from the underlying SuOC. A collaboration
model guides the collaboration manager in its negotiation by specifying priorities of
particular QoS parameters. The control model supports the controller to make deci-
sions in accordance with global business objectives.

With the high-level controller, a management agent is able to establish controlled
self-organisation in technical service components, with respect to given service levels.
The following sections provide a detailed insight into the internal structures of the
components discussed in this section.

 High-Level Controller 5.2.2

The high-level controller is the brain of a management agent. Its primary responsibil-
ity is to guide runtime behaviour of a management agent in accordance with external
business objectives. Hence, it derives necessary control models from given business
objectives and forwards them to the collaboration manager and the local O/C architec-
ture for further enforcement at runtime. Such control models provide statements about
operational objectives regarding desired quality of service levels. For example, given
a business objective to maximise satisfaction of end users with IT services, control
models derived may place emphasis on QoS issues associated directly with user expe-
riences, such as availability of IT services for business days/holidays, or average re-
sponse time during peak time.

The design of the high-level controller depends strongly on the type of business ob-
jectives received from the high-level control instance (i.e., human participants). Here-

P a r t I I – C h a p t e r 5.2 � Management Agent

162

in, it is noteworthy that business objectives can be either business-centric (such as
increasing revenue generated by the enterprise IT) or IT-centric (such as minimising
cost of business processes). As figured out by Thanheiser, Liu, and Schmeck [TLS08],
different layers in the enterprise IT, from the corporate governance layer down to the
infrastructure layer, have varying objectives depending on their views on the enter-
prise IT.

Figure 5-5: Hierarchy of business objectives (see [TLS08])

Similar objectives are defined in the ITIL framework [RL07], where the manage-
ment policies are organised vertically from the viewpoint of varying management
focuses, such as availability management, capacity management, change manage-
ment, and so on. Figure 5-5 depicts the recursive delegation relationships between
such objectives for the layers.

As depicted in , objectives of various layers are not isolated from one another. In-
deed, objectives of two neighbouring layers have a kind of delegating/supporting re-
lationship. Objectives of a lower layer are set to support those objectives of a higher
layer, which delegates part of its responsibility downwards to service providers in the
underpinning layer. From this viewpoint, all objectives across all layers are linked to
one another tightly through the recursive delegation relationships between them.

The corporate governance layer consists of a set of processes to control the way in
which the whole organisation is administered. Hence, corporate governance works
with objectives that are highly aggregated and less related to particular technical as-
pects of the enterprise IT, such as “increasing customer satisfaction in the next fiscal

IT service management

process layer

service layer

application layer

infrastructure layer

IT governance

corporate governance

bu
sin

es
s-

ce
nt

ric
IT

-c
en

tr
ic

sample objectives

increase customer satisfaction in the next fiscal year

enhance customer‘s experience with IT services

increase service availability

process X should be available during 99% peak time
of business days

availability of the service Y > 99.5%

availability of the application Z > 99.85%

availability of the network connectivity > 99.999%

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

163

year.” Thereby, the connecting piece between corporate governance and enterprise IT
is IT governance. It derives IT-related objectives from given objective for corporate
governance and defines which strategies the underlying IT infrastructure should pur-
sue to archive business objectives of corporate governance. For example, for the pre-
viously used sample objective to increase customer satisfaction, the derived objective
for the IT governance could be “enhancing customer’s experiences with IT services.”

The IT service management layer is the one in enterprise IT that manages life cy-
cles of IT services to meet the needs of a business. Hence, it works with IT-related
metrics that quantify operational states of the underlying IT infrastructure, such as
availability, response time, throughput, and so on. To this end, the IT service man-
agement layer must address the issue of linking business-oriented layers with IT-
oriented layers. Questions like how a given business objective is supported by the un-
derlying IT infrastructure or how the underlying IT infrastructure influences the busi-
ness-oriented layers, are considered in this layer. For example, the sample objective of
IT governance in Figure 5-5 can be interpreted as “to increase availability of IT ser-
vices” or “to reduce average response time of IT services.” To this end, the IT service
management layer utilises a range of models and tools to estimate dependences be-
tween business-related metrics and IT-related metrics quantitatively. It uses such
quantified correlations to improve alignment between business and enterprise IT.

Mapping between business objectives and IT-related metrics is however out of
scope of the present thesis. The key issue related to the present thesis is to determine
the type of objectives with appropriate granularity that affects control behaviour of
management agents. Because of the IT-centric nature of management agents and their
close relationships to services, it is reasonable that management agents work with IT-
centric objectives rather than more abstracted business-centric objectives. That is, a
management agent gets its high-level objectives from the IT service management lay-
er. Such IT-centric objectives guide a management agent to control its underlying ser-
vice component in compliance with global business objectives on corporate govern-
ance level.

A management agent can derive the following control models from high-level ob-
jectives given by the IT service management layer:

� Observation model: An observation model defines measures to collect and ag-
gregate raw data from the underlying SuOC. It determines a set of relevant raw
data that the observer must collect from the SuOC at runtime. In addition, it

P a r t I I – C h a p t e r 5.2 � Management Agent

164

specifies procedures to aggregate the collected data, and a set of situation pa-
rameters that should be passed to the controller. Thus, an observation model re-
stricts the amount of information passed through to the controller to a minimal
set. This procedure reduces the state space that a management agent has to deal
with for making decisions. As such, it increases efficiency of a management
agent to process comprehensive runtime states of the SuOC.

� Control model: A control model guides the behaviour of the controller to main-
tain desired operational states in the underlying service component, i.e., the
SuOC. In particular, a control model defines operational goals of the service
component with respect to objectives it receives from the IT service manage-
ment layer. Among other things, these operational goals specify a set of non-
functional (i.e., QoS) parameters that are of particular importance for the con-
troller. By respecting these specified parameters, the controller can ensure to
align its maintenance activities to global business objectives.

� Collaboration model: A collaboration model provides the collaboration man-
ager with necessary guidance on how to negotiate with other management
agents in the environment. Among other things, the collaboration manager can
use the model to determine priorities of non-functional parameters involved in
a negotiation process. For a negotiation process with identical conditions, pri-
oritising non-functional parameters differently may lead to completely different
outcomes of negotiation. Hence, while a given SLA is acceptable for a man-
agement agent, the same agreement may be unacceptable for another agent
with different control models.

In brief, the high-level controller provides an interface between an autonomous
management agent and other high-level control instances (e.g., human participants) in
the environment. Via this interface, high-level control instances supply a management
agent with external directives (i.e., those derived from global business objectives). As
such, high-level control instances can influence the decision-making processes of a
management agent that otherwise operates autonomously. This enables underlying
service components to act locally in a self-organising manner, while keeping their be-
haviour in alignment with global business objectives.

 Collaboration Manager 5.2.3

The collaboration manager is the part of a management agent that connects it to its
neighbourhood in an SOE. The loosely coupled nature of service components in such

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

165

an environment and the resulting functional dependences between them determine that
service components have to work together to achieve global business objectives.

Figure 5-6: Structure of the collaboration manager

The collaboration manager is mainly responsible to get aware of an agent’s envi-
ronment, determines a set of potential management agents to collaborate with, carries
out negotiation activities with them, and maintains service level agreements with re-
lated service components. To this end, the collaboration manager utilises a range of
interacting functional subcomponents, as illustrated in Figure 5-6. The remainder of
this section introduces the functional subcomponents briefly. The more detailed de-
scription of the functionalities of each subcomponent is provided in Chapter 6. In par-
ticular, Chapter 6 focuses on negotiation capabilities within the collaboration manager
and outlines how they are implemented to facilitate negotiation activities between re-
lated management agents.

management agent

Web service
interface

controller

high-level controller

observer

collaboration manager

global business
objectives

maximal customer
satisfaction, cost
minimising...

Collabora-
tion interface

situation
parameters

negotiatorcoordinator

environment model

history

decision maker

SLA life cycle manager

SLAs

exposes

control
actions

exposes

collaboration
model

observation
model

control
model

SuOC
(process / service / application / …)

control
actions

service
interface

management
interface

exposes
exposes

runtime
information

selects selects

P a r t I I – C h a p t e r 5.2 � Management Agent

166

Collaboration Model

The collaboration model specifies primarily an agent’s behaviour in the course of col-
laboration with other agents. In particular, it characterises negotiation strategies of a
management agent, i.e., utility functions for estimating an SLA’s quality as well as
decision-making support in negotiation. For example, it is assumed that the global
business objective is to maximise user experiences with given business processes.
Thus, the collaboration model can select an appropriate negotiation strategy that em-
phasises on performance and dependability with limited negotiation time constraint.
This determines that QoS parameters regarding performance and dependability, such
as availability, response time, or throughput, are rated higher than other parameters,
e.g., service cost, in the respective negotiation strategy.

Furthermore, by selecting a decision making model for a management agent, the
collaboration manager also determines the willingness of a management agent to co-
operate with other agents. The decision making model defines, under which circum-
stances a management agent can accept an incoming offer. For example, a selfish
management agent requires that an acceptable incoming SLA AtAt must have higher
utility than its own offer At+1At+1 (i.e., utiltiy(At) > utility(At+1)utiltiy(At) > utility(At+1)); while a cooperative
management agent is going to accept an incoming offer, if it has the same utility as its
own offer (i.e., utiltiy(At) ¸ utility(At+1)utiltiy(At) ¸ utility(At+1)).

Environment Model

Briefly, the environment model specifies a set of related management agents in the
neighbourhood, their relationships to the current management agent, and their rela-
tionships among one another. That is, for any given agent in its neighbourhood, a
management agent is aware of whether it is a service provider, a service consumer, or
some other artefacts. In particular, if a service component consumes services simulta-
neously from several providers, its corresponding management agent is aware of all
service providers and their relationships to the component.

The environment model can be built by adopting various discovery mechanisms,
such as WS-Discovery or UDDI. These discovery mechanisms allow a management
agent to explore its environment for potential communication partners and keep such
information up-to-date at runtime.

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

167

Furthermore, in a self-organising SOE, a service consumer is expected to autono-
mously determine its service providers and compose their services to realise a value-
added service. Hence, each service consumer is previously equipped with a meta-
model. Such a model describes the set of service capabilities it needs, pre-conditions
and after-conditions of these capabilities, and compositions of these service capabili-
ties at design time, e.g., by using WSDL and OWL-S. Such logical composition mod-
els precisely describe relationships between all related service providers. Based on
this, a corresponding agent can build up an accurate model of its environment.

Coordinator

The coordinator is the engine of the collaboration manager. Since each service com-
ponent may have several service providers or service consumers simultaneously, there
are in general several parallel negotiation threads between a management agent and its
service providers/consumers. In particular, a service consumer has a given set of QoS
requirements that should be delegated to its service providers via automated negotia-
tion. Hence, these parallel negotiation threads must be appropriately triggered and
coordinated by a central instance, so that the resulting SLAs are aligned with the giv-
en QoS requirements.

To this end, the coordinator requires several inputs to initiate parallel negotiation
threads. The first input is the environment model that delivers an overview of availa-
ble collaboration partners. By means of this model, the coordinator determines the set
of management agents, with which it intends to negotiate.

Secondly, in order to negotiate with other agents, the coordinator must be aware of
functional capabilities of the underlying service component. Among other things, if
the underlying service component plays the role of a service provider, a management
agent has to know possible service levels it can offer to its consumers. Analogously,
for the agent of a service consumer, it has to know the consumer’s requirements on
service levels for particular service providers, so that they can satisfy the consumer’s
overall requirements jointly. Hence, the coordinator utilises history information ar-
chived by the observer to retrieve necessary service level information.

Thirdly, the collaboration model influences the behaviour of the coordinator. In
particular, the collaboration model specifies how the coordinator can allocate overall
service level requirements to each particular service provider, e.g., in a strict manner
with tough boundaries or in a lenient manner with tender boundaries.

P a r t I I – C h a p t e r 5.2 � Management Agent

168

With these inputs, the coordinator initiates negotiation threads separately with all
related service providers to reach an agreement with each of them. In each negotiation
thread, the management agent of a consumer negotiates with the agent of one of its
providers. That is, each negotiation thread consists of a bilateral negotiation with re-
spect to multiple QoS parameters. Thus, the coordinator is responsible to carry out
these parallel negotiation threads and consolidate the resulted negotiation outcomes.
In case that one or more negotiation threads fail to reach an agreement, the coordina-
tor has to roll back eventual side effects of those negotiation threads. Among other
things, the coordinator has to withdraw agreements that have been successfully
negotiated.

It is worth noting that based on the central role of the coordinator in a management
agent, it can also apply some other possible negotiation scheme. In particular, the co-
ordinator can conduct a multilateral negotiation with all its services providers. In this
case, it merges all parallel negotiation threads into a single negotiation thread. This
negotiation scheme gives leeway to the coordinator to find optimal trade-offs consid-
ering all QoS parameters. However, in comparison to this negotiation scheme, the
scheme applied in the present thesis with separated negotiation threads ensures maxi-
mal flexibility to maintain negotiated agreements. In particular, negotiated agreements
can be enforced independently from one another. In case an existing agreement has to
be renegotiated due to agreement violation, the affected agreement can be refreshed
without having to renegotiating others.

Furthermore, the negotiation scheme with a single negotiation thread will be only
beneficial, if all service providers involved in a negotiation thread are cooperative.
That is, they are ready to donate part of their own utilities in favour of other service
providers in the thread. For example, this assumption is only valid, if all service pro-
viders belong to the same organisation and follow a common operational goal. How-
ever, in a heterogeneous SOE, service components cannot be assumed as being coop-
erative in their collaborative behaviour.

Thirdly, a multilateral negotiation results in a single SLA for all service providers.
In a heterogeneous SOE, it is common that service providers involved by a service
component belong to different organisational units with different interests. In this
case, a single SLA does not solve interest conflicts among service providers involved,
in particular from the viewpoint of business-related QoS parameters. Among other
things, it is not explicitly specified by a single SLA how revenues generated by all

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

169

service providers are shared among them. Therefore, a single SLA is not specific
enough to regulate all provider/consumer relationships of a single service component.

Therefore, in comparison to other negotiation schemes, the bilateral negotiation
scheme with separated negotiation threads is mostly suitable for the coordinator.

Negotiator

Bilateral negotiation is carried out between negotiators of two corresponding man-
agement agents. To this end, the negotiator in a management agent applies a particular
negotiation protocol that specifies a range of rules to regulate how it should behave in
the course of negotiation. That is, a negotiation protocol determines how a negotiator
sends an offer to its counterpart, what it should do with an incoming offer, and how it
can commit to an agreed contract with its negotiation partner. The iterated negotiation
protocol applied in the present thesis is described in detail in Section 6.5. By follow-
ing the negotiation protocol, two management agents carry out a bilateral negotiation
on service levels. The negotiation process leads to either an agreement specifying par-
ticular service levels for service delivery, or a cancelation of the entire negotiation
thread if they cannot find a compromise within the given time limit.

In addition, all communication between two negotiators is carried out via a Web
service-based interface, the collaboration interface. Hence, another responsibility of
the negotiator is to implement and provide the necessary Web service interface based
on existing interoperable Web service specifications. As such, two negotiators can
unambiguously interact with each other in a flexible and loosely coupled manner.

Decision Maker

The decision maker is the brain of the negotiator. That is, for each incoming SLA of-
fer, the decision maker determines how the negotiator should handle the offer. To this
end, the decision maker is equipped with utility functions to estimate benefits of SLA
offers for the respective management agent. In addition, it is aware of preferences of
its corresponding negotiator on negotiation issues (i.e., QoS parameters with service
level objectives). Hence, for each incoming offer, the decision maker can determine
how far the offer is away from its expectations. By using such information, it can de-
termine whether to accept an incoming offer or to propose a new counter offer to its
counterpart.

P a r t I I – C h a p t e r 5.2 � Management Agent

170

The collaboration model controls how the decision maker perceives incoming of-
fers. The collaboration model specifies a set of QoS parameters that are of importance
to guarantee global business objectives. Hence, the decision maker correspondingly
weights these QoS parameters in calculation of utilities. That is, the decision maker
intends to preserve values of more weighted QoS parameters in the course of negotia-
tion. By doing this, high-level business objectives are incorporated seamlessly into a
negotiation process and into the resulting SLAs, too.

The other focus of the decision maker is to determine counter offers in the course
of negotiation. In a bilateral negotiation between two management agents, it is not
expected that these agents exchange their preferences on negotiation issues a priori. In
a heterogeneous SOE, this requires an additional trust infrastructure that ensures that
management agents are trustworthy and can trust each other. However, such a trust
infrastructure is often missing in a real-world SOA-based system. In this case, the de-
cision maker has to generate counter offers in absence of preference information of its
negotiation partner. In order to reach an agreement, the decision maker has to perceive
negotiation preferences of its counterpart and proposes offers that are as attractive as
possible to its counterpart.

SLA Life Cycle Manager

If a service consumer can reach agreements successfully with each of its service pro-
viders, these resulting SLAs are going to be applied to the underlying service compo-
nents. From this point in time, the service consumer and its provider(s) establish
loosely coupled provider/consumer relationships governed the negotiated SLAs.
Hence, the main task of the respective management agent changes from negotiating
SLAs with related agents to maintaining the negotiated SLAs locally. During this pro-
cess, the SLA life cycle manager establishes a transition between the global collabora-
tion part and the local management part within the management agent. It forwards
collaboration results in terms of SLAs to the underlying observer/controller instance
for enforcement, and receives control actions from the observer/controller instance
(e.g., to renegotiate a particular SLA), which in turn leads to further collaborative ac-
tivities in the collaboration manager.

As the name says, the functionality of the SLA life cycle manager follows the life
cycle of SLAs, as introduced in Section 3.2.4. Hence, the life cycle manager is re-

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

171

sponsible to negotiate, establish, enforce, and terminate SLAs along their complete
life cycle.

The life cycle manager triggers negotiation processes that are carried out by the co-
ordinator. SLAs resulting from negotiation processes are returned back to the life cy-
cle manager. From this point in time, the life cycle manager continues maintaining life
cycles of these negotiated SLAs. To this end, the life cycle manager hands over nego-
tiated SLAs to the observer/controller instance to enforce them. This enforcement
process is described in detail in Section 5.2.4 and Section 5.2.5.

The observer/controller instance has also a channel to back couple to the life cycle
manager. Under certain circumstances, the controller can select and execute control
actions via the SLA life cycle manager. For example, if a service provider is no longer
able to satisfy a given SLA with its consumer, the respective controller can trigger the
SLA life cycle manager to solve the problem by collaborating with other related com-
ponents. A possible strategy in this case is to renegotiate the violated SLA with the
affected consumer. Alternatively, the SLA life cycle manager can begin to renegotiate
SLAs with the component’s own providers and thus delegate the solution of its per-
formance problems to them. Hence, in addition to local configuration possibilities
provided by the service component, the channel back coupling to the SLA life cycle
manger gives the observer/controller instance the possibility to enforce negotiated
SLAs through collaboration on the global level.

Furthermore, the SLA life cycle manager exposes a set of collaboration interfaces
based on Web services to related management agents. Via these interoperable collabo-
ration interfaces, the SLA life cycle manager can interact with other related agents to
maintain SLAs during their life cycles. For example, management agents can use the
interfaces to annul existing SLAs or arrange their activities to terminate expired
SLAs.

 Observer 5.2.4

The observer is the part in the management agent that senses runtime behaviour of the
underlying service component. To this end, the observer consists of several functional
components:

� to collect management information from the underlying SuOC,

� to quantify it to composite metrics,

P a r t I I – C h a p t e r 5.2 � Management Agent

172

� and to use such metrics to analyse and predict runtime behaviour of the corre-
sponding component.

Figure 5-7 illustrates the internal structure of the observer and its interactions with
other components within a management agent.

Figure 5-7: Structure of the observer in the management agent

The observer collects low-level metrics from the SuOC and consolidates them to
high-level situation parameters step-by-step. The remainder of this section is con-
cerned with the capabilities of internal components of the observer and outlines their
interactions.

Model of Observation

The model of observation derived from global business objectives provides the ob-
server with various ways how to monitor the underlying service component. Among

management agent
Web service

interface

controller

high-level controller

observer

collaboration manager

global business
objectives

maximal customer
satisfaction, cost
minimising...

collaboration
interface

situation
param

eters

uses

collaboration
model

control
actions

m
odel of observation

SuOC
(process / service / application / …) service interface

management
interface

exposes
exposes

control
actionsruntime information

pre-processor
SLA calculation, etc

log file
QoS history,

SLA,...

monitor

data analyser
SLA violation detection, ...

ses.ID enq. deq. start end ...

1001 18:23 18:27 18:27 18:33 ...
1002 18:25 18:28 18:28 18:33 ...

...

ses.ID wait process. response ...

1001 0:04 0:06 0:10 ...
1002 0:03 0:05 0:08 ...

...

aggregator

predictor
time series,...

selects

selects

selects

selects

SLAs history

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

173

other things, the model specifies a set of QoS parameters that are of particular interest
for the observer/controller instance for enforcing negotiated SLAs. That is, the model
restricts with its instructions the set of raw data that the observer collects from the un-
derlying component. Considering that a service component exposes both relevant and
irrelevant management information to management applications, this measure is of
particular importance to increase efficiency of the observer/controller instance. Spe-
cifically, an observer/controller instance is expected to make real time decisions to
control the underlying service component. Therefore, situation parameters delivered
by the observer must be precise, compact, and clear. To this end, the observer uses the
model of observation to limit the state space, which the controller has to exploit for
decision-making, to a minimal size.

The model of observation interacts with several components in the observer to
guide their operations. These components work with metrics on different abstraction
levels, varying from raw management information like session information (e.g., start,
end, session id, etc.) to high level composite metrics like service level attributes (e.g.,
mean response time of a service component). Therefore, the model of observation has
to deal with models on different abstraction levels. In particular, the model of obser-
vation must be aware of relationships between these models, so that it can switch cor-
rectly and unambiguously between them. For example, to calculate response times of
service invocations, the observer needs to know their start and end times. Hence, the
model of observation must link low-level metrics, such as the start and the end of par-
ticular service invocations, to high-level metrics, such as response time.

In addition, the model of observation has to interpret QoS parameters derived from
global business objectives correctly, in particular in the context of the underlying ser-
vice component. For example, the term response time may be interpreted as time-to-
complete for service invocations in Web services, or as network latency in network
components for transferring data. Hence, the model of observation has to be aware of
the context of the underlying SuOC, in order to know the correct meaning of the cor-
responding terms in the local context.

Therefore, the model of observation is equipped with an ontology globally stand-
ardised across the entire SOE. Alternatively, this requirement can be met by a global
ontology service that delivers necessary models on request. By using a global ontolo-
gy, the model of observation identifies all related QoS terms and their meanings in
dependence of the context of the underlying service component. Moreover, the model

P a r t I I – C h a p t e r 5.2 � Management Agent

174

of observation is aware of transitions between related QoS terms from different layers,
as shown in Figure 5-8. The observer is responsible to build high-level situation pa-
rameters out of a range of basic metrics collected from the underlying SuOC. To this
end, the model of observation delivers a set of transition directives to guide how low-
level technical metrics can be consolidated systematically to service level metrics.
Hence, a transition directive specifies a set of low-level metrics that are required to
calculate a high-level metric and the necessary formulas to convert them.

Figure 5-8: Hierarchy of metrics in the model of observation

For example, a transition directive can state that a service response time is calculat-
ed by estimating the difference between start and end of a corresponding service re-
quest. In this case, a transition directive determines relationships between the terms
response time, request start, and request end. It states how the response time of a ser-
vice request can be computed in relationship to the start and the end of the request.

On top of a global QoS ontology and the input from the high-level controller, the
model of observation derives a set of sub-models for the functional components in the
observer:

� Monitor: The model of observation specifies the scope of observation in terms
of basic metrics and sampling frequencies of these metrics. It is noteworthy
that these basic metrics are domain specific. They are selected from the ontolo-
gy in dependence of the underlying SuOC. Furthermore, these metrics are still
conceptual terms and have no reference to the concrete service component in
the underlying SuOC. For example, the metric request start is used as an ab-
stract term and is not correlated with a specific Web service or a business
process.

SuOC

basic metrics

composite metrics

QoS

SLA

collects

mapping

mapping

mapping

…...
mapping

abstractionco
nc

re
ta

tio
n

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

175

� Pre-processor: The model of observation determines a set of mechanisms to
pre-process collected basic metrics at runtime. In general, selection of these
mechanisms is based on the specific characters of corresponding basic metrics.
For example, the model of observation can guide the pre-processor to use a
smoothing function (e.g., moving average) to remove noises from a given data
set of response time. Furthermore, the model of observation delivers the pre-
processor necessary models (i.e., transition directives) to calculate QoS param-
eters out of collected basic metrics. For each QoS parameter, the model of ob-
servation states the set of related basic metrics, and the functions to estimate
QoS values based on these basic metrics.

� Data analyser: The model of observation provides the data analyser with nec-
essary models to map QoS parameters to service levels and to evaluate them
(e.g., for detecting SLA violations). It links composite QoS parameters to terms
specified in an SLA on the service level. As such, the data analyser can use the
provided guidance to evaluate calculated QoS values against service level ob-
jectives in the SLA for possible violations.

� Predictor: The model of observation also specifies the necessary mechanisms
to predict runtime behaviour of the underlying service component in the next
sampling period. These mechanisms are determined depending on the charac-
teristics of the corresponding QoS parameters. For example, a time series anal-
ysis can be used to predict the development of response time due to its strongly
time-dependent pattern (e.g., peak time during business hours and off-peak
time in the evening).

Monitor

The monitor is one of the two interfaces in the observer/controller instance facing the
underlying service component. From the model of observation, the monitor receives a
range of abstract basic metrics that it has to fill with values collected from the service
component at runtime. Moreover, the monitor has to interact with concrete service
components (e.g., Web services, business applications, network routers, etc.) that pro-
vide heterogeneous manageability interfaces. The monitor is responsible to retrieve
heterogeneous management information from underlying managed objects of the ser-
vice component and map them to homogeneous basic metrics defined by the model of
observation. To this end, the monitor utilises a range of additional adapters to collect

P a r t I I – C h a p t e r 5.2 � Management Agent

176

management information and to convert them to the desired metrics as defined in the
models.

Each of these adapters is designed depending on the manageability interfaces of the
underlying service component. Therefore, it is aware of the set of managed objects
that the instrumented service component exposes via its manageability interface, and
the ways to retrieve information of these managed objects at runtime.

Typical examples of managed objects are CIM managed objects of technical com-
ponents [DMTF99], e.g., Win32_LogicalDisk for a logical disk as a managed object in
the operating system Windows. Another example can be the Web Service Resource
Framework (WSRF) [OAS06] in combination with WSDM. In this case, managed
objects are modelled as distributed resource objects that are accessible via Web ser-
vices. It is noteworthy that modern technical components, both software-centric and
hardware-centric, are delivered with standard-based and/or proprietary instrumenta-
tion interfaces. Such interfaces enable authorised external applications to get an in-
sight into internal operational states of those components. For example, Windows Per-
formance Counters provide a platform to create and retrieve performance-related in-
formation for a range of software products on the Windows platform [Mir10].

Hence, it is assumed in the present thesis that all service components in an SOE are
instrumented with corresponding management standards. Via appropriate manageabil-
ity interfaces, management agents can collect relevant management information from
those service components at runtime. Then, the monitor converts collected raw data to
desired basic metrics as specified by the model of observation. These unified metrics
are then forwarded to the pre-processor for further processing and to the log file for
archiving.

In addition to the scope of basic metrics, the model of observation also specifies
sampling frequencies of those metrics. A sampling frequency defines how often the
monitor should retrieve management information from the underlying service compo-
nent. Sampling frequencies are determined with respect to the characteristics of the
SuOC and the management agent. In general, the monitor can adopt the following in-
teraction patterns:

� Pull: In this interaction pattern, a management agent plays an active role in the
communication. It determines time schedules to get management information
from the SuOC at runtime, mostly at regular intervals. The pull pattern is easy
to implement, provides however a less efficient way for the management agent

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

177

to monitor the SuOC. In particular, pulling regularly runtime information from
the SuOC causes unnecessary processing efforts for a management agent, even
if there are no changes in the operational state of the SuOC.

� Push: The push pattern is also known as the “publish/subscribe” pattern. In this
pattern, the SuOC publishes a range of management information that is normal-
ly organised according to some given criteria, such as contents, topics, or cate-
gories. A management agent can select a set of management information that is
of interest to it. In contrast to the pull pattern, the management agent only get
related information pushed by the SuOC, if there are any updates in the corre-
sponding managed objects. Hence, this pattern allows management agents
monitoring relevant information that is of real interest to them efficiently, and
thus reducing the overhead to process unnecessary requests. In addition, the
push pattern establishes a loosely coupled relationship between the SuOC and
its management agent that makes operation of a management agent independ-
ent from the underlying SuOC. The management agent can continue operating
in the management overlay, even if the underlying SuOC is temporarily offline,
and vice versa.

� Polling: The polling pattern is an improved version of the pull pattern. In con-
trast to the pull pattern, a management agent does not regularly query the Su-
OC for management information. Instead, it polls regularly on the remote Su-
OC for changes. A management agent only starts reading management infor-
mation from the SuOC, if there have been any changes in the operational state
of the SuOC in the past sampling interval. Hence, the polling pattern increases
the efficiency of a management agent to process monitored information.

To summarise, the monitor collects heterogeneous management information from
the underlying service component and converts them to homogeneous basic metrics as
specified by the model of observation. From this viewpoint, the monitor acts as a kind
of adapter that connects homogeneous management agents with heterogeneous service
components.

Log File

The log file is responsible to archive all basic and composite metrics (e.g., session
information, QoS history, and so on) measured and processed by the observer for later
use. In particular, archived measurements are used to support activities of the man-
agement agent, whose functionalities rely on such history information of the past.

P a r t I I – C h a p t e r 5.2 � Management Agent

178

In the generic observer/controller architecture, the log file serves as the database for
the predictor. For a given metric, it can deliver the history of different time windows.
Such historical information is of particular interest for the predictor, which applies
e.g. time-series analysis to forecast the development of a given metric in the future.

Moreover, as mentioned previously, the log file also delivers historical information
to the collaboration manager to support its activities. The coordinator in the collabora-
tion manager utilises historical service level information to estimate capabilities of the
underlying service component. Furthermore, history information about particular ser-
vice types gives the coordinator the necessary decision support to allocate appropriate
non-functional requirements to corresponding service providers.

Pre-Processor

The pre-processor is responsible to convert and consolidate basic resource-centric
metrics collected by the monitor into appropriate more abstracted data types that the
data analyser can use. To this end, the pre-processor leverages two types of tools to
compute composite metrics: data smoothing and data consolidation.

Measurement data collected by the monitor from the SuOC is subject to continuous
influences of the environment on the corresponding service component. Hence, such
measurement data may contain noise that prevents the observer from getting an accu-
rate overview of the operational state of the SuOC. To this end, the pre-processor uti-
lises different algorithms to smooth incoming data sets that the monitor collects from
the underlying SuOC during a pre-defined sampling period. Algorithms used to
smooth data sets depend on the type of management data they contain.

For example, to calculate completion time of service invocations, a management
agent generally estimates time differences between the start and the end of service
invocations. However, in case of service timeout, the end of an affected service invo-
cation can be the point in time, at which the service component recognises the service
timeout. Hence, time differences calculated in this case can be multiples of regular
service completion time. This leads to a noisy peak in the data set that falsifies calcu-
lation of mean service completion time. Hence, the pre-processor can use a moving
average to smooth a given data set of service completion time. It calculates the un-
weighted mean of all completion times within a fixed time window.

The other task of the pre-processor is to consolidate smoothed measurement data to
composite metrics towards service level QoS parameters. To this end, the pre-

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

179

processor utilises guidance provided by the model of observation to compute compo-
site QoS metrics based on basic metrics. As stated before, such guidance specifies the
set of basic metrics involved, and the functions used to calculate composite metrics.

For a given set of measurement data concerning service invocation details (e.g.,
start time tstarttstart, end time tendtend, session id, etc.), the guidance specifies that mean re-
sponse time of a service provider is the average of all smoothed response times that
are calculated by computing time differences between tstarttstart and tendtend. Another example
can be that the rate of successful service invocations is the quotient of the number of
successful service invocations among the total number of service invocations.

To conclude, the pre-processor is the part of a management agent that is responsi-
ble for data consolidation. The major focus of the pre-processor is to calculate compo-
site metrics in terms of QoS parameters based on basic metrics collected from the un-
derlying SuOC. Necessary directives to build composite metrics are provided by the
model of observation on top of a global QoS ontology. In addition, the pre-processor
uses data smoothing algorithms to improve the quality of the consolidated data.

Data Analyser

The data analyser is concerned with validating the runtime operational state of the
underlying SuOC against service level targets defined in an SLA to detect SLA viola-
tion. To this end, the data analyser gets composite metrics in terms of QoS parameters
from the pre-processor and the negotiated SLAs from the collaboration manager as
input. In addition, the model of observation delivers models for the data analyser to
associate composite metrics and service level targets in an SLA. Furthermore, the
model of observation specifies priorities of particular service level targets to detect
SLA violation. Based on these inputs, the data analyser has to determine whether
some negotiated service level target(s) were violated in the previous sampling period.

To detect potential SLA violations, the data analyser compares calculated QoS val-
ues with service level targets defined in an SLA. Given a set of QoS parameters
f1; 2; :::; ngf1; 2; :::; ng, let qiqi be the value of the parameter ii calculated by the pre-processor.
Furthermore, let qt

iq
t
i be its arranged service level target for the corresponding QoS pa-

rameter, then the degree of fulfilment fifi of a single service level target ii is defined as:

fi =

(
qi=q

t
i if the QoS parameter i is increasing

qt
i=qi if the QoS parameter i is decreasing

fi =

(
qi=q

t
i if the QoS parameter i is increasing

qt
i=qi if the QoS parameter i is decreasing.

P a r t I I – C h a p t e r 5.2 � Management Agent

180

Herein, a QoS parameter is increasing, if a higher value of the parameter is desired,
such as availability or throughput for a consumer. Vice versa, a QoS parameter is de-
creasing, if a lower value is desired, such as response time for a consumer. It is obvi-
ous that a service level target ii is met by a given operational state, if its degree of ful-
filment is greater than or equal to 1 (i.e., fi ¸ 1fi ¸ 1). Analogously, a given service level
target is not met, if the degree of fulfilment is less than 1. Based on fifi, the overall de-
gree of fulfilment ff of an SLA is defined as follows:

f =

nX
i=1

!i ¢ (fi)
rf =

nX
i=1

!i ¢ (fi)
r

. (3.3.7)

!i!i determines the relative weight of the parameter ii in the calculation of the over-
all degree of fulfilment, with

Pn
i=1 !i = 1

Pn
i=1 !i = 1. The parameter rr is the strictness factor of

the calculation of the overall degree of fulfilment that is defined as follows:

r =

8><
>:

0 if the calculation is strict and fi ¸ 1

1 if the calculation is strict and fi < 1

1 if the calculation is lenient

r =

8><
>:

0 if the calculation is strict and fi ¸ 1

1 if the calculation is strict and fi < 1

1 if the calculation is lenient .

Therefore, a strict calculation can detect an SLA violation, as soon as one or more
service levels falls short of their targets. This can be easily proven with the help of the
formula (3.3.7). Without loss of generality, it is assumed that a single service level
target k 2 f1; 2; :::ngk 2 f1; 2; :::ng is not met (i.e., all other service level targets are met), then the
overall degree of fulfilment is less than 1:

f =
nX

i=1

!i ¢ (fi)
r =

k¡1X
i=1

!i ¢ (fi)
r + !k ¢ (fk)

r +
nX

j=k+1

!j ¢ (fj)
r

=
k¡1X
i=1

!i ¢ (fi)
0 + !k ¢ (fk)

1 +
nX

j=k+1

!j ¢ (fj)
0

=
k¡1X
i=1

!i + !k ¢ (fk) +
nX

j=k+1

!j

<
k¡1X
i=1

!i + !k ¢ 1 +
nX

j=k+1

!j

=
nX

i=1

!i

= 1

f =
nX

i=1

!i ¢ (fi)
r =

k¡1X
i=1

!i ¢ (fi)
r + !k ¢ (fk)

r +
nX

j=k+1

!j ¢ (fj)
r

=
k¡1X
i=1

!i ¢ (fi)
0 + !k ¢ (fk)

1 +
nX

j=k+1

!j ¢ (fj)
0

=
k¡1X
i=1

!i + !k ¢ (fk) +
nX

j=k+1

!j

<
k¡1X
i=1

!i + !k ¢ 1 +
nX

j=k+1

!j

=
nX

i=1

!i

= 1 .

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

181

With a strict strategy, a negotiated SLA is considered as not met, as soon as a sin-
gle service level target is violated by a given operational state. In contrast, in case of a
lenient strategy, the calculated overall degree of fulfilment may not immediately be
less than 1, if one of the arranged service level targets is not met. In particular if that
violated target is weakly weighted in the calculation, it has less impact on the overall
calculation. In addition, non-fulfilment of a service level target can be compensated
by other service level targets, which are (over-)fulfilled by a given operational state.

Thus, with different calculation strategies, the data analyser can flexibly determine
whether an arranged SLA is considered as not met by a given operational state of the
SuOC. In particular, the weights assigned to the QoS parameters allow the analyser to
incorporate priorities of particular QoS parameters derived from global business ob-
jectives into estimation of the overall degree of fulfilment. This ensures that results of
analysis done by the data analyser comply permanently with the global objectives.

Predictor

The predictor provides a management agent with insight into the future development
of the underlying service component, in particular from the viewpoint of non-
functional QoS parameters. Together with the metrics processed by the pre-processor
and the data analyser, predicted future system states serve as the base for the control-
ler to make decisions. Hence, an accurately and precisely predicted future system state
is crucial for the controller to choose foresighted control actions for the underlying
service component. This helps to increase the probability of the controller to prevent
occurrence of non-desired system states and reduces SLA violations proactively.

The predictor can utilise a set of mathematical and statistical models to give both
qualitative and quantitative estimation of future system state. As initial input, the pre-
dictor gets instructions from the model of observation specifying a set of QoS parame-
ters and appropriate prediction algorithm(s) to predict them. It is obvious that a pre-
diction algorithm used for a given QoS parameter depends strongly on the characteris-
tics of the parameter. While development of system loads of a CRM system has a
strongly time-related pattern (e.g., peak time during business hours, and off-peak time
in the evening), development of availability of a system is not directly related with the
time. Hence, to predict future development of system loads, the predictor has to use a
multi-dimensional quantitative prediction algorithm that takes the parameter time into
its prediction model. In contrast, to predict availability of a system, the predictor may

P a r t I I – C h a p t e r 5.2 � Management Agent

182

need a simulated system model. By using the simulation model, the predictor can es-
timate dependences between various systems components and their impact on the
overall system availability.

Additionally, the predictor builds its prediction process on top of historical data. As
mentioned before, the log file acts as the data archive in a management agent and
stores historical basic/composite data. Such history information is provided to the pre-
dictor as time series. Depending on the time horizon of the corresponding prediction
algorithm (e.g., short, middle, or long term), time series consisting of historical data
reflect behaviour of the corresponding data (or QoS parameters) during the specified
time horizon in the past.

In brief, the predictor is responsible to estimate future development of the system
state based on known history data. By analysing given time series using mathematical
or statistical models, the predictor is expected to address development trends of the
system state in the forthcoming sampling period(s), either in a qualitative or quantita-
tive manner.

Aggregator

As the name says, the aggregator has the task to aggregate all analysis results from the
observer to unified situation parameters. Situation parameters contain the current sys-
tem fingerprint of the SuOC consisting of information that the controller needs to
make decisions. To this end, the aggregator consumes analysis results from the pre-
processor, the data analyser, and the predictor. Hence, for each QoS parameter speci-
fied in an SLA, the aggregator creates a separate data vector. A data vector consists of
the current values calculated by the pre-processor, the degree of fulfilment computed
by the data analyser, and the predicted values estimated by the predictor. Hence, the
resulting situation parameters are composed of a set of data vectors, where each data
vector contains information of a corresponding QoS parameter. In addition, the situa-
tion parameters contain the overall degree of fulfilment of the SLA.

By using the situation parameters, the controller is aware of the current state of the
SuOC. In particular, it can determine whether the arranged SLA was violated by the
underlying service component in the previous sampling period. This information helps
the controller to concentrate on a very limited set of facts for making decisions.

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

183

 Controller 5.2.5

Upon receiving situation parameters, the controller exploits a set of control actions it
can execute. It triggers some appropriate control actions matching the observed opera-
tional state of the underlying service component. Control actions executed are ex-
pected to influence runtime behaviour of the underlying service component in compli-
ance with arranged service levels of the collaboration manager. By selecting and per-
forming appropriate control actions on the service component, the controller ensures
enforcement of the agreed service level targets in the SLAs proactively.

To this end, the controller must be able to correlate states in the state space accu-
rately with appropriate actions in the action space. The state space is spanned by states
exposed by the service component via its manageability interface. Similarly, the ac-
tion space is spanned by control actions that the service component makes available
for external management applications. It is noteworthy that dimensions of the state
space and the action space depend on the set of QoS parameters that the model of ob-
servation derived from the global business objectives. To this end, the model of ob-
servation considers the global business objectives and SLAs negotiated by the collab-
oration manager. This helps the observer to limit the state space to a minimal set,
which the controller has to explore for making decisions.

Correlations between states and actions imply an understanding of the underlying
service component by its corresponding management agent. For each situation param-
eter reported by the observer, the controller can consult its local rule base consisting
of such correlations to choose an appropriate action. Hence, in order to control the
underlying service component in compliance with given SLAs, the controller has to
find a way to correlate system states and actions.

As depicted in Figure 5-9, the controller leverages a two-level structure to build up
its rule base consisting of correlations between states and actions. Level 1 attempts to
provide a response to reported situation parameters in real-time. Hence, it contains a
mapping component that maps situation parameters to available control actions and a
rule performance evaluation to assess the performance of executed control actions.
However, for mission-critical service components, it is not desired that the controller
performs any control action on those components that may decrease their service lev-
els or even lead to damages in the system due to limited or inaccurate knowledge.
Hence, the mapping rules must meet a certain level of quality, before they are applied

P a r t I I – C h a p t e r 5.2 � Management Agent

184

to the real system. It is the task of level 2 to generate such accurate mapping rules. It
employs a rule adaptation module in combination with an offline simulation model of
the SuOC to explore unknown areas in the state space.

Figure 5-9: Structure of the controller in the management agent

The remainder of this section focuses on the two-level structure of the controller.
Among other things, it outlines generally the set of control actions that the controller
can execute to enforce SLAs with respect to global business objectives. In addition,
level 1 and level 2 are introduced in detail to show how a management agent can build
up its rule base to control the underlying service component.

Control Actions

Via control actions, the controller of a management agent can influence the runtime
behaviour of the underlying service component and/or other related service compo-
nents to enforce arranged SLAs. Generally, a management agent can employ two cat-

management agent
Web service interface

controller

high-level controller

observer

collaboration manager

global business
objectives

maximal customer
satisfaction, cost
minimising...

collaboration
interface

situation
param

eters

exposes

collaboration
model

control
actions

SuOC
(process / service / application / …) service interface

management
interface

exposes

exposes

control
actions

runtime
information

se
le

ct
s

SLAs

mapping

situation action ...

respons. >
0:12

increase resource
capacity

...

wait > 0:01 increase resource
pool size

...

...

rule
performance

evaluation

simulation
model

rule adaptation
module

level 1
level 2

control
model

action

history

situation
parameters

history

∆t

observation
model

selects

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

185

egories of control actions for this purpose, namely local actions and collaboration-
based actions.

Obviously, a management agent can leverage the manageability interface of the
underlying service component to modify its behaviour towards desired service level
targets. By doing this, a management agent changes configurations of the service
component directly to manipulate its behaviour. Specific types of control actions that
the manageability interface provides depend on implementation details of the corre-
sponding service instance. For example, in order to modify responsiveness of a ser-
vice instance, a Web server can change processing priorities or queuing strategies of
incoming requests for the corresponding service instance. Hence, local control actions
enable a management agent to change operational states of the underlying service
component by modifying its local resources and technical capabilities.

Local control actions have often limited capabilities to change runtime behaviour of
a service component. In particular, if a service component has to share limited tech-
nical resources among a set of service instances, its management agent may run out of
possibilities to influence runtime behaviour of particular service instance locally. As
discussed in Section 4.1, runtime behaviour of a service component depends not only
on itself, but also on behaviour of its service providers. Therefore, it is possible that a
management agent manipulates the runtime behaviour of its service component by
influencing runtime behaviour of its service providers. By doing this, a management
agent can reach its local goal by collaborating with other related management agents.

A critical aspect that must be kept in mind is autonomy of service components, as
discussed in Section 2.1.1. Service autonomy determines that a management agent
cannot send directives to other related service components and expects that they are
willing to follow those directives. Instead, a management agent has to build desired
collaborative activities based on negotiation that respects the autonomy of other relat-
ed components. In order to change runtime behaviour of the underlying service com-
ponents, the corresponding management agent has to renegotiates with its service pro-
viders with updated negotiation conditions. These updated negotiation conditions re-
flect the most recent demands of the service component. If a management agent can
reach new SLAs with the updated conditions, it succeeds in influencing behaviour of
its own service component by changing that behaviour of its service providers. From
this viewpoint, several service components work collaboratively to realise desired
runtime behaviour of a single service component. Otherwise, a management agent is

P a r t I I – C h a p t e r 5.2 � Management Agent

186

forced to violate the contract with its service consumer and to renegotiate a new SLA
containing less restricted service level targets.

It is worth noting that although both local actions and collaboration-based actions
can influence runtime behaviour of the underlying service component, they are how-
ever not equivalent regarding their efficiency. Due to the direct management relation-
ship between a management agent and its service component, local control actions
achieve quick and precise changes in the runtime behaviour of the component. Such
changes take place normally almost in real-time and, therefore, are mostly desired for
mission-critical service components. In contrast, collaboration-based control actions
involve a range of additional service components in the renegotiation process, where a
successful outcome with renegotiated SLAs is not guaranteed. Furthermore, the time
needed for renegotiating SLAs and applying renegotiated SLAs causes undesirable
delays and overheads that are crucial for mission-critical service components. Hence,
collaboration-based control actions are less efficient in comparison to local actions.

Hence, the controller has to incorporate this difference into its decision-making
process. In order to achieve quick and precise changes in the service component, the
controller prefers to exhaust at first local possibilities that the underlying service com-
ponent directly provides, before it begins to collaborate with other related components
via negotiation. This ensures that a management agent can enforce SLAs with its ser-
vice consumer as quick as possible.

Level 1

Level 1 is the part in a management agent that responds quickly to situations in the
service component. The controller makes decisions based on its existing rule base
consisting of accurate correlations between system states and possible control actions.
To build up as well as evolve correlations in the knowledge base, the construction of
level 1 follows the concept of reinforcement learning.

As depicted in Figure 5-9, correlations between system states and control actions
are stored in a mapping table. Each rule in the table maps a possible system state of
the service component to one or more executable actions. For example, a service in-
stance violates the predefined service level target for response time and there are free
processing capacities that can be assigned to the service instance. In this case, an ap-
propriate control action may be to increase the processing capacity of the respective
service instance.

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

187

Furthermore, to reflect accuracies of correlation rules, each rule is assigned with a
fitness value that is estimated based on a management agent’s experience so far with
the service component.

For an incoming situation parameter, level 1 consults the mapping table to select
the best-assessed rule matching the situation parameter, and forwards the selected ac-
tion to either the SuOC or the collaboration manager. The simple construction of the
mapping table ensures that a management agent can respond quickly to situations in
the SuOC.

For each executed control action selected by level 1, the controller has to estimate
the quality of the rule. Hence, it evaluates the resulting effects in the underlying SuOC
and updates fitness value of the corresponding correlation rule with the help of eval-
uation results. To this end, level 1 keeps track of control actions executed at time tt
and situation parameters reported by the observer at time t+Mtt+Mt in its history data.
These pairs of control actions and resulting situation parameters are evaluated to up-
date accuracies of corresponding correlation rules. The rule performance evaluation
module carries out all these activities to estimate correctness of correlation rules
against capabilities of corresponding control actions to enforce negotiated SLAs.

In addition, other optimisation aspects can be incorporated into the evaluation pro-
cess of the rule performance evaluation module. For example, in order to avoid over-
or under-utilisation of local resources, the evaluation process can estimate the utilisa-
tion rate of local technical resources against the overall degree of fulfilment of the
SLA. Evaluation results can be used to update fitness values of corresponding correla-
tion rules. In this way, a management agent can fine tune the correlation rules to en-
sure that the underlying service component leverages its local resources efficiently
and sparingly.

Level 2

As discussed in the previous section, level 1 builds its decision-making process on top
of a set of existing correlation rules. Hence, the control loop in level 1 is concerned
with exploiting performance of these existing correlation rules. Exploring new corre-
lation rules for the mapping table is however not done by level 1. This design consid-
eration is made because newly generated correlation rules (e.g., by using genetic op-
erators) do not satisfy the necessary level of quality to control the underlying service

P a r t I I – C h a p t e r 5.2 � Management Agent

188

component directly. Such generated rules may even contain wrong directives that may
lead to serious damages on the SuOC.

Therefore, in order to ensure certain quality level for the correlation rules in level 1
while keeping these rules up-to-date with the ever-changing environment (i.e., with
respect to unknown situations in the environment), the controller employs an addi-
tional level, level 2, to generate new rules for these unknown situations with certain
quality level.

Level 2 has the responsibility to explore the state space for previously unknown
correlations between situations and actions. To this end, level 2 applies methods from
machine learning and performs offline learning against an abstracted model of the real
SuOC. As depicted in Figure 5-9, based on existing correlation rules, the rule adap-
tion module uses genetic operators (such as crossover and mutation [Mit97]) to gener-
ate new correlation rules.

Applying newly generated correlation rules directly to real-time systems is critical
for runtime operation of the underlying service component. Hence, level 2 employs an
addition module, the simulation model, to evaluate these rules in an offline manner.
The simulation model, as the one introduced later in Section 7.2, allows simulating
possible outcomes of new correlation rules, before they are applied directly to real
systems. By doing this, wrong correlation rules that may lead to damages in the under-
lying service component are proactively removed from the rule set. This ensures that
correlation rules already reach some desired quality level, before they are added to the
mapping table of level 1 for application.

In this way, level 2 ensures the quality of the correlation rules in the rule base. To-
gether with level 1, they provide a learning-based control mechanism to enforce the
runtime behaviour of the underlying SuOC.

 Design Rationale 5.2.6

This section introduces the architecture of a management agent. The main objectives
of designing a management agent are:

� first collaborative activities on the global level to arrange service levels for ser-
vice consumption,

� and secondly controlled self-organisation of the underlying service component
in compliance with arranged contracts on service levels.

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

189

Hence, the design of a management agent utilises a clear separation of concerns to
address those design objectives. The high-level controller and the observer/controller
instance establish controlled self-organisation in the local context of a service compo-
nent. The high-level controller along with the collaboration manager facilitates coor-
dination and collaboration of the respective management agent with related agents in
the environment. This separation of concerns enables a clear design of a management
agent and increases modality of its subcomponents.

With respect to the requirement analysis in Section 4.3, the design of a manage-
ment agent addresses the requirements as follows:

� By using manageability interfaces exposed by a service component, a man-
agement agent (i.e., the observer of the agent) can actively monitor the opera-
tional state of the underlying service component (i.e., the SuOC). With appro-
priate models to link monitored information to service level objectives, a man-
agement agent can draw conclusions on runtime behaviour of its service com-
ponent on the service level.

� With continuous observation and control of a service component by the ob-
server/controller instance, a management agent can affect runtime behaviour of
the service component proactively to enforce negotiated service level targets.
Hence, managing the underlying service component is driven by SLAs that a
management agent closes with its providers/consumers.

� The interface to an external high-level control instance (i.e., human participants)
allows influencing the behaviour of a management agent with external business
objectives. The high-level controller derives corresponding control models out
from these external objectives and applies them to the functional components
of a management agent. By doing this, a management agent can align its be-
haviour to global business objectives in the environment.

� The collaboration manager allows a management agent to explore its environ-
ment and to establish as well as maintain relationships with related service
components in the environment. Via the collaboration manager, management
agents of related service components are aware of existence of one another and
can interact with one another in a coordinated manner.

� Collaboration between management agents is carried out by using automated
negotiation. Outcomes of such negotiation activities are SLAs that regulate ob-
ligations and expectations of these agents in the course of service consumption.
In particular, these contracts specify the desired behaviour of the related ser-

P a r t I I – C h a p t e r 5.3 � Summary

190

vice components on service level. Hence, these contracts are used by a man-
agement agent, i.e., the observer/controller instance, as operational objectives
to control the underlying service component.

� The collaboration manager exposes their local capabilities, i.e., for automated
negotiation and management of SLA life cycle, via a set of interfaces based on
Web service. Interoperable standards used in the Web service-based interfaces
ensure that management agents can interact with one another, in spite of heter-
ogeneity of their underlying service components.

In a word, the architecture of a management agent, based on the generic observ-
er/controller architecture, establishes controlled self-organisation in alignment with
given business objectives. In addition to the observer/controller architecture, a man-
agement agent focuses particularly on the collaboration aspect of a service component
with its providers/consumers. The interdependent nature of service components de-
termines that all related components have to collaborate with one another in a coordi-
nated manner, so that they can jointly contribute to desired global behaviour of the
entire environment. The collaboration manager in a management agent addresses this
aspect by providing the necessary capabilities to cover the complete life cycle of ser-
vice levels, in particular for automated negotiation of SLAs.

5.3 Summary

Managing service levels of service components within an SOE is challenging. Hetero-
geneity of service components and inherent complexity of such management tasks
prevent an establishment of comprehensive approaches for service level management.
In particular, human participants are heavily involved in this process. Hence, in order
to cope with the complexity and to increase agility of such an SOE in spite of contin-
uous changes, the present thesis proposes the approach to solve the problem using
controlled self-organisation. The core of the approach is the concept of collaborative
and self-organising management agents. This chapter has introduced the architecture
of a management agent and has explained how management agents can work together
to enable automated service level management in service-centric environments.

The agent-oriented design of the management overlay allows service components
to maintain their autonomy while still having the possibility to collaborate with other
related components to coordinate their activities. Furthermore, the service-oriented

P a r t II – C h a p t e r 5 � Organic Service-oriented Environments

191

structure of the management overlay complies with scalability and dynamism of the
underlying service-oriented layer. Within the management overlay, each management
agent collaborates with other related management agents to arrange service level ob-
jectives via automated negotiation. As soon as SLAs are established, a management
agent utilises the observer/controller instance to enforce these SLAs. This self-
organising enforcement process is guided by external business objectives, thus the
behaviour of the entire overlay remains controllable for human participants.

193

Chapter 6 Collaboration between Agents

“Precise knowledge of oneself and of the counterpart leads to victory.”
(The Art of War, Sun Tzu, ca. 544-496 B.C.

Collaboration between related service components builds the foundation of the self-
organising end-to-end SLM approach of the present thesis. The distributed and recur-
sive nature of an SOE requires tight cooperation between all related service compo-
nents, in order to conjointly realise the overall operational goals of the entire envi-
ronment. In Chapter 5, the structure of an organic SOE with an agent-oriented design
has been introduced, and SLA-centric collaboration between management agents in
such an organic environment was outlined. In the following, the present chapter is
concerned with details of collaborative interactions between management agents and
explains how end-to-end SLM can be supported by collaboration in an organic SOE.

In particular, this chapter focuses on automated negotiation of SLAs between a ser-
vice consumer and its providers, which is crucial for establishing service relationships
dynamically and adaptively in an organic SOE. As introduced in Section 3.2, SLAs
are formal contracts governing provider/consumer relationships in an SOE. From this
viewpoint, SLAs protect interests of all contract parties by means of ensuring mutual-
ly agreed service-level objectives. Hence, efficient negotiation of SLAs is essential for
organising a dynamic and loosely coupled SOE.

Therefore, this chapter is structured as follows: after a brief overview in Section
6.1, Section 6.2 addresses the target negotiation scenarios of the present thesis in de-
tail. Section 6.3 analyses those negotiation scenarios and determines the type of auto-
mated negotiation that can be applied to enable end-to-end SLM in an SOE. Section
6.4 outlines the underlying mathematical model based on the bilateral negotiation
model introduced in Section 3.3.1, while Section 6.5 is concerned with the negotiation
protocol to facilitate bilateral negotiation between management agents. In particular,
the characteristic recursive constructs of an SOE, where a service component can

P a r t I I – C h a p t e r 6.1 � Collaboration Overview

194

simultaneously act as a service consumer and a service provider, demand an appropri-
ate negotiation protocol other than those that are common. Section 6.6 describes nego-
tiation strategies of management agents to find optimised SLA offers in the course of
negotiation. In particular, this section addresses how to fine-tune negotiation strategies
so that resulting agreements between a consumer and its providers can contribute to
overall business objectives. At last, Section 6.8 summarises the chapter.

6.1 Collaboration Overview

The distributed nature of SOEs requires that autonomous service components have to
collaborate with one another to reach common goals. Collaboration between service
components may be carried out in a varying way. Since the focus of the present thesis
is to automate end-to-end SLM in an SOE, this chapter is concerned with collabora-
tive activities between service components to facilitate the life cycle of SLAs as intro-
duced in Section 3.2.4, such as arranging new service level targets, establishing nego-
tiated agreements, or terminating expired agreements. Hence, this section is organised
following the life cycle of SLAs, and outlines the underlying collaborative activities
involved throughout its different phases.

Figure 6-1: Collaboration to negotiate and establish new SLAs

Before a service component, i.e., the management agent of the component, can ac-
tively enforce an SLA, this SLA has to be arranged with its related service compo-
nents. During this procedure, related service components negotiate with one another
to regulate their expectations and obligations with respect to service level objectives.
Figure 6-1 depicts such a negotiation process as a state diagram from the viewpoint of
the life cycle of a single agreement and specifies all possible states of an agreement in
the course of negotiation.

agreement states in negotiation process

negotiated

negotiatinginitializing

confirmed

aborting aborted

confirming

withdrawn establishing established

rejected

SLA enforcement
phase

offer acceptedoffer accepted

send initial offersend initial offer

exchange offersexchange offers

set up initial offerset up initial offer
failed to
establish SLAs
failed to
establish SLAs

resource
constraint
violated

resource
constraint
violated

SLA confirmed by the
provider
SLA confirmed by the
provider

SLA can not be confirmed
by the provider
SLA can not be confirmed
by the provider

successfully
establish SLA
successfully
establish SLA

offer rejectedoffer rejected

P a r t II – C h a p t e r 6 � Collaboration between Agents

195

A negotiation process is triggered by an initial offer sent by a service consumer to a
respective service provider. From this point in time, the two management agents are
related and enter into a collaboration phase, until one management agent decides to
exit it. In the following alternating negotiation process, the negotiating state remains
unchanged while alternating offers are exchanged. If one negotiation participant
aborts the negotiation thread due to some resource constraints, such as limited negoti-
ation time, the state of the agreement is changed from negotiating to withdrawn. Simi-
larly, if a management agent rejects an incoming offer depending on its negotiation
constraint (e.g. the predefined negotiation deadline), the state of the agreement is
changed from negotiating to rejected, too. In both cases, the management agents are
about to abort the corresponding negotiation thread by updating the state of the
agreement to aborting. This allows affected negotiation participants to perform clean-
up tasks to close the corresponding thread, such as freeing local computational re-
sources used in the negotiation. Afterwards, the agreement’s state is changed to abort-
ed and the complete negotiation process is terminated.

Alternatively, if a negotiation participant accepts an incoming agreement from its
counterpart, it changes the agreement’s state from negotiating to negotiated. In the
following steps, the service provider in the negotiation starts to confirm the negotiated
agreement on its part with its providers (cf. Section 6.5 for more information on this
procedure). If the service provider can successfully arrange in turn agreements with its
providers to support the negotiated agreement, it changes the agreement’s state to con-
firmed and the negotiation process is closed. Otherwise, it aborts the negotiation
thread by changing the agreement’s state to aborting, which leads to a termination of
the complete negotiation process.

As soon as an SLA is negotiated between two management agents, they begin to
establish it in their local environments. This process is composed of activities to con-
figure local resources in alignment with service level targets specified in the SLA.
Hence, this process is only carried out in the local context of the respective service
components. No interactions are expected between the related management agents in
the course of this phase. If one of both agents runs into trouble when it tries to allocate
necessary resources to enforce the SLA, it can communicate with its counterpart to
withdraw the negotiated SLA. Otherwise, the corresponding SLA is marked as Estab-
lished and both management agents pass into the SLA enforcement phase.

P a r t I I – C h a p t e r 6.1 � Collaboration Overview

196

Figure 6-2 illustrates the activities involved in the enforcement and termination
phases. In fact, the observer/controller instance of a management agent plays a major
role during both phases. As discussed in Section 5.2.4 and 5.2.5, by continuous moni-
toring and control of the underlying service component, the observer/controller in-
stance ensures that runtime behaviour of a service component complies with its nego-
tiated SLA.

agreement states in SLA enforcement

terminated

observed

violated

terminatingobserving

annulling annulled

completing completed

SLA established

negotiating SLA

violation detectedviolation detected renegotiating violated SLAsrenegotiating violated SLAs

SLAs expiredSLAs expired

annulation
request rejected
annulation
request rejected

terminate an existing SLAterminate an existing SLA

annulation
request
accepted

annulation
request
acceptedannul an

existing SLA
annul an
existing SLA

Figure 6-2: Collaboration to enforce and terminate existing SLAs

The enforcement phase follows the previous negotiation phase. At the beginning of
the enforcement phase, the negotiated SLA has been established in the underlying
service component. Hence, the observer/controller instance has to be configured to
observe the service component. During this phase, the state of the established SLA is
changed to observing. As soon as the observer/controller instance is ready to actively
monitor and control the service component, the SLA’s state is updated to observed.
This indicates that the respective SLA is actively enforced by the management agent
from this point in time.

If, in the course of SLA enforcement, a management agent observes an inevitable
violation in spite of its local control activities, it marks the state of the respective SLA
as violated. In this case, the management agent has to collaborate with the agent of the
service provider/consumer at the other end of the affected SLA to solve this problem.
To this end, it can either renegotiate the affected SLA with its counterpart, or arrange
with its counterpart to terminate the SLA. An early termination of a violated SLA re-
quires affirmations of both management agents. As soon as the counterpart confirms
early termination of the affected SLA, both management agents mark its state as ter-
minated and break off the provider/consumer relationship between them.

P a r t II – C h a p t e r 6 � Collaboration between Agents

197

However, a management agent can also terminate an SLA ahead of the arranged
expiration deadline, even if the corresponding SLA is not violated by either the pro-
vider or the consumer. For example, if a service provider anticipates an inevitable
SLA violation (e.g., limited availability of technical resources during planed power
outage of the infrastructure), it can collaborate with its service consumers to proac-
tively prevent damages in the environment. To this end, a management agent can ar-
range with its counterpart to annul an established SLA. If both parties agree to the
suggested annulation, the affected SLA is marked as annulled and both parties begin
to terminate the corresponding partnership. Otherwise, if the annulation request is not
accepted by the other party, the affected SLA remains untouched. In this case, the
SLA is further monitored and enforced actively by both parties.

As soon as the expiration deadline specified in an established SLA has been ex-
ceeded, both negotiation parties begin to compete the SLA. To this end, a manage-
ment agent frees resources reserved for the corresponding service instance. After that,
the corresponding SLA is marked as completed and both service components end their
provider/consumer relationship.

So far, this section has introduced a set of collaborative activities between a service
provider and its service consumer to set up, establish, enforce, and terminate SLAs.
Apart from the local activities performed by a management agent to establish and en-
force SLAs, most of the collaborative activities between management agents are con-
cerned with set-up of SLAs. That is, how a service provider can align its service capa-
bilities to service expectations of a service consumer, in particular in terms of service
level objectives.

In such a process, both service provider and service consumer have their predefined
preferences on a set of service level objectives. Hence, the focus of the process is to
find a mutually acceptable compromise while taking preferences of both parties into
consideration. Therefore, the remainder of this chapter focuses on automated negotia-
tion of SLAs between service providers and service consumers (as indicated by the
negotiating state in Figure 6-1) and outlines how such a negotiation process can be
carried out reliably and efficiently. Section 6.2 outlines the essential negotiation sce-
narios considered in the present thesis and addresses their characteristic differences
that distinguish them from other similar scenarios in the field.

P a r t I I – C h a p t e r 6.2 � Negotiation Scenarios

198

6.2 Negotiation Scenarios

This section addresses the major negotiation scenarios between a service consumer
and its service providers in a self-organising SOE. For simplicity, it is assumed that all
service components can communicate with one another via Web service interfaces, as
discussed in Section 5.1. Further aspects within Web service communication, such as
security, transactional behaviour, and reliability, are not considered in the scope of
this section. These aspects are easily covered by utilising corresponding Web service
standards in the communication channel. For example, WS-Security [NKMH06] can
be adopted to secure communication channels between service components, and WS-
Coordination [FJ09] can be applied to coordinate the behaviour of several related
components.

Furthermore, it is assumed that each service component knows its potential provid-
ers (i.e., negotiation partners). This assumption can be fulfilled by using appropriate
service discovery approaches with given syntactical, semantic, or QoS-based criteria.
For example, Ding, Liu, and Schmeck introduce a service discovery approach comb-
ing both semantic and syntactic search to increase accuracy of discovery results
[DLS10]. In their model, each service consumer maintains a local discovery table
consisting of references to potential service providers matching a given set of search
criteria. By doing this, a service consumer is aware of service providers that can pro-
vide exact services that the consumer needs. Similar approaches are the WebPeer in-
troduced by Li et al. [LZW+05] with a peer-to-peer service discovery platform or a
user-centric Web service community proposed by Liu et al. that searches for potential
service providers by using similarity measurement mechanisms [LGH09].

Without loss of generality, it is assumed that each service component in an SOE
has provider/consumer relationships with service components in its direct neighbour-
hood, i.e., service components located in the direct upper or lower layer. Each service
provider may serve several service consumers simultaneously; vice versa, each ser-
vice consumer may involve several service providers at the same time.

As already discussed in Section 3.1, runtime behaviour of a particular service com-
ponent, in particular in terms of service level objectives, depends strongly on those of
its providers. Depending on a consumer’s usage pattern of services, i.e., how services
are involved into the consumer’s runtime process, services exert influence of a differ-
ent intensity on a consumer’s runtime behaviour. For example, if a Web service is

P a r t II – C h a p t e r 6 � Collaboration between Agents

199

hosted by a single server, then its runtime performance depends only on its sole host-
ing server. However, if a Web service is hosted by two load-balanced servers, where
incoming requests are distributed uniformly to one of the servers, then performance of
the Web service depends on the composite performance of its both hosting servers.
Therefore, in order to estimate composite QoS of service providers and their influence
on their consumer, composition patterns outlining relationships between a service
consumer and its services providers must be investigated. Section 6.6.1 addresses
common composition patterns within an SOE in detail.

As discussed in Chapter 5, managing service levels of an SOE is modelled as a
multi-agent approach in compliance with the decentralised and autonomous nature of
service components in the environment [LTS08]. Each component in the environment
is managed by an agent adopting an observer/controller instance. A management
agent monitors its respective service component and controls the component in com-
pliance with given business objectives. In addition to the layered structure of the envi-
ronment, all management agents are organised in a management overlay, where rela-
tionships between service components in the SOA environment are fully mapped to
their respective management agents in the overlay layer (see also Figure 5-1). Man-
agement tasks within the global context, such as negotiation between a consumer and
its service providers, are accomplished within the overlay layer through interactions
between respective management agents.

Applying a multi-agent approach in the management overlay results in a homoge-
neous agent landscape with respect to roles and capabilities of management agents in
the environment. That is, management agents are homogeneous with respect to their
management tasks and their capabilities. Secondly, service-oriented design of the
management overlay endows management agents with the features of service-
orientation. Among other things, these are autonomy, loose coupling, and dynamism.
In addition, further characteristics distinguishing the negotiation scenario of the pre-
sent thesis from other similar scenarios are:

� The focus of SLA negotiation is to iteratively establish SLAs between related
service components across the complete SOE, so that given service level objec-
tives of a particular business process can be fulfilled. In this context, underly-
ing service components are expected to conjointly support the given end-to-end
service level constraints of a business process. This aspect allows an adaptive
and dynamic management of related service components using automatically
negotiated SLAs. In case of changes in the environment or within a particular

P a r t I I – C h a p t e r 6.2 � Negotiation Scenarios

200

service component, supporting components can adapt to those changes by re-
negotiating affected SLAs in an automated manner.

� An agent’s negotiation behaviour is influenced by its social context within the
management overlay. There are two general agent types, namely cooperative
agents and self-interested agents. Cooperative agents usually belong to the
same organisation and therefore are willing to contribute to global business ob-
jectives. Self-interested agents are less cooperative and hence more utility-
oriented. In general, such agents are located in an external organisation and
may have their own business objectives.

� All management agents are autonomous, i.e., each agent has its own negotia-
tion preferences and negotiation behaviours (e.g., negotiation strategies, deci-
sion-making models, etc.). Such information is private and not shared with oth-
er agents in the management overlay. Hence, an agent has only incomplete in-
formation about its counterparts as a guideline for its negotiation strategies.

� Each service component is aware of its operational state through the observ-
er/controller instance of its management agent in the reference architecture (cf.
Section 5.1 and [LTS08]). This provides the prerequisite for monitoring
runtime behaviour of a service component, which is crucial for estimating val-
ues of service level objectives at runtime.

� A service component can be both a service provider and a service consumer in
different negotiation contexts at the same time. Recursive constructs of service
components as both a service provider and a service consumer in an SOE com-
plicates the negotiation scenarios. In particular, a service component has to
confirm that its own providers can support the SLA it negotiates with its con-
sumer, before it commits to the SLA.

� As discussed in Section 3.2.3, QoS parameters of an SLA can be either quanti-
tative (cost, throughput, availability, etc.) or qualitative (security, service com-
pliance, etc.). For simplicity, only quantitative QoS parameters are considered
in the negotiation scenarios. However, qualitative QoS parameters can be easi-
ly transformed to quantitative parameters by using a mapping function that
maps a finite set of qualitative values to a continuous value range. For example,
such a function can map various security levels of a service provider, from
synchronous encryption on network level to PKI-based encryption on message
level, to a continuous range of quantitative values, e.g., [0,1]. In this way, qual-
itative QoS parameters can be included in a negotiation process, too. The only
prerequisite to enable such a mapping function is that both negotiation parties

P a r t II – C h a p t e r 6 � Collaboration between Agents

201

must have a common understanding of the mapping function and its input and
output. This prerequisite can be met by a global ontology service, as discussed
in Section 3.1.

� Furthermore, it is assumed that a consumer and its providers have conflicting
interests on QoS parameters; otherwise, both parties can simply reach an
agreement by choosing their common optimum in their negotiation space.

In short, automated negotiation within a decentralised SOE involves a set of inter-
organisational and hence heterogeneous service components to conjointly guarantee
given end-to-end QoS requirements of a business process. In comparison to other
point-to-point negotiation scenarios from the research field, the negotiation scenarios,
on which the present thesis focuses, span all logical layers of an SOE in an end-to-end
manner. Among other things, negotiation scenarios of the present thesis are character-
ised by their iterated negotiation processes involving all related service components
with both the roles of a service provider and a service consumer.

6.3 Design Considerations

As discussed in the previous section, the basic negotiation scenario of the present the-
sis is concerned with a service consumer that negotiates with each of its service pro-
viders in a separate negotiation thread. However, how such a negotiation thread is car-
ried out between a service consumer and its providers is subject to a range of design
considerations with respect to the characteristics of end-to-end SLM within an SOE.
Hence, this section focuses on those design considerations and outlines the constraints
of automated negotiation of SLAs in such a self-organising environment.

Mediation: mediated negotiation requires a dedicated mediator in the environment
and a corresponding trust infrastructure established within the environment. Since a
mediator receives negotiation preferences from two management agents and tries to
find a mutually acceptable compromise based on the given preferences, an underlying
trust infrastructure is indispensable to build trust relationships between management
agents as well as between those agents and their mediator. Only a working trust infra-
structure can guarantee that each party involved in a negotiation thread (i.e., a man-
agement agent or a mediator) is trustworthy for other parties.

However, in a self-organising SOE, a mediated negotiation is not applicable. First,
a trust infrastructure requires additional infrastructural components that would have to

P a r t I I – C h a p t e r 6.3 � Design Considerations

202

be available in each SOE, but this prerequisite is not always given in practice. Fur-
thermore, in case that an SOE spans several trust infrastructures, it requires considera-
ble effort to establish trust relationships across different trust infrastructures. Second-
ly, a centralised negotiation approach with third-party mediators does not comply with
the distributed nature of an SOE. Typical problems of centralised approaches, like
performance bottleneck or single-point-of-failure prevent an active adoption of medi-
ated negotiation in a large-scale SOE. Hence, the present thesis adopts direct negotia-
tion between service providers and service consumers without mediators.

Bilateral vs. multilateral negotiation: the next essential design consideration is
that of how many management agents are involved in a single negotiation thread.
Theoretically, either a service consumer can negotiate with a single service provider,
which forms a bilateral negotiation; or a service consumer can negotiate simultane-
ously with a set of service providers in a single negotiation thread, which forms a one-
sided multilateral negotiation. Both negotiation styles have their advantages and dis-
advantages. Bilateral negotiation is easy to implement and to assess. When a man-
agement agent makes a statement, it can expect a timely response from the counter-
part. In contrast, multilateral negotiation allows a consumer to reach a possibly better
negotiation result by taking advantage of competitive situations between various ser-
vice providers.

Obviously, a multilateral negotiation is much more complex than a bilateral one. It
has to consider a variety of interests of all parties involved in the process. The large
number of potential trade-offs that a management agent has to consider increases ex-
ponentially with the number of negotiating parties involved in the process. This leads
to the fact that a management agent needs to explore a larger negotiation space to take
interests of all parties into account. In addition, a management agent must maintain a
much more complicated communication protocol to enable a multilateral negotiation.
In contrast, a bilateral negotiation employs a straightforward conversation to exchange
views and arguments of agents. Moss pointed out that a multilateral negotiation needs
much more negotiation rounds to reach an agreement, if any, than a bilateral negotia-
tion with the same negotiation constraints [Mos02].

With respect to the desirable properties of negotiation mechanisms (cf. Section
2.3.3), in particular communicational efficiency and computational efficiency, bilat-
eral negotiation is used to design automated negotiation of SLAs between a service
consumer and its service providers. It leads to a more probable convergence of a ne-

P a r t II – C h a p t e r 6 � Collaboration between Agents

203

gotiation process within a reasonable time slot. Moreover, a set of SLAs resulting
from several negotiation threads gives a service consumer more flexibility to maintain
them at runtime. Since each service provider is associated with a dedicated SLA, a
service consumer can flexibly renew or modify it, if necessary. For example, a service
consumer can update a dedicated SLA in case of SLA violation, without having to
adjust its SLAs with other service providers that are not affected by the SLA.

Single-issue vs. multi-issue negotiation: in a bilateral negotiation, two manage-
ment agents can bargain either over a single QoS parameter in one of a sequence of
negotiation threads or over multiple QoS parameters simultaneously in a single thread.
In contrast to single-issue negotiation, multi-issue negotiation allows management
agents to facilitate a negotiation process by exploiting optimal trade-offs among sev-
eral QoS parameters. That is, management agents can fine-tune values between sever-
al QoS parameters within an SLA proposal to generate offers that are more attractive
to their counterparts. Hence, for the purpose of the present thesis, bilateral multi-issue
negotiation is considered.

Criticality of time: in a business-critical service-oriented system, timely response
of the system is crucial for experiences of end users with the system. This implies that
negotiation processes in the underlying infrastructure must be brought to an end with-
in a predictable time slot. Hence, a negotiation process is limited in time. Each man-
agement agent has a predefined deadline for negotiation. In the course of negotiation,
as soon as the deadline is exceeded and no mutually accepted agreement has been
reached, the respective negotiation process will be terminated. It is noteworthy that
two negotiating agents may have defined different negotiation deadlines, depending
on their local negotiation preferences. In this way, it can be ensured that a negotiation
process terminates definitively after some time units.

Information situation: as aforementioned in Section 2.1.1, service components in
an SOE are autonomous. That is, they are responsible for designing, implementing,
and provisioning their own services. Therefore, each management agent is not ex-
pected to expose its internal implementation, in particular its negotiation preferences,
to other related management agents in the management overlay. Furthermore, in a
large-scale SOE, a management agent is unlikely to have perfect knowledge about its
environment, in particular those service components in the environment, with which it
has provider/consumer relationships. The large scale of such an environment prevents
a management agent from acquiring perfect information about its surroundings.

P a r t I I – C h a p t e r 6.3 � Design Considerations

204

Therefore, without loss of generality, this thesis focuses on bilateral negotiation in an
incomplete information situation, where related management agents do not share their
negotiation preferences with one another.

Negotiation access: as assumed in Section 6.2, each service component negotiates
only with a selected set of potential service providers, which match some predefined
(non-)functional requirements of the consumer. Hence, from this viewpoint, this thesis
focuses on an open negotiation process. A service component can join a negotiation
process as a potential service provider, if it fulfils the given (non-) functional require-
ments of a consumer.

Theoretical foundations: a theoretical foundation determines the way, in which
two management agents can negotiate with each other. As introduced in Section 2.3.3,
there are in general three different negotiation mechanisms: game theoretical, heuris-
tic, and argumentation-based. The choice of a negotiation mechanism depends on the
characteristics of the negotiation scenarios, among other things:

� It is a bilateral negotiation between a service consumer and its provider.

� Negotiating management agents know exactly what they have and what they
want. In other words, through continuous observation of a service component
by the observer/controller instance of the respective management agent, the
component knows its (non-)functional capabilities to provide its services. Such
preference information is fixed in the course of a negotiation process.

� Management agents have an exact way to estimate the quality of a given SLA.
By doing this, they can assess the benefits they would gain from a given SLA,
and compare them with their own expectations in order to make decisions.

� As aforementioned, management agents have only incomplete information
about their counterparts.

Approaches based on game theory expect a perfect information situation for both
negotiation parties and assume that both management agents have complete
knowledge of the outcome space. Hence, with respect to the incomplete information
situation of a management agent about its counterpart, game theoretical approaches
cannot be applied in the assumed scenarios. Without perfect information about oneself
and its counterpart in terms of negotiation preferences, two management agents can-
not apply a game theoretical approach to bargain over a range of QoS parameters and
reach a global equilibrium.

P a r t II – C h a p t e r 6 � Collaboration between Agents

205

Argumentation-based approaches provide means to incorporate additional infor-
mation (i.e., arguments) in outgoing proposals to changes the counterpart’s negotia-
tion space by altering its preferences. Hence, argumentation-based approaches require
additional communication efforts to exchange such advertising information. Further-
more, these approaches demand additional mechanisms to allow management agents
to argue their beliefs and other attitudes during a negotiation process. This leads to
additional communicational and computational overhead.

Secondly, as in human argumentation, rational agents may trick their counterparts
in order to gain an unfair advantages. Hence, this demands an additional trust infra-
structure in an SOE to build up trust-worthy relationships between management
agents. However, as aforementioned, such a trust infrastructure is not always available
in an SOE. In particular, for a large environment spanning a set of trust infrastruc-
tures, it is also challenging to create a trust federation across all related domains.

Thirdly, argumentation-based approaches assume that a rational management agent
can modify its preferences upon reception of advertising arguments from its counter-
part. For a service consumer, its negotiation preferences are derived from given busi-
ness/operational objectives, which cannot simply be changed without consultation
with its high-level control instance, e.g., human participants. Similarly, a service pro-
vider derives its preferences from its local technical capabilities. Changing negotiation
preferences means that a service provider has to change its local technical capabilities
in compliance with its new preferences. Such actions are, however, associated with
additional effort and are therefore not always applicable on the fly, in particular if a
service provider has locally only limited technical resources.

By comparing the characteristics of the negotiation scenarios of the present thesis
and the ones of various theoretical foundations to enable negotiation, it is obvious that
heuristic approaches are most applicable for the purpose of this thesis. Game theoreti-
cal approaches fail because of their requirement of a perfect information situation of
both negotiating agents about their negotiation preferences. Similarly, argumentation-
based approaches are unsuitable in the present case, because those approaches assume
that both negotiating agents can change their preferences upon receiving appropriate
argumentations.

Summarising all design considerations above, a service consumer and its providers
employ bilateral, multi-issue, and non-mediated negotiation to regulate their differ-
ences of opinions in terms of service level objectives. Each management agent has its

P a r t I I – C h a p t e r 6.4 � Mathematical Model

206

private negotiation preferences derived from either external directives or runtime his-
tory observed by the observer/controller instance. A negotiation thread is limited in
time, which ensures termination of a negotiation process. The actual negotiation pro-
cess is carried out by using a heuristic negotiation model that is introduced in detail in
Section 6.4.

6.4 Mathematical Model

The previous sections have introduced the negotiation scenarios and outlined the fun-
damental design considerations to facilitate automated negotiation between related
service consumer and service provider. In a basic negotiation scenario, a service con-
sumer negotiates simultaneously in several separated negotiation threads with all its
service providers on several pre-determined QoS issues. Hence, this section focuses
on the basic negotiation model based on the model introduced by Sierra, Faratin, and
Jennings [SFJ97] (cf. Section 3.3.1) to enable bilateral multi-issue negotiation.

The present thesis considers a bilateral negotiation between the management agent
cc of a service consumer and the management agent pp of its provider (i.e., management
agent i 2 fc; pgi 2 fc; pg) on multiple QoS parameters f1; 2; :::; ngf1; 2; :::; ng of an SLA, such as availa-
bility, response time, or throughput. Each QoS parameter j 2 f1; 2; :::; ngj 2 f1; 2; :::; ng has a con-
tinuous value range [minj;maxj][minj;maxj], where minj 2 Rminj 2 R, maxj 2 Rmaxj 2 R, and minj < maxjminj < maxj.
In addition, it is assumed that for the same QoS parameter jj, the value ranges of both
negotiation parties have overlaps, i.e., [minc

j;maxc
j]\ [minp

j;maxp
j] 6= ;[minc

j;maxc
j]\ [minp

j;maxp
j] 6= ;. This con-

straint is ensured by incorporating QoS evaluation into the service discovery process,
as discussed by Ding, Liu, and Schmeck [DLS10].

Each management agent ii has a predefined negotiation deadline timax 2 R
+timax 2 R
+, until

which the respective management agent can exchange SLA proposals with its coun-
terpart. In other words, a given deadline defines a maximal amount of time that a
management agent can spend to reach an agreement with its counterpart. In the course
of negotiation, an SLA proposal sent from a management agent aa to a management
agent bb in a negotiation thread at time tt is denoted as xt

a!bxt
a!b, where a; b 2 fc; pga; b 2 fc; pg, a 6= ba 6= b,

and t 2 [0;min(tamax; t
b
max)]t 2 [0;min(tamax; t
b
max)]. Each SLA proposal is composed of a set of QoS values,

i.e., xt
a!b = (xt

a!b[1]; x
t
a!b[2]; :::; x

t
a!b[n])xt

a!b = (xt
a!b[1]; x

t
a!b[2]; :::; x

t
a!b[n]), where xt

a!b[j]xt
a!b[j] specifies the value of the

QoS parameter jj in the agreement sent at time tt and xt
a!b[j] 2 [mina

j ;maxa
j]xt

a!b[j] 2 [mina
j ;maxa

j].

P a r t II – C h a p t e r 6 � Collaboration between Agents

207

In order to estimate the level of satisfaction of a particular management agent for a
given SLA, it leverages various utility functions. In this case, the utility of a given
SLA is the weighted sum of utilities of all QoS parameters in the agreement. To this
end, for each QoS parameter j 2 f1; 2; :::; ngj 2 f1; 2; :::; ng, a management agent i 2 fc; pgi 2 fc; pg has a
corresponding utility function V i

j (x) : [mini
j;maxi

j] ! [0; 1]V i
j (x) : [mini

j;maxi
j] ! [0; 1] that maps the value of a

QoS parameter into a real-valued utility from the range [0; 1][0; 1]. For a particular man-
agement agent ii, an agreement xx is preferable than another agreement x0x0, if the utility
of xx is higher than that of x0x0.

Depending on a management agent’s preferences, utility functions can have very
different shapes in their value range. For simplicity, the present thesis considers only
monotone utility functions. That is, for a management agent ii, a utility function V i

j (x)V i
j (x)

implies that, for two values x[j]x[j] and x0[j]x0[j] with x[j] · x0[j]x[j] · x0[j],

(
V i

j (x[j]) · V i
j (x0[j]) if QoS parameter j is increasing

V i
j (x[j]) ¸ V i

j (x0[j]) if QoS parameter j is decreasing

(
V i

j (x[j]) · V i
j (x0[j]) if QoS parameter j is increasing

V i
j (x[j]) ¸ V i

j (x0[j]) if QoS parameter j is decreasing.

In this case, a QoS parameter jj is increasing if the resulting utility increases if the
value of the parameter increases, such as availability for a consumer; and vice versa
decreasing if the estimated utility decreases if the parameter’s value increases, such as
cost for a consumer. Obviously, increasing and decreasing are two relative properties
that must be viewed from the viewpoint of a particular management agent. For exam-
ple, while cost is a decreasing QoS parameter for a service consumer, it is an increas-
ing one for a service provider. This fact denotes clearly conflicting interests of a con-
sumer and its providers on the same QoS parameter. Because a service provider per-
ceives for the same QoS parameter exactly the opposite as its consumer does, they
have competitive relationships on values of the same QoS parameter.

To estimate precisely utility of a given QoS parameter jj for a management agent ii,
the negotiation model uses a family of polynomial functions as follows, with ® 2 R

+® 2 R
+:

V i

j (x[j]) =

8<
:

³
maxi

j¡x[j]

maxi
j¡mini

j

´®

if QoS parameter j is decreasing³
x[j]¡mini

j

maxi
j¡mini

j

´®

if QoS parameter j is increasing
V i

j (x[j]) =

8<
:

³
maxi

j¡x[j]

maxi
j¡mini

j

´®

if QoS parameter j is decreasing³
x[j]¡mini

j

maxi
j¡mini

j

´®

if QoS parameter j is increasing . (15.4.1)

Since the function family V i
j (x[j])V i
j (x[j]) in (15.4.1) is monotone, a management agent ii

gets the maximal utility and the minimal utility at the boundaries of its value range for
the QoS parameter jj. That is, for an increasing QoS parameter, its utility increases
monotonically from 0 to 1 as the corresponding parameter value increases from mini

jmini
j

P a r t I I – C h a p t e r 6.4 � Mathematical Model

208

to maxi
jmaxi
j, with V i

j (mini
j) = 0V i

j (mini
j) = 0 and V i

j (maxi
j) = 1V i

j (maxi
j) = 1; vice versa, for an decreasing QoS

parameter, its utility decreases monotonically from 1 to 0 as the parameter value in-
creases from mini

jmini
j to maxi

jmaxi
j, where V i

j (mini
j) = 1V i

j (mini
j) = 1 and V i

j (maxi
j) = 0V i

j (maxi
j) = 0.

Figure 6-3: Utility functions for increasing and decreasing QoS parameters

Of course, it is possible to use utility functions other than (15.4.1) for negotiation
scenarios in this section, such as by using exponential functions. The major considera-
tion to choose a utility function is whether the selected utility function can reflect ap-
propriately preferences that an agent has on a particular QoS parameter. (15.4.1) rep-
resents an infinite number of possible utility functions with different behaviour pat-
terns, as illustrated in Figure 6-3. The parameter ® 2 R

+® 2 R
+ determines different behav-

iour patterns of utilities as the corresponding QoS parameter’s value changes.

In the case that ® = 1® = 1, V i
j (x[j])V i
j (x[j]) is linear and monotone. Hence, changes of a QoS

parameter’s value are proportional to changes of its utility. By assigning ®® with values
other than 1, a management agent can model various behaviour patterns to reflect its
preferences on the particular QoS parameter. For example, for a decreasing QoS pa-
rameter with 0 < ® < 10 < ® < 1, the utility function returns high utilities at the lower bound of
the value range. As the QoS parameter’s value approaches the maximal value maxmax,
the estimated utility falls quickly against 0 (as shown in Figure 6-3, in particular by
the curve with ® = 0:1® = 0:1). Similarly, for ® > 1® > 1, as QoS values increase from minmin to
maxmax, utilities fall at once against 00, even at the lower bound of the value range. In
Figure 6-3, the curve with ® = 10® = 10 depicts this behaviour clearly.

P a r t II – C h a p t e r 6 � Collaboration between Agents

209

 Hence, the function family in (15.4.1) specifies three general types of change be-
haviours of utilities: a proportional type with ® = 1® = 1 , a conservative type with
0 < ® < 10 < ® < 1 that lets a management agent to preserve high utilities until the value range
is almost exhausted, and the conceding type with ® > 1® > 1 where a management agent
gives up its utilities very quickly in the course of negotiation.

As aforementioned, utility of a given agreement xx is the weighted sum of utilities
of all QoS parameters in the agreement, i.e.,

V i(x) =

X
1·j·n

!i
jV

i
j (x[j])V i(x) =

X
1·j·n

!i
jV

i
j (x[j])

. (15.4.2)
In (15.4.2), j 2 f1; 2; :::; ngj 2 f1; 2; :::; ng and

P
1·j·n !i

j = 1
P

1·j·n !i
j = 1. Obviously, different utility func-

tions span negotiation spaces with different curvature. To better illustrate impact of
utilities functions on the perception of management agents of a given SLA, Table 6-1
specifies a sample negotiation scenario between a service consumer cc and its provider
pp to reach an agreement on two QoS parameters: response time and availability. The
negotiation space of a management agent is characterised by its boundary values of
the value ranges for the corresponding QoS parameters.

Table 6-1: Sample QoS parameters to illustrate utility functions

 weight type minimal maximal weight type minimal maximal

cc 0.5 decreasing minc
1 = 3minc
1 = 3 maxc

1 = 8maxc
1 = 8 0.5 increasing minc

2 = 0:96minc
2 = 0:96 maxc

2 = 0:99maxc
2 = 0:99

pp 0.5 increasing minp
1 = 5minp
1 = 5 maxp

1 = 10maxp
1 = 10 0.5 decreasing minp

2 = 0:95minp
2 = 0:95 maxp

2 = 0:999maxp
2 = 0:999

For simplicity, the sample negotiation scenario assumes that both QoS parameters
are equally weighted in the utility calculation. Therefore, with respect to (15.4.2), both
a service consumer and its service provider can estimate utilities of a given agreement
xx using the following formulas: 8<

:
V c(x) = 0:5 ¢

³
maxc

1¡x[1]
maxc

1¡minc
1

´®

+ 0:5 ¢
³

x[2]¡minc
2

maxc
2¡minc

2

´®

= 0:5 ¢
³

8¡x[1]
8¡3

´®

+ 0:5 ¢
³

x[2]¡0:96
0:99¡0:96

´®

V p(x) = 0:5 ¢
³

x[1]¡minp
1

maxp
1¡minp

1

´®

+ 0:5 ¢
³

maxp
2¡x[2]

maxp
2¡minp

2

´®

= 0:5 ¢
³

x[1]¡5
10¡5

´®

+ 0:5 ¢
³

0:999¡x[2]
0:999¡0:95

´®

8<
:

V c(x) = 0:5 ¢
³

maxc
1¡x[1]

maxc
1¡minc

1

´®

+ 0:5 ¢
³

x[2]¡minc
2

maxc
2¡minc

2

´®

= 0:5 ¢
³

8¡x[1]
8¡3

´®

+ 0:5 ¢
³

x[2]¡0:96
0:99¡0:96

´®

V p(x) = 0:5 ¢
³

x[1]¡minp
1

maxp
1¡minp

1

´®

+ 0:5 ¢
³

maxp
2¡x[2]

maxp
2¡minp

2

´®

= 0:5 ¢
³

x[1]¡5
10¡5

´®

+ 0:5 ¢
³

0:999¡x[2]
0:999¡0:95

´®

.(15.4.3)

Based on (15.4.3), Figure 6-4 illustrates the perception of a service provider (i.e.,
by means of utilities) of a given SLA within its negotiation space in dependence of
different values of ®®.

P a r t I I – C h a p t e r 6.4 � Mathematical Model

210

Figure 6-4: Illustration of utility functions with different α

To make the impact of ®® on utilities clearer, Figure 6-4 shows three different utility
functions from each utility function type with ® = 0® = 0, ® = 5® = 5, and ® = 0:2® = 0:2. The charts
on the left illustrate the distribution of utilities in relationship to varying value combi-
nations of response time and availability within the negotiation space specified in
Table 6-1. In order to make the distribution of utilities more clear, the charts on the
right depict the projection of corresponding surfaces on the plane of response time and
availability, where the lines/curves in the charts are indifference curves. That is, all
value combinations of response time and availability on a same indifference
line/curve have the same utility. The colour depth of a indifference line/curve speci-
fies its utility in compliance with the colour bar.

As seen in Figure 6-4, while a linear utility function with ® = 1® = 1 spans a plane in the
negotiation space, utility functions with ® 6= 1® 6= 1 span curved surfaces instead. The form
and intensity of curvature of these surfaces depends on the value of ®®. A utility func-
tions with ® > 1® > 1 spans a convex surface in the space. The larger the value of ®®, the
more intensive is the convexity of the surface. In contrast, a utility function with

P a r t II – C h a p t e r 6 � Collaboration between Agents

211

0 < ® < 10 < ® < 1 spans a concave surface in the space. The smaller the value of ®®, the more
intensive is the concavity of the surface.

The meaning of different ®® is not limited to different shapes of corresponding utili-
ty functions in the negotiation space. Moreover, different utility functions enable a
management agent to model its preferences individually within its negotiation space.
Areas with high utilities are mostly desired by a management agent, while areas with
low utilities are less desirable.

Another aspect of utility functions is dynamic transition of utilities from desired ar-
eas to less desirable areas within a negotiation space. As aforementioned, a manage-
ment agent has to concede from its best case (i.e., V (x) = 1V (x) = 1) to its worst case (i.e.,
V (x) = 0V (x) = 0) in the course of negotiation. With different utilities functions, a manage-
ment agent can realise different transition behaviour during this process. With a con-
vex shape in the negotiation space (i.e., ® > 1® > 1, as illustrated by the charts (b) in Figure
6-4), a management agent is willing to give up a large amount of utility already at the
very beginning of a negotiation process. In contrast, with a concave shape in the nego-
tiation space (i.e., 0 < ® < 10 < ® < 1, as shown by the charts (c) in Figure 6-4), a management
agent tries to preserve most of its utilities towards the end of a negotiation process,
whereupon it concedes more quickly in favour of its counterpart.

To sum up, utility functions determine how a management agent moves from its
best case to its worst case within a given negotiation space. For a given utility func-
tion, a negotiation space is composed of indifference curves/surfaces within it. An
indifference curve/surface consists of an infinite number of value combinations that
have the same utility for a particular management agent. As depicted in Figure 6-4,
different utility functions induce a variety of shapes of indifference curves in a negoti-
ation space, in dependence of the value of ®®.

Indifference curve/surfaces play an important role to facilitate automated negotia-
tion of SLAs. It is obvious that in order to accelerate a negotiation process, both nego-
tiating management agents are engaged to propose SLA offers as attractive as possible
to their counterpart. The fact that for a given utility there are an infinite number of
SLAs (i.e., various value combinations of all QoS parameters) that can be proposed by
a management agent increase greatly the flexibility and degree of freedom of an agent
to determine the best proposal for its counterpart. In this process, a management agent
has to find a single point on the indifference curve/surface of a given utility, which
can provide utility as high as possible to its counterpart. Based on the concept of indif-

P a r t I I – C h a p t e r 6.5 � Negotiation Protocol

212

ference curve/surface, Section 6.7.2 discusses various trade-off strategies to facilitate
a negotiation process.

6.5 Negotiation Protocol

A negotiation protocol specifies how two management agents interact with each other
to find mutually acceptable agreements at runtime. In particular, such a protocol de-
fines how an agent can initialise a negotiation process and how agents can exchange
their proposals interactively. There are several established negotiation protocols in the
field, such as the FIPA Iterated Contract Net Interaction Protocol mentioned before
[FIP02b]. These protocols are designed majorly for multilateral negotiation scenarios,
where a single agent interacts simultaneously with a set of agents to find mutually
acceptable solutions. In addition, these protocols are not sufficient for the negotiation
scenarios introduced in Section 6.2.

In particular, existing negotiation protocols do not address the following two im-
portant aspects with respect to characters of an SOE:

� A service component in an SOE can be both a service consumer and a service
provider at the same time. For example, an application server provides hosting
services to Web services and consumes hardware services from the underlying
infrastructure layer at the same time. In this case, the application server negoti-
ates with Web services as a service provider and in turn with the underlying in-
frastructure layer as a service consumer. Since non-functional behaviour of an
application server in terms of service level objectives (e.g., performance, secu-
rity, etc.) is supported by its providers, there is a correlation between the SLA
closed between an application server and its hosted Web services and the SLAs
arranged between the application server and its supporting servers. Due to this
correlation, a service component has to ensure that a contract with its consumer
can be fully supported by its own service providers.

� As mentioned in Section 6.2, in order to get maximal flexibility, a service
component closes an SLA with each of its providers separately. As aforemen-
tioned, service levels of a service component’s providers influence the ones
that this component provisions to its consumer. From this viewpoint, if a ser-
vice component runs several negotiation threads simultaneously with its pro-
viders, it has to coordinate these parallel negotiation threads. The purpose of
such coordination is to ensure that the resulting agreements from all parallel

P a r t II – C h a p t e r 6 � Collaboration between Agents

213

negotiation threads comply with the QoS requirements that a service compo-
nent’s consumer has.

Based on the previous considerations, a coordinated and iterated negotiation proto-
col is designed to facilitate negotiation activities between management agents across a
given SOE, as illustrated in Figure 6-5. In contrast to others, the negotiation protocol
introduced in this section is adapted in accordance with the hierarchical structure of a
service-oriented system, where business processes are supported by a set of underly-
ing service components in the system.

Initially, a business process gets external operational objectives in terms of QoS re-
quirements as initial input. External operational objectives define the desired behav-
iour of a particular business process, in terms of a set of service level objectives, such
as minimal availability, maximal response time, or maximal service cost for executing
a business process. Such non-functional requirements specify boundary conditions for
the runtime behaviour of a business process. Hence, such requirements specify nego-
tiation spaces of a business process for the set of QoS parameters.

In addition to these external operational objectives, a business process is given a set
of business objectives as initial input. High-level business objectives allow external
high-level control instances (e.g., human participants) to influence the negotiation be-
haviour of a business process and other related service components. For example,
business objectives can determine priorities of particular QoS parameters in the course
of negotiation. By doing this, management agents handle the preferred QoS parame-
ters more sparingly than the less preferred QoS parameters. That is, management
agents concede more liberally in less preferred parameters in favour of preferred ones,
so that they can reach values for the favoured QoS parameters as good as possible.

With these initial inputs, a business process triggers the overall negotiation process.
Figure 6-5 shows the sequence diagram of such an iterated and coordinated negotia-
tion process of a service consumer with its provider. Negotiation activities are carried
out between a service consumer (Component A in Figure 6-5) and a service provider
(Component B in Figure 6-5). In the course of negotiation, Component B has both the
role of a provider and the role of a consumer, as discussed in Section 3.1.2. Therefore,
Component B has two parallel time lines in the sequence diagram in Figure 6-5, in
order to distinguish its activities with different roles. The same applies to Figure 6-6,
showing the confirmation phase of the negotiation protocol.

P a r t I I – C h a p t e r 6.5 � Negotiation Protocol

214

Figure 6-5: Iterated and coordinated negotiation protocol – the negotiation phase

The first phase of the negotiation protocol is the negotiation phase. The main objec-
tive in this phase is to set up a mutually acceptable agreement between a service con-
sumer and its provider. To trigger a negotiation process, a service consumer (Compo-
nent A in Figure 6-5) generates an initial offer for each of its providers (Component B
in Figure 6-5). Initial offers are generated based on given operational objectives with
respect to composition patterns specified in the environment model (see Section
6.6.1). Afterwards, it starts several parallel negotiation threads, where in each thread
the service consumer negotiates only with a single service provider.

The actual negotiation process in a thread is an iterative process with alternating of-
fers between the consumer and its provider. Initially, the consumer behaves as a pro-
poser and makes an initial offer. After having received this SLA offer, the provider
consults its local negotiation strategies to decide whether to accept it. In case that the
provider rejects an incoming offer, it proposes a counter offer and sends this as a new
proposal back to the consumer. Upon receipt of a counter offer, the consumer leverag-
es its local decision maker to find its optimal action – namely either to accept the offer
or to generate a counter offer.

Sequence Diagram - iterated and coordinated negotiation – negotiation phase

«consumer»
Component A

«consumer»
Component B

negotiation phase: a service
consumer negotiates with one
of its service providers in an
iterated process with alternating
proposals.

loop

1.1:1: generate initial offers

1.2:1: start negotiation

«provider»
Component B

1.2.1:1: SLA offer

1.2.1.1:1: make decision

counter SLA offer

1.3: verify overall QoS

1.3.1: optimise SLA offers

this iterated process runs,
until a mutually acceptable
agreement is found.

1:1: trigger negotiation

P a r t II – C h a p t e r 6 � Collaboration between Agents

215

Before a consumer sends a counter offer to its respective negotiation partner, it op-
timises the offer with respect to the global business objectives and the consumer’s
local experiences so far with the particular counterpart. The objective of such optimi-
sation is to find optimal trade-offs between various QoS parameters by keeping utili-
ties of respective agreements unchanged. For example, if a global business objective
focuses on providing customers with services for maximal customer satisfaction (e.g.,
high availability and low response time), then a possible trade-off for a consumer is to
reduce the assigned value for response time by simultaneously increasing service cost
in the agreement. Section 6.7.2 discusses such trade-off strategies in details.

After having optimised the outgoing counter offers, a consumer sends the offers to
its respective counterparts and the negotiation process thereupon goes into the next
round. This is an iterative process, until either both the consumer and the provider
reach a consensus on the given QoS parameters or the negotiation process is aborted
due to the violation of some predefined constraints (e.g., negotiation time-out).

If a set of mutually acceptable agreements is found between a consumer and its
provider(s), the confirmation phase begins. Figure 6-6 illustrates the interactions be-
tween a service consumer and its provider as well as between the provider and the
provider’s providers.

The focus of the confirmation phase is to verify that the agreements resulting from
the previous phase can be supported by a provider’s underlying service components.
In other words, a service provider can only commit to an SLA negotiated with its con-
sumer, if this SLA is also supported by its own provider(s) in turn.

Hence, this phase is concerned with the service providers rather than the service
consumer. A service provider (Component B in Figure 6-6) must ensure that it has the
ability to support service level objectives specified in the agreement with its consum-
er, in particular with respect to its own service providers. Therefore, it changes its role
from provider of the previous phase to consumer in this phase and negotiates in turn
with its service providers by using the service level targets specified in the agreement
resulting from the previous phase as its operational objectives.

It is noteworthy that a service provider may have its own business objectives in this
phase other than the one used in the previous negotiation phase. It depends on the or-
ganisational affiliation of the service provider. This determines if a service provider
has to follow the same business objectives as its consumer.

P a r t I I – C h a p t e r 6.5 � Negotiation Protocol

216

Figure 6-6: Iterated and coordinated negotiation protocol – the confirmation phase

With operational objectives and business objectives as inputs, a service provider
starts a negotiation process in its local context as a service consumer. In this way, the
negotiation initialised by the consumer of the service provider is propagated to the

Sequence Diagram - iterated and coordinated negotiation – confirmation phase

confirmation phase: a service
provider has to confirm that its
providers in turn support the
negotiated agreement, before
it commits to that agreement.

opt

1:1: confirm SLA agreement
1.1:1: confirm SLA agreement with providers

alt

[else]

confirm/abort negotiation

alt

1.2:1: confirm agreement to its consumer

1.3:1: abort the negotiation with its consumer

agreement confirmed/aborted

alt

[if a mutually acceptable agreement is found]

«provider»
Component B

«consumer»
Component B

«consumer»
Component A

SLA applied

2.1:1: apply agreed SLAs

2.2:1: apply the SLA

2.2.1:1: apply the SLA

SLA applied

2.2.2:1: abort all negotiation threads()

ref iterated and coordinated negotiation –
negotiation phase

1.1.1:1: confirm negotiation

1.1.2:1: abort negotiation

[if a service provider has negotiated
agreements with ist providers]

[if the SLA is confirmed by the provider]

[at least one of the providers aborts]

3.1:1: abort all negotiation threads

3.2:1: abort negotiation 3.2.1:1: abort negotiation

[if all providers have confirmed their agreements]

[else]

if the agreement is confirmed
by all service providers

abort an SLA agreement if
its service providers do not
support the given agreement

P a r t II – C h a p t e r 6 � Collaboration between Agents

217

providers of the service provider. Putting this recursive scheme into the global context
of an SOE, this mechanism allows a negotiation process initialised by a particular
business process being recursively propagated across the complete environment, from
the highest business process layer down to the lowest infrastructure layer.

If a service provider can reach agreements with its providers and the resulting
agreements meet the QoS constraints specified in the agreement from the previous
negotiation phase, it is going to commit to this agreement with its consumer. Of
course, this process is omitted, if a service provider (e.g., an infrastructural service
component) does not utilise any further services from other service components in the
same environment. Correspondingly, if a service consumer is invoked by other com-
ponents in the system, it has therefore on its part outstanding agreements to confirm.
In this case, a service consumer is going to responds to its consumers in turn, in de-
pendence of confirmations it receives from its service providers. In this way, out-
comes of negotiation processes in the lowest infrastructure layer can be propagated
bottom-up to the initialising process in the highest process layer in the environment.

Upon receiving the confirmation from all service provider(s), a business process
closes the corresponding negotiation thread and begins to set up the SLA in its local
runtime environment, as discussed in the SLA lifecycle in Section 3.2.4. Upon receiv-
ing the message, that a service consumer has applied a negotiated SLA, a provider
begins to set up the SLA in its local environment, too. If it utilises any other services
from the underlying service components, the corresponding service component in-
forms its service providers to close the negotiation threads between them. By doing
this, negotiated SLAs are set up recursively top-down from the initialising business
process to the lowest infrastructural providers.

However, in case that at least one of its service providers fails to confirm its SLA, a
service consumer aborts all negotiation threads with its providers, even if some pro-
viders in other threads have confirmed their SLAs. In case that a service provider has
some confirmed SLAs on its part with its providers, it forces its service providers to
close the negotiation threads between them by withdrawing the confirmation. Simul-
taneously, if a service consumer provides services to other service components in the
upper layer, it aborts the negotiation threads with its service consumers, too. By doing
this, a single negotiation failure between a single provider/consumer pair is propagat-
ed across the complete environment.

P a r t I I – C h a p t e r 6.5 � Negotiation Protocol

218

In addition, the negotiation process illustrated in Figure 6-5 and Figure 6-6 is a co-
ordinated process. In this case, a consumer plays the role of a coordinator throughout
the negotiation phase. It triggers the negotiation phase by initialising a set of parallel
negotiation threads with its providers. In this way, a consumer can actively involve all
related service providers into its negotiation process. In addition, a consumer is re-
sponsible to control the negotiation process in dependence of the outcomes of all ne-
gotiation threads. In case that one or more negotiation threads are aborted due to some
unexpected events, a consumer has to inform all other service providers, e.g., by
aborting the respective negotiation threads with them. Otherwise, as soon as a con-
sumer has successfully reached a consensus on service level objectives with all its
service providers, it has to close all negotiation threads by informing the related ser-
vice providers to apply the negotiated SLAs.

By following this negotiation protocol at runtime, the initial negotiation process
started by a business process is recursively propagated top-down to all related service
components in the underlying layers. Vice versa, outcomes of negotiation processes
are recursively fed back bottom-up to the initialising process again. At the end of such
a chained negotiation process across all related service components in the environ-
ment, either each consumer/provider pair in the system has a mutually accepted and
confirmed SLA; or there are no established SLAs between related service components
along the vertical dependence chains. In this way, a business process can ensure that
all supporting service components in the underlying layers can contribute to the ser-
vice level constraints it receives from its consumers.

Rationale. The negotiation protocol described in this section takes the characteris-
tics of negotiation scenarios introduced in Section 6.2 into consideration. Given a pre-
defined SOE and a set of service requirements (i.e., operational objectives) for partic-
ular business processes on top of the environment, the negotiation protocol guides
service components to negotiate service levels with their respective service providers,
so that all resulting SLAs across the environment are able to support conjointly the
overall non-functional requirements on the complete environment.

Coordinating activities of a service consumer enables a partly centralised optimisa-
tion of SLAs with respect to global business objectives, while keeping actual negotia-
tion processes simple and flexible by using bilateral multi-issue negotiation between a
service consumer and its provider. In addition, the confirmation process of a negotiat-
ed SLA forces a service provider to extend a negotiation process to its service provid-

P a r t II – C h a p t e r 6 � Collaboration between Agents

219

ers. From the viewpoint of the recursive construction of an SOE, where a service
component can simultaneously be a provider and a consumer, this mechanism allows
a business process to propagate a negotiation process iteratively across the complete
SOE down to service components in the infrastructure layer.

In order to meet given operational objectives on a particular service component, the
negotiation protocol allows a service component to decompose its operational objec-
tives in terms of QoS requirements progressively into several sub-requirements for
each of its supporting service components in the environment. By doing this, a busi-
ness process delegates part of its responsibility to enforce its operational objectives to
its supporting service components.

The key requirement to apply the iterated and coordinated negotiation protocol in-
troduced in this section is that a service component can decompose given overall op-
erational objectives in terms of QoS requirements with respect to its service providers
by some means. Obviously, such a decomposition process must take the nature of a
target SOE into considerations, in particular, (expected) runtime behaviour of related
service components in the environment. Secondly, a service consumer must be able to
aggregate QoS dimensions of its service providers to ensure that they can satisfy the
overall QoS requirements at runtime. Therefore, in the following, the underlying
composition and decomposition schemas are discussed. These schemas are crucial for
a service component to determine its negotiation spaces with its service providers.

6.6 Negotiation Space

As mentioned in the previous section, the key challenge for a consumer to apply the
iterated negotiation protocol is to determine negotiation spaces for each particular ser-
vice provider at runtime. A service consumer has to ensure that its negotiation spaces
align with the non-functional requirements it has. That is, resulting SLAs based on
these negotiation spaces can support sufficiently the non-functional requirements.
Therefore, it has to split its non-functional requirements for each of its service provid-
ers. However, this task is not trivial. Theoretically, a service consumer has an infinite
number of possibilities to decompose given non-functional requirements. Therefore, it
has to take the nature of each service provider into consideration, so that the resulting
requirement for each service provider complies with its real behaviour pattern.

P a r t I I – C h a p t e r 6.6 � Negotiation Space

220

To this end, this section investigates composition and decomposition schemas for a
selected set of QoS parameters, namely availability, cost, response time, and through-
put. While availability addresses reliability of a service by estimating its online prob-
ability, response time and throughput cover the performance aspect of a service. In
contrast, cost investigates the business aspect of service consumption in an SOE. The-
se QoS parameters are selected based on their types and their relevance to service in-
vocations in an SOA. From this aspect, schemas discussed in this section are repre-
sentative for other QoS parameters. Based on them, schemas for further QoS parame-
ters can be derived easily.

Hence, this section is organised as follows: Section 6.6.1 outlines the basic compo-
sition patterns used in the present thesis. These patterns are important to determine
relationships between involved service providers. Section 6.6.2 is concerned with de-
composition schemas for the aforementioned QoS parameters, while Section 6.6.3
focuses on composition schemas for them. Finally, Section 6.6.4 outlines how these
composition and decomposition schemas can be utilised by a service consumer to de-
termine negotiation spaces for its service providers.

 Composition Patterns 6.6.1

In the context of business process management, workflow patterns addressing rela-
tionships of process activities are exhaustively analysed, such as in the work of van
der Aalst, Barros, Hofstede, and Kiepuszewski [ABHK00, AHK+03]. Work with sim-
ilar focuses is conducted in the context of service composition [JRM05]. Figure 6-7
illustrates an example of such a workflow with several workflow patterns.

Figure 6-7: Sample workflow with workflow patterns

The activity A1 is the first activity in the workflow. An AND-pattern specifies that
the main process flow is split into two parallel activities A2 and A3 that are executed
simultaneously after the activity A1. A XOR-pattern indicates that there is an exclu-
sive choice between the sub-process flows A2 and A3. Only one of both sub-process
flows can be continued by the main process flow, while the other one is aborted. After

A1 AND

A2

A3

XOR A4

P a r t II – C h a p t e r 6 � Collaboration between Agents

221

the XOR join, the main flow continues with the activity A4, before the complete
workflow terminates.

Similarly, the business logic of a service consumer can be expressed using a work-
flow consisting of a range of composition patterns. Each workflow addresses chrono-
logical concerns of service invocations of a service component. That is, a workflow
states how business logics of the underlying service components (i.e., service provid-
ers) are involved into the business logic of a service consumer in a chronological or-
der. In this context, it is of particular interest to control how a logic flow can be
passed to the next activity at runtime. Therefore, in order to model different relation-
ships between predecessor and successor activities in a business logic, the present the-
sis aligns its definitions of composition patterns to the BPMN’s definitions of gate-
ways [OMG09].

In BPMN, gateways are used to define types of logic flow behaviour within a busi-
ness process, such as branching, merging, and joining. They specify a range of gating
mechanisms that supervises the logic flow at a gateway, i.e., whether logic flows can
be merged or split on a range of outgoing paths. In general, BPMN distinguishes be-
tween three basic gateway types: exclusive, inclusive, and parallel. In the following,
these gateway types are introduced in combination with their corresponding composi-
tion patterns in the present thesis.

In an exclusive gateway, only one of the alternative (incoming or outgoing) paths
will be taken by the gateway. To determine which path to use, an exclusive gateway
evaluates a predefined condition using its current operational context. The evaluation
result leads either to one of the paths or to a default path.

Correspondingly, a composition pattern XOR is defined to reflect the same branch-
ing/merging behaviour, as illustrated in Figure 6-8. In an XOR composition pattern,
only a single service provider among all service providers will be invoked by a con-
sumer. Depending on the particular business logics of a service component, an XOR
pattern can be used to realise different scenarios with exclusive choice. The most
common scenario is a conditional evaluation of execution context within a business
process in the process layer. In addition, this composition pattern can be used to real-
ise redundancy behaviour in other layers to increase reliability of particular service
component. For example, a single Web service is hosted on two or more identical
Web servers. Hence, an incoming request for the Web service is passed to one of
those servers. The decision, which Web server to use for an incoming service request,

P a r t I I – C h a p t e r 6.6 � Negotiation Space

222

depends on the current workload of the servers. In any case, only one of the service
providers is selected exclusively to handle an incoming service request.

Given an XOR pattern with m outgoing/incoming paths, in order to reflect precise-
ly the branching/merging behaviour of the pattern, each outgoing/incoming path is
associated with a probability value pipi with Pm

i=1 pi = 1
Pm

i=1 pi = 1 (as shown in Figure 6-8). A
probability value indicates the transition probability of the respective path that it is
selected by an XOR pattern at runtime. These probability values are calculated at
runtime by a management agent, based on a set of usage data of the pattern. In order
to keep such probability values up-to-date, they are re-calculated regularly after a pre-
defined time period, using statistics collected during this period. Alternatively, re-
calculating transition probabilities can be done using statistics collected during a slid-
ing window of a predefined size, which helps to reduce the influence of noise in the
calculation.

To distinguish exclusive gateways from scenarios, where more than one path is se-
lected, BPMN introduces the inclusive gateway. In comparison to an exclusive gate-
way, all outgoing/incoming paths in an inclusive gateway are evaluated for selection.
Paths matching a predefined condition expression are activated by an inclusive gate-
way to continue its process flow.

Based on an inclusive gateway, a second composition pattern OR is defined. In
contrast to an XOR pattern, this composition pattern allows a service consumer to
model the kind of branching/merging behaviour, where one or more service providers
are consumed at the same time. For example, a business process may utilise simulta-
neously several Web services out of a predefined set of services. Determining the set
of Web services to invoke depends on evaluation results of predefined conditional
expressions in the context of a particular process instance. All paths with positive
evaluation results are activated by an OR pattern. Hence, an OR pattern can be con-
sidered as a generalised form of an XOR pattern.

Given an OR pattern with m outgoing/incoming paths, each path within the pattern
is introduced with a weight wiwi with Pm

i=1 wi = 1
Pm

i=1 wi = 1, as shown in Figure 6-8. In contrast
to transition probabilities of paths in an XOR pattern, weights indicate the ratio of in-
vocations of a respective service provider among all invocations of service providers
within a given time period. Hence, the weight of a service provider is estimated by
calculating the quotient of the number of invocations of the respective service provid-
er and the total number of invocations of all service providers involved in an OR pat-

P a r t II – C h a p t e r 6 � Collaboration between Agents

223

tern during a predefined time slot. Such statistical information is collected and calcu-
lated by a management agent at runtime.

To model the branching/merging behaviour that all service providers are required
to pass a gateway, BPMN introduces the parallel gateway. A parallel gateway creates
several parallel flows out of a single process flow or merges several parallel flows into
a single process flow. In a merging gateway, termination of all incoming parallel
flows is required by the gateway in order to continue with the next activity in the pro-
cess flow.

Correspondingly, a third composition pattern AND is introduced, where all parallel
service providers are invoked by a consumer at the same time. In an AND pattern, a
consumer waits for responses from all its service providers, before it moves forward
to the next activity in its business logic. Correspondingly, each path in an AND pat-
tern has the same probability of 100% to be activated at runtime.

The last composition pattern introduced is a SEQ pattern, where a service consumer
invokes a range of service providers one after another in a sequential and predefined
order. Obviously, the transition probability between two successive service invoca-
tions is always 100%.

Figure 6-8: Composition patterns in business logics

Figure 6-8 illustrates all composition patterns defined in the present thesis to model
invocation behaviour of a service consumer at runtime. It is noteworthy that all com-
position patterns except the SEQ pattern can be used either as a split gateway or as a

A1

Am

XOR Ak

…
…

…
…

A1

Am

OR Ak

…
…

…
…

A1

Am

AND Ak

…
…

…
…

A1 Ak
…… Am

……

XOR split AND split

OR split SEQ pattern

A1

Am

XORAk

…
…

…
…

XOR join

A1

Am

ANDAk

…
…

…
…

AND join

A1

Am

ORAk

…
…

…
…

OR join

P a r t I I – C h a p t e r 6.6 � Negotiation Space

224

join gateway to model invocation behaviour. For example, in order to improve re-
sponsiveness of a service consumer, it can invoke several redundant service providers
using the same service request. A service consumer can take the first incoming service
response to continue its logic flow. Other responses arriving after this point in time
will be discarded by the consumer. In this case, the service consumer combines an
AND split to start a set of parallel service invocations and an XOR join to exclusive
select an incoming responses.

Based on the composition patterns introduced in this section, a service component
can model its business logic (i.e., invocation behaviour) in terms of chronological in-
vocations of service providers in the underlying layers. In particular, it is possible to
address the order and the relationships of service invocations, which play a crucial
role to delegate an appropriate portion of non-functional requirements to a particular
service provider at runtime. In addition, there are nine possible combinations of the
splitting/joining gateways illustrated in Figure 6-8, i.e., XOR-XOR, XOR-AND,
XOR-OR, AND-XOR, AND-AND, AND-OR, OR-XOR, OR-AND, OR-OR. Howev-
er, some of them do not make sense from the viewpoint of business logic. For exam-
ple, an XOR split pattern cannot be followed by an AND pattern.

Hence, in the remainder of this chapter, only the following composition patterns are
considered:

� XOR-XOR, i.e., an XOR split in combination with an XOR join: the exclusive
choice of a service provider takes place at the XOR split pattern.

� AND-XOR, i.e., an AND split in combination with an XOR join: all service
providers are invoked by a consumer. It performs an exclusive choice among
all responses at the XOR join.

� AND-OR, i.e., an AND split in combination with an OR join: all service pro-
viders are invoked by a consumer. It selects a set of responses in dependence of
its current operational context.

� AND-AND, i.e., an AND split in combination with an AND join: responses of
all service providers are required by a consumer to continue its logic flow.

� OR-OR, i.e., an OR split in combination with an OR join: only some of a given
set of service providers are selected by a consumer at the OR split.

� OR-XOR, i.e., an OR split in combination with an XOR join: a consumer in-
vokes a selected set of service providers and makes an exclusive choice among
all responses of these selected providers.

P a r t II – C h a p t e r 6 � Collaboration between Agents

225

Figure 6-9 illustrates an example of the business logic of a service component with
various composition patterns. In addition to local activities that the service component
performs in the layer nn, it consumes services from the underlying layer n + 1n + 1 to real-
ise its business logic.

The business logic starts with two sequential invocations of the service component
S1S1 and the local activity L1L1. After this, it splits its logic flow into two parallel sub-
flows with an AND split pattern. That is, the main logic flow has to wait for further
execution, until both sub-flows have completed their activities. The upper sub-flow in
the figure splits its flow into two further sub-flows with an XOR split. In other words,
only one of the activities L2L2 and S3S3 will be executed in the upper sub-flow. In the
lower sub-flow, the service S2S2 is consumed. After both sub-flows have completed
their execution, they return to the main logic flow, where the service S4S4 is consumed
in a sequential order in the flow. The complete business logic terminates after the ser-
vice consumption of S4S4.

Figure 6-9: Sample business logic with composition patterns

Modelling the business logics of a service component by means of composition
patterns is crucial for determining negotiation spaces for its service providers. Struc-
tural analysis of business logics allows a service component to precisely determine the
impacts of particular service providers on its local behaviour, in particular with re-
spect to its non-functional behaviour. For example, behaviour (e.g., response time) of
the XOR-XOR composition in Figure 6-9 depends on the probabilities that both activ-
ities L2L2 and S3S3 are executed at runtime. However, this relationship changes, if both
activities are composed with an AND-AND pattern instead of an XOR-XOR pattern.

S3

L2

XOR

S1

S2

S1

L1

S4S3S2

AND

service consumer

service providers

la
ye

rn
la

ye
rn

+1

AND

XOR

S4

S : service invocation L : local activity

P a r t I I – C h a p t e r 6.6 � Negotiation Space

226

In this case, response time of the composition is determined by the activity that takes
longer for execution.

Therefore, the following sections focus on the impacts of different composition pat-
terns on non-functional behaviour of a service consumer. In particular, the following
sections investigate relationships between the overall QoS values of a composition
pattern and the QoS values of each particular service provider within the pattern by
means of composition and decomposition schemas.

 Decomposing QoS Requirements 6.6.2

As aforementioned, the prerequisite to utilise the negotiation protocol introduced in
Section 6.5 is the ability of a service component to decompose QoS requirements for
each of its service provider. This task is however not trivial. It has to take the nature
of each service provider into consideration, so that the resulting sub-requirements
comply with the behaviour pattern of the respective provider. For example, a service
consumer needs two service providers to accomplish its task and it can pay maximally
100 cost units for consuming these services. Theoretically, there are an infinite num-
ber of possibilities to distribute 100 cost units between its two providers, but not all of
them are reasonable from the viewpoint of negotiation. That is, assuming that both
service providers have similar service charges, then a distribution with 50 cost units
for each provider is more likely to be acceptable for the involved parties than a distri-
bution with 10 cost units for one provider and 90 cost units for the other one. Analo-
gously, if the average service charges of both service providers have a relation of
about 1:2, then distributing cost units equally between them is not applicable. Hence,
decomposing QoS requirements of a service consumer to construct negotiation spaces
has to take behaviour patterns of respective service providers into consideration.

The key challenge to decompose QoS requirements is to determine appropriate por-
tions of QoS requirements for each service provider. Ideally, each functional depend-
ence between a service consumer and one of its service providers can be associated
with a kind of impact factor that specifies how far the respective provider affects the
overall QoS behaviour of the consumer. However, such impact factors are hard to es-
timate. In particular, due to the large number of various types of QoS parameters that
a service consumer has to deal with, a generic way to establish such impact factors is
hard to define. Depending on the particular type of a QoS parameter, it may require a

P a r t II – C h a p t e r 6 � Collaboration between Agents

227

different decomposition schema. From this viewpoint, generic impact factors for all
QoS parameters are not applicable.

Therefore, instead of using a generic mechanism to decompose given QoS re-
quirements, a consumer has to consider each QoS parameter separately with respect to
the following aspects:

� Characteristics of a QoS parameter: for example, service response time TrTr is
calculated by determining the time difference between sending a service re-
quest at tinputtinput and receiving a corresponding service response from a provider
at toutputtoutput, namely jtoutput ¡ tinputjjtoutput ¡ tinputj. Therefore, the total service response time of
two sequential service invocations could be determined by adding the response
time of these two service invocations. However, this schema cannot be applied
to statistically computed QoS parameters, such as availability. As discussed in
Section 3.2.3, availability of a service provider is the probability that the pro-
vider is accessible in a given period, namely tup

tup+tdown

tup

tup+tdown
. In contrast to response

time, availability of a composition consisting of sequential service invocations
cannot be estimated by simply summing up the availabilities of both service
providers. Instead, it is the product of availability of all service providers,
which addresses the probability that all service providers are simultaneously
accessible within the given time slot.

� Composition patterns, which specify functional dependences between a service
consumer and its providers, as introduced in Section 6.6.1. Obviously, even
with the same set of service providers, different composition patterns result in a
different composite QoS behaviour on the consumer level.

� Behaviour patterns of a particular service type as well as a particular service
provider. Such behaviour patterns state how a particular service provider or a
service type behaved in previous sessions. For example, historical QoS infor-
mation may contains average response time of a particular service provider or
of all service providers of the same type in previous session(s). To decompose
overall QoS requirements between several service providers, a service consum-
er incorporates such historical QoS information as reference of behaviour pat-
terns of a given service provider to decompose overall QoS requirements for it.
Obviously, the more precise such historical information is, the more accurate
are the decomposition results for the provider.

Therefore, in order to decompose overall QoS requirements for particular service
providers, a service consumer needs to determine behaviour patterns of the corre-

P a r t I I – C h a p t e r 6.6 � Negotiation Space

228

sponding service providers (or of their service types) in terms of service level objec-
tives, composition patterns organising these service providers, and characteristics of
QoS parameters involved.

A management agent is aware of behaviour patterns of a service provider as well as
a service type. As discussed in Section 5.2.4, a management agent collects manage-
ment information from the underlying service component, including information
about invocations of its service providers. Invocation information can be distinguished
on three different levels: instance level, provider level, and service-type level. In other
words, information on the instance level is associated with a particular instance of a
provider. Historical information on the provider level is associated with a particular
service provider. Hence, such information is calculated across all instances of a corre-
sponding service provider. Similarly, information on the service-type level is associat-
ed with a particular service type and is estimated based on information collected
across all service providers of the same type.

Differentiation between three levels of details allows a management agent to de-
termine behaviour patterns of a given service provider as precisely as possible. It is
obvious that information on the instance level is the most precise and reflects the ex-
act behaviour of a particular service instance. This delivers therefore an accurate base
to determine the extent of the influence that a service provider has on the overall be-
haviour of its consumer, in particular with respect to given QoS requirements. Behav-
iour patterns consolidated based on provider level information helps a management
agent to estimate runtime capacities of a particular provider. In case that no instance
level and provider level information is available for a given service provider, a man-
agement agent uses information on the service-type level in its decomposition process.
Under the assumption that service providers have similar implementation complexity
for the same service type, such service-type level information delivers at least approx-
imate reference values for a given service provider.

It is noteworthy that service level management is a dynamic process within a run-
ning service-oriented system. That is, collected information to estimate behaviour pat-
terns of a service component evolves in the course of system operation. Continuous
monitoring of an underlying service component allows a management agent to con-
tinuously improve its knowledge about a particular service provider instance. For its
service component, incorrect decomposition of service requirements based on impre-
cise information of a corresponding service provider at the beginning can be gradually

P a r t II – C h a p t e r 6 � Collaboration between Agents

229

improved based on an increasingly accurate knowledge base, e.g., by renegotiating
less accurate SLAs in case of violations. Section 8.3 addresses this scenario in detail
and outlines the process towards stable SLAs.

Given a service consumer cc with its service providers f1; 2; :::; mgf1; 2; :::; mg and a set of QoS
parameters f1; 2; :::; ngf1; 2; :::; ng, let fhc

1[j]; h
c
2[j]; :::; h

c
m[j]gfhc

1[j]; h
c
2[j]; :::; h

c
m[j]g be the observed average values at

the instance level for a particular QoS parameter j 2 f1; 2; :::ngj 2 f1; 2; :::ng ,
fhp

1[j]; h
p
2[j]; :::; h

p
m[j]gfhp

1[j]; h
p
2[j]; :::; h

p
m[j]g be the corresponding average values at the provider level, and

fhs
1[j]; h

s
2[j]; :::; h

s
m[j]gfhs

1[j]; h
s
2[j]; :::; h

s
m[j]g be the average values at the service-type level, then historical

information that the consumer cc uses for a service provider i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg in the de-
composition schemas is defined as:

hi[j] =

8><
>:

hc
i [j] if hc

i [j] 6= null

hp
i [j] if hp

i [j] 6= null and hc
i [j] = null

hs
i [j] if hs

i [j] 6= null, hp
i [j] = null, and hc

i [j] = null

hi[j] =

8><
>:

hc
i [j] if hc

i [j] 6= null

hp
i [j] if hp

i [j] 6= null and hc
i [j] = null

hs
i [j] if hs

i [j] 6= null, hp
i [j] = null, and hc

i [j] = null. (6.6.1)

That is, if instance-specific historical information is available, this information is
used; otherwise, less-accurate provider-specific information about a corresponding
service provider is used as a reference, if it is available. If both types of information
are not available, then historical information on service-type level is used as reference.

Secondly, each management agent is aware of the business logic of its underlying
service component. In particular, such business logic consists of composition patterns
that organise chronological service invocations of underlying service providers. As
discussed in Section 5.2.3, the collaboration manager of a management agent main-
tains relationships of its underlying service component to other related components in
the environment. In addition, the collaboration manager is aware of the set of service
providers, with which a management agent has to negotiate an SLA.

Hence, given appropriate behaviour patterns as well as composition patterns of all
related service providers, and a set of QoS parameters, a service consumer can start a
decomposition process to determine how it can delegate part of its QoS requirements
to its service providers. To this end, this section defines a range of decomposition
schemas for the selected QoS parameters. In the remainder of this section, let xcxc be
the QoS requirements for a given set of QoS parameters f1; 2; :::; ngf1; 2; :::; ng of a consumer,
and xixi be the decomposed QoS values for the activity i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg in the com-
position pattern. Each activity can be either an invocation of the service of an underly-
ing service component, or an invocation of a local service capability.

P a r t I I – C h a p t e r 6.6 � Negotiation Space

230

Availability

As discussed in the previous section, depending on composition patterns, availability
of a service consumer is determined either by all of its providers or by a particular
provider at runtime.

In the patterns AND-AND and SEQ, where availability of a consumer xc[j]xc[j] (i.e.,
the QoS parameter j 2 f1; 2; :::ngj 2 f1; 2; :::ng is availability) depends on availabilities of all in-
volved service providers xi[j]xi[j] with i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg, composite availability of a con-
sumer and availabilities of all service providers satisfy the following conditions:

(
x1[j] ¢ x2[j] ¢ ::: ¢ xm[j] = xc[j]

jlnx1[j]j ¢ h1[j] = jlnx2[j]j ¢ h2[j] = ::: = jlnxm[j]j ¢ hm[j]

(
x1[j] ¢ x2[j] ¢ ::: ¢ xm[j] = xc[j]

jlnx1[j]j ¢ h1[j] = jlnx2[j]j ¢ h2[j] = ::: = jlnxm[j]j ¢ hm[j]. (6.6.2)

In (6.6.2), hi[j]hi[j] is the historical information of the service provider ii for the QoS
parameter jj. From the second condition in (6.6.2) it can be derived that for any two
service invocation activities a; b 2 f1; 2; :::;mga; b 2 f1; 2; :::;mg with a 6= ba 6= b:

jlnxa[j]j ¢ ha[j] = jlnxb[j]j ¢ hb[j]

() ¡ lnxa[j] ¢ ha[j] = ¡ lnxb[j] ¢ hb[j] with lnxi[j] · 0 for xi[j] 2 [0; 1]

() lnxa[j] ¢ ha[j] = lnxb[j] ¢ hb[j]

() lnxa[j] = lnxb[j] ¢ (hb[j]=ha[j])

() eln xa[j] = elnxb[j]¢(hb[j]=ha[j])

() eln xa[j] = (elnxb[j])(hb[j]=ha[j])

() xa[j] = xb[j]
hb[j]=ha[j]

jlnxa[j]j ¢ ha[j] = jlnxb[j]j ¢ hb[j]

() ¡ lnxa[j] ¢ ha[j] = ¡ lnxb[j] ¢ hb[j] with lnxi[j] · 0 for xi[j] 2 [0; 1]

() lnxa[j] ¢ ha[j] = lnxb[j] ¢ hb[j]

() lnxa[j] = lnxb[j] ¢ (hb[j]=ha[j])

() eln xa[j] = elnxb[j]¢(hb[j]=ha[j])

() eln xa[j] = (elnxb[j])(hb[j]=ha[j])

() xa[j] = xb[j]
hb[j]=ha[j] .

 (6.6.3)

By applying (6.6.3) to the first condition of (6.6.2), one gets that for a given activi-
ty i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg:

x1[j] ¢ x2[j] ¢ ::: ¢ xi[j] ¢ ::: ¢ xm[j] = xc[j]

() xi[j]
hi[j]=h1[j] ¢ xi[j]

hi[j]=h2[j] ¢ ::: ¢ xi[j] ¢ ::: ¢ xi[j]
hi[j]=hm[j] = xc[j]

() xi[j]
m
k=1

hi[j]
hk[j] = xc[j]

() xi[j] = xc[j]
m
k=1

hi[j]
hk [j]

x1[j] ¢ x2[j] ¢ ::: ¢ xi[j] ¢ ::: ¢ xm[j] = xc[j]

() xi[j]
hi[j]=h1[j] ¢ xi[j]

hi[j]=h2[j] ¢ ::: ¢ xi[j] ¢ ::: ¢ xi[j]
hi[j]=hm[j] = xc[j]

() xi[j]
m
k=1

hi[j]
hk[j] = xc[j]

() xi[j] = xc[j]
m
k=1

hi[j]
hk [j] .

 (6.6.4)

Using (6.6.4), a consumer can compute the corresponding requirement for availa-
bility of each activity that is bound to the current consumer via either an AND-AND
or an SEQ composition pattern, where composite availability of the consumer depends
on all its service providers.

In the composition patterns XOR-XOR, AND-XOR, as well as OR-XOR, availa-
bility of a consumer depends on that of a selected activity in the pattern. That is, an
appropriate decomposition schema has to take into consideration the probability, with

P a r t II – C h a p t e r 6 � Collaboration between Agents

231

which the corresponding service provider i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg will be selected by an XOR
join at runtime. Hence, the following conditions apply to a consumer and its involved
activities with respect to their availabilities:

(
p1 ¢ x1[j] + p2 ¢ x2[j] + ::: + pm ¢ xm[j] = xc[j]
x1[j]
h1[j]

= x2[j]
h2[j]

= ::: = xm[j]
hm[j]

(
p1 ¢ x1[j] + p2 ¢ x2[j] + ::: + pm ¢ xm[j] = xc[j]
x1[j]
h1[j]

= x2[j]
h2[j]

= ::: = xm[j]
hm[j] . (6.6.5)

That is, the composite availability of a consumer depends proportionally on availa-
bilities of all involved activities with respect to their probabilities for being invoked at
runtime. By solving the second condition in (6.6.5), it can be derived that for any two
activities a; b 2 f1; 2; :::;mga; b 2 f1; 2; :::;mg with a 6= ba 6= b:

xa[j] =

ha

hb
¢ xb[j]xa[j] =

ha

hb
¢ xb[j]. (6.6.6)

By combining (6.6.6) with the first condition in (6.6.5), it can be derived that for a
given activity i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg:

xc[j] = p1 ¢ h1[j]

hi[j]
¢ xi[j] + p2 ¢ h2[j]

hi[j]
¢ xi[j] + ::: + pi ¢ hi[j]

hi[j]
¢ xi[j] + ::: + pm ¢ hm[j]

hi[j]
¢ xi[j]

=
(p1 ¢ h1[j] + p2 ¢ h2[j] + ::: + pi ¢ hi[j] + ::: + pm ¢ hm[j])

hi[j]
¢ xi[j]

=

Pm
k=1 pk ¢ hk[j]

hi[j]
¢ xi[j]

() xi[j] =
hi[j]Pm

k=1 pk ¢ hk[j]
¢ xc[j]

xc[j] = p1 ¢ h1[j]

hi[j]
¢ xi[j] + p2 ¢ h2[j]

hi[j]
¢ xi[j] + ::: + pi ¢ hi[j]

hi[j]
¢ xi[j] + ::: + pm ¢ hm[j]

hi[j]
¢ xi[j]

=
(p1 ¢ h1[j] + p2 ¢ h2[j] + ::: + pi ¢ hi[j] + ::: + pm ¢ hm[j])

hi[j]
¢ xi[j]

=

Pm
k=1 pk ¢ hk[j]

hi[j]
¢ xi[j]

() xi[j] =
hi[j]Pm

k=1 pk ¢ hk[j]
¢ xc[j] .

For the patterns discussed so far, they allow to estimate precisely how probable it is
for a particular activity to be invoked by a consumer instance at runtime. By using
these estimated probabilities, it is possible to determine to which extent a respective
service invocation influences the overall behaviour of a composition pattern, in par-
ticular from the viewpoint of non-functional aspects. However, in a composition pat-
tern consisting of an OR split/join, it is not possible to estimate invocation probabili-
ties for particular service invocations. For each single consumer instance, there can be
a range of possible combinations of several parallel executed service invocations.
Each of these possible combinations is an element in the power set of all activities
fA1; A2; :::; Ak; :::; AmgfA1; A2; :::; Ak; :::; Amg except the empty set. Hence, for a service consumer, it is only
possible to estimate probabilities of occurrence of a particular set from the power set.
This, however, does not help to estimate precisely the extent of influence of a particu-
lar service invocation on the overall behaviour of the composition at runtime.

P a r t I I – C h a p t e r 6.6 � Negotiation Space

232

Therefore, instead of estimating decomposed values for involved activities directly
in an AND-OR or OR-OR pattern, these patterns are at first transformed to an equiva-
lent structure consisting of patterns that allow precise estimation of decomposed val-
ues, as illustrated in Figure 6-10.

Figure 6-10: Transformation of AND-OR / OR-OR patterns

On the left are the OR-OR and AND-OR patterns, whose difference in behaviour is
the point in time, at which evaluation of predefined conditions takes place. In an
AND-OR pattern, an evaluation of operational context takes place, after all activities
have been completed. In contrast, an OR-OR evaluates predefined conditions before
invoking selected activities.

Hence, the AND-OR pattern and the OR-OR pattern are handled separately. Illus-
tration (B) in Figure 6-10 depicts the equivalent transformation of an OR-OR pattern

A1

AND
…

…
…

…

XOR

XOR

XOR

XOR

B

Ak

XOR

B

Am

XOR

B

AND

A1

Am

OR Ak

…
…

…
…

w1

wk

wm

OR

(A) OR-OR pattern (B) equivalent transformation of OR-OR by means of
AND-AND/ XOR-XOR patterns

…
…

…
…

A1

AND

…
…

…
…

AND

AND

AND

XOR

B

Ak

XOR

B

Am

XOR

B

AND

A1

Am

AND Ak

…
…

…
…

w1

wk

wm

OR

(C) AND-OR pattern (D) equivalent transformation of AND-OR by means of
AND-AND/ AND-XOR patterns

…
…

…
…

A : activity B : bypass activity

P a r t II – C h a p t e r 6 � Collaboration between Agents

233

by means of a set of AND-AND and XOR-XOR patterns. In the transformation, each
branch in the original OR-OR pattern is replaced by an XOR-XOR pattern, which de-
cides based on runtime operational context either to activate the branch (i.e., invoke
the corresponding activity) or to bypass the branch. Hence, the activity of an i-th
XOR-XOR branch has a probability of pa

i to be activated at runtime. Correspondingly,
the same XOR-XOR pattern also has a probability of pb

i with pa
i +pb

i = 1 to be by-
passed by the pattern at runtime. All XOR-XOR patterns are combined by an AND-
AND pattern. That is, all XOR-XOR patterns are activated by an AND split. Results
of all XOR-XOR patterns are merged by an AND join.

In this way, relationships between availabilities of related service invocations and
the overall availability of an OR-OR pattern can be determined by considering respec-
tive relationships in its replacement structure. For each XOR-XOR branch with ser-
vice invocation of activity ii, its composite availability xr

i [j] can be determined by
using:

 xr
i [j] = pa

i ¢ xi[j] + pb
i ¢ 1 = pa

i ¢ xi[j] + pb
ixr

i [j] = pa
i ¢ xi[j] + pb

i ¢ 1 = pa
i ¢ xi[j] + pb

i . (6.6.7)

Here, xi[j]xi[j] is the availability of the activity i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg. Furthermore, it is as-
sumed that a bypass activity has the availability of 1.

By considering each XOR-XOR branch as a composite activity in an AND-AND
pattern, the overall availability of the AND-AND pattern xc[j]xc[j] satisfies the following
conditions:

(
xr

1[j] ¢ xr
2[j] ¢ ::: ¢ xr

m[j] = xc[j]

jlnxr
1[j]j ¢ hr

1[j] = jlnxr
2[j]j ¢ hr

2[j] = ::: = jlnxr
m[j]j ¢ hr

m[j]

(
xr

1[j] ¢ xr
2[j] ¢ ::: ¢ xr

m[j] = xc[j]

jlnxr
1[j]j ¢ hr

1[j] = jlnxr
2[j]j ¢ hr

2[j] = ::: = jlnxr
m[j]j ¢ hr

m[j]. (6.6.8)

Here, hr
k[j]hr
k[j] is the historical average availability of a corresponding XOR-XOR

branch and can be estimated analogously to (6.6.7) with: hr
i [j] = pa

i ¢ hi[j] +pb
ihr

i [j] = pa
i ¢ hi[j] +pb

i, where
hi[j] is the average availability of the i-th activity from the history.

By solving (6.6.8) in a similar manner as in (6.6.2), the composite availability of a
XOR-XOR branch with the activity i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg is given by:

 xr
i [j] = xc[j]

1= m
k=1

hr
i [j]

hr
k
[j]xr

i [j] = xc[j]
1= m

k=1

hr
i [j]

hr
k
[j]

.
 (6.6.9)

By combining the formulas of (6.6.7) and (6.6.9), one can get that for a given activ-
ity ii of an OR-OR pattern, its respectively decomposed availability can be calculated
by:

P a r t I I – C h a p t e r 6.6 � Negotiation Space

234

xr
i [j] = pa

i ¢ xi[j] + pb
i = xc[j]

1= m
k=1

hr
i [j]

hr
k
[j]

() xi[j] =
xc[j]

1= m
k=1

hr
i [j]

hr
k
[j] ¡ pb

i

pa
i

xr
i [j] = pa

i ¢ xi[j] + pb
i = xc[j]

1= m
k=1

hr
i [j]

hr
k
[j]

() xi[j] =
xc[j]

1= m
k=1

hr
i [j]

hr
k
[j] ¡ pb

i

pa
i .

As aforementioned, the last pattern, the AND-OR pattern, differs from an OR-OR
pattern in the point in time to evaluate conditional expressions of each branch. Hence,
in its replacement structure, as depicted in illustration (D) in Figure 6-10, each branch
is replaced by an AND-XOR pattern. This ensures that each activity involved in an
AND-OR pattern is always invoked before evaluating its corresponding conditional
expression, as defined in an AND-OR pattern.

Correspondingly, both the service activity ii and the bypass activity in the i-th
AND-XOR pattern are assigned respectively with two probability values pa

ip
a
i and pb

ipb
i .

The value pa
ip
a
i indicates the chance that the branch with the service activity is selected

by the XOR join of the corresponding AND-XOR pattern at runtime. Similarly, pb
ipb
i

shows the probability that the result of service invocation ii is discarded by the XOR-
join. Furthermore, all AND-XOR patterns are combined by an AND split and merged
by an AND join. This ensures all AND-XOR branches are activated at runtime, anal-
ogously to the behaviour of an AND-OR pattern.

Hence, the composite availability of an AND-XOR branch can be estimated using:

 xr
i [j] = pa

i ¢ xi[j] + pb
i ¢ 1 = pa

i ¢ xi[j] + pb
ixr

i [j] = pa
i ¢ xi[j] + pb

i ¢ 1 = pa
i ¢ xi[j] + pb

i. (6.6.10)

Since all AND-XOR branches are combined by an AND-AND pattern, the overall
availability of the pattern and availabilities of all AND-XOR branches satisfy the
same conditions as in (6.6.8) and (6.6.9). Therefore, availability of each service activi-
ty ii can be estimated out of the overall availability xc[j]xc[j] using:

xi[j] =

xc[j]
1= m

k=1

hr
i [j]

hr
k
[j] ¡ pb

i

pa
i

xi[j] =
xc[j]

1= m
k=1

hr
i [j]

hr
k
[j] ¡ pb

i

pa
i .

Here, hr
i [j]hr
i [j] is the composite availability of an AND-XOR branch with service in-

vocation of the provider ii and is given by:

 hr
i [j] = pa

i ¢ hi[j] + pb
ihr

i [j] = pa
i ¢ hi[j] + pb

i.

P a r t II – C h a p t e r 6 � Collaboration between Agents

235

Cost

Cost is a QoS parameter that depends on the number of services invoked by a service
consumer: the resulting composite cost of a service consumer is the sum of service
costs of all service invocations. As already mentioned before, in the composition pat-
terns AND-XOR, AND-OR, AND-AND, and SEQ, all service activities specified in
the patterns are invoked by a consumer. Therefore, the composite cost xc[j]xc[j] of a ser-
vice consumer and the cost of all service invocations satisfy the following conditions:

(
x1[j] + x2[j] + ::: + xm[j] = xc[j]
x1[j]
h1[j]

= x2[j]
h2[j]

= ::: = xm[j]
hm[j]

(
x1[j] + x2[j] + ::: + xm[j] = xc[j]
x1[j]
h1[j]

= x2[j]
h2[j]

= ::: = xm[j]
hm[j] . (6.6.11)

For two given service activities a; b 2 f1; 2; :::;mga; b 2 f1; 2; :::;mg and a 6= ba 6= b , it can be derived
from the second condition in (6.6.11) that

xb[j] =

hb[j]

ha[j]
¢ xa[j]xb[j] =

hb[j]

ha[j]
¢ xa[j]

. (6.6.12)

For an activity ii, the first condition in (6.6.11) can be transformed as follows:

x1[j] + x2[j] + ::: + xi[j] + ::: + xm[j] = xc[j]

() h1[j]

hi[j]
¢ xi[j] +

h2[j]

hi[j]
¢ xi[j] + ::: +

hi[j]

hi[j]
¢ xi[j] + ::: +

hm[j]

hi[j]
¢ xi[j] = xc[j]

() h1[j] + h2[j] + ::: + hi[j] + ::: + hm[j]

hi[j]
¢ xi[j] = xc[j]

() xi[j] =
hi[j]

h1[j] + h2[j] + ::: + hi[j] + ::: + hm[j]
¢ xc[j]

() xi[j] =
hi[j]Pm

k=1 hk[j]
¢ xc[j]

x1[j] + x2[j] + ::: + xi[j] + ::: + xm[j] = xc[j]

() h1[j]

hi[j]
¢ xi[j] +

h2[j]

hi[j]
¢ xi[j] + ::: +

hi[j]

hi[j]
¢ xi[j] + ::: +

hm[j]

hi[j]
¢ xi[j] = xc[j]

() h1[j] + h2[j] + ::: + hi[j] + ::: + hm[j]

hi[j]
¢ xi[j] = xc[j]

() xi[j] =
hi[j]

h1[j] + h2[j] + ::: + hi[j] + ::: + hm[j]
¢ xc[j]

() xi[j] =
hi[j]Pm

k=1 hk[j]
¢ xc[j] .

 (6.6.13)

For an XOR-XOR pattern, where only a single selected activity is invoked by a
consumer, it applies in general that cost of any service invocation ii fulfils the condi-
tion: xi[j] · xc[j]xi[j] · xc[j] with i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg. That is, cost of any service activity ii involved
in an XOR-XOR pattern is equal to or less than the composite cost of the pattern.
Hence, additional information is required to estimate xi[j]xi[j] more precisely. As afore-
mentioned, it is possible to estimate the probability that an activity is invoked by a
consumer. Hence, it satisfies the following conditions:

(
p1 ¢ x1[j] + p2 ¢ x2[j] + ::: + pm ¢ xm[j] = xc[j]
x1[j]
h1[j]

= x2[j]
h2[j]

= ::: = xm[j]
hm[j]

(
p1 ¢ x1[j] + p2 ¢ x2[j] + ::: + pm ¢ xm[j] = xc[j]
x1[j]
h1[j]

= x2[j]
h2[j]

= ::: = xm[j]
hm[j] . (6.6.14)

The first condition states that composite cost of a service consumer is the sum of
service cost of all service invocations with respect to their respective invocation prob-
abilities at runtime. The second condition determines that invocation cost of a service

P a r t I I – C h a p t e r 6.6 � Negotiation Space

236

activity ii is proportional to its average invocation cost in the past. Hence, given two
activities a; b 2 f1; 2; :::;mga; b 2 f1; 2; :::;mg and a 6= ba 6= b, it can be derived from the second condition in
(6.6.14) that

xa[j] =

ha[j]

hb[j]
¢ xb[j]xa[j] =

ha[j]

hb[j]
¢ xb[j]

.

By applying this term into the first condition in (6.6.14), for a given service activity
ii, it can be transformed as follows:

p1 ¢ x1[j] + ::: + pi ¢ xi[j] + ::: + pm ¢ xm[j] = xc[j]

() p1 ¢ h1[j]

hi[j]
¢ xi[j] + ::: + pi ¢ hi[j]

hi[j]
¢ xi[j] + ::: + pm ¢ hm[j]

hi[j]
¢ xi[j] = xc[j]

() p1 ¢ h1[j] + ::: + pi ¢ hi[j] + ::: + pm ¢ hm[j]

hi[j]
¢ xi[j] = xc[j]

()
Pm

k=1 pk ¢ hk[j]

hi[j]
¢ xi[j] = xc[j]

() xi[j] =
hi[j]Pm

k=1 pk ¢ hk[j]
¢ xc[j]

p1 ¢ x1[j] + ::: + pi ¢ xi[j] + ::: + pm ¢ xm[j] = xc[j]

() p1 ¢ h1[j]

hi[j]
¢ xi[j] + ::: + pi ¢ hi[j]

hi[j]
¢ xi[j] + ::: + pm ¢ hm[j]

hi[j]
¢ xi[j] = xc[j]

() p1 ¢ h1[j] + ::: + pi ¢ hi[j] + ::: + pm ¢ hm[j]

hi[j]
¢ xi[j] = xc[j]

()
Pm

k=1 pk ¢ hk[j]

hi[j]
¢ xi[j] = xc[j]

() xi[j] =
hi[j]Pm

k=1 pk ¢ hk[j]
¢ xc[j] .

 (6.6.15)

By comparing the results in (6.6.13) and (6.6.15), it is obvious that one can get the
equation (6.6.13) by setting all invocation probabilities pkpk in (6.6.15) to 1. This corre-
lation is reasonable, since all activities in the composition patterns AND-XOR, AND-
OR, AND-AND, and SEQ are executed with a probability of 100%100%.

For the OR-OR pattern and the OR-XOR pattern, several branches can be activated
simultaneously at runtime. Hence, in order to estimate composite cost of these pat-
terns, one has to determine the set of all possible combinations of simultaneously acti-
vated branches (i.e., the power set of all service providers f1; 2; :::; mgf1; 2; :::; mg except the emp-
ty set, with a total size of 2m ¡ 12m ¡ 1), and the probabilities that these combinations are
activated at runtime. Hence, a management agent has to make considerable efforts to
collect and aggregate relevant information from the underlying service component.

Therefore, to enable an efficient estimation of decomposed cost for service activi-
ties, the OR-OR and OR-XOR patterns are transformed firstly to equivalent structures,
as done for determining decomposition schemas in the previous section.

An OR-OR pattern is replaced by a combination of XOR-XOR and AND-AND
patterns, as depicted by the illustration (B) in Figure 6-10. Under the assumption that
a bypass activity does not cause any service cost, each XOR-XOR branch in the re-
placement structure has the composite cost:

 xr
i [j] = pa

i ¢ xi[j] + pb
i ¢ 0 = pa

i ¢ xi[j]xr
i [j] = pa

i ¢ xi[j] + pb
i ¢ 0 = pa

i ¢ xi[j]. (6.6.16)

P a r t II – C h a p t e r 6 � Collaboration between Agents

237

Since all XOR-XOR branches are combined by an AND split and synchronised by
an AND join, the composite cost of the entire replacement structure can be estimated
as follows:

(
xr

1[j] + xr
2[j] + ::: + xr

m[j] = xc[j]
xr
1[j]

hr
1[j]

= xr
2[j]

hr
2[j]

= ::: = xr
m[j]

hr
m[j]

(
xr

1[j] + xr
2[j] + ::: + xr

m[j] = xc[j]
xr
1[j]

hr
1[j]

= xr
2[j]

hr
2[j]

= ::: = xr
m[j]

hr
m[j] . (6.6.17)

Here, hr
i [j]hr
i [j] is the composite historical information of the ii-th XOR-XOR branch

and is determined by hr
i [j] = pa

i ¢ hi[j]hr
i [j] = pa

i ¢ hi[j]. By solving the equations in (6.6.17), the de-
composed cost for the ii-th XOR-XOR branch can be determined as follows:

xr

i [j] =
hr

i [j]Pm
k=1 hr

k[j]
¢ xc[j]xr

i [j] =
hr

i [j]Pm
k=1 hr

k[j]
¢ xc[j]

. (6.6.18)

By combining the formulas (6.6.16) and (6.6.18), the following condition applies:

xr

i [j] = pa
i ¢ xi[j] =

hr
i [j]Pm

k=1 hr
k[j]

¢ xc[j]xr
i [j] = pa

i ¢ xi[j] =
hr

i [j]Pm
k=1 hr

k[j]
¢ xc[j]

.

Therefore, the decomposed cost for invoking the service provider ii can be calculat-
ed as follows:

xi[j] =
hr

i [j]

pa
i ¢

Pm
k=1 hr

k[j]
¢ xc[j]

=
pa

i ¢ hi[j]

pa
i ¢

Pm
k=1 hr

k[j]
¢ xc[j]

=
hi[j]Pm

k=1 hr
k[j]

¢ xc[j]

xi[j] =
hr

i [j]

pa
i ¢

Pm
k=1 hr

k[j]
¢ xc[j]

=
pa

i ¢ hi[j]

pa
i ¢

Pm
k=1 hr

k[j]
¢ xc[j]

=
hi[j]Pm

k=1 hr
k[j]

¢ xc[j] .

Similarly, an OR-XOR pattern is first transformed to an equivalent structure con-
sisting of mm XOR-XOR patterns and an AND-XOR pattern, as depicted in illustration
(B) in Figure 6-11. To each XOR-XOR branch in the transformed structure, (6.6.16)
can be applied to determine its composite cost, too. In addition, all XOR-XOR
branches are combined by an AND-XOR pattern. That is, they are combined by an
AND split and synchronised at the end by an XOR join.

For the XOR join in the AND-XOR pattern, each XOR-XOR branch has the prob-
ability of pipi to be selected by the exclusive join. Therefore, the composite cost of the
entire transformed structure satisfies the following conditions:

(
p1 ¢ xr

1[j] + p2 ¢ xr
2[j] + ::: + pm ¢ xr

m[j] = xc[j]
xr
1[j]

hr
1[j]

= xr
2[j]

hr
2[j]

= ::: = xr
m[j]

hr
m[j]

(
p1 ¢ xr

1[j] + p2 ¢ xr
2[j] + ::: + pm ¢ xr

m[j] = xc[j]
xr
1[j]

hr
1[j]

= xr
2[j]

hr
2[j]

= ::: = xr
m[j]

hr
m[j] . (6.6.19)

P a r t I I – C h a p t e r 6.6 � Negotiation Space

238

Figure 6-11: Transformation of OR-XOR pattern

The equations in (6.6.19) can be solved in a similar way as (6.6.14). Hence, the
composite cost of the ii-th XOR-XOR branch can be estimated by:

xr

i [j] =
hr

i [j]Pm
k=1 pk ¢ hr

k[j]
¢ xc[j]xr

i [j] =
hr

i [j]Pm
k=1 pk ¢ hr

k[j]
¢ xc[j]

. (6.6.20)

The composite cost of an XOR-XOR branch is also given by

 xr
i [j] = pa

i ¢ xi[j]xr
i [j] = pa

i ¢ xi[j].

Hence, the decomposed cost for an activity i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg can be estimated as
follows:

xr
i [j] =

hr
i [j]Pm

k=1 pk ¢ hr
k[j]

¢ xc[j] = pa
i ¢ xi[j]

() xi[j] =
hr

i [j]

pa
i ¢

Pm
k=1 pk ¢ hr

k[j]
¢ xc[j]

() xi[j] =
pa

i ¢ hi[j]

pa
i ¢

Pm
k=1 pk ¢ hr

k[j]
¢ xc[j]

() xi[j] =
hi[j]Pm

k=1 pk ¢ hr
k[j]

¢ xc[j]

xr
i [j] =

hr
i [j]Pm

k=1 pk ¢ hr
k[j]

¢ xc[j] = pa
i ¢ xi[j]

() xi[j] =
hr

i [j]

pa
i ¢

Pm
k=1 pk ¢ hr

k[j]
¢ xc[j]

() xi[j] =
pa

i ¢ hi[j]

pa
i ¢

Pm
k=1 pk ¢ hr

k[j]
¢ xc[j]

() xi[j] =
hi[j]Pm

k=1 pk ¢ hr
k[j]

¢ xc[j]
.

Here, hr
i [j]hr
i [j] is the historical composite average cost of the ii-th XOR-XOR branch

and can be determined by hr
i [j] = pa

i ¢ hi[j]hr
i [j] = pa

i ¢ hi[j].

Response time

Response time of a service consumer depends strongly on the way, in which its ser-
vice providers are invoked. If all service providers are executed in parallel, such as in

A1

AND

…
…

…
…

XOR

XOR

XOR

XOR

B

Ak

XOR

B

Am

XOR

B

XOR

A1

Am

OR Ak

…
…

…
…

w1

wk

wm

XOR

(A) OR-XOR pattern (B) equivalent transformation of OR-XOR by means of
AND-XOR/ XOR-XOR patterns

…
…

…
…

p 1p 1

p kp k

p mp m

A : activity B : bypass activity

P a r t II – C h a p t e r 6 � Collaboration between Agents

239

the patterns with OR or AND splits, response time of the service consumer is deter-
mined by the largest response time among all service invocations, i.e., xi[j] · xc[j]xi[j] · xc[j]
with i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg. In an SEQ pattern, where all service providers are consumed
one after another, composite response time of a consumer is determined by the sum of
response times of all service invocations.

In addition, invocation probability pipi of a given activity ii at runtime also influences
response time of a consumer. While in composition patterns with XOR splits/joins,
only a single service provider is invoked by a consumer, in all other patterns, all se-
lected activities are invoked either simultaneously or in a sequential manner.

Therefore, it has to be distinguished between the following three different cases to
get an accurate decomposition of xc[j]xc[j]: one case with parallel invocation of all service
providers, a second case with a single invocation of a particular service provider, and
a third one with sequential invocation of all service providers.

For an AND-AND pattern, response time for each service invocation can be esti-
mated in percentage terms, with respect to their historical values:

x1[j]

h1[j]
= ::: =

xi[j]

hi[j]
= ::: =

xm[j]

hm[j]
=

xc[j]

hc[j]

x1[j]

h1[j]
= ::: =

xi[j]

hi[j]
= ::: =

xm[j]

hm[j]
=

xc[j]

hc[j].
Hence, for a given service activity ii, its decomposed response time is determined

by:

xi[j] = hi[j] ¢ xc[j]

hc[j]
=

hi[j]

hc[j]
¢ xc[j]xi[j] = hi[j] ¢ xc[j]

hc[j]
=

hi[j]

hc[j]
¢ xc[j].

For an AND-XOR, OR-XOR, or XOR-XOR pattern, invocation probability of an
activitypipi determines the extent of the influence of a respective service activity ii on the
overall composite response time of the pattern. Hence, this correlation satisfies the
following conditions:

(
p1 ¢ x1[j] + ::: + pi ¢ xi[j] + ::: + pm ¢ xm[j] = xc[j]

x1[j]=h1[j] = ::: = xi[j]=hi[j] = ::: = xm[j]=hm[j]

(
p1 ¢ x1[j] + ::: + pi ¢ xi[j] + ::: + pm ¢ xm[j] = xc[j]

x1[j]=h1[j] = ::: = xi[j]=hi[j] = ::: = xm[j]=hm[j] . (6.6.21)

Similar to (6.6.14), the decomposed response time of a service invocation ii can be
estimated as follows:

xi[j] =

hi[j]Pm
k=1 hk[j] ¢ pk

¢ xc[j]xi[j] =
hi[j]Pm

k=1 hk[j] ¢ pk
¢ xc[j]

.

For the SEQ pattern, response time between a consumer and its providers applies
the same dependence as for service cost shown in (6.6.11). That is, the composite re-
sponse time of a service consumer is the sum of all response times of all service invo-

P a r t I I – C h a p t e r 6.6 � Negotiation Space

240

cations involved. Hence, the decomposed response time of an ii-th activity can be es-
timated as follows:

xi[j] =

hi[j]Pm
k=1 hk[j]

¢ xc[j]xi[j] =
hi[j]Pm

k=1 hk[j]
¢ xc[j].

Decomposing the composite response time of an AND-OR or OR-OR pattern caus-
es similar problems as decomposing the service cost for these patterns. In particular,
complex procedures to determine the possible combinations of activities, and the acti-
vation probabilities of these combinations at runtime, complicate the direct estimation
of decomposed values. Hence, the equivalent transformations of both patterns, as il-
lustrated in Figure 6-10, are used to estimate decomposed response times.

In the replacement structure of an AND-OR pattern, response time of the ii-th
AND-XOR branch is given by:

 xr
i [j] = pa

i ¢ xi[j]xr
i [j] = pa

i ¢ xi[j]. (6.6.22)

In (6.6.22), it is assumed that a bypass activity has a response time of 0. Since all
AND-XOR branches are combined by an AND split and merged by an AND join,
composite response times of all AND-XOR branches satisfy the following condition:

xr
1[j]

hr
1[j]

= ::: =
xr

i [j]

hr
i [j]

= ::: =
xr

m[j]

hr
m[j]

=
xc[j]

hc[j]

xr
1[j]

hr
1[j]

= ::: =
xr

i [j]

hr
i [j]

= ::: =
xr

m[j]

hr
m[j]

=
xc[j]

hc[j]. (6.6.23)

Here, hr
i [j]hr
i [j] is the composite historical response time of the ii-th branch and is de-

termined by:

 hr
i [j] = pa

i ¢ hi[j]hr
i [j] = pa

i ¢ hi[j].

By combing (6.6.22) and (6.6.23), the decomposed response time for an activity ii
can be calculated by:

xr
i [j] =

hr
i [j]

hc[j]
¢ xc[j] = pa

i ¢ xi[j]

() xi[j] =
hr

i [j]

pa
i ¢ hc[j]

¢ xc[j]

() xi[j] =
pa

i ¢ hi[j]

pa
i ¢ hc[j]

¢ xc[j]

() xi[j] =
hi[j]

hc[j]
¢ xc[j]

xr
i [j] =

hr
i [j]

hc[j]
¢ xc[j] = pa

i ¢ xi[j]

() xi[j] =
hr

i [j]

pa
i ¢ hc[j]

¢ xc[j]

() xi[j] =
pa

i ¢ hi[j]

pa
i ¢ hc[j]

¢ xc[j]

() xi[j] =
hi[j]

hc[j]
¢ xc[j]

.

 (6.6.24)

The decomposed response time for service activities involved in an OR-OR pattern
can be determined in a similar way. Since response time of each XOR-XOR branch is
the same as for an AND-XOR branch (i.e., (6.6.22) applies in this case), and all XOR-

P a r t II – C h a p t e r 6 � Collaboration between Agents

241

XOR branches are combined by an AND-AND pattern (i.e., (6.6.23) applies here, too),
decomposed response time for the ii-th activity can be determined by:

xi[j] =

hi[j]

hc[j]
¢ xc[j]xi[j] =

hi[j]

hc[j]
¢ xc[j]

.

Throughput

Throughput is a QoS parameter, where the overall throughput of a consumer depends
on the bottleneck of its providers. In other words, providers with the most restricted
throughput rates determine the overall throughput of their consumer. Hence, except
patterns containing an XOR split/join, given the composite throughput of a service
consumer xc[j]xc[j], throughput of all involved service activities, i.e., xi[j]xi[j], is equal to or
higher than the one of the consumer, namely xi[j] ¸ xc[j]xi[j] ¸ xc[j] for any activity
i 2 f1; 2; :::;mgi 2 f1; 2; :::;mg. In composition patterns containing an XOR split/join, the composite
throughput is determined not only by the throughput rates of particular service activi-
ties, but also by the probabilities that these activities are invoked at runtime. Hence, in
order to get a precise decomposition of xc[j]xc[j] among all service activities, one has to
distinguish between two general cases: the one with invocations of all activities in-
volved in a pattern, and the other one with invocation of a particular selected activity.

For the former case, i.e., with respect to AND-AND and SEQ patterns, throughput
rates of all service invocations and the composite throughput of a consumer satisfy the
following condition:

x1[j]

h1[j]
= ::: =

xi[j]

hi[j]
= ::: =

xm[j]

hm[j]
=

xc[j]

hc[j]

x1[j]

h1[j]
= ::: =

xi[j]

hi[j]
= ::: =

xm[j]

hm[j]
=

xc[j]

hc[j].

Hence, for an activity ii, its decomposed throughput can be estimated as follows:

xi[j] =

hi[j]

hc[j]
¢ xc[j]xi[j] =

hi[j]

hc[j]
¢ xc[j]

.
For the latter case, in particular with respect to the patterns AND-XOR, OR-XOR,

and XOR-XOR, throughput rates of a consumer and its providers satisfy the following
conditions, with respect to the probability pipi, with which a corresponding activity ii is
invoked at runtime:

(
p1 ¢ x1[j] + p2 ¢ x2[j] + ::: + pm ¢ xm[j] = xc[j]
x1[j]
h1[j]

= x2[j]
h2[j]

= ::: = xm[j]
hm[j]

(
p1 ¢ x1[j] + p2 ¢ x2[j] + ::: + pm ¢ xm[j] = xc[j]
x1[j]
h1[j]

= x2[j]
h2[j]

= ::: = xm[j]
hm[j] .

P a r t I I – C h a p t e r 6.6 � Negotiation Space

242

Similar to (6.6.14), for a given activity ii, its decomposed throughput rate can be de-
termined in relationship to the composite throughput rate of its consumer as follows:

xi[j] =

hi[j]Pm
k=1 pk ¢ hk[j]

¢ xc[j]xi[j] =
hi[j]Pm

k=1 pk ¢ hk[j]
¢ xc[j]

.

For the patterns AND-OR and OR-OR, both replacement structures illustrated in
Figure 6-10 are used to estimate relationships between the composite throughput rate
of a corresponding pattern and the throughput rate of each service activity involved in
the pattern. For each XOR-XOR as well as AND-XOR branch in the replacement
structures, their composite throughput rates can be estimated using:

 xr
i [j] = pa

i ¢ xi[j]xr
i [j] = pa

i ¢ xi[j]. (6.6.25)

Here, the throughput rate of the bypass activity in an XOR-XOR or an AND-XOR
branch is ignored in the condition. Furthermore, all XOR-XOR/AND-XOR branches
are combined with an AND split and merged with an AND join. Hence, the following
conditions apply between the throughput rates of the branches and the overall
throughput of the replacement structure:

xr
1[j]

hr
1[j]

= ::: =
xr

i [j]

hr
i [j]

= ::: =
xr

m[j]

hr
m[j]

=
xc[j]

hc[j]

xr
1[j]

hr
1[j]

= ::: =
xr

i [j]

hr
i [j]

= ::: =
xr

m[j]

hr
m[j]

=
xc[j]

hc[j]. (6.6.26)

Here, hr
ihr
i is the historical composite throughput of the ii-th branch and is given by:

 hr
i [j] = pa

i ¢ hi[j]hr
i [j] = pa

i ¢ hi[j].

Therefore, by combining (6.6.25) and (6.6.26), the decomposed throughput of the
ii-th branch can be determined out of the overall throughput of the pattern using:

xr
i [j] =

hr
i [j]

hc[j]
¢ xc[j] = pa

i ¢ xi[j]

() xi[j] =
hr

i [j]

pa
i ¢ hc[j]

¢ xc[j]

() xi[j] =
pa

i ¢ hi[j]

pa
i ¢ hc[j]

¢ xc[j]

() xi[j] =
hi[j]

hc[j]
¢ xc[j]

xr
i [j] =

hr
i [j]

hc[j]
¢ xc[j] = pa

i ¢ xi[j]

() xi[j] =
hr

i [j]

pa
i ¢ hc[j]

¢ xc[j]

() xi[j] =
pa

i ¢ hi[j]

pa
i ¢ hc[j]

¢ xc[j]

() xi[j] =
hi[j]

hc[j]
¢ xc[j]

.

Summary

To conclude, the focus of decomposition schemas is to compute QoS values for ser-
vice providers out of given composite QoS values of a consumer. The decomposition

P a r t II – C h a p t e r 6 � Collaboration between Agents

243

schemas discussed in this section are designed to solve decomposition problems for a
single composition pattern. That is, all service providers are organised by a single
composition pattern. For complex hierarchical structures containing more than one
composition pattern, such as the one introduced in Figure 6-9, an additional mecha-
nism is necessary to apply the decomposition patterns introduced in this section. Sec-
tion 6.6.4 addresses this question in detail and outlines how a service consumer can
determine negotiation spaces for its service providers in accordance with its non-
functional requirements.

 Composing QoS Parameters 6.6.3

Composing QoS parameters is the inverse process of decomposing QoS requirements.
It focuses on calculating composite QoS values of several service invocations from
the viewpoint of a service consumer. This is of particular interest for determining an
appropriate service composition based on a set of given services. For example, com-
posing QoS parameters allows a service consumer to determine a set of appropriate
service components that can jointly satisfy its non-functional requirements.

Furthermore, aggregating QoS values plays also an important role in the course of
negotiation, e.g., if a service component has to ensure that QoS terms it arranges sepa-
rately with its providers can satisfy the overall QoS requirements that it receives from
its service consumer. In this case, a service consumer needs composition schemas to
aggregate corresponding QoS values across all negotiation threads to verify them.

Composition schemas have been frequently studied in the field of business process
management, e.g., in [CSM+04, JRM04, Men04, JRM05]. In these work, QoS aggre-
gation focuses on verifying that the resulting composite service can satisfy some given
QoS requirements from a non-functional point of view. However, most of the work is
concerned with qualitative predication on whether aggregated QoS values can meet
some given target values. In other words, they are only concerned with the question, if
the given QoS requirements can be satisfied by related service components. This re-
quirement is however not sufficient for establishing an organic SOE, where each
management agent intends to precisely control runtime behaviour of its underlying
service component.

Hence, a management agent needs a precise way to estimate aggregated QoS values
quantitatively, which is the only way to enable a management agent to determine pre-

P a r t I I – C h a p t e r 6.6 � Negotiation Space

244

cisely how well the underlying service components can satisfy their consumer in
terms of QoS parameters. Advanced monitoring features of a management agent allow
it to observe its service providers, capture their behaviour patterns, and predict their
future behaviour. This provides the necessary foundation to quantitatively compose
QoS parameters. This section focuses on these composition schemas for the selected
set of QoS parameters, namely availability, cost, response time, and throughput.

Given a service composition cc with a range of service activities f1; 2; :::; mgf1; 2; :::; mg, let x ix i
be the QoS values of an activity ii, and xcxc be the QoS values of the service composi-
tion cc , then the task of composing QoS parameters is to predict xcxc based on given
QoS values of its activities.

Availability

As described in Section 3.2.3, availability of a service provider denotes the probability
that a service is online to process requests from its consumers. Depending on compo-
sition patterns, availability of a service consumer depends either on all of its providers
(i.e., in patterns with AND split/join or in an SEQ pattern) or on part of its providers
at runtime (i.e., in patterns with OR or XOR split/join).

In the AND-AND and SEQ patterns, a service composition works properly at
runtime, only if all its service invocations are successful. Therefore, the composite
availability xc[j]xc[j] of an AND-AND or an SEQ pattern is the product of availabilities of
all activities, namely xc[j] =

Qm
i=1 xi[j]xc[j] =

Qm
i=1 xi[j].

In contrast, in the patterns AND-XOR, XOR-XOR, and OR-XOR, a service com-
position only depends on a particular selected service activity. That is, a service con-
sumer is not available, if its selected service activity is not available at the time of ser-
vice invocation. Hence, composite availability of a service composition is computed
as the sum of availabilities of all activities with respect to their probabilities pipi to be
invoked at runtime with Pm

i=1 pi = 1
Pm

i=1 pi = 1. That is, the composite availability in this case is
given by xc[j] =

Pm
i=1 pi ¢ xi[j]xc[j] =

Pm
i=1 pi ¢ xi[j].

For the patterns AND-OR and OR-OR, availability of a service composition de-
pends on availabilities of all activities that are selected for execution at runtime. That
is, all activities within the selected set must be online, so that the corresponding ser-
vice composition can finish its execution successfully. To this end, a management
agent must be aware of all possible combinations of activities (i.e., the power set of
f1; 2; :::; mgf1; 2; :::; mg except the empty set) and the probabilities for these combinations to be

P a r t II – C h a p t e r 6 � Collaboration between Agents

245

selected by a composition pattern at runtime. This requires however complex proce-
dures of a management agent to collect and aggregate related runtime information.
Hence, an efficient way is to use the equivalent replacement structures, as illustrated
in Figure 6-10.

Therefore, an OR-OR pattern is replaced by a range of XOR-XOR patterns and an
AND-AND pattern (as illustrated in Figure 6-10), where each activity of the original
OR-OR pattern is replaced by an XOR-XOR pattern together with a bypass activity.

In addition, all XOR-XOR branches are combined by an AND-AND pattern. Each
XOR-XOR branch has a composite availability of

xr
i [j] = pa

i ¢ xi[j] +pb
i ¢ 1 = pa

i ¢ xi[j] +pb
ixr

i [j] = pa
i ¢ xi[j] +pb

i ¢ 1 = pa
i ¢ xi[j] +pb

i,

where pa
ip
a
i is the probability that an activity ii is invoked by the OR-OR pattern at

runtime, and pb
ipb
i is the corresponding invocation probability for the bypass activity.

Since all XOR-XOR branches are combined with an AND split and synchronised with
an AND join, the composite availability of the entire replacement structure can be
determined by:

xc[j] =

mY
i=1

xr
i [j] =

mY
i=1

(pa
i ¢ xi[j] + pb

i)xc[j] =
mY

i=1

xr
i [j] =

mY
i=1

(pa
i ¢ xi[j] + pb

i)
.

Analogously, an AND-OR pattern can be transformed to a structure consisting of a
set of AND-XOR and an AND-AND patterns (as depicted in Figure 6-10), where each
activity is replaced by an AND-XOR pattern together with a bypass activity. Hence,
each AND-XOR branch has a composite availability of xr

i [j] = pa
i ¢ xi[j] +pb

ixr
i [j] = pa

i ¢ xi[j] +pb
i.

Similar to the OR-OR pattern, all AND-XOR branches are combined by an AND-
AND pattern. Hence, the composite availability of the equivalent transformation is
given by:

xc[j] =

mY
i=1

xr
i [j] =

mY
i=1

(pa
i ¢ xi[j] + pb

i)xc[j] =
mY

i=1

xr
i [j] =

mY
i=1

(pa
i ¢ xi[j] + pb

i)
.

Cost

Cost of a service composition depends on the number of services it consumes at
runtime. Therefore, the resulting cost of a service composition is the sum of service
cost of all service invocations. In the composition patterns AND-AND, AND-XOR,
AND-OR, and SEQ, all activities are invoked at runtime. Hence, the composite cost

P a r t I I – C h a p t e r 6.6 � Negotiation Space

246

xc[j]xc[j] of the corresponding pattern is given by xc[j] =
Pm

i=1 xi[j]xc[j] =
Pm

i=1 xi[j], where xi[j]xi[j] denotes
the cost for invoking the activity ii in the pattern.

For the patterns OR-OR, OR-XOR, and XOR-XOR, the composite cost of these
patterns depends not only on service costs of particular activities, but also on the
probabilities that these activities are invoked at runtime. Hence, for an XOR-XOR
pattern, its composite service cost can be determined by:

 xc[j] =
mX

i=1

pi ¢ xi[j]xc[j] =
mX

i=1

pi ¢ xi[j].

Here, pipi is the probability that the ii-th activity is selected and invoked by an XOR-
XOR pattern at runtime.

For the patterns OR-OR and OR-XOR, their equivalent transformations illustrated
in Figure 6-10 and Figure 6-11 are used. In the replacement structure for an OR-OR
pattern, each XOR-XOR branch has the composite cost of

xr
i [j] = pa

i ¢xi[j] +pb
i ¢ 0 = pa

i ¢ xi[j]xr
i [j] = pa

i ¢xi[j] +pb
i ¢ 0 = pa

i ¢ xi[j].

It is assumed that a bypass activity does not cause any service cost. Since all XOR-
XOR branches are synchronised by an AND-AND pattern, the composite cost of the
entire replacement structure is given by:

xc[j] =
mX

i=1

xr
i [j]

=
mX

i=1

pa
i ¢ xi[j]

xc[j] =
mX

i=1

xr
i [j]

=
mX

i=1

pa
i ¢ xi[j]

.

Similarly, in the replacement structure for an OR-XOR pattern, each XOR-XOR
branch has the composite cost of xr

i [j] = pa
i ¢ xi[j]xr

i [j] = pa
i ¢ xi[j]. In addition, all XOR-XOR branch-

es are combined by an AND split and merged by an XOR join. Under the assumption
that each XOR-XOR branch has the probability of pipi to be selected by the XOR join,
the composite cost of the transformation can be determined by:

xc[j] =
mX

i=1

pi ¢ xr
i [j]

=
mX

i=1

pi ¢ pa
i ¢ xi[j]

xc[j] =
mX

i=1

pi ¢ xr
i [j]

=
mX

i=1

pi ¢ pa
i ¢ xi[j]

.

P a r t II – C h a p t e r 6 � Collaboration between Agents

247

Response time

Response time of a service composition refers to the time elapsed between the time
starting a new instance of the composition and the time at which the respective in-
stance terminates. In comparison to cost, response time is strongly affected by paral-
lelism of service invocations. If several activities are invoked simultaneously, compo-
site response time is determined by the largest response time among all service invo-
cations. Therefore, in the composition pattern AND-AND, the composite response
time of a service composition is determined by xc[j] = maxfx1[j]; x2[j]; :::; xm[j]gxc[j] = maxfx1[j]; x2[j]; :::; xm[j]g.
In contrast, for an SEQ pattern, where all activities are invoked in a sequence, re-
sponse time of the composition is determined by the sum of response times of all ser-
vice invocations, namely xc[j] =

Pm
i=1 xi[j]xc[j] =

Pm
i=1 xi[j].

For other patterns, the probabilities, with which the respective activities are in-
voked at runtime, have to be considered. They directly influence the overall response
time of a service composition. Hence, for the patterns AND-XOR, OR-XOR, and
XOR-XOR, where each activity in the composition pattern has a probability of pipi to
be selected at runtime, their composite response time can be estimated by:

xc[j] =

mX
i=1

pi ¢ xi[j]xc[j] =
mX

i=1

pi ¢ xi[j]
.

Similar to service cost, in order to estimate the composite response time of an
AND-OR or an OR-OR pattern, their equivalent transformations illustrated in Figure
6-10 are used. Thus, in the replacement structure of an OR-OR pattern, each XOR-
XOR branch has a composite response time of xr

i [j] = pa
i ¢ xi[j]xr

i [j] = pa
i ¢ xi[j], under the assumption

that a bypass activity has a response time of 00. In addition, all XOR-XOR branches
are combined with an AND-AND pattern. Hence, the overall response time of the re-
placement structure is given by:

xc[j] = maxfxr
1; x

r
2; :::; x

r
mg

= maxfpa
1 ¢ x1[j]; p

a
2 ¢ x2[j]; ; :::; p

a
m ¢ xm[j]g

xc[j] = maxfxr
1; x

r
2; :::; x

r
mg

= maxfpa
1 ¢ x1[j]; p

a
2 ¢ x2[j]; ; :::; p

a
m ¢ xm[j]g.

Analogously, in the replacement structure of an AND-OR pattern, each AND-XOR

branch has a response time of xr
i [j] = pa

i ¢ xi[j]xr
i [j] = pa

i ¢ xi[j]. Since all AND-XOR branches are
combined by an AND split und merged by an AND join, the overall response time of
the transformed structure is determined by:

 xc[j] = maxfpa
1 ¢ x1[j]; p

a
2 ¢ x2[j]; ; :::; p

a
m ¢ xm[j]gxc[j] = maxfpa

1 ¢ x1[j]; p
a
2 ¢ x2[j]; ; :::; p

a
m ¢ xm[j]g.

P a r t I I – C h a p t e r 6.6 � Negotiation Space

248

Throughput

Throughput of a service composition denotes the number of service requests that it
can process per time unit. Obviously, the service activities with the lowest throughput
determine the overall throughput of a corresponding service composition. Hence, in
an SEQ pattern, where all activities are invoked in a sequential order, the service ac-
tivity with the lowest throughput forms the bottleneck of a composition. Hence, the
composite throughput in this case is xc[j] = minfx1[j]; x2[j]; :::; xm[j]gxc[j] = minfx1[j]; x2[j]; :::; xm[j]g.

The same applies to an AND-AND pattern, where all branches in the pattern are
synchronised by an AND join. Therefore, the service invocation with the lowest
throughput rate regulates the overall throughput of the composition, namely
xc[j] = minfx1[j]; x2[j]; :::; xm[j]gxc[j] = minfx1[j]; x2[j]; :::; xm[j]g.

For the patterns AND-XOR, OR-XOR, and XOR-XOR, a composition’s through-
put depends on the throughput of the service activity it selects. Therefore, with respect
to probabilities pipi, with which an activity ii will be activated by a composition at
runtime, the overall throughput of the composition is given by xc[j] =

Pm
i=1 pi ¢ xi[j]xc[j] =

Pm
i=1 pi ¢ xi[j].

For the patterns AND-OR and OR-OR, their replacement structures illustrated in
Figure 6-10 are used. In the equivalent transformation of an OR-OR pattern, each
XOR-XOR branch has a composite throughput of xr

i [j] = pa
i ¢ xi[j]:xr

i [j] = pa
i ¢ xi[j]: Furthermore, all

XOR-XOR branches are combined by an AND-AND pattern. Hence, the overall
throughput of the replacement structure is given by:

xc[j] = minfxr
1[j]; x

r
2[j]; :::; x

r
m[j]g

= minfpa
1 ¢ x1[j]; p

a
2 ¢ x2[j]; :::; p

a
m ¢ xm[j]g

xc[j] = minfxr
1[j]; x

r
2[j]; :::; x

r
m[j]g

= minfpa
1 ¢ x1[j]; p

a
2 ¢ x2[j]; :::; p

a
m ¢ xm[j]g.

Analogously, in the equivalent transformation of an AND-OR pattern, each AND-

XOR branch has a composite throughput of xr
i [j] = pa

i ¢ xi[j]:xr
i [j] = pa

i ¢ xi[j]: Since all AND-XOR
branches are synchronised by an AND-AND pattern, the overall throughput of the
transformed structure can be determined by:

xc[j] = minfxr
1[j]; x

r
2[j]; :::; x

r
m[j]g

= minfpa
1 ¢ x1[j]; p

a
2 ¢ x2[j]; ; :::; p

a
m ¢ xm[j]g

xc[j] = minfxr
1[j]; x

r
2[j]; :::; x

r
m[j]g

= minfpa
1 ¢ x1[j]; p

a
2 ¢ x2[j]; ; :::; p

a
m ¢ xm[j]g.

Using composition schemas

In the previous discussion, it has been assumed that all service providers are organised
by a single composition pattern with respect to a single service consumer. However,
in practice, a service consumer may have a hierarchical structure of composition pat-

P a r t II – C h a p t e r 6 � Collaboration between Agents

249

terns, such as illustrated by the sample scenario in Figure 6-9. In that scenario, a ser-
vice consumer invokes services from four different service providers one after anoth-
er. The first two invocations are done sequentially. Afterwards, the execution flow is
split into two parallel threads synchronised by an AND-AND pattern. The upper
thread splits in turn into two parallel sub-flows with a relationship of exclusive choice,
whose result is merged with the result of the lower thread S2 by an AND join. The
execution flow terminates after the invocation of the activity S4 in the graph. Obvi-
ously, the composition schemas introduced in the previous sections alone are not suf-
ficient to calculate composite QoS of complex hierarchical structures with more than
one composition patterns. Therefore, an additional mechanism is necessary to handle
this issue.

A possible approach to solve the problem is a graph reduction algorithm that is
usually used in BPM to verify correctness of business workflows, such as in the work
of Sadiq and Orlowska [SO00] or Lin, Zhao, Li, and Chen [LZLC02]. The basic idea
of graph reduction is to apply a set of predefined reduction rules to a given business
process, until the process cannot be reduced any more.

By considering the business logic of a service consumer as a directed acyclic graph,
it is possible to apply the same algorithm to business logics. The goal is to simplify
the structure of a service consumer’s business logic, so that a direct estimation of
composite QoS values is possible. To this end, the seven composition patterns identi-
fied in this section are used as reduction rules. These composition schemas are uti-
lised repeatedly on a given business logic of a service consumer, as long as there are
constructs in the structure that can be reduced. At the end, a business logic can be re-
duced to a single atomic activity. Then, the QoS of this remaining activity represents
the composite QoS of the corresponding service composition, i.e., business logic.

Figure 6-12 shows the process to reduce the business logic of a service consumer
illustrated in the sample scenario of Figure 6-9. In the first step, the XOR-XOR pat-
tern with the activities L2 and S3 is reduced. The resulting composite activity L2/S3 is
then reduced together with the activity S2 according to the AND-AND pattern. At
last, the composite activity L2/S3/S2 is reduced with the activities of S1, L1, as well
as S4 in accordance with the SEQ composition pattern. Since in each reduction step,
only a single composition pattern is involved, it is possible to calculate the intermedi-
ate composite QoS values with respect to a single composition pattern. In the end, the

P a r t I I – C h a p t e r 6.6 � Negotiation Space

250

resulting composite QoS of the atomic activity that is left represents the composite
QoS values of the corresponding service composition.

Figure 6-12: Applying composition schemas to complex service logics

 Determining Negotiation Space 6.6.4

Composition and decomposition schemas defined in the previous sections cover a
simple service composition with respect to the composition patterns introduced in
Section 6.6.1. However, business logics of service components within an SOE usually
contain more than one composition pattern. Hence, an additional mechanism is re-
quired to enable a service component to decompose its end-to-end service-level re-
quirements appropriately to each related service provider involved in its business log-
ic. This prerequisite is crucial for a service component to determine its negotiation
spaces with those service providers.

S3

L2

XOR

S1

S2

L1 ANDAND

XOR

S4

C

S1

S2

L1 ANDAND S4

XOR-XOR pattern

AND-AND pattern

CS1 L1 S4

SEQ pattern

C

L : local activity S : service invocation C : placeholder activity

P a r t II – C h a p t e r 6 � Collaboration between Agents

251

To this end, a two-phase QoS decomposition mechanism is introduced, as illustrat-
ed in Figure 6-13. The first phase is concerned with reduction of a given business log-
ic in terms of composition patterns introduced in Section 6.6.1. The second phase is
the inverse procedure of the first phase. Its focus is to decompose given service-level
requirements for the atomic activity by means of the decomposition schemas intro-
duced in Section 6.6.2.

Figure 6-13: Decomposing QoS requirements for a service consumer

The first step is to reduce a given business logic by identifying the seven composi-
tion patterns in the structure and replacing them with a placeholder activity. This
placeholder activity represents the composite QoS of the complete structure being re-
placed. This step will be repeated in the logic until a single atomic activity is left. At

S3

L2

XOR

S1

S2

L1 ANDAND

XOR

S4

C

S1

S2

L1 ANDAND S4

XOR-XOR pattern

AND-AND pattern

CS1 L1 S4

SEQ pattern

C

L : local activity S : service invocation C : placeholder activity

XOR-XOR

AND-AND

SEQ

gr
ap

h
re

du
ct

io
n

Q
oS decom

position

P a r t I I – C h a p t e r 6.6 � Negotiation Space

252

the end, the single atomic activity has the end-to-end QoS requirements of the service
consumer.

Figure 6-13 illustrates the top-down graph reduction phase with a sample scenario.
For example, the nodes L2, and S3 are organised by an XOR-XOR pattern. Corre-
spondingly, these nodes are reduced and replaced by a placeholder activity C1. This
composite node represents the two nodes in the resulting graph and has therefore the
composite QoS of them. This reduction step can be applied to the sample business
logic repeatedly – in accordance with the composition patterns identified in the graph.
At the end of the reduction phase, a single composite node C3 is left. This node has
the complete end-to-end QoS requirements that the original business logic has.

In the second phase, decomposition schemas are applied to the graph in the reverse
order, in which the graph is reduced in the first phase. Initially, the atomic activity is
assigned with the end-to-end QoS requirements on the corresponding service compo-
nent. Depending on the composition pattern of the structure that the atomic activity
represents, a suitable decomposition schema can be selected and applied to decom-
pose the atomic activity. After that, each activity gets its QoS requirements derived
from the overall requirements on the composite placeholder. Since decomposition
schemas consider historical performance information of a particular activity to de-
compose QoS requirements, it can be ensured that QoS requirements assigned to an
activity comply with its technical capabilities.

In the example illustrated in Figure 6-13, after applying the decomposition schema
SEQ on the activity C3, the child nodes S1, L1, C2, and S4 are assigned with QoS
requirements complying with collected historical QoS information about them. This
step will be repeated as long as there are composite placeholders in the graph. At the
end, the reduced atomic activity at the beginning of this phase is restored to the origi-
nal business logic, where each activity in the logic is assigned with appropriate QoS
requirements derived from the end-to-end service-level requirements. These require-
ments denote non-functional requirements on corresponding service providers in-
voked by the respective service component. In particular, these requirements specify
the upper and lower limits of the related QoS parameters for the corresponding service
provider. Therefore, a consumer can use this information to determine negotiation
spaces for corresponding providers.

It is noteworthy that, to be more precise, negotiation spaces determined by the two-
phase decomposition mechanism refer to particular provider instances of a consumer.

P a r t II – C h a p t e r 6 � Collaboration between Agents

253

That is, in case that a service provider offers several instances to a consumer (e.g.,
instances with different service level options), a consumer arranges a separate agree-
ment with each of these instances. Such a differentiating strategy allows a service
provider to tailor its service offers to specific needs of its consumer.

In addition, a service consumer can invoke the same service instance several times,
in particular, if these service invocations are located in different composition patterns.
In this case, it is possible that negotiation spaces with different upper and lower QoS
limits are determined for the same service instance, for example due to imprecise his-
torical QoS information used for the decomposition process. In order to solve con-
flicts between various negotiation spaces for the same service instance, it is defined
that the negotiation space with the most restricted conditions is used in the negotiation
process with the corresponding service instance. That is, among all upper limits re-
trieved by the decomposition process, the smallest upper limit is used as the upper
limit for the new negotiation space. Analogously, the largest one among all lower lim-
its is used as the lower limit of the negotiation space. By doing this, it can be ensured
that the determined negotiation space satisfies non-functional requirements for all in-
vocations of the same service instance.

6.7 Negotiation Strategy

As described in Section 3.3, negotiation strategies are responsible to decide whether
an incoming offer can be accepted. In case of counter offers, negotiation strategies
help a management agent to determine how they should be constructed in conform-
ance with given business objectives. Altogether, a negotiation strategy consists of the
following three aspects: a decision-making strategy to decide whether to accept an
incoming offer, a conceding strategy to determine the extent of concessions in utility
in a negotiation step, and a trade-off strategy to find optimal agreements in favour of
the counterpart and with respect to global business objectives.

Section 3.3.2 introduces the interpretation function (3.3.2) of Sierra et al. The inter-
pretation function follows a simple decision strategy: for each incoming offer, a coun-
ter offer will be generated. If the incoming offer has a higher utility than the counter
offer, the respective management agent will accept the offer. Otherwise, the agent
proposes the generated offer as its counter offer. In the present thesis, this decision-

P a r t I I – C h a p t e r 6.7 � Negotiation Strategy

254

making strategy is adopted by a management agent to decide on acceptance of an in-
coming offer.

The foundation of such a decision-making strategy are conceding strategies and
trade-off strategies. The fact that each agent is not aware of preferences of its negotia-
tion partner determines that each agent has to maintain and utilise its local strategies
to find a mutually acceptable agreement. At best, such local strategies can take nego-
tiation behaviour of the counterpart into consideration, and thus accelerate the overall
negotiation process. Efficient conceding strategies and trade-off strategies can lead to
shorter negotiation time and better negotiation results. Hence, this section focuses on
both strategies and outlines them in the context of automated negotiation of SLAs.

 Conceding Strategy 6.7.1

In general, a conceding strategy specifies how a rational management agent moves in
a negotiation space away from its optimum in favour of its counterpart. Due to the fact
that both negotiation parties have conflicting interests on negotiation issues and each
of them starts with their respective optimum (i.e., Va(x

1
a!b) = 1Va(x
1
a!b) = 1 for a management

agent aa) into a negotiation thread, both parties have to move towards each other in
order to reach an agreement. As such, each management agent has to concede in utili-
ty in favour of its counterpart. This provides the prerequisite for both management
agents to find a consensus on the given objectives in the course of negotiation.

Another substantial aspect of concession is to determine the extent of concession of
a management agent in each negotiation round. As illustrated in Figure 6-14, a man-
agement agent moves on a negotiation plane spanned by two sample QoS parameters
x1x1 and x2x2. As each management agent starts from its optimum (i.e., Va(x

1
a!b) = 1Va(x
1
a!b) = 1) in

a negotiation, conceding strategies guide the agent to move from its optimum towards
the worst case xx with Va(x) = 0Va(x) = 0. In the course of negotiation, conceding strategies are
used to determine how much utility an agent is willing to concede in favour of its ne-
gotiation partner, so that the probability that the generated counter offer will be ac-
cepted by the negotiation partner, is as high as possible. By doing this, an agent re-
duces its expectation on values of QoS parameters, in each concession step.

As discussed before, missing knowledge of an agent about its negotiation partner’s
preferences makes it impossible to propose an optimal offer to its counterpart. Fur-
thermore, an adequate conceding strategy should produce suitable concession pressure

P a r t II – C h a p t e r 6 � Collaboration between Agents

255

on the agent’s negotiation behaviour. To this end, such a conceding strategy can take
factors of a negotiation process into consideration, such as time left until a given
deadline or negotiation behaviour of its counterpart so far. For example, given a nego-
tiation deadline, a management agent may have larger pressure to reach an agreement
towards the end of negotiation; correspondingly, it tends to make more concessions on
utility in favour of its negotiation partner.

Figure 6-14: Illustration of utility concession in a sample negotiation space

Hence, the present thesis adopts the conceding strategies introduced by Sierra et al.
in Section 3.3.2 as the general framework to calculate the extent of concession of an
agent. In particular, the following two types of conceding tactics are focused on from
the viewpoint of a management agent:

� time-dependent tactics that assess the extent of concession for a particular QoS
parameter i 2 f1; 2; :::; ngi 2 f1; 2; :::; ng in relationship with the current negotiation time.
This allows a management agent to model its negotiation behaviour in depend-
ence of negotiation time.

� behaviour-dependent tactics that assess the extent of concession according to
the negotiation behaviour of an agent’s negotiation partner. By considering en-
vironmental conditions, i.e., negotiation behaviour of its counterpart, an agent
can adapt its negotiation behaviour dynamically.

Resource-dependent tactics are less relevant for a management agent to negotiate
SLAs. It is assumed that a management agent has the necessary resources to perform

QoS parameter 1

Q
oS

 p
ar

am
et

er
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.9

0

P a r t I I – C h a p t e r 6.7 � Negotiation Strategy

256

negotiation-centric activities. In case that a service component has restricted resources
(e.g., a network connectivity device with limited computational power), this re-
striction can be relaxed by delegating related activities (i.e., negotiation-centric activi-
ties) to an external trusted management agent. Therefore, scenarios where a manage-
ment agent has only limited computing and memory capabilities are not considered in
the present thesis.

At runtime, a management agent can combine both types of conceding tactics to
use several criteria simultaneously to support its decision-making process. As dis-
cussed before, the focus of using conceding strategies is to determine the extent of
concession of utility in each step. However, values of QoS parameters in a generated
SLA offer are set without having taken the behaviour of an agent’s counterpart or the
global business objectives into consideration. Hence, the following section focuses on
trade-off strategies aiming at optimising outgoing offers dynamically in dependence
of environmental information that a management agent perceives in the course of ne-
gotiation, such as the observed negotiation behaviour of an agent’s counterpart.

 Trade-off Strategy 6.7.2

Conceding strategies enable an agent to compute its proposals based on some given
conceding tactics. However, the focus of conceding strategies is to determine extent of
concession on utilities in each negotiation step – with the intention that by reducing its
own expectations on related QoS parameters, its opponent may accept a proposed of-
fer in the next step. That is, a management agent has to decide how much it is willing
to move away from its optimum so that it can reach an agreement as fair as possible
for its opponent. In addition, further aspects involved in a negotiation process, such as
how a calculated QoS values may be perceived by its counterpart, is not covered by
conceding strategies.

As discussed in Section 6.4, for a given utility, there is an infinite set of combina-
tions of QoS values in the negotiation space. Hence, as soon as a management agent
has determined the utility of an outgoing offer, it has to choose a counter offer among
all possible trade-offs. A trade-off is referred to as reducing utility of some QoS pa-
rameter(s) while increasing utility of some other QoS parameter(s) of a given agree-
ment, so that the total utility of the agreement remains unchanged. For example, a
consumer can increase the cost for shorter response time in an offer without changing
the offer’s utility. Since trade-offs may be perceived differently by an agent’s coun-

P a r t II – C h a p t e r 6 � Collaboration between Agents

257

terpart (i.e., they have different utilities for the counterpart), a management agent has
to find optimal trade-offs that are as attractive as possible for its counterpart and thus
increase the overall social welfare of the negotiating agents. Furthermore, trade-offs
that may induce higher utilities for the opposite party raise the probability to reach a
mutually acceptable agreement more quickly. Hence, efficient trade-off strategies are
essential for a management agent to facilitate a negotiation process.

Figure 6-15 illustrates the negotiation space of a service consumer and its provider
spanned by two sample QoS parameters. The convex/concave curves in the negotia-
tion space are indifference curves for the consumer/provider. It is assumed that the
last incoming offer sent by the provider in the previous negotiation round is not satis-
factory and the consumer is going to propose a counter offer to its opponent. Further-
more, it is assumed that the management agent of the consumer has determined the
utility of the outgoing offer by using its conceding strategies.

The three points A, B, and C are located on the same indifference curve. That is, A,
B, and C have the same utility for the consumer. Theoretically, the consumer can arbi-
trarily choose one of these three offers (as well as all other value combinations on the
same indifference curve) as its counter offer to the provider, since from the viewpoint
of the consumer, none of the offers brings either more or less utility for it. However,
the offers A, B, and C have very different significance in the global context, if the ne-
gotiation spaces of both the consumer and the provider are considered.

It is obvious that the provider will not accept the three offers in the next negotiation
round, since they are located outside its negotiation space. However, the offer B is the
most appropriate one for the provider. It is the most promising offer that is closest to a
possible consensus in the common negotiation space. Both offers A and C direct fur-
ther negotiation into areas that are even farther away from the common negotiation
space, which decreases the probability of an early consensus. Concisely, the major
goal of a trade-off strategy is to identify a point on the indifference curve of a given
utility, which can accelerate the respective negotiation process by leading it towards
the common negotiation space. At the same time, it is expected that such a trade-off
search is aligned with global business objectives.

The sample scenario illustrated in Figure 6-15 shows that the obstacle in finding
optimal trade-offs consists in the incomplete information situation that an agent has
about its counterpart. The only information available for an agent for making deci-
sions is the history of SLA offers proposed by its opponent in the negotiation thread

P a r t I I – C h a p t e r 6.7 � Negotiation Strategy

258

so far. Further information, such as the negotiation space of its opponent, is unknown
to a management agent. Without such information, an agent cannot make a precise
decision from a global viewpoint. Hence, a management agent needs a trade-off strat-
egy that can propose a counter offer as accurately as possible despite its the incom-
plete negotiation information about its negotiation partners.

Figure 6-15: Illustration of the trade-off strategy of a management agent

In general, a trade-off strategy has to incorporate the following four aspects into the
decision-making process:

� A trade-off should be located in the opponent’s acceptable value ranges as
probably as possible. This is the prerequisite that a counterpart will accept the
proposed offer. For example, in the sample scenario in Figure 6-15, offers A
and C do not fulfil this requirement, while offer B is a possible candidate for a
successful trade-off.

� A trade-off should be as attractive as possible for an agent’s opponent. This
forces an agent to align its trade-off process with the request of its opponent.

� Even if an agent cannot find a trade-off that can be accepted by its opponent at
once, it should ensure that the selected trade-off provides a good foundation for
the further negotiation process. For example, by comparing the offers B and C
in Figure 6-15, offer B provides a better base for further negotiation offers than
offer C. By choosing offer B, it can be expected that the next offer proposed by

min1
c min1

p max1
c max1

p

min2
c

min2
p

max2
c

max2
p

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
B

C

optimum
consumer

optimum
provider

QoS parameter 1

Q
oS

 p
ar

am
et

er
2

consumer

provider

P a r t II – C h a p t e r 6 � Collaboration between Agents

259

the consumer could reach the common negotiation space in compliance with
the first aspect.

� A trade-off should be selected with respect to global business objectives. This
allows two negotiating agents to align their negotiation behaviour in compli-
ance with given global business objectives.

As aforementioned, a management agent can only rely on SLA offers it received
from its opponent as references to select an optimal trade-off out of an infinite set of
candidates. Hence, a reasonable way is to find appropriate trade-offs by getting the
search process geared to offers it received from its opponent. In other words, a man-
agement agent tries to find a trade-off similar to incoming offers from its opponent.
This helps an agent to align its trade-off search to expectations of its opponent ex-
pressed in terms of SLA offers.

Faratin, Sierra and Jennings [FSJ00] introduced a similarity-based approach to find
optimal trade-offs for counter offers. Their algorithm uses fuzzy-similarity to find is-
sue assignments for a counter offer. However, their approach assumes that both agents
know each other’s preferences in the negotiation space. Furthermore, their approach
requires suitable fuzzy rules to estimate the extent of similarity between offers, which
is not always available in SLA negotiation. Since a desired trade-off strategy in the
present thesis can only use the history of incoming offers as well as global business
objectives to find an optimal trade-off, the approach proposed by Faratin et al. cannot
be applied to negotiation scenarios handled in this thesis. Hence, a more general ap-
proach is necessary to generate counter offers based on the limited information that a
management agent has about its opponent, with respect to the four aspects discussed
previously for optimal trade-offs.

In the negotiation space spanned by QoS preferences of two negotiating agents, a
common property of each arbitrary point in the space is its distance to any other point
in the space. Analogously, among all points of the same indifference curve, the dis-
tance of each point to an incoming offer, i.e., a fixed point in the space, can be esti-
mated, too. In addition, information needed to calculate the distance between a trade-
off and an incoming offer, namely QoS values of the respective SLAs, is available to
each agent. Hence, a distance-based approach for estimating similarity is much more
promising than other approaches, such as the one proposed by Faratin et al. using
fuzzy logic.

P a r t I I – C h a p t e r 6.7 � Negotiation Strategy

260

Given an offer xt¡1
b!axt¡1
b!a sent from an agent bb to an agent aa with

xt¡1
b!a = (xt¡1

b!a[1]; x
t¡1
b!a[2]; :::; x

t¡1
b!a[n])xt¡1

b!a = (xt¡1
b!a[1]; x

t¡1
b!a[2]; :::; x

t¡1
b!a[n]) , the distance of the counter offer

xt
a!b = (xt

a!b[1]; x
t
a!b[2]; :::; x

t
a!b[n])xt

a!b = (xt
a!b[1]; x

t
a!b[2]; :::; x

t
a!b[n]) is defined as the Euclidean distance between

them, namely:

D(xt¡1

b!a; x
t
a!b) = kxt

a!b ¡ xt¡1
b!ak =

vuut nX
j=1

(xt
a!b[j]¡ xt¡1

b!a[j])
2D(xt¡1

b!a; x
t
a!b) = kxt

a!b ¡ xt¡1
b!ak =

vuut nX
j=1

(xt
a!b[j]¡ xt¡1

b!a[j])
2

. (6.7.1)

For example, two management agents negotiate on response time and availability.
Then the distance between two SLAs offers xt¡1

b!a = (65;0:998)xt¡1
b!a = (65;0:998) and xt

a!b = (89;0:971)xt
a!b = (89;0:971) at

time tt can be calculated with:

 D(xt¡1
b!a; x

t
a!b) =

p
(89¡ 65)2 +(0:998¡ 0:971)2 = 24:000014D(xt¡1

b!a; x
t
a!b) =

p
(89¡ 65)2 +(0:998¡ 0:971)2 = 24:000014

From this example, it is obvious that different QoS parameters have different im-
pact on the distance, depending on the scale of their value ranges. For example, while
availabilities vary mainly on a scale of 10¡210¡2, response time varies on the level of 10¡310¡3
seconds. Furthermore, the scale of a particular QoS parameter depends strongly on the
measurement unit it uses. For example, response time can be measured in millisec-
onds as well as in seconds. Hence, there is a difference of 103103 between the same values
expressed in different measurement units.

This difference in scales leads to the situation that by using (6.7.1) to determine the
Euclidean distance between two SLA offers, changes of QoS parameters with large
scales, such as response time, causes more considerable changes of the distance than
QoS parameters with small scales, such as availability. Obviously, this behaviour of
distance calculation is not desired, because it neglects changes of QoS parameters
with small scales, even if these parameters are higher weighted in the estimation.

Hence, a second distance, the normalised Euclidean distance, is introduced to avoid
this undesired behaviour. A normalised Euclidean distance is calculated with respect
to the two initial offers of the management agents as reference points. Given the initial
offer x0

c!px0
c!p sent by a consumer cc at t = 0t = 0 and the initial offer x1

p!cx1
p!c sent by a provider

ppat t = 1t = 1, the normalised Euclidean distance is defined as follows:

Dnorm(xt¡1

b!a; x
t
a!b) =

vuut nX
j=1

(
xt

a!b[j]¡ xt¡1
b!a[j]

x0
c!p[j]¡ x1

p!c[j]
)2Dnorm(xt¡1

b!a; x
t
a!b) =

vuut nX
j=1

(
xt

a!b[j]¡ xt¡1
b!a[j]

x0
c!p[j]¡ x1

p!c[j]
)2

. (6.10.1)

Here, aa and bb are two management agents with a; b 2 fc; pga; b 2 fc; pg and a 6= ba 6= b. A normal-
ised Euclidean distance reduces the impacts of various scales of QoS parameters by

P a r t II – C h a p t e r 6 � Collaboration between Agents

261

estimating the relative distance of two given QoS values compared to the absolute
distance between the two initial offers. By doing this, QoS parameters with small
scales are treated just as fair in the distance estimation as those with large scales.

As discussed before, a management agent is aware of the offers exchanged so far
with its counterpart in the negotiation thread. In addition, it is assumed that a man-
agement agent has utilised some conceding strategy in advance to obtain an initial
offer as input for the trade-off search. To this end, the following formula (as discussed
in Section 3.3.2) is used to calculate an initial offer, where the time-dependent conces-
sion factor ®a

j (t)®a
j (t) is determined by a conceding strategy in dependence of both the time

left until a given negotiation deadline as well as the negotiation behaviour of an
agent’s counterpart:

xt

a!b[j] =

(
mina

j + ®a
j (t) ¢ (maxa

j ¡mina
j) if V a

j is decreasing

mina
j + (1 ¡ ®a

j (t)) ¢ (maxa
j ¡mina

j) if V a
j is increasing

xt
a!b[j] =

(
mina

j + ®a
j (t) ¢ (maxa

j ¡mina
j) if V a

j is decreasing

mina
j + (1 ¡ ®a

j (t)) ¢ (maxa
j ¡mina

j) if V a
j is increasing .

Given these preconditions, a trade-off strategy can be reduced to a search problem
in the negotiation space that aims at finding some optimal points matching given con-
ditions. To this end, a range of possible search algorithms can be applied by a man-
agement agent, such as greedy algorithms, evolutionary algorithms, and so on. How-
ever, an appropriate search algorithm has to address the following aspects:

� It should be simple in design and resource saving in implementation. An SLA
negotiation between a consumer and a provider is normally carried out under
real-time conditions. Hence, by considering a given negotiation deadline, a
trade-off search must not be too expensive (i.e., too time consuming) for an
agent.

� Secondly, in a multidimensional negotiation space with several QoS parame-
ters, there may be not only a global optimum, but also several local optima.
Hence, an appropriate search algorithm must be capable of escaping from local
optima in the course of trade-off search.

By considering both aspects, Simulated Annealing is chosen to implement trade-off
search in a multidimensional negotiation space. First, it is a generally applicable and
easy to implement algorithm based on probabilistic approximation. Secondly, Simu-
lated Annealing can escape a local optimum by using probability-based movement
from one point to another in the negotiation space. This is the most essential point that
makes Simulated Annealing applicable for trade-off search in a multidimensional ne-
gotiation space.

P a r t I I – C h a p t e r 6.7 � Negotiation Strategy

262

Table 6-2: Search algorithm based on simulated annealing to find trade-offs

procedure find trade-off offer
begin
 GET initial offer xx by using conceding strategies

 // set parameters for simulated annealing
 // t: iteration time, TmaxTmax: max temperature, TminTmin: min temperature
 // TT: current temperature
 SET t = 0t = 0, Tmax = ¡Tmax = ¡, Tmin = ¡0Tmin = ¡0, T = TmaxT = Tmax

 // start simulated annealing search loop
 while (T ¸ TminT ¸ Tmin) do

 // find an alternative SLA offer in the neighbourhood
 SET x0x0 = neighbour(x; t;S)neighbour(x; t;S)

 // evaluate the SLA offer
 if (eval(x0) · eval(x)eval(x0) · eval(x)) then
 x = x0x = x0

 // do a movement in the neighbourhood

 else if (random[0; 1) < e
eval(x)¡eval(x0)

Trandom[0; 1) < e
eval(x)¡eval(x0)

T) then
 x = x0x = x0

 // do a movement in spite of worse evaluation result
 end if

 // annealing temperature
 // °°: decay rate for the temperature from TmaxTmax to TminTmin
 T = Tmax ¢ e¡t¢°T = Tmax ¢ e¡t¢°, t = t + 1t = t + 1
 end while
end

In order to apply the search algorithm described in Table 6-2 to a management
agent, the following issues must be addressed:

� Neighbourhood of an SLA offer: a management agent has to be able to deter-
mine feasible neighbours of a given SLA offer in the negotiation space.

� Evaluation function for SLA offers: a management agent has to be able to eval-
uate two given SLA offers and determine the better one in compliance with
some given criteria.

As discussed in Section 6.6, the negotiation space of a management agent is always
continuous. Hence, this provides additional flexibility to determine the neighbourhood
of a given SLA offer.

Table 6-3 lists the procedure to obtain a neighbourhood of a given SLA offer. In
general, a neighbour is generated by randomly selecting a QoS parameter, changing
its value, and adjusting another randomly selected QoS parameter to compensate the
utility change, so that the overall utility remains unchanged at the end. By doing this,

P a r t II – C h a p t e r 6 � Collaboration between Agents

263

a management agent can ensure that the neighbour SLA found in this way is located
on the same indifference curve/plane as the given SLA offer.

Table 6-3: Algorithm to determine a neighbour of a given SLA offer

procedure neighbour(x; t;S)neighbour(x; t;S)
// xx: given SLA offer, tt: current iteration, SS: negotiation space
begin
 // neighbourneighbour: neighbour of the given offer xx
 SET neighbour = xneighbour = x

 // size(xx): the number of QoS parameters in the offer xx
 // determine a random index between 0 and size(xx)-1
 SET idx1idx1 = random[0, size(xx)-1]

 // determine a random index of the compensation QoS parameter
 SET idx2idx2 = idx1idx1
 while (idx2 = idx1idx2 = idx1) do
 SET idx2idx2 = random[0, size(xx)-1]
 end while

 do
 SET value1value1 = neighbour(idx1)neighbour(idx1), value2 = neighbour(idx2)value2 = neighbour(idx2)

 // determine change for the first QoS parameter in dependence of iteration time
 // determine change range between the upper and lower limits of the parameter

 // S(idx1)upperS(idx1)upper: the upper limit of the parameter idx1idx1 in the negotiation space
 // S(idx1)lowerS(idx1)lower: the lower limit of the parameter idx1idx1 in the negotiation space
 // °°: constant decay rate for the size of change range
 SET range = jS(idx1)upper ¡S(idx1)lowerj ¢ e¡t¢°

2range = jS(idx1)upper ¡S(idx1)lowerj ¢ e¡t¢°
2

 SET change = random(¡range; range)change = random(¡range; range) // determine a random change in the value
range
 SET neighbour(idx1) = value1 + changeneighbour(idx1) = value1 + change // change the value

 // compensate for change of the first QoS parameter idx1idx1
 SET compensation = compensate(x;neighbour(idx1))compensation = compensate(x;neighbour(idx1)) //calculate the value of idx2idx2
 SET neighbour(idx2) = value2 + compensationneighbour(idx2) = value2 + compensation // change the value of idx2idx2
 // repeat the previous steps, if the neighbour is not located in SS
 while (neighbour =2 Sneighbour =2 S)

 RETURN neighbourneighbour
end

The algorithm in Table 6-3 returns a neighbour of a given SLA offer in the negotia-
tion space. In the following step, a management agent has to find out if the neighbour
found is better than the current offer with respect to some given criteria. To this end, it
utilises the evaluation function eval(x)eval(x) to estimate the offer’s quality. A management
agent can leverage various trade-off strategies to evaluate a given SLA offer.

P a r t I I – C h a p t e r 6.7 � Negotiation Strategy

264

Trade-off strategy 1 - alignment to initial offers: in this strategy, an agent uses the
two initial offers x0

c!px0
c!p and x1

p!cx1
p!c as fixed reference points in the space and tries to find

a trade-off with minimal distance to them. Therefore, the evaluation function for this
strategy is defined as follows:

 eval(xt
a!b) = Dnorm(x0

c!p; x
t
a!b) + Dnorm(x1

p!c; x
t
a!b)eval(xt

a!b) = Dnorm(x0
c!p; x

t
a!b) + Dnorm(x1

p!c; x
t
a!b) (6.10.2)

Figure 6-16: Trade-off strategy – alignment to both initial offers

Figure 6-16 illustrates this trade-off strategy with alignment to both initial offers.
Since initial offers represent the optimal SLAs that both negotiation partners prefer,
this strategy allows a management agent to construct an offer with respect to its coun-
terpart. In particular, by heading counter offers towards the initial offer of the oppo-
nent agent, a management agent can ensure that its offers can reach the unknown ne-
gotiation space of the counterpart in the course of negotiation. This provides the es-
sential prerequisite for an agent to reach a consensus with its counterpart.

A limitation of this strategy is its static alignment to two fixed reference points in
the negotiation space. Fixed reference points reduce the dynamic aspect of SLA nego-
tiation between management agents. In particular, counter offers proposed by follow-
ing this strategy do not take the up-to-date intention of its counterpart into considera-
tion, which is normally expressed in terms of incoming offers. Since incoming offers
other than the initial offer are not involved in the evaluation function, their impacts
are unconsidered in the decision-making process of an agent.

min1
c min1

p max1
c max1

p

min2
c

min2
p

max2
c

max2
p

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

optimum
consumer

optimum
provider

QoS parameter 1

Q
oS

 p
ar

am
et

er
2

consumer

provider

P a r t II – C h a p t e r 6 � Collaboration between Agents

265

Trade-off strategy 2 - alignment to the last incoming offer: in this strategy, a man-
agement agent aligns its search for trade-offs to the last incoming offer xt¡1

b!axt¡1
b!a from its

negotiation partner. In the search process, an agent tries to find an optimal trade-off in
its negotiation space that has minimal distance to the last incoming offer. Hence, the
evaluation function for this strategy is given by:

 eval(xt
a!b) = Dnorm(xt¡1

b!a; x
t
a!b)eval(xt

a!b) = Dnorm(xt¡1
b!a; x

t
a!b).

Figure 6-17 illustrates the strategy with alignment to the last incoming offer. In
comparison to the previous trade-off strategy, this strategy uses in each negotiation
round a new reference point in the negotiation space. Since a rational management
agent is expected to propose an offer matching its own negotiation preferences, each
incoming offer represents the most recent intention of an agent’s counterpart to reach
a consensus. Hence, aligning trade-off search to the last incoming offer allows a man-
agement agent to update its negotiation behaviour dynamically in accordance with the
behaviour of its counterpart.

Figure 6-17: Trade-off strategy – alignment to the last incoming offer

A limitation of the both previous strategies is their apparent lack of consideration of
given business objectives in trade-off search. Both strategies consider only offers ex-
changed between both management agents so far in a negotiation thread. Additional
criteria derived from business objectives do not influence the negotiation behaviour of
a management agent.

min1
c min1

p max1
c max1

p

min2
c

min2
p

max2
c

max2
p

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

optimum
consumer

optimum
provider

QoS parameter 1

Q
oS

 p
ar

am
et

er
2

consumer

provider

P a r t I I – C h a p t e r 6.7 � Negotiation Strategy

266

Trade-off Strategy 3 – alignment to both the last incoming offer and an agent’s own
initial offer: this strategy combines the previous trade-off strategies and uses the last
incoming offer as a dynamic reference point and the agent’s own initial offer, either
x0

c!px0
c!p or x1

p!cx1
p!c, as a fixed one. Therefore, a management agent tries to find an optimal

trade-off in the indifference curve that has minimal distance to both reference points.

That is, the evaluation function for this strategy is given by:

 eval(xt
c!p) = Dnorm(xt¡1

p!c; x
t
c!p) +Dnorm(x0

c!p; x
t
c!p)eval(xt

c!p) = Dnorm(xt¡1
p!c; x

t
c!p) +Dnorm(x0

c!p; x
t
c!p)

for the consumer agent cc or

 eval(xt
p!c) = Dnorm(xt¡1

c!p; x
t
p!c) +Dnorm(x1

p!c; x
t
p!c)eval(xt

p!c) = Dnorm(xt¡1
c!p; x

t
p!c) +Dnorm(x1

p!c; x
t
p!c)

for the provider agent pp .

Figure 6-18 illustrates the trade-off strategy 3. In contrast to both previous strate-
gies, this strategy incorporates the advantages of both strategies. First, aligning with
the last incoming offers enables a management agent to update its negotiation behav-
iour depending on that of its counterpart. Secondly, using the own initial offer as a
reference offer ensures that an agent’s counter offer also keeps the own optimum offer
in mind. However, similar to both previous strategies, a management agent does not
take given business objectives into consideration.

Figure 6-18: Trade-off strategy – alignment to the last incoming offer and the own initial offer

min1
c min1

p max1
c max1

p

min2
c

min2
p

max2
c

max2
p

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

optimum
consumer

optimum
provider

QoS parameter 1

Q
oS

 p
ar

am
et

er
2

consumer

provider

P a r t II – C h a p t e r 6 � Collaboration between Agents

267

Trade-off strategy 4 - combined strategy with respect to given business objectives:
by using this strategy, a management agent tries to combine the second trade-off strat-
egy with given business objectives. To this end, a management agent divides the set of
QoS parameters into two groups: one group with QoS parameters that are of relevance
to satisfy given business objectives and the other group with QoS parameters that are
not covered by business objectives. Hence, the trade-off search is correspondingly
split into two search phases.

In the first phase, an agent first tries to find trade-offs in compliance with its busi-
ness objectives. That is, a management agent seeks to optimise trade-offs with respect
to the group of QoS parameters related to business objectives. For example, a given
business objective of “increasing customer satisfaction” covers QoS parameters con-
cerned with user experiences, such as response time or availability of a service com-
ponent. Hence, a management agent optimises at first these QoS parameters and finds
trade-offs with response time as low as possible and availability as high as possible.
At the end of the first phase, QoS parameters related to business objectives have fixed
values that are used to construct the outgoing counter offer.

In the second phase, an agent continues to optimise the remainder of the QoS pa-
rameters that are not considered in the first phase. That is, it keeps the QoS values
determined in the first phase unchanged and tries to find offers in the negotiation
space that have minimal distance to the last incoming offer. In this process, the neigh-
bourhood of a given offer is determined by varying the QoS values that have not been
fixed in the first phase.

After both phases, a management agent has an outgoing offer which satisfies the
given business objectives and is simultaneously as close as possible to the last incom-
ing offer. In this way, a management agent takes both global business objectives and
local negotiation behaviour of its counterpart into consideration.

 Concluding Remarks 6.7.3

Negotiation strategies determine the negotiation behaviour of a management agent. To
generate an attractive offer for the negotiation partner, a management agent has to
cover two different aspects:

� estimate the utility of the next offer, and

P a r t I I – C h a p t e r 6.8 � Summary

268

� find appropriate value assignments so that the resulting offer is attractive for
the negotiation partner.

Since both management agents are not aware of the negotiation preferences of their
counterparts, they can only use heuristic approaches to presume the negotiation be-
haviours of their negotiation partners. Conceding strategies target the first aspect and
estimate the extent of concession on utility in each negotiation step. Depending on
negotiation time and other criteria, a management agent determines how far it is will-
ing to move away from its optimum in the negotiation space. However, conceding
strategies are more utility-centric and do not take the most recent negotiation behav-
iour of an agent’s negotiation partner into consideration.

Hence, the concrete value assignment for each QoS parameter is determined by
trade-off strategies. With a given utility, trade-off strategies search in the negotiation
space for appropriate value assignments by considering previous incoming offers,
even in the absence of knowledge about its counterpart. Since trade-off strategies in-
corporate the most recent negotiation situation into the search process of a manage-
ment agent, they can find trade-offs with a higher potential to accelerate the overall
negotiation process.

6.8 Summary

The core of the self-organising end-to-end SLM approach introduced in the present
thesis is collaboration between related management agents. For given service level
requirements in an SOE, the recursive nature of the environment requires seamless
cooperation of related service components within the environment. Each service com-
ponent is expected to contribute to the overall service level requirements. However,
the heterogeneous and autonomous nature of service components prevents direct ar-
rangement of service level objectives between a service provider and a service con-
sumer. Therefore, the present thesis proposes a generic approach that uses SLAs as
homogeneous messages between related service components to facilitate the overall
SLM process in the environment.

This chapter is dedicated to SLA-centric collaboration between related service
components, namely automated negotiation of SLAs between them. Firstly, negotiated
SLAs allow a service component to maintain its autonomy in collaboration by incor-
porating its preferences into a respective negotiation process. Secondly, abstracted

P a r t II – C h a p t e r 6 � Collaboration between Agents

269

SLAs do not refer to any individual implementation and configuration of related ser-
vice components. Hence, they enable related service components to collaborate on a
higher level of abstraction, in spite of the heterogeneous nature of those components.

Hence, this chapter addresses a set of relevant aspects to enable automated negotia-
tion of SLAs. Section 6.2 outlines the negotiation scenarios considered in the present
thesis and distinguishes them from other related research in the field. Based on such
negotiation scenarios, Section 6.3 outlines considerations with regard to the design of
the automated negotiation process between a service consumer and its provider.
Among other things, this section identifies the negotiation process as a bilateral multi-
issue negotiation between two rational agents.

In order to facilitate such an automated negotiation, Section 6.4 introduces the un-
derlying mathematical model. Among other things, this section specifies possible
utility functions that a management agent can use to estimate the quality of a given
SLA. In addition, this section outlines the concept of indifference curves/planes in
negotiation space, which forms the foundation for determining optimal trade-offs for a
given SLA.

Section 6.5 addresses the macroscopic aspect of SLA-centric collaboration and in-
troduces an iterated and coordinated negotiation protocol to guide interactions be-
tween two related service components in the course of negotiation. In particular, the
iterated mechanism of the negotiation protocol allows a business process as the top-
most component in an SOE to propagate a SLA negotiation process across the com-
plete environment down to the lowest service components. This feature is crucial to
make the negotiation protocol applicable to an SOE with recursive constructs.

In contrast, Section 6.6 and Section 6.7 are concerned with the microscopic aspects
of collaboration and outline how a management agent can negotiate with another
agent. To this end, Section 6.6 discusses how a service consumer can determine its
negotiation spaces for its service providers. In particular, this section describes how a
service consumer can derive reasonably those negotiation spaces from its service level
requirements in dependence of behaviour patterns of its providers. The last section in
the chapter, Section 6.7 focuses on the dynamic aspects of automated SLA negotiation
and introduces several negotiation strategies that a management agent can apply to
generate SLA offers to its counterpart. In particular, this section introduces several
trade-off strategies that help a management agent to dynamically align its SLA offers
to the negotiation behaviour of its counterpart as well as to global business objectives.

271

Part III

Evaluation

273

Chapter 7 Evaluation Environment

“Good preparation is prerequisite to the successful execution of a job.”
(Analects of Confucius, Confucius, ca. 551 - 479 B.C.

This chapter focuses on the evaluation environment used to assess the feasibility of
the approach introduced in the present thesis. This thesis proposes to solve automated
end-to-end SLM on two different levels: SLA-driven self-organisation of a service
component on the local level and negotiation-based collaboration between service
components on the global level. Hence, an appropriate evaluation environment has to
provide corresponding capabilities in its test bed with respect to both realisation levels
of the approach.

Therefore, a fundamental requirement on an appropriate evaluation environment is
that it should deliver an operating SOE, which can be flexibly configured in accord-
ance with particular evaluation objectives. Obviously, physical environments with real
world technical components satisfy this prerequisite only to a limited extent. In par-
ticular, despite high cost to set up such a physical environment, physical service com-
ponents cannot be configured flexibly to cope with varying demands of evaluation
experiments. In contrast, a simulation-based evaluation environment can set up certain
evaluation scenarios quickly with reasonable efforts. Particularly, such a simulated
environment can be configured flexibly to meet given objectives of evaluation exper-
iments. Therefore, the remainder of the chapter is concerned with the simulated evalu-
ation environment designed and implemented for the present thesis.

Correspondingly, the remainder of the chapter is organised as follows: Section 7.1
gives an overview of the simulation environment and its architecture. Section 7.2 is
concerned with the detailed modelling of the simulation environment and outlines
how the simulation environment is designed to construct a simulated SOE. Section 7.3
focuses on simulation of a single service component and outlines how a service com-
ponent can model its runtime behaviour by means of workflows. In particular, this

P a r t I I I – C h a p t e r 7.1 � Overview

274

section addresses how a service component can invoke other service components in-
volved in its business logic. Section 7.4 is concerned with the microscopic simulation
of a service component. It describes how a service component can simulate its local
resources to generate runtime workloads, which are crucial for estimating service lev-
el behaviour of a service component. The last section summarises the chapter.

7.1 Overview

The evaluation environment aims at providing an appropriate test bed for assessing
the feasibility of the approach introduced in the present thesis. Particularly, it is de-
sired that the evaluation environment can provide a simulated SOE in an efficient
manner. Hence, this section introduces the overall architecture of the evaluation envi-
ronment and outlines interactions between the integral parts of the evaluation
environment.

With respect to the main purpose of the evaluation environment to evaluate the ap-
proach proposed in this thesis, the following objectives must be covered:

� An appropriate evaluation environment should provide a flexible simulation
environment for creating a virtual SOE with respect to the design principles of
service-orientation, as described in Section 2.1.1. A real-world SOE is driven
by requests of business processes. Hence, a simulated SOE has to reproduce
this typical behaviour of a real SOE. That is, interactions between supporting
service components of a business process are triggered by service requests sent
to the process.

� Secondly, non-functional service level objectives are associated with the mi-
croscopic runtime behaviour of a service component. Hence, a simulated ser-
vice component has to produce runtime workloads, from which QoS values can
be derived. To this end, a simulated service component has to be given corre-
sponding processing capacities to handle incoming requests.

� Thirdly, a simulated SOE has to provide necessary interfaces for integrating
management agents. In particular, a simulated service component has to expose
its runtime information to its management agent. In addition, it should comply
with control actions suggested by its management agent.

Based on these considerations, an evaluation environment with flexible expanda-
bility is designed and implemented, as illustrated in Figure 7-1.

P a r t III – C h a p t e r 7 � Evaluation Environment

275

Figure 7-1: Overview of the evaluation environment

The entire evaluation environment is built on top of a simulation framework – Re-
past Simphony [NCV06]. Repast Simphony is a Java-based modelling system. It sup-
ports flexible development of simulation scenarios consisting of a set of interacting
agents. With respect to the agent-oriented design of the management overlay (see also
Section 5.1), it is reasonable to adopt Repast Simphony as the base to build the evalu-
ation environment consisting of a set of distributed and interacting self-organising
service components. The evaluation environment was built on top of Repast Simpho-
ny 2.0 Beta released on December 3, 2010.

On this simulation base, the evaluation environment is composed of four intercon-
nected simulation modules: simulation core, service component simulation, log-
ic/workload simulation plugin, and management agent plugin. The simulation core is
the foundation of the evaluation environment. It provides an extendable infrastructure
for hosting other simulation modules by means of a message-based communication
channel. In this way, any simulation module can interact with other related modules
by exchanging messages.

On top of the simulation core, the service component simulation module is respon-
sible to define an abstract service component within a simulated SOE. It specifies the
properties of the corresponding service component, such as component ID, its runtime
state, and its connection to the global SOE. Several instances of the service compo-
nent simulation module can interact with one another by exchanging messages via the
simulation core. It is noteworthy that this simulation module defines a service compo-
nent on an abstracted level. It does not implement any specific capability of a particu-
lar service component with respect to business logics.

Repast Simphony

simulation core

evaluation environment

service component simulation

logic/workload simulation plugin

management agent plugin

service component simulation

logic/workload simulation plugin

management agent plugin

messages messages

runtime
information

control
events

runtime
information

control
events

P a r t I I I – C h a p t e r 7.2 � Simulation Model

276

In order to realise an extendable service component, the service component simula-
tion module utilises a plugin-based architecture. A plugin is a self-contained module
that can be used to extend capabilities of a simulated service component. For example,
a service discovery plugin can enable service components to perform distributed ser-
vice discovery. In this way, a service component can be extended with specific capa-
bilities depending on objectives of particular evaluation scenarios.

For the purpose of the present thesis, several plugins have been designed and im-
plemented. The remainder of this chapter focuses on two plugins that are related to the
evaluation scenario of this thesis: a logic/workload simulation plugin that induces the
microscopic behaviour of a service component and a management agent plugin that
applies the agent architecture introduced in Section 5.2.1. The logic/workload simula-
tion plugin provides an abstracted service component with capabilities to simulate
specific business logic and technical resources. Section 7.3 and Section 7.4 introduce
the detailed implementation of the logic/workload simulation plugin in detail.

7.2 Simulation Model

Figure 7-2 illustrates the constructs of the simulation modules and their interactions
with one another. In a simulated SOE, there are altogether four types of service com-
ponents: process component, service component, application component, and infra-
structure component – according to the definition of a service-oriented environment
in Section 3.1. Each of those abstracted service components employs a single instance
of the logic/workload simulation module and a single instance of the management
agent module.

An instance of the logic/workload simulation module is composed of two integral
parts: a business logic component and a resource simulation component. A business
logic component implements the logic of a given service component. Similar to the
definition of a business process, it defines a set of tasks of the respective service com-
ponent. Those tasks are organised by means of composition patterns introduced in
Section 6.6.1. Such composition patterns define chronological and logical execution
orders between related tasks of a given component.

P a r t III – C h a p t e r 7 � Evaluation Environment

277

Figure 7-2: Model of the evaluation environment

A business logic distinguishes between two general task types: delegated tasks and
local tasks. A delegated task is an activity that should be processed by another service
component (i.e., a service provider). It indicates a provider/consumer relationship be-
tween the current service component as a service consumer and another component as
a service provider. In contrast, a local task is an activity that will be processed by the
respective service component itself. In this process, processing a local task causes
consumption of local technical resources and induces various aspects associated with
resource consumption, such as consumption cost, processing time, and resource usage.

Hence, the logic/workload simulation module employs a second component – a re-
source simulation component – to simulate local resources of a service component.
The resource simulation component maintains a range of configurable local resources
to process tasks of the respective service component. As such, it simulates the role of
a task processor and handles assigned tasks according to its local processing capaci-
ties. Such processing capacities can be flexibly adjusted in depending on given exter-
nal directives.

As aforementioned, a self-organising SOE utilises management agents to manage
processing capacities of service components. Hence, each simulated service compo-
nent is equipped with a management agent applying the agent architecture introduced

simulated
service component

business logic resource
simulation

task

local taskdelegated
task

process
component

service
component

application
component

infrastructure
component

management
agent

collaboration
manager

high-level
control

O/C unit

service component simulation

logic/workload simulation plugin management agent plugin

consumes

monitors

controls

processed by

controls

enforces
negotiated
SLA

renegotiate
SLA

consists
of

consists
of

P a r t I I I – C h a p t e r 7.2 � Simulation Model

278

in Section 5.2.1. To this end, a management agent plugin is designed and implement-
ed in the evaluation environment. It is composed of an O/C unit and a collaboration
manager. Behaviour of both components is controlled by a high-level control compo-
nent. The control component is given an abstract business objective, from which it
derives operative directives for the O/C unit and the collaboration manager. Among
other things, the high-level control component specifies the priorities of service level
objectives involved in the SLM. The O/C unit uses those priorities to determine the
overall degree of fulfilment of a given SLA, as described in Section 5.2.4. Similarly,
the collaboration manager applies those priorities to determine its preferences of ser-
vice level objectives in the course of negotiation.

The collaboration manager implements automated negotiation of SLAs in the
management agent, as described in Chapter 6. Via the collaboration manager, the
management agent can negotiate with another related management agent in an auto-
mated manner. The resulting SLA is then forwarded to the O/C unit for enforcement.

An instance of the management agent plugin monitors runtime behaviour of a
simulated service component. That is, it observes how a simulated service component
behaves in the course of interactions with other related service components. Based on
runtime information that the management agent collects from the simulated service
component, the O/C unit consolidates the collected information to situation parame-
ters that address service level behaviour of the respective service component. These
situation parameters together with the SLA delivered by the collaboration manager
serve as the basis for decision-making processes of the management agent, i.e., the
O/C unit of the agent.

Control actions proposed by the O/C unit are executed by the management agent
upon the resource simulation component. Those control actions aim mainly at adjust-
ing processing capacities of the service component, which leads in turn to changes in
the component’s behaviour on the service level. Alternatively, the O/C unit can also
utilise the collaboration manager to renegotiate a violated SLA, if it determines that
the resource simulation component runs out of its local resources. In this case, the col-
laboration manager interacts with the respective service component to rearrange a
new agreement.

P a r t III – C h a p t e r 7 � Evaluation Environment

279

7.3 Logic Simulation

As discussed in Section 6.6.1, business logic of a service component can be modelled
in terms of composition patterns. Those composition patterns define the chronological
order, in which a service component invokes either a local activity or a delegated ac-
tivity offered by another service component. In this way, a service component imple-
ments its capability either by itself or by one of its service providers. As such, a ser-
vice component delegates part of the realisation of its capability to the particular ser-
vice provider. Hence, by modelling runtime behaviour as a workflow, a simulated
service component can involve a set of related service components in its realisation –
just as a real-world service component does.

In order to execute a workflow, a simulated service component needs an appropri-
ate workflow engine. During simulation, such a workflow engine should be able to
load a workflow from a given document (e.g., a BPMN document), instantiate it, and
control the workflow instance throughout its life cycle. With regard to the evaluation
environment of the present thesis, an appropriate workflow engine has to meet the
following requirements:

� It should have a light footprint. This ensures that such an engine can be inte-
grated as a programming module into a simulated service component.

� It should utilise an extensible XML document to describe its workflow instead
of hard coding them directly in the source code. This requirement makes sure
that evaluation scenarios can be flexibly modified in dependence of respective
objectives, without having to recompile the complete environment after each
change.

� Workflow documents used should be easily extensible with customised work-
flow elements, especially with respect to the composition patterns defined in
Section 6.6.1. This ensures that the composition and decomposition schemas
defined in Section 6.6.2 and Section 6.6.3 can be applied directly without any
modification.

With respect to these considerations, most of the mainstream business process
management (BPM) systems [SH10] can be omitted because of their heavy footprint
and poor support for being integrated directly into the evaluation environment. Ad-
vanced features of such BPM systems, such as persistence of workflow instances or
rich interaction interfaces, are not required in the implementation of the evaluation

P a r t I I I – C h a p t e r 7.3 � Logic Simulation

280

environment. For the purpose of the present thesis, a simple open source workflow
engine, Sarasvati workflow engine [Sar11], is adopted. In comparison to mainstream
BPM systems, it is rather a programming module capable of being integrated into an
existing environment as a lightweight workflow engine.

The core of Sarasvati is based on graph execution. Therefore, a workflow is ex-
pressed as a directed graph consisting of nodes and a set of arcs connecting those
nodes. Similar to the concept of petri net, Sarasvati utilises tokens to mark the current
operational state of a workflow. The activity associated with a node will be executed,
if the node receives a token passed from its predecessor. After its execution, it passes
its token to the next node in the logic flow.

To control the logic flow between nodes, Sarasvati introduces the concept of guard.
A guard has a similar role as gateways in BPMN. It is used to control branch-
ing/merging behaviour of a node in a workflow. With an appropriately configured
guard, a workflow can discard, bypass, or activate one or more selected nodes to con-
tinue its logic flow.

In contrast to other workflow engines, the actual strength of Sarasvati workflow
engine is its extensibility with customised workflow elements. A Sarasvati workflow
can be extended with additional information according to particular target scenarios.
In the context of the present thesis, the Sarasvati workflow engine is used to model the
business logic of a service component. Hence, with respect to the specific characters
of a business logic, this thesis extends a Sarasvati workflow as follows:

� A node is extended with a custom section describing artefacts associated with
the corresponding task of a node. As mentioned in Section 7.2, a task can be ei-
ther a local one or a delegated one. For a local task, the custom section defines
the average payload of the task and its repeat times. For a delegated task, the
custom section defines the remote logic of an external service component that
the task should invoke.

� The guard of a node is extended with the composition patterns AND, XOR, and
OR introduced in Section 6.6.1. In addition, each guard is associated with a
conditional expression that determines, in case of conditional composition pat-
terns (i.e., XOR and OR), which branches among all existing branches should
be activated in the logic flow.

Table 7-1 describes the business logic in Figure 6-9 as a Sarasvati workflow.

P a r t III – C h a p t e r 7 � Evaluation Environment

281

Table 7-1: Sample logic definition as a Sarasvati workflow
 1) <process-definition name="process1"
 xmlns="http://sarasvati.googlecode.com/ProcessDefinition">
 2) <node name="start" isStart="true">
 3) <arc to="ref_S1" />
 4) </node>
 5) <node name="ref_S1" type="task">
 6) <arc to="ref_L1" />
 7) <custom>
 8) <callAgent>S1</callAgent>
 9) <callLogic>S1_1</callLogic>
10) <callingAgent>process1</callingAgent>
11) <taskName>ref_S1</taskName>
12) <taskDesc>calls the logic S1_1 of the service component S1</taskDesc>
13) </custom>
14) </node>
15) <node name="ref_L1" type="task">
16) <arc to="branch_AND" />
17) <custom>
18) <taskName>task_L1</taskName>
19) <taskPayLoad>2500.0</taskPayLoad>
20) <taskRepeatTimes>2</taskRepeatTimes>
21) <taskDesc>executes with average payload of 2500</taskDesc>
22) </custom>
23) </node>
24) <node name="branch_AND">
25) <guard>isAND</guard>
26) <arc to="branch_XOR" />
27) <arc to="ref_S2" />
28) </node>
29) <node name="ref_S2" type="task">
30) <arc to="Join_AND" />
31) </node>
32) <node name="branch_XOR">
33) <guard condition="random">isXOR</guard>
34) <arc to="ref_S3" />
35) <arc to="ref_L2" />
36) </node>
37) <node name="ref_L2" type="task">
38) <arc to="Join_XOR" />
39) </node>
40) <node name="ref_S3" type="task">
41) <arc to="Join_XOR" />
42) </node>
43) <node name="Join_XOR" isJoin="true">
44) <arc to="Join_AND" />
45) </node>
46) <node name="Join_AND" isJoin="true">
47) <arc to="end" />
48) </node>
49) <node name="end" />
50) </process-definition>

It is noteworthy that for simplicity some irrelevant XML elements are eliminated in
the workflow. The business logic is defined for the service component process1 (cf.

P a r t I I I – C h a p t e r 7.3 � Logic Simulation

282

line 1). As aforementioned, the whole business logic is organised as a graph with a
start node (i.e., the node with the attribute isStart=”true”, cf. line 2) and an end node
(i.e., the last node in the graph, cf. line 50). Between two related nodes, there is a di-
rected arc, where the node at the beginning is the predecessor of the node at the end.
A node may have a guard defined in it (cf. line 25), which controls either the branch-
ing or the joining behaviour of the logic flow at the node.

The node of the task ref_S1 (cf. lines 5~14) defines a delegated task of the service
component. In this node, process1 invokes the logic S1_1 (cf. line 9) of the service
component S1 (cf. line 8). It is worth noting that in the current implementation of the
logic simulation, all logics defined for a service component are invoked without any
input parameters. This implementation decision is made to simplify the simulated
provider/consumer relationship, because a service invocation with input/output pa-
rameters follows the same processing scheme as an invocation without those parame-
ters. Furthermore, it is defined that all logic invocations are synchronous. That is, after
having sent a request to a service component, the respective service consumer has to
wait for the response, before it can continue with its logic flow.

 The node for the task ref_L1 (cf. lines 15~23) defines a local task of the service
component. As aforementioned, in order to estimate QoS behaviour of a simulated
service component, it has to produce some workload, as a real-world service compo-
nent does. To this end, a local task has two corresponding properties. The first one is
to define the average payload of executing the corresponding task (cf. line 19). It de-
termines in general the amount of effort that the underlying simulated resource needs
to process the task. The second one is to define the number of executions of the cur-
rent task (cf. line 20).

Another customised element is the guard element in the logic definition. For exam-
ple, line 25 of Table 7-1 defines an AND-guard at the node branch_AND. In this case,
both arcs defined in the node (cf. lines 26 and 27) are activated by the workflow en-
gine to continue the logic flow.

Similarly, line 34 defines an XOR-guard of the node branch_XOR. In contrast to an
AND-guard, this node exclusively selects one of its two arcs to continue the logic
flow. The decision, which arc should be activated, depends on the evaluation result of
the attribute condition of the guard. In the example logic, the guard uses a random
function (cf. line 33) to determine the outgoing arc. In other words, both arcs have
equal probability to be activated during simulation.

P a r t III – C h a p t e r 7 � Evaluation Environment

283

At a glance, a business logic is the part in the evaluation environment that realises
the request-driven behaviour of a real-world SOE. By executing a business logic, the
evaluation environment involves not only the owner component of the logic into the
simulation process, but also all of its service providers. In this way, all related service
components can be successively incorporated into the simulation at runtime. The next
requirement is that such service invocations have to induce workloads of respective
service components, which is covered in the following section.

7.4 Workload Simulation

Workload simulation is concerned with microscopic simulation of runtime behaviour
of a service component. In particular, workload simulation addresses how a service
component processes incoming service requests with realistic workloads. Since invok-
ing the logic of a given service component is associated with consumption of underly-
ing technical resources, this section describes how a service component can simulate
technical resources locally and how it processes an incoming service request by using
these resources.

Figure 7-3: Resource simulation in the evaluation environment

Figure 7-3 illustrates the internal structure of resource simulation in the evaluation
environment. The structure is composed of two parts. The first part, the request pool,
is responsible for organising a range of working threads and determines how incoming

service request

working thread pool

resource pool
controller

service
response

request pool

resource pool

control signal

sim
ul

at
io

n
ta

sk

computation
tasks......

Global Infrastruct.Svc.

resource list

ref. resource k
......

ref. resource m-1

resource 0

resource k

resource m-1

ref. resource 0

...
... task

result

results

th
re

ad
0

th
re

ad
1

th
re

ad
k

th
re

ad
k-

1

......

th
re

ad
n-

1

th
re

ad
k+

2

th
re

ad
k+

1

......

......
request i-1
request i

request i+1
......

task 0
......

task i
task i+1
......

task queue (FIFO)

request queue

P a r t I I I – C h a p t e r 7.4 � Workload Simulation

284

service requests are distributed to these working threads. The second part in the re-
source simulation addresses the internal implementation of the resource pool. Among
other things, this part manages a range of simulated resources and determines how a
local activity is distributed to these resources.

Each incoming service request is added to a first-in-first-out (FIFO) request queue,
where all requests wait to be processed by the service component. For simplicity, all
requests in the request queue have the same priority for processing. A service request
has to wait, until it is distributed based on the FIFO principle to a working thread that
becomes available.

The working thread pool maintains a range of n working threads. It is responsible
for organising the life cycle of these working threads, including initialising them, as-
signing service requests to them, collecting processing results, and terminating them
after use. A working thread is exclusively allocated to a single service request each
time. After having finished processing a request, a respective working thread is re-
turned to the thread pool, where the pool can assign another service request to it.

A working thread executes the business logic of a service component. Hence, each
working thread maintains locally a running instance of the Sarasvati workflow engine.
In order to process an incoming service request, a respective working thread loads the
logic specified by the request into the workflow engine and initiates it:

� For a delegated task defined in the business logic, the working thread generates
a corresponding service request as specified in the delegated task to the respec-
tive service provider. Upon receiving the service response from the provider, it
passes the response to the business logic to continue its execution.

� For a local task, the working thread forwards the task to the underlying re-
source pool, where the task is processed by a simulated resource in the pool.
Processing results from the resource pool are returned back to the correspond-
ing business logic in the working thread to trigger its further execution.

� At the end of logic execution, a working thread terminates the corresponding
service instance and generates a dummy service response. This response is
forwarded to the thread pool, which in turn forwards the service response to the
corresponding service consumer in the environment.

The resource pool simulates a set of m technical resources of a service component.
To this end, the resource pool utilises the GridSim toolkit to model and simulate dis-
tributed resources [BM02]. GridSim is originally designed to enable simulation of a

P a r t III – C h a p t e r 7 � Evaluation Environment

285

distributed grid environment. As such, it provides a comprehensive platform to simu-
late artefacts within a distributed grid environment, such as distributed resources, re-
source brokers, applications, and users. Among other things, GridSim allows model-
ling heterogeneous types of technical resources either in a time-shared or space-shared
mode. Each simulated resource can have different processing capacities defined in
terms of Million Instructions per Second (MIPS). The implementation of the evalua-
tion environment was built on GridSim Toolkit 5.0 beta, released on September 24,
2009, and has been tested on GridSim Toolkit 5.2, released on November 25, 2011.

For the purpose of the present thesis, only the part of the GridSim toolkit for mod-
elling and simulating resources is used. It is utilised by the resource pool to define and
simulate the set of technical resources of a service component. To this end, each ser-
vice component uses a configuration file to define its set of technical resources, as
illustrated by the sample XML file in Table 7-2.

Table 7-2: Resource definition of a service component in the evaluation environment

 1) <?xml version="1.0"?>
 2)
 3) <resource-definition name="infrastructure1">
 4) <resource>
 5) <architecture>Sun Ultra</architecture>
 6) <OS>Solaris</OS>
 7) <machineList>
 8) <machine id="0">
 9) <pe id="0" MIPS="377"/>
10) <pe id="1" MIPS="377"/>
11) <pe id="2" MIPS="377"/>
12) <pe id="3" MIPS="377"/>
13) </machine>
14) </machineList>
15) <allocationPolicy>SPACE_SHARED</allocationPolicy>
16) <timeZone>9.0</timeZone>
17) <costPerSec>3.0</costPerSec>
18) </resource>
19) </resource-definition>

The definition file specifies resources for the service component infrastructure1
(cf. line 3). The resource runs on the hardware architecture of Sun Ultra and the oper-
ating system Solaris (cf. line 5 and 6). The resource is composed of one single ma-
chine with four processing elements. Each processing element represents a CPU unit
and has a predefined processing capacity. For example, the processing elements in
Table 7-2 all have a capacity of 377 MIPS (cf. lines 9~12). Computational tasks are
assigned to processing elements in a space-shared manner (cf. line 15). In this case,

P a r t I I I – C h a p t e r 7.4 � Workload Simulation

286

the resource follows a simple allocation policy of FIFO to assign a task to a single
processing element.

Another interesting aspect of the resource definition is service cost. The definition
file specifies cost per second (cf. line 17 in the sample file) for consuming the re-
source. As such, the total cost of processing a single task is calculated with respect to
the total number of time units used to process a task and the basic cost per time unit.

Based on the simulated resources, the resource pool processes computational tasks
submitted by working threads. As specified by the sample logic in Table 7-2, each
computational task is submitted with two properties: average payload of the task and
the number of repeats. The actual payload of the task is determined by the resource
pool on the fly. To this end, the resource pool defines two variation parameters ÀupÀup
and ÀdownÀdown, with 0 · vup; vdown · 10 · vup; vdown · 1. The actual payload ½½ of a given task with an av-
erage payload of ½½ is then determined by:

 ½ = (1¡ Àdown + (Àdown + Àup) ¢ r) ¢ ½½ = (1¡ Àdown + (Àdown + Àup) ¢ r) ¢ ½ (10.4.1)

In (10.4.1), rr is a random double that is uniformly distributed between 00 and 11. By
applying (10.4.1), the actual payload of a task is located between (1 ¡ Àdown) ¢ ½(1 ¡ Àdown) ¢ ½ and
(1 + Àup) ¢ ½(1 + Àup) ¢ ½. With the calculated payload, the respective task is submitted to a simu-
lated resource in the resource pool for processing. The resource pool maintains a
global infrastructure service, which contains references to all simulated machines. The
global infrastructure service distributes computational tasks to those machines and
returns processing results to the invoking working thread. Among other things, a pro-
cessing result contains detailed information describing how the corresponding task is
processed, such as the execution start/end times, the CPU time used, the average cost
per second, and the total processing cost of the task.

To summarise, the logic/workload simulation module can actively model and exe-
cute the business logic of a service component with an individual workload. Therefore,
a service component in the evaluation environment can produce individual runtime
behaviour based on its business logic and its local resources. By observing runtime
information of such a simulated service component, a management agent can estimate
the service level behaviour of a respective service component, including its response
time, throughput, availability, and service cost during a sampling period. This runtime
information enables a management agent to reactively manage its underlying service
component, in particular with respect to SLAs it closes.

P a r t III – C h a p t e r 7 � Evaluation Environment

287

7.5 Summary

This chapter introduces the evaluation environment designed and implemented for the
present thesis. Evaluating the approach proposed by this thesis requires an appropriate
evaluation environment that can flexibly reproduce the runtime behaviour of an SOE.
Since physical evaluation environments are expensive and difficult to maintain, and
do not provide the desired flexibility, the present thesis adopts a simulation-based en-
vironment for evaluating the approach.

The evaluation environment utilises an architecture that is extendible by means of
plugins. On top of an abstract simulation core, the evaluation environment can be ex-
tended by additional plugins that provide the evaluation environment with new capa-
bilities. For the purpose of the present thesis, two plugins are developed to facilitate
negotiation-based SLM in an SOE: the logic/workload simulation plugin and the
management agent plugin.

The logic/workload simulation plugin focuses on simulating runtime behaviour of a
single service component, both on the macroscopic as well as microscopic level. To
this end, this plugin models the business logic of a service component as a workflow
and employs a workflow engine to execute it at runtime. In this way, invoking a simu-
lated business process involves all supporting service components in the underlying
layers of the SOE. From this viewpoint, the simulated evaluation environment can
reproduce the request-driven macroscopic aspects of an SOE on the global level.

In addition, the logic/workload simulation plugin models and simulates local tech-
nical resources of a service component. On top of such resources, a service compo-
nent processes its local activities and individually produces workloads as a real-world
service component does. Such workload information can be used by the management
agent plugin to assess runtime behaviour of the corresponding service component on
the service level.

In a word, the evaluation environment provides a flexible and extendible simula-
tion-based test bed for assessing self-organising SLM in an SOE. Model-based con-
figuration files allow constructing a range of varying SOE scenarios depending on the
respective evaluation objectives.

289

Chapter 8 Evaluation Results

“It is reasonable to say things with solid judgement.”
(Xun Zi, ca. 312-230 B.C.

This chapter provides the evaluation results to support the approach proposed in the
present thesis. As described in Chapter 7, the evaluation environment implements the
architecture of a management agent described in Section 5.2. On top of the generic
observer/controller architecture, an additional collaboration layer is built in the man-
agement agent to facilitate collaboration between related service components.

Therefore, the focus of the evaluation experiments conducted is twofold. First, the
ability of the proposed model to enable automated bilateral multi-issue negotiation is
evaluated. Secondly, the negotiation model is incorporated into the global context of
an SOE and it is evaluated, how negotiation-based collaboration between service
components can facilitate the management of the entire SOE.

Hence, the remainder of the chapter is organised as follows: Section 8.1 outlines
the design considerations of the evaluation experiments. In particular, this section ad-
dresses the objectives of the experiments and explains how they relate to one another.
Section 8.2 is concerned with the experimental results showing the performance of the
automated negotiation model. Section 8.3 provides the evaluation results to demon-
strate the applicability of the overall approach in an SOE.

8.1 Experimental Design

As aforementioned, the focus of the evaluation experiments is to assess the feasibility
of the approach proposed in the present thesis. As such, a range of experiments with
varying configurations has been conducted. Thus, for a clear experimental design, the
present thesis follows the guidelines summarised by Montgomery [Mon09]:

P a r t I I I – C h a p t e r 8.1 � Experimental Design

290

� recognition of and statement of the problem,

� selection of the response variable,

� choice of factors, levels, and ranges,

� choice of experimental design,

� performing the experiments,

� statistical analysis of the data,

� and conclusion and recommendation.

The first four guidelines aim at performing a structured pre-experimental planning,
while the last three guidelines address conduction of experiments and processing of
experimental results. This section is concerned with the first four guidelines for a clear
experimental design.

Statement of the problem: as stated in the motivation of this chapter, the key issue
of the evaluation is to assess the feasibility of the multi-level SLM approach. That is,
the target problem of the experiments is concerned with whether the collaboration-
based concept can accelerate management of service components of an SOE in an au-
tomated manner. Thus, the goals of the experiments are as follows:

� to investigate the influence of various negotiation strategies on the negotiation
outcomes,

� to investigate the influence of negotiation behaviour of a management agent on
its counterpart,

� to investigate the influence of global business objectives on the negotiation
outcomes,

� to investigate the feasibility of the composition/decomposition schemas intro-
duced in Section 6.6,

� to investigate the feasibility of the negotiation protocol introduced in Section
6.5,

� and to investigate the influence of the collaboration-based SLM approach on
the overall performance of an SOE.

Response variables: according to the guidelines of Montgomery [Mon09], re-
sponse variables are necessary to measure the performance of the experimental out-
comes. In the present thesis, they are needed to estimate the performance of the nego-

P a r t III – C h a p t e r 8 � Evaluation Results

291

tiation model and the overall effectiveness of the collaboration-based SLM approach.
The present thesis uses the following measures:

� the number of negotiation rounds needed to reach an agreement, if any,

� the utilities of the resulting SLAs, if any, for both management agents,

� and the efficiency of the resulting SLAs.

 To assess the feasibility of the approach, the present thesis estimates the runtime
behaviour of related service components. By observing the changes of runtime behav-
iour of service components in relationship to their workloads, it is possible to draw a
conclusion on the effectiveness of the collaboration-based SLM approach.

Choice of evaluation objectives: in the evaluation environment, a range of varying
configurations influences the values of the response variables listed above. Therefore,
it is reasonable to define the set of varying configurations depending on the respective
evaluation objectives. Figure 8-1 illustrates the main objectives that the conducted
evaluation experiments aim to cover.

Figure 8-1: Objectives of the evaluation experiments

In general, these objectives are classified into two categories: microscopic evalua-
tion and macroscopic evaluation. Microscopic evaluation aims at verifying the pro-
posed approach of automated negotiation on the level of a single management agent.
In particular, experiments of this category address how varying configurations of the

m
ic

ro
sc

op
ic

 e
va

lu
at

io
n

m
ac

ro
sc

op
ic

 e
va

lu
at

io
n

negotiation
behaviour

negotiation
performance

negotiation
efficiency negotiation

strategies

business
objectives

environmental
impacts

propagation of
SLAs

collaborative
resource management

utilises supports

automated
negotiation

collaboration
between agents

P a r t I I I – C h a p t e r 8.1 � Experimental Design

292

proposed negotiation model influence the negotiation outcomes. Among other things,
the following objectives are considered in this category:

� Negotiation behaviour of a management agent is subject to a range of internal
and external influence factors. Internally, a management agent’s behaviour is
determined by its negotiation strategy. Externally, an agent’s negotiation be-
haviour is influenced by given business objectives and by its environment.
Business objectives guide a management agent to determine its preferences on
service level objectives. Similarly, environmental impacts, in particular those
of an agent’s counterpart, influence its behaviour. Among other things, will-
ingness of an agent’s counterpart for cooperation determines largely if an agent
can assert its preferences in the negotiation.

� The second objective is efficiency of automated negotiation between two agents.
This objective covers mainly efficiency of the introduced negotiation strategies
to generate socially fair SLAs. By comparing those results with Pareto optimal
offers, it is possible to determine the quality of the resulting SLAs, in particular
with respect to the social welfare of the results for both negotiation agents. In
this way, it is also possible to investigate how far the introduced negotiation
strategies can derive socially fair SLAs for both agents, even under the condi-
tion of an incomplete information situation.

� The last objective is the performance of the introduced automated negotiation
model. In this case, it is of interest to investigate how far the introduced negoti-
ation strategies can guide the two service components towards reaching an
agreement, despite their incomplete information situation.

In contrast to the microscopic evaluation, the macroscopic evaluation focuses on
the overall applicability of the negotiation-based multi-level SLM approach to facili-
tate collaboration between agents. That is, on top of automated negotiation, the mac-
roscopic evaluation investigates how the iterated and coordinated negotiation protocol
can be applied to an SOE to support multi-level SLM. Therefore, evaluation experi-
ments in this category are organised with respect to the following two negotiation
scenarios:

� The first negotiation scenario, propagation of SLAs, is the most basic one to
prove the feasibility of the approach. This scenario investigates how end-to-end
service level requirements on a business process can be propagated systemati-
cally to the supporting service components in the underlying layers.

P a r t III – C h a p t e r 8 � Evaluation Results

293

� The second negotiation scenario, collaborative resource management, aims at
demonstrating the strength of the proposed approach to facilitate flexible and
efficient management of technical resources across several related service
components. Combining with controlled self-organisation, automated negotia-
tion allows a management agent, if necessary, to dynamically distribute its
workloads to its supporting service providers depending on their most recent
runtime behaviour.

By summarising the evaluation objectives, essential factors that influence the re-
sponse variables of the evaluation experiments can be determined. Montgomery dis-
tinguishes between nuisance factors and potential design factors, which in turn can be
either design factors, held-constant factors, or allowed-to-vary factors [Mon09].

In the present thesis, random seeds used for simulating resources in GridSim as
well as for simulating entities in Repast Symphony are the nuisance factors. In addi-
tion, the evaluation environment employs a range of held-constant factors, such as the
number of negotiating management agents, their business logics, and relationships
between them, are kept constant across all evaluation experiments. Hence, these fac-
tors are of less interest to the response variables.

Similarly, there is a range of allowed-to-vary factors in the evaluation environment,
such as the way to estimate distance between two given offers in a negotiation space
(i.e., either pure Euclidean distance or normalised Euclidean distance). These factors
have fewer impacts on the response variables. Therefore, these factors are not investi-
gated in the present thesis in detail.

The more interesting factors are design factors that are selected for study in the
evaluation experiments. That is, the set of configurations in the evaluation environ-
ment that influences the response variables identified above. The following configura-
tions are of particular interest for evaluation:

� negotiation strategy (i.e., conceding strategy and trade-off strategy) employed
by a management agent,

� utility functions used by a management agent,

� willingness of a management agent to cooperate with its counterpart,

� and business objectives given by a high-level control instance.

Choice of experimental designs: depending on the desired objectives of the re-
spective evaluation experiments, the choice of the experiment designs determines how

P a r t I I I – C h a p t e r 8.2 � Automated Bilateral Negotiation

294

these experiments are conducted. With respect to both microscopic and macroscopic
evaluation, it is obvious that they do not share the same goal. While macroscopic
evaluation focuses on the feasibility of the multi-level SLM approach, microscopic
evaluation is concerned with performance of the automated negotiation model.

Hence, microscopic evaluation is conducted as a parameter study by varying a de-
sign factor while holding all other design factors constant. In order to reduce the im-
pacts of variances and standard errors caused by the simulation environment, each
experiment will be repeated 10 times using the same configurations and the average
outcomes out of 10 runs are used as the final results.

In contrast, macroscopic evaluation aims at demonstrating the applicability of the
introduced multi-level SLM approach. Hence, it is of interest to investigate runtime
behaviour of the selected service components within an SOE with respect to the re-
sponse variables mentioned before.

Based on those considerations regarding experimental design, a range of experi-
ments are carried out in the simulated evaluation environment. The following sections
provide the experimental results. Section 8.2 focuses on experiments for the micro-
scopic evaluation, while Section 8.3 provides an insight into experimental results of
the macroscopic evaluation.

8.2 Automated Bilateral Negotiation

This section provides the experimental results to investigate the performance of the
automated negotiation model. The results are presented with respect to the evaluation
objectives discussed in the previous section. Section 8.2.1 investigates the basic nego-
tiation behaviour of a management agent by employing varying negotiation strategies,
while Section 8.2.2 is concerned with evaluating social welfare of a negotiation pro-
cess. The last section outlines the performance of the negotiation model in a quantita-
tive manner.

As stated in the experimental design, each experiment evaluates only a single de-
sign factor, while all other design factors are held constant. In each experiment, one
service consumer and one service provider are involved. The negotiation space of the
respective service component is listed in Table 8-1. In order to keep the evaluation
results clear, this section considers only two QoS parameters, response time and cost.

P a r t III – C h a p t e r 8 � Evaluation Results

295

It is assumed that both negotiating service components have the same units for the
QoS parameters.

Table 8-1: Negotiation space used to evaluate automated negotiation

 minimal maximal minimal maximal
60 100 130 170
95 135 105 145

In all evaluation experiments, if not stated otherwise, the negotiation strategy of the
consumer is fixed. It follows a simple time-dependent conceding strategy to determine
its offers. That is, the consumer reduces linearly its expectation on utility in each step
by a certain amount until the end of the negotiation. In addition, both management
agents employ a linear utility function as introduced in Section 6.4. In the utility func-
tions, both QoS parameters have equal weights. The negotiation deadline is set to 60
negotiation rounds. In the course of negotiation, both management agents propose
alternating SLA offers to their counterpart, until a mutually acceptable offer is found.
Hence, each agent has the possibility to make 30 proposals, before the negotiation
thread is aborted due to timeout.

 Negotiation Behaviour 8.2.1

The focus of this section is to evaluate the negotiation behaviour of the service pro-
vider with different negotiation configurations, while in each experiment only a single
negotiation configuration is changed.

Influence of Negotiation Strategy

This section evaluates the impact of negotiation strategies on the negotiation behav-
iour of a management agent. Therefore, the service provider is configured with vary-
ing negotiation strategies, i.e., conceding strategies and trade-off strategies. As afore-
mentioned, the service consumer employs a simple time-dependent conceding
strategy.

Figure 8-2, Figure 8-3, Figure 8-4, and Figure 8-5 illustrate the negotiation behav-
iour of the service components with varying configurations. In each figure, the chart
on the left, the negotiation behaviour chart, shows the negotiation behaviour of both
management agents in the negotiation space spanned by the two QoS parameters, re-
sponse time and service cost. The chart in the middle, the utility chart for the consum-

P a r t I I I – C h a p t e r 8.2 � Automated Bilateral Negotiation

296

er, illustrates the consumer’s perceptions of the offers in terms of utilities. Similarly,
the chart on the right, the utility chart for the provider, illustrates the utilities of those
offers from the viewpoint of the provider. To distinguish between offers proposed by
the consumer and those proposed by the provider, a consumer offer is marked as a
blue circle, while a provider offer is marked as a red star. This convention applies to
all figures in the remainder of this thesis, if not stated otherwise.

In all figures, it is clear to see that in order to reach a compromise, both the provid-
er and the consumer have to concede by giving up a certain extent of utility in favour
of their counterpart in each step. Secondly, it can be observed how the management
agents move away from their optimum offers towards the optimum offers of their ne-
gotiation partners. Both of them provide the prerequisite to find a mutually acceptable
agreement through negotiation.

Figure 8-2 illustrates the negotiation behaviour of management agents that apply
conceding strategies only. The provider utilises the time-dependent conceding strategy
to calculate its offers. Herein, a management agent only cares about the remaining
time to the given negotiation deadline. Based on this time estimation, a management
agent calculates the extent of utility it is going to give up in its next offer. Other as-
pects, such as the assignments of both QoS parameters in the incoming offers are not
considered during this process.

Figure 8-2: Evaluation of conceding strategies with time-dependent tactics

Therefore, in the behaviour chart of Figure 8-2, it can be observed that both man-
agement agents move directly from their respective optimum offers to their worst of-
fers. During this process, both management agents pass the common negotiation space
without touching it. Therefore, the negotiation process is aborted after the given nego-
tiation deadline without reaching an agreement.

60 80 100 120

100

110

120

130

140

150

160

170

180

negotiation space - provider

negotiation space - consumer

� �
���

� �
���

response time

co
st

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of interactions

co
ns

um
er

 u
til

ity

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of interactions

pr
ov

id
er

 u
til

ity

consumer offer provider offer* negotiation space consumer negotiation space provider

P a r t III – C h a p t e r 8 � Evaluation Results

297

The utility chart of the consumer shows how the service consumer reduces its ex-
pectation on utility in each round and how the service provider increases the utilities
of its offers in favour of the service consumer. The change of utility occurs linearly to
the change of time. The same change behaviour can be observed in the utility chart of
the provider, too. Both management agents reduce their utilities from 1 to 0 in the
course of negotiation. After that, the negotiation process is aborted due to timeout.

The conceding strategies determine only utilities of outgoing offers depending on
the remaining time. The largest shortage of the conceding strategies is that they take
barely the intention of the negotiation partner in terms of incoming SLA offers into
consideration. Hence, as already motivated in Section 6.7, in order to get more prom-
ising offers, trade-off strategies are applied to incorporate external information into
the search process, such as negotiation history, or business objectives.

Figure 8-3 illustrates the negotiation behaviour of a service provider that applies
the trade-off strategy with alignment to both initial offers. That is, the service provider
aligns its trade-off search to the initial offers of both management agents, i.e., X0

c!pX0
c!p

and X1
p!cX1
p!c. As mentioned before, the initial offer represent the optimum QoS values of

the respective management agent. Therefore, alignment to initial offers ensures that a
management agent can provide offers with respect to the optimum SLA of its negotia-
tion partner.

Figure 8-3: Evaluation of trade-off strategy with alignment to both initial offers

As shown in the behaviour chart in Figure 8-3, the service provider tends to place
its offers along the line connecting the initial agreements. As long as the given dead-
line is not exceeded, the service provider can reach the joint negotiation space some-
time in the course of negotiation. From this point of view, this strategy increases the
possibility of convergence of a negotiation process. The utility charts illustrate how

consumer offer provider offer* negotiation space consumer negotiation space provider

60 80 100 120

100

110

120

130

140

150

160

170

180

negotiation space - provider

negotiation space - consumer

� �
���

� �
���

agreement

response time

co
st

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of interactions

co
ns

um
er

 u
til

ity

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of interactions

pr
ov

id
er

 u
til

ity

P a r t I I I – C h a p t e r 8.2 � Automated Bilateral Negotiation

298

both negotiating service components move toward each other by giving up a certain
amount of utility in each negotiation round. In contrast to the experiment with pure
conceding strategies, the trade-off strategy applied guides the provider towards the
common negotiation space. This establishes an essential prerequisite for reaching an
agreement between the consumer and the provider.

Figure 8-4: Evaluation of trade-off strategy with alignment to the last incoming offer

A shortage of the trade-off strategy applied in the previous experiment of Figure
8-3 is its lack of dynamic. The service provider uses both initial offers as fixed refer-
ence points and calculates its offers only based on these points. Incoming offers that
often represent the most recent intentions of the counterpart are not considered in this
process. Hence, Figure 8-4 depicts the evaluation result of the trade-off strategy with
alignment to the last incoming offer.

In this strategy, the service provider aligns itself to the most recent needs of its ne-
gotiation partner, i.e., the service consumer, instead of to the optimum SLA of the
consumer. This change in the negotiation strategy introduces more dynamics to the
trade-off search, so that the provider can propose a more attractive offer to its partner
in dependence of the most current request of the partner.

Reflected in the negotiation behaviour of the provider (see the behaviour chart in
Figure 8-4), the service provider tends to place its offers on the upper boundary of the
negotiation space. This strategy enables the service provider to find the shortest way
to reach the common negotiation space. In this case, each proposed offer of the ser-
vice provider is aligned with the most recent proposal of the counterpart.

By reviewing the two trade-off strategies evaluated previously, it is worth noting
that both trade-off strategies have their strength and shortage. Aligning with the initial
offers allows a management agent to find quickly the common negotiation space. This

consumer offer provider offer* negotiation space consumer negotiation space provider

60 80 100 120

100

110

120

130

140

150

160

170

180

negotiation space - provider

negotiation space - consumer

� �
���

� �
���

agreement

response time

co
st

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of interactions

co
ns

um
er

 u
til

ity

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of interactions

pr
ov

id
er

 u
til

ity

P a r t III – C h a p t e r 8 � Evaluation Results

299

behaviour provides an important prerequisite to reach an agreement. Aligning with the
most recent offer enables a management agent to adapt itself to the intent of the coun-
terpart dynamically. Hence, the last trade-off strategy evaluated in this section com-
bines both previous trade-off strategies. It uses the last incoming offer of the counter-
part as a dynamic reference point and its own initial offer as a fixed reference point.
Figure 8-5 illustrates the results of the experiments for this trade-off strategy.

Figure 8-5: Evaluation of trade-off strategy with alignment to the last incoming offer and the

own initial offer

By applying this strategy, the service provider tends to place its offers along the
line connecting its own initial offer X1

p!cX1
p!c and the last incoming offer. In this way, the

service provider ensures that it takes the most recent intent of the counterpart into
consideration, while keeping its own optimum SLA (i.e., the initial offer) in mind. In
comparison with the behaviour charts of both previous trade-off strategies, in particu-
lar that in Figure 8-5, it is observable that at the beginning of negotiation, the service
provider heads out to the offers of the consumer and moves slightly away from the
upper bound of the negotiation space. As the consumer nears the joint negotiation
space, the provider moves back to the upper bound of its negotiation space, until it
reaches an agreement there with the consumer.

By considering the negotiation behaviour of all negotiation strategies, it is clear that
appropriate negotiation behaviour of a management agent is crucial for reaching an
agreement. In particular, the negotiation behaviour of pure conceding strategies (as
illustrated in Figure 8-2) shows that reducing an agent’s expectation on utility is not
sufficient for reaching an agreement. The more important aspect is that a negotiation
strategy can guide a management agent towards the joint negotiation space with its
counterpart. This should takes place in spite of the incomplete information situation of
the agent.

consumer offer provider offer* negotiation space consumer negotiation space provider

60 80 100 120

100

110

120

130

140

150

160

170

180

negotiation space - provider

negotiation space - consumer

� �
���

� �
���

agreement

response time

co
st

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of interactions

co
ns

um
er

 u
til

ity

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of interactions

pr
ov

id
er

 u
til

ity

P a r t I I I – C h a p t e r 8.2 � Automated Bilateral Negotiation

300

All the three trade-off strategies evaluated in this section can fulfil this requirement.
As shown in the evaluation experiments, they enable a management agent to stepwise
reach the joint negotiation space only by consulting offers proposed by its counterpart.
In the experiments, all service providers applying a trade-off strategy have successful-
ly negotiated agreements with their consumers within the predefined deadline.

Moreover, all resulting SLAs from the experiments with a trade-off strategy have
the same utility. Similarly, the service provider needs the same number of negotiation
rounds to reach an agreement. It is noteworthy that this is only a special case. It is de-
termined by the specific combination of the negotiation spaces, the utility functions,
as well as the business objectives applied in the experiments. In fact, as shown later in
Section 8.2.3, different trade-off strategies may achieve varying performance depend-
ing on the respective negotiation scenarios.

Influence of Utility Functions

Utility functions determine how a management agent perceives an SLA. Hence, this
section evaluates the influence of various utility functions on the agent’s perception of
SLAs. The evaluation experiments utilise the same negotiation space as in the previ-
ous section. The service consumer is configured with a linear utility function. All QoS
parameters have equal weights in the utility calculation. In addition, both service
components utilise the same time-dependent conceding strategy, where each service
component concedes in an QoS parameter jj with respect to the negotiation time tt and
the given negotiation deadline tmax = 30tmax = 30:

xt

a!b[j] =

(
mina

j + t
tmax

¢ (maxa
j ¡ mina

j) if V a
j is decreasing

mina
j + (1 ¡ t

tmax
) ¢ (maxa

j ¡ mina
j) if V a

j is increasing
xt

a!b[j] =

(
mina

j + t
tmax

¢ (maxa
j ¡ mina

j) if V a
j is decreasing

mina
j + (1 ¡ t

tmax
) ¢ (maxa

j ¡ mina
j) if V a

j is increasing
.

By applying this conceding strategy, a management agent moves uniformly from
its optimum SLA with a utility of 1 to its worst case with a utility of 0, as shown in
the negotiation behaviour charts in Figure 8-6 and Figure 8-7. In this way, it is possi-
ble to evaluate the change of utilities in the complete negotiation space of a manage-
ment agent.

In both evaluation experiments, the service consumer employs a linear utility func-
tion to estimate the utility of an offer. Therefore, in the utility charts of the consumer
in both figures, it is observable that the utilities of the offers proposed by the consum-
er itself change linearly from 1 to 0. Similarly, the utilities of the offers proposed by
the provider change linearly from 0 to 1.

P a r t III – C h a p t e r 8 � Evaluation Results

301

Figure 8-6: Evaluation of polynomial utility function with

The service provider in the evaluation experiment depicted in Figure 8-6 employs a
polynomial utility function with ® = 2® = 2:

V i
j (x[j]) =

8>>>>>>>>>>><
>>>>>>>>>>>:

μ
maxi

j¡x[j]

maxi
j¡mini

j

¶2

if QoS parameter j is decreasing and maxi
j ¸ x[j]

¡
μ

x[j]¡maxi
j

maxi
j¡mini

j

¶2

if QoS parameter j is decreasing and maxi
j · x[j]μ

x[j]¡mini
j

maxi
j¡mini

j

¶2

if QoS parameter j is increasing and x[j] ¸ mini
j

¡
μ

mini
j¡x[j]

maxi
j¡mini

j

¶2

if QoS parameter j is increasing and x[j] · mini
j

V i
j (x[j]) =

8>>>>>>>>>>><
>>>>>>>>>>>:

μ
maxi

j¡x[j]

maxi
j¡mini

j

¶2

if QoS parameter j is decreasing and maxi
j ¸ x[j]

¡
μ

x[j]¡maxi
j

maxi
j¡mini

j

¶2

if QoS parameter j is decreasing and maxi
j · x[j]μ

x[j]¡mini
j

maxi
j¡mini

j

¶2

if QoS parameter j is increasing and x[j] ¸ mini
j

¡
μ

mini
j¡x[j]

maxi
j¡mini

j

¶2

if QoS parameter j is increasing and x[j] · mini
j

.

The utility chart of the provider in Figure 8-6 shows that in contrast to the consum-
er, the provider tends to give up more utility already at the beginning of a negotiation
process. As time approaches the given negotiation deadline, the provider begins to
slow down its concession in utility.

It is noteworthy that different utility functions allow management agents to indi-
vidually determine their perception of SLA offers. For example, with its linear utility
function, a service consumer perceives the incoming offers proposed by the service
provider as linearly changing, although from the viewpoint of the service provider, it
has strongly conceded utility to its counterpart already at the beginning of the negotia-
tion process.

Similar behaviour can also be observed in the second evaluation experiment depict-
ed in Figure 8-7. In this experiment, the service provider is equipped with a polyno-
mial utility function with ® = 0:5® = 0:5:

consumer offer provider offer* negotiation space consumer negotiation space provider

60 80 100 120

100

110

120

130

140

150

160

170

180

negotiation space - provider

negotiation space - consumer

� �
���

� �
���

response time

co
st

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of interactions

co
ns

um
er

 u
til

ity

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

of interactions

pr
ov

id
er

 u
til

ity

P a r t I I I – C h a p t e r 8.2 � Automated Bilateral Negotiation

302

V i
j (x[j]) =

8>>>>>>>>>>><
>>>>>>>>>>>:

μ
maxi

j¡x[j]

maxi
j¡mini

j

¶0:5

if QoS parameter j is decreasing and maxi
j ¸ x[j]

¡
μ

x[j]¡maxi
j

maxi
j¡mini

j

¶0:5

if QoS parameter j is decreasing and maxi
j · x[j]μ

x[j]¡mini
j

maxi
j¡mini

j

¶0:5

if QoS parameter j is increasing and x[j] ¸ mini
j

¡
μ

mini
j¡x[j]

maxi
j¡mini

j

¶0:5

if QoS parameter j is increasing and x[j] · mini
j

V i
j (x[j]) =

8>>>>>>>>>>><
>>>>>>>>>>>:

μ
maxi

j¡x[j]

maxi
j¡mini

j

¶0:5

if QoS parameter j is decreasing and maxi
j ¸ x[j]

¡
μ

x[j]¡maxi
j

maxi
j¡mini

j

¶0:5

if QoS parameter j is decreasing and maxi
j · x[j]μ

x[j]¡mini
j

maxi
j¡mini

j

¶0:5

if QoS parameter j is increasing and x[j] ¸ mini
j

¡
μ

mini
j¡x[j]

maxi
j¡mini

j

¶0:5

if QoS parameter j is increasing and x[j] · mini
j

.

The utility chart of the provider in Figure 8-7 shows that by applying this utility
function, the service provider intends to preserve its utility at the beginning of the ne-
gotiation. As time approaches the given time limit, the service provider begins to
make larger concessions. This conceding behaviour is completely different from the
one of the provider in the previous experiment. Nevertheless, the consumer perceives
the same linear change of utilities for the offers proposed by the service provider.

Figure 8-7: Evaluation of polynomial utility function with

In short, utility functions allow management agents to determine their negotiation
behaviour individually. However, it is worth noting that a concession made by a ser-
vice component may not be perceived or honoured in the same way by its counterpart.
It depends strongly on how the counterpart configures its own utility function.

Influence of Business Objectives

As stated in Section 5.2.2, business objectives guide the runtime behaviour of a man-
agement agent. In particular, they specify the priorities of service level objectives in
the negotiation and enforcement phases of SLAs. In this section, influences of busi-
ness objectives on the negotiation behaviour of a management agent are evaluated.

In order to better illustrate the experimental results, the negotiation scenario used in
the previous sections is modified as given in Table 8-2:

consumer offer provider offer* negotiation space consumer negotiation space provider

60 80 100 120

100

110

120

130

140

150

160

170

180

negotiation space - provider

negotiation space - consumer

� �
���

� �
���

response time

co
st

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of interactions

co
ns

um
er

 u
til

ity

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of interactions

pr
ov

id
er

 u
til

ity

P a r t III – C h a p t e r 8 � Evaluation Results

303

Table 8-2: Negotiation space used to evaluate business objectives

60 100 130 170
95 135 155 195

Both service components use a linear utility function in the negotiation. In addition,
the service consumer employs the trade-off strategy with alignment to both initial of-
fers. Similarly, the service provider utilises the trade-off strategy with alignment to the
most recent incoming offer. The negotiation deadline remains 60 negotiation rounds,
as in the previous experiments.

The experiments evaluate the followings three business objectives:
� a business objective with equal emphasis on service cost and response time,

� a business objective with emphasis on service cost,

� and a business objective with emphasis on response time.

It is noteworthy that the service consumer and the service provider both follow the
same business objective. For example, for the business objective with emphasis on
service cost, the QoS parameter service cost is higher weighted than response time for
both negotiation parties. From this viewpoint, a kind of competition relationship exists
between both parties.

Figure 8-8 illustrates the negotiation behaviour of the service provider with the
three business objectives mentioned before. The utility charts for the service consumer
and the service provider are skipped in the figure.

Figure 8-8 (A) shows the behaviour of the provider that weights both QoS parame-
ters equally. Therefore, the management agent of the provider places its offers uni-
formly along the diagonal of the negotiation space. Figure 8-8 (B) depicts the behav-
iour of the provider with emphasis on service cost. In contrast to the previous provid-
er, this time the service provider tries to preserve the optimum value of service cost by
staying at the upper boundary of the negotiation space for the first few offers. Herein,
the service provider makes larger concessions in terms of response time, so that it can
avoid concessions in the prioritised service cost. After that, the respective manage-
ment agent reaches the turning point, where it has to begin to concede also in service
cost. Otherwise, the respective management agent may not reach the joint negotiation
space with the service consumer.

P a r t I I I – C h a p t e r 8.2 � Automated Bilateral Negotiation

304

Figure 8-8: Evaluation of business objectives

Similarly, Figure 8-8 (C) illustrates the behaviour of the service provider with em-
phasis on response time. In this experiment, since response time is weighted stronger
than service cost in utility calculation, the service provider tends to preserve the opti-
mum value of response time by moving on the right boundary of the negotiation space
until the turning point. After that, it has to leave the right boundary and move towards
the joint negotiation space in order to reach an agreement there.

In brief, business objectives guide how a management agent behaves in the negotia-
tion space. If appropriately configured, business objectives allow a management agent
to preserve values of stronger weighted QoS parameters in the course of negotiation,
which influences particularly the assignments of those QoS parameters in the resulting
SLAs.

Influence of Cooperation between Agents

Willingness of a counterpart to cooperate in a negotiation process is crucial for a man-
agement agent to achieve its negotiation goals. Ideally, if a management agent places
an emphasis on some QoS parameters, a cooperative counterpart should place its em-
phasis on some other QoS parameters and try to compensate its loss of utilities on the-
se parameters. This section evaluates the influence of cooperation between manage-
ment agents on the resulting SLAs.

The evaluation experiment uses the same negotiation scenario as in the previous
section. The service consumer and the provider employ the same trade-off strategy
with alignment to the last incoming offer of the counterpart. Moreover, both manage-
ment agents use linear utility functions in their negotiation process. The global busi-

consumer offer provider offer* negotiation space consumer negotiation space provider

60 80 100 120
120

130

140

150

160

170

180

190

200
negotiation space - provider

negotiation space - consumer

� �
���

� �
���

agreement

response time

co
st

60 80 100 120
120

130

140

150

160

170

180

190

200
negotiation space - provider

negotiation space - consumer

� �
���

� �
���

agreement

response time

co
st

60 80 100 120
120

130

140

150

160

170

180

190

200
negotiation space - provider

negotiation space - consumer

� �
���

� �
���

agreement

response time

co
st

(A) equal weights for cost and response time (B) emphasis on service cost (C) emphasis on response time

P a r t III – C h a p t e r 8 � Evaluation Results

305

ness objective is cost-first. That is, service cost is emphasised by the management
agents in the negotiation.

Figure 8-9: Evaluation of agent cooperation with competing and cooperative service providers

In addition, the service consumer remains unchanged in all evaluation experiments.
The service provider changes its willingness to cooperate during the experiments.
Figure 8-9 depicts the behaviour of both management agents in the evaluation exper-
iments. In Figure 8-9 (A), the service provider applies the strategy to compete against
the service consumer. That is, the service provider also places its emphasis on service
cost and tries to achieve a service cost as high as possible. In contrast, the service con-
sumer tends to hold the value of service cost as low as possible. Hence, there is a
competition between the consumer and the provider for service cost. Reflected in ne-
gotiation behaviour, both management agents tend to hold their optimum values for
service cost as long as possible (as illustrated in Figure 8-9 (A)), until they have to
leave their respective optimum for service cost in order to get a compromise in the
joint negotiation space.

In contrast to the negotiation behaviour in Figure 8-9 (A), Figure 8-9 (B) shows the
behaviour of a cooperative service provider. That is, in favour of the service consum-
er, the service provider does not place its emphasis on service cost. Instead, it prefers
to achieve a higher response time than a higher service cost. Correspondingly, as de-
picted in Figure 8-9 (B), the service consumer can exhaust at first its reserve of re-
sponse time, before it has to concede in service cost. Similarly, the service provider
concedes at first largely in service cost, before it has to concede in response time. By
comparing the resulting SLAs of both experiments, the service consumer achieves

consumer offer provider offer* negotiation space consumer negotiation space provider

60 80 100 120
120

130

140

150

160

170

180

190

200
negotiation space - provider

negotiation space - consumer

� �
���

� �
���

agreement

response time

co
st

60 80 100 120
120

130

140

150

160

170

180

190

200
negotiation space - provider

negotiation space - consumer

� �
���

� �
���

agreement

response time

co
st

(A) competing management agents (B) cooperative management agents

P a r t I I I – C h a p t e r 8.2 � Automated Bilateral Negotiation

306

lower service cost in the resulting SLA with a cooperative service provider. Analo-
gously, the service provider also achieves a higher response time.

In brief, a cooperative management agent respects the negotiation preferences of its
counterpart. This measure helps to increase the social welfare of both management
agents. Both negotiating parties can accomplish satisfying assignments of QoS pa-
rameters they prefer. Correspondingly, the resulting SLAs have higher utilities for
both parties than those with a competing negotiation partner.

 Efficiency of Resulting SLAs 8.2.2

The previous section is concerned with evaluating the negotiation behaviour of man-
agement agents with varying negotiation configurations. Particularly, it focuses on the
capabilities of the negotiation strategies to guide a management agent to move to-
wards the common negotiation space and to reach an agreement there. Hence, the
evaluation experiments in the previous section address only the process to reach an
agreement. It lacks an evaluation of the efficiency of the process as well as the result-
ing SLAs, which is covered in this section.

Figure 8-10 visualises the results of an evaluation experiment, where the service
consumer is configured with the trade-off strategy to align its trade-off search to the
last incoming offer of the provider. The provider follows the simple time-dependent
conceding strategy to generate its offers.

Figure 8-10: Changes in utilities of service components in the course of negotiation

The utility chart on the right of Figure 8-10 illustrates the change of the utility of
the consumer in relationship to the utility of the provider. The yellow area is com-

consumer offer provider offer* negotiation space consumerpareto frontier

60 80 100 120

100

110

120

130

140

150

160

170

180

negotiation space - provider

negotiation space - consumer

agreement

response time

co
st

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

utility consumer

ut
ili

ty
 p

ro
vi

de
r

negotiation space provider
utilities in the negotiation
space of the consumer

utilities in the negotiation
space of the provider

utilities in the common
negotiation space

P a r t III – C h a p t e r 8 � Evaluation Results

307

posed of utilities of both management agents in the negotiation space of the consumer,
while the blue area consists of utilities of the agents in the negotiation space of the
provider. Utilities of the agents in the common negotiation space are marked by the
green area. In the utility chart, it is clear to see how both management agents move
away from their optimum offers in the negotiation space towards each other.

The more interesting aspect in the utility chart is the Pareto optimal offers in the
negotiation spaces, in particular in the common negotiation space of both management
agents. It is noteworthy that the Pareto optimal offers are referred in the context of the
common negotiation space. It is obvious that a Pareto optimal offer in the common
negotiation space must not be Pareto optimal in the negotiation space of one of the
management agents. Since both management agents are seeking a compromise in the
common negotiation space, it is reasonable to compare an offer with Pareto optimal
offers in the common negotiation space.

In the utility chart in Figure 8-10, the orange points in the common negotiation
space indicate the Pareto frontier. Logically, points on the Pareto frontier dominate all
other offers below as well as on the left of the frontier. Therefore, an ideal negotiation
strategy should not only guide a management agent to move into the common negotia-
tion space. It should also try to reach an agreement on the Pareto frontier, or at least
near the Pareto frontier. This additional capability of a negotiation strategy is crucial
to increase the total social welfare of both management agents.

In order to evaluate the efficiency of the negotiation strategies introduced in the
present thesis, this section conducts a series of evaluation experiments with varying
negotiation strategies. The experiments use the negotiation scenario given in Table
8-1. Both management agents utilise linear utility functions in their negotiation pro-
cesses. All QoS parameters are weighted equally in the experiments. In addition, both
management agents compete against each other in the negotiation space.

For simplicity, the evaluation results in the figures only illustrate the changes in
utility of the consumer and the provider in the experiments. In each experiment group
with three different experiments, the service consumer is configured with a fixed ne-
gotiation strategy. The service provider changes its negotiation strategy in each exper-
iment. In addition, since time-dependent conceding strategies propose each time an
offer with fixed assignments of QoS parameters, they do not incorporate any dynamic
aspects into the negotiation process.

P a r t I I I – C h a p t e r 8.2 � Automated Bilateral Negotiation

308

Therefore, conceding strategies are not considered in the evaluation experiments of
this section. All other trade-off strategies are evaluated in the experiments.

Figure 8-11 illustrates the experimental results using a service consumer with
alignment to the last incoming offer. In order to reach a Pareto optimal offer, both
management agents have to keep their offers near the Pareto frontier. Although this
measure cannot lead to a direct agreement with the counterpart, it retains the probabil-
ity to reach an agreement on the Pareto frontier. As soon as a management agent
crosses the Pareto frontier in the course of negotiation, it begins to propose offers that
are dominated by some Pareto optimal offers in the frontier.

Figure 8-11 (A) illustrates the negotiation process with a provider that aligns its
trade-off search to the most recent counter offer of the consumer. With the help of this
trade-off strategy, the service provider is able to place its offers on the Pareto frontier.
Similarly, the service consumer that applies the same trade-off strategy can also hold
its offers above the Pareto frontier. Correspondingly, both management agents reach a
Pareto optimal agreement.

Figure 8-11 (B) shows the negotiation process with a provider that applies the
trade-off strategy with alignment to the last incoming offer of the consumer as well as
to the provider’s own initial offer. As shown in the figure, the service provider moves
along the boundary of the negotiation space below the Pareto frontier. Therefore, in
order to reach an agreement with the provider, the consumer has to pass the Pareto
frontier. Though this step helps the service consumer to reach an agreement with the
provider, the resulting SLA is far away from the Pareto frontier. Therefore, it is less
efficient with respect to the total social welfare of both agents.

Figure 8-11 (C) shows the negotiation process with a provider that aligns its trade-
off search to both initial offers. Similar to the process shown in Figure 8-11 (B), this
trade-off strategy does not help the service provider to hold its offers on the Pareto
frontier. Correspondingly, both management agents only reach an agreement below
the Pareto frontier.

P a r t III – C h a p t e r 8 � Evaluation Results

309

Figure 8-11: Changes in utilities - service consumer with alignment to the last incoming offer

Figure 8-12: Changes in utilities - service consumer with alignment to the last incoming offer

and its own initial offer

Figure 8-13: Changes in utilities - service consumer with alignment to both initial offers

(A) trade-off strategy with alignment to
the last incoming offer

(B) trade-off strategy with alignment to the last
incoming offer and the own initial offer

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

utility consumer

ut
ili

ty
 p

ro
vi

de
r

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

utility consumer
ut

ili
ty

 p
ro

vi
de

r

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

utility consumer

ut
ili

ty
 p

ro
vi

de
r

consumer offer provider offer*
utilities in the negotiation
space of the consumer

utilities in the negotiation
space of the provider

utilities in the common
negotiation space

pareto frontier

(C) trade-off strategy with alignment to both initial
strategies

(A) trade-off strategy with alignment to
the last incoming offer

(B) trade-off strategy with alignment to the last
incoming offer and the own initial offer

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

utility consumer

ut
ili

ty
 p

ro
vi

de
r

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

utility consumer

ut
ili

ty
 p

ro
vi

de
r

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

utility consumer

ut
ili

ty
 p

ro
vi

de
r

consumer offer provider offer*
utilities in the negotiation
space of the consumer

utilities in the negotiation
space of the provider

utilities in the common
negotiation space

pareto frontier

(C) trade-off strategy with alignment to both initial
strategies

(A) trade-off strategy with alignment to
the last incoming offer

(B) trade-off strategy with alignment to the last
incoming offer and the own initial offer

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

utility consumer

ut
ili

ty
 p

ro
vi

de
r

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

utility consumer

ut
ili

ty
 p

ro
vi

de
r

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

utility consumer

ut
ili

ty
 p

ro
vi

de
r

(C) trade-off strategy with alignment to both initial
strategies

consumer offer provider offer*
utilities in the negotiation
space of the consumer

utilities in the negotiation
space of the provider

utilities in the common
negotiation space

pareto frontier

P a r t I I I – C h a p t e r 8.2 � Automated Bilateral Negotiation

310

Figure 8-12 shows the experimental results with a service consumer that aligns its
trade-off search to the last incoming offer and its own initial offer. Figure 8-13 depicts
the results of a consumer applying the trade-off strategy with alignment to both initial
offers. Similar to the experimental results shown in Figure 8-11, the service provider
employing the trade-off strategy with alignment to the last incoming offer can reach
an agreement on as well as near to the Pareto frontier. The other trade-off strategies
result in agreements that are less optimal with respect to the Pareto optimal offers.

By comparing the results from all experiment groups, it is clear that the trade-off
strategy with alignment to the last incoming offer is the most efficient one among all
negotiation strategies with respect to Pareto optimal agreements. Not only can it help
a management agent to reach a compromise in the common negotiation space, it also
ensures high social welfare of the resulting agreement for both management agents.

 Performance Analysis 8.2.3

The previous sections provide qualitative evaluation of the negotiation model in the
simulation environment. The experimental results are concerned with negotiation be-
haviour of a management agent applying varying negotiation configurations. So far,
the resulting SLAs from the negotiation processes have not been evaluated quantita-
tively. Therefore, the present section focuses on the quantitative evaluation of the ne-
gotiation model and provides experimental results to highlight the influences of vari-
ous negotiation configurations on the performance of the simulation model.

To better illustrate this influence, this section adopts a new negotiation scenario as
shown in Figure 8-14.

The new scenario considers three QoS parameters in negotiation: service cost, re-
sponse time, and availability. The value boundaries of the QoS parameters are set
analogously to real world scenarios: the service provider offers its service with a larg-
er spectrum of QoS values than what the service consumer desires. Other than the
previous negotiation scenarios, the negotiation spaces of the consumer and the provid-
er in the new scenario have a relatively large overlap. This desired large overlap
shows the influence of varying negotiation configurations on the resulting SLAs more
clearly.

P a r t III – C h a p t e r 8 � Evaluation Results

311

Figure 8-14: Negotiation scenario used to evaluate performance

The points X0
c!pX0
c!p and X1

p!cX1
p!c in the negotiation spaces are the optimum offers of the

respective management agents. As aforementioned, they have to move away from
their optimum offers in favour of their counterpart. Hence, the key objectives concern-
ing evaluation of performance of the negotiation model are:

� If a particular negotiation strategy can accelerate a negotiation process.

� If a utility function can facilitate a negotiation process.

� If various business objectives have an influence on the assignments of particu-
lar QoS parameters in the resulting SLAs.

� If a cooperative management agent can influence the outcomes of the resulting
SLAs.

Based on these considerations, a range of evaluation experiments with varying ne-
gotiation configurations is conducted. Table 8-3 lists the set of experimental set-ups
used in these evaluation experiments. If not stated otherwise, each experiment is con-
ducted with the same experimental set-up for 10 times. The average values of the out-
comes of 10 experiments are used as the results of the experiment group. In addition,
the experimental set-up is given for the provider and the consumer. For each service
component, its negotiation configuration for negotiation strategy, utility function,
business objective, and its willingness for cooperation is listed.

The experiment groups F1-F4 focus on the influence of negotiation strategies.
Hence, the service consumer is configured with a fixed trade-off strategy that aligns
its trade-off search to the last incoming offer. The service provider changes its negoti-
ation strategy in each experiment group. All other negotiation configurations remain
unchanged throughout all experiment groups. In addition, the results of the experi-
ment groups F1-F4 serve as reference values for all other experiment groups, too.

P a r t I I I – C h a p t e r 8.2 � Automated Bilateral Negotiation

312

Table 8-3: Experimental set-ups for evaluating performance

counter offer linear average competing time-dependent
conceding

linear average competing

counter offer linear average competing counter offer linear average competing
counter offer linear average competing counter offer +

initial offer
linear average competing

counter offer linear average competing initial offers linear average competing

counter offer polynom.

average competing time-dependent
conceding

polynom.

average competing

counter offer polynom.

average competing counter offer polynom.

average competing

counter offer polynom.

average competing counter offer +
initial offer

polynom.

average competing

counter offer polynom.

average competing initial offers polynom.

average competing

counter offer linear resp. time
first

competing time-dependent
conceding

linear resp. time
first

competing

counter offer linear resp. time
first

competing counter offer linear resp. time
first

competing

counter offer linear resp. time
first

competing counter offer +
initial offer

linear resp. time
first

competing

counter offer linear resp. time
first

competing initial offers linear resp. time
first

competing

counter offer linear resp. time
first

cooperative time-dependent
conceding

linear resp. time
first

cooperative

counter offer linear resp. time
first

cooperative counter offer linear resp. time
first

cooperative

counter offer linear resp. time
first

cooperative counter offer +
initial offer

linear resp. time
first

cooperative

counter offer linear resp. time
first

cooperative initial offers linear resp. time
first

cooperative

counter offer linear resp. time
first

cooperative combined strat-
egy

linear resp. time
first

cooperative

The experiment groups F5-F8 are concerned with the influences of utility func-
tions. Hence, these experiment groups inherit the negotiation configurations of F1-F4
and change correspondingly their utility functions from a linear function with ® = 1® = 1 to
a polynomial function with ® = 2® = 2, as stated in Section 8.2.1. Other negotiation con-
figurations remain unchanged.

P a r t III – C h a p t e r 8 � Evaluation Results

313

The experiment groups F9-F12 address the impacts of business objectives on re-
sulting SLAs. Therefore, these experiment groups derive their configurations from the
groups F1-F4 and change their business objectives from averaged to response time
first. That is, response time is weighted stronger in the negotiation process than other
QoS parameters.

Table 8-4: Performance evaluation in the simulation environment

81.84 0.000 131.84 0.000 0.9795 0.0000 43.0 0.00 0.398 0.000 0.400 0.000
91.20 3.162 142.84 3.209 0.9868 0.0001 41.0 0.00 0.433 0.000 0.400 0.000
74.76 0.436 124.90 0.803 0.9717 0.0003 43.0 0.00 0.392 0.001 0.363 0.000
74.02 0.768 123.92 0.479 0.9711 0.0002 43.0 0.00 0.389 0.001 0.363 0.000

84.56 0.058 134.58 0.059 0.9779 0.0000 41.0 0.00 0.186 0.000 0.158 0.000
99.85 0.415 148.77 0.620 0.9843 0.0000 35.0 0.00 0.283 0.002 0.253 0.000
99.48 0.819 148.23 1.420 0.9842 0.0000 35.0 0.00 0.279 0.004 0.253 0.000
72.64 0.875 122.65 0.532 0.9715 0.0002 43.0 0.00 0.158 0.000 0.145 0.000

80.06 0.040 131.16 0.112 0.9797 0.0000 43.0 0.00 0.382 0.000 0.363 0.000
80.51 0.218 149.86 0.332 0.9871 0.0001 43.0 0.00 0.402 0.002 0.364 0.003
61.84 0.007 149.98 0.020 0.9625 0.0000 45.0 0.00 0.363 0.000 0.327 0.000
74.79 0.283 124.70 0.373 0.9708 0.0004 45.0 0.00 0.363 0.000 0.355 0.001

80.01 0.056 131.25 0.091 0.9797 0.0001 43.0 0.00 0.389 0.000 0.363 0.000
50.01 0.019 141.50 0.173 0.9671 0.0001 39.0 0.00 0.468 0.000 0.490 0.000
50.22 0.161 137.14 0.483 0.9645 0.0003 39.0 0.00 0.468 0.000 0.479 0.002
71.10 1.529 123.94 0.764 0.9711 0.0004 41.8 1.03 0.400 0.002 0.391 0.009
60.00 18.07 133.89 14.96 0.9709 0.0087 40.2 2.53 0.462 0.014 0.456 0.068

The last experiment groups F13-F16 covers the impacts of cooperation between
management agents. Since with a business objective, that weights all QoS parameters
equally, a cooperative service provider cannot identify the preferences of its service
consumer, these experiment groups derive their configurations from the groups F9-
F12, instead of F1-F4. Moreover, both management agents are configured correspond-
ingly as cooperative in these experiments groups.

P a r t I I I – C h a p t e r 8.2 � Automated Bilateral Negotiation

314

Table 8-4 summarises the experimental results of the experiment groups discussed
above. For each experiment group, the resulting SLA and information about the nego-
tiation process (i.e., the number of negotiation rounds to reach an agreement, the utili-
ty of the resulting SLA for the consumer, and the utility for the provider) are given in
the table. Moreover, the result table contains not only the average values from the 10
experimental runs of the corresponding experiment group, but also the corresponding
standard deviation of the average values.

Influences of negotiation strategies: as stated in Section 8.2.1, different negotia-
tion strategies induce varying negotiation behaviour of a management agent. The ex-
periment results of the groups F1-F4 show that different negotiation strategies also
result in different SLAs. In general, the following influences can be observed in the
experiment results:

� The trade-off strategies incorporate more dynamic into the negotiation process.
The experimental result with a time-dependent conceding strategy has a stand-
ard derivation of 0. In contrast, the other experimental results with a trade-off
strategy have a standard derivation larger than 0. In particular, the experiment
group of the trade-off strategy with alignment to the last incoming offer has the
largest standard deviation among all experiment groups.

� The trade-off strategy with alignment to the last incoming offer results in an
SLA with the most utility among all experiment groups. Furthermore, the ser-
vice provider applying this trade-off strategy needs the fewest negotiation
rounds to reach an agreement. This shows the benefit of introducing more dy-
namic into the negotiation process. It grants a management agent a larger
degree of freedom to respect the desires of its counterpart, while keeping its
own demand on utilities unaffected.

Influence of utility functions: Section 8.2.1 studies the negotiation behaviour of
management agents employing various utility functions. In particular, an agent with a
polynomial utility function with ® = 2® = 2 tends to give up a large extent of utility already
at the beginning of a negotiation process, while an agent with a polynomial function
with ® = 0:5® = 0:5 rather tends to preserve its utility at the beginning of a process.

This behaviour can be observed in the experiment results, too. By horizontally
comparing the experiment results of F1-F4 and F5-F8 (i.e., F1 vs. F5, F2 vs. F6, and
so on), it is clear that using a polynomial utility function with ® = 2® = 2 can accelerate a
negotiation process. In general, an experiment with the polynomial utility function

P a r t III – C h a p t e r 8 � Evaluation Results

315

needs fewer negotiation rounds to reach an agreement than the respective experiment
with a linear utility function.

In addition, since both management agents tend to concede quickly in utility from
the beginning of a negotiation process, it is clear that both management agents have
less utility at the end of the negotiation process than their reference experiments with
linear utility functions. Therefore, the gain of a shorter negotiation process is done at
the expense of less utility at the end.

Influence of business objectives: the experiment groups F9- F12 are carried out
with a global business objective that emphasises response time. Furthermore, it is
noteworthy that both management agents are competing. That is, the service consumer
seeks to have an assignment for the response time as low as possible, while the service
provider desires to get a response time as high as possible.

Due to the competing relationship between the service consumer and its provider,
the experimental results of the groups F9-F12 do not show a significant change in the
assignments of response time in comparison to the corresponding results of the groups
F1-F4. Indeed, the competing relationship leads to longer negotiation time and fewer
utilities for both negotiating agents at the end.

Influence of agent cooperation: the experiment groups F13-F17 are concerned
with the influences of cooperation between negotiating agents on the resulting SLAs.
As aforementioned, cooperation between management agents is realised by configur-
ing the negotiation preferences of the service provider on some QoS parameters other
than the ones that the service consumer prefers. Therefore, these experiment groups
are configured with a global business objective of response time first. That is, in con-
trast to competing management agents, the service consumer prefers to have an as-
signment for the response time as low as possible, while the service provider places its
preference on some QoS parameter other than response time, for example, service
availability. In this case, the service provider can offer a lower service availability to
compensate for its loss in response time.

By comparing the experimental results of F13 with F1 as well as F16 with F4, it
can be concluded that cooperation between management agents does not cause large
changes in the value assignments of the resulting SLAs. This result is however logi-
cal. The negotiation strategies applied in both experiment groups do not grant the
management agents a too large degree of freedom to act according to the business ob-
jective. Therefore, they expose some kind of static behaviour in the course of negotia-

P a r t I I I – C h a p t e r 8.2 � Automated Bilateral Negotiation

316

tion in spite of changing business objectives and willingness of a management agent
to cooperate.

Instead, the experimental results of F14 and F15 show the full effects of the combi-
nation of dynamic trade-off strategies and willingness of the agents to cooperate. By
comparing the results of F14 with F2 as well as F15 with F3, it is clear that this com-
bination of negotiation configurations results in lower response time for the consumer
and simultaneously lower service availability for the service provider. Moreover, the
willingness of the management agents to cooperate increases the overall social wel-
fare. The resulting SLAs have higher utilities for both management agents at the end
of negotiation.

The experiment group F17 applies the trade-off strategy that combines trade-off
search with business objectives, as introduced in Section 6.7.2. That is, a management
agent at first determines the best assignments to the preferred QoS parameters, before
it carries out trade-off search with alignment to the last incoming offer. By applying
this strategy, a management agent has only a limited degree of freedom in the course
of negotiation, namely on the QoS parameters that are not covered by the business
objective. Correspondingly, a management agent cannot realise the full capability of
dynamic trade-off search.

By comparing the experimental results of F17 and F13 with time-dependent con-
ceding strategy, it can be seen that applying the combined trade-off strategy helps to
improve the quality of the resulting SLAs for the management agents. However, the
improvements are limited in comparison to the results of the experiment group F14 as
well as F15.

 Concluding Remarks 8.2.4

Section 8.2 aims at evaluating the performance of the automated bilateral negotiation
model introduced in the present thesis. Hence, a range of experiments is conducted in
the simulation environment to evaluate the model qualitatively and quantitatively.

Based on the evaluation results, it can be concluded that negotiation strategies are
crucial for two negotiating management agents to reach an agreement. A conceding
strategy determines the utility of an outgoing offer, in which a management agent
moves away from its optimum offer in favour of its counterpart. This provides the
prerequisite for reaching an agreement between two competing agents at all. Howev-

P a r t III – C h a p t e r 8 � Evaluation Results

317

er, a conceding strategy does not provide any flexibility to choose an outgoing offer.
From this viewpoint, the negotiation process allows no degree of freedom for both
management agents.

This drawback is covered by a trade-off strategy. Based on a counter offer calculat-
ed by a conceding strategy, a trade-off strategy allows a management agent to exhaust
the potential of indifference curves. By adapting dynamically its negotiation behav-
iour according to the behaviour of the counterpart, a trade-off strategy can improve
the quality of the resulting SLAs largely. The improvements are achieved as follows:

� Increasing probability to reach an agreement: by aligning the counter offers to
the offers proposed by the counterpart, a management agent can reach the un-
known common negotiation space in the course of negotiation. This is one of
the prerequisites to reach an agreement.

� Reducing the number of necessary negotiation rounds: as a management agent
always aligns its counter offers to the offers of its counterpart, it can propose an
offer in favour of its counterpart. This helps to reduce the time needed to reach
an agreement.

� Increasing utilities of the resulting SLAs: optimising the outgoing offers in fa-
vour of an agent’s counterpart also increases the utilities of the resulting SLAs.

However, it is noteworthy that the convergence of a negotiation process is not al-
ways guaranteed. It depends strongly on the particular negotiation spaces and the ne-
gotiation behaviour of the two management agents. As demonstrated by the negotia-
tion scenario in Section 8.2.1, a pure conceding strategy does not help the two man-
agement agents to reach an agreement. However, adopting a trade-off strategy enables
a management agent to reach an agreement in the same scenario.

By reviewing the evaluation results in the previous sections, it is obvious that the
trade-off strategy with alignment to the last incoming offer provides the best founda-
tion to converge a negotiation process. It ensures to guide a management agent to
move on as well as near the Pareto optimal frontier in the course of negotiation. This
feature ensures that both management agents can reach a social welfare at the end as
high as possible.

Next to negotiation strategies, other factors also influence the outcomes of a nego-
tiation process. An appropriate utility function allows a management agent to deter-
mine individually how it is going to concede in the course of negotiation. As shown in
the evaluation experiment, using a polynomial utility function with ® = 2® = 2, a manage-

P a r t I I I – C h a p t e r 8.3 � Multi-Level Service Level Management

318

ment agent tends to concede greatly already at the beginning of the negotiation pro-
cess. This helps to reduce the time necessary to reach an agreement.

Similarly, business objectives also influence the outcomes of a negotiation process.
However, as the experimental results in Section 8.2.3 show, this applies only, if both
management agents are cooperative in the negotiation process. In this case, both nego-
tiating agents do not compete with each other for the same QoS parameter. Therefore,
with a cooperative counterpart, a management agent can reach an agreement in ac-
cordance with the given business objective. In addition, this also helps to increase the
utilities of the resulting SLAs for both management agents, which in turn has a posi-
tive effect on the total social welfare of the complete SOE.

8.3 Multi-Level Service Level Management

This section evaluates the overall negotiation-based SLM approach introduced in the
present thesis. In contrast to the previous section, this section does not perform pa-
rameter studies on the possible configuration parameters in the simulation environ-
ment. Rather, this section focuses on the overall end-to-end SLM process within an
SOE and illustrates how such an automated process can improve the responsiveness of
the whole SOE.

Correspondingly, Section 8.3.1 introduces the experiment scenario modelled in the
simulation environment. Section 8.3.2 provides the experimental results to show how
the introduced approach can be applied in the experiment scenario to enable automat-
ed end-to-end SLM. Section 8.3.3 extends the results in Section 8.3.2 and demon-
strates how the introduced approach can help service components configure their local
resources depending on the change of workloads in the SOE.

 Scenario and Experiment Set-up 8.3.1

Figure 8-15 illustrates the experiment scenario modelled in the evaluation environ-
ment by means of BPMN diagrams. The same scenario in the university context has
been described briefly in Section 4.1. This section describes the scenario in more de-
tail. Herein, it focuses on the interactions between the process layer, the service layer,
and the application layer. For simplicity, the BPMN diagram in Figure 8-15 does not
include the infrastructure layer. Furthermore, as already stated in Section 4.1, the

P a r t III – C h a p t e r 8 � Evaluation Results

319

evaluation scenario is by no means complete with respect to the real scenario devel-
oped in the KIM project [KIM10].

The consumer-facing service component in the scenario is the competence field
process. It provides university employees with the functionality to display their re-
spective assignments to particular competence fields. To this end, the business process
utilises the person service to retrieve employee information for a particular person and
the competence field service to get the corresponding assignment information for a
particular employee.

Figure 8-15: Experiment scenario in the evaluation environment

Both Web services are supported by a range of backend systems. The person ser-
vice utilises the identity provider to authenticate the employee, whose information has
to be retrieved from the backend database. Afterwards, the person service calls the
administration database to get the department information and the person database to
get the personal information of the employee. Both activities are carried out simulta-
neously. That is, they are composed by an AND-AND composition pattern. At the
end, the results of both service invocations are combined in the last activity, before
they are returned back to the calling process instance.

pr
oc

es
s

prepare
request

get employee
info

get competence
fields info

+ display
competence fields

se
rv

ic
e

authentication

retrieve person
info

retrieve dept.
info

+ set employee
info

get competence
field info

set competence
field info

ap
pl

ic
at

io
n

identity provider
authenticate

person

person DB
get person

info

administration DB

get dept. info

competence fields DB
get competence

fields

Task :local task Task :delegated task :process flow :service invocation

authentication

P a r t I I I – C h a p t e r 8.3 � Multi-Level Service Level Management

320

 The competence field service allows retrieving the competence field information of
a particular employee from the backend database. Hence, after an invocation of the
identity provider to authenticate the service call, the service consumes the competence
field database to retrieve the corresponding assignment information. The results are
processed in the last activity, before they are passed to the respective process instance.

This experiment scenario is built in the evaluation environment. Each service
component is modelled by a Sarasvati workflow. In addition, each service component
is associated with a resource definition file that configures the set of technical re-
sources available locally. By consuming the technical resources at runtime, each ser-
vice component can produce appropriate service level behaviour, such as processing
time, consumption cost, service availability, etc.

Moreover, each service component in the environment is configured with the same
negotiation parameters:

� Each service component uses a simple linear utility function to estimate an
SLA.

� Each service component uses the time-dependent conceding strategy to deter-
mine the utilities of the outgoing offers. In addition, each component utilises
the trade-off strategy with alignment to the last incoming offer to enable trade-
off search.

� Each service component is configured as cooperative.

� Each service component has equal preferences on the QoS parameters in the
environment. For simplicity, the evaluation experiment considers only two QoS
parameters: service cost and response time.

� The negotiation deadline for each service component is set to 30 time ticks.

To keep experimental results more clear, it is assumed that each service component
takes exactly one simulation tick to make a negotiation decision, independently from
the complexity of the decision. Furthermore, it is assumed that service invocations in
the evaluation experiments are synchronous. That is, a service consumer has to wait,
until the response is returned from the service provider. This assumption simplifies
the calculation of QoS values during the simulation.

A further problem of the simulation runs is the historical information that a man-
agement agent needs to decompose QoS requirements for its service providers. As
stated in Section 6.6.2, a management agent relies heavily on QoS information it col-

P a r t III – C h a p t e r 8 � Evaluation Results

321

lects in the past to determine non-functional capabilities of a particular service provid-
er. Since each simulated service component in the evaluation environment is config-
ured with an individual business logic and resource configuration, it is less reasonable
to use the same set of historical information for all these components.

A plausible way is to adopt a training phase in each evaluation experiment. In fact,
in practice, in order to better estimate the capabilities of the underlying IT infrastruc-
ture, business often utilises such a training phase of a predefined length (normally a
month), in which the IT infrastructure is evaluated under various conditions. Such
evaluation helps a business to determine the appropriate SLAs for its infrastructure.

Hence, before the competence field process begins to initiate a negotiation process
in the simulation environment, a training phase with a length of 10,000 simulation
ticks is completed. During the first 4,000 simulation ticks, each service component is
configured with its minimal technical resources. During the next 3,000 simulation
ticks, each component is in turn configured with its maximal technical resources. Dur-
ing the remaining simulation ticks until the end of the phase, each component config-
ures its technical resources randomly. During the complete training phase, a service
component, i.e., the management agent of the component, can comprehensively esti-
mate the capabilities of each related service provider. This historical information is
stored in the log file of the management agent. It is utilised by the management agent
for decision-making in the actual evaluation phase, as described in Section 6.6.

 Propagating the End-to-End SLM Process 8.3.2

This section provides evaluation results to demonstrate how an end-to-end SLM pro-
cess can be propagated via automated negotiation across the complete SOE. As de-
termined by the negotiation protocol introduced in Section 6.5, if a service provider
receives QoS requirements from its consumer, it performs the following steps:

� Decomposing the given QoS requirements for each of its service providers.
During this step, the management agent utilises the historical information about
the respective service provider.

� Constructing negotiation space for each service provider. Depending on the
particular type of the related QoS parameter, a management agent uses the de-
composed QoS requirements as either the upper or lower boundary of the nego-
tiation space. That is, if a QoS parameter is increasing (e.g., availability for a
consumer), then the decomposed value determines the lower boundary of the

P a r t I I I – C h a p t e r 8.3 � Multi-Level Service Level Management

322

negotiation space. The upper boundary of the space is set with the best availa-
bility from the historical information. Vice versa, the negotiation space for a
decreasing QoS parameter can be determined in a similar way.

� Performing negotiation with the respective service provider using the previous-
ly determined negotiation space.

� If an agreement is negotiated, the respective service provider has to verify the
agreement by negotiating in turn with its service providers. In this case, the ne-
gotiation process is propagated to the next layer in the simulated SOE.

� If the respective service provider can verify the agreement on its part, it con-
firms the agreement with the service consumer.

Therefore, the remainder of this section provides the evaluation results in two sep-
arate sections. The first part is concerned with the first three steps described above
and illustrates the behaviour of a consumer with its providers. Then, the second part
focuses on the last two steps and shows how a negotiation process can be propagated
across the complete SOE.

8.3.2.1 Decomposing QoS Requirements

In general, each service provider in an SOE has to confirm an agreement it negotiates
with its service consumer. Therefore, for simplicity, this section outlines only the de-
composition and negotiation process of a service provider, the competence field pro-
cess in the evaluation scenario, to demonstrate the applicability of the introduced ap-
proach. Decomposition processes of other service providers are done similarly.

Table 8-5 summarises the results of the decomposition and negotiation process of
the competence field process. As illustrated by the BPMN diagram in Section 8.3.1,
the competence field process involves a total of four activities in its business logic:
preparing request, invoking person service, invoking competence field service, and
displaying competence fields.

During the training phase, the management agent has collected statistics to estimate
the behaviour of its activities. Among other things, it is aware of the maximal, the
minimal, and the average response time and service cost for each activity. As shown
in Table 8-5, each instance of the competence field process takes 198.3 simulation
ticks on average. Each instance causes an average service cost of 563.4 cost units.

It is noteworthy that the management agent collects not only statistics about remote
service invocations, but also those about its own local activities. These statistics al-

P a r t III – C h a p t e r 8 � Evaluation Results

323

lows the management agent to distribute QoS requirements correctly among all relat-
ed local and delegated activities.

Table 8-5: Decomposition process of the business process in the sample scenario

198.3 563.4 76.44 243.1 46.90 18.56 79.42 167.37 42.53 134.4

250 650 96.33 280.4 59.10 21.41 100.08 193.08 53.59 155.1

- - - - 20.77 59.10 7.32 21.41 35.17 100.08 66.02 193.1 - -

- - - - 34.25 56.40 10.84 27.24 44.75 120.95 78.17 292.4 - -

- - - - 37.18 16.48 67.66 149.12 - -

The target QoS requirements that the competence field process receives from its
consumer are:

� Executing the competence field process should not take longer than 250 simu-
lation ticks.

� Executing the process should not cause a cost higher than 650 cost units.

Based on the historical information and the decomposition schemas given in Sec-
tion 6.2, the management agent can decompose the target QoS requirements for each
activity in its business logic. For example, in order to achieve the target QoS require-
ments, invoking the person service should not take longer than 59.10 simulation ticks.
And its consumption cost, i.e., service cost, should not be higher than 21.41 cost units.

The management agent of the competence field process uses the decomposed re-
quirements to construct its negotiation spaces. Since both QoS parameters, response
time and service cost, are decreasing for the competence field process, the decom-
posed QoS requirements determine the upper boundaries of the negotiation process

P a r t I I I – C h a p t e r 8.3 � Multi-Level Service Level Management

324

with the respective service provider. The lower boundaries of the negotiation space
are set to the best QoS values that the process achieved during the training phase. Cor-
respondingly, a service provider (i.e., the person service or the competence field ser-
vice) uses their respective best and worst QoS values during the training phase as their
negotiation spaces.

After both the process and the services have determined their negotiation spaces,
they begin to negotiate the two QoS parameters. As aforementioned, the process
adopts two parallel negotiation threads with its both service providers. In each negoti-
ation thread, there is a bilateral multi-issue negation over the two QoS parameters us-
ing the negotiation configurations described in Section 8.3.1.

Table 8-5 shows the resulting QoS values from the negotiation processes. After ne-
gotiation, the person service commits itself to supply its service with a maximal re-
sponse time of 37.18 simulation ticks and a limit of 16.48 cost units. Similarly, the
competence field service commits to an agreement with 67.66 simulation ticks and a
limit of 149.12 cost units.

By comparing the resulting QoS values with the decomposed requirements, it is
clear that if both service providers can deliver their services in compliance with the
agreed values, the competence field process can ensure its own QoS requirements
from its consumers.

8.3.2.2 Propagating the Negotiation Process

In order to cope with the recursive provider/consumer relationships in an SOE, the
negotiation protocol introduced in Section 6.5 is iterative. That is, before a service
provider commits to an agreement with its service consumer, it has to verify at first on
its part, whether its service providers in turn support the negotiated agreement. In this
way, a negotiation process initialised by a business process can be stepwise propagat-
ed throughout the complete SOE.

Figure 8-16 illustrates the negotiation process initialised by the competence field
process in the SOE. The results show the negotiation processes of the involved service
components within a single evaluation experiment. For simplicity, all negotiation pro-
cesses are displayed side-by-side to depict their chronological order. A blue line in the
figure indicates the negotiation phase of the respective service component. An orange
one indicates the confirmation phase of the corresponding service component. And a
dashed line states that the respective service component waits for response from its

P a r t III – C h a p t e r 8 � Evaluation Results

325

negotiation partner. Furthermore, the time axis begins at 10,000 simulation ticks. A
corresponding training phase as introduced in the previous section has been carried
out during the first 10,000 simulation ticks.

As shown in Figure 8-16, the negotiation process is initialised by the competence
field process at simulation tick 10,000. At this point in time, the competence field
process triggers two separate negotiation processes with its service providers, the per-
son service and then competence field service. Hence, at simulation tick 10,001, both
service components begin to carry out their respective negotiation processes with the
competence field process.

Figure 8-16: Propagation of negotiation process across the complete SOE

The competence field service uses 32 simulation ticks to find a mutually acceptable
agreement with the process. After that, it begins to confirm the resulting agreement
with its providers, the identity provider and the competence field database. To trigger
the confirmation phase, the competence field service begins to negotiate with both of
its service providers in two separate negotiation processes. Both service provides need
41 ticks to find a mutually acceptable agreement with the competence field service.
Since in the evaluation scenario (see also 8.3.1) both the identity provider and the
competence field database do not involve any other service providers, they commit
directly to their agreements with the competence field service.

:negotiation phase

competence
field process

person service

competence
field DB

identity
provider

identity
provider

administration
DB

person DB

competence field
service

simulation tick
10000 10009 10018 10027 10036 10045 10054 10063 10072 10081 10090

87 ticks

34 ticks 52 ticks

45 ticks 5 ticks

2 ticks48 ticks

50 ticks

32 ticks 43 ticks 11 ticks

41 ticks

41 ticks

:confirmation phase :idle phase

P a r t I I I – C h a p t e r 8.3 � Multi-Level Service Level Management

326

Upon receiving the confirmation messages from both service providers, the compe-
tence field service sends its confirmation message about the negotiated agreement
with the competence field process. However, as introduced in Section 6.5, the compe-
tence field process coordinates the negotiation processes with its two service provider.
Since the other service provider, the person service, needs more time to confirm its
negotiated agreement, the competence field service has to wait for the acknowledge-
ment from the competence field process for 11 ticks. As the competence field process
also receives the confirmation message from the person service at simulation tick
10,087, the competence field process confirms the negotiated agreements on its part
and terminates the overall negotiation process.

It is worth noting that although the competence field process needs a total of 87
ticks for its negotiation process, the actual negotiation times with the two service pro-
viders were 32 ticks and 34 ticks, respectively.

In short, Figure 8-16 clearly illustrates how a business process can propagate its
negotiation process across the complete SOE. In this way, the business process en-
sures that all supporting service components in the underlying IT infrastructure are
involved in the overall negotiation process. From the viewpoint of SLM, each of those
service components commits with an appropriately negotiated SLA to contribute to
the end-to-end service level requirements that a business process has.

 Renegotiating SLAs 8.3.3

A characteristic feature of an agile IT infrastructure is that it can dynamically adjust
its capabilities depending on the changing requirements from the business and the op-
erational states of the underlying service components. From the viewpoint of non-
functional requirements, an agile IT infrastructure is expected to configure its service
components flexibly according to the current workload of the entire infrastructure.

In comparison to the existing approaches to enable self-organisation on a single
service component, the present thesis follows a more generic and comprehensive ap-
proach. Based on local self-organisation of a service component, a service consumer
can utilise automated negotiation to dynamically distribute workloads among its ser-
vice providers, depending on their observed service-level behaviour in the last sam-
pling period. This section is concerned with the evaluation results to demonstrate the
capability of the introduced multi-level SLM approach of this thesis.

P a r t III – C h a p t e r 8 � Evaluation Results

327

The evaluation scenario and the experimental set-up listed in Section 8.3.1 are ap-
plied in the evaluation environment. In addition, each management agent uses a sim-
ple strategy to organise its local technical resources:

� Initially, each management agent determines the amount of technical resources
depending on the agreed response time in relation to the best response time that
the service component can achieve.

� A management agent collects runtime information from the underlying service
component. Among other things, it observes the processing information of each
service request (the processing time, the waiting time, and the total response
time) and the information about resource usage in the request pool and the re-
source pool (see also Section 7.4). As soon as it has collected 100 records, it in-
itiates a new control loop to regulate the operational state of the service com-
ponent.

� A management agent applies a strict policy to detect violation of response time.
As stated in Section 5.2.4, an SLA is considered violated, as soon as the target
value of the response time is exceeded by the measured value.

� If a measured response time exceeds 90% of the agreed response time, the
management agent increases the assigned resources for the respective service
instance by 10%, until all resources are assigned.

� If an agreed response time is over-fulfilled, i.e., the real response time is lower
than 60% of the agreed value, then the management agent decreases the
amount of technical resources assigned to the respective service instance
by 10%.

� If a measured response time exceeds 90% of the agreed response time and the
respective service component runs out of its local resources, it renegotiates
with its service providers to rearrange the provider agreements with them.

� If a management agent fails to renegotiate SLAs with its service providers, it
turns to its service consumer and renegotiates the consumer agreement.

In short, a management agent can respond to response time violations either direct-
ly by changing its local resources or by renegotiating SLAs with its service provid-
ers/consumer. In this way, a service component can solve its performance problem not
only locally but also collaboratively on a global level.

The experimental results are taken after 6 £ 1046 £ 104 simulation ticks. To produce a
regular workload on the simulated SOE, the evaluation environment employs an addi-

P a r t I I I – C h a p t e r 8.3 � Multi-Level Service Level Management

328

tional consumer agent. This agent produces on a regular basis a service request on the
competence field process, which in turn activates the supporting service components
in the SOE. The time intervals, in which the consumer agent creates service requests,
are controlled by ÁtÁt. They are uniformly distributed around the average value ÁtÁt. In
the experiment shown in Figure 8-17, the first 1 £ 1041 £ 104 simulation ticks are for training
purpose of the management agents. In the next 3 £ 1043 £ 104 ticks, the consumer agent gen-
erates service requests at a rate of Át =16Át =16. At simulation tick 4 £ 1044 £ 104, the generation
rate is reduced to Át = 8Át = 8. From this point in time, the workload of the SOE doubles.

For simplicity, the remainder of this section only focuses on the experimental re-
sults regarding the competence field service and its two service providers, the compe-
tence field database and the identity provider. It is noteworthy that the identity pro-
vider is invoked by two services, i.e., the competence field service and the person ser-
vice. Hence, as the total workload increases in the entire SOE, the identity provider
has to cope with more workload than other service components that have only a single
service consumer.

Figure 8-17 depicts the average response times and the (re-)negotiated response
times of the related service components in the course of the evaluation. The average
response times are collected and consolidated by the respective management agents of
the components. For better comparison of the results of the three related service com-
ponents, the evaluation results of all components are depicted in the single figure.

Moreover, the dashed lines in the figures are the (re-)negotiated response times.
Each point in the dashed lines indicates that there was a renegotiation between the
service consumer, i.e., the competence field service, and its two service providers. The
solid lines in the figures illustrate the changes of measured response times. Each star
on the solid lines is a record of the response times measured by the respective man-
agement agent.

In general, the complete evaluation run can be divided into four phases: a stabilisa-
tion phase, a stable phase, a workload balancing phase after the workload is doubled,
and after that a stable phase again, as illustrated in Figure 8-17.

P a r t III – C h a p t e r 8 � Evaluation Results

329

Figure 8-17: Using renegotiation of SLAs to balance workloads

In the stabilisation phase, all service components are trying to find an appropriate
assignment of technical resources to their respective service instances. As shown in
the figure, the first measured response times of all service components are higher than
their agreed response times, respectively. Hence, both the identity provider and the
competence field database try to increase their local resource assignments to avoid
response time violation. In contrast, the competence field service decides to delegate
the solution of this problem to its two service providers. As such, it initialises a range
of renegotiation processes during the stabilisation phase with its service providers,
until its response time is conform with the agreed value with the competence field
process, i.e., its own consumer.

The stabilisation phase is inevitable because of the specific configuration of a ser-
vice component to determine its initial amount of technical resources for the respec-
tive service instance. In the current implementation, a service component calculates
the ratio between the best response time (i.e., the service instance is assigned with all
resources) and the agreed response time. Then, the amount of resource assigned to the
respective service instance is calculated by the product of the ratio and the total
amount of resources available. This calculation estimates only approximately the

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
4

10

15

20

25

30

35

40

45

50

simulation tick

re
sp

on
se

 ti
m

e

 competence field database - agreed value
competence field database - real value
identity provider - agreed value
identity provider - real value
competence field service - agreed value
competence field service - real value

workload
balancingstabilisation stable phase stable phase

P a r t I I I – C h a p t e r 8.3 � Multi-Level Service Level Management

330

amount of resources necessary to guarantee the agreed response time. Hence, the sta-
bilisation phase is characterised by frequent renegotiation processes and large changes
of response times. Of course, in practice, this phase can be substantially reduced by
incorporating extensive historical information, and thus better correlation between
response times and resource usages, into the calculation of the initial set of technical
resources. Such information is missing in the simulated evaluation environment.

After the stabilisation phase, all service components have found their appropriate
amount of resources to support the agreed response time. Hence, they enter the stable
phase. As seen in Figure 8-17, the response times of all service components hardly
change during this phase. Although the competence field service initialises a range of
renegotiation processes, they do not significantly change the balance between the
identity provider and the competence field database.

As aforementioned, from simulation tick 4 £ 1044 £ 104 on, the total amount of service
requests on the entire SOE doubles. This change leads to an increasing workloads at
the service components. In particular, since the identity provider serves two service
consumers in the SOE, it constitutes the bottleneck in the SOE. As seen in Figure
8-17, its measured response time increases largely around the simulation tick
4:3 £ 1044:3 £ 104. The time delay of the increase in response time is caused by the buffers
available in the competence field service and the competence field process. According
to the control strategy of their management agents, both the service and the process
try to cope with the increasing workloads by mobilising their reserves of local tech-
nical resources. Hence, as service components in the lowest layer of the SOE, both the
identity provider and the competence field service experience the change in workload
with a large time delay.

As the identity provider is not able to hold its response time under the agreed value
and the competence field service also exceeds its agreed response time, the compe-
tence field service begins to renegotiate the SLAs with its both service providers. To
this end, it takes the most recent response times of both providers as the reference val-
ues to decompose its requirement on response time. As seen in Figure 8-17, around
simulation tick 4:4 £ 1044:4 £ 104, the identity provider experiences a severe problem with its
response time, while the competence field service can still provide its service at the
same level as during the stable phase.

Therefore, the resulting agreements on response times reflect this relationship. As
the identity provider has reached a higher target value for response time in the renego-

P a r t III – C h a p t e r 8 � Evaluation Results

331

tiation, the competence field database has decided to deliver its service with a lower
response time. From the viewpoint of the competence field service, it has managed to
solve its local performance problem with support of its service providers. The distri-
bution of the workload is based on the most recent runtime behaviour of both service
providers. In this process, a service provider that shows symptoms of stress will be
relieved. In contrast, a service provider that shows normal behaviour despite increas-
ing workload will be more occupied, of course for a higher service cost.

As seen in Figure 8-17, the workload balancing phase consists of several renegotia-
tion processes between the competence field service and its two providers. In each
renegotiation process, the workload balance between both service providers is adjust-
ed depending on the observed response times in the last sampling period. However,
after the two renegotiation processes around simulation tick 4:4 £ 1044:4 £ 104 with relatively
large adaptations, all other renegotiation processes adjust the workload balance be-
tween both service providers only to a very limited extent. Around simulation tick
5 £ 1045 £ 104, the stable phase follows the workload balancing phase.

Considering the agreed response times of the identity provider and the competence
field database shown in Figure 8-17, it is obvious that both service providers maintain
a kind of cooperative relationship with each other. As one service provider experienc-
es a performance problem, the other provider commits to compensate the performance
loss with more restricted service level targets.

In short, with automated negotiation, a service consumer can dynamically relocate
its service level requirements to its service providers, depending on their most recent
runtime behaviour. In this way, an SOE can efficiently respond to changes in the
amount of workloads in its environment in a fully automated way.

8.4 Summary

This chapter aims at demonstrating the applicability of the approach introduced in the
present thesis to enable collaboration-based multi-level SLM in an SOE. The core of
the approach is automated negotiation of SLAs between two service components.
Hence, after having outlined the main evaluation objectives of the experiments in Sec-
tion 8.1, the following two sections evaluated the approach from both microscopic and
macroscopic viewpoints.

P a r t I I I – C h a p t e r 8.4 � Summary

332

Section 8.2 evaluated the performance of the introduced model to enable automated
bilateral multi-issue negotiation between two service components. In particular, it in-
vestigated the influences of various negotiation configurations on the negotiation be-
haviour of the components both qualitatively (see Section 8.2.1) and quantitatively
(see Section 8.2.3). Moreover, this section also investigated the efficiency of the nego-
tiation strategies by means of Pareto-optimal offers in the common negotiation space.

The evaluation experiments showed promising results for the automated negotia-
tion model to arrange SLAs. With appropriately configured negotiation strategies, two
management agents have a large probability to reach an agreement in their common
negotiation space, although both of them are not aware of the negotiation preferences
of their counterpart. If both agents utilise the trade-off strategy with alignment to the
last incoming offer, they can even reach a Pareto-optimal agreement at the end.

In spite of the fully automated negotiation process, a high-level control instance,
e.g., a human participant, can influence the negotiation behaviour of a management
agent by setting global business objectives. In this way, it can guide two management
agents to reach an agreement that complies with the given business objectives.

Section 8.3 evaluated how the basic automated negotiation model can be applied to
enable multi-level SLM within an SOE in a fully automated manner. This section
showed that by applying the iterated negotiation protocol, a business process can
gradually propagate an initial negotiation process across the complete SOE. In this
way, all underlying service components that are involved to support the business pro-
cess are bound to the process with an appropriately negotiated SLA. The closed SLAs
are constructed depending on the processing capabilities of the particular components.

Section 8.3 also showed how collaboration-based automated multi-level SLM can
be utilised to facilitate efficient resources management of the underlying service com-
ponents. In particular, by dynamically renegotiating SLAs with the service providers,
a service component can solve its local performance problem not only locally but also
collaboratively on a global level.

In brief, the evaluation experiments in the simulated environment verify the ap-
plicability of the proposed approach to enable automated multi-level SLM. A range of
evaluation results confirm the feasibility of the automated negotiation model to ar-
range SLAs. In addition, a first evaluation result in the simulation environment has
showed the ability of the proposed approach to facilitate comprehensive resource
management within an SOE in a collaborative way.

333

Part IV

Conclusion and Outlook

335

Chapter 9 Conclusion and Outlook

“What I hear, I forget; what I see, I remember; what I do, I understand.”
― Xun Zi, ca. 312-230 B.C.

Businesses applying the design paradigm of service-orientation to build their IT infra-
structures struggle with increasing social complexity. High heterogeneity of the in-
volved service components prevents a comprehensive management throughout the
complete SOE. Hence, this thesis has the goal to design and implement a framework
to facilitate automated management of an SOE based on controlled self-organisation.

This chapter reviews the introduced approach of the present thesis and summarises
its main contributions. Section 9.1 reviews the approach with respect to the objectives
listed in Section 1.2.1. Among other things, it addresses how the given objectives are
covered by the approach of this thesis. Section 9.2 provides an overview on possible
extensions of this work.

9.1 Summary

The fundamental scenario of the present thesis is to enable seamless alignment be-
tween the business and its IT infrastructure applying the design paradigm of service-
orientation. With respect to the role of IT service management as a link between busi-
ness and IT, the scenario is converted to a problem of end-to-end service level man-
agement of the IT infrastructure. That is, how the underlying IT infrastructure can be
appropriately configured to consistently guarantee given business/operational objec-
tives from the business, in spite of high heterogeneity and social complexity in the
infrastructure.

To this end, this thesis proposes a two-level realisation of automated end-to-end
SLM based on controlled self-organisation. On the global level, a collaboration-based

P a r t I V – C h a p t e r 9.1 � Summary

336

approach is designed to enable service components to collaborate with their providers
for arranging agreements on their service levels. Collaboration between service com-
ponents is carried out by means of negotiation. It provides the basic means to break
down high-level operational requirements of the business into low-level requirements
for each involved service component, in terms of SLAs.

On the local level, each service component organises itself in compliance with the
SLAs it closes with its consumers. The management agent of a service component
continuously monitors the operational state of the component, analyses it, and per-
forms, if necessary, corrective actions to control the runtime behaviour of the compo-
nent. Negotiation-based collaboration between related service components provides a
management agent with additional possibilities to influence the runtime behaviour of
its respective service component on a global level.

In this way, global non-functional requirements on a particular business process
can be ensured conjointly and continuously by a set of collaborative self-organising
service components in support of the process. IT infrastructure can consistently align
its runtime behaviour with given requirements from the business. Section 1.2.1 has
discussed a set of objectives that a sophisticated approach to enable automated end-
to-end SLM has to address. The present thesis addresses the objectives as follows:

� Autonomy of service components: In order to ensure that each service compo-
nent can maintain its autonomy in the SLM process, this thesis utilises an
agent-oriented design. That is, each service component is equipped with an au-
tonomous management agent that represents the component’s interests in the
respective SOE. Through rational negotiation, a service component can main-
tain its autonomy in the course of collaboration with other related components.
In addition, with respect to the distributed nature of service-oriented environ-
ments, agent-oriented design enhances the flexibility and scalability of the au-
tomated SLM approach of this thesis.

� Awareness of runtime state: Manageability interfaces offered by a service
component allow the respective management agent to collect runtime infor-
mation of the component. By appropriately processing and consolidating such
information, the generic O/C architecture implemented in the management
agent is aware of the runtime behaviour of its respective service component.

� Automated negotiation support: Collaboration between service components is
carried out by means of automated negotiation. The automated negotiation
model introduced in this thesis allows a service consumer to negotiate with its

P a r t IV – C h a p t e r 9 � Conclusion and Outlook

337

provider in order to find a mutually acceptable compromise between what is
expected by the consumer and what can be delivered by the provider. During
this bilateral negotiation process, neither of the two service components has to
make concessions on its autonomy. Instead, each service component can con-
trol its negotiation behaviour individually depending on its local negotiation
preferences. The negotiation strategies adopted can efficiently guide a man-
agement agent to move towards the common negotiation space in order to
reach an agreement there. Herein, the convergence of a negotiation process can
be guaranteed, if the respective service component employs a trade-off strategy
to optimise its offers in favour of its counterpart.

� Self-adaptive SLM: This work enables self-adaptive SLM by providing the
necessary technical infrastructures to support the full life cycle of SLAs. The
collaboration manager in the management agent provides a service component
with the capability to carry out automated negotiation processes with other re-
lated components. The O/C architecture applied allows a service component to
autonomously enforce a negotiated SLA by performing appropriate action(s) to
control the component’s runtime behaviour. In case of changes in the environ-
ment (e.g., requirement changes, changing workload, and so on), a manage-
ment agent can reactively improve the existing SLAs with respect to those
changes. Herein, a management agent can either locally perform the necessary
corrective actions or globally collaborate with other related components to en-
force an existing SLA.

� Mapping business requirements to IT-centric metrics: The iterated negotiation
protocol adopted in this thesis allows a negotiation process initialised by a
business process to be gradually propagated across the complete IT infrastruc-
ture. In this way, end-to-end requirements that the business has on the entire IT
infrastructure can be iteratively broken down into IT-centric requirements for
each service component by means of automated SLA negotiation.

� Involving related underpinning components: By propagating a negotiation pro-
cess top-down across the hierarchical structure of an SOE, all related service
components in the underlying IT infrastructure are gradually included into the
end-to-end SLM process.

� Heterogeneity of technical components: In order to cope with high heterogenei-
ty within an SOE, the present thesis utilises SLAs as homogeneous messages
between heterogeneous service components. On the global level, each service
component interacts via interoperable Web services standards with other relat-

P a r t I V – C h a p t e r 9.1 � Summary

338

ed components to carry out the negotiation processes. Locally, each service
component individually interprets and enforces the negotiated SLAs depending
on its local management standards. By doing this, the approach of the present
thesis ensures maximal interoperability with minimal interference in local
components. Furthermore, each service component can participate in the global
SOE without having to give up its autonomy.

� Adaptive management of service components in compliance with agreed ser-
vice levels: This objective is addressed by the capability of the O/C architec-
ture to enable controlled self-organisation locally. With continuous monitoring,
the observer enables a management agent to be aware of the operational state
of its respective service component. For any deviation of the operational state
from the agreed behaviour, the controller can perform corrective actions on the
underlying service component in a timely manner. In this way, the management
agent can maintain the underlying service component in compliance with
agreed service levels.

Concisely, the key characteristic of the approach is to enable end-to-end SLM
across all related service components by facilitating collaboration between these com-
ponents. Collaborative activities between technical components are carried out by
means of automated negotiation of SLAs between service providers and service con-
sumers. In this way, end-to-end service level requirements from the business can be
continuously guaranteed by the IT infrastructure without any manual efforts.

In comparison to existing approaches to enable self-organisation in SOE, in par-
ticular with respect to those introduced in Section 2.2.2, the present thesis makes the
following major contributions:

� The present thesis provides a sophisticated approach to enable automated end-
to-end SLM within an SOE. By applying this approach, all supporting compo-
nents in the underlying IT infrastructure are involved in the overall process to
ensure the end-to-end service level requirements on the entire infrastructure.
Herein, runtime behaviour of each service component is specified precisely by
a mutually accepted SLA.

� The present thesis focuses on facilitating collaboration between service com-
ponents by using automated negotiation. Each service component is modelled
as a fully rational agent that can autonomously collaborate with other related
service components, in particular with respect to negotiating SLAs. In this way,

P a r t IV – C h a p t e r 9 � Conclusion and Outlook

339

a service component can actively contribute to the complete SOE without hav-
ing to give up control over its own technical resources.

� In comparison to a centralised management, the present thesis provides a flexi-
ble way to enable decentralised management of an SOE. Via automated negoti-
ation, end-to-end service level requirements can be gradually propagated across
the entire SOE, where at the end the runtime behaviour of each service compo-
nent is regulated by a dedicated SLA. In combination with locally controlled
self-organisation, a service component can enforce its runtime behaviour in
alignment to its SLA.

� The present thesis realises a way to facilitate collaboration between related ser-
vice components. As soon as each service component has established a stable
balance between its runtime behaviour and the desired behaviour specified by
the SLA, the entire SOE becomes resilient against to changes in the environ-
ment. Via automated negotiation, a service component can resolve a service
level issue that it cannot deal with locally with its service providers as well as
its service consumer on a global level, and in a fully automated manner.

In brief, the present thesis designs and implements an multi-level approach to ena-
ble automated end-to-end service level management. By applying controlled self-
organisation, service components can flexibly adapt their runtime behaviour according
to the service level objectives specified in respective SLAs. Via negotiation-based
collaboration, a service component can enforce its runtime behaviour either by using
its local resources or with help of its service providers.

9.2 Outlook

In addition to the contributions of this thesis, there are a range of aspects that have to
be regarded in order to apply the approach introduced by the present thesis in practice.
Most of the aspects raise new questions for future research in this field.

SLA-driven self-organisation of service components: an SLA specifies the ser-
vice level targets that the runtime behaviour of a service component has to achieve.
However, those service level targets are highly abstracted terms that do not have any
reference to the specific configurations of the respective service component. Hence, in
order to establish SLA-drive self-organisation, a service component has to correctly
correlate the service level targets with its underpinning configurations, which is cov-

P a r t I V – C h a p t e r 9.2 � Outlook

340

ered by the controller, i.e., the online/offline learning modules, of a respective man-
agement agent.

Autonomous learning of management agents: In practice, a service component
has to face a more complicated operating environment than what a simulated envi-
ronment can provide. Hence, it is desired that a management agent should employ
autonomous learning to correlate the operational state with the appropriate actions.
The generic observer/controller architecture provides the necessary design guidelines
to incorporate the capabilities of online/offline learning in a management agent. From
the viewpoint of a management agent, it is of interest to investigate how far an exist-
ing service component can be modelled as a simulated system to perform offline
learning. In case that the simulated system behaviour cannot fully reflect the behav-
iour of the real service component, it has to be considered how a management agent
can get rid of the deficits of the learned knowledge online in the real system.

Extending the negotiation scenario: The present thesis considers only the scenar-
io that a service consumer has determined its service providers a priori to the negotia-
tion phase. There are no competing service providers for a given business capability.
Hence, the negotiation model addresses only bilateral negotiation between one service
consumer and one service provider. However, in a service market where a range of
service providers offers the same business capabilities for different conditions, a ser-
vice consumer can usually choose one of the service providers depending on particu-
lar conditions they offers. In this case, the negotiation model can be extended to cover
multi-lateral negotiation scenarios. Herein, a service consumer can bargain for a better
utility among all potential providers. In this way, a service consumer can optimise its
trade-off globally among several service providers.

A comprehensive semantic support: In an SOE, where a range of heterogeneous
service components are involved, it is of particular importance to have a comprehen-
sive ontology across all service components. In this way, two collaborating service
components can ensure that they understand each other unambiguously. Among other
things, a comprehensive semantic support should help a management agent to under-
stand the terms, i.e., service level objectives, specified in an SLA. If necessary, a
management agent can consume the semantic support to map the terms in an incom-
ing SLA offer to its local service level objectives.

Applying the automated negotiation model in practice: As stated in Section 3.2,
electronic SLAs negotiated by intelligent agents lack the necessary trust and ac-

P a r t IV – C h a p t e r 9 � Conclusion and Outlook

341

ceptance to be applied in practice, in particular with respect to the legal aspects of
such electronic SLAs. However, electronic SLAs play a fundamental role in the whole
approach introduced by the present thesis. Hence, in order to apply the approach of
the present thesis in practice, interdisciplinary research is required. From a judicial
viewpoint, it should be clarified, to what extent intelligent agents can be held account-
able for contracts they negotiate in an fully automated way. From the viewpoint of IT
service management, it is necessary to develop a concept to introduce electronic SLAs
into an IT infrastructure. A possible approach to establish automated negotiation can
be divided into three successive steps: adopting automated negotiation as decision-
making support; adopting automated negotiation in a semi-automated manner, where
human participants make the final decision; and finally adopting automated negotia-
tion directly in a fully-automated manner.

343

Bibliography
[ABHK00] W. Van Der Aalst, A. Barros, A. Hofstede, and B. Kiepuszewski:

Advanced Workflow Patterns. Cooperative Information Systems,
Springer, 2000, pp. 18-29.

[ACD+07] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu: Web Services Agreement
Specification (WS-Agreement). http://www.ogf.org/documents/GFD.
107.pdf. 2007. Last Access on May 2010.

[ACE+03] R. Allrutz, C. Cap, S. Eilers, D. Fey, H. Haase, C. Hochberger, W. Karl,
B. Kolpatzik, J. Krebs, F. Langhammer, P. Lukowicz, E. Maehle, J.
Maas, C. Müller-Schloer, R. Riedl, B. Schallenberger, V. Schanz, H.
Schmeck, D. Schmid, S. Preikschat, T. Ungerer, H.-O. Veiser, and L.
Wolf: VDE/ITG/GI Positionspapier Organic Computing: Computer- und
Systemarchitektur im Jahr 2010, VDE/ITG/GI, 2003.

[ADA10] ADAC: Pannenstatistik 2009, ADAC Motorwelt, ADAC Verlag, 2010,
p. p. 17 ff.

[ADK+05] V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu, S. Mittal,
and B. Srivastava: A Service Creation Environment Based on End to End
Composition of Web Services. In: Proceeding of the 14th international
conference on World Wide Web, Chiba, Japan, ACM Press, 2005.

[AFG+09] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A.
Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia: Above the Clouds: A Berkeley View of Cloud Computing,
University of California at Berkeley, 2009.

[AFG+10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia: A View of
Cloud Computing. Communication of ACM, 53 (4) (2010): pp. 50-58,
2010.

[AHK+03] W. M. P. V. D. Aalst, A. H. M. T. Hofstede, B. Kiepuszewski, and A. P.
Barros: Workflow Patterns. Distributed and Parallel Databases, 14 (3)
(2003): pp. 5-51, 2003.

[AK09] A. Arsanjani and N. Kumar: SOA Reference Architecture, The Open
Group, 2009.

[Ash62] W. R. Ashby: Principles of the Self-Organizing System. in: H.V.
Foerster, G.W. Zopf (Eds.), Principles of Self-Organization, Pergamon
Press, London, UK, 1962, pp. 255-278.

344

[AZE+07] A. Arsanjani, L.-J. Zhang, M. Ellis, A. Allam, and K. Channabasavaiah:
S3: A Service-Oriented Reference Architecture. IEEE IT Professional, 9
(3) (2007): pp. 10-17, 2007.

[BAR+10] B. Becker, F. Allerding, U. Reiner, M. Kahl, U. Richter, D.
Pathmaperuma, H. Schmeck, and T. Leibfried: Decentralized Energy-
Management to Control Smart-Home Architectures. In: Proceeding of
the 2010 International Conference on Architecture of Computing
Systems (ARCS 2010), pp. 150-161, Hannover, Germany, Springer,
2010.

[BBC+03] D. F. Bantz, C. Bisdikian, D. Challener, J. P. Karidis, S. Mastrianni, A.
Mohindra, D. G. Shea, and M. Vanover: Autonomic Personal
Computing. IBM System Journal, 42 (1) (2003): pp. 165-176, 2003.

[BBK+05] S. Bouchenak, F. Boyer, S. Krakowiak, D. Hagimont, A. Mos, S. Jean-
Bernard, N. D. Palma, and V. Quema: Architecture-Based Autonomous
Repair Management: An Application to J2ee Clusters. In: Proceeding of
the 24th IEEE Symposium on Reliable Distributed Systems, pp. 13-24,
Orlanda, Florida, USA, IEEE Computer Society, 2005.

[BBWL05] N. Bieberstein, S. Bose, L. Walker, and A. Lynch: Impact of Service-
Oriented Architecture on Enterprise Systems, Organizational Structures,
and Individuals. IBM Systems Journal, 44 (4) (2005): pp. 691-708,
2005.

[BC06] J. Barr and L. F. Cabrera: AI Gets a Brain. ACM Queue, 4 (4) (2006):
pp. 24-29, 2006.

[BCL+04] M. J. Buco, R. N. Chang, L. Z. Luan, C. Ward, J. L. Wolf, and P. S. Yu:
Utility Computing SLA Management Based Upon Business Objectives.
IBM Systems Journal, 43 (1) (2004): pp. 159-178, 2004.

[BDHT06] S. Bouchenak, N. De Palma, D. Hagimont, and C. Taton: Autonomic
Management of Clustered Applications. In: Proceeding of IEEE
International Conference on Cluster Computing 2006, pp. 1-11,
Barcelona, Spain, IEEE Computer Society, 2006.

[Bee79] S. Beer: The Heart of Enterprise, Managerial Cybernetics of
Organization 2, John Wiley & Sons, New York, 1979.

[Bee81] S. Beer: Brain of the Firm, 2nd edition.John Wiley & Sons, 1981.

[Bee85] S. Beer: Diagnosing the System for Organizations, John Wiley & Sons,
1985.

345

[BHK+04] L. O. Burchard, M. Hovestadt, O. Kao, A. Keller, and B. Linnert: The
Virtual Resource Manager: An Architecture for SLA-Aware Resource
Management. In: Proceeding of IEEE International Symposium on
Cluster Computing and the Grid 2004, pp. 126-133, Chicago, IL, USA,
IEEE Computer Society, 2004.

[BHM+04] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris,
and D. Orchard: Web Services Architecture, W3C, 2004.

[BKM+04] R. Barrett, E. Kandogan, P. P. Maglio, E. M. Haber, L. A. Takayama,
and M. Prabaker: Field Studies of Computer System Administrators:
Analysis of System Management Tools and Practices. In J. Herbsleb, G.
Olson: Proceeding of the 2004 ACM conference on Computer Supported
Cooperative Work, pp. 388 - 395, Chicago, Illinois, USA, ACM, 2004.

[BKNT10] C. Baun, M. Kunze, J. Nimis, and S. Tai: Cloud Computing: Web-
Basierte Dynamische IT-Services, Informatik im Fokus, Springer,
Berlin, Germany, 2010.

[BKNT10a] C. Baun, M. Kunze, J. Nimis, and S. Tai: Ausgewählte Cloud-Angebote.
in: C. Baun, M. Kunze, J. Nimis, S. Tai (Eds.), Cloud Computing: Web-
Basierte Dynamische IT-Services, Informatik im Fokus, Springer,
Berlin, Germany, 2010.

[BKNT10b] C. Baun, M. Kunze, J. Nimis, and S. Tai: Cloud Architektur. in: C.
Baun, M. Kunze, J. Nimis, S. Tai (Eds.), Cloud Computing: Web-
Basierte Dynamische IT-Services, Informatik im Fokus, Springer,
Berlin, Germany, 2010.

[BKNT10c] C. Baun, M. Kunze, J. Nimis, and S. Tai: Grundlagen. in: C. Baun, M.
Kunze, J. Nimis, S. Tai (Eds.), Cloud Computing: Web-Basierte
Dynamische IT-Services, Informatik im Fokus, Springer, Berlin,
Germany, 2010.

[BM02] R. Buyya and M. Murshed: Gridsim: A Toolkit for the Modeling and
Simulation of Distributed Resource Management and Scheduling for
Grid Computing. Concurrency and Computation: Practice and
Experience, 14 (13-15) (2002): pp. 1175-1220, 2002.

[BMK+05] R. P. Barrett, P. Maglio, E. Kandogan, and J. Bailey: Usable Autonomic
Computing Systems: The System Administrators' Perspective. Advanced
Engineering Informatics, 19 (3) (2005): pp. 213-220, 2005.

[BMM+06] J. Branke, M. Mnif, C. Müller-Schloer, H. Prothmann, U. Richter, F.
Rochner, and H. Schmeck: Organic Computing - Adressing Complexity
by Controlled Self-Orgnization. In: Proceeding of 2nd International

346

Symposium on Leveraging Applications of Formal Methods, Verification
and Validation, pp. 200-206, Paphos, Cyprus, IEEE, 2006.

[Box04] D. Box: A Guide to Developing and Running Connected Systems with
Indigo. MSDN Magazine, 2004 (January) (2004): pp. 23-30, 2004.

[BS08] J. Branke and H. Schmeck: Evolutionary Design of Emergent Behavior.
in: R.P. Würtz (Ed.), Organic Computing, Springer, 2008, pp. 123-140.

[BS97] C. Beam and A. Segev: Automated Negotiations: A Survey of the State of
the Art. Wirtschaftsinformatik, 39 (3) (1997): pp. 263-268, 1997.

[BSP+02] J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. Mills, and Y. Diao:
ABLE: A Toolkit for Building Multiagent Autonomic Systems. IBM
System Journal, 41 (3) (2002): pp. 350-371, 2002.

[BSTL06] D. Bustard, R. Sterritt, A. Taleb-Bendiab, and A. Laws: Autonomic
System Design Based on the Integrated Use of SSM and VSM. Artificial
Intelligence Review, 25 (4) (2006): pp. 313-327, 2006.

[Bue06] R. Buettner: A Classification Structure for Automated Negotiations. In:
Proceeding of the 2006 IEEE/WIC/ACM international conference on
Web Intelligence and Intelligent Agent Technology, Hongkong, China,
IEEE Computer Society, 2006.

[But05] I. Butters: IT-Entscheider Versprechen Sich Vorteile von SOA. http://
www.cio.de/technik/810811/index1.html. 2005. Last Access on May
2011.

[BV06] V. Bullard and W. Vambenepe: Web Service Distributed Management:
Management Using Web Services (WSDM-MUWS), OASIS, 2006.

[BYV08] R. Buyya, C. S. Yeo, and S. Venugopal: Market-Oriented Cloud
Computing: Vision, Hype, and Reality for Delivering IT Services as
Computing Utilities. In: Proceeding of 10th IEEE International
Conference on High Performance Computing and Communications
(2008), pp. 5-13, Dalian, China, IEEE Computer Society, 2008.

[BYV+09] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic: Cloud
Computing and Emerging IT Platforms: Vision, Hype, and Reality for
Delivering Computing as the 5th Utility. Future Generation Computer
Systems, 25 (6) (2009): pp. 599-616, 2009.

[BZS+06] A. Bouajila, J. Zeppenfeld, W. Stechele, A. Herkersdorf, A. Bernauer,
O. Bringmann, and W. Rosenstiel: Organic Computing at the System on
Chip Level. In: Proceeding of IFIP International Conference on Very

347

Large Scale Integration of System on Chip 2006, Nice, France, Springer,
2006.

[CCMW01] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana: Web
Services Description Language (WSDL) 1.1, World Wide Web
Consortium, http://www.w3.org/TR/wsdl, 2001.

[CDD02] B. Chaib-Draa and F. Dignum: Trends in Agent Communication
Language. Computational Intelligence, 2 (5) (2002): pp. 89-101, 2002.

[CDF+01] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz,
and E. Bonabeau: Self-Organization in Biological Systems, Princeton
University Press, Princeton, NJ, USA, 2001.

[CDS06] Y. Charif-Djebbar and N. Sabouret: Dynamic Web Service Selection and
Composition: An Approach Based on Agent Dialogues. International
Conference on Service Oriented Computing 2006, Springer, Chicago,
USA, 2006, pp. 515-521.

[CG99] K. M. Carley and L. Gasser: Computational Organisation Theory. in: G.
Weiss (Ed.), Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence, MIT Press, Cambridge, MA, USA, 1999, pp. 299-
330.

[CGH+05] L. Cherbakov, G. Galambos, R. Harishankar, S. Kalyana, and G.
Rackham: Impact of Service Orientation at the Business Level. IBM
Systems Journal, 44 (4) (2005): pp. 653-668, 2005.

[CKM08] F. Curbera, R. Khalaf, and N. Mukhi: Quality of Service in SOA
Environments. An Overview and Research Agenda. it - Information
Technology, 50 (2) (2008): pp. 99-107, 2008.

[CLC+06] E. Castro-Leon, M. Chang, J. Hahn-Steichen, J. He, J. Hobbs, and G.
Yohanan: Service Orchestration of Intel-Based Platforms under a
Service-Oriented Infrastructure. Intel Technology Journal, 10 (04)
(2006), 2006.

[Col04] M. Colan: Service-Oriented Architecture Expands the Vision of Web
Services. http://www.ibm.com/developerworks/library/ws-soaintro.html.
2004. Last Access on May 2010.

[CP05] M. Comuzzi and B. Pernici: An Architecture for Flexible Web Service
QoS Negotiation. In: Proceeding of the Ninth IEEE International
Enterprise Computing Conference 2005, pp. 70- 79, Twente, The
Netherlands, IEEE, 2005.

348

[CSM+04] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut: Quality of
Service for Workflows and Web Service Processes. Web Semantics:
Science, Services and Agents on the World Wide Web, 1 (3) (2004): pp.
281-308, 2004.

[Dav98] T. H. Davenport: Putting the Enterprise into the Enterprise System.
Harvard Business Review, 76 (4) (1998): pp. 121-131, 1998.

[DCCC06] J. Dowling, R. Cunningham, E. Curran, and V. Cahill: Building
Autonomic Systems Using Collaborative Reinforcement Learning. The
Knowledge Engineering Review, 21 (3) (2006): pp. 231-238, 2006.

[Dej08] M. Dejan: Cloud Computing: Interview with Russ Daniels and Franco
Travostino. IEEE Internet Computing, 12 (5) (2008): pp. 7-9, 2008.

[DLS05] G. Dobson, R. Lock, and I. Sommerville: QoSOnt: A QoS Ontology for
Service-Centric Systems. In: Proceeding of 31st EUROMICRO
Conference on Software Engineering and Advanced Applications 2005,
pp. 80-87, Porto, Portugal, IEEE Computer Society, 2005.

[DLS10] D. Ding, L. Liu, and H. Schmeck: Service Discovery in Self-Organizing
Service-Oriented Environments. In: Proceeding of the International
Workshop on Construction and Maintenance for Service-oriented
Software 2010, co-located with the 2010 IEEE Asia-Pacific Services
Computing Conference Hangzhou, China, IEEE Computer Society,
2010.

[DMTF10a] Distributed Management Task Force: Web Service for Management
(WS-Management). http://www.dmtf.org/standards/wsman. 2010. Last
Access on April 2010.

[DMTF99] Distributed Management Task Force: Common Informaiton Model
(CIM) Specification, Distributed Management Task Force, http://www.
dmtf.org/standards/cim/, 1999.

[EL04] A. Elfatatry and P. Layzell: Negotiating in Service-Oriented
Environments. Communications of the ACM, 47 (8) (2004): pp. 103-
108, 2004.

[ELMT09] J. A. Estefan, K. Laskey, F. G. McCabe, and D. Thornton: Reference
Architecture Foundation for Service Oriented Architecture, OASIS,
2009.

[Erd09] H. Erdogmus: Cloud Computing: Does Nirvana Hide Behind the
Nebula? IEEE Software, 26 (2) (2009): pp. 4-6, 2009.

349

[Erl05] T. Erl: Service-Oriented Architecture: Concepts, Technology, and
Design, Prentice Hall, Upper Saddle River, NJ, USA, 2005.

[Erl08] T. Erl: SOA: Principles of Service Design, Prentice Hall, Upper Saddle
River, NJ, USA, 2008.

[FBMV09] M. E. Falou, M. Bouzid, A.-I. Mouaddib, and T. Vidal: Automated Web
Service Composition: A Decentralised Multi-Agent Approach. In:
Proceeding of the 2009 IEEE/WIC/ACM International Joint Conference
on Web Intelligence and Intelligent Agent Technology, Milan, Italy,
IEEE Computer Society, 2009.

[FHS+06] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and E. Gjorven:
Using Architecture Models for Runtime Adaptability. IEEE Software, 23
(2) (2006): pp. 62-70, 2006.

[Fia07] J. L. Fiadeiro: Designing for Software's Social Complexity. Computer,
40 (1) (2007): pp. 34-39, 2007.

[FIP02a] FIPA: FIPA Contract Net Interaction Protocol Specification. http://
www.fipa.org/specs/fipa00029/. 2002. Last Access on May 2010.

[FIP02b] FIPA: FIPA Iterated Contract Net Interaction Protocol Specification.
http://www.fipa.org/specs/fipa00030/index.html. 2002. Last Access on
May 2010.

[FJ09] M. Feingold and R. Jeyaraman: Web Services Coordination (WS-
Coordination 1.2). http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-
spec-os.doc. 2009. Last Access on May 2010.

[FLM+06] P. Freudenstein, L. Liu, F. Majer, A. Maurer, C. Momm, D. Ried, and
W. Juling: Architektur Für Ein Universitätsweit Integriertes
Informations- und Dienstmanagement. In R.L. Christian Hochberger:
Proceeding of INFORMATIK 2006 - Informatik für Menschen, Dresden,
Germany, Springer, 2006.

[FSJ00] P. Faratin, C. Sierra, and N. R. Jennings: Using Similarity Criteria to
Make Negotiation Trade-Offs. In: Proceeding of the Fourth
International Conference on MultiAgent Systems, pp. 119-126, Boston,
Massachusetts, USA, IEEE Computer Society, 2000.

[FSJB99] P. Faratin, C. Sierra, N. R. Jennings, and P. Buckle: Designing
Responsive and Deliberative Automated Negotiators. In: Proceeding of
AAAI Workshop on Negotiation: Settling Conflicts and Identifying
Opportunities, pp. 12-18, Orlando, Florida, USA, 1999.

350

[GCH+04] D. Garlan, S. W. Cheng, A. C. Huang, B. Schmerl, and P. Steenkiste:
Rainbow: Architecture-Based Self-Adaptation with Reusable
Infrastructure. IEEE Computer, 37 (10) (2004): pp. 46-54, 2004.

[Gee09] J. Geelan: Twenty-One Experts Define Cloud Computing. Cloud
Computing Journal, 2009 (January) (2009), 2009.

[Ger07] C. Gershenson: Design and Control of Self-Organizing Systems. Ph.D.
Thesis, Faculteit Wetenschappen, Center Leo Apostel for
Interdisciplinary Studies, Vrije Universiteit Brussel, Brussel, Belgium,
2007.

[GHN+97] S. Green, L. Hurst, B. Nangle, P. Cunningham, F. Somers, and R. Evans:
Software Agents: A Review, Technical Report TCD-CS-1997-06, Trinity
College Dublin, Dublin, Ireland, 1997.

[GHS+04] A. G. Ganek, C. P. Hilkner, J. W. Sweitzer, B. Miller, and J. L.
Hellerstein: The Response to IT Complexity: Autonomic Computing. In:
Proceeding of the 3rd IEEE International Symposium on Network
Computing and Applications (NCA), pp. 151-157, Boston,
Massachusetts, USA, IEEE Computer Society, 2004.

[GKS+08] D. Gmach, S. Krompass, A. Scholz, M. Wimmer, and A. Kemper:
Adaptive Quality of Service Management for Enterprise Services. ACM
Transactions on the Web, 2 (1) (2008): pp. 1-46, 2008.

[GRS+02] F. E. Gillett, C. Rutstein, G. Schreck, C. Buss, and H. Liddell: Forrester
Research Techstrategy Report April 2002 - Organic IT, Forrester
Research, 2002.

[Haa09] A. D. Haan: A Peek Behnid the Scenes at Hotmail, Inside Windows
Live, Redmond, WA, USA, 2009.

[HAN99] H.-G. Hegering, S. Abeck, and B. Neumair: Integrated Management of
Networked Systems : Concepts, Architectures, and Their Operational
Application, The Morgan Kaufmann Series in Networking, Morgan
Kaufmann, San Francisco, CA, USA, 1999.

[Hay08] B. Hayes: Cloud Computing. Communications of the ACM, 51 (7)
(2008): pp. 9-11, 2008.

[HB04] H. Haas and A. Brown: Web Services Glossary. http://www.w3.org/TR/
ws-gloss/. 2004. Last Access on May 2010.

[HF07] R. Heffner and L. Fulton: Topic Overview for Enterprise Architecture
Professionals: Service-Oriented Architecture, Forrester Research,
Cambridge, MA, USA, 2007.

351

[HG03] F. Heylighen and C. Gershenson: The Meaning of Self-Organization in
Computing. IEEE Intelligent Systems, 18 (4) (2003): pp. 72-75, 2003.

[HK00] C. Herring and S. Kaplan: Viable Systems: The Control Paradigm for
Software Architecture Revisited. In: Proceeding of the 2000 Australian
Software Engineering Conference, Canberra, Australia, IEEE Computer
Society, 2000.

[HK01] C. Herring and S. Kaplan: The Viable System Architecture. In:
Proceeding of the 34th Annual Hawaii International Conference on
System Sciences (HICSS-34)-Volume 9 - Volume 9, Hawaii, USA, IEEE
Computer Society, 2001.

[HLA10] R. Heffner, S. Leaver, and M. An: Insights for CIOs: SOA and Beyond,
Forrester Research, Cambridge, MA, USA, 2010.

[HMC08] M. C. Huebscher and J. A. McCann: A Survey of Autonomic Computing:
Degrees, Models, and Applications. ACM Computing Surveys, 40 (3)
(2008): pp. 1-28, 2008.

[Hof06] B. Hoffman: Monitoring, at Your Service. ACM Queue, 3 (10) (2006):
pp. 34-43, 2006.

[Hor01] P. Horn: Autonomic Computing: Ibm’s Perspective on the State of
Information Technology. http://researchweb.watson.ibm.com/autonomic.
2001. Last Access on March 2010.

[HP10] HP: The HP Converged Infrastructure. http://www.hp.com/go/ai. 2010.
Last Access on May 2010.

[HS00] M. N. Huhns and L. M. Stephens: Multiagent Systems and Societies of
Agents. in: G. Weiss (Ed.), Multiagent Systems - a Modern Approach to
Distributed Artificial Intelligence, The MIT Press, Cambridge, MA,
USA, 2000, pp. 79-120.

[Hua04] A.-C. Huang: Building Self-Configuring Services Using Service-Specific
Knowledge, in: S. Peter (Ed.), 13th IEEE International Symposium on
High Performance Distributed Computing (HPDC-13 '04), IEEE
Computer Society, Honolulu, Hawaii, USA, 2004, pp. 45-54.

[HWH08] M. Hiel, H. Weigand, and W.-J. Heuvel: An Adaptive Service-Oriented
Architecture. in: K. Mertins, R. Ruggaber, K. Popplewell, X. Xu (Eds.),
Enterprise Interoperability III: New Challenges and Industrial
Approaches, Springer, London, UK, 2008, pp. 197-208.

352

[IBM05] IBM: An Architectural Blueprint for Autonomic Computing. http://www-
01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper
_4th.pdf. 2006. Last Access on March 2010.

[IBM06] IBM: The IBM Autonomic Computing Toolkit. http://www.ibm.com
/developerworks/autonomic/overview.html. 2006. Last Access on May
2010.

[ISO05] International Standard Organisation: ISO 9000: Quality Management
Systemsn - Fundamentals and Vocabulary, ISO, 2005.

[JFL+01] N. Jennings, P. Faratin, A. Lomuscio, S. Parsons, M. Wooldridge, and C.
Sierra: Automated Negotiation: Prospects, Methods and Challenges
Group Decision and Negotiation, 10 (2) (2001): pp. 199-215, 2001.

[JRM04] M. C. Jaeger, G. Rojec-Goldmann, and G. Mühl: QoS Aggregation for
Web Service Composition Using Workflow Patterns. In: Proceeding of
the Eighth IEEE International Enterprise Distributed Object Computing
Conference, pp. 149-159, Monterey, California, USA, IEEE Computer
Society, 2004.

[JRM05] M. C. Jaeger, G. Rojec-Goldmann, and G. Mühl: QoS Aggregation in
Web Service Compositions. In: Proceeding of the 2005 IEEE
International Conference on e-Technology, e-Commerce and e-Service,
Hong Kong, China, IEEE Computer Society, 2005.

[KC03] J. O. Kephart and D. M. Chess: The Vision of Autonomic Computing.
IEEE Computer, 36 (1) (2003): pp. 41-50, 2003.

[KCB03] R. Kazman, P. Clements, and L. Bass: Software Architecture in Practice,
Addison-Wesley, 2003.

[KE09] H. Kreger and J. Estefan: Navigating the SOA Open Standards
Landscape around Architecture, The Open Group/OMG/OASIS, 2009.

[KIM10] KIM: Karlsruher Integrated InformationManagement - KIM. http://kim.
cio.kit.edu/. 2010. Last Access on March 2010.

[Kin95] J. A. King: Intelligent Agents: Bringing Good Things to Life. AI Expert,
10 (2) (1995): pp. 17-19, 1995.

[KJ06] I.-C. Kim and H. Jin: An Agent System for Automated Web Service
Composition and Invocation. In R. Meersman, Z. Tari, P. Herrero:
Proceeding of Workshops On the Move to Meaningful Internet Systems
2006, pp. 90-96, Montpellier, France, Springer, 2006.

353

[KL03] A. Keller and H. Ludwig: The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services. Journal of
Network and Systems Management, 11 (1) (2003): pp. 57-81, 2003.

[KL09] D. Krishnan and B. Lublinksy: Debate: Is SOA Dead? http://www.infoq.
com/news/2009/01/is-soa-dead. 2009. Last Access on March 2011.

[Koc07] C. Koch: Beyond Execution. CIO, 10 (6) (2007): pp. 63-68, 2007.

[Kon00] F. Kon: Automatic Configuration of Component-Based Distributed
Systems. Ph.D. Thesis, Department of Computer Science, University of
Illinois at Urbana-Champaign, Urbana, Illinois, USA 2000.

[Lab02] C. Labounty: How to Establish and Maintain Service Level Agreements,
Help Desk Institute, Colorado Springs, CO, USA, 2002.

[LBKF06] A. Ludwig, P. Braun, R. Kowalczyk, and B. Franczyk: A Framework for
Automated Negotiation of Service Level Agreements in Services Grids.
In: Proceeding of the Workshop on Web Service Choreography and
Orchestration for Business Process Management 2005, pp. 89-101,
Nancy, France, Springer, 2005.

[Len64] G. G. Lendaris: On the Definition of Self-Organizing Systems.
Proceedings of the IEEE, 52 (3) (1964): pp. 324-325, 1964.

[LGH09] X. Liu, H. Gang, and M. Hong: Discovering Homogeneous Web Service
Community in the User-Centric Web Environment. IEEE Transactions
on Services Computing, 2 (2) (2009): pp. 167-181, 2009.

[LH06] L. Liu and H. Schmeck: A Roadmap Towards Autonomic Service-
Oriented Architectures. International Transactions on Systems Science
and Applications, 2 (3) (2006): pp. 245-255, 2006.

[Lin08] J. Lin: A Conceptual Model for Negotiating in Service-Oriented
Environments. Information Processing Letters, 108 (4) (2008): pp. 192-
203, 2008.

[LKH06] P. Lockemann, S. Kirn, and O. Herzog: Management Summary. in: S.
Kirn, O. Herzog, P. Lockemann, O. Spaniol (Eds.), Multiagent
Engineering: Theory and Applications in Enterprises, Springer, Berlin,
Germany, 2006, pp. 1-13.

[LKN+09] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm: What's inside the
Cloud? An Architectural Map of the Cloud Landscape. In: Proceeding of
the 2009 ICSE Workshop on Software Engineering Challenges of Cloud
Computing, Vancouver, Canada, IEEE Computer Society, 2009.

354

[LML05] P. Lin, A. MacArthur, and J. Leaney: Defining Autonomic Computing: A
Software Engineering Perspective. In: Proceeding of the 2005
Australian conference on Software Engineering, Brisbane, Australia,
IEEE Computer Society, 2005.

[LS10] L. Liu and H. Schmeck: Enabling Self-Organising Service Level
Management with Automated Negotiation. In: Proceeding of the 2010
IEEE/WIC/ACE International Conference on Web Intelligence, Toronto,
Canada, IEEE Computer Society, 2010.

[LTS07] L. Liu, S. Thanheiser, and H. Schmeck: Coping with the Complexity of
Service-Oriented Computing Using Controlled Self-Organization. In:
Proceeding of the Workshop Service Oriented Computing: a look at the
Inside 2007 (SOC@Inside'07), Vienna, Austria, EU Commission, 2007.

[LTS08] L. Liu, S. Thanheiser, and H. Schmeck: A Reference Architecture for
Self-Organizing Service-Oriented Computing. In W. Brinkschulte, T.
Ungerer, C. Hochberger, R.G. Spallek: Proceeding of International
Conference Architecture of Computing Systems – ARCS 2008, pp. 205-
219, Dresden, Germany, Springer, 2008.

[LTS09a] L. Liu, S. Thanheiser, and H. Schmeck: Assessing the Impact of Inherent
SOA System Properties on Complexity. In: Proceeding of the 2009
Fourth International Conference on Internet and Web Applications and
Services, pp. 429-434, Venice, Italy, IEEE Computer Society, 2009.

[LTS09b] L. Liu, S. Thanheiser, and H. Schmeck: Assessing Complexity of
Service-Oriented Computing Using Learning Classifier Systems. In:
Proceeding of the ACM Symposium on Applied Computing (SAC '09),
Honolulu, Hawaii, USA, ACM Press, 2009.

[LWJ03] A. R. Lomuscio, M. Wooldridge, and N. R. Jennings: A Classification
Scheme for Negotiation in Electronic Commerce. International Journal
of Group Decision and Negotiation, 12 (1) (2003): pp. 31-56, 2003.

[LYFA02] C. Liu, L. Yang, I. Foster, and D. Angulo: Design and Evaluation of a
Resource Selection Framework for Grid Applications. In: Proceeding of
the 11th IEEE International Symposium on High Performance
Distributed Computing, pp. 63 - 72, Edinburgh, Scotland, IEEE
Computer Society, 2002.

[LZLC02] H. Lin, Z. Zhao, H. Li, and Z. Chen: A Novel Graph Reduction
Algorithm to Identify Structural Conflicts. In: Proceeding of 35th Annual
Hawaii International Conference on System Sciences (HICSS'02), p.
289, Hawaii, USA, IEEE Computer Society, 2002.

355

[LZW+05] R. Li, Z. Zhang, Z. Wang, W. Song, and Z. Lu: WebPeer: A P2P-Based
System for Publishing and Discovering Web Services. In: Proceeding of
the 2005 IEEE International Conference on Services Computing, IEEE
Computer Society, 2005.

[Man09] A. T. Manes: SOA Is Dead; Long Live Services. http://apsblog.
burtongroup.com/2009/01/soa-is-dead-long-live-services.html. 2009.
Last Access on March 2010.

[MBH+04] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S.
Mcilraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N.
Srinivasan, and K. Sycara: OWL-S: Semantic Markup for Web Services,
World Wide Web Consortium, http://www.w3.org/Submission/OWL-S/,
2004.

[McF08] Paul McFedries: The Cloud Is the Computer. IEEE Spectrum, 2008 (08)
(2008), 2008.

[ME05] A. Muhammad and M. Egerstedt: Decentralized Coordination with
Local Interactions: Some New Directions. in: M. Thoma, M. Morari
(Eds.), Cooperative Control, Springer, Heldelberg, 2005, pp. 455-457.

[Men02] D. A. Menasce: QoS Issues in Web Services. IEEE Internet Computing,
6 (6) (2002): pp. 72-75, 2002.

[Men04] D. A. Menasce: Composing Web Services: A QoS View. IEEE Internet
Computing, 8 (6) (2004): pp. 80-90, 2004.

[MGI09] N. B. Mabrouk, N. Georgantas, and V. Issarny: A Semantic End-to-End
QoS Model for Dynamic Service Oriented Environments. In: Proceeding
of the 2009 ICSE Workshop on Principles of Engineering Service
Oriented Systems, Vancouver, Canada, IEEE Computer Society, 2009.

[MGVH04] D. McGuinness and F. Van Harmelen: OWL Web Ontology Language
Overview, W3C recommendation, World Wide Web Consortium,
http://www.w3.org/TR/owl-features/, 2004.

[Mic04] Microsoft: Microsoft Dynamic System Initiative Overview. http://
download.microsoft.com/download/e/5/6/e5656886-ad18-4afd-945f-
3680278dfd58/DSI%20overview.doc. 2004. Last Access on May 2010.

[Mir10] Microsoft: Windows Performance Monitoring. http://msdn.microsoft.
com/en-us/library/ee663292(v=VS.85).aspx. 2010. Last Access on
August 2010.

[Mit97] T. M. Mitchell: Machine Learning, McGraw-Hill, 1997.

356

[MKB06] I. Mueller, R. Kowalczyk, and P. Braun: Towards Agent-Based
Coalition Formation for Service Composition. In: Proceeding of the
IEEE/WIC/ACM international conference on Intelligent Agent
Technology 2006, Hongkong, China, IEEE Computer Society, 2006.

[MKL+06] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and R. Metz:
Reference Model for Service Oriented Architecture, OASIS, 2006.

[MM04] B. Melcher and B. Mitchell: Towards an Autonomic Framework: Self-
Configuring Network Services and Developing Autonomic Applications.
Intel Technology Journal, 8 (4) (2004): pp. 279-290, 2004.

[MMTZ06] M. Mamei, R. Menezes, R. Tolksdorf, and F. Zambonelli: Case Studies
for Self-Organization in Computer Science. Journal of Systems
Architecture, 52 (8) (2006): pp. 443-460, 2006.

[Mon09] D. C. Montgomery: Design and Analysis of Experiments, 7th
Edition.John Wiley & Sons, 2009.

[Moo01] A. V. Moorsel: Metrics for the Internet Age: Quality of Experience and
Quality of Business, HP Laboratories, Palo Alto, CA, USA, 2001.

[Mos02] S. Moss: Challenges in Agent Based Social Simulation of Multilateral
Negotiation. in: K. Dautenhahn, A. Bond, L. Cañamero, B. Edmonds
(Eds.), Socially Intelligent Agents, Multiagent Systems, Artificial
Societies, and Simulated Organizations, Springer, New York, USA,
2002, pp. 251-258.

[MS04] C. Müller-Schloer: Organic Computing: On the Feasibility of Controlled
Emergence. In A. Orailoglu, P.H. Chou, P. Eles, A. Jantsch: Proceeding
of the 2nd IEEE/ACM/IFIP International Conference on
Hardware/software Codesign and System Synthesis, pp. 2-5, Stockholm,
Sweden, ACM Press, 2004.

[MS04a] J. McConnell and E. Siegel: Practical Service Level Management:
Delivering High-Quality Web-Based Services, Cisco Press, Indianapolis,
IN, USA, 2004.

[MSS08] C. Müller-Schloer and B. Sick: Controlled Emergence and Self-
Organization. in: R.P. Würtz (Ed.), Organic Computing, Springer, 2008,
pp. 81-103.

[NCV06] M. J. North, N. T. Collier, and J. R. Vos: Experiences Creating Three
Implementations of the Repast Agent Modeling Toolkit. ACM
Transactions on Modeling and Computer Simulation, 16 (1) (2006): pp.
1-25, 2006.

357

[NKMH06] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker: Web Service
Security: Soap Message Security 1.1 (WS-Security 2004). http://www.
oasis-open.org/committees/download.php/21255/wss-v1.1-spec-errata-
os-SOAPMessageSecurity.pdf. 2006. Last Access on May 2009.

[NPTT06] A. Negri, A. Poggi, M. Tomaiuolo, and P. Turci: Agents for E-Business
Applications. In: Proceeding of the Fifth International Joint Conference
on Autonomous Agents and Multiagent Systems, Hakodate, Japan, ACM,
2006.

[Nwa96] H. S. Nwana: Software Agents: An Overview. Knowledge Engineering
Review, 11 (3) (1996): pp. 205-244, 1996.

[OAS06] OASIS: The WS-Resource Framework, OASIS, http://docs.oasis-
open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf, 2006.

[OC10] German Priority Programme SPP 1183 Organic Computing Website.
http://www.organic-computing.de/spp. 2010. Last Access on May 2010.

[OG08] The Open Group: Service Oriented Infrastructure Reference
Framework, The Open Group, 2008.

[OG09] The Open Group: SOA Source Book: How to Use Service-Oriented
Architecture Effectively, The Open Group Series, Van Haren Publishing,
Zaltbommel, Netherlands, 2009.

[OGT+99] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimhigner, G. Johnson, N.
Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf: An
Architecture-Based Approach to Self-Adaptive Software. IEEE
Intelligent Systems and their Applications, 14 (3) (1999): pp. 54-62,
1999.

[OMG09] OMG: Business Process Model and Notation (BPMN) 1.2, OMG, 2009,
p. 316.

[Pap05] M. P. Papazoglou: Extending the Service-Oriented Architecture.
Business Integration Journal, 2005 (FEB) (2005): pp. 18-21, 2005.

[PBB+02] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P.
Enriquez, A. Fox, E. Kıcıman, M. Merzbacher, D. Oppenheimer, N.
Sastry, W. Tetzlaff, J. Traupman, and N. Treuhaft: Recovery Oriented
Computing (ROC): Motivation, Definition, Techniques, and Case
Studies, University of California at Berkeley, Berkeley, CA, USA, 2002.

[PBS+09] H. Prothmann, J. Branke, H. Schmeck, S. Tomforde, F. Rochner, J.
Hahner, and C. Müller-Schloer: Organic Traffic Light Control for Urban

358

Road Networks. International Journal of Autonomous and Adaptive
Communications Systems, 2 (3) (2009): pp. 203-225, 2009.

[PH07] M. P. Papazoglou and W.-J. Heuvel: Service Oriented Architectures:
Approaches, Technologies and Research Issues. The VLDB Journal, 16
(3) (2007): pp. 389-415, 2007.

[PNT06] M. Petsch, V. Nissen, and T. Traub: Anwendungspotenziale von
Intelligenten Agenten in Service-Orientierten Architekturen. in: V.
Nissen, M. Petch, H. Schorcht (Eds.), Service-Orientierte Architekturen:
Chancen und Herausforderungen Bei Der Flexibilisierung und
Integration von Unternehmensprozessen, Die Deutsche Universitäts-
Verlag, Wiesbaden, Germany, 2006, pp. 167-185.

[Pol08] D. Polani: Foundations and Formalizations of Self-Organization. in: M.
Prokopenko (Ed.), Advances in Applied Self-Organizing Systems,
Springer, London, UK, 2008, pp. 19-37.

[Pro08] M. Prokopenko: Design Vs. Self-Organization. in: M. Prokopenko (Ed.),
Advances in Applied Self-Organizing Systems, Springer, London, UK,
2008, pp. 3-17.

[PRT+08] H. Prothmann, F. Rochner, S. Tomforde, J. Branke, C. Müller-Schloer,
and H. Schmeck: Organic Control of Traffic Lights. In: Proceeding of
the 5th international conference on Autonomic and Trusted Computing,
pp. 219 - 233, Oslo, Norway, Springer, 2008.

[PSGS04] V. Poladian, J. P. Sousa, D. Garlan, and M. Shaw: Dynamic
Configuration of Resource-Aware Services. In: Proceeding of the 26th
International Conference on Software Engineering, Edinburgh,
Scotland, IEEE Computer Society, 2004.

[PTDL07] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann: Service-
Oriented Computing: State of the Art and Research Challenges. IEEE
Computer, 40 (11) (2007): pp. 38-45, 2007.

[RAC+02] M. Rutherford, K. Anderson, A. Carzaniga, D. Heimbigner, and A.
Wolf: Reconfiguration in the Enterprise JavaBean Component Model.
In: Proceeding of the 2002 IFIP/ACM Working Conference on
Component Deployment, pp. 47-54, Berlin, Germany, Springer, 2002.

[Rah04] I. Rahwan: Interest-Based Negotiation in Multi-Agent Systems. PhD
Thesis, Department of Information Systems, University of Melbourne,
Melbourne, Australian, 2004.

359

[Rai82] H. Raiffa: The Art and Science of Negotiation, Harvard University Press,
1982.

[Reb01] M. Rebstock: Elektronische Unterstützung und Automatisierung von
Verhandlungen. Wirtschaftsinformatik, 43 (6) (2001): pp. 609-617,
2001.

[Ric10] U. M. Richter: Controlled Self-Organisation Using Learning Classifier
Systems. Ph.D. Thesis, Fakultät für Wirtschaftswissenschaften,
Karlsruhe Institute of Technology, Karlsruhe, Germany, 2010.

[RL07] C. Rudd and V. Lloyd: ITIL V3: Service Design Book, 1.The Stationery
Office, London, UK, 2007.

[RMB+06] U. Richter, M. Mnif, J. Branke, C. Müller-Schloer, and H. Schmeck:
Towards a Generic Observer/Controller Architecture for Organic
Computing. In C. Hochberger, R. Liskowsky: Proceeding of
INFORMATIK 2006 - Informatik für Menschen!, pp. 112-119, Dresden,
Germany, Bonner Köllen Verlag, 2006.

[RRJ+03] I. Rahwan, S. D. Ramchurn, N. R. Jennings, P. McBurney, S. Parsons,
and L. Sonenberg: Argumentation-Based Negotiation. The Knowledge
Engineering Review, 18 (04) (2003): pp. 343-375, 2003.

[RS05] J. Rao and X. Su: A Survey of Automated Web Service Composition
Methods. In J. Cardoso, A. Sheth: Proceeding of First International
Workshop Semantic Web Services and Web Process Composition, pp.
43-54, San Diego, CA, USA, Springer, 2005.

[RZ94] J. S. Rosenschein and G. Zlotkin: Rules of Encounter - Designing
Conventions for Automated Negotiation among Computers, The MIT
Press, 1994.

[San00] T. W. Sandholm: Distributed Rational Decision Making. in: G. Weiss
(Ed.), Multiagent Systems - a Modern Approach to Distributed Artificial
Intelligence, The MIT Press, Massachusetts, USA, 2000, pp. 201-258.

[Sar11] Sarasvati Project: Sarasvati Workflow Engine. http://code.google
.com/p/sarasvati/. 2011. Last Access on February 2011.

[SC00] A. F. Stuhlmacher and M. V. Champagne: The Impact of Time Pressure
and Information on Negotiation Process and Decisions. Group Decision
and Negotiation, 9 (6) (2000): pp. 471-491, 2000.

[Sch05] H. Schmeck: Organic Computing - a New Vision for Distributed
Embedded Systems. In A. Ghafoor, Uwe Brinkschulte, K. Ramamritham,
R.G. Pettit: Proceeding of the Eighth IEEE International Symposium on

360

Object-Oriented Real-Time Distributed Computing 2005, pp. 201-203,
Seattle, WA, USA, IEEE Computer Society, 2005.

[SFJ97] C. Sierra, P. Faratin, and N. R. Jennings: A Service-Oriented Negotiation
Model between Autonomous Agents. In: Proceeding of the 8th European
Workshop on Modelling Autonomous Agents in a Multi-Agent World, pp.
17-35, Springer, 1997.

[SH10] J. Sinur and J. B. Hill: Magic Quadrant for Business Process
Management Suites. http://www.gartner.com/technology/media-products
/reprints/oracle/article161/article161.html. 2010. Last Access on
February 2010.

[SLA10] SLA@SOI Project: SLA@SOI Project Website. http://sla-at-soi.eu/.
2010. Last Access on May 2010.

[SLE04] J. Skene, D. D. Lamanna, and W. Emmerich: Precise Service Level
Agreements. In: Proceeding of the 26th International Conference on
Software Engineering, Edinburgh, Scotland, IEEE Computer Society,
2004.

[Smi80] R. G. Smith: The Contract Net Protocol: High-Level Communication
and Control in a Distributed Problem Solver. IEEE Transactions on
computers, 29 (12) (1980): pp. 1104-1113, 1980.

[SMS+02] A. Sahai, V. Machiraju, M. Sayal, A. V. Moorsel, and F. Casati:
Automated SLA Monitoring for Web Services Management Technologies
for E-Commerce and E-Business Applications, Springer, 2002, pp. 28-
41.

[SO00] W. Sadiq and M. E. Orlowska: Analyzing Process Models Using Graph
Reduction Techniques. Information Systems, 25 (2) (2000): pp. 117-134,
2000.

[SS07] J. Schelp and M. Stutz: SOA-Governance. HMD - Praxis der
Wirtschaftsinformatik, 253 (42) (2007): pp. 66-73, 2007.

[SSW10] S. K. Sia, C. Soh, and P. Weill: Global IT Management: Structuring for
Scale, Responsiveness, and Innovation. Communication of ACM, 53 (3)
(2010): pp. 59-64, 2010.

[ST09] M. Salehie and L. Tahvildari: Self-Adaptive Software: Landscape and
Research Challenges. ACM Transactions on Autonomous and Adaptive
Systems, 4 (2) (2009): pp. 1-42, 2009.

[SV97] A. Shleifer and R. W. Vishny: A Survey of Corporate Governance. The
Journal of Finance, 52 (2) (1997): pp. 737-783, 1997.

361

[SW04] D. Sprott and L. Wilkes: Understanding Service-Oriented Architecture.
Microsoft Architect Journal, 2004 (Jan) (2004), 2004.

[TGWD09] Y. Takayama, E. Ghiglione, S. Wilson, and J. Dalziel: Human Activities
in Distributed BPM. In W. Abramowicz, L. Maciaszek, R. Kowalczyk,
A. Speck: Proceeding of Workshop Business Process, Services
Computing and Intelligent Service Management 2009, pp. 139-151,
Leipzig, Germany, Gesellschaft für Informatik, 2009.

[The08] W. Theilmann: SLA@SOI - an Overview: Empowering the Service
Economy with SLA-Aware Infrastructures. http://sla-at-soi.eu/wp-
content/uploads/2008/12/slasoi-e28093-an-overview.pdf. 2008. Last
Access on May 2010.

[TLS07] S. Thanheiser, L. Liu, and H. Schmeck: Towards Collaborative Coping
with IT Complexity by Combining SOA and Organic Computing. System
and Information Sciences Notes, 2 (1) (2007): pp. 82-87, 2007.

[TLS08] S. Thanheiser, L. Liu, and H. Schmeck: Selbstorganisation Durch
Dezentralität–Dezentralität Durch Selbstorganisation: Auf Dem Weg Zu
Einem ‚Organischen ‘Management von Unternehmens-IT. In M. Bichler,
T. Hess, H. Krcmar, U. Lechner, F. Matthes, A. Picot, B. Speitkamp:
Proceeding of Multikonferenz Wirtschaftsinformatik 2008, pp. 255-266,
Munich, Germany, GITO-Verlag, 2008.

[TPB+10] S. Tomforde, H. Prothmann, J. Branke, J. Hähner, C. Müller-Schloer,
and H. Schmeck: Possibilities and Limitations of Decentralised Traffic
Control Systems. In: Proceeding of the 2010 IEEE World Congress on
Computational Intelligence (IEEE WCCI 2010), Barcelona, Spain, IEEE
Computer Society, 2010.

[TPR+08] S. Tomforde, H. Prothmann, F. Rochner, J. Branke, J. Hähner, C.
Müller-Schloer, and H. Schmeck: Decentralised Progressive Signal
Systems for Organic Traffic Control. In S. Brueckner, P. Robertson, U.
Bellur: Proceeding of the 2008 Second IEEE International Conference
on Self-Adaptive and Self-Organizing Systems, Venice, Italy, IEEE
Computer Society, 2008.

[TYB08] W. Theilmann, R. Yahyapour, and J. Butler: Multi-Level SLA
Management for Service-Oriented Infrastructures. In P. Mähönen, K.
Pohl, T. Priol: Proceeding of First European Conference ServiceWave
2008, pp. 324-335, Madrid, Spain, Springer, 2008.

[USC+08] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood: Agile
Dynamic Provisioning of Multi-Tier Internet Applications. ACM

362

Transactions on Autonomous and Adaptive Systems, 3 (1) (2008): pp. 1-
39, 2008.

[Var08] J. Varia: Cloud Architectures. http://jineshvaria.s3.amazonaws.com/
public/cloudarchitectures-varia.pdf. 2008. Last Access on May 2010.

[VF60] H. V. Foerster: On Self-Organizing Systems and Their Environments. in:
M.C. Yovits, S. Cameron (Eds.), Self-Organizing Systems, Pergamon
Press, London, UK, 1960, pp. 31-50.

[Vid98] R. Vidgen: Cybernetics and Business Processes: Using the Viable
System Model to Develop an Enterprise Process Architecture.
Knowledge and Process Management, 5 (2) (1998): pp. 118-131, 1998.

[VOH+07] A. S. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yendluri, T.
Boubez, and Ü. Yalçinalp: Web Services Policy Framework (WS-
Policy). http://www.w3.org/TR/ws-policy/. 2007. Last Access on May
2010.

[VRM+08] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner: A Break
in the Clouds: Towards a Cloud Definition. ACM SIGCOMM Computer
Communication Review, 39 (1) (2008): pp. 50-55, 2008.

[W3C04] W3C: Web Service Architecture WS-Arch. http://www.w3.org/TR/ws-
arch/. 2004. Last Access on May 2011.

[WC09] M. D. Weerdt and B. Clement: Introduction to Planning in Multiagent
Systems. Multiagent and Grid Systems, 5 (4) (2009): pp. 345-355, 2009.

[WDCL08] X. Wang, Z. Du, Y. Chen, and S. Li: Virtualization-Based Autonomic
Resource Management for Multi-Tier Web Applications in Shared Data
Center. Journal of Systems and Software, 81 (9) (2008): pp. 1591-1608,
2008.

[WH07] D. Weyns and T. Holvoet: An Architectural Strategy for Self-Adapting
Systems. In: Proceeding of the 2007 International Workshop on Software
Engineering for Adaptive and Self-Managing Systems, pp. 3-11,
Minneapolis, USA, IEEE Computer Society, 2007.

[Win06] P. J. Windley: SOA Goverance: Rules of the Game, InfoWorld, IDG,
2006.

[WJ95] M. Wooldridge and N. R. Jennings: Intelligent Agents: Theory and
Practice. The Knowledge Engineering Review, 10 (02) (1995): pp. 115-
152, 1995.

363

[WMS+10] M. Wünsche, S. Mostaghim, H. Schmeck, T. Kautzmann, and M.
Geimer: Organic Computing in Off-Highway Machines. In: Proceeding
of Second International Workshop on Self-Organizing Architectures
2010, Washington, DC, USA, ACM, 2010.

[Woo02] M. Wooldridge: An Introduction to Multiagent Systems, Wiley & Sons,
Chichester, England, 2002.

[WR04] P. Weill and J. Ross: IT Governance: How Top Performers Manage IT
Decision Rights for Superior Results, Harvard Business School Press,
Boston, MA, USA, 2004.

[WS06] K. Wilson and I. Sedukhin: Web Service Distributed Management:
Management of Web Services (WSDM-MOWS), OASIS, 2006.

[WSW+05] J. Wildstrom, P. Stone, E. Witchel, R. J. Mooney, and M. Dahlin:
Towards Self-Configuring Hardware for Distributed Computer Systems,
Second International Conference on Autonomic Computing (ICAC'05),
IEEE Computer Society, 2005, pp. 241-249.

[XHL+03] X. Dong, S. Hariri, X. Lizhi, H. Chen, M. Zhang, S. Pavuluri, and S.
Rao: Autonomia: An Autonomic Computing Environment. In:
Proceeding of the 2003 IEEE International Performance, Computing,
and Communications Conference, pp. 61-68, IEEE Computer Society,
2003.

[YKL+07] J. Yan, R. Kowalczyk, J. Lin, M. B. Chhetri, S. K. Goh, and J. Zhang:
Autonomous Service Level Agreement Negotiation for Service
Composition Provision. Future Generation Computer Systems, 23 (6)
(2007): pp. 748-759, 2007.

[ZJ89] G. Zlotkin and J. S. Rosenschein: Negotiation and Task Sharing among
Autonomous Agents in Cooperative Domains. In: Proceeding of the 11th
International Joint Conference on Artificial Intelligence, San Mateo,
CA, USA, Morgan Kaufmann, 1989.

[ZMCW08] F. Zulkernine, P. Martin, C. Craddock, and K. Wilson: A Policy-Based
Middleware for Web Services SLA Negotiation In: Proceeding of the
IEEE International Conference on Web Services 2008, Beijing, China,
IEEE Computer Society, 2008.

[ZR05] F. Zambonelli and O. F. Rana: Self-Organization in Distributed Systems
Engineering: Introduction to the Special Issue. IEEE Transaction on
Systems, Man, and Cybernatics - PART A: Systems and Humans, 35 (3)
(2005): pp. 313-314, 2005.

