
an access definition
and query language

towards a unified
access control model

andreas
sonnenbichler

a.
 s
on

ne
nb
ic
hl
er

A D

Q Lan
 a
cc
es
s
de
fi
ni
ti
on
 a
nd
 q
ue
ry
 l
an
gu
ag
e

Andreas Sonnenbichler

An Access Definition and Query Language

Towards a Unified Access Control Model

An Access Definition and Query Language

Towards a Unified Access Control Model

by
Andreas Sonnenbichler

Dissertation, Karlsruher Institut für Technologie (KIT)
Fakultät für Wirtschaftswissenschaften
Tag der mündlichen Prüfung: 25. Juli 2013
Referenten: Prof. Dr. Andreas Geyer-Schulz, Prof. Dr. Andreas Oberweis

Print on Demand 2013

ISBN 978-3-7315-0088-9

This document – excluding the cover – is licensed under the
Creative Commons Attribution-Share Alike 3.0 DE License

(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

The cover page is licensed under the Creative Commons
Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE):

http://creativecommons.org/licenses/by-nd/3.0/de/

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark of Karlsruhe
Institute of Technology. Reprint using the book cover is not allowed.

www.ksp.kit.edu

An Access Definition and
Query Language

Towards a Unified Access Control Model

Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

(Dr.-Ing.)

bei der Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte
DISSERTATION

von

Dipl.-Wi.-Ing. Andreas Sonnenbichler

Datum der mündlichen Prüfung: 25. Juli 2013
Referent: Prof. Dr. Andreas Geyer-Schulz
Korreferent: Prof. Dr. Andreas Oberweis

Credits

I like to carry on the tradition to give credits to my partners, co-workers, super-
visor and family.

First of all, I would like to thank Andreas Geyer-Schulz, head of our depart-
ment, for his continuing support. It is a rare case and huge asset that an aca-
demic supervisor can be bothered almost at any time. Andreas owns an incred-
ible creativity and always shares his helpful new ideas and insights.

I further want to thank our students who have been working on several aspects
of the implementation of the access control service. These are especially Stefan
Geretschläger and Frederik Haxel. I want to thank Diana Lauer for her good
mood, cookies, coffee, and other sweeties. Jens Kleineheismann provided me
advise and support concerning IT tools and infrastructure.

There are three more persons I would like to say thank you. Without their help,
this work would never have been finished: First of all, my wife, for all her
support, for supporting my crazy idea to give up a well paid job in industry
and go back to university. For her love. For her encouragement. Thank you!
Then, my mother, for always knowing the right words when the work seemed
never-ending. And my daughter, Isabelle, for just being who she is and filling
the world with sunlight by her laughter. You are teaching me every day that
one is a valuable person even without achieving goals. Maybe, one day I will
believe you.

i

Abstract (English Version)

In this dissertation we suggest a meta access control model emulating estab-
lished access control models by configuration and offering enhanced features
like the delegation of rights, ego-centered roles, and decentralized administra-
tion. The suggested meta access control model is named ”Access Definition
and Query Language” (ADQL). ADQL is represented by a formal, context-
free grammar allowing to express the targeted access control model, policies,
facts, and access queries as a formal language. ADQL is available as executable,
ready-to-use software service with its performance high enough to be used by
company software as third party access control component.

The aim of all access control models is to protect information in computer sys-
tems. For this purpose, conditions are formulated granting or denying access.
The method how these conditions are formulated and constructed is described
by the underlying access control model. Since the middle of the 20th century
a large number of such models has been suggested, e.g., DAC, MAC, RBAC,
and RBAC-derived models, logic-based models and models stemming from
the ”semantic web”. All models follow a fixed approach and cannot be flexi-
bly substituted by each other: policy structure, model definition, and the way
facts are represented cannot be transferred. In business software, components
for access control are specifically implemented for each use case and are almost
never re-used for other software.

The ”Access Definition and Query Language” is a meta model allowing to em-
ulate access control models in a flexible and demand-specific way, i.e., it may
behave like an established access control model or support new requirements
like ego-centered roles, the delegation of rights or decentralized approaches.
The language utilizes concepts from mathematics, especially set theory. The
structure is oriented to the well-known Lambda calculus utilizing definitions
and applications. Hereby, definitions correspond to state changes of the system
(configuration), evaluations (”access checks”) assess policies and their access
conditions. The dissertation comprehends the definition of the language, its se-
mantics, its underlying concepts, and examples how established access control
models are represented in ADQL.

The dissertation includes the implementation of a software service. The service
comprises of an access control system processing ADQL language expressions.

iii

A context-free LL(2) parser is included. The implementation is scalable and
distributed. The performance is high enough for the deployment in produc-
tion business environments. Business software can utilize the ADQL software
service to delegate the administration and enforcement of access control rules
based on the chosen model. Hereby, the business software is disburdened of
essential parts of access control and administration.

This work has been supervised by Prof. Dr. Andreas Geyer-Schulz at the Insti-
tute of Information Systems and Marketing. It is written in English language.
Dr.-Ing. is the targeted academic degree.

iv

Abstract (German Version)

Die Dissertation schlägt ein Meta-Zugriffskontroll-Modell vor, das mittels Kon-
figuration flexibel Zugriffskontroll-Modelle nachbilden kann. Hierzu gehört
u.a. die Unterstützung von Rechte-Delegation, ego-zentrierten Rollen und De-
zentralität. Der flexible Ansatz erlaubt zudem die Nachbildung diverser bekan-
nter Zugriffskontroll-Modelle. Die Konfiguration erfolgt durch eine formale,
kontextfreie Sprache, die ”Access Definition and Query Language” (ADQL).
ADQL wurde als lauffähiger, verwendbarer Softwareservice implementiert und
ist performant genug, um von Unternehmenssoftware zur Zugriffsverwaltung
und -prüfung verwendet zu werden.

Das Ziel aller Zugriffskontroll-Modelle ist der Schutz von Informationen in
Computersystemen. Hierzu werden Bedingungen formuliert, wann Zugriff
auf Daten gewährt werden darf oder verboten werden muss. Wie diese Be-
dingungen formuliert werden und aufgebaut sind, beschreibt das zu Grunde
liegende Zugriffskontroll-Modell. Seit Mitte des 20. Jahrhunderts wurde eine
große Zahl solcher Modelle vorgeschlagen, z.B. DAC-, MAC-Modelle, RBAC-
und RBAC-abgeleitete Modelle, logikbasierte Modelle und Modelle aus dem
”Semantischen Web”. Alle Modelle folgende einem festen Ansatz und sind
nicht flexibel untereinander austauschbar: Policy-Struktur, Modelldefinition
und Fakten-Repräsentation sind nicht übertragbar. In Unternehmenssoftware
werden Komponenten für die Zugriffskontrolle spezifisch und kaum wieder-
verwendbar immer wieder neu implementiert.

Die ”Access Definition and Query Language” ist ein Meta-Modell, das es er-
laubt, flexibel und bedarfsspezifisch Zugriffskontrollmodelle abzubilden, d.h.
wie bekannte Zugriffskontroll-Modelle zu funktionieren oder neue Anforderun-
gen, wie ego-zentrierte Rollen, Rechte-Delegation oder dezentrale Ansätze zu
unterstützen. Die Sprache bedient sich Konzepten der Mathematik, insbeson-
dere der Mengenlehre. Der Aufbau orientiert sich am bekannten Lambda-
Kalkül, das Definitionen und Applikationen erlaubt. Definitionen entsprechen
hierbei Zustandsänderungen des Systems (Konfiguration), Evaluationen (”ac-
cess checks”) werten Policies und deren Zugriffsbedingungen aus. Die Dis-
sertation umfasst die Beschreibung der Sprache, ihrer Semantik, ihrer zugrun-
deliegenden Konzepte und Beispiele, wie bekannte Zugriffskontroll-Modelle
in ADQL repräsentiert werden.

v

Die Dissertation beinhaltet die Implementierung eines Softwareservices. Dieser
umfasst ein Zugriffskontroll-System, das Ausdrücke der Sprache ADQL verar-
beitet. Es wird ein kontextfreier LL(2)-Parser verwendet. Die Implementierung
ist skalierbar und verteilt. Die Performanz ist schnell genug für den Einsatz in
Unternehmen. Unternehmenssoftware kann den ADQL-Softwareservice ver-
wenden, um diesem die Verwaltung und Prüfung der Zugriffsregeln auf Ba-
sis des gewählten Modells zu übertragen. Für die Unternehmenssoftware ent-
fallen damit wesentliche Teile der Zugriffsprüfung und -verwaltung.

Die Arbeit wurde von Herrn Prof. Dr. Andreas Geyer-Schulz am Institut für
Informationsdienste und Marketing betreut. Sie ist in englischer Sprache ver-
fasst. Dr.-Ing. ist der angestrebte Doktorgrad.

vi

Contents

1. Introduction 1

2. An Introduction to Access Control 11
2.1. Design Principles . 12
2.2. Triple-A – Authentication, Authorization, Accounting 16
2.3. Important Definitions and Concepts 17
2.4. A Short History of Access Control 19
2.5. Discretionary Access Control Models (DAC) 21

2.5.1. The Access Matrix Model 21
2.5.2. Authorization Tables . 23
2.5.3. Access Control Lists . 23
2.5.4. Capability Lists . 25
2.5.5. Vulnerability of Discretionary Access Control Models . . . 26
2.5.6. The General Safety Problem 27

2.6. Mandatory Access Control Models (MAC) 27
2.6.1. The Bell-LaPadula model 27
2.6.2. Biba’s Integrity Model . 28

2.7. The Clark-Wilson model . 29
2.8. The Chinese Wall Policy . 30
2.9. Role Based Access Control . 30

2.9.1. Derived Role Based Access Control Models 33
2.10. Standards in Authorization . 35

2.10.1. RFC 2753 Framework for Policy-Based Admission Control 35
2.10.2. RFC 2904-2906 AAA Authorization Framework 37
2.10.3. RFC 3198 Terminology for Policy-Based Management . . . 37

2.11. XACML - The eXtensible Access Control Markup Language . . . 38
2.11.1. XACML Language Definition 38
2.11.2. XACMLs Architectural Elements 39
2.11.3. XACMLs Data Flow . 40
2.11.4. Problems of XACML . 42

2.12. Access Control and the Semantic Web 44
2.13. Logic-Based Authorization Models 45

2.13.1. Woo and Lam’s approach 45
2.13.2. Jajodia et al. 47

vii

2.14. Summary . 48

Contents

3. Motivating Example 49
3.1. Components of ADQL . 49
3.2. Motivating Example . 51

4. The Access Definition and Query Language (ADQL) 61
4.1. The Syntax of ADQL . 61
4.2. Expression . 62
4.3. Term . 62
4.4. Symbols and Identifier . 63

4.4.1. Symbols . 63
4.4.2. Identifiers . 64

4.5. Definitions . 64
4.5.1. Definition of Entities . 66
4.5.2. Definitions of Containers 66
4.5.3. Usage of Variables . 68
4.5.4. Definition of Relations . 70
4.5.5. Definition of Filtered 1-Projections 72
4.5.6. Definition of Tests . 74
4.5.7. Definition of Policies . 75
4.5.8. Definition of Scopes . 76

4.6. Applications . 77
4.6.1. Application of Entities . 78
4.6.2. Application of Containers 79
4.6.3. Applications of Relations 83
4.6.4. Applications of F1-Projections 84
4.6.5. Application of Tests . 84
4.6.6. Application of Policies . 86
4.6.7. Application of Scopes . 88

4.7. Summary . 88

5. The Concepts of the Access Definition and Query Language 91
5.1. Overview of ADQL’s Concepts . 91
5.2. The Logical Layers of ADQL . 92
5.3. Entities . 94
5.4. Containers . 98
5.5. Relations . 104
5.6. Variables, Bindings, Scopes . 110

5.6.1. Scopes . 113
5.6.2. Access Control on Variables and Scopes 114

5.7. Tests . 114
5.8. Policies . 118

viii

Contents

5.9. Operators . 119
5.9.1. Set Operators . 120
5.9.2. Equal Operators . 121
5.9.3. Order Operators . 122

5.10. Summary of ADQL’s Concepts . 125

6. Use Cases for ADQL 127
6.1. Bell-LaPadula Access Control Model 128
6.2. A Real-World Example: SAP R/3 133
6.3. Extended RBAC: An E-Science Example 139

6.3.1. Check Access Requests . 148
6.4. Summary . 150

7. Implementing ADQL as Software Service 153
7.1. ADQL’s Implementation: General Architecture 153
7.2. Back End Design and Architecture 154

7.2.1. Back End Architecture and Modules 155
7.2.2. Persistence Layer . 156
7.2.3. Persistence Module and Database Cache 164
7.2.4. ADQL’s Core Layer, Controller, and Parser 165
7.2.5. Network Server Layer . 169

7.3. Front End Design and Architecture 171
7.4. Intermediate Layer: Design and Architecture 174
7.5. Using ADQL as Software Service 175

7.5.1. Decide on the Model . 175
7.5.2. Implement Access Checks in the Software 176
7.5.3. Provide the Facts . 177
7.5.4. Learn the Current System State 178
7.5.5. Defining Policies . 179

7.6. ADQL Back End Performance . 179
7.7. Performance of Other Access Control Implementation 184
7.8. Summary . 186

8. Conclusion 187

Appendix 191

A. Backus-Naur-Form of ADQL v3.0 193

B. Traveler Scenario 197

ix

1. Introduction

Imagine computer applications without access control: a total transparent Face-
book1 for example. There are no limits to what a user can do. No limits which
data anybody can access. No restrictions or controls apply. Total transparency.
No more secrets.

At the first glance, this idea might look like a desirable utopia. At the second
glance the idea evolves to a nightmare: In our total-transparent Facebook, any
user can access any private data. Can even modify it. Can change anybody’s
pictures, postings, or comments. Surely, a scenario, many of us would not agree
on.

Wikipedia and the Seigenthaler incidence

There has been a project which almost totally avoided access control in its be-
ginnings: Wikipedia. In its early days, from about 2001 to 2005, Wikipedia
had (almost) no access control. Anybody was able to read, create, modify, and
delete any article or parts of articles [wik12a]. In 2005, the so-called Seigen-
thaler incident occurred [wik12b]. John Seigenthaler is a well-known Ameri-
can journalist and writer. In May 2005, an anonymous article was posted about
him falsely stating that Seigenthaler has been a suspect in John F. Kennedy’s
assassination. The false text version was accessible at Wikipedia from May to
September 2005. It read: ”John Seigenthaler Sr. was the assistant to Attorney
General Robert Kennedy in the early 1960s. For a short time, he was thought
to have been directly involved in the Kennedy assassinations of both John, and
his brother, Bobby. Nothing was ever proven. John Seigenthaler moved to the
Soviet Union in 1972, and returned to the United States in 1984. He started one
of the country’s largest public relations firms shortly thereafter.” [wik12b]2

This hoax article was not corrected for more than four months. In the process
of the Seigenthaler incident the anonymous author could not be identified (al-
though the IP address was leading to the company the author was employed

1http://www.facebook.com, last accessed 2012-10-25
2We cite indirectly as the hoax versions have been hidden from public during the process of the

Seigenthaler incident.

1

http://www.facebook.com

1. Introduction

in) [Ter05b]. Brian Chase, the hoax’s author, uncovered himself by delivering a
confessional letter to Seigenthaler’s office. The CNET News.com author Daniel
Terdiman did an interview with Daniel Brandt. Brandt was running the inves-
tigation on the Seigenthaler incident to find out, who the author of the wrong
Wikipedia article was. Brandt summarized on Wikipedia’s access control pol-
icy ”The whole model is basically flawed. [...] When you get into stuff like
biographies and particularly biographies of living people, the quality is much
more iffy, the potential for libel is much greater and the controls just are not
appropriate.” [Ter05b, p.2].

The Seigenthaler incident led to the introduction of access control in Wikipedia
[Ter05a]: ”These included a new ”checkuser” privilege policy update to assist
in sock puppetry investigations, a new feature called semi-protection, a more
strict policy on biographies of living people and the tagging of such articles for
stricter review. A restriction of new article creation to registered users only was
put in place in December 2005.” [wik12a].

The utopia of an online encyclopedia without any restrictions (thus, access con-
trol) had failed. However, the incident offered some learning points. The target
of Wikipedia is to offer a freely accessible encyclopedia which is created and
maintained by its users. Furthermore, Wikipedia has no commercial interests.
Although Wikipedia saves any version of a document, and deletion, and chang-
ing of old versions are not possible due to Wikipedia’s inherent logic, Wikipedia
had to learn that access control cannot be omitted completely. Generally, ency-
clopedias offer their knowledge to all human beings. So there is no need to hide
or protect information. However, misuse makes it necessary to establish access
control even for an online encyclopedia.

Examples of Access Control in Practice

Let us now turn to other examples, where we think it is obvious that access
control is required: Any standard PC running Linux, Windows, or iOS is us-
ing access control on its file systems. Without such control anyone could do
anything on the PC which would make it highly vulnerable to any kind of
malware. Windows latest security improvements in Windows Vista, Windows
7 and Windows 8 are also based on the introduction of a kind of supervisor
mode. If the supervisor mode, e.g. for a software installation, is required, the
user has to confirm this mode switch explicitly. The user is stripping his rights
as a regular user and entering an administrator role. Without this role change
the whole access control concept of Microsoft since Windows Vista would be
impossible.

2

Another example are web applications running on a server or in a cloud some-
where in the internet. Such services normally offer their services to several
users. It is of high importance that access control limits the usage of data, ser-
vices, certain service functionality or other aspects of services and applications.
A good example is online banking where access control is a major issue.

We even assume that any application used by more than a single user will re-
quire access control.

Privacy and Access Control

Two concepts are very closely related: Privacy and access control. Although
almost anybody has an intuitive definition of privacy, in the literature a con-
sequent definition of the term is not present [Int97]. L. Introna offers and dis-
cusses several definitions, one of them reads ”privacy as control over personal
information” [Int97, p.261], a definition we see appropriate for our work. In
contrast, ”access control constrains what a user can do directly, as well as what
programs executing on behalf of the users are allowed to do” [SS94, p.40]. Com-
paring both definitions we see that access control is one major tool to aim for
the target privacy. Thus, access control is a tool, privacy is the target.

Will privacy be of importance in the future? B. Debatin et al. [DLHH09] did
a quantitative and qualitative study in user behavior on Facebook. The au-
thors came to the result that ”[the study] shows that the gratifications of using
Facebook tend to outweigh the perceived threats to privacy” [DLHH09, p.103].
Does ”generation Facebook” require much less or no privacy than the older
generations do?

Brandtzaeg et al. [BLS10] suggest a so-called ”privacy dilemma” of social net-
work sites like Facebook. The dilemma unfolds to three different dimensions:
”Social capital versus privacy” means that the more content and friends a user
shares the higher his social capital, his social rank is within his community.
This, of course, is at the price of privacy, it is ”a contradiction between high
levels of sociability and the need for privacy” ([BLS10, p.1010],[ST83]). The sec-
ond dimension is ”conformity and privacy”. Social conformity can be observed
when someone’s actions ”are exposed to increased visibility (...) by other mem-
bers of a group (e.g., ”followers” on Twitter and ”friends” on Facebook”([BLS10,
p.1011]). This social conformity effect is observed to decrease in private dis-
cussions, thus, when certain aspects of privacy apply. Social conformity (as
external pressure) decreases when privacy increases. The third dimension is
called ”Ease of Use”. It is simply the fact that hiding and protecting content on
Facebook not seldom requires a lot of manual setting which many users simply
avoid as they do not know how or because they are too lazy.

3

1. Introduction

Framework/library Authentication Authorization
OpenID + –
Facebook Connect/Login + –
Twitter Connect + –
Radius (relay) (relay)
OAuth (relay) (relay)
Spring Security (see OAuth) (see OAuth)

Table 1.1.: Overview of existing software frameworks / libraries and their au-
thentication and authorization features.

Nevertheless, coming back to our question ”will privacy be of importance in
the future”, we can conclude that, although, studies exist pointing in the di-
rection that privacy is sacrificed for other benefits, privacy will not disappear.
Actually, we have the impression following the discussions in press and litera-
ture over the last years that the value of privacy is intensively discussed.

Authorization and Authentication

Access control basically is the combination of authentication and authorization.
We will come back to proper definitions of these terms in chapter 2. While
authentication is about to identify a user (”who are you?”), authorization aims
to decide if a user may do what he wants to do (”what is a user allowed to
do?”). Authorization is not possible without authentication. Without knowing
which user is trying to access a file no authorization system will be able to make
a decision. To be exact: No authorization system where the user is a part of the
access control model.

Recurring tasks

Let us view the world of access control from the eyes of a system designer or
software developer who is designing or coding an application with any kind of
access control, thus authorization and authentication. Both tasks are recurring
for any application. For any software developer doing recurring tasks the usual
idea is to make use of existing libraries or software frameworks: Why write
code which already exists?

Table 1.1 provides an overview of widely-used software frameworks in the field
of access control. We qualitatively assess the features offered by the framework
in authentication and authorization.

4

OpenID3 [RR06] is a decentralized authentication protocol. A user authenti-
cates at a central point (”single-sign-on”). The identification is transferred to
the application which wants to know if the user actually is who he says he is.
Software developer can simply import available libraries of the OpenID project
(e.g. available for PHP, Ruby, Java, ...)4. On the authorization side OpenID does
not offer any features. OpenID is all about authentication but not about autho-
rization.

A proprietary solution is offered by Facebook. Facebook Login5 is a web service
offered by Facebook. Like OpenID, Facebook Login is an authentication service
allowing users to login with their Facebook credentials on third party web sites.
Software developers can integrate this authentication service on their own web
site or applications. Users may login on the third party web page by making
use of their Facebook login and password. Basically, this has two advantages:
The user can re-use existing logins and passwords. The web site developer can
omit user login code and re-use existing (assumable safe) Facebook technology.
There are also some disadvantages: If Facebook’s login service suffers problems
(is not reachable), all other web sites making use of Facebook’s login service
are also affected and cannot authenticate users. If Facebook is hacked and user
data is lost, the lost user data can be used to access not only Facebook but all
connected services making use of its login service. However, Facebook’s login
service does not offer functionality concerning authorization.

A similar approach is offered by Twitter6: Twitter’s authentication service of-
fers the same features as Facebook’s login service and thus shares the same
advantages and disadvantages. Like Facebook, only authentication but no au-
thorization features are supported.

RADIUS is an acronym for the Remote Authentication Dial In User Service.
It is a networking protocol standardized by the IETF. RADIUS utilizes UDP
as transport protocol and defines the communication between a RADIUS client
and a RADIUS server about authentication, authorization, and accounting. The
authentication and authorization parts are described in RFC 2865 [WRRS00],
the accounting part is described in RFC 2866 [Rig00]. However, RADIUS is only
a forwarding protocol in the sense that a requester (the RADIUS client) can re-
lay an authentication or authorization request to the RADIUS server. RADIUS
does not specify how authentication or authorization requests are handled by
the RADIUS server. This is why we call RADIUS a relaying or forwarding
service but not a full authentication of authorization service. RADIUS cannot

3http://www.openid.net, last accessed 2012-09-27
4cf. http://openid.net/developers, last accessed 2012-09-27
5https://developers.facebook.com/docs/technical-guides/login, last accessed

2013-03-11
6https://dev.twitter.com/docs/auth/sign-twitter, last accessed 2013-03-11

5

http://www.openid.net
http://openid.net/developers
https://developers.facebook.com/docs/technical-guides/login
https://dev.twitter.com/docs/auth/sign-twitter

1. Introduction

decide if a user is allowed to login (or execute an operation). It can only for-
ward such requests to a RADIUS server which then has to make this decision.
How this decision is made, is not within the scope of RADIUS.

OAuth [Har12] is an ”authorization framework [enabling] a third-party appli-
cation to obtain limited access to an HTTP service, either on behalf of a resource
owner by orchestrating an approval interaction between the resource owner
and the HTTP service, or by allowing the third-party application to obtain ac-
cess on its own behalf.” [Har12, p.1]. OAuth is, like RADIUS, a protocol to
propagate access grants from one server to another, but not a framework to
decide upon access requests. The decision whether access is granted or not is
omitted from OAuth.

Spring, a well-known and often used framework library for Java applications,
offers the Spring Security sub-project7. It calls itself ”a powerful and highly
customizable authentication and access-control framework. It is the de-facto
standard for securing Spring-based applications”8 it actually offers an OAuth
implementation and some very basic and limited code snippets.

Other very specialized attempts for libraries implementing access control do
exist: The wildly-used PHP library Zend Framework (Zend ACL)9, Java’s
Spring Security mentioned above, Python libraries like AuthKit10. However,
none of the libraries or services we found are able to encapsulate a component
dealing with authorization.

We see that for authentication some frameworks like OpenID, Facebook Lo-
gin and Twitter Login exist. However, a software developer will not find any-
thing equivalent for authorization. Instead he may stumble upon certain sub-
modules of software frameworks offering very limited and very specialized
aspects of access control.

Scientific Goals

These findings lead to the first of our scientific goals: We want to design and
implement a software service that is able to decide upon access requests. A soft-
ware developer can issue a call to the service component from a piece of code he
is writing. He does not need to know about the details how the access control
component really works but simply checks the return value of his call. In the
positive case, the code of the software developer may continue its normal way

7http://static.springsource.org/spring-security/site, last accessed 2012-10-23
8http://static.springsource.org/spring-security/site, last accessed 2012-10-23
9http://framework.zend.com/manual/1.12/en/zend.acl.html,

last accessed 2012-10-25
10http://pypi.python.org/pypi/AuthKit/0.4.5, last accessed 2012-10-25

6

http://static.springsource.org/spring-security/site
http://static.springsource.org/spring-security/site
http://framework.zend.com/manual/1.12/en/zend.acl.html
http://pypi.python.org/pypi/AuthKit/0.4.5

of execution, in the negative case, the access is denied. We call this first goal
”access control as a service” (ACaaS), obviously mimicking the phrases ”soft-
ware as a service” (Saas), ”platform as a service” (PaaS), and ”infrastructure as
a service” (IaaS) from cloud computing.

Our second scientific goal stems from the observation that there seems to be
a huge gap between science and industry/practice: In science an enormous
number of different access control models can be found in the literature. An
access control model is the way access control is modeled, e.g. Role-Based Ac-
cess Control, Bell-LaPadula, Chinese Wall ... We explain important models in
chapter 2. In contrast, in industry/practice we found mainly three models:
Windows’ way to model access rights, Unix/Linux’ way, and different flavors
of role-based access control. (Of course, many more OS-specific access con-
trol models exist, like IBM system 360/370). Our impression was, that while
academia invents model after model, industry/practice re-uses the same basic
models over and over again. So our second aim is to try to unify both worlds
again. We want our access control service being able to emulate as many access
control models as possible.

Our second goal was confirmed when we became aware of Steve Barker’s pa-
per about the ”Next 700 Access Control Models or a Unifying Meta-Model”
[Bar09]. In his work, Barker laid out that scientists working in this field should
not focus on inventing one specialized access control model after the other, but
try to develop a unified access control model. This unified model should then
mimic the already existing specialized models. Barker shows that such a model
can theoretically exist as most existing models seem to be based on the same
principles and concepts. This mirrors our third goal: We see our service as a
step towards such a unified model.

This third goal includes features like flexibility, delegation, and (user) empow-
erment. Flexibility is meant in a sense, that our service can be configured to
work like many standard access control models. Delegation means, that access
control is based on delegation and must support features like proxies and del-
egation of access rights from one user to another. This results in empowerment
of the user enabling the user to decide upon the access control model being
used for his data. Our article ”Social Access Control” [Son13] describes this
approach for Facebook. Flexible and configurable access control mechanisms
allow the user to decide which access control model and policies are used to
protect his data. Subjects like company representatives may require very lim-
ited access control, only more or less sharing all content in Facebook freely.
Privacy-unaware users require only basic content protection allowing them to
decide if certain content elements like pictures may be shared or not. Privacy-
aware users prefer to decide upon content availability on a fine-grained level,

7

1. Introduction

e.g. based on a group level. ”Paranoid” users want to define the exact con-
ditions for access, e.g. they want to share pictures only with certain users for
a specific period of time. These different approaches require different access
control models. The corresponding access control model must be chosen by
the user. It therefore cannot be made by a software developer or administrator.
This requires a flexible (meta) access control model supporting delegation and
user empowerment and enablement.

Our fourth and last target is based on the insight that access control is very
asymmetric concerning time restrictions. A change of an access right can in the
most cases allow more time to pass to take effect while check ”access queries”
must be answered much faster. Furthermore, access checks may occur dis-
tributed and with a high request rate. To provide an order of magnitude, the
change of an access right may be sufficient to be processed within seconds (or
even minutes). On the other hand, the check of access rights must be finished at
least several orders of magnitudes faster (within at most milliseconds of time).
We can illustrate this assumption by a software service running at our insti-
tution, a quite large database of scientific literature. While co-workers of our
chair can see almost any paper stored in this database, the access of our stu-
dents is rather limited. When querying for a certain topic, e.g. ”access control”,
the resulting list includes about 200 papers. Each of these search hits has to be
filtered by our access control service to decide whether the result is presented
or not. If each access control check would last only 1/10 of a second, the re-
sulting query time would be additional 20 seconds, plus the query time for the
search operation. This is unacceptable. So we come to our fourth goal: Access
queries must be answered within a very short time period.

Structure of our work

Chapter 2 will provide an overview of related work in the scientific field of
access control. We aim to give a short overview of the development of ac-
cess control models of the last 50 years. However, we already mentioned that
an enormous number of access control models have been developed. Conse-
quently, we cannot describe all of these models in our work, but we focus on
some milestones. Which model exactly is a milestone or not can only be judged
by our best knowledge and we apologize for any errors in our judgment.

In chapter 3 we provide a motivation example of the Access Definition and
Query Language (ADQL). In an informal way and with an example we demon-
strate how the syntax of ADQL looks like, what steps are required to create an
access control model, and we introduce the concepts of ADQL.

8

Next, chapter 4 describes the formal language ADQL we introduce in-depth.
The language allows to express the concepts described in chapter 5 for the def-
inition of the access control model to be used, the defined policies and facts,
and to express access check queries. The formal language is the (user) inter-
face of our software service as it allows defining, maintaining, and querying all
concepts.

Chapter 5 describes the underlying concepts and principles of ADQL. We focus
only on concepts here and try to explain them in-depth. The concepts are com-
pletely independent of any service design, implementation or use case. They
describe the concepts and the interaction of our concepts in order to do a step
towards a unified (meta) access control model.

Chapter 6 provides then use case examples how some well-known access con-
trol models can be modeled by our meta model, the ADQL. We re-use some
models of chapter 2 and provide the ADQL statements to construct these mod-
els in ADQL. We complement the chapter by providing use case examples, poli-
cies, facts, and sample queries.

So far, all chapters abstracted from implementation and just focused on con-
cepts, formal language and constructive proofs. Chapter 7 provides details
about the implemented software service realizing ADQL. Here we describe the
software design, architecture, and component layout and implementation de-
tails.

We summarize our work in chapter 8 by providing the conclusion and planned
further work.

Acknowledgments

This work is based on some ideas developed during the EU-project WeKnowIt
(7th Framework Program FP7/2007-2013 under grant agreement no 215453).
The access control mechanism developed during the WeKnowIt project was
called ”Community Administration Platform” (CAP). This CAP is a predeces-
sor of the Access Definition and Query Language described in this work.

The code was mostly and in major parts written by the author of this work,
Andreas Sonnenbichler. We received support from our student assistants Ste-
fan Geretschläger and Frederik Haxel, whom we want to thank for their high-
quality work and good support. As time passed, the code was re-written and
adapted many times by all of the above three persons. Today, it is impossible to
say exactly, which line was written by whom and modified when by someone
else without comparing all code versions step by step. Additional extensions

9

1. Introduction

were provided by some of our bachelor and master students working on their
bachelor, respectively master thesis.

10

2. An Introduction to Access
Control

This chapter aims to provide an overview of the work in access control models
for the last 50 years. For computer science, 50 years span almost all techno-
logical eras (mainframes, workstations, PC, mobile devices, cloud computing).
Consequently, a very large number of access control models has been suggested
and implemented. We try to provide an overview of milestones in access con-
trol in this long tradition.

1960 1970 2010200019901980

MULTICS
development
(60s) Lampson:

Access Matrix
(71)

Saltzer & Schroeder:
Design Principles

(74)

Bell/LaPadula
(75)

Harrison,
Ruzzo,
Ullmann
(76+78)

DoD's Orange
Book: MAC/DAC
(83)

Brewer/Nash:
Chinese Wall
(89)

Ferraiolo, Kuhn:
RBAC (92)

RFC2989
(00)

RFC3198
(01)

XACML 1.0
(03)

RADIUS
(92-00)

Biba
(77) Clark/Wilson

(87)
XACML 2.0
(05)

Figure 2.1.: Timeline of a selection of historically important contributions in ac-
cess control

Figure 2.1 is a timeline from the 1960s until today. It shows some important
contributions for access control during the last 50 years. We marked several in-
fluential pieces of work together with their authors and their first publications
as far as it has come to our knowledge. In this chapter we will describe these
contributions.

We start with the development of MULTICs which highly influenced the re-
markable work of Saltzer and Schroeder [Sal74]. Saltzer and Schroeder lay
out design principles for access control models. In 1971 Lampson [Lam71]
published his ”access matrix”, the earliest formal definition of access control
of subjects and objects. Lampsons work lead directly to the famous ”HRU-
model” of Harrison, Ruzzo, and Ullman [HRU76, HR78]. The HRU-model is

11

2. An Introduction to Access Control

still one of the most important access control models. A little earlier, in 1973,
Bell and LaPadula [BL73] developed their well-known access control model
based on military requirements. Bell and LaPadulas work was enhanced by K.
Biba with the Biba model [Bib77]. With the publication of the ”Orange Book”
[oD83] by the U.S. Department of Defense, the access control model families of
HRU and Bell-LaPadula and Biba where classified as discretionary and manda-
tory access control models. These phrases are still of high importance for to-
day’s access control models. In 1989, the work of Clark and Wilson [CW87]
and later Brewer and Nash [BN89] led to the commercially initiated Chinese
Wall model. It was followed by the path-breaking role-based access control
model of Ferraiolo and Kuhn [FK92] in 1992. In the 1990s the important autho-
rization, authentication and accounting protocol RADIUS was developed and
standardized [Vol06]. The 2000s brought two important RFC standards, RFC
2989 [ZCH+00] and RFC 3198 [SHC+01], providing definitions of important
terms related to access control and in 2003 the publication of the first XACML
standard v1.0 ([GM03]).

All the models mentioned above will be explained in this chapter.

Another part of this chapter are definitions of important terms in order to clar-
ify what we speak about during the rest of this work. The chapter is finished
by an outlook on access control in the semantic web.

2.1. Design Principles

Before we start explaining concrete access control models, we want to provide
a high-level perspective on access control models: The way, how (good) ac-
cess control models should be designed, thus, design principles. Saltzer and
Schroeder published an article about this topic already in the 1970s. This chap-
ter is dedicated to this remarkable piece of work. It has its roots in the develop-
ment of MULTICS and, later, UNIX.

The path-breaking system MULTICS (Multiplexed Information and Comput-
ing Service) was developed in cooperation with the MIT, General Electric, and
AT&T in the 1960s. The development of UNIX (and all of its derivatives) was
heavily influenced by MULTICS. Therefore, many see MULTICS as the ances-
tor of UNIX. For further information about MULTICS, we refer for example to
[Org72, CSC72].

Jerome Saltzer was the leader of the design team for the MULTICS security
kernel [HS10]. While designing the security sub-system, he defined some gen-
eral principles for the design of security systems [Sal74]. He refined them later

12

2.1. Design Principles

together with his colleague Schroeder. It was their aim to provide “useful prin-
ciples that can guide the design [of a security system] and contribute to an
implementation without security flaws” [SS75, p.1282].

According to Saltzer and Schroeder the following 10 general principles should
be taken into account when designing protection and authentication mecha-
nisms:

1. Economy of mechanism: The design of the security system should be ”as
simple and small as possible” [SS75, p.1282]. With complicated mecha-
nisms the chance for unintended consequences, e.g. ”unwanted access
paths”, becomes more likely. These unintended consequences will prob-
ably not occur during daily use and may be hard to detect, especially if
the mechanism is too complex.

2. Fail-safe defaults: Access decisions should be based on permissions rather
than on exclusions1. The principle requires, that the default situation
should be the lack of access while the ”protection scheme identifies con-
ditions under which access is permitted” [SS75, p.1282]. Psychologically,
the formulation of negative rights - the conditions under which no access
must be granted - is seen as the wrong way. ”A design or implementa-
tion mistake in a mechanism that gives explicit permission tends to fail
by refusing permission, a safe situation, since it will quickly be detected”
[SS75, p.1282]. In contrast, the opposite can result in an unnoticed secu-
rity leak. As a consequence, any access control mechanism should rely
on positive policies only and avoid negative policies. A positive policy
defines conditions when access is granted. Negative policies define con-
ditions when access is denied.

However, from today’s perspective we do not fully agree on this strict
formulation of positive access rights. It might be necessary to explicitly
forbid certain access cases as it might not always be possible to express
all access rights in a positive manner. It might be out of convenience
(when one can enumerate all relevant conditions) or might even be un-
avoidable (when not all positive conditions can be enumerated, e.g. in an
open-world assumption).

3. Complete mediation: Access control must be seen system-wide (and to-
day even beyond that). Every access to each resource must be checked
for authority. Although Saltzer and Schroeder only focused on a single
multi-user system, this principle becomes even more important nowa-
days, where systems are connected by networks like the internet: Access

1Saltzer and Schroeder cite this principle from Glaser. We (like Saltzer and Schroeder) could not
identify a written reference, so we rely on the reference of Saltzer and Schroeder.

13

2. An Introduction to Access Control

control should be designed in a way, which allows crossing these borders
and still relies on the principle of complete mediation.

4. Open design: The design should not be secret and its mechanisms should
not depend on the ignorance of potential attackers, but on advanced al-
gorithms and techniques. Working on the U.S. Air Force project RAND2

P. Baran argues in [Bar64, p.6] that a (system) design involves probably
several people, so that “our enemies” will always learn the mechanisms.
Instead it makes more sense to involve as many specialists as possible in
reviewing the mechanism.

5. Separation of privilege: ”Where feasible, a protection mechanism that re-
quires two keys to unlock is more robust and flexible than one that allows
access to the presenter of one key. [...] In a computer system, separated
keys apply to any situation in which two or more conditions must be
met” [SS75, p.1282]. We interpret this principle in such a way, that all
conditions necessary to access a piece of information must be definable
and that relying on one condition only is not a good idea.

6. Least privilege: Any principal (program, application, user) should be as-
signed the least set of privileges to be able to fulfill the job. This limits the
possible damage which can arise from accident, error or purpose.

7. Least common mechanism: Functionality of mechanisms (code) being com-
mon to more than one user and depending on all users should be mini-
mized. If one has the choice to implement a function on a very general
level needing comprehensive access rights or on a more specialized level
but requiring only limited access rights, the latter course is recommended.
This approach minimizes security leaks and prioritizes security over gen-
erality and comfort.

8. Psychological acceptability: This factor is two-fold. First, the user interface
is designed for ease of use enabling users to routinely apply the protection
mechanisms. Second, the user’s protection goals and his understanding
of the protection mechanism must match the protection mechanism so
that mistakes can be avoided. If the user has to translate a protection
concept to the one implemented this may easily result in mistakes which
may negatively influence data security.

9. Work factor: The work factor is defined in this context as the cost to cir-
cumvent security mechanisms. Giving an example, a 4-letter password
consisting of alpha-numeric symbols (A-Z, 0-9) leads to 364 possibilities.

2The RAND project was a U.S. Air Force project developed by the RAND corporation. The mem-
orandum cited here deals with the design of a digital data communication system based on a
distributed, encrypted network concept.

14

2.1. Design Principles

The principle says that it is important to calculate the work necessary to
circumvent protection mechanisms wherever possible. The problem is
that especially in authorization mechanisms this factor can very often not
be calculated. In military environments, tactical security is measured in
the sense, that something is secure for a time period of x hours.

10. Compromise recording: This design factor suggests the recording of unau-
thorized access. When an unauthorized access is recorded on a file, this
mechanism might help to detect (further) unauthorized access on the
same file or on other files. An example is the tracking of the date and
time of the most recent access of a file. If the time stamp does not match
the last authorized access, a compromise is detected. The problem of this
design principle is that thus a recording must be tamper-proof and may
not be changed by a possible attacker. Furthermore, the mechanism must
ensure that any compromise is detected and the detection cannot be cir-
cumvented.

The 10 design principles of Saltzer and Schroeder are in many aspects valu-
able for today’s computer system security mechanisms. Especially, the princi-
ples economy of mechanism, fail-safe defaults, and separation of privilege are factors
which can be found in many available software pieces.

The open design principle can be discussed controversially: A supporter of this
principle may argue that security should only come from open, but strong
mechanisms. In contrast, hidden mechanisms may provide additional security.
A good example for the first group is the area of public-private key encryp-
tion, where algorithms like RSA, Diffie-Hellman or elliptic curve techniques
are open, but nevertheless considered as safe (mostly dependent on the key
length). Open mechanisms enable the calculation and discussion of the vul-
nerability of the mechanism by a broad (scientific) community. The option of
hiding the mechanism is often exercised by private companies putting forward
the argument if one does not know the mechanism an attacker has no obvious
attack point. We were confronted with such a strategy when one of our students
worked for a large energy and power company writing his master thesis. His
task was to design a REST interface for a smart power-meter which included
connectivity to the internet and intranet. Although working for the company
and being a key issue for his work, he was not allowed to get knowledge about
the security infrastructure and mechanisms related to internet/intranet connec-
tivity making it impossible for him to adapt his code to the companies specific
technical environment [Bur11].

In summary, we see the 10 design principles of Saltzer and Schroeder still as im-
portant guidelines which should be considered for any security mechanism.

15

2. An Introduction to Access Control

2.2. Triple-A – Authentication, Authorization,
Accounting

When talking about access control, the so-called ”Triple-A” is a commonly used
term. ”Triple-A” or ”AAA” is an acronym for authentication, authorization,
and accounting. In RFC2989 [ZCH+00] the following definitions are used:

• Authentication: ”The act of verifying a claimed identity, in the form of
a pre-existing label from a mutually known name space” [ZCH+00, p.2].
Authentication ensures that a user is the one he claims to be. Common
mechanisms are password identification or biometric methods.

• Authorization: ”The act of determining if a particular right, such as ac-
cess to some resource, can be granted to the presenter of a particular
credential” [ZCH+00, p.2].

• Accounting: ”The act of collecting information on resource usage for the
purpose of trend analysis, auditing, billing, or cost allocation” [ZCH+00,
p.2].

Similar definitions for these terms can be found in the literature.

An important standard concerning AAA is the RADIUS protocol. RADIUS (Re-
mote Authentication Dial In User Service) is a standard of the IETF described
in the RFCs 2865 [WRRS00] and 2866 [Rig00]. RADIUS development started in
1992 and was standardized by the IETF in 2000 [Vol06]. RADIUS is a client and
server protocol on the application layer of the internet using UDP as transport
protocol. It serves three purposes: (1) authenticate users and/or devices, (2)
authorize users and/or devices, (3) provide accounting and logging for these
services. The first two services are described in RFC 2865. As first step, the
RADIUS protocol sends a request from the client to the server containing ac-
cess credentials. This can be e.g. a user name and a password or a security
certificate. The RADIUS server checks this information and decides on the re-
quest. This decision process is not part of the RADIUS protocol and provided
by back-end functionality (e.g. LDAP, Active Directory, ...). The decision is then
forwarded from the server to the client.

RFC 2866 describes the accounting part of the RADIUS protocol.

Generally, RADIUS is a widely-used AAA protocol. However, we already said
that it is a protocol and relaying information. RADIUS is not dealing with the
decision making on the server side, thus if authentication and authorization is
granted or not.

16

2.3. Important Definitions and Concepts

2.3. Important Definitions and Concepts

Quite often the terms user, principal and subject are used indifferently and with
the same meaning. Nevertheless, all terms have different definitions. We follow
Benantar’s definitions [Ben06]:

User. A user is the human being interacting with a computer system. It is the
natural person sitting in front of a PC or the one using a head-up display.

Account and Profile. Information about a user (his ID, his name, address,
password etc.) is stored in the user’s profile, which sometimes is also called
user account or simply account. A user may have several accounts: One might
have several accounts in the micro-blogging service Twitter3, e.g. a professional
and a private account. Many users have two accounts on their private Mi-
crosoft Windows computer at home, a normal account and an administrative
account.

Principal. A principal is an internal representation of a user in a computer
system. A user may have several principals representing him in a specific com-
puter environment. E.g. Ann working for the company Comp Inc. may have
two principals. One principal is related to the accounting system and the other
principal, with different permissions, related to the project management sys-
tem. Quite often, the phrase account is used instead of principal: ”one has sev-
eral accounts” instead of ”one has several principals associated with accounts
(the profile)”.

Microsoft [Net03] gives another definition: ”Security principals include the fol-
lowing: (a) Any entity that can be authenticated by the system, such as a user
account, a computer account, or a thread or process that runs in the security
context of a user or computer account. (b) Security groups of these accounts.”
[Net03]

Subject. RFC3198 defines a subject as ”an entity, or collection of entities,
which originates a request, and is verified as authorized/not authorized to per-
form that request” [SHC+01, p.16].

A different definition is provided by Benantar: ”A subject is the term used
to identify a running process, a program in execution. Each subject assumes

3http://www.twitter.com, last accessed 2013-04-26

17

http://www.twitter.com

2. An Introduction to Access Control

the identity and the privileges of a single principal.” [Ben06, p.9]. While a
subject is related to a process (who is executing the process), a principal is the
representation of a user in a system. Both are related: In many environments
the privileges of the principal starting a program are inherited by the process
executing the program. Nevertheless, a principal is not the same concept as
a subject. For example, in UNIX-like systems, a program (exactly: a file) may
be associated with a so-called sticky bit. If the bit is enabled, the program is
executed with administrative rights independent of the rights of the executing
principal/user. The subject of the task is then the administrator (”root”), while
the executing principal may be a regular, non-administrative user.

Object. Objects are entities/information which are accessed (or tried to be
accessed) by a subject. Examples can be a file to be opened, a database table to
be deleted, a printer to be used or a program which is executed.

Session Session

Principal Principal

Subject

Subject

Subject

Subject

Subject

User (primary: Principal)

Figure 2.2.: Overview of the terms user, session, principal, and subject and their
relationships following [Ben06, p.10].

An assembly of the terms user, principal, subject, and session are depicted in
figure 2.2. We see that the user is placed outside of all boxes. Users are real-
world entities and not part of a computer system. They are internally repre-
sented by principals (probably occurring in different sessions). A principal is
associated with exactly one user (1-n relationship). When executing programs,
subjects come into place. Subjects are the entities which execute the program.
Normally, they inherit the access rights of the principal.

Sometimes the terms user - principal - subject are often used interchangeable
representing the concept of ”the one who is doing something”.

Session. A session is an encapsulated environment. It encapsulates one or
a series of access control requests. Sessions are normally limited in time and
related to authentication: Within a session, a principal is represented by one or
more subjects. A session may consist of one or many transactions.

18

2.4. A Short History of Access Control

Transaction. A transaction is an atomic operation between one or more sub-
jects requesting access to one or many objects. Access on a transaction maybe
denied or granted.

Policies. Policies are defined as ”a set of rules to administer, manage, and
control access to network resources” [SHC+01, p.7]. The abstraction level of
policies can be very different: ”Ranging from business goals to device-specific
configuration parameters” [SHC+01, p.8]. Following RFC 3198 a policy can
contain policy conditions and actions.

In RFC 3198 we find some important definitions of architectural elements for
authorization frameworks:

• ”A Policy Enforcement Point PEP is a logical entity that enforces policy
decisions” [SHC+01, p.9]. The component makes sure that before a ser-
vice can be accessed a corresponding authorization request has to be is-
sued and answered.

• ”A Policy Decision Point PDP is a logical entity that makes policy deci-
sions for itself or for other network elements that request such decisions”
[SHC+01, p.9]. In other words, it is the component answering with yes or
no.

A lot of effort has been put into the formalization of a policy and in design-
ing an object-oriented information model of policies. RFC 3060 [ESMW01] de-
scribes the joint answer of the IETF Policy Framework Working Group and
the Distributed Management Task Force. Without going too much into detail,
policies (actually called policy rules here) can consist of conditions and actions.
Conditions define logical expressions in conjunctive or disjunctive normal form
which have to be full-filled to make the policy applicable. If so, the policy rule
is executed. Policies can be grouped in hierarchic policy groups.

Please note, that the focus of the RFC 3060 is not (only) authorization. It is
thought as a very generic approach, how policies can be modeled. Actually, the
focus was more on quality of service (QoS) and IPSec issues. Nevertheless, it
provides a formalized model of policies in the form of production rules: (1) the
pre-condition (rule) as a logical expression, (2) the consequence (action) which
has to be performed when the pre-condition is met.

2.4. A Short History of Access Control

The work on access control began in the 1960s with addressing security issues
in early time-sharing computer systems and it developed rapidly in the 1970s

19

[FKC07].

2. An Introduction to Access Control

The earliest formal work on access control has been published by Lampson
[Lam71] introducing the formal definitions of subjects and objects and the con-
cept of the ”access matrix”. We describe this approach in section 2.5. It was his
work that led later to the well-known HRU model from Harrison, Ruzzo, and
Ullman (HRU) [HRU76, HR78] and their proof of the general safety problem of
this model (see section 2.5 and, especially, 2.5.6).

A different idea developed from military security requirements is mandatory
access control. While the access matrix related models – called discretionary
access control models (DAC) – are based on the triple subject, object, and per-
mission, military ways of handling protection start with security classes, e.g.
confidential, secret, top secret. The latter models are referred to as mandatory
access control models (MAC). A report from the RAND corporation from 1970
[War70] analyzed the requirements of the U.S. Department of Defense (DoD)
concerning security in IT systems. Not surprisingly, the established approach
of military security levels was re-introduced: While users are assigned clear-
ance levels, objects are related to classification levels. A user may only access
an object, if his clearance level is at least as high as the object’s classification
level. The work was extended to a multi-level security system including devel-
opment plans for such a system by the U.S. Air Force [And72]. The formaliza-
tion of this model lead to the famous Bell-LaPadula model [BL73] discussed in
section 2.6.2.

In 1983 the DoD published its ”Orange Book” (Defense Trusted Computer Sys-
tem Evaluation Criteria (TCSEC, for unknown reasons, the D is omitted) stan-
dard) [oD83]. In this publication the phrases discretionary access control (DAC)
and mandatory access control (MAC) were introduced. The DAC models refer
to the family of access matrix based models (e.g. the HRU model). In this model
family, the user decides upon the security requirements and enforcements of
security requirements on objects. In contrast, the MAC model family imple-
ments security levels like the Bell-LaPadula model, leaving the users almost
no options about access control. Instead the security requirements are handled
automatically, users cannot decide about access for an object.

Setting very high security standards and requirements the TCSEC standard
was not accepted for business use. ”Despite the efforts to promote TCSEC-
compliant systems as commercial security solutions, most commercial firms
recognized that DAC and MAC were not sufficient for their needs” [FKC07,
p.9]. In a path-setting paper, Clark and Wilson [CW87] argued that for com-
mercial applications integrity of data is more important than confidentiality.
In other words, the way how data is modified by authorized users only is of
the highest importance, while the prohibition of access to information is less

20

important. The formalization of Clark and Wilson lead to the concept of ”sep-

2.5. Discretionary Access Control Models (DAC)

aration of duty”: paying out money can be initiated by person A, but has to
be acknowledged by person B, e.g. the head of the department. This concept
cleared the way for the development of the role-based access control models
(RBAC).

The idea behind role-based access control is simple and compelling – as many
fundamental concepts are: In a firm a person fulfills several roles. One may
be a project leader of project A, a project member in project B and head of
department C. All these roles come with different obligations and privileges.
This daily-life concept from organization theory was adapted by IT access con-
trol scientists in the 80s and 90s. The bridge between security models and en-
terprise models was built by Dobson and McDermid through introducing the
term ”functional roles” [DM89]. Before the term RBAC was established, Brewer
and Nash introduced the Chinese Wall model [BN89]. It combined DAC with
mandatory restrictions. We will go into details in section 2.8.

2.5. Discretionary Access Control Models (DAC)

”[Discretionary access control] is a means of restricting access to objects based
on the identity of users or the groups to which they belong, or both. The con-
trols are discretionary in the sense that a user or subject given discretionary
access to a resource is capable of passing that information along to another
subject” [FKC07, p.44f].

Historically, discretionary access control models (DAC) models are often seen
as the only or at least most important access control models. The work of Lamp-
son [Lam71, Lam74] was path-breaking for the development of DAC models.
It was improved by Graham [GD71] and formalized by Harrison, Ruzzo, and
Ullman (HRU) [HRU76, HR78]. Sometimes, the HRU-model, also called access
matrix model, is even used as a synonym for DAC models. Strictly seen, this is
not correct as the access matrix model applies to all access control models, not
only DAC. Nevertheless, it lends itself well to discretionary policies [Ben06].

2.5.1. The Access Matrix Model

The access matrix model uses three basic abstractions: subjects, objects, and
access rights. The definitions of subjects and objects match the definitions given
in section 2.3.

21

2. An Introduction to Access Control

file1 file2 file3 subject1 subject2 subject3
subject1 read read read – – –
subject2 read, write read, write read, write – – –
subject3 – read write – – –

Table 2.1.: Example of a protection state as access matrix

Let S be the set of subjects, O the set of objects, and P the set of permissions.
The two-dimensional access matrix consists of m× (n+m), m rows and n+m
columns with m = |S| and n = |O|. One row represents one subject. One
column represents one object or a subject. The subjects are seen as objects, too,
in order to be able to define access rights on subjects as well.

The permissions are modeled in the content of each matrix cell. An example of
an access matrix can be found in table 2.1. The example shows an access matrix
of three objects (file1-3) and three subjects (subject1-3). Subject1 may read file1,
file2, and file3. Subject2 may read and write file1-3. Subject3 has no access to
file1, may read file2 and may write file2.

We see that the columns include not only files1-3 but also the subjects. This
allows the representation of access rights for one subject (represented as a row)
for the subject ”as an object” (represented as a column). Through this, we can
express that subject1 might be able to modify subject2 (as an object) but not
file3. Access rights not explicitly granted, thus not present in the table, have
not been provided.

A snapshot from the access matrix at any point in time represents a so-called
protection state. The protection-state defines for every object which subject can
access it with which access rights. Then, formally a state is the triple (S,O, P).
Therefore, the access matrix model corresponds to a (finite) state machine. A
change on the matrix leads to a different state of the state machine. It is fi-
nite because for the system the number of possible states for the current set of
subjects, objects and permissions is restricted to |S| × (|S|+ |O|)× |P |.

Of course, the number of possible states can increase or decrease if subjects,
objects or permissions are added or deleted.

State transitions transform the matrix. The HRU model supports the following
primitive operations: add/delete a subject, add/delete an object, add/delete a
permission.

However, implementations of access matrices share a problem: The matrix is
far from dense and, if implemented as an array, huge amounts of memory/data
storage have to be used representing mostly empty cells of the matrix. This

22

2.5. Discretionary Access Control Models (DAC)

subject object permission
subject1 file1 read
subject1 file2 read
subject1 file3 read
subject2 file1 read
subject2 file1 write
subject2 file2 read
subject2 file2 write
subject2 file3 read
subject2 file3 write
subject3 file2 read
subject3 file3 write

Table 2.2.: Representation of the example protection state as authorization table

fact leads to different views on the access matrix: access control lists (ACL),
capability lists (CL), and authorization tables (AT).

2.5.2. Authorization Tables

Authorization tables are a flat representation of protection states as a three col-
umn table. Any protection state represented as an access matrix can be trans-
formed into an authorization table: All non-empty cells of the matrix are writ-
ten into the table consisting of the columns subject, object, and permission. A
representation of the example protection state – depicted as access matrix in
table 2.1 – can be found in table 2.2. Representations of this type are used for
storing a protection state in a database environment.

2.5.3. Access Control Lists

Access control lists (ACL) describe the state of the protection state from the
perspective of objects. For each object in the system a list is generated and as-
sociated with the corresponding object. The list consists of all users and their
permissions on the object. Figure 2.3 shows the ACL representation of the pro-
tection state shown in table 2.1.

We see that access control lists are the third variant for the representation of
a protection state. The advantage of representing a protection state as ACL is

23

2. An Introduction to Access Control

file1 subject1

read

subject2

read,
write

file2 subject1

read

subject2

read,
write

subject3

read

file3 subject1

read

subject2

read,
write

subject3

write

Figure 2.3.: Representation of the example protection state as access control list

the low number of calculation necessary to retrieve all access rights for a spe-
cific object. If the access rights of an object are queried, the necessary data can
directly be retrieved by iterating through the list of this object. For any user,
this leads to the complexity O(m) with m = |S| being the number of subjects.
Contrary, the evaluation of all access rights for a specific user requires more
computational effort: All lists of objects have to be searched for the specified
user leading to a search time of O(m × (n + m)) with m = |S|, n = |O| being
the number of subjects resp. objects. Adding objects leads to actually no com-
putational effort (O(1)) in the ACL. Adding subjects is more complex as up to
n objects have to be adapted (O(n)). Adding permissions can be quite complex
(O(m× n)) as any subject/object combination might be changed.

In contrast, deleting subjects or permissions is complex as all ACL lists have
to be searched for the user (or permission) and his entries have to be removed
from the list. Deleting objects is fast (O(1)), as the complete list can be deleted.

Concerning expressive power, access control lists, access matrices, and autho-
rization tables are equal: They are different representations of a protection
state.

24

2.5. Discretionary Access Control Models (DAC)

2.5.4. Capability Lists

Capability lists are a reversed view of a protection state concerning access con-
trol lists. Instead of focusing on objects and describing each object’s access list,
capability lists describe the access rights (capabilities) of each user. For every
user, a capability list is created. A capability list consists of all objects the user
owns at least one permission with. An example can be found in figure 2.4 rep-
resenting the same protection state example used in the last 3 subsections, here
represented as a capability list.

subject1 file1

read

file2

read

subject2 file1

read,
write

file2

read,
write

file3

read,
write

subject3 file2

read

file3

write

file3

read

Figure 2.4.: Representation of the example protection state as capability list

Obviously, as capability lists are the inverse representation of a protection state
compared to access control lists, the advantages of the ACL are the disadvan-
tages of capability lists and vice versa. We immediately see that the deletion
of a subject becomes very easy now as the corresponding list of the subject can
be simply deleted. On the other hand, deletion of objects requires now more
effort as all lists of the users have to be searched for the object and individ-
ually deleted in the list. However, the deletion of permissions has the same
complexity as for ACLs.

Again, the expressive power of a capability list matches the ones of access con-
trol lists, authorization tables and access matrices. All are representations of a
protection state.

25

2. An Introduction to Access Control

2.5.5. Vulnerability of Discretionary Access Control Models

A general problem of DAC models is described by Samarati and de Capitani di
Vimercati [SV01]: ”discretionary policies do not enforce any control on the flow
of information once this information is acquired by a process, makes it possible
for processes to leak information to users not allowed to read it. All this can
happen without the cognizance of the data administrator / owner, and despite
the fact that each single access request is controlled against the authorizations”
[SV01, p.146].

Samarati and de Capitani di Vimercati describe a scenario, where a user named
”Vicky” creates a sensitive document. Another user ”John” creates a Trojan
horse and installs it on the computer of Vicky. When Vicky executes the Trojan
horse, the Trojan horse runs with the access rights of Vicky (because the user
Vicky and the subject in the system share the same rights). Therefore, the Trojan
horse is able to copy the information of the sensitive document to a file John has
previously created and given write permissions to Vicky.

The vulnerability is based on two assumptions of DAC models: (1) users and
subjects are handled identically, (2) information is not protected when access
has been given.

The first assumption is that any process started by Vicky inherits all access
rights Vicky has. Actually, there is no differentiation between a user and a
subject. Samarati and de Capitani di Vimercati argue that this is a fundamental
weakness.

”While users are trusted to obey the access restrictions, subjects operating on
their behalf are not. With reference to our example, Vicky is trusted not to
release the sensitive information she knows to John, since, according to the au-
thorizations, John cannot read it. However, the processes operating on behalf
of Vicky cannot be given the same trust. Processes run programs which, unless
properly certified, cannot be trusted for the operations they execute. For this
reason, restrictions should be enforced on the operations that processes them-
selves can execute” [SV01, p.148].

Actually, we think that the weakness is not so much related to DAC models as
to their implementation. It seems possible to implement a DAC model, where
subjects and users are modeled differently and still follow the DAC approach.
An example is the way, how Microsoft is dealing with administrative rights
since Windows Vista: Whenever administrative rights (e.g. install a program,
change system properties) are required, the subject asks the user through a pop-
up, if it may continue or not. This example shows that the subject – also hav-
ing the administrative rights of the user – double-checks with the user before

26

2.6. Mandatory Access Control Models (MAC)

executing sensible operations. Nevertheless, Microsoft Windows uses a DAC
model.

The second assumption is that information is not protected as soon as access
has been granted. In Samarati’s and de Capitani di Vimercati’s example, Vicky
can gain access to the sensible document. As there are no further protection
mechanisms Vicky’s subject can now write this information to a different file
giving John access. We think that the second argument indeed is a potentially
dangerous vulnerability of DAC models. One way to protect the information is
the Bell-LaPadula/Biba model (see section 2.6.2 and section 2.6.2): Subjects are
assigned so-called security levels. Information can only be provided to subjects
with a higher security level than the author of a document. This approach could
avoid the described attack: Although Vicky can access the sensible data, she is
not able to provide the information to John, because John has a lower security
level than Vicky. The premise for this is that Vicky cannot remove the security
level of the object by copying the content of the file to another file.

2.5.6. The General Safety Problem

Another problem of DAC models is described by Harrison, Ruzzo, Ullman in
[HRU76, HR78]: It is undecidable if a protection system based on an access
matrix model leaks a generic right r or not. The term ”leaks” is defined in the
following way: ”Given a protection system, we say command a leaks generic
right r from configuration Q = (S,O, P) if a, when run on Q, can execute a
primitive operation which enters r into a cell of the access matrix which did
not previously contain r” [HRU76, p.467]. In other words, it cannot be decided
for a HRU model, if a subject gains access to an object he did previously not
have access to, or not. The HRU proof reduces this general safety problem to
the well know halting problem of a Turing machine [Tur38].

2.6. Mandatory Access Control Models (MAC)

2.6.1. The Bell-LaPadula model

One of the first access control models later categorized as a mandatory access
control model is the model suggested by David Bell and Leonard LaPadula in
1973 [BL73, McL88]. The model was created for military purposes and assumes
clearance levels for persons and security levels for military documents. It sug-
gests that each principal (user) is assigned a clearance level. The same is done

27

2. An Introduction to Access Control

for objects (documents) by assigning them a security level. The access of prin-
cipals to objects can either be read access or write access. Here, ”read” means,
that the user can read the content of a document, but not edit it. The permis-
sion ”write” means, that the user can file a document, but is not able to read its
content later.

The Bell-LaPadula model makes use of two policies.

• Simple security property or read down: Subjects may only access objects
by read, if the clearance level of the subject is at least as high as the secu-
rity level of the object.

• Star-property (*-property) or write up: Subjects may access objects by
write only, if the clearance level of the subject is at least as low as the
security level of the object.

These two policies mainly have two effects: The simple security property pre-
vents users from being able to read information that is above their clearance
level. The star property disallows subjects to write information of a level x to
containers (e.g. files) with a lower security level.

Ferraiolo and Kuhn [FKC07] describe how these policies solve the ”Trojan horse”
problem described by Samarati and de Capitani di Vimercati [SV01] (see sec-
tion 2.5.5): Frank is cleared for the confidential level but wants to steal top
secret documents. He makes use of a Trojan horse. Frank makes Chris execute
Frank’s Trojan horse as Chris is cleared for top secret documents. Frank’s Trojan
horse is able to read top secret documents as it is running with the privileges
of Chris. However, the Trojan horse fails to write the information to a file /
container which is accessible by Frank: this is prevented by the star property.
Frank is still able to destroy the content of the top secret file, as nothing pre-
vents him to write higher level information. But Frank can, in contrast to DAC
models, not leak information.

2.6.2. Biba’s Integrity Model

We have seen that the Bell-LaPadula model successfully prevents leaking of
information. However, we also learned that is does not prevent unauthorized
modification of information.

Some years after the introduction of Bell and LaPadula’s model, K. Biba sug-
gested an extension of the Bell-LaPadula model in 1977 [Bib77]. The Bell-
LaPadula model exclusively pertains confidentiality issues while ignoring in-
tegrity issues. Created as an extension for the Bell-LaPadula model, the Biba

28

2.7. The Clark-Wilson model

model addresses only integrity issues leaving the confidentiality issues to the
Bell-LaPadula model.

Like Bell-LaPadula, Biba’s model is based on integrity levels assigned to sub-
jects and objects. Biba’s policies are similar to Bell-LaPadula’s policies except
that they are reversed:

• Simple integrity property: Subjects may only access objects by read, if the
security level of the object dominates the clearance level of the subject.

• Integrity star-property: Subjects may access objects by write only, if the
clearance level of the subject dominates the security level of the object.

We see, that read access is only permitted if the subject has a lower or equal
security level as the object. Write access is permitted, if the subject’s clearance
level is at least as high as the object’s security level.

2.7. The Clark-Wilson model

Clark and Wilson [CW87] were the first to recognize that the so far developed
MAC models focused only on military usage. Clark and Wilson argued that
major concerns for commercial usage are more about integrity than secrecy. In
their work they suggest two major principles ensuring information integrity:
well-formed transactions and separation of duty.

In contrast to Bell-LaPadula and Biba, control does not apply to basic opera-
tions (like read or write), but on an application or transactional level. Their
”commercial integrity model” defines permissions of a transactional level, e.g.
a saving deposit transaction or a bank wire transfer. Such transactions may in-
clude several low-level read and write permissions. Clark and Wilson argue
that policies should apply to the transactional level for commercial usage and
not to the low-level.

The second principle is the separation of duty: Each operation is divided into
multiple subparts. Each subpart has to be executed by a different person. E.g.
when purchasing an item, the recording of the arrival and the payment process
have to be executed by at least two separate persons.

29

2. An Introduction to Access Control

2.8. The Chinese Wall Policy

The Chinese Wall policy was suggested by Brewer and Nash in 1989 [BN89].
It picked up the observation of Clark and Wilson [CW87] that the security re-
quirements of military and commerce are different. Taking this into account,
the Chinese Wall policy extends the discretionary access control with parts of
the Bell-LaPadula model. The set of objects are divided into so-called ”conflict-
of-interests classes”. These classes are sub-divided into ”company data sets”
grouping the individual objects (e.g. files). Company data sets belong, as the
name suggests, to one company or organizational unit. The classification is
depicted in figure 2.5.

set of all objects (O)

conflict of interest classes

company datasets

A B C

A1 A3A2

individual objects

B1 B3B2 C1 C3C2

Figure 2.5.: Composition of objects in the Chinese Wall policy following [BN89,
p.208]

As a result, the Chinese Wall policy works like a ”scattered Bell-LaPadula”
model. In each conflict of interest class, the Bell-LaPadula clearance and se-
curity levels of subjects, respectively, objects apply. However, the conflict of
interest classes are completely separated from each other.

2.9. Role Based Access Control

In 1992 Ferraiolo and Kuhn [FK92] suggested the family of role-based access
control models (RBAC). The authors argue that while mandatory access con-
trol models are mainly designed for military usage, discretionary access control
models are perceived to be the choice for industry and civilian government.
However, so Ferraiolo and Kuhn, ”reliance on DAC as the principal method
of access control is unfounded and inappropriate” [FK92, p.554]. Instead the
authors suggest a new access control model named role-based access control
model.

30

2.9. Role Based Access Control

The Core RBAC model [FKC07] recognizes five basic elements (see figure 2.6):
(1) users, (2) roles, (3) permissions. Permissions consist of (4) operations ap-
plied to (5) objects. Roles are a new, intermediate element between users and
permissions: Permissions are associated with roles. Roles can be assigned to
users.

Users Roles
Permissions

ObjectsOperations

Figure 2.6.: Elements of the Core RBAC model [FKC07, p.64]

The introduction of the new abstraction ”role” has some significant advantages:
It supports both ideas of Clark and Wilson, the separation of duty and the for-
mulation of access rights on a transactional level. The access rights necessary
to perform a certain business activity (e.g. pay an invoice) can be pooled in one
role. The necessary low-level operations (read invoice, create a wire transfer,
create entries for accounting, ...) can be pooled in a corresponding role. Each
company employee can then be assigned the role allowing him to perform the
task. We see that roles are an intermediate object pooling low-level operations
to business operations, following the idea of Clark of Wilson. Also the separa-
tion of duty is supported by roles: A business process can be split into several
sub-processes. Each sub-process is authorized by a corresponding role. To en-
sure the separation of duty, it has to be made sure that one person does not own
all roles necessary for a complete process.

RBAC was standardized by the US National Institute of Standards and Tech-
nology (NIST) [SFK00] and became an ANSI standard (359-2004) in 2004.

Several extensions of the core RBAC model have been suggested:
Sandhu et al. [SCFY96] suggest a hierarchy of RBAC models. ”RBAC0 as
the base model at the bottom, is the minimum requirement for an RBAC sys-
tem. Advanced models RBAC1, and RBAC2, include RBAC0, but RBAC1,
adds role hierarchies (situations where roles can inherit permissions from other
roles), whereas RBAC2, adds constraints (which impose restrictions on ac-
ceptable configurations of the different components of RBAC). RBAC1, and
RBAC2, are incomparable to one another. The consolidated model, RBAC3,
includes RBAC1, and RBAC2 and, by transitivity, RBAC0.” [SCFY96, p.40].

We provide the definitions of Sandhu et al. [SCFY96, p.42-44] in the follow-
ing:

The RBAC0 consists of:

• U , R, P , and S (users, roles, permissions, and sessions)

31

2. An Introduction to Access Control

• PA ⊆ P ×R, a many-to-many permission-to-role assignment relation

• UA ⊆ U ×R, a many-to-many user-to-role assignment relation

• user : S → U , a function mapping each session si to the single user
user(si) (constant for the session’s lifetime)

• roles : S → 2R, a function mapping each session si to a set of roles
roles(si) ⊆ {r | (user(si), r) ∈ UA} (which can change in time) and ses-
sion si has the permissions ∪r∈roles(si){p | (p, r) ∈ PA}.

In RBAC0 sessions are controlled by the user: Concerning the model a user can
create a session and activate some subset of the user’s roles. The role activation
can be changed by the users as necessary. A session can also be ended by the
user.

RBAC1 is an hierarchical extension of RBAC0:

• U , R, P , S, PA, UA, and user are unchanged from RBAC

• RH ⊆ R × R is a partial order on R called the role hierarchy or role
dominance relation, also written as ≥

• roles : S → 2R is modified from RBAC0, to require roles(si) ⊆ {r |
(∃r′ ≥ r)[(user(si), r

′) ∈ UA]} (which can change with time) and session
si has the permissions ∪r∈roles(si){p | (∃r′′ ≤ r)[(p, r′′) ∈ PA)]}.
The symbols ≤ and ≥ refer to the partial order RH .

Roles can be organized in hierarchies creating senior and junior roles. The per-
missions in a session are those directly assigned to the roles activated in the
session plus those assigned to junior (inherited) roles.

RBAC2 is defined in the following way: ”RBAC2 is unchanged from RBAC0

except for requiring that there are constraints to determine the acceptability of
various components of RBAC0. Only acceptable values will be permitted.”
[SCFY96, p.44].

Examples for such constraints are mutually exclusive roles. These constraints
enable the separation of duty: If a user U is assigned the role role(si) he might
not be assigned role role(sj). E.g. if a user may transfer money from the com-
pany’s bank account he is not allowed to audit the transfers.

Other examples for constraints are cardinality (a role can only be assigned to
exclusively one user) or prerequisites (a role can only be assigned if the user
has already been assigned another role).

RBAC3 is a combination of RBAC1 and RBAC2 combining hierarchical roles
and role constraints.

32

2.9. Role Based Access Control

2.9.1. Derived Role Based Access Control Models

The influence of role based access control models was so strong that several
extensions and modifications have been suggested. We describe a selection of
these derived RBAC models below.

Ubi-RBAC Sejong Oh [Oh10] suggests the Ubi-RBAC model. According to
the authors, the development of ubiquitous computing led to new require-
ments. These requirements are (following [Oh10, p.608]):

• Subjects do not explicitly log on but simply use machines/devices.

• Objects are not only traditional files or tables, but also devices like copy
machines, telephones, and so on.

• Permissions like read, write, and execute are insufficient. More activities
like on/off, touch, push, connect-to and so on, are required.

• User’s authority may change dynamically depending on location, time,
and environment.

• Location (space) is an important variable. A user might be allowed to use
a device in one space (at work) but not at another (at home).

Consequently, Oh extended the original RBAC model family by spaces, context-
constraints and user-role-space assignments. Spaces are introduced as loca-
tions where user access might occur. Spaces can be organized in hierarchies,
called space hierarchies. Context constraints are special conditions that al-
low or disallow permissions, e.g. (open-room216,OPEN) is only allowed dur-
ing office hours. The user-role-space assignment is a 3-ary relation between
(users, roles, space) which must be satisfied to grant access.

We see that Ubi-RBAC basically introduces the concept of spaces and some
specific conditions related to these locations.

GRBAC Covington et al. [CMA00] suggest the generalized role-based access
control (GRBAC).

Besides the traditional roles in RBAC, which Convington et al. call ”subject
roles”, the authors introduce ”environment roles” and ”object roles”. ”Envi-
ronment roles” are conditions that must apply to grant access related to the
environment. E.g. ”managers may edit salary data for their employees only on
the first Monday of each month” [CMA00, p.6] is an environment role. ”Ob-
ject roles” allow policies to be defined on properties on the object itself, e.g. a
security level of a file, the creator of an object and so on.

33

2. An Introduction to Access Control

We see that GRBAC actually extends RBAC by additional conditions. Depend-
ing on the conditions which apply to an object or depending on the environ-
ment, Covington et al. call them object roles or environmental roles.

However, the authors do not provide information how these conditions are
formally represented or checked.

TRBAC Bertino et al. [BBF01] suggest a temporal extension of RBAC models.
The assignment of roles to a user becomes time-dependent, thus the role as-
signment maybe available at certain time periods and unavailable at other time
periods (e.g. during weekdays but not during weekends).

The temporal role-based access control model (TRBAC) supports periodic role
enabling and disabling and temporal dependencies expressed by so-called role
triggers.

Bertino et al. provide an example implementation making use of database trig-
gers of the Oracle database management system.

Location-aware Access Control Models Ray, Kumar, and Yu [RKY06] ex-
tend the Core RBAC model by location-based information and location-based
constraints. Objects and subjects (named ”users” by the authors) can be as-
signed to locations. Also, locations can be assigned to roles. The assignment
of locations to roles can be used to restrict the locations in which a role can be
assigned to a user. Furthermore, the activation of a role by a user can be re-
stricted to certain locations. Additionally, tuples of permissions and objects can
be limited to locations restricting the access to such a tuple.

A similar approach is suggested by M. Decker [Dec10]. In contrast to Ray et
al., Decker bases his access control model not on RBAC models but on dis-
cretionary access control models. However, his approach is similar compared
with the approach of Ray et al., he extends a standard DAC with location-based
constraints. His approach ”forbid[s] the access to computer resources when
the mobile user stays at a place where it is not reasonable or not safe enough
to access the respective resources. For example, using this approach a policy
could be enforced that demands that a confidential document (resource) can
only be read (operation) while staying on the premises of a particular com-
pany.” [Dec10, p.26].

Technically, the introduction of location-aware access control models is the in-
troduction of one or more constraints (e.g., subject and location, object and lo-
cation, permission and location).

34

2.10. Standards in Authorization

However, the question remains open why those specialized constraints are
modeled in specific ways and not generalized as a generic constraint indepen-
dent from its meaning: Instead of introducing specialized models for location-
aware or time-aware access control, a generalized approach would allow to
introduce any additional constraints. One of these generic constraints can then
deal with location, another with time, and so on.

2.10. Standards in Authorization

In this section we provide a short overview of standards in authorization. We
start with RFC 2753 which is the first document in which todays typical defini-
tions, like policy definition point (PDP), have been introduced. We identify fur-
ther standards extending and developing important terms in the field of access
control. Besides the foundations of the terminology we search for goals and
requirements of access control and how they are represented in standards.

2.10.1. RFC 2753 Framework for Policy-Based Admission
Control

Yavatkar et al. describe in IETF’s RFC 2753 [PYG00] a framework for policy-
based admission control. Although the standard focuses on the resource reser-
vation protocol (RSVP), the authors outline that the policy mechanisms de-
scribed in the standard may and should apply to other contexts. The standard
provides definitions for the typical concepts in policy-based authorization en-
vironments (see section 2.3), e.g. policy, policy decision point, policy enforce-
ment point and so on. Actually, RFC 2753 is partially a predecessor of RFC 3198
[SHC+01]. The latter was issued about a year after RFC2753 when the IETF de-
cided that policy-based terminology is of such importance that its definitions
should be externalized in a separate document.

Besides laying the foundations of terminology for policy-based access control,
RFC 2753 defined goals and requirements. We will discuss them below, omit-
ting specific RSVP-related goals (which are not related to access control).

• Policies vs. mechanisms: The framework specified in RFC 2753 deals only
with architectural elements and mechanisms, abstracting this from spe-
cific policy behavior.

• Support for many styles of policies: The mechanisms should support many
policies and policy configurations including priority systems.

35

2. An Introduction to Access Control

• Provision for monitoring and account information: It must be possible to mon-
itor policy states and resource usage, e.g. for accounting and billing pur-
poses. This goal has been later adopted by XACML’s obligation and mon-
itoring abilities (see section 2.11).

• Fault tolerance and recovery: The mechanisms of the framework are de-
signed to be fault tolerant in a way that they may recover from failures,
e.g. failure of sub-components, disruption in communication and so on.
We see here one origin for the design decision of XACML to let (sub-
)policies return ”indeterminate”, thus neither permit nor deny and the
problems that arise from it (see section 2.11).

• Scalability, distinctiveness when merging policies: Scalability and distinctive-
ness when merging policies are seen as a key success factor. ”In particu-
lar, scalability must be considered when specifying default behavior for
merging policy data objects and merging should not result in duplicate
policy elements or objects” [PYG00, p.4]. Scalability here is related to lo-
cal processing time per node and local memory consumption in nodes.

• Security and denial of service considerations: The threat of theft and denial
of service attacks should be minimized and the involved identities can
verify each other’s identity.

Besides defining requirements, RFC 2753 also provides two important archi-
tectural elements: the policy enforcement point (PEP) and the policy decision
point. As in RFC 3198, the PEP runs on one or many nodes which are policy
aware. It ensures that certain operations are legitimated before they are exe-
cuted.

In contrast, the Policy Decision Point (PDP) is located on a central instance. The
PEP requests policy decision from the PDP. The PDP evaluates facts and poli-
cies and returns its decision back to the PEP. The interaction necessary between
PEP and PDP is described by the protocol requirements in the RFC although
no protocol itself is defined. Requirements are, for example, message reliabil-
ity, small delays, asynchronous notification.

RFC 2753 can be seen as a starting point for the meanwhile well-established ar-
chitecture of authorization frameworks. Although targeting a specific problem
of RSVP – which itself has nothing to do with access control – the central ele-
ments PEP and PDP and their interaction are defined and described. RFC 2753
focuses on architectural elements of a security system without going too much
into details (like policy formulation, exact message protocols and so on.)

36

2.10. Standards in Authorization

2.10.2. RFC 2904-2906 AAA Authorization Framework

RFC 2904 [FHdL+00] describes a quasi-standard for an authorization frame-
work. Authentication is explicitly excluded from the document’s scope. It is
assumed that authentication is handled by a different component. The frame-
work makes use of four conceptional basic entities:

1. Users interested in gaining access to resources.

2. The user’s home organization being responsible to decide whether the user
may gain access to a service/resource.

3. The service of a service provider the user wants to gain access to.

4. The AAA server of the service provider containing general service agree-
ments with the user’s home organization on a general level – without
knowing the individual user.

The document describes several message sequences between user, user home
organization and service providers to be able to decide on the requested access.
It deals with roaming users and distributed services as well. It provides basic
information where which parts of authorization decisions can be made in the
framework.

The subsequent RFC 2905 [HdBG+00] describes several examples of services
making use of the authorization framework in RFC 2904. PPP dial-in, Mobile
IP, Bandwith Broker, Internet Printing, Electronic Commerce, and Computer
Based Education and Distance Learning are the examples provided. For each
example, a message sequence is given, describing how the authorization pro-
cess has to be modeled.

RFC 2906 [FLG00] is the third document in this series. Its content consists of
the requirements which lead to the framework design of RFC 2904.

2.10.3. RFC 3198 Terminology for Policy-Based Management

Westerinen et al. [SHC+01] provide today’s definitions for many access control
related terms. The RFC 3198 is a melting-pot of terms already introduced in
previous RFCs (e.g. RFC 2026, RFC 2828, RFC 2753) and aims to be a ”clear,
concise, and easily understood documentation” [SHC+01, p.1]. We already in-
troduced the relevant terms for our work in section 2.3 and omit them here.

37

2. An Introduction to Access Control

2.11. XACML - The eXtensible Access Control
Markup Language

The extensible access control markup language (XACML) [Ris10] is an XML
based language. It allows policy definitions and defines an underlying archi-
tectural framework to model an access control mechanism. It also includes
a processing model, how access control requests are handled by the compo-
nents. XACML is standardized by the OASIS consortium. The Organization
for the Advancement of Structured Information Standards (OASIS)4 maintains
several standards, e.g. DocBook and OpenDocument, two file formats repre-
senting text documents. OpenDocument is used in LibreOffice/OpenOffice, an
open-source alternative to the Microsoft Office products.

XACML wants to be ”a common language for expressing security policy. If
implemented throughout an enterprise, a common policy language allows the
enterprise to manage the enforcement of all the elements of its security policy in
all the components of its information systems” [Mos05, p.11]. It aims to unify
many policy enforcement points an organization has. Therefore, XACML is
split mainly into three components:

1. the XACML language definition (see section 2.11.1)

2. a definition of the architectural elements and components (see section
2.11.2)

3. a processing model how the components are invoked (see section 2.11.3).

2.11.1. XACML Language Definition

XACML defines the following requirements which are seen to be solved within
XACML. Thus, we say that concerning language definition, XACMLs function-
ality is as follows:

• ”To provide a method for combining individual rules and policies into a
single policy set that applies to a particular decision request.” [Mos05,
p.11]

• ”To provide a method for flexible definition of the procedure by which
rules and policies are combined.” [Mos05, p.11]

• ”To provide a method for basing an authorization decision on attributes
of the subject and resource.” [Mos05, p.12]

4http://www.oasis-open.org, last accessed 2012-11-28

38

http://www.oasis-open.org

2.11. XACML - The eXtensible Access Control Markup Language

• ”To provide a set of logical and mathematical operators on attributes of
the subject, resource and environment.” [Mos05, p.12]

• ”To provide a method for handling a distributed set of policy compo-
nents, while abstracting the method for locating, retrieving and authenti-
cating the policy components.” [Mos05, p.12]

We cited not all requirements but chose the ones we see as important. XACML
aims to combine policies to policy sets. This includes mechanisms which decide
on a combined policy result, if not all sub-policies could be evaluated or return
conflicting results. E.g. one sub-policy allows access, another denies. Another
functionality XACML aims to provide is to offer attributes for certain subjects
or resources. However, this functionality is not provided by XACML in a sense
that it offers APIs or functionality to determine an attribute. Instead, XACML
allows defining attributes in XML’s syntax.

This functionality is expressed in XML making the XACML expressions ma-
chine-readable. Unfortunately, XML expressions become easily very large and
thus unreadable for human beings.

2.11.2. XACMLs Architectural Elements

XACML provides definitions of its architectural elements. We cite them from
the XACML standard ([Ris10]). However, some definitions of elements have
been omitted in the XACML standard.

• Access requestor: This architectural element is present in the data flow
diagram but not explained in the standard. We assume, it is an entity
which wants to get a decision upon an access request, e.g. a user program.

• PEP (policy enforcement point): ”The system entity that performs access
control, by making decision requests and enforcing authorization deci-
sions” [Ris10, p.11].

• Context Handler: The system entity that converts decision requests in the
native request format to the XACML canonical form and converts autho-
rization decisions in the XACML canonical form to the native response
format” [Ris10, p.10].

• PDP (policy decision point): ”The system entity that evaluates applicable
policy and renders an authorization decision” [Ris10, p.10].

• PAP (policy administration point): ”The system entity that creates a pol-
icy or policy set” [Ris10, p.11].

39

2. An Introduction to Access Control

• PIP (policy information point): ”The system entity that acts as a source of
attribute values” [Ris10, p.11].

• Subjects: ”An actor who’s attributes may be referenced by a predicate”
[Ris10, p.11].

• Obligation Service: The term is not defined in the XACML standard. The
term ”obligation” is defined as ”an operation specified in a policy or pol-
icy set that should be performed in conjunction with the enforcement of
an authorization decision” [Ris10, p.11]. So we assume that an obligation
service is taking care of the execution of obligations.

• Resource: ”Data, service or system component” [Ris10, p.11].

• Environment: ”The set of attributes that are relevant to an authorization
decision and are independent of a particular subject, resource or action”
[Ris10, p.10].

After introducing the major architectural elements of XACML we go on de-
scribing the data flow between those elements.

2.11.3. XACMLs Data Flow

Besides its language definition, XACML also provides the data flow between
XACMLs architectural elements.

Figure 2.7 depicts relevant XACML architectural components and the data flow
connecting the components. Both, picture and explanation of the data flow are
explained in the official XACML standard [Mos05, p.17f], which we cite here.

1. The policy administration point (PAP) creates policies or policy sets. It is
made available for the policy decision point (PDP). The PDP is responsi-
ble for evaluating the policies and return an authorization decision.

2. An access requester sends a query to the policy enforcement point (PEP).
It is the task of a PEP to receive access queries, make decision requests
and enforce authorization decisions. PDP and PEP are originally defined
in RFC3198 [SHC+01].

3. The PEP transmits a request to the context handler. It may be enriched
with attributes.

4. The context handler builds an XACML request and transmits it to the
PDP.

5. If necessary, the PDP requests additional attributes (from subject, resource,
action or environment) from the context handler.

40

2.11. XACML - The eXtensible Access Control Markup Language

access
requester

PDP

subjects

context
handler

PIP

PAP
environ-

ment

resource

obligations
servicePEP

1. policy or
policy set

2. access request

3. request 10. response

11. obligations

8. target, attribute,
resource

9. decision

4. attribute query

5a. subject
attributes

5b. environment
attributes

5b. resource
attributes

6. attribute

7. resource

Figure 2.7.: Architecture and data flow of XACML. Taken from [Mos05, p.17].

6. Those attribute requests are delegated from the context handler to the
policy information point (PIP). A PIP is defined as a source of attributes.
In contrast to the terms PDP and PAP, the term PIP has to our knowledge
not been defined outside of XACML.

7. The PIP obtains the request’s attributes. XACML does not specify, how.

8. The PIP returns the obtained attributes to the context handler.

9. The context handler includes the resource in the context.

10. The requests attribute and resource are sent to the PDP. The PDP then
evaluates the policy.

11. The PDP returns the authorization decision to the context handler.

12. The context handler returns the response to the PEP.

13. The PEP fulfills obligations that might come along with the policy. Obli-
gations are, e.g. logging entries, changing the state of a variable, and so
on.

41

2. An Introduction to Access Control

We see that XACML introduces a standardized way, how access requests are
handled. Besides the already standardized PDP and PEP, a new component is
introduced, the policy information point.

2.11.4. Problems of XACML

Attribute retrieval XACML does not explain how attributes of subjects, ob-
jects, and the environment can be evaluated and which attributes or attribute
types are supported.

Obligations XACML introduces so-called obligations. Obligations are func-
tions that are performed by the PEP when a policy linked with the obligation
grants access. An example is logging or the need to change one’s password.
However, it does not become clear what kind of obligations are exactly sup-
ported and how the obligation service is implemented.

Implementation To our knowledge, it took several years until the first im-
plementation of a XACML framework was created. Sun’s XACML implemen-
tation5 is based on the XACML release from February 2003 and was released
in 2006. Although in 2012 OASIS is in the process of releasing version 3 of
XACML, there is no implementation available for version 2. Version 2 was al-
ready released by OASIS in 2005.

Weaknesses in policy strategy combination Li et al. [LWQ+09] state that
XACML has a very flexible approach for policy strategies, namely deny-over-
rides, permit-overrides, first-applicable, and only-one-applicable. However,
XACML lacks very common strategies like logical combinations of policies.
E.g. a permit may only be granted, if two sub-policies allow it. In addition,
Li et al. list common strategies not supported by XACML:

• Weak-consensus: A request is only permitted, if at least one sub-policy
allows access and no other sub-policy denies it. The request is denied, if
at least one sub-policy denies access and none permits it. A conflict has
to be raised, if some sub-policies deny and others permit access.

• Strong-consensus: All sub-policies must either permit or deny a request.
A conflict is indicated if at least one sub-policy differs in its conclusion.
This strategy differs from the weak-consensus strategy as a sub-policy
may neither return a permit nor deny, thus is indifferent for a request.

5http://sunxacml.sourceforge.net, last accessed 2013-01-17

42

http://sunxacml.sourceforge.net

2.11. XACML - The eXtensible Access Control Markup Language

In such a case, the strong-consensus will yield a conflict while the weak-
consensus does not.

• Weak-majority: A request is granted access, if the majority of all sub-policies
grant access and only a minority denies access. Sub-policies being indif-
ferent are not counted for the votes.

• Strong-majority: Permission is granted, if over half of all sub-policies per-
mit request and denied, if over half of all sub-policies deny. If no majority
can be gained, the policy is indifferent or in conflict. The strong-majority
handles indifferent sub-polices stricter than the weak-majority strategy.
Li et al. do not define, how indifferent sub-policies count towards the
majority.

Generally, Li et al. criticize the lack of strategies allowing the combination of
policies of XACML. ”XACML has become the de facto standard for specifying
access control policies for various applications, especially web services. Exten-
sibility and flexibility of policy combining are thus desirable to meet the needs
of these applications. XACML explicitly allows additional user-defined com-
bining algorithms. However, it does not provide a standard approach (or a
specification language) for doing so.” [LWQ+09, p.135f]. Consequently, they
suggest a Policy Combination Language (PCL) which allows a flexible combi-
nation and definition of strategies.

Ambiguity of indeterminate policies Ni et al. [NBL09] criticize the ambigu-
ity of the policy result ”indeterminate” of XACML. They provide an example
making use of a two sub-policy XACML policy: The first sub-policy r1 returns
”permit” while the second sub-policy r2 returns ”indeterminate”. Although
the expected overall result is expected to be ”permit”, so Ni et al., XACML
returns ”deny” for the policy ps1 being counter-intuitive. ”If there is no er-
ror or no missing information r2 can only evaluate to either ”permit” or ”not
applicable”. If r2 evaluates to ”permit”, the final effect is ”permit”, and if r2
evaluates to ”not applicable”, the final effect is ”permit” too. However, based
on the standard policy combining algorithm provided in XACML 2.0 and 3.0
WD 6, ps1 returns ”deny”. The reason for such an unintended result is that the
meaning of ”indeterminate” is overloaded, which indeed may represent differ-
ent access decisions. XACML policy combining algorithms cannot distinguish
these different meanings and are ”indeterminate”, thus may generate such an
unintended result.” [NBL09, p.298]

From this we see, why XACML is criticized to be complex and sometimes
counter-intuitive in its semantics and behavior.

43

2. An Introduction to Access Control

2.12. Access Control and the Semantic Web

”The Semantic Web will bring structure to the meaningful content of web pages,
creating an environment where software agents roaming from page to page can
readily carry out sophisticated tasks for users.” [BLHL+01, p.34]

”Most of the web’s content today is designed for humans to read, not for com-
puter programs to manipulate meaningfully.” [BLHL+01, p.34]

These two quotes from Berners-Lee et al. in their pioneering paper ”The Se-
mantic Web” [BLHL+01] explain the motivation and aim of the semantic web.
The general approach was to use ontologies to represent knowledge in dif-
ferent domains. The knowledge is represented by specific formal languages
(e.g. OWL, RDF). Reasoning engines support logic inference and queries about
the modeled facts. In a recent article Shadbolt, Hall, and Berners-Lee [SLH06]
mainly see five areas of ongoing development concerning the semantic web:
universal resource identifiers (URIs) as resource identifiers, triple stores as
knowledge database, RDF translation as data exchange format, web ontology
languages as powerful alternative to RDF and rules and inference engines to
reason on the data.

The idea is not far to use the results of the semantic web development as a base
for access control. An attempt in this direction is made by Finin et al. [FJK+08].
They model a standard RBAC model in the web ontology language OWL.

Kagal et al. [KBCW06] suggest a framework to manage policies using semantic
web technologies. Their framework ”Rein” is designed to support many pos-
sible policy languages. Rein stores the data in ontologies (expressed in OWL
and RDF). It is able to reason on them by standard ontology mechanisms, e.g.
the RDF-S or OWL reasoner. The Rein model has the fixed entities requester,
resource and access (type). It supports additional environmental conditions
which must be expressed in the model of the ontology.

Kagal et al. do not provide any runtime times and answer times of their im-
plementation. Bock et al. did a benchmarking for OWL reasoners [BHJV08] re-
cently. They compared six OWL reasoners (Sesame, OWLIM, KAON2, HermiT,
RacerPro, Pellet) based on some standard data sets. E.g. the VICODI dataset
was compared in five flavors ranging from 50k to 250k axioms. The response
time for a query was between 0.2 seconds up to 3 seconds (best OWL reasoner
on the VICODI dataset was RacerPro with 0.2 seconds, worst KAON2 with 3s).
These answer times are a serious issue, when using OWL standard reasoners
as query engines, as Kagal et al. [KBCW06] did. Answer times are crucial for
access control systems. Being able to perform about one access check request
per second (assuming an average answer time of 1s) is at least two orders of
magnitudes too slow. Think of the case that a list of 30 entries, e.g. books, must

44

2.13. Logic-Based Authorization Models

be checked for access. This would mean a response time of 30s for the user.
Obviously, this is orders of magnitudes too slow.

Having a look at the sample data sets used in the experiment of Bock (about
250k at most) we see that this is actually a very small data set for access right
queries. A typical notebook’s file system today may have roundabout 200k
files, independently of other conditions like access rights, users and so on. The
used data sets, therefore, can be seen to be representative for a single user en-
vironment and not by far for larger web systems with millions of entities. We
did find no information about the scaling of inference engines used by Bock et
al. Nevertheless, more entities will lead to longer response times. Therefore,
we hold these approaches for unusable for practical, real world access control
problems.

2.13. Logic-Based Authorization Models

In [SV01] P. Samarati and de Capitani di Vimercati criticize that ”several autho-
rization models have been formalized and access control mechanisms enforcing
them implemented. However, each model, and its corresponding enforcement
mechanism, implements a single specified policy, which is in fact built into the
mechanism. As a consequence, although different policy choices are possible in
theory, each access control system is in practice bound to a specific policy. The
major drawback of this approach is that a single policy simply cannot capture
all the protection requirements that may arise over time” [SV01, p.184].

They argue, ”that different users may have different protection requirements”
[SV01, p.184], ”a single user may have different protection requirements on
different objects” [SV01, p.184], and ”protection requirements may change over
time” [SV01, p.184]. This is an argumentation that we used to motivate our own
work. We refer to a current use case supporting this argument [Son13].

One solution for this problem is the usage of logic-based languages. Logic-
based languages have a large expressive power and a formal representation.
We provide two examples for this kind of access control models below.

2.13.1. Woo and Lam’s approach

Woo and Lam [WL92] describe such an approach, actually the first one we
could find. The model of Woo and Lam is depicted in figure 2.8.

Before a subject s can perform access r on object o, a request in the form
req(r, s, o) is submitted to the authorization module. The module responds

45

2. An Introduction to Access Control

req(r,s,o)
grant(r,s,o)
fail(r,s,o)
deny(r,s,o)

Authorization Module

Authorization
Requirements

System State

Figure 2.8.: Authorization model of Woo and Lam [WL92, p.38].

either with a grant(r, s, o) or a deny(r, s, o). It might also return a fail(r, s, o), if
the authorization module fails to establish a grant or deny.

The authorization module is described as an interpreter. As input the inter-
preter takes a set of policy bases {Bi} and the current system state.

Woo and Lam [WL92] define an authorization policy as ”over a set of subjects
S, a set of objects O and a set of access rights R as a 4-tuple (P+, P−, N+, N−)
where each component is a subset of {(r, s, o) | r ∈ R, s ∈ S, o ∈ O}” [WL92,
p.39]. P+ is the set of explicitly granted rights, i.e. (r, s, o) ∈ P+ explicitly
allows access of subject s on object o with right r. N+ are the rights explicitly
denied. P− and N− are the rights that should not explicitly be granted (denied,
respectively) under this policy.

The policy language of Woo and Lam is a many-sorted first-order logic with a
rule construct. The rule construct is similar to rule constructs used in default
logic [Rei80]. Woo and Lam name two restrictions of their language:

• The semantics of the language should be computable and valid. As an
infinitary theory is in many cases semi-decidable, Woo and Lam restrict
their language to a finitary theory: they do not allow function symbols
and use only finite sets. By this, the authors also omit quantifications.

• Disjunction is limited in a very restricted way only. By this restriction, the
language is not able to express requirements like ”subject A is allowed
to read file A or file B”. Like the authors, we see this second limitation
not too restrictive. It is a rare case that in policies access is restricted by
such an OR-combination. More often statements like ”subject is allowed
to read file A and file B” will occur.

46

2.13. Logic-Based Authorization Models

Woo and Lam [WL92] express a rule in the form f :f ′

g . f is the prerequisite of the
rule, f ′ is the assumption, and g is the consequence. When no assumption is
required, f ⇒ g is an abbreviation for f :T

g with T being the symbol for true.

We provide an example rule (see [WL92]):
execute+(x, P.exe) ⇒ read+(x, P.doc)

This rule says that any user x who is explicitly (+) authorized to execute a
program P.exe is also authorized to read the associated document P.doc.

Woo and Lam [WL92] provide as a real-world example the policy base of the
Bell-LaPadula model. One problem of the Bell-LaPadula model expressed in
Woo and Lam’s language is, that Woo and Lam show the example only for two
clearance / security levels, low and high. If more than these two security level
have to be modeled, the necessary policy expressions explode. With 2 levels, 4
expressions are necessary, with 3 levels already 9 policies are required, 4 levels
require 16 policies and so on.

Besides this, Woo and Lam [WL92] do not provide an implementation of their
language. The authors only refer to Prolog as an interpreter of their language.

Another critic is put forward by Samarati and de Capitani di Vimercati [SV01].
”As a drawback, authorization specifications may result difficult to understand
and manage. Also, the trade-off between expressiveness and efficiency seems
to be strongly unbalanced: the lack of restrictions on the language results in the
specification of models which may not even be decidable and therefore will not
be implementable. (...) Woo and Lam’s approach is based on truth in extensions
of arbitrary default theories, which is known, even in the propositional case to
be NP-complete, and in the first order case, is worse than undecidable” [SV01,
p.185]. In other words, Woo and Lam’s approach is too complex to compute.

2.13.2. Jajodia et al.

Another suggestion comes from Jajodia et al. [JSSS01]. They propose a ”flexible
authorization framework” (FAF). The FAF is, like Woo and Lam’s approach,
a logic-based language trying to balance flexibility, expressive power, ease of
management, and performance. Jajodia et al. claim that any model expressed
in their language can be ”computed in quadratic time data complexity” [JSSS01,
p.239], which is better than the NP-hard run time of Woo and Lam’s approach.

The language of Jajodia et al. makes use of 5 predicates, we introduce the two
most important. Let o be an object, s be a subject, and a an ”action term” or
permission type, and + or − a sign representing allowance or denial for a pol-
icy.

47

2. An Introduction to Access Control

• cando(o, s, 〈sign〉a)
Is an explicit allowance or denial. E.g. cando(o, john,+read) allows (+)
user john to read object o.

• dercando(o, s, 〈sign〉a)
dercando represents an authorization derived by the usage of logical rule
inference.

• do(o, s, 〈sign〉a) do is an access enforcement, thus access must be granted
or must be denied. The expression is used to solve conflict resolution in
case both ”permit” and ”deny” can be inferred by application of logical
rules. It is a kind of default decision.

Besides these predicates, the language supports hierarchies, e.g. memberships
in hierarchical user groups. Furthermore, relationships between entities are
supported, e.g. an owner relationship in the form owner(user, object).

However, Jajodia et al. do not provide an implementation for their suggested
language. The authors do not proof (1) if their language can be implemented in
any kind of logic interpreter, like Prolog. And if so, (2) how fast access decisions
can be made using real-world examples. In their paper, the authors do not
even provide a theoretical use case like implementing a standard access control
model, like Bell-LaPadula, to show, how complex the expressions are which are
necessary to mimic the example access control model.

2.14. Summary

In this chapter we selected several access control models and approaches sug-
gested by different authors during the last 50 years. We started with important
general design principles and continued with the famous HRU-model and its
derivations. Further, we introduced the differentiation between mandatory and
discretionary access control models as it was first mentioned in DoD’s Orange
Book. Besides the military access control models we introduced commercially
important models like the Clark/Wilson model, the Brewer/Nash model, and
the RBAC model family. Furthermore, we cited important standards and RFCs
introducing important and relevant terms. Hereby, we mentioned RADIUS as
relevant communication protocol. We laid out the basics of the extensible ac-
cess control language XACML together with its architecture and protocol. We
finished the chapter by giving examples how access control models can be re-
alized making use of the semantic web and, as one of the latest developments
in access control models, how these models can be expressed by logic-based
languages.

48

3. Motivating Example

In this chapter we present an informal introduction of the Access Definition
and Query Language (ADQL) thought as a motivating example. It aims to give
the reader a first impression about ADQL, its structure, goal, and concepts.

ADQL is a formal language utilizing different mathematical concepts and in-
terpreted by a software service. Without going into details we present a usage
example for an access control model. We show how this example is described
in ADQL concerning the access control model definition, facts, policies, and
access queries. With the facts we explain the underlying concepts, again in an
informal manner.

The complete language is explained in chapter 5. We provide a definition and
usage of all concepts in chapter 4. Further, in-depth usage examples are pre-
sented in chapter 6.

3.1. Components of ADQL

One of the first questions to be answered when designing an access control
system is: What are the components required to fulfill the task? An access
control system decides on access checks: it either grants or denies access.

We illustrate these considerations with an example: User ”Ann” wants to access
a file ”file1.jpg”. She wants to read the file. It is Friday, 31.8.2012. She requests
access from her home computer through a VPN connection to a server in her
company.

How can we decide if the access request should be granted? To enable this
decision basically four components are required:

System State. First, a system state is required. A system state is a description
of the environment necessary to be able to decide on access checks. E.g. Who is
the user requesting access? What is the operation the user wants to apply? On
which object is access requested?

49

3. Motivating Example

In our example, ”Ann” wants to access ”file1.jpg” with a read operation. Maybe,
even the current system time or the network the user sends the request from are
also necessary system states. In our example, it is Friday, 31.8.2012 and the used
network is a VPN. All in all, we need 5 variables to represent the system state
of our example: the user, the requested file, the requested operation, the system
date, and the network.

The concept ADQL uses to represent a system state is called scope.

An ADQL scope consists of a collection of variables. Each variable describes one
facet of the current system state, e.g. who is the current user or which object
is accessed? Within a scope, a variable is bound to a specific value. E.g. the
variable user is bound to Ann. We write �user = {Ann} with � being an ADQL
symbol marking variables.

Our example represents one system state represented by 5 variable bindings:
The user is ”Ann”, the object is ”file1.jpg”, the requested permission is ”read”,
the date is 2012-08-31, and the network is VPN.

ADQL provides no mechanisms to detect the current system state, i.e. it is out
of scope of ADQL to define, how it can be determined that the user is ”Ann”
and bind ”Ann” to a variable. We assume that the binding of variables to values
is done before querying ADQL.

Policies. A policy describes conditions when access is granted or denied.
Policies granting access are called positive access rights, policies denying ac-
cess are called negative access rights. In the current version, ADQL supports
the formulation of positive access rights.

ADQL models policies as sets of conditions. If all conditions of a policy p are
met, then p grants access. We say, that the conditions of policy p are logically
AND-concatenated. ADQL refers to these conditions as tests. We model tests
as boolean functions.

Example for a test: ”Is the current user ’Ann’?”. Example for a policy: ”Grant
access, if (a) the current user is ”Ann” and (b) the currently requested object is
”file1.jpg”.

Model. The model is the very basic description of the space an access control
system is modeled in. Without defining, that e.g. a concept ”users” exists, no
policies, no facts, and no system states can be described for the concept ”users”.
Therefore, the access control model describes all these basic concepts and how
the concepts are related.

50

3.2. Motivating Example

To describe the concept, ADQL introduces the concepts entity, container, rela-
tion, and filtered 1-projection. All concepts will be described in-depth in chap-
ter 5. For now, we introduce the above concepts briefly:

• Entities represent ”things” within ADQL. E.g. the user ”Ann” is an entity.
The permission ”read” is an entity.

• Containers are used to group entities. E.g. a container can be used to
group all user entities. Containers can be organized in hierarchies and
networks.

• Relations represent properties of entities. E.g. a user may have assigned
attributes, like a supervisor or a proxy.

• Filtered 1-projections are a concatenation of a filter operation and a pro-
jection. ADQL utilizes filtered 1-projections to query on relations and
relation structures. With the help of filtered 1-projections queries like ”re-
turn all proxies of the user Ann” can be answered.

Facts Facts describe the reality and create the framework, ADQL makes its
decisions on. E.g. it is a fact, that ”Ann” exists. It is another fact that ”Ann” is a
”user”.

Facts are based on the model. They describe the reality making use of the con-
cepts defined in the model. A model describes the ”layout” of the access con-
trol model. E.g. a model says, things like ”users” exist. In contrast, the facts
describe the details about the concepts of the model layer. E.g. which users do
actually exist? While the model describes the availability of certain concepts,
the facts describe the population of this space.

This ”population of the space” is used by policies and the system state. In
order to issue a policy, that ”the user must be Ann”, (1) the concept ”user”
must be introduced in the model, and (2) the fact that ”Ann” is a ”user” must
be defined. The same is true for the system states: The variable ”user” can be
assigned to the value ”Ann” only, if both, model and fact, exist.

3.2. Motivating Example

We demonstrate the usage of the Access Definition and Query Language with
a small usage scenario. The scenario will not explain all concepts in-depth, but
tries to give an overview on ADQL’s structure and usage.

51

3. Motivating Example

regular
admin

Ann

Herb

read
write

roles users

permissionsobjects
common
protected

userroles

secret

Figure 3.1.: Graphical illustration of the simple RBAC example.

Our example is the simple Role-Based Access Control Model (RBAC) depicted
in figure 3.1.

In our simple RBAC example users can be assigned to roles. A role itself
consists of tuples of permissions and objects, e.g. (read,common) allow-
ing ”read” access to object ”common”. Our goal is to model this basic RBAC
model in ADQL. Furthermore, we want to describe the facts, that ”Ann” and
”Herb” are users, ”Ann” is a ”regular” user while ”Herb” is an ”administra-
tor”. Our model supports the operations ”read” and ”write” and distinguishes
three objects, ”common”, ”protected”, and ”secret”. We define three policies:

1. Any regular user may read and write object ”common”.

2. Any regular user may read object ”protected”. They must not access ob-
ject ”secret”.

3. Administrators have full access to all objects.

We start by defining the access control model. An access control model pro-
vides a framework, how policies, access rights and facts are described. In this
example our model consists of the following parts:

A concept ”users” is required. It is modeled as a container. We describe this in
ADQL:

users︸ ︷︷ ︸
symbol

= �︸︷︷︸
definition

c︸︷︷︸
container

()︸︷︷︸
arguments

; (3.1)

We define (”�”) a new container (”c”). Containers are objects which are used
to collect entities. Currently it is empty (”()”). The new container is assigned
the symbol ”users”, we say the ”container is named ’users’ ”. Every ADQL
statement is finished by a semicolon.

52

3.2. Motivating Example

Ann and Herb are users. ADQL says that the entities ”Ann” and ”Herb” ex-
ist:

Ann = �e(); (3.2)
Herb = �e(); (3.3)

The symbol ”Ann” is assigned a newly defined (”�”) entity (”e”). The same
applies to Herb. Each statement is ended by a semicolon.

We assign both entities, ”Ann” and ”Herb” to the container ”users”.

users = �c(Ann,Herb); (3.4)

We define a new container (”�c”). This container is assigned the entities refer-
enced by the symbols ”Ann” and ”Herb”. The new container is assigned to the
symbol ”users”. Please note, that the container defined in our very first com-
mand (users = �c();) is no longer referenced by the symbol ”users”. A new
container has been defined and was assigned the symbol ”users”. The ”old”
and empty container is not referenced by any symbol anymore.

Side note: Our current implementation of ADQL does not support automatic
garbage collection. However, as we will see later, all defined ADQL concepts
(like entities and containers) can be referenced by internal ids and therefore
deleted or modified, although no symbol is referencing the item.

Next, we introduce the two roles ”regular” and ”admin”:

roles = �c(regular = �e(), admin = �e()); (3.5)

A ”container” (”c”) is defined (”�”) and assigned to the symbol roles. It con-
sists of two entities ”regular” and ”admin”. Both entities ”regular” and ”ad-
min” are defined within the same command and assigned its respective sym-
bol. This statement is an example for nesting commands: Three definitions,
two for entities and one for a container, are written down in one statement.

We model the fact, that Ann is a regular user and Herb is an administrator:

userroles︸ ︷︷ ︸
symbol

= �r(users, roles) :︸ ︷︷ ︸
relation definition

{(Ann, regular), (Herb, admin)}︸ ︷︷ ︸
values

; (3.6)

The above ADQL expression defines a new relation (”�r”) on the containers
”users” and ”roles”. A relation allows to link entities of the containers with
each other. In this case, we link the entities ”Ann” and ”regular”. This fact says
that ”Ann” is a ”regular” user. Consequently, ”Herb” is an ”administrator”.
The relation is assigned the symbol ”userroles”.

53

3. Motivating Example

Let us now turn to permissions (called ”operations” in some RBAC models).
We introduce a container for all modeled permissions and assign ”read” and
”write” to it.

permissions = �c(read = �e(), write = �e()); (3.7)

The command is syntactically comparable to the definition of the roles: Two
entities and an embracing container are defined in one statement.

Next, we introduce the three objects ”common”, ”protected”, and ”secret”.

objects = �c(common = �e(), protected = �e(), secret = �e()); (3.8)

As we have introduced the access control model and all facts, we are now
able to define the access control policies which state when access should be
granted.

Let us repeat the required policies:

1. Any regular user may read and write ”common”.

2. Any regular user may read ”protected”. They must not access ”secret”.

3. Administrators have full access to all objects.

The first policy can be expressed saying that ”regular users may read and write
the common object”. This policy can be divided into smaller ”sub-policies”:

1. The current user has to own the role regular,

2. the requested access has to be either read or write,

3. the object has to be ”common”.

ADQL refers to sub-policies as ”tests”.

We start modeling in ADQL with the third test, as it is the simplest to explain.
The condition ”the object has to be ’common”’ can be re-formulated as a ques-
tion: ”Is the current object common?”. The current object is represented in
ADQL as a variable which can be assigned any entity belonging to the con-
tainer ”objects”.

�︸︷︷︸
variable

objects︸ ︷︷ ︸
symbol

(3.9)

This expression refers to the variable �objects. In ADQL, variables are pre-
defined: A variable of the same symbol as a container is automatically defined

54

3.2. Motivating Example

in ADQL when a container is defined. We already defined the container ”ob-
jects” before, consequently, the variable �objects has already been defined.

We want to check if the value of the current object is ”common”. ADQL formu-
lates this test in the following way: ”Does the value of the variable object match
at least one element in a single-entity container with the element ”common”?

objIsCommon︸ ︷︷ ︸
symbol

= �t(�objects︸ ︷︷ ︸
left side

,�c(common)︸ ︷︷ ︸
right side

, θ︸︷︷︸
test operator

); (3.10)

This expression defines a new test (”�t”). ADQL tests consist of three argu-
ments, two containers or variables (”left side” and ”right side”) and an op-
erator. The operator is a boolean function. In the above example, the ”left”
argument is the variable ”objects” (”�objects”). (If you wonder: ADQL expects
as left and right side arguments of the type container. The value of a variable
in ADQL is of the type container.) The ”right” argument is a newly defined
container with one entity assigned: ”objects” (”�c(common)”). This container
is not assigned a symbol, we say, it is ”anonymous”. The third argument of the
test is a boolean function, here θ (theta). theta returns true if both containers
share at least one entity.

We summarize: The test ”objIsCommon” checks whether the variable object
and a container holding the entity ”common” share at least one entity. As
variables are used to express certain system states, we can call the value of a
variable the ”current value” for a specific point in time. In other words: Is
the ”current object” the entity ”common”? This is exactly what we wanted to
express.

Let us continue with the second test of our first policy, (2) the requested access
has to be either read or write. This test is similar to the above test: ”Is the
currently requested access either read or write?”.

permRW = �t(�permissions,�c(read, write), θ); (3.11)

The test permRW checks whether the current permission has at least one el-
ement in common with a newly defined container holding the entities ”read”
and ”write”. Or, is the current permission read or write?

We go on with the first test for our policy ”(1) the current user has to own the
role regular”. We can re-formulate this problem by asking ”does the current
user own the role regular?”. ADQL formulates the test in this way: ”Does the

55

3. Motivating Example

set of roles assigned to the current user match at least the set containing the role
regular”? This expression requires the following concepts to be used: (A) Who
is the current user? (B) Which roles is this user assigned to? (C) Do these roles
contain the role regular?

The current user (part A) is, as we already know, represented in ADQL as vari-
able ”�users”. Part B ”which roles is this user assigned to?” requires a so-called
filtered 1-projection:

assignedroles︸ ︷︷ ︸
symbol

= �pr(userroles︸ ︷︷ ︸
relation symbol

)(�users, .︸ ︷︷ ︸
parameters

); (3.12)

We define a new filtered 1-projection (”�pr”) on the relation ”userroles”. The
first input parameter for the filtered 1-projection is the value of the variable
users (”�users”), thus the current user. This is the filter applied in the oper-
ation: all tuple elements of the relation not matching this filter are ignored.
The second input parameter, denoted by the dot (”.”), marks the argument
of the relation the filtered 1-projection projects to. This is the projection ap-
plied on the relation. As the result is always one-dimensional, we refer to it
as ”1-projection”. In other words, if a relation is interpreted as table with each
column being a ”link”, the dot marks the remaining column when the filtered 1-
projection is applied. The concatenation of the filter operation and 1-projection
is referred to as ”filtered 1-projection” or ”1F-projection”. The example filtered
1-projection is assigned to the symbol ”assignedroles”.

Please recall the definition of the relation ”userroles”: It is defined on the con-
tainers users × roles. As the ”dot” is at position 2, the result of the filtered
1-projection are the second part of each ”link” (element of the relation), in this
case an entity of the container ”roles”.

The above definition of the filtered 1-projection ”assignedroles” needs to be
evaluated. ADQL calls the evaluation of definitions an ”application”. The sym-
bol for an application is ∇. Consequently, the application of the above filtered
1-projection is denoted by

∇(assignedroles)() == ∇(�pr(userroles)(�users, .))(); (3.13)

Side note: The symbol ”=” or ”:=” is used in ADQL as an assignment operator,
assigning the right side of the equal sign to the left side. To differentiate assign-
ments from the statement ”is equal to” we denote the latter with the symbol
”==”.

56

3.2. Motivating Example

The result of the above application ”∇(assignedroles)()” is depending on the
second argument ”()” of the application, which has been omitted so far. The
second argument is a scope representing a certain system state with variable
bindings. Within a scope, variables can be bound to values. Scopes do not
interfere with each other. Only variable bindings are scope dependent. Defini-
tions of the access control model, facts, and policies are global definitions valid
for any scope.

s1 = �s(�users = �c(Ann)); (3.14)
s2 = �s(�users = �c(Herb)); (3.15)
s3 = �s(�users = �c()); (3.16)
s4 = �s(�users = �c(Ann,Herb)); (3.17)

The above statement defines four scopes (”�s”). The scopes are assigned to
the symbols s1, s2, s3, and s4. Each scope binds the variable �users to a con-
tainer. s1 assigns the variable �users to the container �c(Ann) with the entity
”Ann”.

The variable �users can be bound to any container.

We show the results of the applications for every scope s1, ..., s4, respectively.

∇(assignedroles)(s1) == �c(regular) (3.18)
∇(assignedroles)(s2) == �c(admin) (3.19)
∇(assignedroles)(s3) == �c() (3.20)
∇(assignedroles)(s4) == �c(regular, admin) (3.21)

In scope s1, the variable �users is assigned to an anonymous container includ-
ing ”Ann”. In scope s1 �users is assigned to an anonymous container with
”Herb”, in scope s3 to an empty anonymous container, and in scope s4 to an
anonymous container with ”Ann” and ”Herb”.

The filtered 1-projection is executed (or applied) on all four cases. They use the
definition of the relation ”userroles” which linkes ”Ann” with the role ”regu-
lar” and ”Herb” with the role ”admin”.

We immediately see that the application of the filtered 1-projection ”assigne-
droles” returns exactly what we wanted to know for part B of our test: ”which
roles is this user assigned to?”.

57

3. Motivating Example

This leaves the third part C: ”do these roles contain the role regular?”. We
already modeled a question like this before. We re-formulate the question to
”do the roles match at least one element in a single-entity container with the
element ”regular?”.

Putting together the parts A-C we end up with the test:

roleIsRegular = �t(∇(�pr(userroles)(�users, .)(),�c(regular), θ); (3.22)

We define a new test (”�t”) which is assigned the symbol ”roleIsRegular”. It
consists of the application (”∇”) of a newly defined filtered 1-projection (”�pr”)
on the relation ”userroles”. The filtered 1-projection uses as input parameters
the variable users (”�users”) and the filtered 1-projection target. It returns the
assigned roles (based on the relation ”userroles”). The test compares the result
of this application of the filtered 1-projection with the newly defined container
(”�c”) containing the entity ”regular”. The operator of the test is theta (”θ”),
returning true if both operands share at least one element. This is true, if one
role of the current user is regular. We see that we modeled the sub-policy ”the
current user has to own the role regular”.

So far, we modeled all three sub-policies of the first policy ”regular users may
read and write the common object”. We combine the sub-policies, ADQL calls
them ”tests”, to a ”policy”:

regUsersMayRWCommon =

�p(roleIsRegular, permRW, objIsCommon);
(3.23)

A policy is defined (”�p”). It consists of the above defined tests ”roleIsReg-
ular”, ”permRW”, and ”objIsCommon”. The policy is assigned the symbol
”regUsersMayRWCommon”.

Alternatively, we could have defined the policy and the three tests in one state-
ment:

RegRWCommon = �p(

roleIsRegular = �t(

∇(�pr(userroles)(�users, .))(),

�c(regular),

θ),

permRW = �t(�permissions,�c(read, write), θ),

objIsCommon = �t(�objects,�c(common), θ)

);

(3.24)

58

3.2. Motivating Example

Let us continue with the third policy, we want to represent (”administrators
have full access to all objects”). The third policy is represented by a quite short
ADQL statement:

adminFullAccess = �p(�t(assignedroles,�c(admin), θ)); (3.25)

We define a new policy (”�p”) and assign it the symbol adminFullAccess. The
policy consists of only one test (”�t”). The test compares the previously de-
fined filtered 1-projection assignedroles with a new container (”�c”) holding
only the previously defined entity admin. The operator for the test is θ which
becomes true, if the left and the right side share at least one common entity. So,
the test is true, if one of the assigned roles of the current user is ”admin”. The
policy becomes true, if the test becomes true. No further conditions apply. In
other words, whatever object the user wants to access or which permission he
may require, it is sufficient to be assigned the user role ”admin”. This is exactly,
what we want to express.

We leave the definition of the second policy to the reader.

Let us quickly summarize what we have defined so far. First, we defined the
access control model, thus the containers and relations necessary to represent
the simple RBAC model we want to use. Second, we created the sample facts
in the model, e.g. that ”Ann” and ”Herb” are users, ”common” is an object and
so on. Third, we created two policies which defined conditions when access is
granted. With these three steps we defined the access control model, facts, and
policies.

We finish our introduction in ADQL by showing how access queries are de-
fined. Before being able to ask queries we must be able to represent the current
system state. We have already seen that this can be done using ADQL ”scopes”.
Within a scope, variables can be bound to values.

s1 = �s(

� users = �c(Ann),

� permission = �c(read),

� objects = �c(common)

);

(3.26)

The above statement defines a new scope (”�s”) and assigns it to the symbol
s1. The scope includes three explicit variable bindings: The variable �users

59

3. Motivating Example

is assigned to a new container definition including ”Ann” (”�c(Ann)”). The
variable �permissions is assigned to a container holding ”read”, the variable
�objects to a container holding ”common”.

To find out, if the defined policies grant access for this scope, it is sufficient, to
define an application on this scope:

∇(s1)(); (3.27)

For evaluating the return value of this application, all policies defined are eval-
uated using the evaluated scope. We immediately see that the policy ”RegRW-
Common” evaluates true: ”Ann” has the role ”regular”, the requested permis-
sion is ”read” and the requested object is ”common”. Subsequently, the result
of the application of s1 is:

∇(s1)() == true (3.28)

We end this section here. It was our target to give a short introduction into
ADQL. We have shown how ADQL represents a simple RBAC model, models
facts, policies, system states, and queries.

60

4. The Access Definition and
Query Language (ADQL)

The aim of this chapter is to present syntax and semantic of the Access Defini-
tion and Query Language.

We continue this chapter with an in-depth explanation of ADQL’s syntax.

4.1. The Syntax of ADQL

The complete extended Backus-Naur-Form (BNF) of ADQL – named after the
scientists John Backus and Peter Naur [Knu64] – can be found in appendix
A. As BNF defines the syntax but not the meaning of a formal language, we
will iterate through all language elements in this section. One by one we will
discuss the element, explain its meaning, explain its relation to the concepts of
ADQL, and provide examples.

The ADQL language version explained in this chapter is technically referred
to as version 3.0. Earlier versions of the language followed a different syntax
paradigm more related to standard SQL. We will not explain the differences
between the language versions here. Readers interested in this detail, can find
them e.g. in [SGS12].

Generally, a well-formed ADQL expression consists of a list of terms. Each
term is either a definition or an application. This basic approach may remind
the reader to the well-known Lambda calculus (e.g. [Bar85]): A Lambda term
consists of either a variable, an abstraction (definition) or an application. Al-
though we think that syntax, semantic, and purpose of ADQL is quite different
to that of the famous Lambda calculus, we decided to follow the Lambda cal-
culus concerning our syntax.

61

4. The Access Definition and Query Language (ADQL)

4.2. Expression

An ADQL expression consists of one term or a list of terms separated by a
semicolon ”;”.

BNF notation:

〈Expression〉 |= 〈Term〉 ”;” | 〈Term〉 ”;” 〈Expression〉

We see in the BNF notation, that an expression consists of a term or a concate-
nation of terms. An empty ADQL term is sufficient for a well-formed expres-
sion.

4.3. Term

An ADQL term is defined either as empty, a definition or an application.

BNF notation:

〈Term〉 |= ε | 〈Definition〉 | 〈Application〉

We see that a term can either be a definition or an application. Definitions
introduce new facts (which can be related to all ADQL layers, see section 5.1),
while applications evaluate definitions, in other words do calculations with
them. We use the terms ”application” and ”evaluation” synonymically, there is
no difference between an ADQL application and an ADQL evaluation.

Empty terms are valid. They are expressed by ε.

Terms can be put into a comma-separated list. Term lists will be used by non-
terminals introduced later in this chapter.

Example:
”Ann = �e();” is the definition of an entity.
The smallest well-formed ADQL expression is ”;”.

62

4.4. Symbols and Identifier

4.4. Symbols and Identifier

4.4.1. Symbols

Before we explain definitions and applications, we want to introduce symbols
and identifiers.

ADQL supports two global symbol tables: The first is the internal symbol table.
Each definition is automatically and ADQL-internally referenced by a symbol
from the internal symbol table. As already said, this symbol table is global for
all definitions. Direct assignments or changes to the internal symbol table are
not possible; the administration is ADQL-internal. Nevertheless, the internal
symbols can be looked up and used in ADQL expressions.

The second global symbol table is the external symbol table. Each definition
can be assigned an external symbol. Symbols are assigned with the equal ”=”
operator. The external symbol can be chosen externally by an ADQL user. If an
external symbol already in use is assigned to another definition, the symbol as-
signment is overwritten. No error or warning is raised in this case. In contrast,
internal symbols cannot be overwritten.

Example:
�e();
This is a well-formed entity definition without an assignment of an external
symbol. Only an internal symbol is assigned to this definition automatically.

Ann = �e();
This is also a well-formed entity definition with an assignment of an external
symbol. In this latter case, an internal and an external symbol reference this
definition.

BNF notation:

〈Symbol〉 |= 〈ExtSymbol〉 | 〈IntSymbol〉
〈ExtSymbol〉 |= 〈ExtIdentifier〉
〈IntSymbol〉 |= 〈IntIdentifier〉

The BNF notation shows that symbols can either be chosen from the external
symbol table ExtSymbol or from the internal symbol table IntSymbol. External
symbols can be assembled according the naming rules of an external identifier,
internal symbols by the rules of an internal identifier.

63

4. The Access Definition and Query Language (ADQL)

4.4.2. Identifiers

Identifiers are the name of symbols. They are defined by the following syntactic
name building rules.

BNF notation:

〈ExtIdentifier〉 |= 〈RegularId〉 | 〈EscapedId〉
〈IntIdentifier〉 |= 〈InternalId〉

〈RegularId〉 |= 〈letter〉 | 〈digit〉
| 〈RegularId〉〈letter〉 | 〈RegularId〉〈digit〉

〈EscapedId〉 |= ”’” 〈anychar〉 ”’”
〈InternalId〉 |= ”$” 〈digit〉

〈letter〉 |= A . . . Za . . . z
〈digit〉 |= 0 . . . 9

〈anychar〉 |= any UTF-8 symbol but ’ | any UTF-8 symbol but ’ 〈anychar〉

An identifier can either be an external identifier ExtIdentifier or an internal
identifier IntIdentifier.

An external identifier ExtIdentifier can be a regular identifier RegularId or
an escaped identifier EscapedId. A RegularId can contain any permutation
of Latin letter symbols a-z and A-Z and digits 0-9, e.g. Ann, MyUser1234,
625Z1H.

To be able to use white spaces and other UNICODE characters in identifiers, the
EscapedId can be used. Starting with a single quotation mark any UTF-8 can
follow except another quotation mark. Escaping is currently not supported but
can easily be introduced. The EscapedId is finished by a closing parenthesis,
e.g. ’my user’, ’my user 1’.

An internal identifier IntIdentifier is represented by an internal id InternalId.
An internal id consists of a leading dollar sign ”$” and subsequent digits, e.g.
$1234.

4.5. Definitions

We will first introduce definitions in detail and deal with applications later. As
some concepts and syntax variants are based on a combination of definitions

64

4.5. Definitions

and applications we will refer in these cases to the corresponding sections in
the application part.

The aim of definitions is to define entities, containers, relations, filtered 1-pro-
jections, tests, policies and scopes. Definitions are prefixed by the symbol �.
As this symbol is hard to type in a standard ASCII or UNICODE environment
on a computer, an alternative notation is DEFINE.

Definition 1 (ADQL definition). An ADQL definition is a polymorphic function.
It is used to define the ADQL data types entities, containers, relations, filtered 1-
projections, tests, policies, and scopes. The function returns an internal representation
of the defined data type. The execution of the definition function leads to changes in the
internal system state which are documented in section 7.1.

A definition defines one of the seven basic concepts of ADQL: entities, contain-
ers, relations, filtered 1-projections, tests, policies, and scopes.

BNF notation:

〈Definition〉 |= 〈Entity〉 | 〈Container〉 | 〈Relation〉 | 〈Projection〉
| 〈Test〉 | 〈Policy〉 | 〈Scope〉

A definition is a function. The function is prefixed by the definition symbol
� and the type of the definition: entities (�e), containers (�c), relations (�r),
filtered 1-projections (�pr), tests (�t), policies (�p), and scopes (�s). The def-
inition function is followed by the required arguments, embraced by brackets
(”()”). The number of arguments is dependent on the type of the definition,
e.g. entity definitions have no arguments, container definitions include a list of
entities, ... (see sections below).

If well-formed, ADQL’s system state changes when the definition is stored in an
internal symbol table. Additionally, the result of the function can be assigned to
an externally referenced symbol by the assignment sign ”=”, e.g. ”x = �e()”.
Please note, that any definition is stored in ADQL’s internal symbol table. The
external symbol table is optional.

E.g. �e();
The command is a well-formed definition of an ADQL entity. This statement
changes the internal symbol table of ADQL by creating an anonymous entity.
Technically, it is assigned to an internal symbol. Nevertheless, as no external
symbol is assigned to the entity, it cannot be referenced by an external sym-
bol.

65

4. The Access Definition and Query Language (ADQL)

In contrast, ”Ann = �e();” is a well-formed definition of an ADQL entity with
an external symbol assignment. The statement changes the internal symbol ta-
ble of ADQL by creating an internal symbol for this definition. Additionally, an
external symbol – ”Ann” – is assigned to the definition. We see the latter defini-
tion is assigned to two symbols, an external symbol and an internal symbol.

If a syntax error occurs ADQL’s system state does not change: Neither an ex-
ternal nor an internal symbol is assigned. An error message explaining the
mistake is returned.

4.5.1. Definition of Entities

For the concept of an entity (and all following ADQL concepts), we refer to
chapter 5. An entity is the most basic concept of ADQL representing anything
to be modeled in ADQL, e.g. users, objects, permissions, facts, ...

BNF notation:

〈Entity〉 |= 〈ExtSymbol〉 | 〈EntityDef〉 | 〈ExtSymbol〉”=”〈EntityDef〉
〈EntityDef〉 |= �e ”(” ”)”

A new entity definition EntityDef consists of the fixed pre-fix �e and empty
brackets enclosed. After their definition, entities can be referenced by their as-
signed symbol (or identifier). Entities (as any other definition and application)
can be assigned to a symbol.

Example:
”Herb = �e();” defines (”�”) a new entity (”e”). The definition function �e
has no argument (”()”). The entity is assigned the external symbol ”Herb”.

4.5.2. Definitions of Containers

A container is, as the name says, an object which can contain other objects.
Technically, a container is a set of ADQL terms. Please note, a container is not
defined as a set of entities but as a set of terms. This allows recursive definition
of containers: A term can be a container, thus a container can become a part of
another container. We will deal with this important detail later.

BNF notation:

〈Container〉 |= 〈Symbol〉 | 〈ContainerDef〉
| 〈ExtSymbol〉”=”〈ContainerDef〉

〈ContainerDef〉 |= �c ”(” 〈Terms〉 ”)”

66

4.5. Definitions

A container definition ContainerDef consists of the fixed literal �c with an
ADQL expression embraced by round brackets. Within the brackets a comma-
separated list of ADQL Terms can be provided.

When used in a referencing context (this means, a container is required as a
nonterminal), either a previously defined container symbol or a new container
definition can be used.

We said that a container can contain any valid term as an element of itself. This
detail is important, as it is part of the expressive power of ADQL. Containers
hold as elements any valid ADQL term. We have seen that terms consist of
definitions and applications. Definitions allow the user to define entities, con-
tainers, relations, filtered 1-projections, tests, policies and scopes. We have not
yet introduced the definition of relations, filtered 1-projections, tests, policies,
and scopes, as well as applications. Therefore, we will continue the discussion
of containers later in this section. For now, we focus on two important prop-
erties of containers: (1) containers serve as collectors for ADQL terms, (2) any
ADQL term can be decomposed to ADQL entities by the iterative application
of the Value-Function (see section 5.4). The result of this iterative application is
the decomposed container.

Example:
users = �c(Ann = �e(), Herb = �e(), Jim = �e());
permissions = �c(read = �e(), write = �e());
objects = �c(fileA = �e(), fileB = �e());

The above example illustrates one ADQL expression consisting of three ADQL
terms. The first term defines three entities and assigns them to the symbols
Ann, Herb, and Jim. The three entities are assigned to a new container. The
container is assigned to the symbol ”users”.

The second term defines a container named ”permissions” with the entities
”read” and ”write”.

The third term does the same for the container ”objects” with the entities ”fileA”
and ”fileB”.

Example 2:
Ann = �e();Herb = �e(); Jim = �e();
groupA = �c(Ann,Herb);
groups = �c(∇(groupA)(),∇(�c(Herb, Jim))());

The second example is illustrated in figure 4.1. In the first line, it defines three
entities referenced by the external symbols Ann, Herb, and Jim. The second
line defines a container with ”Ann” and ”Herb”. The container is assigned
to the symbol ”groupA”. The next term defines additional containers and as-
signs external symbols: one ”inner” container and one ”outer” container. The

67

4. The Access Definition and Query Language (ADQL)

  




Figure 4.1.: Illustration of the container example 2

inner container �c(Herb, Jim) is anonymous, thus has no assigned symbol,
and contains the entities ”Herb” and ”Jim”. The outer container referenced by
the external symbol groups contains the container groupA and the anonymous
container.

We omit the explanation of the application (”∇”) here and refer to the explana-
tion of applications.

Extensions Please note, that the suggested ADQL syntax does not allow to
incrementaly add or remove elements to/from containers. It is not possible
to incrementaly add the entity ”Charly” to container ”groupA”. Instead, the
container has to be re-defined. However, we not really see this as a problem
for ADQL as a language. It would be simple to introduce a new statement like
�groupA + = �c(Charly) allowing to add ”Charly” to the already existing
definition of the container groupA.

4.5.3. Usage of Variables

For the next subsections a concept named ”variable” is going to be used. There-
fore, we introduce it here.

Generally, variables are symbols which can be assigned a value. In ADQL, a
variable is not explicitly defined. Instead, for each defined container implicitly
a corresponding variable is defined automatically. The symbol of this implicit
variable is the container symbol prefixed by ”�”.

In case the symbol � is not available, instead the literal BIND can be used.

BNF notation:

〈Variable〉 |= �〈Symbol〉

Example:
By defining a container ”users = �c();” automatically a variable ”�users” is
defined as well.

68

4.5. Definitions

A variable can be assigned to a value within so-called scopes (see below).

Side note:
We are aware that in some use cases two variables are required to express cer-
tain policies. A good example is laid out in [Mir12]. Mironov provides an access
control model for a generic health care services model, the latter suggested by
Silverston (cf. [Sil01a, Sil01b]).

Organization
Roles

Person
Roles

Roles

Parties
PartiesObj

Organizations

Patients Health Care
Practioners

People

Medical
Conditions

Physical
Characteristics

Health Care
Episodes

Diagnoses

Health Care
Deliveries

Delivery
Outcomes

Relationship
Types

Relationships

Operations
Date

Health Care
Delivery Roles

organization_role

person_role

rel_type

party_relationship

rel_begin
rel_end

hd
r_

be
gi

n hdr_end

p_condition

p_
ep

iso
dep_ch

aracte
rist

ic

d_
pr

ac
tio

ne
r

d_treatment
hce_treatment

party_hd_role

hd_outcome

Figure 4.2.: Access control model defined by Mironov [Mir12, p.10] demon-
strating a use case scenario for the requirement of two variables
for a container.

For his access control model, Mironov models health-care parties. Parties can
either deliver or receive health care services. We refer to figure 4.2. Ellpises
represent ADQL containers, lines between containers relations (see later in this
chapter).

Mironov’s policies want to ensure that a relationship between the delivering
and receiving party has not yet ended. This condition requires that the variable
�Parties must be bound to two values at the same time, namely the receiving
and the delivering entity, which is not possible by the straight forward use of
the implicit variable definition schema of ADQL.

69

4. The Access Definition and Query Language (ADQL)

As ADQL does not support freely defined variables, the common way to han-
dle such a requirement is to define an ”artificial” container holding the con-
tainer requiring another variable. In the above example a container
”PartiesObj = � c(∇ (Parties)())” is defined. With this trick, a second
variable is available and it is ensured that both containers include the same en-
tities (we refer to applications of containers below, as we did not introduce this
syntax yet).

Extension A general solution for the problem is that ADQL allows the defi-
nition of explicit variables. In this case one variable would be assigned to the
value of the receiving party, the other variable to the value of the delivering
party.

The syntax could look like this:

receiving party = �v(Parties);

delivering party = �v(Parties);

This extension is currently not part of ADQL. We argue, that allowing new
symbols for variables can make it difficult for the person defining the policies
to recall the correct names and types (here: ”Parties”) of a variable. With the
current restriction to implicit definitions, the name and type of a variable is
always clear as it is strictly related to the container. However, we may introduce
free variables in ADQL at a later point of time.

So, for our current work, variables are implicitly defined for each container
definition. We will explain how values are assigned to values in section 4.5.8.

4.5.4. Definition of Relations

Relations are sets of n-ary links between n decomposed containers (see section
5.5). Let C1, C2, C3 be containers. Then R1 ⊆ V al(C1)× V al(C2)× V al(C3) is a
3-ary relation on the decomposed containers C1, C2, C3. The decomposition of
a container, denoted by V al, is explained in section 5.4. The result of V al(Ci) is
a ”flat” container, that is a list of entities it contains.

70

4.5. Definitions

BNF notation:

〈Relation〉 |= 〈Symbol〉 | 〈RelationDef〉
| 〈ExtSymbol〉”=”〈RelationDef〉

〈RelationDef〉 |= 〈RelationHead〉 | 〈RelationHead〉 ”:” 〈RelationBody〉
〈RelationHead〉 |= �r ”(” 〈Containers〉 ”)”

〈Containers〉 |= 〈Container〉 | 〈Container〉 ”,” 〈Containers〉
〈RelationBody〉 |= ”{” 〈Tuples〉 ”}”

〈Tuples〉 |= 〈Tuple〉 | 〈Tuples〉 ”,” 〈Tuple〉
〈Tuple〉 |= ”(” 〈SymbolList〉 ”)”

〈SymbolList〉 |= 〈Symbol〉 | 〈Symbol〉 ”,” 〈SymbolList〉

A relation is either referred to by a previously defined symbol representing a
relation or a new relation definition. A relation definition RelationDef consists
of a RelationHead and an optional RelationBody. We first explain the header
and come back to the body below.

RelationHeads follow the syntactical structure of entities and containers. The
relation head is built by the fixed literal ”�r” and the nonterminal Containers
embraced by round brackets. Containers is a simple concatenation of 1..n
Container, defined above when introducing container definitions.

Example:
isowned︸ ︷︷ ︸
symbol

= �r (objects, users)︸ ︷︷ ︸
relation head

The example defines the relation named isowned by defining a named relation
on the containers objects and users. We assume, that the symbols objects and
users are defined symbols as in the above examples of the last sections.

We continue with the second part of a Relation definition, the RelationBody.
While the header describes the structure of the relation, namely the containers
the relation is defined on, the body is an enumeration of all links of the rela-
tion. These links are n-tuples and have to be listed explicitly. The RelationBody
consists of Tuples embraced by curly braces. Tuples is an enumeration of the
nonterminal Tuple separated by commas. A Tuple is a SymbolList embraced
by round brackets. The SymbolList is a comma-separated list of entities, con-
tainers, relations, filtered 1-projections, tests, policies, and scopes.

Example:
isowned︸ ︷︷ ︸
symbol

= �r (objects, users)︸ ︷︷ ︸
relation head

: {(fileA,Alice), (fileB,Bob), (fileB,Charly)}︸ ︷︷ ︸
relation body/links

;

71

4. The Access Definition and Query Language (ADQL)

The above example defines a 2-ary relation upon the containers ”objects” and
”users”. It is identified with the external symbol ”isowned”.

Furthermore, the relation ”isowned” contains three 2-tuple links. Semantically,
the owner of ”fileA” is ”Alice”. ”fileB” has two assigned owners, ”Bob” and
”Charly”.

We see that ADQL supports explicitly defined relations. Implicitly defined re-
lations, e.g. expressed by a boolean term are not part of ADQL for now.

Extensions Currently, ADQL supports only explicitly defined relations, thus
all elements of a relation have to be enumerated.

We suggest two extensions:

• Implicit relations: Implicit relations are defined by a boolean condition
as a filter. SQL provides examples for this. In SQL we can write state-
ments like SELECT * FROM table WHERE variable < 100;. This
is an implicit relation definition.

• External relations: ADQL can be extended to support externally defined
relations. E.g. the assignment of users to roles is defined not within ADQL
but can be retrieved from external data resources (like LDAP, databases,
UNIX groups, etc.).

4.5.5. Definition of Filtered 1-Projections

In ADQL, we define a ”filtered 1-projection” (short: F1-projection) as the con-
catenation of a filter operation and a one-dimensional projection. In this chap-
ter, we provide only syntactical definitions, for details about the mathemati-
cal definition we refer to section 5.5). A filtered 1-projection transforms a n-
dimensional relation to a 1-dimensional list. We say, when executing a filtered
1-projection, that n− 1 dimensions are bound, while the remaining dimension
is called unbound.

BNF notation:

〈Projection〉 |= 〈Symbol〉 | 〈ProjDef〉 | 〈ExtSymbol〉”=”〈ProjDef〉
〈ProjDef〉 |= �pr ”(” 〈Relation〉 ”)” ”(” 〈ProjTuple〉 ”)”

〈ProjTuple〉 |= ”.” ”,” 〈VarContApps〉 | 〈VarContApps〉 ”,” ”.” |
〈VarContApps〉 ”,” ”.” ”,” 〈VarContApps〉

〈VarContApps〉 |= 〈VarContApp〉 | 〈VarContApp〉 ”,” 〈VarContApps〉
〈VarContApp〉 |= 〈Variable〉 | 〈Container〉 | 〈Application〉

72

4.5. Definitions

Again, the definition of a filtered 1-projection follows the structure of the other
concepts. A filtered 1-projection definition ProjDef consists of a fixed literal
”�pr” followed by the nonterminal Relation the filtered 1-projection is defined
on embraced in brackets. The Relation can be a pre-defined relation referenced
by a symbol or be a relation definition. It is followed by the filtered 1-projection
tuple ProjTuple embraced in brackets. A filtered 1-projection tuple ProjTuple
is built of a comma-separated list. This list consists exactly of one dot and sev-
eral variables, applications or containers, named V arContApp. The dot marks
the position of the unbound dimension which is the projection target.

Two side notes, although we did not yet introduce applications:

1. At a first glance, the construct V arContApp may seem arbitrary. Nev-
ertheless, we will see below, when an application is evaluated that the
result type is always a container. Furthermore, a variable can be as-
signed a container within a scope. This being said, it becomes obvious
that V arContApp is a language construct referencing the ”data type” con-
tainer.

2. Relations and F1-projections are inter-related: F1-projections are defined
on relations. Although the BNF-syntax does not enforce the same num-
ber of arguments for a relation and a related F1-projection, the ADQL
implementation cross-checks this fact and returns an error if the number
of arguments of a F1-projection differs from the number of arguments of
its related relation.

Example:
Let r be a 2-ary relation. Syntactically, a F1-projection p may be defined
on r by ”�pr(r)(., A,B)” being A,B some containers. ADQLs implemen-
tation will raise an error, as the F1-projection is 3-ary (., A,B) while the
relation is 2-ary.

Examples:

isowned = �r(objects, users) :

{(fileA,Alice), (fileB,Bob), (fileB,Charly)};
ownedbyAlice = �pr(isowned)(.,�c(Alice));

ownerOffileB = �pr(isowned)(�c(fileB), .);

The first line is, again, the definition of the relation isowned. The second line in
the example defines a F1-projection on the relation isowned. The tuple consists
of the unbound container – here objects – and the bound F1-projection element
Alice. If evaluated, all objects which link to Alice will be returned. We come
back to this later, when we discuss applications of F1-projections.

73

4. The Access Definition and Query Language (ADQL)

We see that a F1-projection consists of bound and unbound elements. In an
n-ary relation, n − 1 elements must be bound, thus fixed. The one unbound
element is flagged by the point and is the target of the F1-projection.

Definition 2 (Validity of F1-projections). A F1-projection of an n-ary relation is
called valid if

• it has n− 1 bound and 1 unbound tuple elements and

• all bound tuple elements are subsets of the corresponding Value function (see
chapter 5)

Examples:
�pr(isowned)(., .) is invalid, as it has two unbound tuple elements,
�pr(isowned)(�c(fileA),�c(Alice)) is invalid, as it has no unbound elements,
�pr(isowned)(�c(Alice), .) is invalid as �c(Alice) � V al(objects).

ADQL’s implementation raises an error if an invalid F1-projection is used.

Extensions The current definition of projections (as F1-projections) is very
strict. It follows from the fact, that any application (see below) must return
a container. However, we can think of cases where projections are nested. It
can enhance the expressive power of ADQL if projections are not limited to
F1-projections, thus allows not only one unbound dimensions but more.

4.5.6. Definition of Tests

ADQL tests are defined as 2-ary boolean expressions which evaluate to true
or false. In ADQL, a test has three parameters, two containers and a boolean
operator. Operators are explained in chapter 5.9. An operator compares the
two containers of a test with its inner logic and returns either true or false. A
typical operator is θ returning true, if both containers share at least one entity.

As for all ADQL syntax elements, tests can be referenced by symbols sharing
the global ADQL namespace.

BNF notation:

〈Test〉 |= 〈Symbol〉 | 〈TestDef〉 | 〈ExtSymbol〉”=”〈TestDef〉
〈TestDef〉 |= �t ”(” 〈TestBody〉 ”)”

〈TestBody〉 |= 〈VarContApp〉 ”,” 〈VarContApp〉 ”,” 〈Operator〉

74

4.5. Definitions

A test Test consists either of an already defined test Symbol or a new test def-
inition TestDef . The latter TestDef includes the fixed literal �t followed by
the test body TestBody embraced by round braces.

The test body TestBody is built of two nonterminals V arContApp and an
boolean operator Operator, all separated by a comma. V arContApp is a vari-
able, a container, or an application.

Example 1:
userIsAlice︸ ︷︷ ︸

symbol

= �t(�users︸ ︷︷ ︸
left side

,�c(Alice)︸ ︷︷ ︸
right side

, θ︸︷︷︸
operator

);

The test definition (”�t”) is assigned to the external symbol userIsAlice. Its
first argument is the variable �users. The second argument is an on-the-fly de-
fined anonymous container holding the entity referenced by the external sym-
bol ”Alice”, this is the user ”Alice”. The used operator is θ which is defined
as ”intersection of both decomposed containers is not empty”. We will deal
with operators and the evaluation of this test later. It checks whether the cur-
rent value of the variable ”users” is Alice, in other words: ”Is the current user
Alice?”.

Example 2:
userIsV alid = �t(�users, users, θ);

The second example test is slightly different. The variable �users is compared
with the container ”users”. The operator is again θ. In other words: Is the cur-
rent user part of the container ”users”, or: ”Is the current user a valid user?”.

In ADQL tests are used to model (atomic) conditions. These conditions can be
combined to policies allowing defining complex conditions when access should
be granted.

4.5.7. Definition of Policies

An ADQL policy is a set of n ADQL tests.

BNF notation:

〈Policy〉 |= 〈Symbol〉 | 〈PolicyDef〉 | 〈ExtSymbol〉”=”〈PolicyDef〉
〈PolicyDef〉 |= �p ”(” 〈Tests〉 ”)”

〈Tests〉 |= 〈Test〉 | 〈Test〉 ”,” 〈Tests〉

A policy definition PolicyDef is created by the fixed literal �p and an enumer-
ation of tests Tests embraced by brackets.

75

4. The Access Definition and Query Language (ADQL)

A policy is a logical AND-concatenation of tests. To become true, all tests of a
policy have to evaluate to true.

Example:
p1 = �p(

userIsAlice,
permIsRead = �t(�permissions,�c(read), θ),
�t(�objects, objects, θ)
);

The above example policy p1 consists of three tests.

1. The first test is referencing the symbol userIsAlice and is defined as in
the previous example.

2. The second test is defined on-the-fly and assigned the symbol permIsRead.
We see that the variable �permissions must match the defined fixed con-
tainer �c(read): The currently requested permission must be ”read”.

3. The third test is anonymous (i.e. not assigned to an external symbol). It
compares the currently requested object (variable �object) with all possi-
ble objects. In other words, the object must exist and be an object.

Although we did not yet introduce applications, the complete policy p1 will
evaluate true if the three conditions are met: (1) The user is Alice, (2) the per-
mission is read, (3) the object is valid. Or: Alice can read all valid objects.

4.5.8. Definition of Scopes

Within scopes, variables can be bound to values. Therefore, we say that ADQL
scopes are sets of variable assignments. The variable binding is only valid
within a scope. Of course, several scopes with different variable bindings may
exist.

Scopes can be assigned themselves to an external symbol sharing the name
space with all other ADQL symbols.

BNF notation:

〈Scope〉 |= 〈Symbol〉 | 〈ScopeDef〉 | 〈ExtSymbol〉”=”〈ScopeDef〉
〈ScopeDef〉 |= �s ”(” 〈VarAssignments〉 ”)”

〈VarAssignments〉 |= 〈VarAssignment〉
| 〈VarAssignment〉 ”,” 〈VarAssignments〉

〈VarAssignment〉 |= 〈Variable〉 ”=” 〈Container〉

76

4.6. Applications

A scope definition ScopeDef consists of the literal �s and a list of variable
assignments V arAssignments embraced by brackets. We see that a scope can
consist of 0..n variable assignments. Therefore, V arAssignments is a list of
V arAssignment-s, separated by commas. Each variable assignment
V arAssignment assigns a variable V ariable to a container Container. Please
note that the value which is assigned to a variable is of the type container (and
not entity).

Example:
s1 = �s(

� users = �c(Alice),
� perm = �c(read),
� objects = �c(fileA)

);

The scope s1 includes three variable assignments. The variable �users is bound
to an anonymous container holding the entity Alice. Variable �permission is
assigned to an anonymous container with entity read. The variable �objects is
assigned to an anonymous container including entity fileA.

We see that a scope is a set of variable assignments.

4.6. Applications

So far, we have introduced all ADQL syntax elements concerning definitions.
Definitions are used to inform the ADQL engine about the authorization model,
policies, and facts. Besides definitions, applications are the second important
construct of ADQL. Applications are the ”logic part” of ADQL, the ”inference
mechanism”.

Definition 3 (ADQL application). An ADQL application is a polymorphic function.
It can be applied to entities, containers, relations, F1-projections, tests, policies, and
scopes; thus all ADQL data types. The result of an application is a container.

Let ECRPrTPS be the united space of all ADQL entities E, containers C, F1-
projections Pr, tests T , policies P , and scopes S.

∇ : ECRPrTPS × S → C

An application is prefixed by the symbol ∇. An alternative notation is APP, if
the symbol ∇ cannot be used.

BNF notation:

〈Application〉 |= ∇ ”(” 〈Term〉 ”)” ”(” 〈Scope〉 ”)”

77

4. The Access Definition and Query Language (ADQL)

An Application is formed by the literal ”∇”, a term Term embraced by round
brackets, and a scope Scope embraced by round brackets.

We see that applications can be applied on definitions (and other applications)
by using a scope as an argument. An application corresponds to the V al-
function introduced in chapter 5.

As a definition Definition can either be an entity, a container, a relation, a F1-
projection, a test, a policy, or a scope, we will explain the application of every
concept one by one.

4.6.1. Application of Entities

The execution of an application of an entity results simply in the one-entity
container containing the entity itself, thus the identity function wrapped by a
container. The scope argument ”(〈Scope〉)” is ignored for the evaluation of the
application of an entity.

Example:
Let Alice = �e();
Then:
∇(Alice)() == �c(Alice)

Please note, that we use ”=” as assignment symbol and ”==” as symbol for
”is equal to”. The execution of the application of the entity Alice results in a
single-entity container holding the entity Alice.

The syntax of ADQL allows assigning external symbols to applications.

Example:
AliceApp = ∇(Alice = �e())();

The example shows a valid ADQL expression. An entity ”Alice” is defined.
This definition is used in an application. The application is then assigned the
symbol AliceApp.

Please note, that the symbol AliceApp references the application on an entity
and not the result value! When executing the term ∇(AliceApp)(), the result of
this application is, of course, �c(Alice). In the next section we will show how
this detail can be used.

78

4.6. Applications

4.6.2. Application of Containers

We continue with the application of containers. A container is defined as a
set of ADQL terms. Again, a term may consist of an ADQL definition or an
ADQL application. In the first case the term is a definition. An element of
a container can be an entity, a container, a relation, a F1-projection, a test, a
policy, or a scope. These kinds of elements we refer to as ”definition element”
of the container. In the second case, the element is an application. If the latter
case, we call it an ”application element” of the container.

In this section we explain how the execution of an application deals with flat
containers, hierarchical containers, and symbol assignments of the applica-
tions.

Flat Container Applications Examples:
Let some containers be defined the following way:

users = �c(Alice,Bob, Charly);

groupA = �c(Alice,Bob);

groupB = �c(Bob, Charly);

groups1 = �c(groupA, groupB);

cont = �c(Alice, groupA, owners, p1);

Then, the following is true:
∇(users)() == ∇(�c(Alice,Bob, Charly))() == �c(Alice,Bob, Charly) ==
users

The application of a flat container – consisting of definition elements only – is
the identity of the container, thus the container itself.

We repeat this for the other examples:

1. ∇(groupA)() == ∇(�c(Alice,Bob))() == �c(Alice,Bob) == groupA

2. ∇(groupB)() == ∇(�c(Bob, Charly)() == �c(Bob, Charly)
== groupB

3. ∇(groups1)() == ∇(�c(groupA, groupB))() == �c(groupA, groupB)
== groups1

4. ∇(cont)() == ∇(�c(Alice, groupA, owners, p1))() ==
�c(Alice, groupA, owners, p1) == cont

79

4. The Access Definition and Query Language (ADQL)

Hierarchical Container Applications This behavior changes, when a con-
tainer includes application elements. We showed above, that a container con-
sists of terms. A term can be a definition or an application. If an element of a
container is an application, we say it is an ”application element”. The applica-
tion of an application element applies the V al-function, defined in chapter 5 on
the element. The result is a container. The application of a whole container is
the repeated application on all application and definition elements and returns
the set union of all results.

Example:
Let groups2 = �c(∇groupA,∇groupB);
On the next pages we use ”∇groupA” as a short-cut for ”∇(groupA)()”.

Then:
∇groups2 == ∇�c(∇groupA,∇groupB) ==

�c(∇∇groupA,∇∇groupB) ==
�c(Alice,Bob,∇∇groupB) ==
�c(Alice,Bob,Bob, Charly) ==
�c(Alice,Bob, Charly)

We see that the usage of application definitions of containers (∇container) can
be used to create hierarchies of containers. Let A,B1, B2, C11, C12, C2 be con-
tainers. Then the following commands define a container hierarchy:

Example:
B1 = �c(

∇(C11 = �c()),
∇(C12 = �c())

);

C1 and C2 are defined as empty containers and assigned their corresponding
symbols. The application of the containers C1 and C2 is assigned to the set
linked to the symbol B1. The result of ∇B1 would therefore be ∇c(), thus an
empty container.

Proof:

∇B1 == ∇�c(∇�c(),∇�c()) == �c(∇∇�c(),∇∇�c()) == �c()

The equality is compared on the level of resulting values not on structural iden-
tity. We define B2 = �c(). It follows: ∇B1 == ∇B2. However, the equality
is related to the result value only. The structures of B1 and B2 are not equal.
Currently, ADQL does not provide an operator to compare equality of (hierar-
chical) structures.

We provide a more complex example illustrated in figure 4.3.

80

4.6. Applications






 











Figure 4.3.: Example of a container hierarchy built through indirect entity
structures

Example of container hierarchies:
A = �c(

∇(B1 = �c(
∇(C11 = �c(Alice,Bob)),
∇(C12 = �c(Charly))

)),
∇(B2 = �c(

∇(C2 = �c(Dave))
))

);

Let us do some sample evaluations:

∇C11 == ∇�c(Alice,Bob) == �(Alice,Bob)
∇C12 == ∇�c(Charly) == �(Charly)
∇C2 == ∇�c(Dave) == �(Dave)

The examples show the simple rule that definition elements of a container eval-
uate to their identity.

∇B1 == ∇�c(∇C11,∇C12) ==
�c(∇∇C11,∇∇C12) ==
�c(Alice,Bob,∇∇C12) ==
�c(Alice,Bob, Charly)

∇C2 == ∇�c(∇C2) ==
�c(∇∇C2) ==
�c(Dave)

81

4. The Access Definition and Query Language (ADQL)

We see here, how application elements are resolved. The application is exe-
cuted on all elements of the container. The result is the set union of the results
of these applications.

∇A == ∇�c(∇B1,∇B2) == �c(Alice,Bob, Charly,Dave)

The last example applies the application rule iteratively twice. We avoid all
single steps in the example, as we already proofed it for all container elements
of A, namely B1 and B2.

We have shown how application elements of a container can be used to define
container hierarchies of any depth. If the symbol ∇ is present within a con-
tainer definition, the sub-elements are included in the container of the higher
level. It can be seen as inheritance behavior. We therefore call the assignment
of such container elements ”indirect”. The elements are not assigned directly,
but resolved to their contents recursively.

Differently, when avoiding the symbol ∇ in a container definition, the elements
of the container are not further decomposed. We speak of a ”direct” assign-
ment, as the sub-container is not assigned as a container to the father container,
but as a kind of entity.

What we did not show is that this concept works for all possible combinations.
We can think of the standard example, where we assign container A indirectly
to container B while at the same time assigning container B indirectly to con-
tainer A. Actually, this is not a question of the ADQL language itself, but a
question how this cycle is resolved. We will discuss this in section 5.4.

Symbol Assignments of Applications An important fact about ADQL ap-
plications is that assignments of applications to symbols do not store the result
of the execution of the application, but the syntactical definition of the applica-
tion.

We provide a simple example:
users = �c(Alice,Bob, Charly);
userApp = ∇users.

When executed, ∇userApp returns �c(Alice,Bob, Charly).

However, when we change the definition of users (and do not touch the symbol
userApp), the execution of userApp also changes:
users = �c(Herb);

After this re-definition of users, the execution of the application of userApp
returns ∇userApp == �c(Herb).

82

4.6. Applications

We see that not the result of the execution of ∇users is assigned to the sym-
bol userApp. If this were the case, the result value of the second execution
of ∇users would not have changed compared to its first execution. Instead,
the symbol userApp is assigned the ”syntactical definition of the application”,
which is ∇users. This leads, as we have shown, to a change in the result value,
if the nested concepts are changed.

We summarize: Symbols which are assigned to an ADQL term do not store the
result values but the definition itself. If nested elements change during time, the
application of the symbol also changes. This is true for all symbol assignments;
it is not limited to containers.

We illustrate this behavior with another example.

Example 2:
We have shown above, that ∇A == �c(Alice,Bob, Charly,Dave).

We change C12: C12 = �c();
When executing ∇A we receive as new result �c(Alice,Bob,Dave).

Resolving Cycles in Nested Containers ADQL’s syntax allows cyclic defi-
nitions of containers. A container A can be assigned to container B. Container
B is assigned to container C. Container C is assigned to container A. A cycle is
created.

Example:
A = �c(Alice,∇C);
B = �c(Bob,∇A);
C = �c(Charly,∇B);

When executing an application on container A, the cycle is correctly resolved
by enumerating all entities of the nested containers:
∇A == �c(Alice,Bob, Charly);

Both ADQL’s definition and its implementation will resolve nested and cyclic
container applications correctly and avoid never ending loops.

4.6.3. Applications of Relations

The application of a relation is defined in the same way as an application of
entities: the result is an anonymous container containing the relation itself.

Example:
owners = �r(objects, users) : ((fileA,Alice), (fileB,Bob), (fileB,Charly));

83

4. The Access Definition and Query Language (ADQL)

Then:
∇owners() == �c(owners)

Practically, we are not aware of any usage scenario for a relation application.

4.6.4. Applications of F1-Projections

The application of a F1-projection of a n-ary relation results in a container of
1-ary elements.

We repeat the previous example and extend it:
owners = �r(objects, users) : ((fileA,Alice), (fileB,Bob), (fileB,Charly));
pr1 = ∇(owners(.,�c(Alice)))();
pr2 = ∇(owners(�c(fileB), .))();

The first line is the definition of the relation owners:
The expression ∇(owners(.,�c(Alice)))() is an ADQL application on the F1-
projection owners(.,�c(Alice)). The latter is a F1-projection with the unbound
dimension objects and the bound dimension users fixed with a container hold-
ing the entity Alice.

∇(pr1)() == ∇(owners(.,�c(Alice)))() == �c(fileA)

The result of the application pr1 is a container of all files having Alice as as-
signed user.

Similarly, the the term ∇pr2 is evaluated:
∇(pr2) == ∇(owners(�(fileB), .))() == �c(Bob, Charly).

Relation owners links fileB to ”Bob” and ”Charly”. Consequently, the result
of the application of the F1-projection pr2 is a container with Bob and Charly.

4.6.5. Application of Tests

We come to the application of ADQL tests.

The result of an application of a test is a container with either the fixed entity
TRUE or the fixed entity FALSE. Thus, the result value of a test application is
�c(true) or �c(false).

The syntax of an application includes a scope argument. We recall the syntax
definition of an application:

84

4.6. Applications

〈Application〉 |= ∇ ”(” 〈Term〉 ”)” ”(” 〈Scope〉 ”)”

Applications of entities, containers, relations, F1-projections, and scopes ignore
scope arguments when executed. In contrast, the execution of applications on
tests and policies utilize the scope argument: Test definitions consist of a ”left”,
”right side”, and an operator. Each of these two ”sides” consists of a variable,
a container, or an application.

When applications of tests (and policies and scopes) are evaluated, the variable
assignment is taken from the scope argument specified in the application.

Example:
We repeat the examples from the test definitions:
userIsAlice = �t(�users,�c(Alice), θ);

We evaluate the test with different scopes:
scope = �s(users = �c(Alice));
eval1 = ∇(userIsAlice)(scope);

∇(eval1)() ==
∇(userIsAlice)(scope) ==
∇(�t(�users,�c(Alice), θ))(scope) ==
∇(�t(�users,�c(Alice), θ))(�s(users = �c(Alice))) ==
∇�t(�c(Alice),�c(Alice), θ) ==
�c(�c(Alice) ∩�c(Alice) �= ∅) ==
�c(true)

The result of the application of test userIsAlice with the scope argument scope
returns a container with the entity true. As described, the test userIsAlice
checks if the scope binding of the variable user is Alice.

Like any other application assignment to symbols, the application result may
change when a related definition changes. We show this by changing the defi-
nition of the scope and repeat the evaluation of the test application.

Scope re-definition:
scope = �s(users = �c(Bob));

The variable �users is now bound to Bob.

∇(eval1)() ==
∇(userIsAlice)(scope) ==
∇(�t(�users,�c(Alice), θ))(scope) ==
∇(�t(�users,�c(Alice), θ))(�s(users = �c(Bob))) ==
∇�t(�c(Bob),�c(Alice), θ) ==

85

4. The Access Definition and Query Language (ADQL)

�c(�c(Bob) ∩�c(Alice) �= ∅) ==
�c(false)

The example shows, that with a differently defined scope scope (the variable
�user is now bound to Bob), the same test application results in a container
with the entity false. This is logically correct, as the test should become true
only, if the current user is Alice, which is obviously not the case.

What happens, if the scope argument is omitted, the scope argument is empty
or a scope without a binding for the container users is provided?

∇(userIsAlice)() =
∇(�t(�users,�c(Alice), θ))() =
�c(�c() ∩�c(Alice) �= ∅) =
�c(false)

No binding for the variable �users is provided with the (empty) scope in the
above example. If not present, implicitly a binding of the variable to an empty
container is assumed. The result of the application is then the container
�c(false).

Order Operators in Tests The pre-defined order operators interpret symbols
as values. This are namely the operators smaller, smaller-equal, greater, and
greater-than.

Example:
t = �t(

�c(1 = �e()),
�c(2 = �e()),
<);

The test t defines as ”left side” a container with entity ”1”. ”1” is the symbol of
the entity, as entities do not have assigned values. The ”right side” consists of
a container holding an entity with the symbol ”2”.

When evaluating the application ∇t, the symbol names are interpreted as val-
ues. The operator ”<” checks: 1 < 2? The result of this test application is
�c(true).

4.6.6. Application of Policies

Policies are sets of containers. Like the application of a test, the application of
a policy returns either �c(true) or �c(false). These values can be interpreted
as true or false.

86

4.6. Applications

The return value of an application of a policy is �c(true), if all applications of
tests of the policy evaluate to �c(true).

Like applications of tests, applications of policies utilize scope arguments.

Formally:
Let t1, t2, ..., tn ∈ T be ADQL tests.

∇(�p(t1, t2, ..., tn))(S) =

{
�c(true), if ∀ti : ∇(ti)(S) = �c(true)

�c(false), else

A policy can be interpreted as a logical AND-concatenation of all assigned
tests.

Example:
AliceMayReadAnyObject = �p(

userIsAlice = �t(�users, c(Alice), θ),
permIsRead = �t(�permissions, c(read), θ),
validObject = �t(�objects, objects, θ),

);

scope1 = �s(
� users = �c(Alice),
� permissions = �c(read),
� objects = �c(fileA)

);

scope2 = �s(
� users = �c(Bob),
� permissions = �c(read),
� objects = �c(fileA)

);

We calculate the results of the policy, first with the argument scope1, then scope2:

∇(AliceMayReadAnyObject)(scope1) == �c(true)
∇(AliceMayReadAnyObject)(scope2) == �c(false)

The above policy application becomes true if all three tests applications eval-
uate true. The application of test userIsAlice is true, if the scope definition of
users is Alice. The application of the second test userIsRead evaluates true,
if the scope definition of permissions is read. The application of the third test
becomes true, if the current object is part of the container objects.

Summarized, the policy is true, if the current scope user is Alice, the permission
is read and the object a valid object. In other words: Alice may access all objects
with read access.

87

4. The Access Definition and Query Language (ADQL)

4.6.7. Application of Scopes

The last construct for applications is the application of scopes. The application
of a scope returns either �c(true) or �c(false). An application of a scope s
returns �c(true), if all defined policies in the system, which are applied using
the scope s, return �c(true).

Formally:
Let S ∈ S be a scope and P be the set of all policies.
Then ∇(S)() : S → �c(true|false).

∇S =

{
�c(true), if ∃P ∈ P : ∇(P)(S) = �c(true)

�c(false), else

A scope is evaluated true, if a policy P ∈ P exists which can be evaluated true
for the scope S. If no such policy exists, the result is �c(false).

Applications of scopes are used to test all policies in the system. Usually this is
the case if an access check is performed. A scope is used to represent a current
system state by binding the variables to specific values. Then all policies are
checked, if access can be granted or not. If a policy evaluates true for the given
scope, access is granted. If no policy can be found, the access is denied.

Please note, that syntactically a scope s application may have a scope argument
sarg: ∇(s)(sarg). However, the evaluation of a scope application considers
only scope s itself, ignoring the scope argument sarg. Thus, scope arguments
can be omitted when using scope applications.

4.7. Summary

In this chapter, we presented and discussed all syntax elements of the ADQL
language. The syntax definition reminds us of the famous Lamda calculus: A
valid ADQL term consists either of a definition or an application. Both can
be used with entities, containers, relations, F1-projections, tests, policies and
scopes.

The access control model consists of the model layer. Here, the access con-
trol model is defined: What is relevant for access control, e.g. users, objects,
permissions, and how are these concepts interrelated with each other. The def-
initions of the model correspond to container and relation definitions and, in
some parts, to entity definitions. Containers are bags for entities. They can be

88

4.7. Summary

used to represent container hierarchies and container networks by indirect con-
tainer definitions (container A may be part of container B). These are indirect
entity structures. On the other side, containers can be used within access con-
trol by assigning them directly to other containers. In the latter case, statements
about containers can be realized. The same is true for relations. Relations link
together two or more containers. The definition of a relation can consist of an
explicit enumeration of their elements. Implicitly relation definitions can be
realized by using boolean expressions. The latter is not yet part of ADQL.

The facts layer definitions are represented by entity definitions. Here, all facts,
e.g. Alice is a user, pic1 is an object, ... are defined. It relies on the definitions of
the model layer.

The policy layer includes tests and policies. While tests are boolean operations
on exactly two containers, policies are logical AND-combinations of tests. A
policy becomes true, if all its tests evaluate true. A test consists of two contain-
ers and an operator. The operator maps the test to a boolean value, thus true or
false.

This leads to the so-called applications. While ADQL definitions only define
things, applications evaluate things. Entities simply evaluate to their identity.
This becomes more complex for containers.

Applications of containers may be used to decompose or flatten container hier-
archies and/or container networks.

In contrast, applications of relations are used for so-called projections. F1-
projections of n-ary relations define (n− 1) bound and one unbound container.
The latter is the target for the F1-projection. The result is a container with all
elements of the relation including the unbound values in their tuple, projected
to the space of the variable entity. It is used for complex queries used in tests.

The application of tests results in a simple true or false. The current scope
is used to evaluate the test. The result is boolean. The same is true for the
application of policies. If all tests become true, the policy is also true.

Finally, scopes can be evaluated. This corresponds to a typical access check.
All defined policies are evaluated. If one is found returning true, the scope
application becomes true, too. If none is found, the scope, and with it the access
query, is denied.

We have laid out the complete ADQL syntax in this chapter and provided ex-
amples.

89

5. The Concepts of the Access
Definition and Query Language

In this section, we describe all concepts of the Access Definition and Query
Language. We provide a description of every concept and explain how the
concept is going to be used in ADQL. We start with basic concepts which are
not interrelated with other concepts and continue with derived concepts, which
are interrelated with other ADQL concepts. The ADQL language itself is not
part of this chapter. The language is described in chapter 4. We advise to read
at least the motivational example to learn about the language basics in chapter
3.

5.1. Overview of ADQL’s Concepts

ADQL relies on a relatively small number of concepts. These are: entities, con-
tainers, relations, filtered 1-projections, tests, policies, variables, and scopes.

Entities are the ”things” in ADQL. Anything modeled in ADQL is an entity.
This can be e.g. a user, a group of users, a permission, a file, an attribute of a
user or an object. An entity is represented by a symbol (an identifier).

Containers are used to group entities. E.g. users may be grouped in certain
user groups like ”administrators” or ”guests”. Containers need not to be flat
but may be organized in hierarchies or graphs. A container can be assigned
to another container allowing topologies like trees, lattices, or graphs. ”Alice”
maybe a part of the container ”administrators”. This container is a part of the
container ”users”, making ”Alice” not only a part of ”administrators” but also
of ”users”.

Relations are used to describe properties of entities and model associations be-
tween entities. Relations link entities of two or more containers. E.g. the con-
tainer ”users” can be associated with the container ”files” by the relation
”owner”. This allows linking a file from the container ”files” to one or more
owners from the container ”owner”. As relations can be defined not only be-
tween two containers, but n, complex situations can be described. E.g. the user

91

5. The Concepts of the Access Definition and Query Language

”Alice” is in the role ”project leader” within the project ”SAP migration”. This
fact requires at least a 3-ary relation, as Alice may be a regular member of a
project team in another project and only leads the project ”SAP migration”.

Filtered 1-projections are used to query relations. This concept is used to answer
questions like ”who is the owner of file1.jpg”. The relation ”owner” is defined
between ”users” and ”files”. The relation ”owner” explicitly defines, which
user is the owner of a file. ADQL refers to an element of a relation as ”link”.
To answer the above question, we need to filter the relation ”owner” for all
links containing ”file1.jpg”. After applying the filter on the links, the tuple
element ”files” is masked out leaving only the tuple element ”users”. In this
example, ”Ann”. This is called a projection. In this case, the relation ”owner”
is projected towards ”users”. ADQL currently only supports projections to one
tuple element of the relation. To reflect this, we refer to filtered 1-projections
and not to general filters or projections.

Tests are used to represent boolean expressions. In ADQL a test consists of two
expressions which are combined by a boolean operator. A common operator
in ADQL is the θ-operator. θ returns true if both expressions share at least one
entity. Tests are used to represent logical queries. E.g. a test can check whether
the current ”user” is ”Alice” and if the ”owner” of a ”file” is the current user.

Policies allow combining tests to complex logical expressions. ADQL describes
a policy as collection of tests, which must all be true to let the policy become
true. A policy can, therefore, be interpreted as conjunctive normal form.

Variables represent certain aspects of the system state which will be checked by
the access control system. E.g. the variable user is bound to ”Alice” represent-
ing the current user. Variables are dependent on the scope they are defined in.
In each scope, a variable can be assigned to a different value. Variables can be
used in tests, to check for certain system conditions, e.g. ”is the current user
Alice?”.

Scopes are used to represent specific system states. A scope is a collection of
variable bindings. E.g. for scope s1 the variable ”users” is bound to ”Ann”, the
”permission” is ”read”, and the ”object” is ”file1.jpg”. Policies, tests, filtered 1-
projections and other expressions of ADQL can be resolved based on scopes.

5.2. The Logical Layers of ADQL

Before going into details, we want to provide an overview of the logical layers
of ADQL. ADQL has been designed to be able to implement different access

92

5.2. The Logical Layers of ADQL

control models, e.g. RBAC, Bell-LaPadula, Chinese Wall, ... Therefore, we argue
that ADQL is a meta model of an access control model.

To be able to implement an access control model, ADQL makes use of its con-
cepts. We have informally introduced these concepts in the last section. In this
section, we want to provide an overview which concepts are combined to de-
fine the four layers necessary for access control: the access control model, the
facts, the policies, and the access rights. We depict these layers in figure 5.1.

Model

Access Rights

Meta Model

Ann is a user, file1.jpg is an object,
Ann is the owner of file1.jpg

Owners may access their files

There are users, permissions, objects;
owners link objects and users.

ADQL itself

Ann can read file1.jpg

Facts

Policies

Figure 5.1.: Structure of the logical layers of ADQL

The Meta Model Layer. ADQL acts as a meta access control model. It can be
used to define an access control model. The concepts of the meta-model layer
are described in this chapter. The syntax of the formal language to define and
calculate expressions is explained in chapter 4.

The Model Layer. In the model layer the access control model to be used in facts,
policies and logic inference is specified. The access control model defines how
the access control system acts. E.g. the model layer can be defined to act as
a HRU-model, as a Bell-LaPadula model, as an RBAC model ... The model
layer makes use of the concepts containers, relations, and entities. The example
provided in figure 5.1, defines an access control model with users, permissions,
and objects (like files). Furthermore, a relation between users and objects, the
owner, is defined: Each object may be assigned to one or more users, defined
as owner of the object.

The Facts Layer. The layer defines the facts for logical reasoning. The facts rep-
resent all possible system states of the access control system: Which users exist,
which objects exist, which permissions are supported, and so on. The provided
example establishes the facts that ”Ann is a user”, ”file1.jpg” is an object, and

93

5. The Concepts of the Access Definition and Query Language

”Ann is the owner of file1.jpg”. Conceptually, ADQL uses the concepts entities,
assignment to containers, and relations.

The Policy Layer. The policy layer introduces the policies which are used to de-
cide upon access checks. It depends on the model and facts layer. An example
is, that ”Ann may access all files”. Before being able to formulate such a policy,
we need to introduce the underlying model (”we use users, permissions, and
objects”) and some facts (”Ann is a users”). The ADQL concepts tests and poli-
cies belong to this layer. Any ADQL test and any ADQL policy belongs to the
policy layer.

The Access Rights Layer. The last layer is the access rights layer. For example,
”Ann can read file1.jpg”. Access rights are not explicitly defined anywhere,
but can be calculated from the other layers, namely the model, the facts and the
policies. If users can access files they own, and Ann is the owner of ”file1.jpg”,
then Ann, of course, may access ”file1.jpg”. The access rights are not explic-
itly expressed, but can be derived by applying the policies on the facts and
the model. The access rights can even be pre-calculated for a given model,
fact base, and policy collection, so that a query is a simple lookup on the pre-
calculated access rights. The latter topics are discussed in section 7.2 and sec-
tion 8.

Variables and scopes are not represented in ADQL’s logical layers. Both are
used for reasoning and to answer access check queries. For this task, all the
above layers are required so that variables and scopes can be seen to be located
in a separate layer orthogonal to the described layers.

We have provided a short overview of the ADQL concepts. Next, we will de-
scribe each concept. The language syntax and the usage of the concepts is ex-
plained in chapter 4.

5.3. Entities

The very basic concept of ADQL is an entity. We define an entity as any “object
in reality” modeled in the system. Generally, everything modeled in ADQL is
an entity: e.g. users, files, containers, relations, policies, tests, objects, permis-
sions, Ann, Herb, read, write, file1, ...

An entity in ADQL is an object which is identified by a symbol. Technically,
each symbol corresponds to a unique ID/key.

To be able to distinguish more advanced entity types which we will introduce
subsequently in this chapter, we define basic entities.

94

5.3. Entities

Definition 4 (Basic entities and entities). We introduce basic entities e1, e2, . . . , en.
We define the set EG of all basic entities. Furthermore, we define the set of all entities
E.

EG = {e1, e2, . . . , en} (5.1)
E = EG (5.2)

Letter E refers to the term entity, the letter G to the German term Grundmenge
(engl. ”base set”). E is the set of all entities in the system. For now, E = EG. We
will extend E subsequently on the following pages by adding more concepts to
its definition.

To represent facts on an information system in ADQL we establish a mapping
between facts in an information system and the ADQL environment. We depict
an example in figure 5.2.

Figure 5.2.: Example showing the mapping of facts in an information system to
the ADQL environment.

In the information system two users are present, ”Ann” and ”Herb”. Ann and
Herb are assigned to a set of ”users”. Furthermore, ”file1” and ”file2” are de-
fined in the information system.

A mapping of this state of the information system is represented in the ADQL
environment depicted in the right box.

• Ann is mapped to an entity with the symbol eAnn.

• Herb is mapped to an entity with the symbol eHerb, the objects file1 and
file2 are mapped to the symbols efile1 and efile2, respectively. (These
mappings are not depicted in figure 5.2 for better readaility.)

• The concept ”users” in the information system is
mapped to the ADQL symbol eCusers

. eCusers
is the symbol representing

the concept ”users”.

95

5. The Concepts of the Access Definition and Query Language

• The ”content of users” (Ann and Herb) in the information system is mapped
to the ADQL symbol Cusers.

We see, that we differentiate between mapping the name of an entity and map-
ping the content of an entity. The name of the concept ”users” in the information
system is mapped to the ADQL symbol eCusers , while the content of ”users” in
the information system is mapped to the symbol Cusers.

To distinguish between the name and the content of a symbol we introduce a
concept named ”entity structure”. The phrase ”structure” reminds us to the
concept of ”struct” in ANSI-C.

Definition 5 (Entity structures). We define an entity structure as tuple B = E ×
{d, d̄}. We denote a tuple of B as bi = (ei, di) where di ∈ {d, d̄}. D = {d, d̄} is a
boolean value. d is said to be ”direct” referring to the name of ei, d̄ is said to be indirect
or referring to the content of ei.

A tuple bi ∈ B is built from an entity ei ∈ E and the boolean value d̃ ∈ D. We
will use bi to distinguish between the name of an entity and the content of an
entity. Letter B refers to the term basic set.

• (ei, d) is called a direct entity structure and refers to the name of the entity
ei.

• (ei, d̄) is called an indirect entity structure and refers to the content of the
entity ei.

In the example depicted in figure 5.2, the tuple (eusers, d) refers to eusers, the tu-
ple (eusers, d̄) to the content of eusers, which is the set Cusers = {eAnn, eHerb}.

When we write ”refers to”, we need to define this term formally:

Definition 6 (Value function). We introduce a transformation, the value function.
The value-function is used for ADQL applications (∇).

Let b = (ei, d̃) ∈ B.

val : B → P(E)

val(b) = val((ei, d̃)) =

⎧⎪⎨
⎪⎩
{ei}, if d̃ = d,

{}, if d̃ = d̄,

{}, if b = {}

(5.3)

The val-transformation assigns a 2-tuple (ei, d̃) to its so-called ”value”. For
basic entities the value is a single-element set {ei} for direct entity structures,
or the empty set for indirect entity structures.

96

5.3. Entities

We said that a direct entity structure refers to the name of the entity while an
indirect entity structure refers to the content of the entity. Consequently, for
basic entities, the name of an entity is the entity itself while the content of a
basic entity is empty. There is simply no content. Of course, the latter will
change, when we work with containers in the next section.

Definition 7 (Value function on sets). We further define the value function on sets
of entity structures.

Let X = {b1, . . . , bk} ∈ B.

V al : P(B) → P(E)

V al(X) =

{
∪i∈Xval(bi), if X �= {},
{}, if X = {}

(5.4)

The value of a set of entity structures can be calculated by the union of the
values of all single-element subsets. Thus, the value of the set X is the union of
the values of all its elements. If the set X is the empty set, the value of it is the
empty set, too.

Please note, that the val-function with a small ”v” is defined on B, while the
V al-function with a capitalized ”V” is defined on P(B).

Summary of Entities

Let us shortly wrap up:

• EG is the set of all basic entities.

• E is the set of all entities. Currently we defined only basic entities, E =
EG.

• B is an the set of entity structures. It contains 2-tuples with an entity and
a boolean value named d̃ ∈ D. Direct entity structures refer to the name
of an entity. Indirect entity structures refer to the content of an entity.

• The value function val transforms entity structures to entities. Direct en-
tity structures are mapped to the corresponding entity itself (its ”name”),
indirect entity structures are mapped to an empty set (the content of a
basic entity is defined to be empty).

• V al is the corresponding function for sets of entity structures.

97

5. The Concepts of the Access Definition and Query Language

5.4. Containers

The next concept we introduce is the concept of containers. Containers are sets
of entity structures.

Definition 8 (Container). We define a container A as the finite set of entity struc-
tures. Let bi ∈ B be an entity structure with i an arbitrary index to enumerate entity
structures.

A = {. . . bi . . . }

In case, more than one container is defined, we add an arbitrary index to the
container symbol, e.g. Ci (instead of A). An element of the container Ci is then
denoted by cij where the first index refers to the container and the second to
the entity structure in the container.

Ci = {ci1, ci2, . . . , cim}

We know from the definition of entity structures (see definition 5): Each ele-
ment cij of a container is an entity structure (eij , d̃), with eij being an entity
from E and d̃ being a boolean value, direct (d̃ = d) or indirect (d̃ = d̄).

We use containers to collect entities. E.g. we want to group the user entities
”Ann”, ”Herb”, ”Jim”, ... into the container ”users”.

Definition 9 (Container set). Let C be the set of all containers Ci with i = 1, . . . , n.

We see, C is then a set of containers:

C = {C1, C2, . . . , Cn} = {{c11, c12, . . . , c1m}, {c21, c22, . . . , c2o}, . . . } (5.5)

The symbol Ci refers to a container in the set of containers C.

Symbols are used as substitution, in other words, the symbol C1 is identical
with {c11, c12, . . . , c1m}. Symbols are the ”name” of an entity, here a container.
In ADQL, we want to refer to a container not only as the name of a container
(representing the container) but also to its content. Obviously, we need to in-
troduce another symbol for the latter: For each container Ci we introduce the
symbol eCi . It reflects, that each container Ci has a corresponding entity eCi .

98

5.4. Containers

Definition 10 (Container entities and entities). Let C be the set of all containers
Ci with i = 1 . . .m. We define, that for each Ci there is an entity eCi

and vice versa.
We call eCi a container entity. The set of container entities is called EC .

EC = {eC1
, eC2

, . . . , eCm
} (5.6)

The set of all entities E is extended to consist of all basic and container entities.

E = EG ∪ EC = {e1, e2, . . . , en, eC1
, eC2

, . . . , eCm
} (5.7)

Please note the difference between C and EC . While C is a set of sets, EC is a
set of (container) entities.

We have introduced two new concepts in the last paragraphs:

• Containers are sets of entity structures.

• The symbol Ci represents a container as a set, thus, the content of a con-
tainer.

• The symbol eCi
refers to the container as an entity, thus, the name of a

container.

The first allows us to build ”flat” groups of entities, the latter allows us, com-
bined with direct and indirect entity structures to build ”deep” container hi-
erarchies. To allow this, we extend the value-function. The definition looks
complex at the first glance and we will explain it subsequently.

Definition 11 (Value function (extended version 2)). Let b = (e, d̃) ∈ B, e ∈
E, d̃ ∈ D,S ⊆ EC , initially S = {}:

val(b) = valr(b, {}) (5.8)

valr : B × EC → P(E)

valr(b, S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{e}, case (1), if d̃ = d,

{}, case (2), if d̃ = d̄ ∧ e ∈ EG,

{}, case (3), if b = {},
R : for cij ∈ Ci do:
R = R∪
valr(ecij , S ∪ eCi)

end

⎫⎪⎪⎬
⎪⎪⎭ case (4), if

{
d̃ = d̄ ∧ e ∈ EC

∧eCi �∈ S,

{}, case (5), if

{
d̃ = d̄ ∧ e ∈ EC

∧eCi
∈ S,

(5.9)

99

where Ci is the corresponding container to e, if e ∈ EC . cij are the elements of Ci.

5. The Concepts of the Access Definition and Query Language

The value function val is extended and replaces definition 6. It makes use of a
new transformation, the recursive value function valr. The recursive value func-
tion is defined on B × S with S being a subset of EC . EC is the set of container
entities. S is initially empty.

valr distinguishes five cases:

1. If the entity structure b = (e, d̃) is direct (d̃ = d), a set with the entity e is
returned. This is the ”name” of an entity.

2. If the entity structure is indirect (d̃ = d̄) and the entity is a basic entity
(e ∈ EG), then the empty set is returned. The content of a basic entity is
empty.

3. If the entity structure b is null, an empty set is returned. So far, the three
cases match definition 6 of the value function.

4. If the entity structure is indirect and the entity is a container entity (e ∈
EC), a recursive function is applied. As the entity is a container entity
there must exist a corresponding container Ci. The recursion is done for
each element cij of this container Ci. cij is an entity structure from B,
as cij is a container element and all container elements are from B. The
recursive value function valr is called again with the arguments cij and
S ∪ eCi . We call this the decomposition of container Ci. The set S is used
to avoid never ending loops in the recursion: If a container is processed
by a recursive step of this case, its corresponding container entity eCi

is
added to set S. Case (4) is applied only, if the container entity eCi

is not
part of set S, thus the related container Ci has not been processed by
the recursion before. If eCi is in S, case 5 (see next bullet point) applies,
stopping the recursion and avoiding never-ending loops.

5. If an indirect entity structure with container Ci has already been decom-
posed earlier in a recursive step (case 4), its corresponding container en-
tity eCi

has been added to the set S. In this case, it is not decomposed
again, but an empty set is returned. This case is used to avoid never-
ending loops of case 4.

We see, that this definition allows recursive container arrangements.

100

5.4. Containers













 



Figure 5.3.: Example of a recursive container definition. Full circles represent a
tuple in the form bi = (ei, d), empty circles bi = (ei, d̄).

Depicted are two containers, C1 and C2. Container C1 consists of two entity
structures, b1 and b2. b1 is defined as 2-tuple b1 = (e1, d), b2 = (e2, d). We
denote 2-tuples b ∈ B in the form of bi = (ei, d), thus direct entity structures,
by full circles and use empty circles for indirect entity structures in the form of
bi = (ei, d̄).

The second container is defined in the following way:
C2 = {(e3, d), (eC1

, d), (eC1
, d̄)}. Correspondingly, the container entity eC2

ex-
ists. We see, that the container entity eC1

is assigned to the container C2.

Please note, that entity eC1
is actually assigned twice to the container C2: (eC1

, d)
assigns C1 directly to C2, while (eC1 , d̄) assigns C1 indirectly to C2.

We now evaluate some example expressions:

V al(C1) = V al({(e1, d), (e2, d)})
= val((e1, d)) ∪ val((e2, d))

= valr((e1, d), {}) ∪ valr((e2, d), {})
= {e1} ∪ {e2}
= {e1, e2}

The example V al(C1) is straight forward: The value of a container is the union
of its entities (definition value function on sets, definition 7). On each entity
structure, the value function is applied. As all entities are assigned directly,
their value is the set of the entity. Obviously, the union is the set {e1, e2}.

101

Example

We illustrate this with the example depicted in figure 5.3.

5. The Concepts of the Access Definition and Query Language

V al(C2) = V al({(e3, d), (eC1 , d), (eC1
, d̄)})

= val((e3, d)) ∪ val((eC1 , d)) ∪ val((eC1
, d̄))

= valr((e3, d), {}) ∪ valr((eC1
, d), {}) ∪ valr((eC1

, d̄), {})
= {e3} ∪ {eC1

} ∪ valr((eC1
, d̄), {})

= {e3} ∪ {eC1
} ∪ {e1, e2}

= {e1, e2, e3, eC1
}

The second example makes use of indirect entity structures. Container C2 con-
sists of the entity structures (e3, d), (eC1

, d), and (eC1
, d̄). The first two entity

structures are direct and are resolved by the value function to a set with entity
e3 and a set with entity eC1

. For the third entity structure, (eC1
, d̄) the recur-

sion of valr is used. In this second recursion step, the valr function is applied
on the contents of the first recursion of the entity structure (eC1 , d̄). Container
C1 consists of the entity structures (e1, d) and (e2, d). The valr applied on both
returns the sets {e1} and {e2}. The resulting set of the second recursion step is,
therefore, R = {e1, e2}.

Completing the evaluation of val, we see that the decomposed container con-
sists of {e3, eC1

, e1, e2}.

The concept of the boolean value d̃ ∈ {d, d̄} = D became obvious: The value
function is defined in such a way, that further evaluation is stopped if a direct
entity structure bi = (ei, d) is found. In contrast, the value function continues
to evaluate on indirect entity structures of the form of bi = (ei, d̄), if ei is a con-
tainer entity and has not been evaluated in the same decomposition before.

This mechanism enables ADQL to implement recursive container definitions.
This is useful if containers modeling entities/containers in a security system
are refined over time. For example, think about the introduction of new roles
in an organization.

Assume a container user consists of the sub-containers admins, regulars, guests.
We illustrate this in figure 5.4.

Liz is an administrator, Herb and Jim are regulars, while Ann and Tom are
guests. All belong through indirect entity structure to the container ”users”.

We see that indirect entity structures can be used to build hierarchies of con-
tainers. By assigning a container indirectly to another container, a hierarchy is
created. The value function recursively decomposes the container hierarchy.

In order to be able to ”flatten” deeper hierarchies, we need to apply the value
function recursively.

102

Second example:

5.4. Containers


 

































Figure 5.4.: Use case of a recursive container definition for user groups.

We will now proof that any container can be decomposed or flattened.

Proof. Let Ci be a container and C be the set of all containers. C is finite, thus
C1 . . . Cn are all containers in a current state of the ADQL system with n < ∞.
Let cij be the entity structures of container Ci. The assignments of one container
Ci are also finite, thus | cij |< ∞ for any fixed i.

V al(Ci) = ∪k=1..jval(cik). If all val(cik) can be calculated and are finite, V al(Ci)
can also be calculated and is finite. val(cik) = valr(cik, {}). Referring to defini-
tion 11 we immediately see that the latter is defined and finite for all cases but
the case d̃ = d̄ ∧ e ∈ EC ∧ ECi

�∈ S.

We have to show it for this case. Definition 11 says for this case:
R : for cij ∈ Ci do: R = R ∪ valr(ecij , S ∪ eCi

) end

The loop will terminate, if (1) there are finite elements to iterate, thus Ci con-
tains a finite number of elements cij . This is true as | cij |< ∞ for any fixed i. (2)
if valr(ecij , S∪eCi) terminates and is finite. For valr(ecij , S∪eCi) the same cases
apply as for val(cik). It will iterate again, if (1) another indirect entity structure
is part of the container and (2) this indirect entity structure has not been evalu-
ated in an iteration step before, thus its corresponding container entity eCi �∈ S.
We immediately see, that a maximum of | C | iteration steps can occur, as there
are maximallyhg | C | containers in the system. Therefore, the iteration termi-
nates. Each iteration step returns a finite set of elements, therefore, the union
of finite sets is also a finite set.

Summary of Containers

Let us wrap up again:

• Containers Ci are used to store directly (eij , d) or indirectly (eij , d̄) as-
signed entity structures. For the sake of shortness, we sometimes call

103

5. The Concepts of the Access Definition and Query Language

this ”direct” or ”indirect entity assignments to containsers”, although for-
mally not an entity is assigned to a container but always an entity struc-
ture.

• The assignment of an indirect entity structures with a containers to an-
other container enables ADQL to create container hierarchies.

• The V al-function is used to decompose or flatten container hierarchies.

5.5. Relations

We introduce the concept of a relation in ADQL.

Definition 12 (Relation). Let C1, C2, . . . , Cn be containers in C. J = {1, . . . , n} is
the index set of the containers. Let DomC1...n

= ×j∈JV al(Cj) ∪ {} be the domain
including the empty set.

We define a relation Rn ⊆ DomC1...n
as a table with n columns. A line ri of the table

represents a single relation point in the n-dimensional space DomC1...n with rni =
(ci1, . . . , cin) where cij ∈ V al(Cj).

Rn ⊆ DomC1...n

Rn = {r1, r2, . . . , rm|∀p = 1, . . . ,m :

rp = (cp1, cp2, . . . , cpn) with ∀q = 1, . . . , n : cpq ∈ V al(Cq)}
(5.10)

The definition of a relation follows the common mathematical definition.

The p-th row in the relation table corresponds with one n-tuple
rp = (cp1, cp2, .., cpn). Each cpi is an element of the decomposed container Ci,
that is V al(Ci).

We call one n-tuple rp ∈ Rn a link of Rn. For the sake of shortness we sometimes
omit the n as part of a relation symbol.

In the case, that more than one relation is defined, we use an index symbol to
differentiate between relations. E.g. R1, R2, . . . are relations.

Definition 13 (Set of all relations). We define the finite set R of all relations

R := {R1, R2, . . . , Rm} (5.11)

with Ri being a relation.

104

5.5. Relations

Like with containers, a relation symbol Ri refers to the relation itself. Again,
we want to be able to refer to a relation ”as an entity”. Therefore, we introduce
a symbol for the relation as an entity. As we want to have a symbol referring to
the relation as an entity we define eRi .

Definition 14 (Relation entity). For each relation Ri we define a relation entity eRi
.

The set ER is the set of all relation entities, ER := {eR1
, eR2 , . . . , eRm}.

Again, we extend the entity definition and value-function:

Definition 15 (Entities and value function (extended version 3)).

E = EG ∪ EC ∪ ER (5.12)

The set of all entities now includes all basic entities, all container entities, and all
relation entities.

Consequently, the recursive value function needs to be extended. Let b = (e, d̃) ∈
B, e ∈ E, d̃ ∈ D,S ⊆ EC , initially S = {}:

valr : B × EC → P(E)

valr(b, S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{e}, case (1), if d̃ = d,

{}, case (2), if d̃ = d̄ ∧ e ∈ EG,

{}, case (3), if b = {},
R : for cij ∈ Ci do:
R = R∪
valr(ecij , S ∪ eCi

)
end

⎫⎪⎪⎬
⎪⎪⎭ case (4), if

{
d̃ = d̄ ∧ e ∈ EC

∧eCi �∈ S,

{}, case (5), if

{
d̃ = d̄ ∧ e ∈ EC

∧eCi ∈ S,

{}, case (6), if d̃ = d̄ ∧ e ∈ ER,

(5.13)

where Ci is the corresponding container to e, if e ∈ EC . cij are the elements of Ci.

The above value-function (definition 15) equals to the previous version of the
value-function (definition 11) but case (6). Case (6) deals with relation enti-
ties. The relation entities behave like basic entities. Direct entity structures
of relations decompose through the valr-function to the related relation entity.
Indirect entity structures decompose to the empty set.

105

5. The Concepts of the Access Definition and Query Language

Figure 5.5.: Use case example of relations.

Example

We explain the usage of relations with the example illustrated in figure 5.5.

The example in figure 5.5 continues the container example (see figure 5.4).
Besides the already introduced containers ”users”, ”admins”, ”regulars” and
”guests”, a container ”files” is defined with direct entity structures for the enti-
ties ”pic1”, ”pic2”, ”vid1”, and ”vid2”.

Let Cfiles = {(pic1, d), (pic2, d), (vid1, d), (vid2, d)}.
It follows for V al(Cfiles) = {pic1, pic2, vid1, vid2}.
Obviously, V al(Cusers) = {Liz,Herb, Jim,Ann, Tom}.

We define relation Rowner:

Rowner ⊆ V al(Cusers)× V al(Cfiles)

with {(Herb, pic1), (Herb, pic2), (Jim, vid1), (Ann, vid1)} ∈ Rowner

The files ”pic1” and ”pic2” are owned by the regular user ”Herb”, the file
”vid1” has two owners, ”Jim” being a ”regular” user and ”Ann” being a ”guest”.
File ”vid2” has no owner.

The definition of the above example makes use of an explicit relation defini-
tion. That is, all elements of the relation are explicitly enumerated. Another
possibility of relation definitions are implicit definitions by boolean operators.
Currently, the ADQL language definition does not support implicitly defined
relations. Nevertheless, the ADQL concept itself has no constraints restricting
relation definitions to explicit definitions.

106

5.5. Relations

Filtered 1-Projections

Filtered 1-projections are a composition of a filter operation and a projection.
For the sake of shortness, we call ”filtered 1-projections” ”f1-projections”, al-
ternatively. Filtered 1-projections are used in ADQL to ”decompose” relations.
This is used mainly for queries. In the above example, the query ”who is the
owner of file pic1” can be asked.

We introduce the 1-filter operation:

Definition 16 (1-Filter). Let Rn be a n-ary relation. J = {1, . . . , n} is the index set
of the n-ary relation. Let DomRn = ×j∈JV al(Cj) ∪ {} be the domain of the relation
including the empty set.

We interpret the relation Rn as a table with n columns and m rows. Each row consists
of a ri with ri = (ei1, ei2, . . . , ein) ∈ Rn. The n-tuples r1, r2, . . . , rm are the m
elements of the relation Rn.

Select the filter elements but leave one element unfiltered:
Choose an l with 1 ≤ l ≤ n. Choose n− 1 entities satisfying the following conditions:
e(1) ∈ V al(C1),. . . e(l−1) ∈ V al(Cl−1), e(l+1) ∈ V al(Cl+1), . . . e(n) ∈ V al(Cn).
Let rfilter = (e(1), . . . , e(l−1), e(l+1), . . . , e(n)) be the filter.
Let Domfilter = ×j∈J\lV al(Ci) be the domain of the filter.

We define a 1-filter function as:

DomRi ×Domfilter −→ DomR

filter(Rn, rfilter) �→ {rm | ∀k : 1, . . . ,m : ek1 = e(1) ∧ · · · ∧ ek,l−1 = e(l−1)

∧ ek,l+1 = e(l+1) ∧ ... ∧ ekn = e(n)}
(5.14)

We interpret a relation as a table, with each row representing a ”link” of the
relation and the columns representing the structure of the relation (a column is
a tuple element of a relation element). An 1-filter on a n-ary relation requires n−
1 bound and 1 unbound columns. When applied, the 1-filter returns those rows
of the table which column entries match the filter. In SQL a filter corresponds
to a (limited) WHERE-filter in SELECT statements.

Filters are not reflected in ADQL’s syntax, as ADQL currently utilizes the com-
bined function filtered 1-operation.

We continue with the introduction of a 1-projection:

107

5. The Concepts of the Access Definition and Query Language

Definition 17 (1-Projection). Let Rn be a n-ary relation. J = {1, . . . , n} is the
index set of the n-ary relation. Let DomRn = ×j∈JV al(Cj)∪ {} be the domain of the
relation including the empty set.

We interpret the relation Rn as a table with n columns and m rows. Each row consists
of a ri with ri = (ei1, ei2, . . . , ein) ∈ Rn. The n-tuples r1, r2, . . . , rm are the m
elements of the relation Rn.

Select the projection dimension: Choose any but fixed l ∈ J .

We define an 1-projection:

DomRn × J −→ V al(C(l))

proj(Rn, l) �→ {ekl | ∀k : 1, . . . ,m :

rk ∈ Rn with ekl is on l-th position of rk}
(5.15)

When applied on a relation, an 1-projection cuts out n− 1 columns of the rela-
tion table and returns only one column called projection target. The result is a
one-dimensional set.

Like filters, 1-projections are not represented in ADQL’s syntax, as only the
concatenation of filters and 1-projection is used.

We concatenate a 1-filter operation with a 1-projection operation:

Definition 18 (Filtered 1-projection (F1-projection)). A filtered one projection, ab-
breviated as ”F1-projection” is defined as:

DomRi
×Domfilter × J −→ V al(C(l))

proj1F (R
n
i , rfilter, l) �→ proj(filter(Rn

i , rfilter), l) = filter ◦ proj (5.16)

For the syntactical representation of a filtered 1-projection we refer to 4.5.5.

An ADQL F1-projection transforms a relation to a set of entities.

The entities e(1), e(2), . . . , e(n−1) are called the bound entities of the F1-projection.
The corresponding containers C(1), C(2), . . . , C(n−1) are called the bound con-
tainers of the F1-projection. The container C(l) is called the unbound container
of the F1-projection. Another name for the unbound container is target of the
F1-projection.

A F1-projection is a transformation from the space of the relation V al(C1) ×
· · · × V al(Cn) to the space of the decomposed target container V al(C(l)).

A F1-projection of a relation Rn
i requires (n− 1) bound entities and exactly one

unbound entity on the l-th position of the n-tuples belonging to the relation.

108

5.5. Relations

The result of the F1-projection is a set of entities. These entities satisfy the con-
dition that their related relation-tuples match all but the unbound entity in their
tuples.

We provide an example continuing the above examples:

Rowner | (Herb, •) = {pic1, pic2}
Rowner | (•, vid1) = {Jim,Ann}
Rowner | (•, vid2) = {}

The first example defines the entity Herb as bound entity. As the relation Rowner

is defined on the decomposed containers Cusers × Cfiles, the container users
is the bound container of the F1-projection. The second element of the tuple
marks the position of the unbound container, which is Cfiles.

The first F1-projection evaluates all elements of the relation having Herb at the
first tuple position. The resulting sets are stripped by all bound tuple posi-
tions, leaving only the component at the unbound position. As the entities
pic1 and pic2 are both linked to Herb in the relation owner, the resulting set is
{pic1, pic2}.

The second example is straight forward: The resulting container contains all
those relation elements having the entity ”vid1” at the second tuple position.
These are ”Jim” and ”Ann”. Here, the bound container is Cfiles with the bound
entity ”vid1”. The unbound container is Cusers.

The third example is similar to the second, but has a different bound entity
”vid2”. As the relation Rowner has no defined tuples with ”vid2”, the resulting
set is empty.

ADQL uses the above F1-projections as a kind of query. ”Show me the owners
of the file vid1” is translated by the F1-projection Rowner | (•, vid1). In other
words: Who is the owner of file vid1?

F1-Projections on Reflexive Relations

The definition of an ADQL relation allows reflexive F1-projections, thus a con-
tainer can be part more than once in the F1-projection definition.

We provide as an example the definition of a proxy in an organization. In case, a
user is not available due to vacation or illness, proxy users may be defined. For
this, we introduce a relation ”proxy”: Rproxy = V al(Cusers)× V al(Cusers).

We add two links to the relation, ”Herb” has ”Jim” as his proxy, ”Jim” has
”Ann” as his proxy. (Herb, Jim), (Jim,Ann) ∈ Rproxy .

109

5. The Concepts of the Access Definition and Query Language

To find out, who the proxies are, we utilize F1-projections:
Rproxy | (Jim, •) = {Ann}
Rproxy | (•, Jim) = {Herb}

The first F1-projection asks ”who is the proxy of Jim”. Consequently, the re-
sult is ”Ann”. In contrast, the second F1-projection asks ”for whom is Jim the
proxy”. The answer for the latter question is ”Herb”.

The bullet • marks the position of the F1-projection target. This allows an un-
ambiguous definition of F1-projections.

Summary of Relations

We summarize ADQL relations:

• Relations are defined on n decomposed containers.

• The n-ary elements of a relation are called links.

• F1-projections are a concatenation of 1-filters and 1-projections. They are
used to transform a Rn

i relation to a set applying a filter and cutting out
n− 1 dimensions. A F1-projection has (n− 1) bound entities and exactly
one unbound container. F1-projections are used for queries. The position
of the bullet ”•” marks the F1-projection target and allows unambiguous
F1-projection definitions.

5.6. Variables, Bindings, Scopes

In order to be able to decide on access requests, a security system generally
needs a set of rules (policies), a logical model and a description of the cur-
rent system state. Variables are used in ADQL to represent the current system
state. A set of variables representing a complete system state, is called a scope.
Within a scope, decisions on access requests can be made by evaluating the
rules. Therefore, we say, concerning the system state, a scope is sufficient to
decide on access requests.

As ADQL is designed as a software service usable by third party products using
ADQL as access management engine, several system states must be usable at
the same time. This is why ADQL supports several parallel scopes.

Let us first introduce variables.

110

5.6. Variables, Bindings, Scopes

Definition 19 (Variable). Let C be the set of all containers and V be the set of all
variables.

∃Ci ∈ C ⇒ ∃ � Ci ∈ V (5.17)

�Ci is called the associated variable to container Ci.

ADQL variables are closely related to containers. Each container automatically
provides a variable whose symbol is derived from the container’s name and
whose possible values are a subset of the values of the container at execution
time. For every container Ci a corresponding symbol �Ci is defined.

A variable is used to express one part of a system state: While a container
represents the possible values for a certain part, e.g. the ”users”, a variable
describes the current system state of this part, e.g. the current user in state X is
”Ann”.

So far, we introduced the concept of variables. Next, we need to define the
binding of a variable to a value and define some properties of such a binding.

Definition 20 (Binding of a variable). Let �Ci be a variable derived from container
Ci. Let further C ′

i ∈ C be an arbitrary container, not necessarily related to container
Ci.

A variable �Ci can be bound by the arbitrary container C ′
i ∈ C.

We denote this binding by XCi : �Ci = C ′
i.

A variable can be bound to a container. Generally, the binding of a variable can
be arbitrarily chosen.

Definition 21 (Valid binding of a variable). Let �Ci be a variable derived from
container Ci. Let further C ′

i ∈ C be an arbitrary container, not necessarily related to
container Ci.

A binding is said to be valid if V al(C ′
i) ⊆ V al(Ci).

The binding of a variable is said to be ”valid”, if the assigned decomposed con-
tainer consists only of entities also being part of the decomposed corresponding
container of the variable. In other words, a binding is valid, if the variable is
bount to a subset of the associated container.

111

5. The Concepts of the Access Definition and Query Language

Example For example, let

V al(Cusers) = {Ann,Herb}
V al(Cpermissions) = {read, write}

With this definition, two variables have been defined implicitly, �Cusers and
�Cpermissions.

Let’s have a look at some examples:

�Cusers = {(Ann, d)} ⇒ V al(�Cusers) = {Ann}
�Cusers = {(Ann, d), (Herb, d)} ⇒ V al(�Cusers) = {Ann,Herb}
�Cusers = {(read, d)} ⇒ V al(�Cusers) = {read}
�Cusers = {}

The first binding is valid, as
V al(C ′

users) = {Ann} ⊆ V al(Cusers) = {Ann,Herb}.
The second binding is valid for the same reason. In contrast, the third binding
is invalid: read does belong to the decomposed container Cpermissions and is not
element of the decomposed container Cusers. The last binding is valid, as the
empty set is always included.

Universality of ADQL’s variable concept A counter argument against
ADQL’s way of defining variables is its universality: As there is exactly one
variable defined for each container, a limitation in expressive power can be
suspected concerning policy definitions. One may suspect that two or more
variables are required with the type of one container.

We provide an example: Let us assume that for a certain policy the current user
must be the proxy of another user. While modeling the proxy of a user with a
relation and links, we need two variables for users. The user requesting access
(current user) and the other user, who’s proxy the current user is (proxy user). As
both variables are derived from the container ”users”, there is only one variable
�Cusers.

On the one side, this argumentation is correct: ADQL does not support the pos-
sibility to introduce free variables in the sense, that variables can be explicitely
defined and assigned a possible value domain, e.g. ”users”.

Nevertheless, on the other side, ADQL provides an easy concept to represent
this scenario: Another container ”proxy users” is introduced: Cproxyusers =
{(eCusers

, d̄)}. The container ”proxy users” is assigned to an indirect entity
structure of the container entity Cusers. With this trick, every entity being

112

5.6. Variables, Bindings, Scopes

part of the container Cusers becomes a member of the decomposed container
Cproxyusers. As the decomposed containers are relevant for both, relation/link
definitions and variable definitions, we now can represent the two variables
from the value domain ”users” needed for the proxy example.

Our argument for the relatively strict design of variables in ADQL is another: In
case of free variables, the definition of a variable is of great importance. When
used later in the context of policies and access checks, it is very important, that
it is clear from which value domain a variable is from and how a variable can be
identified. If there is confusion about a variable and its definition, unexpected
access rights might be the result. ADQL avoids this source of errors by strictly
linking the name of a variable to the name of a container.

For a further example we refer to 4.5.3.

5.6.1. Scopes

To represent system states it is necessary to be able to package several variable
bindings together. We call these ”packages” scopes. A scope is the representa-
tion of a certain system state in ADQL.

Definition 22 (Scope). Let X1, X2, . . . , Xn be variable bindings with Xj : �Cj =
C ′

j .

We define a scope Si: Si = {X1, X2, . . . , Xn}

A scope Si is a set of bindings. For each variable, a scope may contain one
binding at most.

Definition 23 (Valid scopes). A scope Si is said to be valid if all of its bindings are
valid.

Definition 24 (Complete scope). A scope Si is said to be complete, if for all vari-
ables a binding is part of the scope.

Examples:
We continue the above example. We have defined the containers Cusers, Cadmins,
Cregulars, Cguests, and Cfiles.

S1 = {�Cusers = {(Ann, d)}, �Cfiles = {(pic1, d), (pic2, d)}}.

S1 is not a complete scope, as there are no bindings for the variables
Cadmins, Cregulars, and Cguests.

To complete scopes, ADQL implicitly assigns empty sets to the missing vari-
ables. The complete scope will look like this:

113

5. The Concepts of the Access Definition and Query Language

S1 = {
� Cusers = {(Ann, d)},
� Cfiles = {(pic1, d), (pic2, d)},
� Cadmins = {},
� Cregulars = {},
� Cguests = {}

}.

An interpretation of the above scope is, that Ann asks for access on two files,
pic1 and pic2.

In the above example, the scope definition is valid: ”Ann” is an element of
the decomposed container Cusers, ”pic1” and ”pic2” are both elements of the
decomposed container Cfiles, and the empty set is, of course, element of the
decomposed containers Cadmins, Cregulars, and Cguests.

5.6.2. Access Control on Variables and Scopes

Scopes are not defined to be part of the set of all entities E. This has one conse-
quence: scopes cannot be used as entities in containers and relations. The result
is that no access control can be established upon variables and scopes. In our
understanding, this is not necessary: Access control is established upon facts,
the model, and the policies. Access control is not required upon variables and
their bindings, thus system states. Nevertheless, we know of some examples
discussed in chapter 2, where the authors reasoned about access control on sys-
tem states (e.g. the Model Z of McLean [McL90] applied on the original defini-
tion of the Bell-LaPadula-Model [BL73]). Therefore, if the binding of variables
becomes relevant for access control, i.e. policies may be defined on bindings,
variables and scopes have to be added to set E and the value-function has to be
extended accordingly.

5.7. Tests

Next, we will introduce tests. Tests and policies build the ”policy” layer of the
ADQL architecture. Tests make yes-or-no decisions. If the test is fulfilled, the
test is said to be passed. Its result is true. In the other case, a test is not passed,
the result is false. ADQL defines its tests always boolean. Either it is passed or
not.

An ADQL test is a three argument function. The first and second arguments
(sometimes also referred to as ”left” and ”right” argument) are (a) a container,
(b) a variable related to a container, or (c) an application of a term, which results

114

5.7. Tests

in a container. The third argument is a boolean operator. It is operating on
the two containers of the first two arguments. We will introduce operators in
section 5.9. A test can only be evaluated within a scope. This is obvious, as
variables have bindings only within a scope.

Definition 25 (Test). Let CV = C∪V be the unified space of containers and variables.
Let CV1, CV2 ∈ CV be two elements from the unified container and variable space. op
is a boolean operator of the operator space OP , B is the boolean space {true, false}.
Then a test Ti is defined as follows:

Ti : CV × CV ×OP −→ B
(CV1, CV2, op) �→ B (5.18)

A test is defined as a function on two containers or variables and a boolean op-
erator. The result is boolean. As input, both arguments can either be a container
or a variable. If the argument is a container, its value is scope-independent:
Container definitions are global and not scope-dependent. Thus, containers
work like constants in test definitions, although their value changes when the
global container definition changes.

Please note: The return type of any application is of the type container. This
means, that instead of a container, also any kind of application can be used for
one of the first two arguments.

In case a variable is used in a test, its value is scope-dependent: a variable is
assigned to different values in different scopes, so the values used for the test
differs when changing the scope.

The operator op is an element of the set of ADQL’s pre-defined operators OP .
For the set of available operators we refer to section 5.9.

We call the first container the test container or the left side of the test. We refer by
this term to the fact, that usually the first container is the container which gets
compared. The second container is said to be the comparative container or the
right side of a test. The latter term refers to the fact that often the second argu-
ment represents the benchmark or value against the test container is compared.
Technically, there is no difference between the first and second test argument:
E.g. it does not matter if the test container equals the comparative container
or the comparative container equals the test container. The different terms are
used to identify the position in the test expression.

Let us provide an example:
TuserIsAnn = (�Cusers, {(Ann, d)}, θ)
The test consists of three parameters. Parameter one is �Cusers. It is the variable
related to container Cusers. The second parameter is a container. Its content is

115

5. The Concepts of the Access Definition and Query Language

one association, (Ann, d). The third parameter is theta ”θ”. Although we did
not introduce theta yet, it is a boolean operator. Its result is true, if the first and
the second container share at least one element.

The test can then be evaluated. To become true, the test container and the com-
parative container need to have one common entity. The comparative container
is defined to include ”Ann” only. The logical conclusion is that the test is evalu-
ated as true, if the test container includes at least ”Ann” as well. This is the case,
if ”Ann” is bound to the variable �Cusers. As variable bindings can only take
place within scopes and tests can only be evaluated in the context of a scope,
the scope needs to assign the variable �Cusers a container with at least the el-
ement (Ann, d). In other words: Within the current system state (represented
by the scope), the current ”users” needs to be ”Ann”. The test implements the
question: ”Is the current user Ann?”.

Definition 26 (Set of tests). The set of tests T is defined as set including all defined
tests Ti. T = {T1, T2, . . . , Tn}

We introduce the set of all tests. It is simply the set of all defined tests in
ADQL.

Next, we introduce entities for tests.

Definition 27 (Test entities). For each test Ti we define a test entity eTi . The set ET

is the set of all test entities, ET := {eT1
, eT2

, . . . , eTm
}.

For each test defined in ADQL, a test-entity is defined, as well. The first refers to
the test definition itself, while the latter is a symbol for the ”test as an entity”.
Again, like with containers and relations, this definition allows us to include
tests into access control policies. In other words, there can be tests about tests.

Again, we extend the definition of the entity definition and value-function:

Definition 28 (Entities and value function (extended version 4)).

E = EG ∪ EC ∪ ER ∪ ET (5.19)

The set of all entities now includes basic entities, container entities, relation entities,
and test entities.

Consequently, the recursive value function needs to be extended. Let b = (e, d̃) ∈
B, e ∈ E, d̃ ∈ D,S ⊆ EC , initially S = {}:

116

5.7. Tests

valr : B × EC → P(E)

valr(b, S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{e}, case (1), if d̃ = d,

{}, case (2), if d̃ = d̄ ∧ e ∈ EG,

{}, case (3), if b = {},
R : for cij ∈ Ci do:
R = R∪
valr(ecij , S ∪ eCi)

end

⎫⎪⎪⎬
⎪⎪⎭ case (4), if

{
d̃ = d̄ ∧ e ∈ EC

∧eCi
�∈ S,

{}, case (5), if

{
d̃ = d̄ ∧ e ∈ EC

∧eCi
∈ S,

{}, case (6), if d̃ = d̄ ∧ e ∈ ER,

{}, case (7), if d̃ = d̄ ∧ e ∈ ET ,

(5.20)

where Ci is the corresponding container to e, if e ∈ EC . cij are the elements of Ci.

The behavior of the value-function does not change much compared to the pre-
vious definition 15. Nothing changed but the addition of case (7). If assigned
directly, the entities will decompose to their identity. If indirectly assigned, only
container entities will be replaced by their content. Test entities evaluate to an
empty set.

We have integrated tests to the ADQL entity definition. We have seen, that
tests rely on boolean operators. Therefore, we will continue with operators in
the next section.

Examples for tests can be found in section 3.2.

Summary of Tests

Let us wrap up on tests:

• Tests are used to decide upon access requests. They are part of the policy
layer of ADQL.

• Tests are defined as boolean three-parameter functions: Two containers
or variables (or applications, which return, when evaluated, containers)
and a boolean operator.

• Tests are assigned to entities. The value-function has been adapted ac-
cordingly.

117

5. The Concepts of the Access Definition and Query Language

5.8. Policies

As the name suggests, a policy is part of the policy layer of ADQL, together
with tests. Actually, policies are just sets of tests. A policy becomes true,
if all tests of the policy are evaluated to true. Logically, policies are AND-
concatenations of tests.

Definition 29 (Policy). Let Ti1, Ti2, . . . , Tin ∈ T be tests.
A policy Pi is defined as follows:

Pi = {Ti1, Ti2, . . . , Tin} (5.21)

As said, a policy is a set of tests. The logical interpretation of a policy is a logical
AND-combination of its tests. To become true, all of its tests have to evaluate
to true.

Definition 30 (Set of policies). The set of policies P is defined as the set including
all defined policies Pi. P = {P1, P2, . . . , Pn}

Like tests, we want to be able to refer to policies not only as policy but as entity.
Again, we introduce special entities, the policy entities and integrate them to E
and val.

Definition 31 (Test entities). For each policy Pi we define a policy entity ePi
. The

set EP is the set of all policy entities, EP := {eP1
, eP2

, . . . , ePm
}.

It is true, that: ∃Pi ∈ P ⇒ ∃ePi
∈ EP

For each policy defined in ADQL, a policy entity is defined, as well. The first
refers to the policy definition itself, while the latter is a symbol for the ”policy
as an entity”. Again, like with containers and relations, this definition allows
us to include policies into access control policies. In other words, there can be
access checks on policies.

For the last time we extend the entity definition and the value-function:

Definition 32 (Entities and Value-Function (extended version 5)).

E = EG ∪ EC ∪ ER ∪ ET ∪ EP (5.22)

The set of all entities now includes basic entities, container entities, relation entities,
test entities, and policy entities.

Consequently, the recursive value function needs to be extended for the last time. Let
b = (e, d̃) ∈ B, e ∈ E, d̃ ∈ D,S ⊆ EC , initially S = {}:

118

5.9. Operators

valr : B × EC → P(E)

valr(b, S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{e}, case (1), if d̃ = d,

{}, case (2), if d̃ = d̄ ∧ e ∈ EG,

{}, case (3), if b = {},
R : for cij ∈ Ci do:
R = R∪
valr(ecij , S ∪ eCi)

end

⎫⎪⎪⎬
⎪⎪⎭ case (4), if

{
d̃ = d̄ ∧ e ∈ EC

∧eCi �∈ S,

{}, case (5), if

{
d̃ = d̄ ∧ e ∈ EC

∧eCi
∈ S,

{}, case (6), if d̃ = d̄ ∧ e ∈ ER,

{}, case (7), if d̃ = d̄ ∧ e ∈ ET ,

{}, case (8), if d̃ = d̄ ∧ e ∈ EP ,

(5.23)

where Ci is the corresponding container to e, if e ∈ EC . cij are the elements of Ci.

Compared to the previous definition (definition 28) case (8) was added. Ev-
erything else is unchanged. If assigned directly, the entities will decompose to
their identity. If indirectly assigned, only container entities will be replaced by
their content. Policy entities evaluate to an empty set.

5.9. Operators

We will now introduce operators for ADQL. Operators are used with ADQL
tests. An operator for ADQL tests has to fulfill the following requirements:

1. It must be a binary operator,

2. both operands have to be of the type container or variable CVi, CVj ∈
CV ,

3. the result of the operation has to be either true or false.

Definition 33 (Operator). Let CV = C∪V the union of all containers and variables.
An ADQL operator is defined as a function:

op : C × C −→ B (5.24)

119

5. The Concepts of the Access Definition and Query Language

ADQL provides a set of built-in operators, discussed below. The operators can
be divided into three classes:

1. First, so-called set operators θ and θ̄. They operate as the name suggests,
on sets.

2. Second, the equal-operator class. They compare the content of containers.

3. Third, order operators like ≤. This operator class establishes an order on
the elements of the sets which requires some data typing.

We will explain all three classes below.

Furthermore, ADQL provides a coding interface allowing the introduction of
user-defined operators.

For examples explaining the operators below, we assume the following con-
tainer definitions for the next sections:

C1 = {(Ann, d)}
C2 = {(Herb, d)}
C3 = {(C1, d̄), (C2, d̄)}

5.9.1. Set Operators

Operators in this class evaluate on sets: They interpret containers as sets. Pre-
defined are the operators θ and its boolean inversion θ̄. Nevertheless, we al-
ready said, that ADQL supports user operators. User operators falling into this
class are e.g. intersection or union.

θ (Theta) Operator

When applied, the θ-operator evaluates to the boolean function ”intersection is
not empty”.

Side note: The symbol θ was chosen as it reminds us of the symbol generated
when one draws a ∩-symbol over a �-symbol.

Definition 34 (Theta Operator). Let CV1, CV2 ∈ CV be two containers or variables.

θ : CV × CV −→ B

θ(CV1, CV2) �→
{
{true}, if V al(C1) ∩ V al(C2) �= {}
{false}, else

(5.25)

120

5.9. Operators

The test becomes true if the values of CV1 and CV2 share at least one common
entity

Example:

The symbol
?

�= reads ”is it not equal to?”.

θ : (C1, C3) = {true}

Proof:

V al(C1) ∩ V al(C3)
?

�= {} ⇔

{Ann} ∩ V al({(Ann, d), (Herb, d)})
?

�= {} ⇔

{Ann} ∩ ({Ann} ∪ {Herb})}
?

�= {} ⇔

{Ann}
?

�= {}

This is true. As {Ann} is a non-empty set, the test becomes true.

θ̄ (Not-Theta) Operator

The Not-Theta operator is defined to be the negation of the theta operator.

Definition 35 (Not-Theta). Let CV1, CV2 ∈ CV be two containers or variables.

θ̄ : CV × CV −→ B

θ̄(CV1, CV2) �→
{
{true}, if θ(CV1, CV2) �→ {false}
{false}, else

(5.26)

The not-theta operator is the logical NOT of the theta operator.

5.9.2. Equal Operators

The next class of operators are operators comparing the structure of containers
and variables.

121

5. The Concepts of the Access Definition and Query Language

Equal-Operator ”==”

The equal-operator, denoted by ==, is defined by the following:

Definition 36 (Equal). Let CV1, CV2 ∈ CV be containers or variables.
A = V al(CV1), B = V al(CV2). A and B may be empty sets.

== (CV1, CV2) �→
{
{true}, if ∀e ∈ A ∪B : ∃e ∈ A ⇐⇒ ∃e ∈ B,

{false}, else
(5.27)

To be equal in the sense of the operator == the decomposed containers A and
B have to have the same entities assigned to. Containers do not have an order,
thus it is (and cannot) be relevant for the equal operator.

The ”Equal”-operator requires no equality in the structure of the containers or
variables. Only the decomposed containers have to be equal.

Not-Equal-Operator ”�=”

The Not-Equal-Operator is defined as the negation of the equal operator.

Definition 37 (Not-Equal). Let CV1, CV2 ∈ CV .

�= (CV1, CV2) �→
{
{true}, if == (CV1, CV2) �→ {false}
{false}, else

(5.28)

The not-equal-operator is the logical NOT of the equal operator.

5.9.3. Order Operators

In contrast to the above class of set operators, we discuss now order operators.
We have seen that any container can be flattened to a set by the usage of the
V al-function. However, establishing an order on the entities (elements) of the
container (set) requires an order function.

So far, ADQL does this in a simple way and tries to interpret the entity symbol
as a number. In terms of computer science it is a type cast from a string to an
integer value. This cast may work, thus, the entity symbol can be interpreted
as integer, or it may not work. In the latter case, the symbol is completely
ignored.

122

5.9. Operators

Formally: When applying an operator from a class of order operators, ADQL
typecasts the entity symbol in the following way:

Definition 38 (Type-Cast for entities). Let ei be an entity from E. Let N be the set
of natural numbers. The function ’integertypecast’ is a function type-casting Strings
to numbers. We define the ”order value” ov for ei:

ov : ei → N ∪ {}

ov : ei �→
{
integertypecast(ei), if ei contains only digits,
{}, else

(5.29)

Next we introduce the set of type-casted entities.

Definition 39 (Type-Cast for containers). Let cv ∈ CV be an ADQL container or
a variable. Let e1, . . . , en be its decomposed entities. We define the ”order value” OV
for the container/variable cv:

OV : CV → P(N ∪ {})
OV (cv) = ov(e1) ∪ · · · ∪ ov(en)

(5.30)

With the help of these definitions, we can assign a container or a variable to a set
of integer numbers by type casting the entities to integer values, if possible.

Next, we define the maximum and the minimum value of a type-casted con-
tainer.

Definition 40 (Definition of the max function). Let N∞ = N ∪ {−∞,+∞}. Let
A ∈ P(N ∪ {}).

max : P(N ∪ {}) → N∞

max(A) =

{
−∞, if A = {},
ai, if A �= {} and ∀j : ai ≥ aj with aj ∈ A

(5.31)

The function max assigns a set of integers to its greatest value, −∞ if the set is
empty.

Definition 41 (Definition of the min function). Let N∞ = N ∪ {−∞,+∞}. Let
A ∈ P(N ∪ {}).

min : P(N ∪ {}) → N∞

min(A) =

{
+∞, if A = {},
ai, if A �= {} and ∀j : ai ≤ aj with aj ∈ A

(5.32)

123

5. The Concepts of the Access Definition and Query Language

The function min assigns a set of integers to its smallest value, +∞ if the set is
empty.

With the help of the definitions of min and max we can now introduce the
operators of the class ”order operators”.

≺: Smaller-Than operator

Let CV1, CV2 ∈ CV be two ADQL containers or variables.
The test ≺ (C1, C2) evaluates the following way:

≺: CV × CV → B

≺ (CV1, CV2) �→
{
{true}, if max(OV (CV1)) < min(OV (CV2)),

{false}, else

(5.33)

The test becomes true if the largest type-cast-able element of CV1 is still smaller
than the smallest type-cast-able element of CV2. If an element is not a member
of the natural numbers N , it is omitted. If either CV1 or CV2 are empty sets
or contain no type-cast-able elements, min and max make use of their lower,
respectively, upper boundary.

Examples:
≺ ({1}, {3}) �→ {true}
≺ ({3}, {1}) �→ {false}
≺ ({1, 2, 4}, {3}) �→ {false}
≺ ({1, 1000}, {}) �→ {true}

The first two examples are self-explanatory. The third example is false, as the
largest value of {1, 2, 4} is 4, and, therefore, not smaller than the smallest value
of {3}, which is, of course, 3.

Another example:
≺ ({Alice, 1}, {Bob}) �→ {false}

Proof:
max(OV (CV1)) = max({1}) = 1 < +∞ = min({}) = min(OV (CV2)).

Please note, that in many cases instead of the correct operator ≺ the simpler
symbol < is used, although strictly seen, the latter symbol has not been intro-
duced as a valid operator for tests.

124

5.10. Summary of ADQL’s Concepts

�: Smaller-Equal-Than operator

The Smaller-Equal-Than operator is defined the following way:

Definition 42 (Smaller-Equal). Let CV1, CV2 ∈ CV :

� (CV1, CV2) �→
{
{true}, if max(OV (CV1)) ≤ min(OV (CV2)),

{false}, else
(5.34)

�: Greater-Than operator

The Greater-Than operator is defined accordingly to the smaller-than opera-
tor.

Definition 43 (Greater-Than). Let CV1, CV2 ∈ C:

� (CV1, CV2) �→
{
{true}, if max(OV (CV1)) > min(OV (CV2)),

{false}, else
(5.35)

�: Greater-Equal-Than operator

The Greater-Equal-Than operator is defined the following way:

Definition 44 (Greater-Equal). Let CV1, CV2 ∈ CV :

� (CV1, CV2) �→
{
{true}, if max(OV (CV1)) ≥ min(OV (CV2)),

{false}, else
(5.36)

5.10. Summary of ADQL’s Concepts

In this chapter we have defined and described the mathematical foundations
of ADQL. Entities are the most basic concept in ADQL. Anything modeled in
ADQL is an entity. E.g. users, files, permissions, etc.

Containers are used to collect entities. Entities can be assigned to containers by
direct or indirect entity structures. Entities belong to the facts layer or some-
times to the model layer of ADQL. As containers can contain other contain-
ers, container hierarchies and networks can be established. The val-function is
used, to decompose (”flatten”) container hierarchies. Containers correspond to
the model layer of ADQL.

125

5. The Concepts of the Access Definition and Query Language

Relations have been introduced as flexible connectors between n containers.
They can be defined either explicitly by enumerating the links (elements of the
relations) or implicitly through boolean functions. The latter is not yet inte-
grated in ADQL. F1-projections can be defined on relations in order to trans-
form relations into containers. This is used mainly for access queries. While
relations belong to the model layer of ADQL, the link definitions belong to the
facts layer.

Variables are used to represent certain aspects of a system state, e.g. used in
access queries. E.g. the current user maybe Ann, i.e. the container variable �user
is bound to the value Ann. Such variable bindings can be packed to scopes. A
scope represents a system state.

Containers and variables are used for tests. Two containers, the test container
(or the left side of a test) and the comparative container (or the right side of a
test) are compared by a boolean operator. The result is boolean, thus is either
true or false. We introduced requirements for operators and suggested several
default operators. The most important operator is theta θ. It compares two con-
tainers and resolves to true, if the intersection of both decomposed containers
is not empty. If necessary, more operators can be introduced as long as they
satisfy the defined requirements. Tests belong to the policy layer of ADQL.

The last concept to be introduced are policies. Policies are logical AND-con-
catenations of tests. In ADQL, policies are defined as sets of tests. To become
true, all tests of a policy must evaluate to true for a certain scope. Like tests,
policies belong to the policy layer of ADQL.

126

6. Use Cases for ADQL

In this chapter we present access control models and how they are expressed in
ADQL. The aim of this chapter is to demonstrate the usage of ADQL as a meta
access control language.

In this chapter we focus on our scientific targets (2) unification of theory and
practice and (3) a step towards a meta model leaving the evaluation of the other
goals for chapter 7. For the use case examples we chose the following access
control models:

We start with the well-known Bell-LaPadula model as an example for a military
use case. Its approach is quite different to the RBAC-like models. We aim
to show that ADQL can not only model RBAC-like models or discretionary
models, but also mandatory access control models. Additionally, several other
access control models are based on the Bell-LaPadula model, e.g. the Chinese
Wall model (see section 2.8).

The second use case example is a RBAC-like model used in a well-known soft-
ware system, the SAP R/3 Enterprise Resource Planning software. This exam-
ple shows the abilities of ADQL concerning the wide-spread RBAC-like world
and how it can be used in ADQL.

As third example, we want to provide an extensive, complex and comprehen-
sive access control model. Therefore, we took the use case of a software project
at our institute with complex access control requirements. It is a kind of project
management software which requires a 3-ary relationship between the core en-
tities students, companies and university staff. This complex example aims to
show more advanced features of ADQL which are not required in relatively
simple RBAC-like models.

We undertook several more approaches to model access control models in
ADQL together with some of our students. These results exist in the form of
about a dozen seminar papers.

127

6. Use Cases for ADQL

6.1. Bell-LaPadula Access Control Model

The Bell and LaPadula model [BL73, McL88] is described in detail in section
2.6.2. We repeat the fundamentals shortly: The model assigns subjects to so-
called security levels, e.g. unclassified, classified, secret, top secret. The same
happens to objects. Two access rights are defined, read and write. Write is
defined here in the sense of ”write but do not read”, thus write-only.

Two policies decide on access:

• Simple Property: A subject may read objects only, if his clearance level
(his security level) is not smaller than the security level of the accessed
object. This is called the read-down principle or no-read-up principle.

• Star Property (*-property): On the other hand, a subject can write objects
only, if the assigned clearance level of the subject is lower or equal to the
object’s security level.

The access control model We analyze the model and see that we have the
following concepts to model: “subjects”, “objects”, “permissions” and “secu-
rity levels”. We have at least two permissions, “read” and “write-only”. Fur-
thermore, we have two policies to model: (1) Subjects may read objects if their
security level is higher or the same as the objects’ security level. (2) Subjects
may write objects, if their security level is lower or equal than the objects’ secu-
rity level.

The ADQL model definition reads as follows:

subjects = �c();
objects = �c();
permissions = �c(read = �e(), write = �e());
securitylevels = �c(1 = �e(), 2 = �e());

Obviously, we define containers for subjects, objects, permissions, and
securitylevels. We define these concepts as containers, as we need variables
to represent system states for these concepts: For an access control query, a spe-
cific subject will have to be defined, a specific object, and permissions. This sim-
ple example relies on two permissions, ”read” and ”write” (to be exact: ”write-
only”). However, if necessary, more permissions can be defined the same way.
As security levels we introduce the levels ”1” and ”2”. ”2” can be interpreted
as a higher security level, e.g. ”secret”, while ”1” is a lower security level, e.g.
”public”.

Next, we introduce two relations:

128

6.1. Bell-LaPadula Access Control Model

plevel = �r(subjects, securitylevels);
olevel = �r(objects, securitylevels);

The plevel relation assigns a subject to a security level while the relation olevel
assigns an object to a security level. We model these as relations, because a
security level is a kind of property of a subject or an object, respectively.

With the above definitions, the model has been defined.

The policy definitions We continue with policy definitions:

read down = �p(
�t(�permissions,�c(read), θ)
�t(∇�pr(plevel)(�subjects, .),∇�pr(olevel)(�objects, .),≥),

);

The read-down (or no-read-up) policy is expressed by two tests:

1. The variable �permissions must have a non-empty intersection with the
anonymous container including the entity read. In other words, the re-
quested permission must be read.

2. The filtered 1-projection of the subject’s security level must be at least as
high as the F1-projection of the object’s security level.

Let us analyze the latter policy in detail:
∇�pr(plevel)(�subjects, .) is an ADQL application of a F1-projection defini-
tion. For details we refer to chapter 4. The F1-projection of a n-ary relation
must have (n − 1) bound and 1 unbound dimensions. The bound dimen-
sion in this F1-projection is �subjects, thus the variable related to the con-
tainer ”subject”, in other words, the current subject. The unbound compo-
nent is denoted by a dot ”.”. The definition of the relation plevel was plevel =
�r(subjects, securitylevels). Therefore, the result of an application of this F1-
projection is the container of all security levels of the current subject.

The second parameter of the test is ∇�pr(olevel)(�objects, .): It evaluates to
the security level of the current object.

The test operator is ”≥”. As we’ve seen in chapter 5.9, the test becomes true, if
the least numeric element of the first container is at least as high as the lowest
numeric element of the second container. In our example, the security levels
of the current subject must be at least as high as the security levels of the cur-
rent object. If subject and object are assigned exactly one security level, it is
equivalent to the simple security rule of Bell-LaPadula. If a subject is assigned
several security levels, the smallest value is evaluated. If an object is assigned
more than one security level, its highest assignment is taken into account. This

129

6. Use Cases for ADQL

makes sense: If a document is classified the same time as ”secret” and ”top se-
cret”, it better gets treated as ”top secret” – although one might argue, that such
multiple assignments have to be avoided entirely.

We go on with the star property:

write up = �p(
�t(�permissions,�c(write), θ)
�t(∇�pr(plevel)(�subjects, .),∇�pr(olevel)(�objects, .),≤),

);

The rule is obviously clear as it follows the shape of the first policy. The re-
quested permission has to be write(-only) and the subject’s clearance level has
to be maximally as high as the security level of the request object.

The two policy definitions read down and write up are sufficient to represent
the policies of the Bell-LaPadula model.

Example facts for testing To continue our use case, we provide some exam-
ple facts for testing:

subjects = �(Ann = �e(), Herb = �e());
objects = �(fileL = �e(), fileH = �e());

plevel = �r(subjects, securitylevels) : {(Ann, 2), (Herb, 1)};
olevel = �r(objects, securitylevels) : {(fileL, 1), (fileH, 2)};

The example defines ”Ann” and ”Herb” as subject entities. Ann is the super-
visor of Herb. Ann gets assigned the clearance level 2 while Herb is assigned
the clearance level 1. The file fileL is assigned the security level 1, fileH the
security level 2.

Scope definitions and example access checks Let us do some scope defi-
nitions and access checks:

s1 = �s(
� subjects = �c(Ann),
� objects = �c(fileH),
� permissions = �c(read));

s2 = �s(
� subjects = �c(Ann),
� objects = �c(fileH),
� permissions = �c(write);

130

6.1. Bell-LaPadula Access Control Model

s3 = �s(
� subjects = �c(Ann),
� objects = �c(fileL),
� permissions = �c(read));

s4 = �s(
� subjects = �c(Ann),
� objects = �c(fileL),
� permissions = �c(write));

Four scopes are defined with the above commands. The first scope s1 con-
sists of three variable bindings. Variable �subjects is bound to a newly defined
container containing the entity ”Ann” (we say, ”subjects” is bound to ”Ann”).
Variable �objects is bound to ”fileH”, ”permissions” is bound to ”read”. This
scope represents the query ”Is ’Ann’ allowed to ’read’ object ’fileH?’ ”.

The other three scopes are defined accordingly.

The access checks will retrieve the following results. As in chapter 4, we use
”==” as symbol to express equality. The symbol ”=” is used to assign a value
to a variable.

∇s1 == �c(true)
∇s2 == �c(true)
∇s3 == �c(true)
∇s4 == �c(false)

We provide a formal proof for s4:
The application of a scope has been defined as repeated check of all policies
until one policy returns true. Then the scope returns true. If no policy can be
found returning true, the evaluation of the scope returns false. In other words,
a scope application is an access check against all defined policies.

Formally:
∇s4 == ∇read down(s4) ∨∇write up(s4) == ?

We test the first policy ∇read down(s4):
∇read down == ∇�p(

�t(�permissions,�c(read), θ)
�t(∇�pr(plevel)(�subjects, .),∇�pr(olevel)(�objects, .),≥),

)

We can rewrite the policy using the current scope definitions:

∇read down(s4)
== ∇�p(

�t(�c(write),�c(read), θ)
�t(∇�pr(plevel)(�c(Ann), .),∇�pr(olevel)(�c(fileL), .),≥),

131

6. Use Cases for ADQL

)
== ∇�p(

�t(�c(write),�c(read), θ)
�t(�c(2),�c(1),≥),

)
== ∇�p(

�c(false),
�c(true),

)
== �c(false)

The first policies evaluates to false as the requested permission is write while
the policy requires read.

We continue with the second policy ∇write up(s4):

∇write up == ∇�p(
�t(�permissions,�c(write), θ)
�t(∇�pr(plevel)(�subjects, .),∇�pr(olevel)(�objects, .),≤),

)

Again, we evaluate accordingly to the current scope definition:

∇write up(s4)
== ∇�p(

�t(�c(write),�c(write), θ)
�t(∇�pr(plevel)(�c(Ann), .),∇�pr(olevel)(�c(fileL), .),≤),

)
== ∇�p(

�t(�c(write),�c(write), θ)
�t(�c(2),�c(1),≤),

)
== ∇�p(

�c(true),
�c(false)),

)
== �c(false)

The second policy evaluates to false as the security level of the requested doc-
ument is lower than the clearance level of the subject.

We conclude:

∇s4 = ∇read down(s4) ∨ ∇read false(s4)) = �c(false) ∨ �c(false) =
�(false)

�

132

6.2. A Real-World Example: SAP R/3

The proof of the other scopes is analogues.

We have seen in this subsection that the Bell-LaPadula model can be described
easily in the ADQL formalism. It requires four containers, two relations and
two policies. We demonstrated the formal definitions of the example of some
example check accesses and proofed one access query in detail.

The complete ADQL expressions for this example can be found in listing 6.1.
The figure makes use of alternative representation of the ADQL symbols. �
is represented by ’DEF’, ∇ by ’APP’, and � by ’ASSIGN’. Comments are pre-
fixed by the hash sign (#). Containers, entities, and other concepts are also
represented slightly different to be more readable.

The code shown in listing 6.1 can be copied in our ADQL Java implementation
and will execute.

6.2. A Real-World Example: SAP R/3

We turn now to a RBAC-like model. SAP R/3 is a well-known and widely
used Enterprise Resource Planning (ERP) software. The SAP R/3 system1 is
widely used by companies. The design of SAP R/3’s access control architecture
is depicted in figure 6.1. We refer to [AG08].












 

  

Figure 6.1.: Structure of the SAP R/3 access control model. We provide some
examples for possible object names (e.g. P PERNR)

Like in every RBAC-system, a subject (SAP calls subjects ”users”) can be as-
signed several (access control) roles. The relationship of roles to users is n:m
as roles may be assigned to many users. Roles can be assigned names, descrip-
tions and several more attributes as meta data describing it more closely. An ex-
ample name for a role, as depicted in figure 6.1, is ”SAP CGV MIC DISPLAY”.

1http://www.sap.com/solutions/business-suite/erp/index.epx, last accessed
2011-09-08

133

http://www.sap.com/solutions/business-suite/erp/index.epx

6. Use Cases for ADQL

1 # Be l l−LaPadula Example
Tested : 1 8 . 3 . 2 0 1 3 on c s e t 298 :0 c032e4d8aa6

3

Define model (and some example f a c t s)
5 s u b j e c t s = DEF CONTAINER(Ann = DEF ENTITY () , Herb = DEF ENTITY ()) ;

o b j e c t s = DEF CONTAINER(f i l e L = DEF ENTITY () , f i l e H = DEF ENTITY ()) ;
7 permissions = DEF CONTAINER(read = DEF ENTITY () , wri te = DEF ENTITY ()) ;

s e c u r i t y l e v e l s = DEF CONTAINER(1 = DEF ENTITY () , 2 = DEF ENTITY ()) ;
9

R e l a t i o n s with example f a c t s
11 p l e v e l = DEF RELATION(s u b j e c t s , s e c u r i t y l e v e l s) : { (Ann , 2) , (Herb , 1) } ;

o l e v e l = DEF RELATION(o b j e c t s , s e c u r i t y l e v e l s) : { (f i l e L , 1) , (f i leH , 2)} ;
13

Define p o l i c i e s
15 ’ read down ’ =

DEF POLICY(
17 DEF TEST (ASSIGN permissions , DEF CONTAINER(read) , t h e t a) ,

DEF TEST (
19 APP DEF PROJECTION(p l e v e l) (ASSIGN s u b j e c t s , .) ,

APP DEF PROJECTION(o l e v e l) (ASSIGN o b j e c t s , .) , >=));
21

’ write up ’ =
23 DEF POLICY(

DEF TEST (ASSIGN permissions , DEF CONTAINER(wri te) , t h e t a) ,
25 DEF TEST (

APP DEF PROJECTION(p l e v e l) (ASSIGN s u b j e c t s , .) ,
27 APP DEF PROJECTION(o l e v e l) (ASSIGN o b j e c t s , .) , <=));

29 # Define some example scopes
s1 = DEF SCOPE(

31 ASSIGN s u b j e c t s = DEF CONTAINER(Ann) ,
ASSIGN o b j e c t s = DEF CONTAINER(f i l e H) ,

33 ASSIGN permissions = DEF CONTAINER(read)) ;
s2 = DEF SCOPE(

35 ASSIGN s u b j e c t s = DEF CONTAINER(Ann) ,
ASSIGN o b j e c t s = DEF CONTAINER(f i l e H) ,

37 ASSIGN permissions = DEF CONTAINER(wri te)) ;
s3 = DEF SCOPE(

39 ASSIGN s u b j e c t s = DEF CONTAINER(Ann) ,
ASSIGN o b j e c t s = DEF CONTAINER(f i l e L) ,

41 ASSIGN permissions = DEF CONTAINER(read)) ;
s4 = DEF SCOPE(

43 ASSIGN s u b j e c t s = DEF CONTAINER(Ann) ,
ASSIGN o b j e c t s = DEF CONTAINER(f i l e L) ,

45 ASSIGN permissions = DEF CONTAINER(wri te)) ;

47 # Evaluate the scopes
APP s1 ; # a c c e s s granted

49 APP s2 ; # a c c e s s granted
APP s3 ; # a c c e s s granted

51 APP s4 ; # a c c e s s denied

Listing 6.1: Listing of the Bell-LaPadula use case example. The code can be
executed in our ADQL implementation.

134

6.2. A Real-World Example: SAP R/3

The naming conventions used by SAP say that this is a pre-configured role cre-
ated by SAP (prefix SAP), used in the module CGV in the sub-module MIC
and allows display access.

Each role consists of so-called authorization objects (”auth objects”). The rela-
tionship between auth objects and roles are n:m. An auth object is a collection
of several fields, called authorization fields or auth fields. Within an autho-
rization object, each auth field is bound to a value. E.g. an auth field is named
”plant” (see figure 6.1). It is assigned to the authorization object ”P PERSNR”
and bound to the value 1000. Another auth field, ”transaction code” is assigned
to the same auth object with the value ”HR03”. The assigned values are not dis-
played in the figure.

SAP calls the execution of programs ”transactions”. These transactions must
not be mistaken as database transactions as a SAP transaction is simply the ex-
ecution of a certain program within SAP. It has nothing to do with the usual
ACID rules. However, we perceive the naming of program execution as ”trans-
action” as rather misleading but follow SAPs convention for this section.

We use the SAP-transaction HR03 as an example. The program HR03 dis-
plays information about staff. HR is the usual abbreviation for ”human re-
sources”. To be able to execute this transaction, the user must own a role includ-
ing the auth object ”P PERNR” with the auth field ”transaction code” holding
the value ”HR03”. When an SAP transaction (read: program) is executed, it
checks all assigned roles of the current user. Dependent on the program, cer-
tain auth objects must be present in one (or several) roles. E.g. when executing
the program HR03 the auth object ”P PERNR” must be present in at least one
role of the user. The auth fields must match or contain the required values.
E.g. a user wants to view staff data of plant 1000 ”Karlsruhe Weststadt” then
the auth object P PERNR must contain the auth field plant with the value 1000.
The auth fields, e.g. ”plant”, can, therefore, be used to limit the transaction to a
certain plant.

An SAP transaction tc grants access if the following conditions are fulfilled:

For all authobj in authobjs required by SAP transaction tc:
For all authfield in authfields being part of authobj:
A role of the current user must contain authobj with authfield with
authfieldvalue.

The ADQL model for SAP R/3 We model this access control model in ADQL.
We start be defining the required concepts for the access control model.

The representation of the SAP access control model is depicted in figure 6.2. The
model consists of containers for users, roles, authorization objects (”authobjs”),

135

6. Use Cases for ADQL

users

roles

authobjs authfields

values

Ann
Herb

SAP1
SAP2

P_PERNR
P_PERNR2

tc
plant

HR03

40
1000

conarea

userroles

asm

Figure 6.2.: SAP model represented in ADQL

authorization fields (”authfields”), and the values for the authorization fields
(”values”). Two relations are defined: The relation ”userroles” links users and
their roles. The 4-ary relation role assignment (”asm”) links roles, authorization
objects, authorization fields, and values.

In ADQL this is formulated as:

users = �c(),
roles = �c(),
authfields = �c(),
authobjs = �c(),
values = �c();

userroles = �r(users, roles),
asm = �r(roles, authobjs, authfields, values);

136

6.2. A Real-World Example: SAP R/3

The ADQL policies for SAP SAP R/3 requires only one policy:

access = �p(
�t(

�pr(asm)(., �authobjs, �authfields, �values),
�pr(userroles)(�users, .)
θ

)
);

The policy consists of only one test. The first test part evaluates to all roles
which include the currently requested authorization object, authorization field,
and authorization field’s value. The second test part evaluates all roles of the
current user. Through this, the test and policy evaluate true, if the current user
is assigned a role including the currently necessary authorization object, field,
and value.

Example Facts We provide some example facts to demonstrate how the
model works.

users = �c(Ann = �e(), Herb = �e()),
roles = �c(SAP1 = �e(), SAP2 = �e()),
authobjs = �c(P PERNR = �e(), P PERNR2 = �e()),
authfields = �c(tc = �e(), plant = �e(), conarea = �e()),
values = �c(HR03 = �e(), 40 = �e(), 1000 = �e());

We define the users ”Ann” and ”Herb” and assign both to the container ”users”.
Next, two roles are created, ”SAP1” and ”SAP2”. As authorization objects
we define ”P PERNR” and ”P PERNR2”. Three authorization fields are intro-
duced: ”tc” for transaction code, ”plant”, and ”conarea” for controlling area.

We populate the relations:

userroles = �r(users, roles) : {(Ann, SAP1), (Herb, SAP2)};

Ann is assigned the role SAP1, Herb is assigned the role SAP2.

asm = �r(roles, authobjs, authfields, values) :
{(SAP1, P PERNR, tc,HR03),
(SAP1, P PERNR, plant, 1000),
(SAP1, P PERNR, conarea, 40)};

We introduce assignments for one example role SAP1. The role is assigned
only one authorization object. The authorization fields are assigned the value
tc = HR03, plant = 1000, and conarea = 40.

137

6. Use Cases for ADQL

Example access queries We provided the model, the policy and example
facts. Next, we continue with some example access queries.

We assume that the user ”Ann” tries to execute the SAP transaction ”HR03”.
Ann tries to access human resources data (HR03) related with plant 1000. The
personnel belong to controlling area 40.

The SAP transaction HR03 creates related scopes:

s1 = �s(
� users = �c(Ann),
� authobjs = �c(P PERNR),
� authfield = �c(tc),
� values = �c(HR03));

s2 = �s(
� users = �c(Ann),
� authobjs = �c(P PERNR),
� authfield = �c(plant),
� values = �c(1000));

s3 = �s(
� users = �c(Ann),
� authobjs = �c(P PERNR),
� authfield = �c(conarea),
� values = �c(40));

Please note, that three scopes are created, as SAP’s logic requires checking
not only one, but in this case three conditions. Generally, a separate scope is
required for each authorization object a SAP transaction needs to check and
for each authorization one scope for each authorization field has to be de-
fined. This is not a characteristic of ADQL or ADQL’s implementation of SAP’s
model. This requirement comes from the SAP model itself.

We evaluate the three scopes:

∇s1,∇s2,∇s3;

In this case only one policy ”access” has been defined.

∇access(s1) ==
== ∇�p(�t(

�pr(asm)(., �authobjs, �authfields, �values),
�pr(userroles)(�users, .)))(s1)

== ∇�p(�t(
�pr(asm)(.,�c(P PERNR),�c(tc), �c(HR03)),
�pr(userroles)(�(Ann), .)))

== ∇�p(�t(�c(SAP1),�c(SAP1)))
== �c(true)

138

6.3. Extended RBAC: An E-Science Example

∇access(s2) ==
== ∇�p(�t(

�pr(asm)(., �authobjs, �authfields, �values),
�pr(userroles)(�users, .)))(s2)

== ∇�p(�t(
�pr(asm)(.,�c(P PERNR),�c(plant), �c(1000)),
�pr(userroles)(�(Ann), .)))

== ∇�p(�t(�c(SAP1),�c(SAP1)))
== �c(true)

∇access(s3) ==
== ∇�p(�t(

�pr(asm)(., �authobjs, �authfields, �values),
�pr(userroles)(�users, .)))(s3)

== ∇�p(�t(
�pr(asm)(.,�c(P PERNR),�c(conarea), �c(40)),
�pr(userroles)(�(Ann), .)))

== ∇�p(�t(�c(SAP1),�c(SAP1)))
== �c(true)

All three scopes evaluate true. Access can be granted. All three checks have to
be issued by the SAP transaction and have to evaluate true. If one of the three
checks returns false, access must be denied.

We demonstrated how SAP R/3’s access control model can be modeled in
ADQL. The model requires only one policy definition. However, due to the
way how SAP R/3’s access mechanism is designed, several access queries have
to be issued for the execution of a single SAP program (transaction). To grant
access, the SAP application program must issue these access queries and all
have to evaluate to true.

The average numbers of required access requests is the product of all rele-
vant authorization objects multiplied with the average number of authorization
fields per authorization object.

The complete ADQL code is covered in listing 6.2.

6.3. Extended RBAC: E-Science Support for
Students’ Thesis in Cooperation with
Companies

Our next example shows the access control model for an e-Science environ-
ment which supports students in writing their Bachelor or Master Thesis. Uni-

139

6. Use Cases for ADQL

1 # SAP R/3 Example
Tested 1 8 . 3 . 2 0 1 3 on c s e t 298 :0 c032e4d8aa6

3

Define model (and example data)
5 users = DEF CONTAINER(Ann=DEF ENTITY () , Herb=DEF ENTITY ()) ;

r o l e s = DEF CONTAINER(SAP1=DEF ENTITY () , SAP2=DEF ENTITY ()) ;
7 authobjs = DEF CONTAINER(

’P PERNR’=DEF ENTITY () ,
9 ’P PERNR2’=DEF ENTITY ()) ;

a u t h f i e l d s = DEF CONTAINER(
11 t c =DEF ENTITY () ,

p lant=DEF ENTITY () ,
13 conarea=DEF ENTITY ()) ;

values = DEF CONTAINER(
15 HR03=DEF ENTITY () ,

40=DEF ENTITY () ,
17 1000=DEF ENTITY ()) ;

19 u s e r r o l e s = DEF RELATION(users , r o l e s) :
{(Ann, SAP1) , (Herb , SAP2)} ;

21 asm = DEF RELATION(ro les , authobjs , a u t h f i e l d s , values) :
{(SAP1 , ’ P PERNR ’ , tc , HR03) ,

23 (SAP1 , ’ P PERNR ’ , plant , 1 0 0 0) ,
(SAP1 , ’ P PERNR ’ , conarea , 4 0)} ;

25

Define p o l i c i e s
27 r 3 p o l i c y = DEF POLICY(DEF TEST (

APP DEF PROJECTION(asm) (. , ASSIGN authobjs , ASSIGN a u t h f i e l d s , ASSIGN values) ,
29 APP DEF PROJECTION(u s e r r o l e s) (ASSIGN users , .) , t h e t a)) ;

31 # Define some example scopes
s1 = DEF SCOPE(

33 ASSIGN users = DEF CONTAINER(Ann) ,
ASSIGN authobjs = DEF CONTAINER(’ P PERNR ’) ,

35 ASSIGN a u t h f i e l d s = DEF CONTAINER(t c) ,
ASSIGN values = DEF CONTAINER(HR03)) ;

37 s2 = DEF SCOPE(
ASSIGN users = DEF CONTAINER(Ann) ,

39 ASSIGN authobjs = DEF CONTAINER(’ P PERNR ’) ,
ASSIGN a u t h f i e l d s = DEF CONTAINER(plant) ,

41 ASSIGN values = DEF CONTAINER(1 0 0 0)) ;
s3 = DEF SCOPE(

43 ASSIGN users = DEF CONTAINER(Ann) ,
ASSIGN authobjs = DEF CONTAINER(’ P PERNR ’) ,

45 ASSIGN a u t h f i e l d s = DEF CONTAINER(conarea) ,
ASSIGN values = DEF CONTAINER(4 0)) ;

47

Evaluate the scopes
49 APP s1 ; # a c c e s s granted

APP s2 ; # a c c e s s granted
51 APP s3 ; # a c c e s s granted

Listing 6.2: Listing of the SAP R/3 use case example. The code can be executed
in our ADQL implementation.

140

6.3. Extended RBAC: An E-Science Example

versities in their responsibility for the economic prosperity of their country
have started to organize the writing of a Bachelor or Master Thesis as a joint
university-company project in which a student investigates a company prob-
lem under the joint supervision of a professor, the professor’s assistants and
company employees interested in the problem investigated. A project usually
lasts 3 months. After a project’s official end the state of the project (and all re-
lated documents) should be frozen, so that all project members can only read
the project-related material; except the academic supervisors, who still may
upload new content. After a grace period of normally additional four weeks,
non-university members loose access to all project resources. For competitive
reasons, project related documents should only be accessible to project-related
members, and only project members may upload project documents. On the
other hand, some of the company documents are restricted to company mem-
bers and the student. With regard to his own documents, the student initially
keeps his documents private. However, as the project progresses, he makes
documents accessible either to all project members or to university or company
members. In any case, the owner of a document can always read it and change
the document’s visibility.

The Model Layer

Our access control model linked to these requirements is depicted in figure
6.3.

The basic model is a role-based access control model. Each user (users) can be
assigned a specific role from roles. This is a typical RBAC model. As an ex-
tension, the assigned roles are linked to projects (from container pjs). Within
each project, a user can be assigned to a project-specific role. Thus, roles are
not assigned on a general, system-wide level, but the assignment is related
to a specific project. E.g. the user Ulrick may act as a university staff mem-
ber in a project named EM1 while having no assigned role to project EM2.
Consequently, Ulrick has no access to project EM2. Ulrick may even act as a
company representative for a third project KITspinoff .

Each project has two time boundaries named project end (pjend) and a grace
time period (gracetime). Access is granted, if the project has not ended. During
the subsequent grace time, access is only possible for university staff members,
who can upload files, and for file owners, who can change the document group
of their files.

On the document side, each document is assigned to a project (docpj), to an
owner (from users) and to a document group (from roles). The latter is re-

141

6. Use Cases for ADQL

univ_sta

students
company_employees

roles read
upload

permissions

changedocgrp
time

pjs
docs

users

company_employeesstudentsuniv_sta

docgroup

pjend

gracetime

owner

pjrole

docpj

Figure 6.3.: Graphical representation of the model layer for the e-Science sce-
nario. Containers are depicted as ellipses, relations as lines. “pj” is
an abbreviation for project.

quired to reason about access for documents: access is only permitted if the
document’s group matches the project member’s group.

To express the access control model in ADQL, we undertake the following
steps. We define several containers to group the users: university staff, stu-
dents, and company employees. Further, we model a container for projects,
one for documents and one for permissions. To model the end date and the
grace period for a project we need a time container and two relations: one for
end date and one for the grace time. The grace time could also be expressed by
adding four weeks to the project end date. Nevertheless, we model it explic-
itly which allows grace times to vary (e.g. for later extensions or changes). As
every document has an owner, we define a relation between users and docu-
ments. We said that a user may have roles dependent on the project. Thus, we
model a project role as 3-tuple between users, roles, and projects. This allows
us to assign users in different roles for each project. Alternatively, one could
identify the role of a user in a project by the user’s group membership, which
would then be fixed for all projects. However, this is not the model, we want to
build. Documents can be visible to students, university staff, the company or

142

6.3. Extended RBAC: An E-Science Example

the author only and are assigned to a project. For this requirement we model a
document group and a document project assignment.

We provide the subsequent ADQL commands for the model:

users = �c(
∇(univ staff = �c()),
∇(students = �c()),
∇(company employees = �c()));

The above command defines a container users and three more containers
univ staff , students, and company employees. For each of the latter three
containers, the application of each container is assigned to be a sub-element
within users: If an entity, e.g. user Herb is assigned to be an element of the con-
tainer univ staff , he is also a member of users. If we avoided the application
symbol ∇ here and assigned only one of the sub-containers itself to users (e.g.
users = �c(univ staff = �c())), the container univ staff itself would be-
come a sub-element of users but not the elements of the container univ staff ,
e.g. Herb. For further details, we refer to chapters 5 and 4.

We continue defining the model (remark: the abreviation ”pjs” refers to projects):

pjs = �c();
time = �c();
docs = �c();
permissions = �c(read = �e(), upload = �e(), changedocgrp = �e());
roles = �c(univ staff, company employees, students);

The last command makes use of the previously defined symbols univ staff ,
company employees, and students. Here, we do not assign applications of the
three containers like we did when defining users. Instead, we assign the sym-
bols to be ”direct” sub-elements of roles: If Herb is a sub-element of univ staff
he does not automatically become a sub-element of roles. Actually, this is what we
want to model.

We go on:

pjend = �r(pjs, time);
gracetime = �r(pjs, time);
owner = �r(docs, users);
docgroup = �r(docs, roles);
docpj = �r(docs, pjs);
pjrole = �r(users, pjs, roles);

These are the access control model definitions.

143

6. Use Cases for ADQL

The Policy Layer

The next step is to model the policies.

Policy 1: Read documents in the project First, we want to grant read
access, if the grace period has not ended, the project document belongs to
the project and the document has been assigned to be visible for the specific
role within the project. E.g. a document A has been assigned to be visible for
company employees.

We define four tests and one policy:

perm read = �t(�permissions,�c(read), θ);
ingrace = �t(�time,∇�pr(gracetime)(�pjs, .), <);
docgroup match = �t(

∇�pr(pjrole)(�users, �pjs, .),
∇�pr(docgroup)(�docs, .), θ);

docpj match = �t(∇�pr(docpj)(�docs, .), �pjs, θ) ;
pol read if pjrole : �p(perm read, ingrace, docgroup match, docpj match);

The tests are:

1. perm read: The binding of the variable associated with permission must
have a non-empty intersection (this is, θ) with read. In other words, the
requested permission is read.

2. ingrace: The test compares the current binding of the variable time with
the result of a F1-projection. time has to be less than the value of the
F1-projection. When evaluated, the F1-projection �pr(gracetime)(�pjs, .)
returns the associated times for the current binding of variable pjs in the
relation gracetime. In other words, the F1-projection returns the grace-
time(s) of the current project. Please note, that a project may have as-
signed more than one gracetime. For the definition of the operator ”<”
we refer to section 5.9.

3. docgroup match: Two F1-projections have to share at least one element.
When evaluated, the first F1-projection �pr(pjrole)(�users, �pjs, .) re-
turns the role(s) of the current user in the current project.
The second F1-projection �pr(docgroup)(�docs, .) returns the assigned
document group(s) (which are potentially the project-related user roles)
of the current document. The test docgroup match ensures that the cur-
rent user has to be assigned the same project-specific role for the current
project as the assignment of the current document.

144

6.3. Extended RBAC: An E-Science Example

4. docpj match: The current document must be assigned to the current
project.

The policy pol read if pjrole is a logical AND-concatenation of all four tests.
Shortly, read access is granted, if the project is in gracetime, the document is
assigned to the project and the document is available for the user’s project-
related role.

Policy 2: Uploads before the end of the project We continue with another
policy: Uploads to a project are possible as long as the project has not ended
and the user has at least one role in the project:

perm up = �t(�permissions,�c(upload), θ);
intime = �t(�time,∇�pr(pjend)(�pjs, .), <);
anyrole = �t(∇�pr(pjrole)(�users, �pjs, .), roles, θ);
pol upload = �p(perm up, intime, anyrole);

Uploads are permitted, if

1. perm up: The requested permission is ”upload”. The current binding of
the variable associated with permissions has a non-empty intersection
(”θ”) with a container holding the element upload.

2. intime: The current time stamp is less than the project’s end. Thus, the
project has not been finished. The test is of the same shape as the test
ingrace (see above).

3. anyrole: The current user is assigned at least to one role in the current
project. If the F1-projection of the relation pjrole by the current project
and user (which is resolved to all roles the users has in the project), mat-
ches any element in the container roles, the test evaluates to true.

Again, the policy pol upload is a logical AND-concatenation of the three tests
perm up, intime, and anyrole. The policy pol upload will allow access, if a user,
who has got at least one project-specific role, wants to upload a file. The project
must not be ended.

Policy 3: Uploads in gracetime The third policy allows uploads within the
grace period if the project role of the user is university staff:

upload in gracetime = �p(
perm up,
ingrace,
�t(∇�pr(pjrole)(�users, �pjs, .),�c(univ staff))

);

145

6. Use Cases for ADQL

The policy upload in gracetime consists of three tests:

1. The test perm up, which already has been defined. It evaluates true, if the
currently requested permission is ”upload”.

2. The test ingrace, which, again, has already been defined earlier. The test
evaluates true, if the current time is within the grace time period of the
current project.

3. A new, third test. The first part of this third test is a F1-projection of the
relation pjrole. The F1-projection evaluates the project-specific role of the
current user in the current project, e.g. univ staff or company employee.
The result of this F1-projection must match the container univ staff . The
third test is true, if the roles of the current user in the current project con-
tain univ staff .

We see that the third policy is true, if a university staff member tries to upload
something and the project is in its grace period.

Policy 4: Owners can read and change the document group within the
project’s grace time period The fourth policy we provide for our example
allows the owner of a file to read it and change its document group as long as
the project is in its grace period:

owner assign = �p(
�t(�permissions,�c(changedocgrp, read)),
ingrace,
�t(∇�pr(owner)(�docs, .), �users)

);

The policy owner assign consists of three tests:

1. The requested permission must be either ”read” or ”changedocgrp”. The
latter means, that the document group of the current document can be
changed.

2. The project must be within its grace time period.

3. The owner of the document must be the current user.

We have introduced four policies. Next, we continue with some example facts
to demonstrate some access queries later.

146

6.3. Extended RBAC: An E-Science Example

Example Facts for The Facts Layer

We provide sample facts to be able to check access requests. We model one pro-
fessor called ”Herb” with his two assistants ”Tom” and ”Ulrick”. The students
”Mark” and ”Ann” do their Bachelor thesis with ”Tom”, respectively ”Ulrick”,
as their supervisor. ”Mark” writes his thesis with the ”CRM Ltd.” company.
At the company, the boss of ”Mark” is ”Ben”. ”Ann” cooperates with the ”EM
AG”, where ”Jim” is her boss.

”Mark” creates two documents A and B. The first one is a working document
and, therefore, private. Document B is visible for the complete project. ”Ann”
has uploaded one document C which is visible to her and the company only.

univ staff = �c(Herb, Tom,Ulrick);
students = �c(Mark,Ann);
company employees = �c(Ben, Jim);
pjs = �c(CRM1, EM1);

The container univ staff consists of the users ”Herb”, ”Tom”, and ”Ulrick”.
The students are ”Mark” and ”Ann”. The company employees
company employees are ”Ben” and ”Jim”. Currently, two projects pjs exist,
”CRM1” and ”EM1”.

pjrole = �r(users, pjs, roles) :
{(Mark,CRM1, students),
(Ben,CRM1, company employees),
(Tom,CRM1, univ staff),
(Ann,EM1, students),
(Ulrick, EM1, univ staff),
(Jim,EM1, company employees)};

We define the project-specific roles of the users: Mark is a student in the project
”CRM1”. Ben is the company representative in the same project, while Tom is
part of the university staff for this project.

For the project ”EM1” Ann is a student member, Ulrick is part of the project’s
university staff and Jim is the company representative.

docs = �c(A,B,C);

Three documents, A, B, and C, exist.

owner = �r(docs, users) :
{(A,Mark),
(B,Mark),
(C,Ann)};

147

6. Use Cases for ADQL

The owner of documents A and B is ”Mark”, while the owner of document C
is ”Ann”.

docgroup = �r(docs, roles) :
{(B, students),
(B, univ staff),
(B, company employees),
(C, company employees)};

We define the roles for the documents: Document A is not assigned to any doc-
ument role. Document B is assigned the document roles ”students”,
”univ staff”, and ”company employees”. Document C is assigned to ”com-
pany employees” only.

docpj = �r(docs, pjs) :
{(A,CRM1),
(B,CRM1),
(C,EM1)};

The documents are assigned to the projects. Document A and B belong to the
project ”CRM1”, document C belongs to project EM1.

6.3.1. Check Access Requests

With the above model, policies, and facts access requests can be performed.
Next, we will demonstrate one example access query.

s = �s(
� users = �c(Tom),
� pjs = �c(CRM1),
� docs = �c(B),
� permissions = �c(read),
� time = �c(1300700213 = �e())

);

We define a scope s. Within this scope s the variable users is bound to ”Tom”,
thus, the current user is ”Tom”. Consequently, the current project is ”CRM1”,
the current document is B, the current permission requested is ”read”, and the
current time is ”1300700213”. We assume that this date is before the project’s
official end.

We execute the access query:
∇s;

To calculate the result for this query, we check all four defined policies until the
first grants access.

148

6.3. Extended RBAC: An E-Science Example

The first policy of our use case reads (repeated from above):

perm read = �t(�permissions,�c(read), θ);
ingrace = �t(�time,∇�pr(gracetime)(�pjs, .), <);
docgroup match = �t(

∇�pr(pjrole)(�users, �pjs, .),
∇�pr(docgroup)(�docs, .), θ);

docpj match = �t(∇�pr(docpj)(�docs, .), �pjs, θ);
pol read if pjrole : �p(perm read, ingrace, docgroup match, docpj match);

We check the 4 tests of the policy pol read if pjrole concerning the scope defi-
nition s:

1. ∇perm read(s)
== ∇�t(�permissions,�c(read), θ)(s)
== ∇�t(�c(read),�c(read), θ)
== �c(true)
The first test of the policy is true.

2. ∇ingrace(s)
== ∇�t(�time,∇�pr(gracetime)(�pjs, .), <)(s)
== ∇�t(�c(1300700213),∇�pr(gracetime)(�c(CRM1), .), <)
== �c(true)
The second test of the policy is true as the project end date has not been
reached.

3. ∇docgroup match(s)
== ∇�t(

∇�pr(pjrole)(�users, �pjs, .),
∇�pr(docgroup)(�docs, .), θ)(s)

== ∇�t(
∇�pr(pjrole)(�c(Tom),�c(CRM1), .),
∇�pr(docgroup)(�c(B), .), θ)

== ∇�t(
�c(univ staff),
�c(students, univ staff, company employees), θ)

== �c(true)
The third test evaluates true, as Tom is a member of the project-specific
group univ staff within project CRM1 and document B has been as-
signed to the groups students, univ staff , and company employees.

4. ∇docpj match(s)
== ∇�t(

∇�pr(docpj)(�docs, .),

149

6. Use Cases for ADQL

� pjs, θ)(s)
== ∇�t(

∇�pr(docpj)(�c(B), .),
�c(CRM1), θ)

== ∇�t(�c(CRM1)),�c(CRM1), θ)
== �c(true)
The fourth test evaluates true: document B is assigned to project CRM1
which is the current project.

As all tests of the access condition are true, access is granted. Further access
conditions need not to be checked.

The full listing, how it can be executed in our ADQL implementation can be
found in listing 6.4.

6.4. Summary

In this chapter we demonstrated the usability and expressive power of ADQL
with three examples. The first example showed how the Bell-LaPadula model
can be expressed in ADQL. The second example covered a real-world RBAC-
like model, specifically SAP’s version of an RBAC-like model for the well-
known SAP R/3 application. Our third example was an extended RBAC-like
model making use of several relations, subject and object attributes and a 3-ary
relation. For each example, we provided listings with the complete ADQL code
and explained, how it can be used with our ADQL implementation.

150

6.4. Summary

1 # eSc ience Example
Tested 1 6 . 4 . 2 0 1 3 on c s e t 310 :067 d012a5303

3

Define the model and some example f a c t s
5 ’ u n i v s t a f f ’ = DEF CONTAINER(Herb=DEF ENTITY () ,

Tom=DEF ENTITY () , Ulr i ck=DEF ENTITY ()) ;
7 s tudents = DEF CONTAINER(Mark=DEF ENTITY () , Ann=DEF ENTITY ()) ;

’ company employees ’=DEF CONTAINER(Ben=DEF ENTITY () , Jim=DEF ENTITY ()) ;
9 users = DEF CONTAINER(

APP ’ u n i v s t a f f ’ , APP students , APP ’ company employees ’) ;
11

p j s = DEF CONTAINER(CRM1=DEF ENTITY () , EM1=DEF ENTITY ()) ;
13 docs = DEF CONTAINER(A=DEF ENTITY () , B=DEF ENTITY () , C=DEF ENTITY ()) ;

time = DEF CONTAINER(1300700214=DEF ENTITY ()) ;
15

permissions=DEF CONTAINER(read=DEF ENTITY () , upload=DEF ENTITY () ,
17 changedocgrp=DEF ENTITY ()) ;

r o l e s =DEF CONTAINER(’ u n i v s t a f f ’ , ’ company employees ’ , s tudents) ;
19

Define r e l a t i o n s f o r the model
21 pjend=DEF RELATION(pjs , time) ;

gracet ime=DEF RELATION(pjs , time) :
23 {(CRM1, 1 3 0 0 7 0 0 2 1 4)} ;

25 p j r o l e = DEF RELATION(users , p js , r o l e s) :
{(Mark ,CRM1, students) , (Ben ,CRM1, ’ company employees ’) ,

27 (Tom,CRM1, ’ u n i v s t a f f ’) , (Ann,EM1, s tudents) ,
(Ulr ick ,EM1, ’ u n i v s t a f f ’) , (Jim ,EM1, ’ company employees ’) } ;

29

owner = DEF RELATION(docs , users) :
31 {(A, Mark) , (B , Mark) , (C, Ann)} ;

33 docgroup = DEF RELATION(docs , r o l e s) :
{(B , s tudents) , (B , ’ u n i v s t a f f ’) ,

35 (B , ’ company employees ’) , (C, ’ company employees ’) } ;

37 docpj = DEF RELATION(docs , p j s) :
{(A,CRM1) , (B ,CRM1) , (C,EM1)} ;

Listing 6.3: Listing of the extended RBAC e-Science use case example (first
part). The code an be executed in our ADQL implementation.

151

6. Use Cases for ADQL

40 # Now def ine the p o l i c i e s
Pol i cy 1

42 ’ perm read ’ = DEF TEST (
ASSIGN permissions ,

44 DEF CONTAINER(read)) ;
ingrace = DEF TEST (

46 ASSIGN time ,
APP DEF PROJECTION(gracet ime) (ASSIGN pjs , .) , <);

48 ’ docgroup match ’ = DEF TEST (
APP DEF PROJECTION(p j r o l e) (ASSIGN users , ASSIGN pjs , .) ,

50 APP DEF PROJECTION(docgroup) (ASSIGN docs , .)) ;
’ docpj match ’ = DEF TEST (

52 APP DEF PROJECTION(docpj) (ASSIGN docs , .) ,
ASSIGN p j s) ;

54 ’ p o l r e a d i f p j r o l e ’ = DEF POLICY(
’ perm read ’ , ingrace , ’ docgroup match ’ , ’ docpj match ’) ;

56

Po l i cy 2
58 ’ perm up ’ = DEF TEST (

ASSIGN permissions ,
60 DEF CONTAINER(upload)) ;

int ime = DEF TEST (
62 ASSIGN time ,

APP DEF PROJECTION(pjend) (ASSIGN pjs , .) , <);
64 anyrole = DEF TEST (

APP DEF PROJECTION(p j r o l e) (ASSIGN users , ASSIGN pjs , .) ,
66 r o l e s) ;

’ pol upload ’ = DEF POLICY (’ perm up ’ , intime , anyrole) ;
68

Po l i cy 3
70 ’ upload in gracet ime ’ = DEF POLICY(

’ perm up ’ ,
72 ingrace ,

DEF TEST (
74 APP DEF PROJECTION(p j r o l e) (ASSIGN users , ASSIGN pjs , .) ,

DEF CONTAINER(’ u n i v s t a f f ’))) ;
76

Po l i cy 4
78 ’ owner assign ’ = DEF POLICY(

DEF TEST (ASSIGN permissions , DEF CONTAINER(changedocgrp , read)) ,
80 ingrace ,

DEF TEST (APP DEF PROJECTION(owner) (ASSIGN docs , .) , ASSIGN users)) ;
82

84

Scope d e f i n i t i o n
86 s1 = DEF SCOPE(

ASSIGN users = DEF CONTAINER(Tom) ,
88 ASSIGN p j s = DEF CONTAINER(CRM1) ,

ASSIGN docs = DEF CONTAINER(B) ,
90 ASSIGN permissions = DEF CONTAINER(read) ,

ASSIGN time = DEF CONTAINER(1300700213 = DEF ENTITY ())
92) ;

94 # Evaluate the scope
APP s1 ; # a c c e s s granted

Listing 6.4: Listing of the extended RBAC e-Science use case example (second
part). The code an be executed in our ADQL implementation.

152

7. Implementing ADQL as
Software Service

In this chapter we will describe our academic prototype implementing ADQL.

We aim for our scientific goals (1) ”access component as a service” and (4) ”scal-
able and fast service”. We want to achieve goal (1) by describing the service
implementation of our prototype. We show that ADQL can and has been im-
plemented as a software service with the usual components, a back end and a
front end. Goal (4) is approached by providing runtime profiles and execution
times. We provide examples and show how fast these examples execute using
our implementation.

ADQL binaries and online documentation are available at http://iism.kit.
edu/em/ref/adql.

7.1. ADQL’s Implementation: General Architecture

The general architecture of our ADQL implementation is depicted in figure
7.1.

As usual for an IT-service, ADQL’s architecture is split in a front-end and a
back-end. The back-end consists of the code executed on the service’s server.
The back-end is described in section 7.2. The front-end consists of the libraries
imported and used by applications which want to use the ADQL service
(ADQL’s API) or are applications which use the ADQL service. The front-end
is described in section 7.3. The intermediate object is the ”Result Object” en-
capsuling service requests and answers. It is described in section 7.4.

Project History The initial steps of ADQL have been undertaken using the
name ”Community Administration Platform (CAP)” in the mentioned project
”WeKnowIt”. We have found, the former names have been partially mislead-
ing. For this reason, and because since the end of the project significant efforts
have been put into the design and code, we changed the name to ADQL. First

153

http://iism.kit.edu/em/ref/adql
http://iism.kit.edu/em/ref/adql

7. Implementing ADQL as Software Service

ADQL Parser Layer

TCP
Objects

TCP
Strings

UDP
Objects Thrift

Network Server Layer

OSGiController Layer / ADQL API

ADQL Core Layer

Persistence Cache Layer

Persistence Layer

REST

Custom Op

RESTTCP
Objects

Java Client
Library

Management
Webinterface

Thrift Client
Library

OSGi Client
Library

REST Client
Library

Frontend

Backend

Result
Object

Client Libraries

TCP
Objects Thrift OSGi

Figure 7.1.: General architecture of our Access Definition and Query Language
implementation.

work about ADQL has been published in a regular deliverable for the project
[SS09]. This deliverable is based on version 1.2 of our ADQL prototype.

This work is based on ADQL version 3.0, exactly, Mercurial revision
”7120faa6b7c6” from 2012-09-10.

7.2. Back End Design and Architecture

Our back end implementation of ADQL has been written in Java, currently
compiling under Java v1.7 (but backward compatible to Java v1.5). As plat-
form we chose the Intel/AMD i386/i586/i686 platform, compatible with 32-bit

154

7.2. Back End Design and Architecture

and 64-bit operating systems. Due to the platform-specific JavaVM implemen-
tations, we tested our code in Linux and Windows 7 and 8 systems. Other
platforms with JavaVM support are probable usable, but were not tested by
us.

As parser and compiler generator for parsing ADQL as a language we use the
Java Compiler Compiler (JavaCC)1.

The current implementation has about 35,000 lines of code.

7.2.1. Back End Architecture and Modules

When we tried to find a definition for the phrase ”software architecture” in-
terestingly enough, we were not able to find a commonly accepted wording.
Instead a huge set of definitions has been suggested:

Garlan and Perry suggest ”the structure of the components of a program/sys-
tem, their interrelationships, and principles and guidelines governing their de-
sign and evolution over time” [GP95, p.269].

Booch, Rumbaugh, and Jacobson define: ”An architecture is the set of signif-
icant decisions about the organization of a software system, the selection of
the structural elements and their interfaces by which the system is composed,
[together] with their behavior, as specified in the collaborations among those
elements, [and] the composition of these structural and behavioral elements
into progressively larger subsystems, [and] the architecture style that guides
this organization: the static and dynamic elements and their interfaces, their
collaborations, and their composition” [BRJ05, p.31f].

IEEE 1471 defines ”the fundamental organization of a system embodied in its
components, their relations to each other, and to the environment, and the prin-
ciples guiding its design and evolution” [IEE].

Further definitions and a discussion can be found in [CBB+10, p.3ff].

We will follow the definition of Garlan and Perry.

ADQL back end module’s architecture stack is depicted in figure 7.2. We will
iteratively explain all layers and interfaces.

1http://javacc.java.net, last accessed 2013-04-02

155

http://javacc.java.net

7. Implementing ADQL as Software Service

Backend

ADQL Parser Layer

TCP
Objects

TCP
Strings

UDP
Objects Thrift

Network Server Layer

OSGiController Layer / ADQL API

ADQL Core Layer

Persistence Cache Layer

Persistence Layer

REST

Custom Op

Figure 7.2.: Back end architecture of our Access Definition and Query Language
implementation

7.2.2. Persistence Layer

A persistence layer is used to permanently save ADQL’s model, facts, and poli-
cies. It persists even if the ADQL code execution is stopped or re-started. As
persistence storage system we use a relational database system.

The ADQL persistence module was developed to access the persistence storage
(the database management engine). The targets for this layer are:

• make database access transparent for the above layers,

• automatically manage database access,

• support the usage of several, distributed databases by vertical division,

• support access via different database user,

• support SSL and non-SSL connections.

For our current implementation we chose PostgreSQL [Gro10] as database man-
agement system. PostgreSQL supports transactions since quite a long time, is
open-source and scalable. However, there is no technical, mandatory reason for
PostgreSQL. ADQL’s persistence layer also supports other relational database

156

7.2. Back End Design and Architecture

management systems, like MySQL [Cor11], Oracle, or other relational DBMS
supported by Hibernate.

Our ADQL prototype switched from a self-developed cache and persistence
module in version 1.2 to Hibernate in version 1.3. Major concerns existed con-
cerning runtime efficiency of the code and scalability. Without providing de-
tails in this work, our findings can be summarized in the following:

• The code complexity and readability became much better after switching
to Hibernate. The code size was reduced by about 30%.

• The efficiency for direct database access was almost the same as with
handwritten SQL-code. There was a tiny increase in answering times
with Hibernate.

• The cache performance was almost completely lost. While the handwrit-
ten cache and persistence layer increased the performance of repeated
access queries by approx. 200%, Hibernate’s automatic caching mecha-
nisms did not show any significant improvements.

Although losing the runtime gain by the manual caching mechanism, we de-
cided to continue the development using Hibernate. The idea was, to re-imple-
ment a manual caching layer based on Hibernate and regain cache effects –
which was not undertaken so far.

The usage of Hibernate and the add-on Hibernate Annotations allowed us to
integrate persistence functionality into ADQL code in a simple and efficient
way. We provide an example for the Java entity definition of an ADQL entity
in listing 7.1.

The Java annotation @Entity defines the Java class to be persistent. The anno-
tation @DiscriminatorColumn describes how child class instances are han-
dled concerning database storage. With the selected strategy, one table is used
for ADQLEntity and all child class instances: if a class inherits from
ADQLEntity, its instances are stored in the same table as ADQLEntity it-
self. The discriminator column ”discriminator” is used to distinguish the ac-
tual class types. The annotation @Cache defines the Hibernate cache query
and database strategy for this entity.

The simple fact of the existence of the getter- and setter methods for the at-
tributes id and externalId is enough to define the related database tables
and property types. The additional annotations of id define the property to be
the table key generated by a (Postgres) sequencer. The attribute externalId
is associated with a unique constraint.

157

7. Implementing ADQL as Software Service

1 @Entity
@DiscriminatorColumn (name = ” d i s c r i m i n a t o r ” ,

3 discr iminatorType = DiscriminatorType . STRING)
@Cache (usage = CacheConcurrencyStrategy . NONSTRICT READ WRITE)

5 publ ic c l a s s ADQLEntity implements S e r i a l i z a b l e , ADQLProperties {

7 p r i v a t e s t a t i c f i n a l long ser ia lVers ionUID = 3960107303350534510L ;

9 p r i v a t e Long id ;
p r i v a t e S t r i n g e x t e r n a l I d ;

11

publ ic ADQLEntity () {
13 super () ;

}
15

publ ic ADQLEntity (S t r i n g e x t e r n a l I d) {
17 t h i s . e x t e r n a l I d = e x t e r n a l I d ;

}
19

@SequenceGenerator (name=” e n t i t y s e q ” , sequenceName=” e n t i t y s e q ”)
21 @Id

@GeneratedValue (s t r a t e g y =GenerationType .SEQUENCE, generator =” e n t i t y s e q ”)
23 publ ic Long get Id () {

re turn id ;
25 }

27 publ ic void s e t I d (Long id) {
t h i s . id = id ;

29 }

31 @Column(unique = true)
publ ic S t r i n g g e t E x t e r n a l I d () {

33 re turn e x t e r n a l I d ;
}

35

publ ic void s e t E x t e r n a l I d (S t r i n g e x t e r n a l I d) {
37 t h i s . e x t e r n a l I d = e x t e r n a l I d ;

}
39

(. . .)
41 }

Listing 7.1: Listing of an excerpt of the ADQLEntity Java class

158

7.2. Back End Design and Architecture

ADQL’s database schema We continue by explaining the database schema
used by ADQL.

Figure 7.3.: Database schema of ADQL’s persistence layer

Figure 7.3 depicts the schema. The central table is ”adqlentity” holding the ba-
sic information about all ADQL objects. This includes not only entities, but also
containers, relations, F1-projections, tests, policies, scopes and applications.
The assignments of entities to a container are stored in the table ”assignment”.
Scope definitions are stored in the table ”scopeassignment”. Available ADQL
operators can be found in the table ”booleanoperator”. Links (elements) of re-
lations are stored in the tables ”linkcollection” and ”fiveentities”. We continue
explaining the tables below.

We provide some example database entries. The minimal example code creat-
ing database entries for all basic ADQL concepts is depicted in figure 7.4. By
this code, an entity ”Ann” is defined. Ann is assigned to a container ”users”.
On this container, a relation ”relproxy” is defined, linking the container ”users”
with itself. A F1-projection ”projproxy” is created on the relation. This F1-

159

7. Implementing ADQL as Software Service

projection is used in a test ”testproxy” comparing the application of this F1-
projection with an anonymous container holding the entity Ann. Finally, a pol-
icy named ”testproxy”, utilizing the test, is created.

The resulting database entries from this code are depicted in table 7.1. We ex-
plain them in the following.

1 Ann = DEF ENTITY () ;
users = DEF CONTAINER(Ann) ;

3 re lproxy = DEF RELATION(users , users) : { (Ann, Ann)} ;
projproxy = DEF PROJECTION(relproxy) (ASSIGN users , .) ;

5 t es tproxy = DEF TEST (APP projproxy , DEF CONTAINER(Ann) , t h e t a) ;
pol icyproxy = DEF POLICY(tes tproxy) ;

Figure 7.4.: Listing of an example code creating database entries of all ADQL
concepts

discriminator id externalid type sub- test comp bsub bsub op argu subst
(PK) type set set stte stco opera ments btvec

stset mpset torid tor

ADQLEntity 302 Ann E
ADQLContainer 303 users S CONT
ADQLRelation 304 relproxy R 50
ADQLProjection 305 projproxy J 304 52 1
ADQLApplication 350 A 305
ADQLContainer 351 S CONT
ADQLTest 352 testproxy R 350 351 FALSE FALSE theta
ADQLPolicy 400 policyproxy P

Table 7.1.: Example of the table ”adqlentity” resulting from the listing in figure
7.4

The central table is ”adqlentity”. ADQL entities, containers, relations, F1-pro-
jections, tests, and policies are stored in this table. The primary key is ”id”, a big
integer. The primary key is an internal identifier and auto-incremented for each
new table entry. Technically, it is an auto-generated sequence. The ”externalid”
holds the externally given symbol name for an entity. To ensure uniqueness
of external identifiers, the field is defined unique. E.g. the ADQL command
Ann = �e() defines an entity and assigns it to the symbol ”Ann”. Ann will be
stored in the ”externalid” field, while the identifier ”id” is auto-chosen by the
DBMS. In the depicted example, Ann received the internal id 302.

The ”type” field is a single character indicating the type of the database entry.

160

7.2. Back End Design and Architecture

You can see that the entity ”Ann” is of type ”E” for ”entity”. The abbrevia-
tion ”S” is used for containers, ”R” for relations, ”J” for F1-projections, ”A”
for applications, ”T” for tests, and ”P” for policies. The ”discriminator” field
is de-facto a duplicate of the field ”type”. However, the discriminator field is
automatically introduced by the persistence framework Hibernate which we
cannot influence. This comes from Hibernate’s default behavior to store all en-
tities of not only a class but a whole class hierarchy in one database table. As
super and child classes may differ in their persistent attributes, the table in-
cludes the hull of all persistent attributes, thus all attributes of all classes of the
hierarchy. To be able to distinguish the type of an entry, the class name is stored
in the discriminator field. Consequently you can see, that ”Ann” is an instance
of the Java class ADQLEntity, while ”users” is an instance of the Java class
ADQLContainer, and so on.

The field ”subtype” is only present for backward compatibility and not used
anymore. In previous ADQL versions, different types of containers have been
supported. This behavior became obsolete by introducing unified, generalized
containers.

The fields ”test set” and ”comp set” stem from test entries. For tests, they con-
tain a reference to the two containers of the test. However, the field ”test set”
is overloaded with several other meanings. We explain the different interpre-
tations with the following examples:

• Test: In the example shown in table 7.1, the first test set of the test 352 is
entry 350. The object with the id 350 is an application of a F1-projection
with the id 305.

• Application: You see that the field ”test set” for an applications is used
in a different context, namely a reference of the object the application is
defined upon.

• F1-projections: The object with the id 305 is a F1-projection. For F1-
projections, the field ”test set” contains a reference to the relation it is
defined on. This relation is entry 304.

Let’s go back to the test definition 352 and the field ”comp set”. The field
”comp set” holds a reference to the second test container, in this case container
351. The fields ”bsubsttest” and ”bsubstcomp” are boolean. They are used ex-
clusively for tests. If true, the ”test” or ”comp” reference is marked to be a
variable or, if false, a fixed value. The field ”op operation” is also exclusively
used by tests. The field holds a reference to the operator, the tests makes use of.
In the given example this is ”theta”.

The field ”arguments” is used for relations referencing the primary key of table
”linkcollection”. In the table ”linkcollection” parts of relation definitions are

161

7. Implementing ADQL as Software Service

stored. It shows on which containers the relation is defined (we refer to the
description of the table ”linkcollection”). As with relations, for F1-projections
the field ”arguments” is used in the same way.

The field ”substbtvector” is a binary vector. A bit of the vector is set 1 (true),
if in the corresponding F1-projection the argument is a variable, and 0 (false) if
the argument is a container or an application (we refer to section 5.5).

The table ”assignment” (see figure 7.3) is used to store the assignments of en-
tities to containers. As the database relation is n:m the table has two primary
keys, ”container” referencing the container id from the table ”adqlentity” and
”entity” referencing the assigned entity id from the table ”adqlentity”. Thus,
each assignment is described by one table entry. The field ”transitive” is obso-
lete and only there for backward-compatibility.

The table ”scopeassignment” (see figure 7.3) is used to store scope assignments.
For a specific scope ”scope”, a container ”container” is assigned a certain value
”subcon”. All fields (scope, container, subcon) are referencing an entry in ”adq-
lentity” as foreign key.

The tables 7.2 and 7.3 continue the example resulting from the listing in figure
7.4 concerning the database table ”linkcollection” and ”fiveentities”, respec-
tively.

linkcol (PK) extid type
50 304 Relation
51 304 Link
52 304 Projection

Table 7.2.: Example of the table ”linkcollection” resulting from the listing in fig-
ure 7.4

linkcol (PK) rank (PK) first second third fourth fifth
50 0 303 303
51 0 302 302
52 0 303

Table 7.3.: Example of the table ”fiveentities” resulting from the listing in figure
7.4

You can see that the table ”linkcollection” has three entries. The primary key
is generated from an independent sequence generator and is not related to any
other key, thus, it is not a foreign key. The field ”extid” is a foreign key of the
central table ”adqlentity” referencing the relation 304 ”relproxy”.

162

7.2. Back End Design and Architecture

The ”type” field tells, what kind of type the entry is:

• ”Relation” is used as descriptor for a relation, thus, which containers the
relation is defined on. Which containers these are can be seen from table
”fiveentities”. The ”linkcol” field references as primary key the corre-
sponding field from the table ”linkcollection” as foreign key. The fields
”first” to ”fifth” hold references to the central table ”adqlentity”. We ex-
plain the example of linkcol = 50. It is of the type ”relation”, thus, a
definition for the relation 304 which collections it is defined on. The in-
volved containers are 303 (users) and 303 (user). We see, that relation 304
(relproxy) is defined on users× users.

• ”Link” is used to describe a link of a relation. A link is an element of a
relation. The link with the id linkcol = 51 is part of relation 304 (relproxy).
In table ”fiveentities” you can see that this link is defined from entity 302
(Ann) to entity 302 (Ann).

• ”Projection” describes the definition of a F1-projection. In the given ex-
ample, the id linkcol = 52 describes a F1-projection on relation 304 (rel-
proxy). Its projection elements are stored in the field first to fifth by omit-
ting an entry for the F1-projection target.

The above database schema was chosen to combine relatively quick access by
omitting too many field accesses for the DBMS with flexibility: Theoretically, a
relation can be n-ary, thus link n relations. To map a n-ary relation to a database,
generally a table in the form (relation, rank, entity) would be necessary. How-
ever, for a n-ary relation this would lead to n read/write accesses to the table
for one link. With m links, the access count sumarizes to n × m, thus be of
O(n2).

In our chosen database schema we decided to model up to 5-ary relations with
only one database entry for each link. Therefore, if a relation is of the type
1 − ary to 5 − ary only one database access is required to read a link. In such
cases with up to m links, only m accesses are required, thus, linear instead of
quadratic.

However, in case of a relation with an order higher than 5, a second (third, ...)
entry with a rank 1 (or higher) is established. Consequently, a 10-ary relation
requires 2 entries in the table ”fiveentities”, a 13-ary relation requires 3 entries,
and so on. We based this design on the assumption, that, practically, most
relations will be of the order 5 or below leading to only linear access times for
relation links.

The table ”booleanoperator” holds an index of all defined and available ADQL
operators. The table is automatically populated by Hibernate: If a class (e.g.
theta) inheriting the ADQLOperator class exists, Hibernate auto-generates a

163

7. Implementing ADQL as Software Service

corresponding entry in the ”boleanoperator” table, allowing to be referenced
by the ”op operatorfield” of the table ”adqlentity”.

The table ”referencedlink” is used for link caching to support faster link re-
trieval.

7.2.3. Persistence Module and Database Cache

The next layer of ADQL’s back end is the persistence module and database
cache. The purpose of this layer is two-fold: it serves as database cache and is
used for the pre-calculation of access queries.

Database Cache First, this layer is used to cache database queries and an-
swers in memory. If the same request to the persistence layer is issued several
times during the cache period of this request, a (costly) database query can be
avoided by utilizing the previous answer to this query.

As we have said in the previous section, since version 1.3 of ADQL we switched
to Hibernate [JBo10] as persistence layer. Hibernate’s development was started
by open source developers lead by Galvin King in 2001. His target was to create
an easy-to-use persistence framework for Java. Later JBoss Inc. supported the
Hibernate community, hired leading developers and integrated it into the JBoss
Application Server (which is not used for ADQL). Today, Hibernate is available
for Java and .NET. Its functionality has grown far beyond a persistence layer
framework. The result was that as caching mechanisms we could only rely on
the standard features of Hibernate.

We did some minor testing with the standard caching capabilities of the Hiber-
nate framework. Hibernate offers a ”second-level cache”2 allowing to define
several cache strategies like hash-tables, EHCache, OSCache, and so on. We
did some not too extensive checks enabling and disabling the Hibernate cache
features but found no measurable improvements in access or query times. With
these disappointing results we decided not to focus on Hibernate’s caching
mechanisms for now. However, for future work we aim to do a more inten-
sive research about the caching capabilities of Hibernate as we confess that our
investigations about these features have been shallow. In the current version of
ADQL, caching is not available.

2http://docs.jboss.org/hibernate/orm/3.3/reference/en/html/performance.
html, last accessed 2013-03-20

164

http://docs.jboss.org/hibernate/orm/3.3/reference/en/html/performance.html
http://docs.jboss.org/hibernate/orm/3.3/reference/en/html/performance.html

7.2. Back End Design and Architecture

Access Pre-Calculation We started working on the idea of pre-calculating
”atomic” access rights derived from the model and facts layer. ”Atomic” is
defined here in the sense, that no calculation has to be done to find out, if access
can be granted, instead the current variable bindings can be matched against
pre-calculated database tables in O(1) to decide upon an access request.

Example: We say that Alice and Bob are users (fact). There exists a file ”file1”
(fact). All users may read ”file1” (policy). As long as no changes in model,
facts, and policies occur, the policies can be pre-calculated to ”atomic” access
rights. In this case, ”Alice can read file1” and ”Bob can read file1”. If calculated
and stored properly in a database schema, a request ”can Bob read file1?” can
be answered by simply finding the related database entry.

First tests and results promise that most policies can be pre-calculated and that
the answering times can be improved by at least one order of magnitude.

However, there are policies which are not or quite hard to pre-calculate: Policies
making use of orders or total orders: It is easy to pre-calculate policies like
user = Alice, permission = read, file = file1. It becomes more complex if a
policy uses orders like ”Alice may read file1 from now on”. To pre-claculate the
test ”from now on” is very expensive (or impossible). It is not an exact value
which can be looked up in a database table (”from now on” is true for any date
from now into the future), but has either to be calculated (”is ’2100’ greater
equal ’now’?”) or pre-calculated for any possible value (thus any date in the
future). We immediately see that some tests can be pre-calculated and others
are very expensive (in terms of storage) to pre-calculate.

This extension is future work.

7.2.4. ADQL’s Core Layer, Controller, and Parser

The ADQL implementation follows the model-viewer-controller (MVC) para-
digm ([GHJ94, KP88]). The MVC paradigm separates data (model) from data
representation (view) and data processing (controller). It was suggested by
Krasner and Pope for the language Smalltalk and adopted as a coding paradigma.
However, MVC is not seen as a classic software pattern but described as a soft-
ware paradigm.

ADQL’s model is defined in the ”core layer”. The controller is represented by
the ”controller layer”. As the ADQL server part does not include ”view” in
its usual meaning, this part is omitted. However, defining ”view” in a broader
sense, the visual representation of ADQL can be interpreted as the ADQL lan-
guage, thus represented in the ADQL parser layer.

165

7. Implementing ADQL as Software Service

Core Layer The ADQL core layer contains the data model of ADQL. Besides
the model, the ADQL functions ”define” and ”apply” are implemented on this
level, together with several internal, auxiliary functions.

Custom operators have to be defined on this layer (see section 5.9).

The core is implemented in Java. It consists of 33 classes and about 3500 lines of
code. Each class represents a concept of ADQL, like ADQL Entity, ADQL Con-
tainer, and so on. The classes are supplemented by auxiliary classes which rep-
resent e.g. combined database keys, intermediate data types and helper meth-
ods.

Controller The ADQL controller consists of one major and some auxiliary
classes. The major class is ”the” controller, thus, organizing the program flow.
Its methods are invoked by the parser layer. For example, the controller has
methods (functions) for creating new entities, calculating applications, evalu-
ating access requests and so on. The controller fetches persistent entities from
the database storage, changes its properties and saves new or changed entities
back to the database. Anything related to program control and program flow
is represented in the controller.

The controller consists of about 2000 lines of code.

Parser To be able to handle the formal ADQL language, a parser and the
definition of the syntax is required. As parser generator we decided to use
JavaCC3. The ”Java Compiler Compiler” is a parser generator for use with Java
applications. As the website says, ”a parser generator is a tool that reads a
grammar specification and converts it to a Java program that can recognize
matches to the grammar”4. We utilized JavaCC in version 5.0.

Technically, JavaCC is a parser generator. This means, JavaCC is used to define
a language (expressed by a BNF-like syntax). JavaCC is a LL(k) parser. It can
parse a subset of context-free grammars. LL is the abbreviation for left-left: the
parser parses from left to right and builds a left-most derivation of the input. k
refers to the the parser characteristic to handle k ”lookaheads” when parsing a
sentence ([ASU86]).

The syntax definition file for JavaCC, called the ”language file”, is compiled
to Java sources (.java-files) which can be compiled, again, to bytecode using
the usual Java compiler. Note, that JavaCC language files are compiled twice:
The first compilation creates Java sources from the JavaCC sources. The second

3http://javacc.java.net, last accessed 2013-04-02
4http://javacc.java.net, last accessed 2013-04-02

166

http://javacc.java.net
http://javacc.java.net

7.2. Back End Design and Architecture

compilation creates bytecode from the Java sources which can be executed, as
usual, with a Java Virtual Machine. The first compilation also creates methods
and classes necessary to read expressions of the defined language.

publ ic ADQLContainer co n ta in er () :
2 {

ID id = n u l l ;
4 ADQLContainer c on ta in er = n u l l ;

}
6 {

(
8 LOOKAHEAD({ getToken (2) . kind != Equals && getToken (1) . kind != Def })

id = i d e n t i f i e r ()
10 | LOOKAHEAD({ getToken (2) . kind == Equals | | getToken (1) . kind == Def })

[id = i d e n t i f i e r () < Equals >] < Def > c o n t a i n e r = containerDefAnonym ()
12)

{
14 i f (co nt a i ne r == n u l l) co nt a i ne r = c o n t r o l l e r . getContainer (id) ;

e l s e i f (id != n u l l) c o n t r o l l e r . renameEntity (conta iner , id) ;
16 re turn c o n t a i n e r ;

}
18 }

Figure 7.5.: Example listing of the JavaCC code. The example shows the lan-
guage definition and reference of an ADQL container.

Figure 7.5 shows a short example of JavaCC code. The snippet depicts one part
of the ADQL container definition (or reference). The header defines a public
method (which correlates with a non-terminal symbol) container() with no
arguments, return type ADQLContainer. It is followed by a block ”{}” con-
taining variable definitions. The second block consists of the syntax definition
of the language interpreted by the parser. The JavaCC syntax itself follows a
BNF-like syntax.

167

7. Implementing ADQL as Software Service

(
2 LOOKAHEAD({ getToken (2) . kind != Equals && getToken (1) . kind != Def })

id = i d e n t i f i e r ()
4 | LOOKAHEAD({ getToken (2) . kind == Equals | | getToken (1) . kind == Def })

[id = i d e n t i f i e r () < Equals >] <Def> c o n t a i n e r = containerDefAnonym ()
6)

We see, that the outer construct of this block reads ”(...|...)”. Following
BNF, the parser accepts two alternatives:

• The first alternative is id = identifier(). The statement invokes a
method identifier(), which parses further input. This method is re-
lated to a non-terminal symbol, here ”identifier”. We do not show the
composition of the non-terminal symbol ”identifier” in our example here,
however, in the real implementation, this symbol is, of course, defined.
The result of this non-terminal/method is assigned the variable id, which
is of the type ID following the definition of the first definition block of the
container.

• The second alternative reads
[id=identifier() <Equals>]
<Def> container=containerDefAnonym().
It starts with an optional part ”[]” including an identifier() non-
terminal assigned to the variable id and a terminal-symbol Equals. The
definition of the terminal symbol Equals is not shown in our example
but is simply defined as the fixed literal ”=”. This first optional part is
followed by a terminal symbol Def, the definition symbol of ADQL (�
or DEF). Next, a non-terminal symbol containerDefAnonym() follows
which invokes in JavaCC a method with the same name. The result value
is assigned the variable container of the type ADQLContainer.

We continue explaining the LOOKAHEAD lines: To distinguish both alternatives,
it is not enough to parse only the next, following token, as both expressions may
start with the non-terminal symbol identifier. Therefore, a ”look-ahead”
has to be used, meaning, that not only the next token decides on the alternative,
but in this case the next two tokens. The expression

LOOKAHEAD({ getToken(2).kind != Equals && getToken(1).kind
!= Def })

168

The complete block reads:

7.2. Back End Design and Architecture

is interpreted in the following way:
”Use this alternative, if the next but one token (getToken(2).kind) is not the
terminal symbol Equals and (&&) the next token (getToken(1).kind) is not
the terminal symbol Def. The second look-ahead definition can be interpreted
correspondingly.

The last block reads:

{
2 i f (c o n t a i n e r == n u l l) c o n t a i n e r = c o n t r o l l e r . getContainer (id) ;

e l s e i f (id != n u l l) c o n t r o l l e r . renameEntity (conta iner , id) ;
4 re turn c o n t a i n e r ;

}

It contains Java code which is executed after interpreting the previous block.
We see, that in the given example, a method getContainer(id) is called
utilizing a controller instance, if the container is null (did not previously
exist). If the id of the container is not null, the method renames the container.

The implementation of the parser generator consists of about 900 lines of code
for the v3 (Lamdba-style) syntax, and about 1500 lines of code for the v2 (SQL-
style) syntax.

7.2.5. Network Server Layer

The network server layer is responsible for starting several listening threads on
server side network sockets and for waiting for connecting clients. The current
ADQL implementation supports the following connection types:

• TCP Strings: The TCP string service supports plain text input and returns
String representations of the resulting objects and queries. Its standard
port is 1228. To test a running ADQL service, the command ”telnet
<server> 1228” can be used. An example is shown in figure 7.6 send-
ing the command ”Ann = DEF ENTITY();”.

• TCP Objects: To support structured, machine-readable connections, the
TCP object port can be used. It is running on TCP port 1227 by default.
For communication it makes use of the intermediate object ”Result Ob-
ject” described in section 7.4. This type of connection is used by the
ADQL web management interface (see section 7.3).

169

7. Implementing ADQL as Software Service

1 $ t e l n e t l o c a l h o s t 1228
Trying 1 2 7 . 0 . 0 . 1 . . .

3 Connected to l o c a l h o s t .
Escape c h a r a c t e r i s ’ ˆ] ’ .

5 Ann = DEF ENTITY () ;

7 FLAGS : CmdSuccess : + | AccessGrant : − | Quit : −
RESULT OBJECTS :

9 ADQLEntity (ex t Id=Ann, id =1650)
LOG:

11 Created e n t i t y (anonymous) [$1650]
Renamed $1650 to Ann .

Figure 7.6.: Example connection to the network layer using the TCP string port.

• UDP Objects: Like ”TCP objects”, the interface ”UDP objects” is imple-
mented. Basically, it uses the same connectivity like TCP objects but uses
UDP instead of TCP as transport layer protocol.

• Thrift: Thrift is an interface definition language. It was initially developed
by Facebook (see [Sle07]) as a core part of Facebook’s internal web service
communication structure. After being made Open Source, it became an
Apache project5. Basically, Thrift supports language independent, reli-
able object transmission through network communication. To use it, the
object(s) to be transmitted are defined using the ”interface definition lan-
guage”, actually a language to define complex data types. Thrift binaries
are then generating the code libraries necessary to transmit these objects
between clients and servers in many of today’s computer languages like
Java, C++, Python, PHP, Ruby, Erlang, and others. These created code
binaries are usable by the client and server code abstracting from trans-
mission and communication layers.

ADQL implements a Thrift interface for Java on the server side and by
this supports any client communication utilizing Thrift.

• REST: The ”Representational State Transfer” was suggested by Roy Field-
ing [Fie00]. REST is an architectural style which forces the program to
represent all objects and methods of a service as an URL. In most cases
these objects and methods are represented in a structured hierarchy. We

5http://thrift.apache.org, last accessed 2013-04-02

170

do not want to go into further details here, as REST is only one of many
interfaces for ADQL and not in the focus of this work. Together with
one of our students, Matthias Eckstein [Eck12] we implemented an early
release of a REST interface for ADQL.

http://thrift.apache.org

7.3. Front End Design and Architecture

7.3. Front End Design and Architecture

We continue with the design and architecture of the front end of our ADQL
implementation. The architecture of the front end is depicted in figure 7.7.
We provide four libraries which can be imported by business software: a Java
client library, a Thrift client library, an OSGi client library, and an REST client
library. Besides, we provide a web management interface. All components are
described below.

RESTTCP
Objects

Java Client
Library

Management
Webinterface

Thrift Client
Library

OSGi Client
Library

REST Client
Library

Frontend
Client Libraries

TCP
Objects Thrift OSGi

Figure 7.7.: Front end architecture of our Access Definition and Query Lan-
guage implementation.

Java Client Library The Java client library is basically a Java library which
can be imported by clients which want to use ADQL as access control service.
The client library consists of three classes:

• ADQLConnection: The class establishes a connection to the ADQL back
end server. The server details, like IP/URL and port, are stored in the
config file server.properties.
It is sufficient to call the constructor of the class ADQLConnection to es-
tablish a server communication. Alternatively, an overloaded constructor
can be used to override the values stored in the config file.

Communication with the server takes place by calling the method
ResultObject executeADQLCommand(String command).
The ADQL command to be issued is sent to the server. The result of
the command is returned by the server through the intermediate object
ResultObject (see section 7.4).

171

7. Implementing ADQL as Software Service

• ADQLScope: Instead of sending native ADQL commands to the server us-
ing the above class, for access queries a simplified alternative is provided
by the class ADQLScope. The class allows to define ADQL states by as-
signing values to ADQL variables through the methods public void
set(String variable, String value, TTL ttl). The variable
variable is assigned the value value. The flag time-to-live (TTL) is
used to express if the variable binding is deleted after the next access
query or remain constant until manually erased. This can be used to keep
certain variable bindings for several subsequent access queries.

The method public ResultObject checkAccess() is then used to
send an access query to the server using the previously provided variable
bindings. The result value is the intermediate ResultObject.

• ADQLScopeCallbackInterface: To support inversion of control, a callback
interface is provided. It can be implemented by third-party code to define
classes or methods which are called back when access queries take place.

Management Web Interface ADQL’s Management Web Interface is a web
application using the Google Web Toolkit (GWT)6 as web framework.

The goal of the web interface is to provide a web based graphical user interface
(GUI) to communicate with the ADQL back end. It can be used to define and
change access models, facts, and policies in a graphical way instead of using
”dry” ADQL commands.

A screenshot showing the web interface is depicted in figure 7.8.

• Session Control: The web interface allows connections to many ADQL
back ends. The back end, to connect to, can be defined within the ses-
sion control tab.

• Entities: The tab ”entities” is depicted in the screenshot. All available en-
tities are listed in the left screen part. When selected, the right part of the
screen shows information about this entity: Its properties (id, externalid,
type, and subtype), and to which containers (here called ”sets”) the entity
is assigned to. The up- and down buttons can be used to assign the se-
lected entity to containers. The button ”Create a new one” can be used to
create a new entity. By marking an entity and pressing the button ”Delete
selected” the marked entities are deleted.

6https://developers.google.com/web-toolkit, last accessed 2013-04-02

172

https://developers.google.com/web-toolkit

7.3. Front End Design and Architecture

Figure 7.8.: Screenshot of the ADQL Management Web Interface

• Containers, Relations, F1-projections, Tests, Policies: These tabs are used to
manage the ADQL concepts of the respective name. For the sake of short-
ness we do not depict and describe all of these tabs one by one. Summa-
rizing the tabs, they show properties and usage of defined concepts and
allow creating new ones, deleting existing, and changing their properties
and assignments.

• Check Access: The ”check access” tab allows issuing access queries and
receiving the results.

• Command Line: The tab ”command line” offers a command line in the
browser which can be used to issue native ADQL commands to the server.

• Commands sent: The tab ”commands sent” shows a history of previously
sent commands and their results. This features allows to see what com-
mands have been generated by the GUI and check for errors.

Thrift, OSGi, and REST client As described in the back end (see section 7.2),
ADQL supports Thrift, OSGi, and REST interfaces. Consequently, for all three
interfaces client libraries are available.

173

7. Implementing ADQL as Software Service

7.4. Intermediate Layer: Design and Architecture

The object ResultObject represents the intermediate object between ADQL
clients and ADQL servers. Whenever an ADQL command is sent to the ADQL
back end, the back end answers with an instance of the class ResultObject.

Figure 7.9.: UML class diagram of the class ResultObject

Figure 7.9 depicts the UML class diagram. The ResultObject consists of
two private flags. flagCommandSuccessful is set true by the back end if
the last command or command sequence could be executed successfully and
without any error. The flag flagCheckResult becomes true, if the last com-
mand or command sequence included an access query and access was granted.
Otherwise, the flag is false, also, if the last command or command sequence
did not contain an access check query. If the last command sequence con-
tained several access queries, the flag contains the result for the last access
query in the sequence. Both flags can be retrieved using the getter methods
isCommandSuccessful() and isCheckResult().

In case, a command or command sequence returns an ADQL concept (e.g. an
entity, container, ...), this ADQL object is contained in the resultList and
can be retrieved through the iterator getter method getResultIterator. All
ADQL concepts implement the interface Serializable and can thus be in-
cluded in the list.

The StringBuffer log contains logging information from the back end con-
taining relevant logging information related to last command or command se-
quence. The preferred logLevel (TRACE, DEBUG, INFO, WARN, ERROR,
MANDATORY) can be set by using client parameters.

Finally, String toString() creates a recursive textual representation of the
object ResultObject including objects in the resultList and logging infor-
mation. This method is used by the ”TCP String” interface (see section 7.6).

174

7.5. Using ADQL as Software Service

7.5. Using ADQL as Software Service

In this section we want to show, which steps have to be taken to use ADQL
as access control service for third party software. We refer to the third party
software as ”business software”. The business software can be of any kind
(e.g. web service, application, app, ...). To be able to use ADQL, an ADQL
instance must either run on the same physical node or the ADQL instance must
be reachable through a network connection.

ADQL takes the role of a policy decision point (PDP).

To be able to decide on access requests, ADQL has to know the following con-
cepts:

• Model: What are the conditions that can be used to make decisions on?
E.g.: we have users.

• Facts: What are the facts that we have to decide on? E.g.: There is a user
called Ann.

• Scope: What is the current situation to decide on? E.g.: the current user is
Ann.

• Policy: What are the rationals / the rules we base our decision on? E.g.:
Ann as superuser can do anything.

Below we will describe all steps that have to be followed to include ADQL’s
access control in the business software.

7.5.1. Decide on the Model

Before even anything concerning access control can be implemented in the busi-
ness software, it has to be defined what the concepts are that access control
makes its decisions on. We provide an example: The business software imple-
menting ADQL’s access control wants to make use of users, objects, permission
and time. It becomes immediately clear that then the concepts of user, object,
permission and time must be introduced. If ADQL’s access control does not
know about time, no decision can be made upon it. We see that it has to be
defined what the model is on which the access control is based on.

Apart from the above concepts the (access control relevant) attributes of the
concepts have to be defined. Again, we provide examples: An object might
have an owner (which is a user), a user might have a proxy (being another
user) and so on. So we have two things that have to be defined: the concepts
and their attributes. Of course, attributes are also a concept.

175

7. Implementing ADQL as Software Service

• The access control containers have to be defined. An access control con-
tainer is a set of entities which can be bound to a variable at runtime. Con-
tainers are what we called a concept above. A container is a collection of
possible runtime conditions. Containers may be organized in hierarchies
or networks. E.g. user, object, permission, time.

• The access control relations have to be defined. An access control relation
inter-relates two or more access control containers. E.g. the owner of an
object (object - user relation) or the proxy of a user (user - user relation).

This task has to be done by the software designers of the business software con-
sidering the requirements of their customers. It requires analysis and abstract
thinking. Anything that has been defined in the access control model can be
used later to model policies on, which means can be used to make decisions
on, if access is granted or denied. Of course, anything not being part of the
access control model can later not be used to make decisions on.

Please note, that it is not necessary to make decisions on possible values of
the containers yet: We do not need to know if there is a user named ”Ann” or
”Herb”, how many users exist and so on. This will be specified later.

7.5.2. Implement Access Checks in the Software

The next step is to write the business software. When writing the code a devel-
oper may come to a point when an access check is required to decide whether
to continue as wished or deny access. The developer simply calls ADQL’s ac-
cess control software service and wait for it to make a simple yes or no deci-
sion. RFC2904 [FHdL+00] calls these software service the policy decision point
(PDP).

We do not want the developer to deal with details about any access control
mechanism or policy. In the simplest case such a line of code looks like

i f adqlscope . checkAccess ()
2 continue ;

e l s e
4 break ;

176

7.5. Using ADQL as Software Service

The method adqlscope.checkAccess() is a called by the business soft-
ware. adqlscope is an instance of the class ADQLScope included in the ADQL
client library (see section 7.3).

In the literature, RFC2904 [FHdL+00] outsources these kind of calls to the so-
called policy enforcement point (PEP). A PEP requires an inversion-of-control,
that is, the business code is called by the access control component: Not the
business logic calls the access control component, but the access control calls
the business logic. We argue that this approach is uncommon, as access control
is a part of the business logic and not business logic a part of access control.

7.5.3. Provide the Facts

To be able to make a decision, the policy decision point PDP needs to know
the facts. For example, if the concept (access control container) ”user” has been
defined, the PDP needs to know, which users exist (e.g. Ann, Herb, Jim, Liz).

Therefore, the PDP needs a mechanism to learn about the entities. RFC 2904
assigns this task to the policy information point (PIP).

Anyhow, when writing code as a software developer, two ways are possible:
(1) The PIP asks the business software to retrieve this information (inversion-
of-control approach) when the PIP needs to know (e.g. during an access check)
or (2) the PIP is told through a function call, when such an entity is created in
the business software (direct approach).

• Example code for the first approach could look like below.

adqlscope . ge tExterna lConta iner (” users ” , BusinessCode . getUsers ()) ;

The access control component is told, that all users can be retrieved by
calling the method BusinessCode.getUsers(). This functionality is
not yet implemented in our current prototype.

• A direct function call informing the PIP about a fact at its creation time
could look like this:

177

7. Implementing ADQL as Software Service

1 adqlconnect ion . executeADQLCommand
(” users = DEF CONTAINER(Ann = DEF ENTITY ()) ; ”) ;

Here, the access control service is informed about the existence of a user
”Ann”.

Both approaches have advantages and disadvantages: In the case of a direct
approach, all changes (i.e. creations and deletions) in access control relevant
facts have to be propagated to the external access control service. The facts are
stored twice, in the business application and the access control service. This
includes the risk of data inconsistency.

The direct approach can evaluate access checks faster: The definition of a con-
tainer with all its entities is known to the PIP. No (remote) function calls have to
be issued, which can take quite a time to be answered. Furthermore, it allows
the possibility of pre-calculation access check queries.

The above advantages of a direct approach are the disadvantages of the indirect
approach, and vice versa.

7.5.4. Learn the Current System State

To make an access control decision, it is necessary to know about the current
system state (current situation), e.g. who wants to do what. Let us assume
the access control containers ”users” and ”objects” exist. The decision to grant
or deny access can only be made, if ADQL knows which user wants to gain
access on which object. Obviously, without this knowledge, a decision cannot
be made.

There are two possible ways, to find out about the current binding of an access
control container. First, ADQL can ask another service (the policy information
point, PIP [FHdL+00]). Second, ADQL has been told about the current binding
before the decision has to be made.

Actually, both situations have to be dealt with by another piece of code in the
business software. The first case can be handled by a call-back function (pre-
cisely, the address of code in memory or the network to be called when the
current binding needs to be evaluated).

178

7.6. ADQL Back End Performance

adqlscope . s e t (” time ” , System . currentTimeMillisADQL () , TTL . nonpermanent) ;

This example tells ADQL it can retrieve the current time by calling the function
System.currentTimeMillisADQL(). Please note, that this function must
implement the interface ADQLScopeCallbackInterface from the client li-
brary.

The second case can be handled by the simple code lines below telling ADQL
the current user is ”Ann”:

1 adqlscope . s e t (” user ” , ”Ann” , TTL . nonpermanent) ;

It is only a question of syntax how to handle web service calls like REST, SOAP
and others. Therefore, we will not discuss this further.

7.5.5. Defining Policies

The policies, which define the conditions for access, are created when the busi-
ness software is installed for the customer. This is usually a task for the system
administrators. For convenience, a graphical user interface like the ADQL We-
bGui can be used. Alternatively, native ADQL commands can be issued to the
ADQL service.

7.6. ADQL Back End Performance

In this section we describe the result of several performance tests we did for the
ADQL back end. All tests are based on ADQL version 2.6pre1.

As test system we used an 8-core Intel system (Intel Xeon CPU X5355 @ 2.66GHz).
The memory used by the Java Virtual machine was 71 MB. The test system was
using Linux with a 2.6 kernel. As persistence storage we used PostgreSQL in
version 8.4. The Postgres server was running on the same node as the JVM.

179

7. Implementing ADQL as Software Service

All tests were done using a test software written in C. The C program sim-
ply reads test commands from a file and repeats sending the commands to the
ADQL back end. The results sent back by the ADQL back end are analyzed
for errors but not handled any further. The log files for these tests are available
from the author.

We tested several variations:

• Normal Core: The normal core was the standard ADQL back end, using
no specializations and compiled straight from the sources. As connection
interface, the TCP String interface was used. The connection was made
over the local loopback interface, thus testing software and ADQL back
end were running on the same machine.

• Parser with and without logging: We wanted to know the influence of net-
work overhead. Using communication through a network, in our case
TCP, may result in lower performance as the whole network software
stack has to be processed to receive commands and answers. To circum-
vent this effect and measure how large this effect is, we tested a variant
where the test software was connected directly to the parser without us-
ing a network connection.

The variant was split into two sub-variants: As we wanted to evaluate
the influence of creating and including logging information on the side
of the back end, we disabled all logging functionality in one sub-variant
(”without logging or w/o logging”). The other sub-variant made use of
standard logging features (”with logging”).

• Controller with and without logging: To find out the influence of the parser
on the run time performance, we created two test alternatives avoiding
the parser code completely. The parser is used to interpret ADQL com-
mands (delivered as a text sequence) and call corresponding methods
from ADQL’s core.

To find out, how time consuming the parsing is, we connected the test
software directly to the ADQL core by direct Java function calls avoiding
any parsing. As ADQL’s back end is a software stack, consequently, also
the network stack was avoided. Therefore, the ”controller” variant is ex-
pected to be the fasted variant, as it omits network and parser overhead.

Again, we split this variant into two sub-variants, one with and the other
without logging in the back end.

As test case we used the ”traveler scenario”. The complete ADQL listing is
depicted in the appendix. The traveler scenario defines containers for ”users”,
”pictures”, ”trips”, ”roles”, ”permissions”, and ”stages”. Each ”user” can be
assigned ”roles”. A ”user” can be part of a ”trip”, as well as ”pictures” can be

180

7.6. ADQL Back End Performance

assigned to ”trips”. A ”trip” can be assigned a stage, either ”duringtrip”, or
”published”. The scenario uses 4 policies consisting of 9 tests.

For the tests the persistence store was initiated with the traveler scenario. Then,
one access request was sent to the back end repeatedly. The access request
results in a ”deny” so that all policies and tests have to be tested.

The core was restarted and re-initialized after each sequence. No other requests
or connections were sent to the core during the tests. All versions were tested
sending the command 100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600, 51200,
and 102400 times. By this sequence we wanted to measure the start-up costs
for the core. All variants were tested three times with every sequence length.
The average was calculated for all three runs of every variant and sequence
length.

Times 1st test 2nd test 3rd test Average (ms) Cmds p.s. Cmd duration (μs)
100 648 705 548 634 158 6337
200 1100 1104 1031 1078 185 5392
400 1948 1864 1710 1841 217 4602
800 3664 3164 3015 3281 244 4101

1600 5622 6036 4730 5463 293 3414
3200 12103 10632 9832 10856 295 3392
6400 21282 24104 25248 23545 272 3679

12800 49384 47014 47540 47979 267 3748
25600 96325 95025 95147 95499 268 3730
51200 194689 191593 192531 192938 265 3768
102400 394533 377621 378652 383602 267 3746

Table 7.4.: Results table for the ”normal variant” of the check access perfor-
mance test of the traveler scenario

Times 1st test 2nd test 3rd test Average (ms) Cmds p.s. Cmd duration (μs)
100 247 237 246 243 411 2433
200 367 340 371 359 557 1797
400 780 673 735 729 548 1823
800 1459 1341 1494 1431 559 1789

1600 2686 2683 2800 2723 588 1702
3200 5425 5416 5429 5423 590 1695
6400 10839 10820 10849 10836 591 1693

12800 21661 21629 23821 22370 572 1748
25600 43256 43210 45283 43916 583 1715
51200 86540 88350 90333 88408 579 1727
102400 173213 191172 177721 180702 567 1765

Table 7.5.: Results table for the ”controller variant with logging” of the check
access performance test of the traveler scenario

Tables 7.4, 7.5, 7.6, 7.7, and 7.8 show the test results. Figure 7.10 depicts the

181

7. Implementing ADQL as Software Service

Times 1st test 2nd test 3rd test Average (ms) Cmds p.s. Cmd duration (μs)
100 282 245 237 255 393 2547
200 433 359 352 381 524 1907
400 864 698 872 811 493 2028
800 1414 1273 1396 1361 588 1701
1600 2551 2540 2607 2566 624 1604
3200 5325 5314 5167 5269 607 1646
6400 10461 10474 10493 10476 611 1637

12800 20716 20637 20555 20636 620 1612
25600 42925 41148 41167 41747 613 1631
51200 85409 82132 82313 83285 615 1627
102400 164945 163992 164872 164603 622 1607

Table 7.6.: Results table for the ”controller variant without logging” of the check
access performance test of the traveler scenario

Times 1st test 2nd test 3rd test Average (ms) Cmds p.s. Cmd duration (μs)
100 534 540 449 508 197 5077
200 912 920 778 870 230 4350
400 1730 1797 1552 1693 236 4233
800 3128 3193 3024 3115 257 3894
1600 6630 6092 5991 6238 257 3899
3200 11847 12692 11748 12096 265 3780
6400 22764 24120 22814 23233 275 3630

12800 45628 50412 45713 47251 271 3691
25600 94666 92578 92203 93149 275 3639
51200 191288 185218 184247 186918 274 3651
102400 372788 368869 369042 370233 277 3616

Table 7.7.: Results table for the ”parser variant with logging” of the check access
performance test of the traveler scenario

Times 1st test 2nd test 3rd test Average (ms) Cmds p.s. Cmd duration (μs)
100 678 712 479 623 161 6230
200 1109 1062 833 1001 200 5007
400 1944 1817 1636 1799 222 4498
800 3607 3267 3216 3363 238 4204
1600 5728 5614 5627 5656 283 3535
3200 11953 11060 11077 11363 282 3551
6400 22396 22113 23012 22507 284 3517

12800 45105 44125 46590 45273 283 3537
25600 92487 88407 90252 90382 283 3531
51200 177023 177041 178698 177587 288 3469
102400 356901 355522 357484 356636 287 3483

Table 7.8.: Results table for the ”parser variant without logging” of the check
access performance test of the traveler scenario

182

7.6. ADQL Back End Performance

Figure 7.10.: Check access performance test of the traveler scenario

commands per seconds processed by the ADQL back end for all tested varia-
tions and sequence lengths.

As expected, the performance tests with full functionality and all back end lay-
ers enabled (”normal core”), are the slowest variant. Anything else would be
counter-intuitive. The ”normal core” starts up with 158 commands per second
for the first 100 commands, improving with every command sequence pro-
cessed (see table 7.4). Please note, that this is not caused by caching mecha-
nisms used in the back end, as no caching has been enabled for all tests. When
the startup phase has been overcome, the performance levels out at about 270
commands per second (see table 7.4). The test results of 1600 and 3200 com-
mand repetitions are higher, 293 and 295, respectively. This result is surprising,
as we would have expected the results to be monotonically increasing. It might
be the effect of the Java garbage collector, who starts up just after 3200 repeats
and slows down the system. However, we did not explicitly test for this ef-
fect.

From figure 7.10 we can see that the ”parser” variants do influence the back end
performance only marginally (see also tables 7.7 and 7.8). The tests ”controller
with and without logs” and ”normal core” share almost the same performance.
The ”normal control” includes the complete network stack, while the variant
”controller with and without logging” omits the network stack. This finding
leads to the conclusion that the network stack requires only a very small, prob-

183

7. Implementing ADQL as Software Service

ably fixed, percentage of the performance and does not significantly change the
overall performance.

Furthermore, we see that logging does not have a heavy influence on the per-
formance (see tables 7.8). This observation is repeated with the ”controller”
variant (see and 7.6), although, logging has a bigger influence on the latter vari-
ant than on the ”parser” variant.

Concerning the variants ”controller”, which omit the parser (and the network
stack), doubles the performance relative to the ”normal” variant (see table 7.5).
The commands operated per second stabilize at about 580 commands per sec-
ond with logging and 610 commands per second without logging. We conclude
that the parser requires about 50% of the total performance of the back end.

In this section we have shown that for the use case ”traveler scenario” the aver-
age number of access checks processed per second is roughly about 300. About
50% of the processing time is required by the parser, the other 50% by ADQL’s
internal logic and the persistence storage. Logging does have a minor influence
on the performance only.

7.7. Performance of Other Access Control
Implementation

In this section we provide examples of the performance of other access control
implementations.

Performance of a RBAC Access Control at CERN Gysin et al. [GPC+07b]
describe their implementation of a standard RBAC access control model for the
accelerator control system at CERN. The implementation was done by a co-
operation of CERN and Fermilab. Their implementation pre-calculates atomic
access rights from facts and policies and stores them in a structure Gysin et al.
call ”access map”. For their performance test they used 20 rules and 2000 rule
access maps. Their findings were:

• The size of the access map has little influence on the answering times.

• Logging has little effect on the answering times.

• Gysin et al. used RSA verification for access requests. The verification
algorithm alone took between 0.15 ms and 5 ms per request, dependent
on the RSA key length.

184

7.7. Performance of Other Access Control Implementation

• Dependent on the architecture (2-tier, 3-tier) the answering time was about
0.7 ms per request (2-tier, 512-bit RSA key length) for a 2000 rule environ-
ment in the best case.

It is difficult to compare the findings of Gysin et al. with our own results. Gysin
et al. use pre-calculation in their approach which operates as a cache for access
result calculations. Consequently, their finding that the amount of rules stored
in the model did not influence the answering times significantly, is conclusive.
How could it? Using pre-calculation, the number of policies can only influence
the time necessary to pre-calculate the access results and not the lookup time
of the latter.

Second, Gysin et al. use RSA-based verification which we do not. Gysin et al.
report execution times for RSA verification of 0.15 ms (512-bit RSA key length)
but we cannot say for sure if we can simply subtract these values from the
answering times to calculate RSA-free processing times. If we do so, a typical
answering time of Gysin et al. would be 0.7ms− 0.15ms = 0.55ms. Our ADQL
implementation currently offers around 1000

287 = 3.48ms per request.

The finding that logging influences answering times only marginally is consis-
tent with our own findings.

The approach of Gysin et al. and our own approach differ too much to be able
to compare both in detail and infer better or worse performance.

However, both approaches deliver answering times in the same order of mag-
nitude. If we assume, that access control mechanisms for the accelerator control
at CERN are time-critical, we can conclude that our current ADQL implemen-
tation is also fast enough for this kind of scenario.

Performance of XACML implementations Another performance test has
been reported by Turkmen and Crispo [TC08]. They compare three open-source
implementations of XACML on specific policy and request settings. They tested
implementations from Sun, ”Sun XACML”, XACMLight (offering only parts of
the functionality of XACML), and XACML Enterprise. Turkmen and Crispo
verified their test cases concerning the amount of policies (1,100,1k,10k) and
rules (10,50,100,500,1k).

We describe some of their results:

• XACML Enterprise evaluated 10 policies with 1000 rules in 125 ms.

• XACML Light evaluated 10 policies with 1000 rules in 6 s.

• Suns XACML’s performance lies between the other two test candidates.

185

7. Implementing ADQL as Software Service

It is difficult to compare the results of Turkmen and Crispo with the results
for ADQL. Dependent how ”rules” are counted, our own performance test sce-
nario can be seen to have around 200 ”rules” (counting symbols and symbol
references in our test scenario). However, both approaches do not match so
they can be hardly compared.

We can conclude that an answering for an access request towards an XACML
implementation consisting of 10 policies and 1000 rules is about 125 ms (XACML
Enterprise) or 6 s (XACML light). ADQLs answering time with about 200 sym-
bols and 4 policies is around 3.48 ms.

If we assume that the XACML implementations can be used in production en-
vironments, ADQL can as well, as ADQL’s answering times are 2 (XACML
Enterprise) or 3 (XACML light) orders of magnitude faster than XACML im-
plementations.

However, we are aware that this first comparison between quite different access
control implementations cannot be seen as a real benchmark as the test setups
differ in many points. We leave this for future work.

7.8. Summary

In this chapter we aimed for three objectives:

• First, we described the architecture of ADQL’s back end, front end, and
intermediate layer. Our ADQL implementation is a software service fol-
lowing the MVC paradigm. It can be accessed by several interfaces, like
TCP string, TCP objects, REST, and Thrift. This finding is related to target
(1) of this work, ”by describing the service implementation of our proto-
type” and proof, that a generalized access control model, like ADQL, can
be implemented as a concrete and operative software service.

• Second, we described the steps necessary to use ADQL’s implementation
for a business software as PDP/PEP/PIP providing access control func-
tionality. We aimed to show that the operative ADQL prototype can be
applied to productive scenarios.

• Third, we showed the performance of ADQL. We aimed to demonstrate
that ADQL is fast enough to answer access requests in a proper time ap-
propriate for production environments. We think, that about 300 access
requests per second is indeed fast enough for this goal and could verify
this by comparing ADQL answering times with a RBAC implementation
for CERNs accelerator control system and XACML implementations.

186

8. Conclusion

In this work we suggest an access control model, the Access Definition and
Query Language (ADQL), and its implementation as a software service used
by business applications to factor access control out of the business application
itself.

ADQL is a context-free formal computer language. It is implemented as a us-
able software service. ADQL is a meta language in the sense that it can be used
to work like existing access control models. More specifically, ADQL is used to
define the concepts which can then be used to formulate the conditions which
decide if access is granted or denied. As example, ADQL allows to introduce
the concepts ”users”, ”objects”, and ”time”. Policies can be formulated to grant
access for specific users to specific objects on certain time slots.

ADQL consists of two parts: the formal language and the software service.
While the formal language describes the concepts and basics of ADQL as a meta
access control model, the software is an implementation interpreting ADQL
language expressions and inferencing on facts, if for specific conditions access
may be granted or must be denied.

ADQL has four aims:

• It wants to close the gap between the constantly reused Role Based Access
Control (RBAC) models in industry / practice on the one side, and the
large number of access control models suggested by the academic world.

• Second, our suggested model is a configurable meta model. This means,
that the model can be configured to mimic existing access control models,
e.g. discretionary access control models (i.e., the HRU model), mandatory
access control models (i.e., Bell-LaPadula, ChineseWall, ...), RBAC-like
models (RBAC0−3, TRBAC, ...), and others.

• Third, the access control model is implemented as an existing, usable soft-
ware service. The software service can be used by business applications
to decide if operations are allowed or denied.

• Fourth, the access control model and its implemented service support fea-
tures like flexibility, delegation, and (user) empowerment. Flexibility is
meant in a sense, that the service can be configured to work like standard

187

8. Conclusion

access control models. Delegation means, that access control is based on
delegation and must support features like proxies and delegation of ac-
cess rights from one user to another. This results in empowerment of the
user allowing the user to decide upon the access control model being used
for his data.

Our work introduces the motivation for such an approach in chapter 1. We
show that privacy will be an important matter in the future, especially related
to social networks, like Facebook, Google plus and other personal data. After
this motivational part, we show that for software designers, developers, and
administrators access control is mostly a recurring task. We analyze existing
software libraries and frameworks and find, that to our knowledge, no config-
urable software exists which could handle the access control part for business
software. Consequently, access control code in software is rewritten for each
application again, mostly utilizing application specialized adaptations of stan-
dard RBAC-models. This approach misses the chance of code re-usage. The
chapter closes by laying out of the aims of our work.

Chapter 2 provides an overview of some major points in the history of access
control. The chapter starts by providing the major design principles for access
control models of Saltzer and Schroeder [SS75]. Although perhaps not all of
their principles formulated back in 1975 are still valid, we still see major learn-
ing points for present access control services. As for any scientific discipline,
it is important to define the important terms to avoid misunderstandings. So
we provide definitions of important terms related to access control model like
”account” and ”user”, next. We continue with a history of access control. We in-
troduce the background and models of the discretionary access control models,
mandatory access control models, role based access control and models derived
from role based access control models. Another part of this chapter are impor-
tant standards, especially relevant RFCs and the ”eXtensible Access Control
Markup Language” (XACML) standardized by OASIS. Interesting ideas come
from the world of the ”semantic web” which we describe as well as logic-based
authorization models.

The chapters 3, 4, and 5 describe the foundations of our own approach, the
Access Definition and Query Language (ADQL). Chapter 3 is an informal in-
troduction to ADQL. It utilizes a motivational example for access control re-
quirements and shows, how these requirements are implemented in ADQL.
The chapter aims to provide an example to make it easier for the reader to un-
derstand the language syntax and its underlying concepts.

The complete syntax of ADQL is presented in chapter 4. Concerning its syn-
tactical structure, ADQL leans towards the famous Lambda calculus, although
purpose, syntax, and semantic differ from the latter. However, like the Lambda

188

calculus, ADQL knows definitions and applications. Definitions change the in-
ternal state of the access control system, applications are operations executed
on the internal state, which do not change the internal state itself. Symbol def-
initions referencing applications are exempted here. Strictly seen, symbol defi-
nitions change the internal state of our access control system.

The underlying concepts of ADQL are described in chapter 5. ADQL makes use
of set theory also utilizing relations, filters, projections, boolean tests, and logi-
cal AND- and OR-concatenations. ADQL calls its concepts entities, containers,
relations, filtered 1-projections, tests, policies, variables, and scopes. Contain-
ers can be organized in hierarchies allowing hierarchically organized entities,
e.g. user group hierarchies, object hierarchies, organizational hierarchies.

Chapter 6 demonstrates with three use cases how ADQL can be used to model
access control. The first example shows how ADQL can be used to work like
the Ball-LaPadula model. We show that ADQL requires two policies and few
model definitions to mimic Bell-LaPadula. The second example provided is
SAP R/3 ERP’s access control model. SAP is a large German software company
offering a widely-spread enterprise resource planning software. We show how
the access control model of SAP R/3 can be modeled in ADQL. ADQL requires
only one policy and a few definitions to emulate the model. Our last use case
example is an extended RBAC model which stems from an e-science project
supporting students’ thesis in cooperation with companies. We demonstrate
how ADQL can be used to handle project-related roles, hierarchical organiza-
tions and model time-dependent access rights.

The implementation of ADQL as a software service is described in section 7. We
picture the design of the software service allowing ADQL to work as a policy
decision point (PDP), policy enforcement point (PEP), and as policy informa-
tion point (PIP). In addition to the architecture, we show how business software
can utilize ADQL as external service to take responsibility for access decisions.
We describe the steps software developers have to follow, to include ADQL as
service in their business software. ADQL offers several state-of-the-art inter-
faces for client requests, e.g. TCP, UDP, REST, OSGi, and Thrift. A basic web
management graphical user interface allows to avoid pure textual communica-
tion with the service. The chapter closes by an analysis of the performance of
ADQL indicating that ADQL is fast enough to be used in production environ-
ments although it is an academic prototype.

Future Work To further improve the performance of AQDL’s service imple-
mentation, we want to work on intelligent caching and caching update mech-
anisms. Related to further improving execution times, especially the relatively
costly parser layer, we want to re-implement ADQL in C.

189

8. Conclusion

To avoid duplicated facts storage, we think of implementing interfaces to ex-
ternal data storages, like LDAP, external databases, and fast and reliable mech-
anisms to retrieve such data.

On the conceptional side we want to implement the possibility of free, explicit
variable definitions avoiding situations where ”artificial” containers have to
be utilized representing two variables. Further, supporting implicitly defined
relations can gain ADQL more flexibility. Another extension is a more flexible
and not so strictly interrelated definition of filters and projections. For practical
purposes, we also plan adding the support for incremental updates of existing
definitions. E.g., adding an entity to an existing container without having to
re-define the container as a whole.

190

Appendix

191

A. Backus-Naur-Form of ADQL
v3.0

〈Expression〉 |= 〈Term〉 ”;” | 〈Term〉 ”;” 〈Expression〉
〈Term〉 |= ε | 〈Definition〉 | 〈Application〉

〈Definition〉 |= 〈Entity〉 | 〈Container〉 | 〈Relation〉
| 〈Projection〉 | 〈Test〉 | 〈Policy〉 | 〈Scope〉

〈Application〉 |= 〈NamedApplication〉 | 〈AnonApplication〉
〈NamedApplication〉 |= 〈ExtSymbol〉”=”〈AnonApplication〉
〈AnonApplication〉 |= ∇ ”(” 〈Term〉 ”)” ”(” 〈Scope〉 ”)”

〈Entity〉 |= 〈ExtSymbol〉 | 〈EntityDef〉
| 〈ExtSymbol〉”=”〈EntityDef〉

〈EntityDef〉 |= �e ”(” ”)”

〈Container〉 |= 〈Symbol〉 | 〈ContainerDef〉
| 〈ExtSymbol〉”=”〈ContainerDef〉

〈ContainerDef〉 |= �c ”(” 〈Terms〉 ”)”
〈Terms〉 |= 〈Term〉 | 〈Term〉 ”,” 〈Terms〉

〈Variable〉 |= �〈Symbol〉

〈Relation〉 |= 〈Symbol〉 | 〈RelationDef〉
| 〈ExtSymbol〉”=”〈RelationDef〉

〈RelationDef〉 |= 〈RelationHead〉
| 〈RelationHead〉 ”:” 〈RelationBody〉

〈RelationHead〉 |= �r ”(” 〈Containers〉 ”)”
〈Containers〉 |= 〈Container〉 | 〈Container〉 ”,” 〈Containers〉

193

A. Backus-Naur-Form of ADQL v3.0

〈RelationBody〉 |= ”{” 〈Tuples〉 ”}”
〈Tuples〉 |= 〈Tuple〉 | 〈Tuples〉 ”,” 〈Tuple〉
〈Tuple〉 |= ”(” 〈SymbolList〉 ”)”

〈SymbolList〉 |= 〈Symbol〉 | 〈Symbol〉 ”,” 〈SymbolList〉

〈Projection〉 |= 〈Symbol〉 | 〈ProjDef〉 | 〈ExtSymbol〉”=”〈ProjDef〉
〈ProjDef〉 |= �pr ”(” 〈Relation〉 ”)” ”(” 〈ProjTuple〉 ”)”

〈ProjTuple〉 |= ”.” ”,” 〈VarContApps〉 | 〈VarContApps〉 ”,” ”.” |
〈VarContApps〉 ”,” ”.” ”,” 〈VarContApps〉

〈VarContApps〉 |= 〈VarContApp〉 | 〈VarContApp〉 ”,” 〈VarContApps〉
〈VarContApp〉 |= 〈Variable〉 | 〈Container〉 | 〈Application〉

〈Test〉 |= 〈Symbol〉 | 〈TestDef〉 | 〈ExtSymbol〉”=”〈TestDef〉
〈TestDef〉 |= �t ”(” 〈TestBody〉 ”)”

〈TestBody〉 |= 〈VarContApp〉 ”,” 〈VarContApp〉 ”,” 〈Operator〉

〈Policy〉 |= 〈Symbol〉 | 〈PolicyDef〉
| 〈ExtSymbol〉”=”〈PolicyDef〉

〈PolicyDef〉 |= �p ”(” 〈Tests〉 ”)”
〈Tests〉 |= 〈Test〉 | 〈Test〉 ”,” 〈Tests〉

〈Scope〉 |= 〈Symbol〉 | 〈ScopeDef〉
| 〈ExtSymbol〉”=”〈ScopeDef〉

〈ScopeDef〉 |= �s ”(” 〈VarAssignments〉 ”)”
〈VarAssignments〉 |= 〈VarAssignment〉

| 〈VarAssignment〉 ”,” 〈VarAssignments〉
〈VarAssignment〉 |= 〈Variable〉 ”=” 〈Container〉

〈Operator〉 |= theta | < | <= | > | >= | == | ! =

〈Symbol〉 |= 〈ExtSymbol〉 | 〈IntSymbol〉
〈ExtSymbol〉 |= 〈ExtIdentifier〉
〈IntSymbol〉 |= 〈IntIdentifier〉

194

〈SpecialContainers〉 |= �c(true) | �c(false)

〈ExtIdentifier〉 |= 〈RegularId〉 | 〈EscapedId〉
〈IntIdentifier〉 |= 〈InternalId〉
〈RegularId〉 |= 〈letter〉 | 〈digit〉

| 〈RegularId〉〈letter〉 | 〈RegularId〉〈digit〉
〈EscapedId〉 |= ”’” 〈anychar〉 ”’”
〈InternalId〉 |= ”$” 〈digit〉

〈letter〉 |= A . . . Za . . . z
〈digit〉 |= 0 . . . 9

〈anychar〉 |= any UTF-8 symbol but ’
| any UTF-8 symbol but ’ 〈anychar〉

ε is the null terminal.
∇,�, �,�e,�c,�r,�pr,�t,�p,�s, true, false are fixed strings.

195

B. Traveler Scenario

1

###########################
3 # Definition of the model #

###########################
5

START TRANSACTION;
7

CREATE CONTAINERS users, pics, trips;
9 CREATE CONTAINERS roles, permissions, stages;

CREATE ENTITIES roles: {organizer, traveler, visitor};
11 CREATE ENTITIES permissions: {read, upload, changeStage};

CREATE ENTITIES stages: {duringtrip, published};
13

CREATE RELATIONS
15 user_role(users, roles),

user_trip(users, trips),
17 pic_trip(pics, trips),

in_stage(trips, stages);
19

CREATE CONTAINER permSet_read: {read};
21 CREATE CONTAINER permSet_upload: {upload};

CREATE CONTAINER permSet_change_stage: {changeStage};
23

CREATE CONTAINER stageSet_published: {published};
25 CREATE CONTAINER stageSet_duringtrip: {duringtrip};

27 CREATE CONTAINER roleSet_organizerOrTraveler: {organizer, traveler};
CREATE CONTAINER roleSet_organizer: {organizer};

29

CREATE TEST currentPerm_eq_read:
31 ([permissions], permSet_read);

CREATE TEST currentPerm_eq_upload:
33 ([permissions], permSet_upload);

CREATE TEST currentPerm_eq_changestage:
35 ([permissions], permSet_change_stage);

CREATE TEST tripOfCurrentUser_eq_currentTrip:
37 (user_trip([users], .), [trips]);

CREATE TEST tripOfCurrentUser_eq_tripOfCurrentPic:
39 (user_trip([users], .), pic_trip([pics], .));

CREATE TEST stageOfCurrentTrip_eq_duringtrip:
41 (in_stage([trips], .), stageSet_duringtrip);

CREATE TEST stageOfTripOfCurrentPic_eq_published:
43 (in_stage(pic_trip([pics], .), .), stageSet_published);

CREATE TEST roleOfCurrentUser_eq_organizerOrTraveler:
45 (user_role([users], .), roleSet_organizerOrTraveler);

CREATE TEST roleOfCurrentUser_eq_organizer:
47 (user_role([users], .), roleSet_organizer);

49 CREATE POLICY tripmembers_can_read:

197

B. Traveler Scenario

{
51 currentPerm_eq_read,

tripOfCurrentUser_eq_tripOfCurrentPic
53 };

This POLICY does not depend on current stage.
55

57 CREATE POLICY all_can_read_if_published:
{

59 currentPerm_eq_read,
stageOfTripOfCurrentPic_eq_published

61 };
This POLICY does not depend on trip membership.

63

CREATE POLICY upload_rule:
65 {

currentPerm_eq_upload,
67 tripOfCurrentUser_eq_currentTrip,

roleOfCurrentUser_eq_organizerOrTraveler,
69 stageOfCurrentTrip_eq_duringtrip

};
71

CREATE POLICY change_stage_rule:
73 {

currentPerm_eq_changestage,
75 roleOfCurrentUser_eq_organizer,

tripOfCurrentUser_eq_currentTrip,
77 stageOfCurrentTrip_eq_duringtrip

};
79

COMMIT;
81

#########
83 # Facts #

#########
85

START TRANSACTION;
87

CREATE ENTITIES users: {Alice, Bob, Cindy, Daniel};
89 CREATE ENTITIES trips: {trip_to_Australia, trip_to_Brasil};

CREATE ENTITIES pics: {picOfRio_jpg};
91

CREATE LINKS in_stage:
93 {(trip_to_Australia, duringtrip), (trip_to_Brasil, duringtrip)};

CREATE LINKS user_role:
95 {(Alice, visitor), (Bob, traveler), (Cindy, organizer), (Daniel, visitor)};

CREATE LINKS user_trip:
97 {(Alice, trip_to_Australia), (Bob, trip_to_Australia),

(Cindy, trip_to_Australia), (Daniel, trip_to_Brasil)};
99 CREATE LINKS pic_trip:

{(picOfRio_jpg,trip_to_Brasil)};
101

additional facts, which are part of request-flow below:
103 # CREATE ENTITIES pics: {nicePic_jpg};

CREATE LINKS pic_trip: {(nicePic_jpg,trip_to_Australia)};
105

COMMIT;
107

####################
109 # Example requests #

####################
111

START TRANSACTION;
113 # all changes in the context of the example requests will be

198

reverted in the end
115

CHECK ACCESS
117 ([users] := {Bob},

[trips] := {trip_to_Australia},
119 [permissions] := {changeStage});

denied
121

CHECK ACCESS
123 ([users] := {Bob},

[trips] := {trip_to_Brasil},
125 [permissions] := {upload});

denied
127

CHECK ACCESS
129 ([users] := {Bob},

[trips] := {trip_to_Australia},
131 [permissions] := {upload});

granted
133

135 CREATE ENTITIES pics: {newNicePic_jpg};
CREATE LINKS pic_trip: {(newNicePic_jpg, trip_to_Australia)};

137

CHECK ACCESS
139 ([users] := {Alice},

[pics] := {newNicePic_jpg},
141 [permissions] := {read});

granted
143

CHECK ACCESS
145 ([users] := {Alice},

[pics] := {picOfRio_jpg},
147 [permissions] := {read});

denied
149

CHECK ACCESS
151 ([permissions] := {read},

[pics] := {newNicePic_jpg},
153 [users] := {Daniel});

denied
155

CHECK ACCESS
157 ([users] := {Alice},

[trips] := {trip_to_Australia},
159 [permissions] := {upload});

denied
161

CHECK ACCESS
163 ([users] := {Cindy},

[trips] := {trip_to_Brasil},
165 [permissions] := {changeStage});

denied
167

CHECK ACCESS
169 ([users] := {Cindy},

[trips] := {trip_to_Australia},
171 [permissions] := {changeStage});

granted
173

DELETE LINKS in_stage: {(trip_to_Australia, duringtrip)};
175 CREATE LINKS in_stage: {(trip_to_Australia, published)};

177 CHECK ACCESS

199

B. Traveler Scenario

([users] := {Alice},
179 [pics] := {newNicePic_jpg},

[permissions] := {read});
181 # granted

183 CHECK ACCESS
([permissions] := {read},

185 [pics] := {newNicePic_jpg},
[users] := {Daniel});

187 # granted

189 CHECK ACCESS
([permissions] := {upload},

191 [trips] := {trip_to_Australia},
[users] := {Bob});

193 #denied

195 CHECK ACCESS
([permissions] := {changeStage},

197 [trips] := {trip_to_Australia},
[users] := {Cindy});

199 #denied --> maybe further ac desirable, to get positive result here

201 CHECK ACCESS
([permissions] := {upload},

203 [trips] := {trip_to_Australia},
[users] := {Cindy});

205 #denied --> maybe further ac desirable, to get positive result here

207 # rollback to get rid of example data
ROLLBACK;

Listing B.1: Listing of the Traveler Scenario

200

List of Figures

2.1. Timeline of a selection of historically important contributions in
access control . 11

2.2. Overview of the terms user, session, principal, and subject and
their relationships following [Ben06, p.10]. 18

2.3. Representation of the example protection state as access control
list . 24

2.4. Representation of the example protection state as capability list . 25
2.5. Composition of objects in the Chinese Wall policy following [BN89,

p.208] . 30
2.6. Elements of the Core RBAC model [FKC07, p.64] 31
2.7. Architecture and data flow of XACML. Taken from [Mos05, p.17]. 41
2.8. Authorization model of Woo and Lam [WL92, p.38]. 46

3.1. Graphical illustration of the simple RBAC example. 52

4.1. Illustration of the container example 2 68
4.2. Access control model defined by Mironov [Mir12, p.10] demon-

strating a use case scenario for the requirement of two variables
for a container. 69

4.3. Example of a container hierarchy built through indirect entity
structures . 81

5.1. Structure of the logical layers of ADQL 93
5.2. Example showing the mapping of facts in an information system

to the ADQL environment. 95
5.3. Example of a recursive container definition. Full circles represent

a tuple in the form bi = (ei, d), empty circles bi = (ei, d̄). 101
5.4. Use case of a recursive container definition for user groups. . . . 103
5.5. Use case example of relations. 106

6.1. Structure of the SAP R/3 access control model. We provide some
examples for possible object names (e.g. P PERNR) 133

6.2. SAP model represented in ADQL 136

201

List of Figures

6.3. Graphical representation of the model layer for the e-Science sce-
nario. Containers are depicted as ellipses, relations as lines. “pj”
is an abbreviation for project. 142

7.1. General architecture of our Access Definition and Query Lan-
guage implementation. 154

7.2. Back end architecture of our Access Definition and Query Lan-
guage implementation . 156

7.3. Database schema of ADQL’s persistence layer 159
7.4. Listing of an example code creating database entries of all ADQL

concepts . 160
7.5. Example listing of the JavaCC code. The example shows the lan-

guage definition and reference of an ADQL container. 167
7.6. Example connection to the network layer using the TCP string

port. 170
7.7. Front end architecture of our Access Definition and Query Lan-

guage implementation. 171
7.8. Screenshot of the ADQL Management Web Interface 173
7.9. UML class diagram of the class ResultObject 174
7.10. Check access performance test of the traveler scenario 183

202

List of Tables

1.1. Overview of existing software frameworks / libraries and their
authentication and authorization features. 4

2.1. Example of a protection state as access matrix 22
2.2. Representation of the example protection state as authorization

table . 23

7.1. Example of the table ”adqlentity” resulting from the listing in
figure 7.4 . 160

7.2. Example of the table ”linkcollection” resulting from the listing in
figure 7.4 . 162

7.3. Example of the table ”fiveentities” resulting from the listing in
figure 7.4 . 162

7.4. Results table for the ”normal variant” of the check access perfor-
mance test of the traveler scenario 181

7.5. Results table for the ”controller variant with logging” of the check
access performance test of the traveler scenario 181

7.6. Results table for the ”controller variant without logging” of the
check access performance test of the traveler scenario 182

7.7. Results table for the ”parser variant with logging” of the check
access performance test of the traveler scenario 182

7.8. Results table for the ”parser variant without logging” of the check
access performance test of the traveler scenario 182

203

Bibliography

[AG08] SAP AG. ADM940 - Berechtigungskonzept AS ABAP Schulungshand-
buch. SAP, Walldorf, Germany, 2008.

[Alg86] Suad Algic. Relational Database Technology. Texts and Monographs
in Computer Science. Springer, New York, 1986.

[All11] OSGI Alliance. Open Services Gateway Initiative (OSGi). http:
//www.osgi.org/Main/HomePage, 2011. last accessed 2011-
03-15.

[And72] James P. Anderson. Computer Security Technology Planning
Study. Volume 2. Technical report, Electronic Systems Division
(AFSC), Airforce Systems Command, Hanscom Field, Bedford,
MA, October 1972.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison Wesley, 1st edition, January
1986.

[Bar64] Paul Baran. IX. Security, Secrecy, and Tamper-Free Considerations,
volume 9 of On Distributed Communications. The RAND Corpora-
tion, Santa Monica, CA, August 1964.

[Bar85] H.P. Barendregt. The Lambda Calculus, Its Syntax and Semantics
(Studies in Logic and the Foundations of Mathematics, Volume 103).
Revised Edition. North Holland, Amsterdam, revised edition,
November 1985.

[Bar09] Steve Barker. The next 700 access control models or a unifying
meta-model? In Proceedings of the 14th ACM symposium on access
control models and technologies, SACMAT ’09, pages 187–196, New
York, NY, USA, 2009. ACM.

[BBF01] Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. TRBAC:
a temporal role-based access control model. ACM Transactions on
Information and System Security (TISSEC), 4(3):191–233, 2001.

205

http://www.osgi.org/Main/HomePage
http://www.osgi.org/Main/HomePage

Bibliography

[Ben06] Messaoud Benantar. Access Control Systems. Springer, New York,
2006.

[BFIM98] T. Berners-Lee, R. Fielding, U.C. Irvine, and L. Masin-
ter. Uniform resource identifiers (URI): generic syntax.
http://www.ietf.org/rfc/rfc2396.txt, August 1998. last accessed:
2011-02-26.

[BFS67] G. Bender, D. N. Freeman, and J. D. Smith. Function and design of
DOS/360 and TOS/360. IBM Systems Journal, 6(1):2–21, 1967.

[BHJV08] J. Bock, P. Haase, Q. Ji, and R. Volz. Benchmarking OWL reasoners.
In ARea08: Workshop on Advancing Reasoning on the Web: Scalability
and Commonsense, pages 119–132, Vienna, Austria, 2008.

[Bib77] K. J. Biba. Integrity considerations for secure computer systems.
Technical report, The Mitre Corporation, Bedford, MA, USA, April
1977.

[BL73] D. E. Bell and Leonard J. LaPadula. Secure computer systems:
Mathematical foundations and model. Technical Report MTR-
2547, Vol I, MITRE Corp., Bedford, MA, USA, November 1973.

[BLHL+01] T. Berners-Lee, J. Hendler, O. Lassila, et al. The semantic web.
Scientific American, 284(5):34–43, 2001.

[BLS10] Petter Bae Brandtzaeg, Marika Lueders, and Jan Havard Skjetne.
Too many facebook Friends? Content sharing and sociability ver-
sus the need for privacy in social network sites. International Jour-
nal of Human-Computer Interaction, 26(11-12):1006–1030, 2010.

[BN89] David F.C. Brewer and Micheal J. Nash. The chinese wall security
policy. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 206–228, Los Alamitos, CA, USA, 1989. IEEE Computer So-
ciety.

[BPS+11] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler,
and Francois Yergeau. Extensible markup language (XML)
1.0 (Fifth edition). http://www.w3.org/TR/2008/
REC-xml-20081126/, May 2011. last accessed: 2011-05-30.

[BRJ05] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified
Modeling Language User Guide. Addison-Wesley Professional, 2
edition, May 2005.

206

http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/

Bibliography

[Bur11] Leon Burkard. Entwurf und Bewertung einer Resource Oriented
Architecture (ROA) auf Basis von REST als Referenzarchitektur fuer
die Anbindung von Mobile Devices an ein Backendsystem fuer Smart-
Metering. Bachelor Thesis. Karlsruhe Institute of Technology, Karl-
sruhe, Germany, October 2011.

[CBB+10] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James
Ivers, Reed Little, Paulo Merson, Robert Nord, and Judith Stafford.
Documenting Software Architectures: Views and Beyond. Addison-
Wesley Professional, 2 edition, October 2010.

[CH10] Jason Crampton and Michael Huth. An authorization framework
resilient to policy evaluation failures. In Dimitris Gritzalis, Bart
Preneel, and Marianthi Theoharidou, editors, Computer Security –
ESORICS 2010, volume 6345 of Lecture Notes in Computer Science,
pages 472–487. Springer Berlin / Heidelberg, 2010. 10.1007/978-
3-642-15497-3 29.

[Cir03] M. Cirspin. RFC 3501 - Internet Message Access Protocol - Version
4rev1. http://www.faqs.org/rfcs/rfc3501.html, March
2003. accessed 2011-02-22.

[CMA00] Michael J. Covington, Matthew James Moyer, and Mustaque
Ahamad. Generalized role-based access control for securing fu-
ture applications. Technical Report GIT-CC-00-02, Georgia Tech
College of Computing, Georgia, 2000. accessed 2013-03-12.

[Coh09] Noam Cohen. Wikipedia to limit changes to articles on peo-
ple. http://www.nytimes.com/2009/08/25/technology/
internet/25wikipedia.html, August 2009. accessed 2012-
10-19.

[Con07] The World Wide Web Consortium. XML path language (XPATH).
http://www.w3.org/TR/xpath20/, January 2007. accessed at
2010-01-31.

[Cor11] Oracle Corporation. MySQL Database Management System.
http://www.mysql.com, May 2011. accessed at 2011-05-15.

[Cro06] Douglas Crockford. The application/json media type for
JavaScript object notation (JSON). http://tools.ietf.org/
html/rfc4627, July 2006. last accessed 2011-05-30.

[CSC72] F. J. Corbat, J. H. Saltzer, and C. T. Clingen. MULTICS: the first
seven years. In Proceedings of the Joint Computer Conference, AFIPS
’72 (Spring), pages 571–583, New York, NY, USA, 1972. ACM.
ACM ID: 1478950.

207

http://www.faqs.org/rfcs/rfc3501.html
http://www.nytimes.com/2009/08/25/technology/internet/25wikipedia.html
http://www.nytimes.com/2009/08/25/technology/internet/25wikipedia.html
http://www.w3.org/TR/xpath20/
http://www.mysql.com
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627

Bibliography

[CW87] David D. Clark and David R. Wilson. A comparison of commercial
and military computer security policies. In IEEE Symposium on
Security and Privacy, pages 184–194, Los Alamitos, CA, USA, 1987.
IEEE Computer Society.

[DdVPS02] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Para-
boschi, and Pierangela Samarati. A fine-grained access control
system for XML documents. ACM Transactions on Information and
System Security (TISSEC), 5:169–202, May 2002. ACM ID: 505590.

[Dec10] Michael Decker. Location-aware access control: An overview. In-
ternational Journal on Computer Science and Information System (IJC-
SIS), 5(1):26–44, 2010.

[DLHH09] Bernhard Debatin, Jennette P. Lovejoy, Ann-Kathrin Horn, and
Brittany N. Hughes. Facebook and online privacy: Attitudes,
behaviors, and unintended consequences. Journal of Computer-
Mediated Communication, 15(1):83–108, 2009.

[DM89] John E. Dobson and John McDermid. Security models and enter-
prise models. In C.E. Landwehr, editor, Database Security, II: Sta-
tus and Prospects, pages 1–39. North-Holland Publishing Co, New
York, January 1989.

[Eck12] Matthias Eckstein. Bachelorarbeit: Design und Implementierung einer
REST Schnittstelle fuer einen Policy Decision and Enforcement Point
Bachelorarbeit. Karlsruhe Institute of Technology, Karlsruhe, Ger-
many, September 2012.

[ESMW01] Ed Ellesson, John Strassner, Bob Moore, and Andrea Westeri-
nen. RFC 3060: Policy core information model – version 1 speci-
fication. http://tools.ietf.org/html/rfc3060, February
2001. last accessed: 2011-10-7.

[FHdL+00] Stephen Farrell, Matt Holdrege, Cees T.A.M. de Laat, Pat R. Cal-
houn, Leon Gommans, John R. Vollbrecht, Betty de Bruijn, and
George M. Gross. RFC 2904: AAA authorization framework.
http://tools.ietf.org/html/rfc2904, August 2000. last
accessed: 2011-10-7.

[Fie00] Roy Thomas Fielding. Architectural styles and the design of network-
based software architectures. PhD thesis, University of California,
Irvine, CA, 2000.

[Fis05] Ken Fischer. Ars technica: Wikipedia embraces wider vandal
lockout scheme. http://arstechnica.com/old/content/
2005/12/5790.ars, December 2005. accessed 2011-02-22.

208

http://tools.ietf.org/html/rfc3060
http://tools.ietf.org/html/rfc2904
http://arstechnica.com/old/content/2005/12/5790.ars
http://arstechnica.com/old/content/2005/12/5790.ars

Bibliography

[FJK+08] T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. Winsborough,
and B. Thuraisingham. ROWLBAC: representing role based ac-
cess control in OWL. In Proceedings of the 13th ACM Symposium on
Access Control Models and Technologies - SACMAT ’08, pages 73–82,
Estes Park, CO, USA, 2008.

[FK92] David F. Ferraiolo and D. Richard Kuhn. Role-based access con-
trols. pages 554 – 563, Baltimore MD, 1992.

[FKC07] David Ferraiolo, D. Richard Kuhn, and Ramaswamy Chan-
dramouli. Role-based access control, 2.ed. Artech House,
Boston/London, 2007.

[FLG00] Stephen Farrell, de Cees T.A.M. Laat, and George M. Gross. RFC
2906: AAA authorization requirements. http://tools.ietf.
org/html/rfc2906, August 2000. last accessed: 2011-10-7.

[Fou06] OpenLDAP Foundation. RFC 4512: Lightweight directory access
protocol (LDAP): directory information models. http://tools.
ietf.org/html/rfc4512, June 2006. accessed 2011-02-22.

[GB05] Rajeev Gupta and Manish Bhide. A Generic XACML Based
Declarative Authorization Scheme for Java. In Sabrina de Cap-
itani di Vimercati, Paul Syverson, and Dieter Gollmann, editors,
Computer Security – ESORICS 2005, volume 3679 of Lecture Notes in
Computer Science, pages 44–63. Springer Berlin / Heidelberg, 2005.

[GD71] G. Scott Graham and Peter J. Denning. Protection. pages 417–429.
ACM Press, 1971.

[GHJ94] Erich Gamma, Richard Helm, and Ralph E. Johnson. Design
Patterns. Elements of Reusable Object-Oriented Software. Addison-
Wesley Longman, Amsterdam, 1st ed., reprint. edition, October
1994.

[GM03] Simon Godik and Tim Moses. eXtensible access control markup
language (XACML), version 1.0. Technical report, February 2003.

[GP95] David Garlan and Dewayne E. Perry. Introduction to the special
issue on software architecture. IEEE Transactions on Software Engi-
neering, 21:269–274, April 1995. ACM ID: 205314.

[GPC+07a] S. Geysin, A.D. Petrov, P. Charrue, W. Gajewski, V. Kain, K. Kostro,
G. Kruk, S. Page, and M. Peryt. Role-Based access control for the
accelerator control system at CERN. In International Conference on
Accelerator and Large Experimental Physics Control Systems, pages
90–92, Knoxville, Tennessee, USA, 2007.

209

http://tools.ietf.org/html/rfc2906
http://tools.ietf.org/html/rfc2906
http://tools.ietf.org/html/rfc4512
http://tools.ietf.org/html/rfc4512

Bibliography

[GPC+07b] S. Gysin, A. D. Petrov, P. Charrue, W. Gajewski, V. Kain, K. Kostro,
G. Kruk, S. Page, and M. Peryt. Role-based access control for the
accelerator control system at CERN. In Proceedings of International
Conference on Accelerator and Large Experimental Physics Control Sys-
tems 2007, pages 90–92, Knoxville, Tennessee, USA, 2007.

[Gro10] PostgreSQL Global Development Group. PostgreSQL Database
Management System. http://www.postgresql.org/, Febru-
ary 2010. accessed at 2011-02-27.

[Haf06] Katie Hafner. Growing wikipedia refines its ’Anyone can edit’ pol-
icy. The New York Times, June 2006. accessed 2011-02-22.

[Har12] Dick Hardt. The OAuth 2.0 authorization framework. http:
//tools.ietf.org/html/draft-ietf-oauth-v2-3, July
2012. accessed at 2012-10-21.

[HdBG+00] M. Holdrege, B. de Bruijn, L. Gommans, D. Spence, J. Voll-
brecht, G. Gross, C. de Laat, S. Farrell, and P. Calhoun. RFC
2905: AAA authorization application examples. http://tools.
ietf.org/html/rfc2905, August 2000. last accessed: 2011-10-
7.

[Her00] Shai Herzog. RFC 2748: The COPS (Common open policy service)
protocol. http://tools.ietf.org/html/rfc2748, January
2000. last accessed: 2011-10-7.

[HKY95] T. Howes, S. Kille, and W. Yeong. RFC 1777: Lightweight directory
access protocol. http://tools.ietf.org/html/rfc1777,
March 1995. accessed 2011-02-22.

[HMPR04] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design science in
information systems research. MIS quarterly, 28(1):75–105, 2004.

[HR78] M.H. Harrison and W.L. Ruzzo. Monotonic protection systems.
In R. Demilo, editor, Foundations of Secure Computations. Academic
Press, 1978.

[HRU76] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman.
Protection in operating systems. Communications of the ACM,
19(8):461–471, 1976.

[HS10] Jerome Howard Saltzer. Jerome Howard Saltzer: Curriculum
vitae. http://web.mit.edu/afs/athena.mit.edu/user/
other/a/Saltzer/www/vita.html, May 2010. accessed 2011-
02-22.

210

http://www.postgresql.org/
http://tools.ietf.org/html/draft-ietf-oauth-v2-3
http://tools.ietf.org/html/draft-ietf-oauth-v2-3
http://tools.ietf.org/html/rfc2905
http://tools.ietf.org/html/rfc2905
http://tools.ietf.org/html/rfc2748
http://tools.ietf.org/html/rfc1777
http://web.mit.edu/afs/athena.mit.edu/user/other/a/Saltzer/www/vita.html
http://web.mit.edu/afs/athena.mit.edu/user/other/a/Saltzer/www/vita.html

Bibliography

[IEE] IEEE 1471. IEEE standard 1471 - ISO/IEC 42010. http://www.
iso-architecture.org/ieee-1471/. accessed at 2011-05-
19.

[Int97] Lucas D. Introna. Privacy and the computer: Why we need pri-
vacy in the information society. Metaphilosophy, 28(3):259–275,
1997.

[JBo10] JBoss Community Team. Hibernate. http://www.hibernate.
org/, February 2010. accessed at 2011-03-15.

[JSSS01] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S.
Subrahmanian. Flexible support for multiple access control poli-
cies. ACM Trans. Database Syst., 26(2):214–260, June 2001.

[KBCW06] L. Kagal, T. Berners-Lee, D. Connolly, and D. Weitzner. Using se-
mantic web technologies for policy management on the web. In
Proceedings of the National Conference on Artificial Intelligence, vol-
ume 21, pages 1337–1344, 2006.

[Knu64] Donald E. Knuth. Backus normal form vs. backus naur form. Com-
mun. ACM, 7(12):735–736, December 1964.

[KP88] Glenn E. Krasner and Stephen T. Pope. A cookbook for using
the model-view controller user interface paradigm in smalltalk-80.
Jornal of Object-Oriented Programming, 1(3):26–49, August 1988.

[Lam71] Butler W. Lampson. Protection. In Proceedings of the Fifth Prince-
ton Symposium on Information Sciences and Systems, pages 437–443.
Princeton University, January 1971.

[Lam74] Butler W. Lampson. Protection (Reprint). ACM SIGOPS Operating
Systems Review, 8:18–24, January 1974.

[LWQ+09] Ninghui Li, Qihua Wang, Wahbeh Qardaji, Elisa Bertino, Prathima
Rao, Jorge Lobo, and Dan Lin. Access control policy combining:
theory meets practice. In Proceedings of the 14th ACM symposium on
Access control models and technologies, pages 135–144, Stresa, Italy,
2009. ACM.

[McL88] J. McLean. The algebra of security. In IEEE Symposium on Security
and Privacy, Oakland, CA, 1988.

[McL90] John McLean. The specification and modeling of computer secu-
rity. IEEE COMPUTER, 23(1):9—16, 1990.

211

http://www.iso-architecture.org/ieee-1471/
http://www.iso-architecture.org/ieee-1471/
http://www.hibernate.org/
http://www.hibernate.org/

Bibliography

[Mel05] A. Melnikov. RFC 4314 - IMAP4 access control list (ACL) exten-
sion. http://www.faqs.org/rfcs/rfc4314.html, Decem-
ber 2005. Accessed 2011-02-22.

[Mir12] Antim Mironov. Seminararbeit: Access Control for Health Care Sys-
tems. Number WS2011/2012 in Masterseminare. Karlsruhe Insti-
tute of Technology, Karlsruhe, Germany, June 2012.

[Mos05] Tim Moses, editor. eXtensible Access Control Markup Language
(XACML) Version 2.0. OASIS Standard. OASIS Open, February
2005.

[MS70] R. A. Meyer and L. H. Seawright. A virtual machine time-sharing
system. IBM Systems Journal, 9(3):199–218, 1970.

[NBL09] Qun Ni, Elisa Bertino, and Jorge Lobo. D-algebra for composing
access control policy decisions. In Proceedings of the 4th Interna-
tional Symposium on Information, Computer, and Communications Se-
curity, ASIACCS ’09, pages 298–309, New York, NY, USA, 2009.
ACM. ACM ID: 1533097.

[Net03] Microsoft Tech Net. What are security principals?
http://technet.microsoft.com/en-us/library/
cc780957(WS.10).aspx, March 2003. last accessed: 2011-
08-08.

[Not96] LouAnna Notargiacomo. Role-based access control in ORACLE7
and trusted ORACLE7. In Proceedings of the first ACM Workshop
on Role-based access control, RBAC ’95, New York, NY, USA, 1996.
ACM.

[oD83] U.S. Department of Defense. Trusted computer system evaluation
criteria. Technical Report DoD 5200.28-STD, U.S. Department of
Defense, December 1983.

[Oh10] Sejong Oh. New role-based access control in ubiquitous e-business
environment. Journal of Intelligent Manufacturing, 21(5):607–612,
October 2010.

[Org72] Elliott I. Organick. The multics system: an examination of its structure.
MIT Press, Cambridge, MA, 1972.

[PYG00] Dimitrios Pendarakis, Raj Yavatkar, and Roch Guerin. RFC
2753: A framework for policy-based admission control. http://
tools.ietf.org/html/rfc2753, January 2000. last accessed:
2011-10-7.

212

http://www.faqs.org/rfcs/rfc4314.html
http://technet.microsoft.com/en-us/library/cc780957(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc780957(WS.10).aspx
http://tools.ietf.org/html/rfc2753
http://tools.ietf.org/html/rfc2753

Bibliography

[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence,
13(12):81–132, April 1980.

[Rig00] Carl Rigney. RFC2866: RADIUS accounting. http://tools.
ietf.org/html/rfc2866, June 2000. last accessed: 2012-09-18.

[Ris10] Erik Rissanen. eXtensible access control markup language
(XACML) version 3.0 committee draft 03. Technical report, March
2010.

[RKY06] Indrakshi Ray, Mahendra Kumar, and Lijun Yu. LRBAC: a
location-aware role-based access control model. In Aditya Bagchi
and Vijayalakshmi Atluri, editors, Information Systems Security,
number 4332 in Lecture Notes in Computer Science, pages 147–
161. Springer Berlin Heidelberg, January 2006.

[RR06] D. Recordon and D. Reed. OpenID 2.0: a platform for user-centric
identity management. In Proceedings of the second ACM workshop
on Digital identity management, pages 11–16, Alexandria, Virginia,
USA, 2006. ACM.

[Sal74] Jerome H. Saltzer. Protection and the control of information shar-
ing in multics. Communications of the ACM, 17:388–402, July 1974.
ACM ID: 361067.

[Sam96] Vipin Samar. Unified login with pluggable authentication mod-
ules (PAM). In Proceedings of the 3rd ACM conference on Computer
and communications security, CCS ’96, pages 1–10, New York, NY,
USA, 1996. ACM. ACM ID: 238177.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.
Youman. Role-based access control models. Computer, 29(2):38–47,
1996.

[Ser06] Jim Sermersheim. RFC 4511: Lightweight directory access pro-
tocol (LDAP): the protocol. http://tools.ietf.org/html/
rfc4511, June 2006. accessed 2011-02-22.

[SFK00] Ravi Sandhu, David Ferraiolo, and Richard Kuhn. The NIST
model for role-based access control: towards a unified standard.
In Symposium on Access Control Models and Technologies: Proceedings
of the fifth ACM workshop on Role-based access control, volume 26,
pages 47–63, Berlin, 2000.

213

http://tools.ietf.org/html/rfc2866
http://tools.ietf.org/html/rfc2866
http://tools.ietf.org/html/rfc4511
http://tools.ietf.org/html/rfc4511

Bibliography

[SGS12] Andreas C. Sonnenbichler and Andreas Geyer-Schulz. ADQL: a
flexible access definition and query language to define access con-
trol models. In Pierangela Samarati, editor, Proceedings of the Inter-
national Conference on Security and Cryptography 2012, Rome, July
2012. The Institute for Systems and Technologies of Information,
Control and Communication (INSTICC).

[SHC+01] Mark Scherling, An-Ni Huynh, Mark Carlson, Andrea Westeri-
nen, Bob Quinn, Shai Herzog, John Strassner, and John Schnizlein.
RFC 3198: Terminology for Policy-Based management. http:
//tools.ietf.org/html/rfc3198, November 2001. last ac-
cessed: 2011-10-7.

[Sil01a] Len Silverston. The Data Model Resource Book, Vol. 1: A Library of
Universal Data Models for All Enterprises. Wiley, revised edition,
volume 1 edition, March 2001.

[Sil01b] Len Silverston. The Data Model Resource Book, Vol. 2: A Library of
Data Models for Specific Industries. Wiley, revised edition, volume 2
edition, March 2001.

[Sla09] Brennon Slattery. Wikipedia changes editing pol-
icy. http://www.networkworld.com/news/2009/
082609-wikipedia-changes-editing.html, August
2009. accessed 2011-02-22.

[Sle07] Mark Slee. Thrift: We’re giving away code. http://blog.
facebook.com/blog.php?post=2261927130, April 2007.
last accessed: 2012-10-18.

[SLH06] Nigel Shadbolt, Tim Lee, and Wendy Hall. The semantic web re-
visited. Intelligent Systems, IEEE, 21(3):96–101, 2006.

[Son13] Andreas C. Sonnenbichler. Social access control. In Proceedings of
the 2nd Workshop on Customer Empowerment, Karlsruhe, Germany,
January 2013. Karlsruhe Institute of Technology. to appear.

[SS75] J.H. Saltzer and M.D. Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[SS94] R.S. Sandhu and P. Samarati. Access control: principle and prac-
tice. Communications Magazine, IEEE, 32(9):40–48, 1994.

[SS09] Andreas C. Sonnenbichler and Felix Schwagereit. Prototype Of A
Community Management Platform. Deliverable D4.2, Karlsruhe
Institute of Technology, Karlsruhe, Germany, June 2009.

214

http://tools.ietf.org/html/rfc3198
http://tools.ietf.org/html/rfc3198
http://www.networkworld.com/news/2009/082609-wikipedia-changes-editing.html
http://www.networkworld.com/news/2009/082609-wikipedia-changes-editing.html
http://blog.facebook.com/blog.php?post=2261927130
http://blog.facebook.com/blog.php?post=2261927130

Bibliography

[ST83] Ray Switzer and Ralph B. Taylor. Sociability versus privacy of res-
idential choice: Impacts of personality and local social ties. Basic
and Applied Social Psychology, 4(2):123–136, 1983.

[SV01] Pierangela Samarati and Sabrina De Capitani di Vimercati. Access
control: Policies, models, and mechanisms. In Revised versions of
lectures given during the IFIP WG 1.7 International School on Founda-
tions of Security Analysis and Design on Foundations of Security Anal-
ysis and Design: Tutorial Lectures, pages 137–196. Springer-Verlag,
2001.

[TC08] Fatih Turkmen and Bruno Crispo. Performance evaluation of
XACML PDP implementations. In Proceedings of the 2008 ACM
Workshop on Secure Web Services, SWS ’08, pages 37–44, New York,
NY, USA, 2008. ACM.

[Ter05a] Daniel Terdmian. Growing pains for wikipedia
- CNET news. http://news.cnet.com/
Growing-pains-for-Wikipedia/2100-1025_
3-5981119.html, December 2005. accessed at 2012-10-19.

[Ter05b] Daniel Terdmian. In search of the wikipedia
prankster - CNET news. http://news.cnet.com/
In-search-of-the-Wikipedia-prankster/2008-1029_
3-5995977.html?tag=st.num, December 2005. acessed at
2012-10-19.

[Tur38] A. M. Turing. On computable numbers, with an application to
the entscheidungsproblem. Proceedings of the London Mathematical
Society, 2(42):230–265, 1938.

[Vol06] John Vollbrecht. The Beginnings and History of RADIUS. Interlink
Networks, LLC., Michigan, USA, 2006.

[W3C11] W3C. RDF tech standards. http://www.w3.org/standards/
techs/rdf, May 2011. last accessed 2011-05-30.

[War70] Willis Ware, editor. Security Control Systems for Computer Systems
(U): Report of Defense Science Board Task Force on Computer Security.
The RAND Corporation, Santa Monica, CA, February 1970.

[wik12a] History of wikipedia. http://en.wikipedia.org/w/index.
php?title=History_of_Wikipedia&oldid=518638766,
October 2012. Page Version ID: 518638766, access at 2012-10-19.

215

http://news.cnet.com/Growing-pains-for-Wikipedia/2100-1025_3-5981119.html
http://news.cnet.com/Growing-pains-for-Wikipedia/2100-1025_3-5981119.html
http://news.cnet.com/Growing-pains-for-Wikipedia/2100-1025_3-5981119.html
http://news.cnet.com/In-search-of-the-Wikipedia-prankster/2008-1029_3-5995977.html?tag=st.num
http://news.cnet.com/In-search-of-the-Wikipedia-prankster/2008-1029_3-5995977.html?tag=st.num
http://news.cnet.com/In-search-of-the-Wikipedia-prankster/2008-1029_3-5995977.html?tag=st.num
http://www.w3.org/standards/techs/rdf
http://www.w3.org/standards/techs/rdf
http://en.wikipedia.org/w/index.php?title=History_of_Wikipedia&oldid=518638766
http://en.wikipedia.org/w/index.php?title=History_of_Wikipedia&oldid=518638766

Bibliography

[wik12b] Wikipedia biography controversy. http://en.wikipedia.
org/w/index.php?title=Wikipedia_biography_
controversy&oldid=516537849, October 2012. Page Version
ID: 516537849, accessed 2012-10-19.

[WJL09] Qihua Wang, Hongxia Jin, and Ninghui Li. Usable access con-
trol in collaborative environments: authorization based on people-
tagging. In Proceedings of the 14th European conference on Research in
computer security, ESORICS’09, pages 268–284, Berlin, Heidelberg,
2009. Springer-Verlag.

[WL92] Thomas Y. C. Woo and S.S. Lam. Authorization in distributed sys-
tems: a formal approach. In Proceedings of the 1992 IEEE Computer
Society Symposium on Research in Security and Privacy, Austin, TX,
USA, May 1992.

[WRRS00] Steve Willens, Allan C. Rubens, Carl Rigney, and William Allen
Simpson. RFC 2865: Remote authentication dial in user service
(RADIUS). http://tools.ietf.org/html/rfc2865, June
2000. last accessed: 2012-09-18.

[YT05] E. Yuan and J. Tong. Attributed based access control (ABAC) for
web services. In Proceedings of the International Conference on Web
Services (ICWS), pages 569–578, 2005.

[ZCH+00] Glen Zorn, Pat R. Calhoun, Tom Hiller, Peter J. McCann, Gopal
Dommety, Bernard Aboba, Steven M. Glass, and Hajime Shiino.
RFC2989: criteria for evaluating AAA protocols for network ac-
cess. http://tools.ietf.org/html/rfc2989, November
2000. accessed 2012-02-26.

[Zer08] E. Zermelo. Untersuchungen über die Grundlagen der Mengen-
lehre. I. Mathematische Annalen, 65(2):261–281, 1908.

216

http://en.wikipedia.org/w/index.php?title=Wikipedia_biography_controversy&oldid=516537849
http://en.wikipedia.org/w/index.php?title=Wikipedia_biography_controversy&oldid=516537849
http://en.wikipedia.org/w/index.php?title=Wikipedia_biography_controversy&oldid=516537849
http://tools.ietf.org/html/rfc2865
http://tools.ietf.org/html/rfc2989

a.
 s
on

ne
nb
ic
hl
er

9 783731 500889

ISBN 978-3-7315-0088-9

In this work we suggest a meta access control model
emulating established access control models by con-
figuration and offering enhanced features like the
delegation of rights, ego-centered roles, and de-
centralized administration.
The suggested meta access control model is named
“Access Definition and Query Language” (ADQL). ADQL
is represented by a formal, context-free grammar
allowing to express the targeted access control
model, policies, facts, and access queries as a
formal language.
ADQL is available as executable, ready-to-use soft-
ware service with its performance high enough to
be used by company software as third party access
control component.

an
 a
cc
es
s
de
fi
ni
ti
on
 a
nd
 q
ue
ry
 l
an
gu
ag
e

	Introduction
	An Introduction to Access Control
	Design Principles
	Triple-A – Authentication, Authorization, Accounting
	Important Definitions and Concepts
	A Short History of Access Control
	Discretionary Access Control Models (DAC)
	The Access Matrix Model
	Authorization Tables
	Access Control Lists
	Capability Lists
	Vulnerability of Discretionary Access Control Models
	The General Safety Problem

	Mandatory Access Control Models (MAC)
	The Bell-LaPadula model
	Biba's Integrity Model

	The Clark-Wilson model
	The Chinese Wall Policy
	Role Based Access Control
	Derived Role Based Access Control Models

	Standards in Authorization
	RFC 2753 Framework for Policy-Based Admission Control
	RFC 2904-2906 AAA Authorization Framework
	RFC 3198 Terminology for Policy-Based Management

	XACML - The eXtensible Access Control Markup Language
	XACML Language Definition
	XACMLs Architectural Elements
	XACMLs Data Flow
	Problems of XACML

	Access Control and the Semantic Web
	Logic-Based Authorization Models
	Woo and Lam's approach
	Jajodia et al.

	Summary

	Motivating Example
	Components of ADQL
	Motivating Example

	The Access Definition and Query Language (ADQL)
	The Syntax of ADQL
	Expression
	Term
	Symbols and Identifier
	Symbols
	Identifiers

	Definitions
	Definition of Entities
	Definitions of Containers
	Usage of Variables
	Definition of Relations
	Definition of Filtered 1-Projections
	Definition of Tests
	Definition of Policies
	Definition of Scopes

	Applications
	Application of Entities
	Application of Containers
	Applications of Relations
	Applications of F1-Projections
	Application of Tests
	Application of Policies
	Application of Scopes

	Summary

	The Concepts of the Access Definition and Query Language
	Overview of ADQL's Concepts
	The Logical Layers of ADQL
	Entities
	Containers
	Relations
	Variables, Bindings, Scopes
	Scopes
	Access Control on Variables and Scopes

	Tests
	Policies
	Operators
	Set Operators
	Equal Operators
	Order Operators

	Summary of ADQL's Concepts

	Use Cases for ADQL
	Bell-LaPadula Access Control Model
	A Real-World Example: SAP R/3
	Extended RBAC: An E-Science Example
	Check Access Requests

	Summary

	Implementing ADQL as Software Service
	ADQL's Implementation: General Architecture
	Back End Design and Architecture
	Back End Architecture and Modules
	Persistence Layer
	Persistence Module and Database Cache
	ADQL's Core Layer, Controller, and Parser
	Network Server Layer

	Front End Design and Architecture
	Intermediate Layer: Design and Architecture
	Using ADQL as Software Service
	Decide on the Model
	Implement Access Checks in the Software
	Provide the Facts
	Learn the Current System State
	Defining Policies

	ADQL Back End Performance
	Performance of Other Access Control Implementation
	Summary

	Conclusion
	Appendix
	Backus-Naur-Form of ADQL v3.0
	Traveler Scenario

