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Abstract

The aim of the present work is to develop a feasible strategy for the reduction
of the energy that is required to transport fluids. In this respect, fully developed
laminar and turbulent flows through straight ducts, which are found extensively
in many practical applications, are considered. Based on the behavior of the
flow in a specific flow regime, physical models are initially derived that lead
to a reduction in the energy dissipated by the fluid motion, thus simultaneously
reducing friction losses and providing energy savings. An attempt is made to attain
the desired flow state due to appropriate designs for the cross section shape of
the duct. Optimization of the pipe cross section geometry for the pure laminar
regime can be accomplished analytically, resulting in the design of the preferred
flow configurations.
For high Reynolds numbers, corresponding to the turbulent regime, the substantial
complexity of the fluid motion produces an increase in the energy dissipation.
Thus, ensuring laminar flow under conditions for which it is typically found
to be turbulent represents the promising objective for achieving energy savings.
This realization is undertaken using statistical tools that allow a mathematical
description and correlation between the transitional and fully developed turbulent
flows. These considerations lead to the conclusion that similar conditions in the
statistical flow field are assumed to provoke the delay of transition to turbulence and
the laminarisation of turbulent flow. Direct numerical simulations are performed
with the intention of exploring the possibility of initiating these particular processes
by forcing the flow structure towards the desired state through the pipe cross section
geometry. For this purpose coexisting laminar and turbulent flow regions that
appear in narrow corners of non-circular ducts are examined in great detail. Based
on these findings, novel duct geometries are suggested with the final objective
being the derivation of cross section configurations for which the laminar flow
regime prevails over turbulence. The potential of various design aspects to achieve
this goal is assessed and possible energy savings are quantified.





Zusammenfassung

Die vorliegende Arbeit zielt darauf ab technisch realisierbare Strategien zu entwick-
eln, welche es ermöglichen die Energie, die für den Transport von Fluiden benötigt
wird, zu reduzieren. In diesem Kontext werden voll entwickelte, laminare und tur-
bulente Strömungen durch gerade Rohre betrachtet, die in zahlreichen praktischen
Anwendungen zu finden sind. Zunächst werden für die spezifischen Strömung-
seigenschaften eines Strömungsregimes physikalische Modelle hergeleitet, welche
zur Reduktion der, durch die Fluidbewegung dissipierten Energie führen und
damit gleichzeitig verringerte Reibungsverluste und Energieeinsparungen mit sich
bringen. Darauf aufbauend wird die Herbeiführung dieser gewinnbringenden
Strömungszustände durch die adäquate Gestaltung der Querschnittform eines
Rohres in Angriff genommen.
Für rein laminare Strömungen ist die Optimierungsaufgabe für den Rohrquerschnitt
analytisch behandelbar und bevorzugte Konfigurationen werden aufgezeigt.
Im Bereich hoher Reynolds Zahlen, in welchem das turbulente Strömungsregime
vorherrscht, bedingt die hohe Komplexität der Fluidbewegung das Ansteigen
der Energiedissipation. Aufgrund dieser Tatsache stellt die Laminarhaltung von
Strömungen unter Bedingungen, unter denen sie typischerweise turbulent sind, das
viel versprechende Ziel für das Erreichen von Energieeinsparungen dar. Durch
den Einsatz von statistischen Werkzeugen, welche eine verwandte, mathematische
Beschreibung von transitionalen und voll entwickelten turbulenten Strömungen er-
lauben, können Möglichkeiten zum Erreichen dieser Zielsetzung aufgezeigt werden.
Basierend auf diesen Betrachtungen kann gefolgert werden, dass vergleichbare
Eigenschaften des statistischen Strömungsfeldes zum einen zur Transitionsverzö-
gerung und zum anderen zur Laminarisierung von turbulenten Strömungen führen.
Die Möglichkeit, die gewünschte Struktur der Strömung und damit die relevanten
Prozesse durch die Gestaltung der Rohrquerschnittgeometrie herbeizuführen, wird
in direkten numerischen Simulationen untersucht. In diesem Zusammenhang wer-
den koexistente laminare und turbulente Strömungsgebiete detailliert untersucht,
wie sie in spitzwinkeligen Ecken von nicht kreisförmigen Rohren auftreten. Auf-
bauend auf diesen Erkenntnissen, werden neuartige Geometrien vorgeschlagen,
welche zur Herleitung von Querschnittkonfigurationen dienen, für welche sich das
laminare Strömungsregime gegenüber dem turbulenten durchsetzt. Das Potential
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verschiedener Designaspekte für das Erreichen dieser Zielsetzung wird bewertet
und die damit einhergehenden Energieeinsparungen werden quantifiziert.
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1 Introduction

In recent last decades, engineers and scientists have been working intensively on
possible ways to reduce the energy consumption of flow systems. These efforts
are motivated by the increasing public awareness of the efficient usage of energy
resources and by the continuous increase in energy costs. In general, various
contributions to the energy dissipation in fluid flows can be distinguished. In
non-reacting, isothermal flows of incompressible fluids, which are the focus of this
work, pressure drag and friction drag are usually the most pronounced. In many
internal flow applications, e.g. in pipelines, the contribution of friction losses to
the total energy dissipation prevails. The reduction of these losses is expected to
lead to significant savings and is investigated in the present work.
Previous and ongoing attempts towards reducing friction losses in internal flows
have concentrated on the turbulent flow regime, which has led to many promising
techniques being discovered. Passive methods have the longest tradition in this
respect and the most significant example has been applied to oil pipelines since
the 1970s. Small amounts of commercially available drag reduction additives
(DRAs), consisting typically of long-chain polymers, result in the reduction of
losses due to friction by up to 80% [3]. Manufacturers of DRAs promote their
products with the slogan “Move more product with less energy and capital” [3].
In fact, in the case of the Alaska pipeline, in 2003, the use of DRAs facilitated
an increase in the maximum daily throughput of more than 50% [2]. However,
because of chemical and environmental reasons, drag reduction with DRAs is
mainly only applicable to the transportation of crude oil, refined products and
non-potable water [4]. In addition, the efficiency of DRAs generally suffers as a
consequence of their degradation, which also depends on the working temperature
and the flow speed.
The majority of drag reducing techniques focus on influencing the fluid friction
due to specific features applied at the fluid–solid boundary. Changes in the wall
topology represent another passive control technique and are considered as one
of the earliest proposals in this respect. In a patent from 1937, Kramer [71]
suggested arranging thin wires at a small distance above a flat surface. The wires
are parallel to each other and aligned in the flow direction. In spite of the surface
area increase, an overall drag reduction was reported. Since this pioneering work
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of Kramer, different types of structural geometries have been investigated, which
are referred to as riblets. Extensive investigations dealing with the performance
of these structures with respect to their design have been carried out. Following
more or less a trial and error approach, structures were found that are capable of
reducing the friction drag by up to 10% [11].
Moreover, active means for the reduction of friction drag in internal flows have
been studied in the literature. Actuators at the wall enabling suction and blowing,
or a defined movement are typical examples that are frequently discussed in this
context. These techniques usually are optimized towards minimal friction losses
within numerical parameter studies. By contrast to the presented passive control
methods, active control actually requires the continuous input of energy. Thus, the
reduction of friction drag does not necessarily result in energy savings. In fact, to
date these techniques typically only lead to a small reduction in the total energy
consumption [39].
Despite the drag reduction due to DRAs, the practical application of control
methods is still an exception rather than the rule. One reason can be found in
the fact that some of these strategies are only tested in simulations and are rather
difficult to apply to practical applications. On the other hand, the implementation
of drag reducing devices typically represents a significant effort in terms of costs
and the compliance with safety standards. Thus, their practical relevance strongly
depends on their efficiency operation.
In the present work, the question how friction losses in internal flows can be
reduced is first approached theoretically. Strategies are derived for different flow
regimes that can provoke a significant reduction of the friction drag. An attempt is
made to implement the derived mechanisms by geometrical modifications in the
flow domain. This method is applicable to a wide range of engineering applications
including different kinds of fluids and is expected to be fairly robust with respect
to the surrounding conditions. Most importantly, if this passive control method
is followed, no energy input as such is required and reduced friction losses lead
directly to a reduction in the energy consumption.



2 Conservation laws for the
motion of incompressible
Newtonian fluids

2.1 Conservation of mass and momentum

In a continuum mechanical frame it is generally accepted that the following set of
partial differential equations describes the isothermal motion of fluids [106]:

∂ρ

∂t
+
∂ (ρUi)
∂xi

= 0 , (2.1)

ρ

[︃
∂Ui

∂t
+ Uk

∂Ui

∂xk

]︃
= −

∂P
∂xi

+
∂τik

∂xk
+ ρ fi . (2.2)

In these equations Ui represents the velocity vector, P the pressure and ρ the
density of the fluid. The term ρ fi describes the body force per unit volume and τik

is the stress tensor, having six independent components. The equations are given
using index notation where i, k, j = 1, 2, 3 represent the components in a Cartesian
coordinate system. Equation (2.1) ensures the conservation of mass and is referred
to as the continuity equation while Equation (2.2) is derived from the requirement
to conserve the momentum of a fluid volume element.
In order to close this system of equations, the number of unknown quantities has
to be reduced. To do this, a deformation law has to be established in order to
provide a formula to express the stress tensor, τik, in terms of velocity derivatives.
Throughout this work, the motion of incompressible (ρ = const) and Newtonian
fluids is considered, which leads to [106]:

τik = µ

(︃
∂Ui

∂xk
+
∂Uk

∂xi

)︃
. (2.3)

Here, µ represents the dynamic viscosity and can be transferred to the kinematic
viscosity, ν = µ/ρ.
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In the following, plane internal flows appearing in many fluid transport processes
are considered for which the impact of body forces on the resulting velocity field
typically vanishes. This conclusion is based on the comparison of the magnitude
of individual terms in Equation (2.2) [28, 29]. Additionaly, it is supported by the
agreement of solutions to the simplified equations with experimental findings [29].
However, it is pointed out that even if neglecting body forces is justified if the re-
sulting velocity fields in many cases that are of practical importance are addressed,
it does not apply generally to internal flows. For example, Draad and Nieuw-
stadt [28] found that Coriolis forces can affect the velocity profile that develops in
a cylindrical pipe significantly. The effect is shown to strongly depend on the flow
regime and the fluid properties and is only expected to be observed in a laminar
flow of fluids with rather high kinematic viscosity.
Considering flow cases with a vanishing impact of body forces on the velocity field
and using the deformation law in Equation (2.3), Equations (2.1) and (2.2) can be
reformulated for an incompressible Newtonian fluid:

∂Ui

∂xi
= 0 , (2.4)

∂Ui

∂t
+ Uk

∂Ui

∂xk
= −

1
ρ

∂P
∂xi

+ ν
∂2Ui

∂xk∂xk
, (2.5)

while Equation (2.5) is referred to as the Navier–Stokes equations.
This set of differential equations can be transferred into a dimensionless form,
where ’*’ denotes a dimensionless quantity. To do this, the dimensional quantities
are substituted using constant properties that characterize the flow and are labeled
with the index ’c’:

Ui = UcU*i ; xi = Lcx*i ; t = tct*; ρ = ρcρ
*; P = ∆PcP*; ν = νcν

*.

Applying these relationships to Equations (2.4) and (2.5) yields [29]

∂U*i
∂x*i

= 0 , (2.6)

S t
∂U*i
∂t*

+ U*k
∂U*i
∂x*k

= −Eu
1
ρ*
∂P*

∂x*i
+

1
Re

ν*
∂2U*i
∂x*k∂x*k

, (2.7)

and the characteristic quantities are used to define the following dimensionless
numbers,

S t =
Lc

Uctc
; Eu =

∆Pc

ρcU2
c

; Re =
UcLc

νc
=
ρcU2

c

τc
. (2.8)
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These numbers are referred to as the Strouhal number, S t, Euler number, Eu, and
Reynolds number, Re, and describe the relevant dynamic features of the flow. Thus,
flows with similar geometrical properties and boundary conditions are dynamically
similar as well, if the dimensionless numbers are kept constant [29].
By setting the dimensionless numbers equal to one, relationships for the character-
istic velocity, length and time scale can be derived, as demonstrated by Durst [29].
The resulting scaling will be applied to the wall bounded flows considered further
on in this work. For this class of flows of fluids with the density ρ and the kinematic
viscosity ν, the characteristic velocity scale reads as

Uc = uτ =
√︀
τw/ρ , (2.9)

where τw is the characteristic shear stress which arises at the wall. The characteris-
tic behavior close to the wall also determines the temporal and spatial scales of
the flow:

tc =
ν

u2
τ

, Lc =
ν

uτ
. (2.10)

2.2 Conservation of kinetic energy

The major objective of this work is based on the evaluation of possible energy
savings due to geometrical modifications of the fluid–solid boundary. Thus, the
conservation equation of kinetic energy, which is derived from the momentum
equation (2.2) is of central importance [54]:

1
2
∂UiUi

∂t⏟     ⏞     
I

= −
∂

∂xk
Uk

(︃
P
ρ

+
UiUi

2

)︃
⏟                    ⏞                    

II

+ ν
∂

∂xk

[︃
Ui

(︃
∂Uk

∂xi
+
∂Ui

∂xk

)︃]︃
⏟                          ⏞                          

III

− ν

(︃
∂Uk

∂xi
+
∂Ui

∂xk

)︃
∂Ui

∂xk⏟                    ⏞                    
IV

. (2.11)

The individual terms in Equation (2.11) can be physically interpreted as follows
(where all descriptions are defined as per unit mass and time):

I: local change of kinetic energy

II: change in convective transport of the total energy

III: work done by the viscous stresses

IV: energy dissipation, Φ.
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The dissipation function,

Φ = ν

(︃
∂Uk

∂xi
+
∂Ui

∂xk

)︃
∂Ui

∂xk
, (2.12)

is a measure for the energy that is converted per unit mass and time into heat in
an irreversible fashion and therefore always has to be positive [104]. Obviously,
changes in this process have a direct impact on the energy that has to be applied to
maintain the movement in a certain flow system.



3 Objective and procedure

Depending on their appearance, wall-bounded flows can generally be classified
into two major regimes: laminar flows show a high level of regularity, which is
progressively lost, if the flow turns, during the so-called transition process, into the
turbulent state. This process was found to be accompanied by an increase in the
dimensionless Reynolds number, where the critical Reynolds number is defined to
describe the border between laminarity and turbulence. The substantial differences
in the flow field are reflected by the magnitude of the friction losses on the walls,
which are significantly higher in turbulent than in laminar flows. In the case of fully
developed, plane flow situations, which will be treated throughout this work, these
friction losses alone are responsible for the energy dissipation that occurs, which is
often referred to as flow resistance. Thus the energy that has to be applied in order
to maintain the movement in a system, e.g. the volume flow rate pumped through
a pipe, is only caused by the fluid friction on the solid wall and consequently is
considerably smaller for laminar than for turbulent flows.
This work focuses on studying the possibility of reducing the flow resistance of
internal, fully developed flows due to geometrical modifications of the fluid–solid
boundary. In this context, the similarities and differences between the strategies
leading to a gainful interface design in the different flow regimes are emphasized.
In a first stage, the friction behavior of pure laminar flow is considered, which
typically is supposed to lead to minimum losses [12]. Hence, the question that
has be discussed is, if and how this friction behavior can be influenced due to
geometrical modifications in the flow domain.
For increasing Reynolds numbers disturbances in the initially stable, laminar flow
state begin to be amplified, which finally leads to the breakdown to turbulence.
Previous investigations have shown that the flow field during this process and at
the final turbulent state can be described using a statistical approach, which splits
the appearing flow quantities into a mean and a fluctuating part [67, 103]. Based
on this approach, conditions can be derived analytically that lead to a vanishing
impact of the fluctuating quantities on the flow, resulting in the maintenance of
laminar flow even at high Reynolds numbers and the laminarization of turbulent
flow at the same time [65, 66].
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The goal of this work is to derive duct geometries that force the flow to approach
these conditions, which are expected to lead to a significant reduction in friction
drag. In this context a series of direct numerical simulations of duct flows is
performed, which initially require a detailed evaluation of the accuracy in the
numerical procedure.
After doing this, a triangular duct having a small apex angle is investigated. For
this duct geometry it was observed experimentally that a laminar and a turbulent
region can coexist for a certain range of Reynolds numbers, for which the flow
can generally be expected to be fully turbulent [30]. This specific flow field shows
that the laminarization of turbulent flow due to appropriate geometrical properties,
namely corner regions, is possible. In addition, further investigations aimed to
see whether the laminarization and transition processes in the triangular duct
actually follow the theoretically derived behavior. This question is of particular
interest as a positive result suggests that properly designed duct geometries can, in
agreement with the theoretical prediction, result in maintenance of laminar flow and
laminarization of turbulent flow simultaneously. This study is complemented by the
investigation of further internal flows that lead to coexisting laminar and turbulent
regions in order to generalize the observations made for the triangular duct.
Initiated by these results, a systematic investigation of the impact of corner regions
on turbulent flow, considering different corner angles and wall curvatures, is
performed. In doing so, the ability of a certain geometrical property to locally
force the flow in the theoretically suggested state can be analyzed. In conclusion,
several duct geometries can be derived that are supposed to provide this state
in a large part of the flow domain. For a duct geometry, which is promising in
this sense, the ability to finally laminarize turbulent flow on the one hand and to
maintain laminar flow on the other is analysed.
In addition to studies dealing with the influence of the duct geometry on the
resulting friction, the important question, under which condition these insights can
lead to benefits in engineering practice, is finally discussed.



4 Frictional resistance and energy
consumption of internal flows

Within this chapter, the common set-up of the flow cases investigated throughout
this work is introduced. The laws describing the frictional resistance of these
flows are given and connected to their overall energy consumption. Based on these
relationships, the optimization problem addressed within this work is formulated.

4.1 General description of the flow cases
investigated

Within this work, pressure driven flows in ducts that have an arbitrary cross section
shape are considered. The straight and plane flow domains are bounded by fixed,
solid walls and the cross section shape does not vary in the streamwise x1-direction,
in the example as shown in Figure 4.1. The area of the cross section is referred
to as Acs and Aw denotes the surface area of the wall on which the flow obeys
the no-slip boundary condition. The flow through these ducts is governed by the
continuity and the Navier–Stokes equation given in (2.4) and (2.5).
These flows generally can appear in two different flow regimes, laminar and
turbulent. While the laminar flow is considered to be stationary, the nature of
turbulence leads to instantaneous velocity and pressure fields that are fluctuating in
time and space. However, time averaging enables the description of the flow field
by mean quantities, U i and P. The mean quantities are supposed to be stationary
for time periods that extend the averaging time.1

Further, the position x1 = 0 is assumed to be located at some distance from the
entrance, where the laminar and the time-averaged turbulent velocity profile have
reached constant shapes that do not vary along Lx1 .

1In this Chapter, only time-averaged quantities are used to describe the properties of turbulent flow,
which are also referred to as mean quantities. For clarity, this fact is further illustrated in equations
but not repeated explicitly in the text.
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x3

x1x2

Lx1

Figure 4.1: Straight duct with arbitrary cross section shape that is homogeneous in the
streamwise x1-direction. Lx1 denotes the length of the considered flow domain.

The consideration of time-averaged turbulent quantities enables the derivation of
common relations for the frictional resistance and the entire energy dissipation in
both flow regimes. These relationships will be discussed in the following sections.
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4.2 Friction laws in laminar and turbulent flows

The flow resistance of stationary and fully-developed duct flows is frequently
studied in the literature. Initial investigations mainly focus the determination of
the flow resistance using the integral balance of the forces acting in the streamwise
direction. The major findings are summarized briefly, according to the description
by Schlichting [106].
Volume integration of the momentum balance in the x1-direction leads to the
equilibrium of forces in the considered flow configuration. It is observed that the
difference between the inlet and outlet pressure forces are balanced by the shear
forces which are acting on the duct wall:

∆P Acs = τw Aw . (4.1)

The pressure difference ∆P is evaluated according to

∆P = P(x1 = 0) − P(x1 = Lx1 ) or ∆P = P(x1 = 0) − P(x1 = Lx1 ) , (4.2)

where τw corresponds to the surface averaged shear stress in the x1-direction
appearing at the duct wall. The local wall shear stress is defined as the gradient of
the streamwise velocity component in wall normal direction and is not constant
along the perimeter of non-circular ducts.
In engineering practice, the dimensionless friction factor, f , is typically used to
characterize the frictional resistance of internal flows. f is a measure of the surface
averaged shear stress at the wall and is defined as

f = τw
8
ρU2

b

=
∆PAcs

Aw

8
ρU2

b

, (4.3)

where Ub is the volume averaged streamwise velocity, which is referred to as bulk
velocity,

Ub =
1
V

∫︁
Ω

U1 dV or Ub =
1
V

∫︁
Ω

U1 dV . (4.4)

The operator
∫︀

Ω
()dV denotes the volume integral over the entire domain Ω. In

Equation (4.3), the friction factor is also expressed in terms of the pressure dif-
ference arising between the inlet and the outlet of the internal flow domain. This
relationship is derived from the balance of forces in Equation (4.1). It should be
noted that in German literature f is it often referred to as λ, e.g. in the book by
Schlichting [106].
The dimensionless form of the Navier–Stokes equations (2.7) shows that the
considered stationary flows are characterized by the Reynolds number and the
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Figure 4.2: Dependence of the friction factor on the Reynolds number for laminar and
turbulent flow through a smooth cylindrical pipe. Data presented by Schlichting [106] has
been replotted.

Euler number. A comparison of Equations (2.8) and (4.3) yields the proportionality
between the previously introduced friction factor f and the Euler number. Thus, it
can be concluded, for both characteristic numbers, that they are only a function
of the Reynolds number [29]. However, for the present flow cases f is preferably
used for dimensionless considerations. In the following, the friction laws, which
are based on the dependence of f on Re, are first discussed for cylindrical pipes
before ducts of arbitrary cross section shapes are addressed.
In laminar flow, the friction behavior of cylindrical pipe flow obeys the analytically
derived relationship f = 64/Re, were the Re is based on the pipe diameter and
the bulk velocity. In turbulent flow, the following empirical relation was found to
describe the friction factor for flow through a cylindrical pipe with smooth walls:

f = 0.316/Re1/4 . (4.5)

This equation is referred to as the Blasius correlation.
The relations for laminar and turbulent flow through a cylindrical pipe are plotted
in Figure 4.2. The critical Reynolds number, Recrit = 2300, after which sustained
turbulent flow can be observed, is also sketched. Experimental data for the flow
through a smooth cylindrical pipe [106] agree with the laminar solution and support
the correlation suggested for the turbulent regime.



4.3 Entire energy consumption of the flow 13

The Blasius correlation was found to also describe the friction of turbulent flow
through different ducts with non-circular cross sections if the hydraulic diameter is
used as the characteristic length scale. The definition of the hydraulic diameter is
based on the ideas of v. Mises [84]:

Dh =
4 Acs

C
, (4.6)

where C = Aw/Lx1 is the perimeter of the cross section. The Reynolds number
based on Dh is typically referred to as the hydraulic Reynolds number, Reh. In
contrast to the findings for turbulence, the friction law is not uniform if laminar
flow through non-circular ducts is considered. In this case, the friction factor obeys
the relationship

f = a/Reh , (4.7)

and the constant a is unique for a certain duct geometry.

4.3 Entire energy consumption of the flow

Frohnapfel [38] analysed the energy balance for the class of flows considered here.
The corresponding derivations focus on turbulent flow but can also be assigned to
the laminar regime. Starting from the conservation equation of kinetic energy (2.11)
in the streamwise direction and integrating over the volume of the domain leads to
the following equilibrium:

−
1
ρ

dP
dx1

∫︁
Ω

U1 dV =

∫︁
Ω

Φ dV or −
1
ρ

∂P
∂x1

∫︁
Ω

U1 dV =

∫︁
Ω

Φ dV . (4.8)

Using results from the balance of forces in Equations (4.1) and (4.3), the last
relationships can be reformulated:

⟨Φ⟩ = ρ

∫︁
V

Φ dV = ∆PUbAcs = AwτwUb , (4.9)

It can be concluded that the entire energy dissipation rate of the working fluid,
⟨Φ⟩, is balanced by the pressure difference that is required to drive a defined flow
rate, V̇ = UbAcs, in both flow regimes. Further, ⟨Φ⟩ is directly connected to the
frictional resistance induced by the duct wall.
In practice, a pump has to permanently supply energy in order to overcome the
irreversible losses and to maintain the movement of the fluid in an internal flow
domain. This expenditure is typically expressed in terms of the pumping power,
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PP. The classical definition of PP is given in the following equation. Additionally,
applying Equation (4.9) yields the balance of PP and the absolute value of the
entire dissipation rate of the working fluid:

PP = ∆P V̇ = ⟨Φ⟩ . (4.10)

4.4 Formulation of the optimization problem

The present investigation addresses the reduction in the energy that is required to
drive the previously described internal flows. The aim is to achieve this objective
through the modification of the flow by a control method that is acting on the wall.
In principle, different control techniques are available for this purpose.
Active methods are found to yield the reduction of friction forces acting on the walls
which, in theory, is promising. However, it has to be considered that additional
energy input is required to drive the control, which contributes to the total energy
consumption of the flow system. Thus, reduced friction forces do not automatically
lead to overall energy savings.
In contrast, for all passive approaches, the entire energy consumption of the flow
system consists of energy dissipated by the working fluid itself and is directly
linked to the friction losses on the wall. Mathematically, the considered cost
function can be formulated as

J (Ω) = ρ

∫︁
Ω

Φ dV = ⟨Φ⟩ . (4.11)

The focus is to reduce ⟨Φ⟩ compared with presently applied configurations due
to the appropriate design of the duct cross section shape. In doing so, the cross
section area, the bulk velocity and the volume of the pipe are kept constant. At
best, a cross section shape is found which minimizes J (Ω).
The performance of geometrical variations can be evaluated according to

∆⟨Φ⟩ = 1 −
⟨Φ⟩modified flow domain

⟨Φ⟩initial flow domain
, (4.12)

while ∆⟨Φ⟩ denotes energy savings. In the literature, the reduction of the friction
drag, DR, is also used to measure the performance of flow control methods:

DR = 1 −
(Awτw)modified flow domain

(Awτw)initial flow domain
. (4.13)

According to Equation (4.9), the measures are identical for the addressed flows:
∆⟨Φ⟩ = DR.
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The geometrical modifications that lead to energy savings, based on theoretical
considerations, are the focus of the discussions in the following chapters. Even if
the entire energy consumption of the laminar and time-averaged turbulent flows
obey similar expressions, the physical mechanisms describing the motion in the
flow regimes are different. The specific properties of laminar and turbulent motion
are used to derive individual models that lead to the reduction of ⟨Φ⟩.





5 Potentials and limits for energy
savings in laminar flows

5.1 Mathematical description of the flow

In the following, the conservation equations given in Chapter 2 are formulated for
laminar internal flow. For this purpose, the stationary and fully developed flow
case that was introduced in Chapter 4 is considered, which implies ∂Ui/∂t = 0 and
∂Ui/∂x1 = 0. The continuity equation for this type of flow reads

∂U2

∂x2
+
∂U3

∂x3
= 0 , (5.1)

while the Navier–Stokes equations give rise to

i = 1 : U2
∂U1

∂x2
+ U3

∂U1

∂x3
= −

1
ρ

∂P
∂x1

+ ν
∂2U1

∂x2∂x2
+ ν

∂2U1

∂x3∂x3
, (5.2a)

i = 2 : U2
∂U2

∂x2
+ U3

∂U2

∂x3
= −

1
ρ

∂P
∂x2

+ ν
∂2U2

∂x2∂x2
+ ν

∂2U2

∂x3∂x3
, (5.2b)

i = 3 : U2
∂U3

∂x2
+ U3

∂U3

∂x3
= −

1
ρ

∂P
∂x3

+ ν
∂2U3

∂x2∂x2
+ ν

∂2U3

∂x3∂x3
. (5.2c)

Following Equation (2.12), the dissipation function of the given flow in the
streamwise direction (i = 1) leads to:

Φ = ν

(︃
∂U1

∂x2

)︃2

+ ν

(︃
∂U1

∂x3

)︃2

. (5.3)

Obviously, the cross flow components, U2 and U3, do not affect the energy dissipa-
tion, which has to be compensated to drive the flow. Actually, the velocity field
of the considered flow through a straight duct having an arbitrary cross section
shape is typically assumed to be purely axial, resulting in U2 = U3 = 0. From this
assumption, a mathematical solution to Equations (5.1) and (5.2) is obtained. This
solution is not proven to be unique but it is found to lead to a good agreement of the
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corresponding analytical results with measurements and is generally accepted for
the description of the present flow situations [114]. According to these conditions,
the mass conservation of the flow is fulfilled by definition and the Navier–Stokes
equations (2.5) simplify significantly resulting in the so-called Poisson equation:

0 = −
1
ρ

dP
dx1

+ ν

(︃
∂2U1

∂x2∂x2
+

∂2U1

∂x3∂x3

)︃
, (5.4)

where a uniform pressure drop, dP/dx1, impressed along its length, drives the flow.
Obviously, the non-linear inertia term arising at the left hand side of the Navier–
Stokes equations does not influence the flow situation described by Equation (5.4).
Thus, the considered flow fields are dominated by viscous effects.

5.2 Lower limit for the energy consumption

In stationary, laminar and fully developed flows, the complexity of the conservation
equations reduces significantly compared with the general form presented in
Chapter 2. This fact allows an analytical solution of the shape optimization problem
formulated in Equation (4.11). As a result, Schulz [107] finds the cylindrical pipe
to lead to the lowest dissipation rate, ⟨Φ⟩, when transporting a given flow rate
through pipes having a constant volume and cross section area. According to
Equation (4.9), the minimization of the dissipation rate and consequently also of
the entire energy consumption due to the circular cross section shape is directly
connected to the minimal friction forces acting on the pipe wall.
Further, the question of whether the losses of laminar internal flows can be reduced
using active control techniques is discussed in literature. Using surface blowing
and suction in the form of an upstream traveling wave, Min et al. [83] find that the
frictional resistance of an internal flow can be sustained below that corresponding
to the laminar regime. The resulting friction force on the wall is referred to as
sub-laminar drag. However, theoretical analysis by Bewley [12] show that even
if the friction force acting on the wall of internal flows can be reduced due to
active methods, the lowest entire dissipation rate of the flow system belongs to
uncontrolled laminar flow. The energy that is required to drive any active control
is shown to be higher than the potential benefits that can be gained in this flow
regime. This finding generalizes the optimality of the plain cylindrical pipe in
laminar flows if the energy consumption is to be minimized.
The optimum represented by the cylindrical pipe might only be in question, if
additional constraints come into play. The shape optimization problem solved by
Schulz [107] then has to be reformulated according to these constraints, which can
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be various but preferentially have practical relevance. A corresponding problem
formulation is treated in the following discussion.
In engineering practice, a series of applications exist where fluid is transported
in a flow domain that is restricted in its height rather than its width. These flow
situations are often referred to as channel flows and are found, for example, in
cooling ducts of numerous electronic devices and heat exchangers. For channel
flow it is not proven that flat walls lead to minimal losses. The possibility to reduce
the energy dissipation in a channel flow due to two-dimensional surface structures
that are aligned with the main flow is discussed in the following section.

5.3 Surface structures leading to reduced friction
losses of channel flow

The application of different shapes of rib-like surface structures oriented parallel
to the flow direction as drag reducing devices in laminar channel flows have been
investigated several times in recent decades. While it is well known that so-called
riblets can lead to a significant drag reduction of up to 10% in turbulent flows [21],
a similar result is not obtained for laminar flows (see Equation (4.13) for the
definition of DR). For this case, riblets are actually found to increase the flow
resistance compared with unstructured channel walls, leading to negative values
of DR [20, 26, 85]. It should be noted, that the corresponding evaluation here and
in the following discussions is based on keeping an equal cross section area and
bulk velocity and therefore a constant flow rate in the structured and unstructured
configuration. A less conservative attempt is followed within other works, as
discussed in reference [26].
Firstly, the observed increase in flow resistance due to riblets in laminar flow is
not too surprising since the mechanisms leading to benefits in turbulence were
found in the interaction with specific properties of the flow in this state. Thus,
there is no physical indication as to why this sort of surface modifications should
also cause a reduced flow resistance in laminar flows, where energy is dissipated
due to viscous effects only. However, using a variational principle for the surface
shape, Pironneau and Arumugam [98] were able to show analytically that in the
laminar case benefits in the viscous dissipation can be expected if the riblets exceed
a certain width, 2l, which scales with the mean channel height, 2L, as follows (the
definitions of the variables are given in Figure 5.1):

l/L > π/z where z ≈ 1.2 is the solution of 1 − z tanh z = 0 . (5.5)
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Figure 5.1: Numerically predicted laminar flow through a flat channel (bottom) and channel
with wide surface structures (top). The boundary shape is defined by the function x2 =

± ((a/2)cos(πx3/l) + 2b) with a/2 = L − b (a is the amplitude of the wave), here l/L = 8.3
and a/(a + b) = 0.59. Both channels have the same cross section area, which is indicated by
the dashed side walls in the upper figure.

Performing a numerical shape optimization for certain l/L that obeys the above
condition, Pironneau and Arumugam [98] find surface structures with smooth
contours to reduce friction losses compared with the flat channel. In the following,
this type of structure is further investigated by approximating the boundary found
by Pironneau and Arumugam through a trigonometric function of the form

x2 = ± ((a/2)cos(πx3/l) + 2b) , (5.6)

with a/2 = L − b (a is the amplitude of the wave) [22]. In Figure 5.1 a typical
structure geometry is shown together with the variables that are used for its de-
scription. The impact of the surface structure on the velocity field is also illustrated
as a contour plot and is compared with the flat reference channel. The fully devel-
oped, stationary flow fields having the same bulk velocity are evaluated solving
Equations (5.1) and (5.2) numerically and symmetric boundary conditions are
applied to the lateral boundaries. This type of boundary condition is used to model
a domain of infinite width. Thus, instead of considering the cross section area, the
mean height of both channels is fixed to be identical, as indicated by the dashed
lines in the upper figure. According to Equations (4.12) and (4.13) the drag and
the energy consumption are reduced by 16% in the example shown in Figure 5.1,
where l/L = 8.3 and a/(a + b) = 0.59.
In the following, the influence of the all parameters (l, a and b) determining the
trigonometric structure on the frictional resistance is investigated. For this purpose,
an analogy between structural mechanics and fluid mechanics can be used. Owing
to the analogy between the torsion of beams and fully developed laminar flow
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in ducts (the governing equation in both cases is Poisson’s equation (5.4)), the
pressure drop, and thus the skin friction drag, arising from the curved structures
can be estimated by applying Saint Venant’s principle [9]. The drag reduction is
again evaluated by comparison with the result for the flat channel having the same
mean height, 2L, the same width, 2l, and the same length, Lx1 , which obeys the
analytical relation [29]

Awτw =
12 µUb l Lx1

L
=

3 µ V̇ Lx1

L2 . (5.7)

The results for the investigated parameter range is shown on the left plot in Fig-
ure 5.2. However, it has to be considered that the model introduced by Bahrami [9]
represents the flow through closed ducts, namely ducts that would be pictured by
no-slip boundary conditions on the lateral sides of the domain shown in Figure 5.1.
In order to consider the inaccuracies resulting from the model prediction, the drag
reduction arising at certain parameter combinations in Figure 5.2 is compared with
results of Pironneau and Arumugam [98] and our own numerical results, which
were obtained as described previously. The corresponding values are tabulated in
Appendix A. Overall, a good agreement is observed suggesting a small impact of
the lateral walls on the results in the entire parameter range. In particular, in cases
were the ratio l/b reaches high values, the model results are supposed to allow
quantitative conclusions about the energy saving that can be obtained by replacing
flat channel walls with the proposed surface structures (see Appendix A).
In Figure 5.2, the drag is found to be reduced compared with unstructured walls
within the entire parameter range investigated. This result is expected since l/L
obeys the theoretical condition for energy savings given in Equation (5.5). In
general, it is observed that DR increases when moving to the upper right corner of
the contour map representing wide structures that are periodically clamped such
that b vanishes, i.e. the structured channel turns into a sequence of ducts. For this
parameter range, a high accuracy of the model prediction is expected. The results
indicate an asymptotic behavior in the drag reduction that can be achieved for large
l/L, i.e. DRmax ≈ 50%.
Results for triangular surface structures with sharp corners are shown on the
right plot in Figure 5.2. Generally, the influence of variations in the parameters
describing the structure are similar, as observed for the curved surface shapes.
However, the drag reduction that can be achieved with a triangular surface structure
is generally smaller and reaches a maximum of about 40%. The angeled shapes
considered resemble classical riblets that are used as drag reducing devices in
turbulent flow [21]. However, the width of the riblets studied in the literature is
significantly smaller than the height of the channel. Thus, in the context of the
present analysis, Choi’s [20] observation of increased drag in laminar flow over



22 5 Potentials and limits for energy savings in laminar flows

 10

 15

 20

 25

 30

 35

 40

 45

 50

l/L

3 4 5 6 7 8

l/L

0.5

0.6

0.7

0.8

0.9

1.0

a
/(

a
+

b
)

50

40
30

20

10

DR [%]

a/
(a

+
b)

l/L

 10

 15

 20

 25

 30

 35

 40

 45

 50

l/L

3 4 5 6 7 8

l/L

0.5

0.6

0.7

0.8

0.9

1.0

a
/(

a
+

b
)

40

30

20

10

DR [%]

a/
(a

+
b)

l/L

Figure 5.2: Contour plot of the drag reduction that can be achieved with structured walls
compared with a flat reference channel depending on the parameters a, b and l that describe
the structure geometry. Left plot: curved surface structure. Right plot: riblet-like triangular
surface structure.

these riblets is no longer surprising and can be explained: in order to achieve energy
savings in the laminar regime for different types of structure shapes, the ratio l/L
has to exceed the critical border derived by Pironneau and Arumugam [98].
To summarize, the possibility of achieving energy savings in stationary and fully
developed laminar flow due to geometrical variations in the boundary is limited.
Schulz’ [107] mathematical solution of the optimization problem shows that the
circular pipe is optimal in this respect. However, in the case of channel flow, surface
structures that are wide compared with the channel height can be shown to lead
to reduced friction losses in comparison with flat walls. These surface structures
provoke the increase and decrease of the channel height in a periodic fashion. The
channel height generally has a strong impact on the friction forces acting on the
walls if a fixed amount of fluid is to be transported (see Equation (5.7)). Obviously,
this effect compensates the increase that is associated with the wetted surface area.
The highest value for DR in this sense is found if the channel turns to a sequence
of individual ducts. This observation indicates tendencies towards the general
optimum, namely the cylindrical pipe.
In the following discussions, flows at higher Reynolds numbers, which become
unstable for disturbances and tend to the turbulent state, are investigated. Again,
internal flows in domains that are homogeneous in the streamwise direction are
focused on. Similar to laminar flow, the height of a channel significantly influences
the arising drag and the previously discussed surface structures also can lead
to energy savings [22]. However, in contrast to the laminar regime, the energy
dissipation in these cases is not just due to viscous effects and the universal
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optimality of the circular pipe can no longer be proven. Thus, tackling the general
form of the optimization problem formulated in Equation (4.11) is felt to represent
a realistic challenge.





6 Theoretical analysis of
transitional and turbulent flows

In the previous chapter, the investigation of internal flows was restricted to the
stationary, fully developed, laminar flow regime. It was shown that the high order
of regularity in laminar flow is reflected by major simplifications in the transport
equations. The flow behavior was observed to be dominated by viscous effects
independent of the Reynolds number. However, as the Reynolds number exceeds a
certain value, the non-linear term in the Navier–Stokes equation affects the fluid
motion. In practice, the flow becomes sensitive to disturbances that originate, for
example, from the surroundings or from corrugations in the domain boundary. The
destabilization of the flow due to the disturbances finally results in the transition to
turbulence.
The reduction of the energy that is required to drive statistically stationary, fully
developed, internal flows at higher Reynolds numbers will now be considered.
The energy balance of this type of flow was discussed in Chapter 4. The example
for cylindrical pipe flow in Figure 4.2 illustrates that the friction factor, and also
conclusively the energy consumption, of laminar flow at a given Reynolds number
Re > Recrit is significantly lower than in turbulent flow. Thus, keeping the flow
laminar at conditions where it usually turns to turbulence is supposed to be a
straightforward goal for control strategies.
In order to achieve the present objective, a statistical description of the flow is
introduced. The statistical framework forms the basis for the theoretical derivation
of mechanisms in the flow leading to reduced dissipative losses in the turbulent
regime, and at best, provokes the persistance of the laminar state.

6.1 Statistical description of fluid motion

The physical state of the flow at higher Reynolds numbers suggests the usage of
statistical tools for its description. These tools will be introduced next and are first
applied to fully turbulent flow fields for which the procedure is well established.
The equations governing the motion and the energy conservation of the flow are
given. The statistical tools are further used to describe laminar flows that are
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affected by disturbances and eventually undergo the transition to turbulence. Thus,
the statistical framework allows a related description of the flow in the different
regimes. This fact forms the basis for the derivation of common conditions leading
to energy savings at higher Reynolds numbers.

6.1.1 Transport equations of turbulent flow

A turbulent flow field is generally characterized by quasi-random, time-dependent
and three-dimensional variations of all flow quantities that are spread over a
wide range of scales [63]. The largest scales in internal flows are determined by
the flow domain, while the smallest scales represent the dissipation range. The
motion of turbulent flow is also described by the continuity equation (2.4) and the
Navier–Stokes equations (2.5). However, owing to the quasi-chaotic appearance of
turbulent flow, it is most suitable to use statistical tools for its further description. In
order to allow a better understanding of turbulent motion, Reynolds [103] proposes
decomposing an instantaneous flow quantity, G, into the time-averaged mean, G,
and the time-dependent fluctuation, g:

G = G + g . (6.1)

G is defined as

G (x1, x2, x3) = lim
T→∞

1
T

∫︁ T

0
G (x1, x2, x3) dt , (6.2)

where T is a sufficiently long time interval compared with the characteristic time
periods of the fluctuation g.
Applying the decomposition proposed by Reynolds to the flow quantities leads to

Ui = U i + ui, P = P + p . (6.3)

This splitting of the velocity components and the pressure is inserted into the
continuity equation (2.4) and the Navier–Stokes equations (2.5). After temporal
averaging of the resulting equations and considering averaging rules, the following
conservation laws for the mean turbulent flow are obtained [63]:

∂U i

∂xi
= 0 , (6.4)

∂U i

∂t
+ Uk

∂U i

∂xk
+
∂uiuk

∂xk
= −

1
ρ

∂P
∂xi

+ ν
∂2U i

∂xk∂xk
. (6.5)
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The motion of the mean flow is characterized by the interaction of the fluctuat-
ing quantities, uiuk. This symmetric tensor of rank two contains six additional
unknowns that lead to an unclosed system, which is referred to as the turbulent clo-
sure problem. Turbulent motion is often described as fluid motion with increased
viscosity. In this understanding, the fluctuating term is typically moved to the right
side of Equation (6.5) in order to interpret it as a turbulent stress term that acts in
addition to the viscous stress term. However, a different notation is chosen here in
order to point out that the interference of turbulent fluctuations with the mean flow
originates from the nonlinearity in the Navier–Stokes equations. The equations
for the instantaneous velocity fluctuations, ui, are given by Jovanović [63]:

∂ui

∂xi
= 0 , (6.6)

∂ui

∂t
+ Uk

∂ui

∂xk
+ uk

∂U i

∂xk
+
∂uiuk

∂xk
−
∂uiuk

∂xk
= −

1
ρ

∂p
∂xi

+ ν
∂2ui

∂xk∂xk
. (6.7)

Manipulation of these last equations leads to the transport equation of the turbulent
stresses, uiu j [63]:

∂uiu j

∂t
+ Uk

∂uiu j

∂xk
= −uiuk

∂U j

∂xk
− u juk

∂Ui

∂xk⏟                       ⏞                       
Pi j

−
∂

∂xk
uiu juk⏟         ⏞         

Ti j

−
1
ρ

⎡⎢⎢⎢⎢⎣ui
∂p
∂x j

+ u j
∂p
∂xi

⎤⎥⎥⎥⎥⎦⏟                    ⏞                    
Πi j

−2 ν
∂ui

∂xk

∂u j

∂xk⏟     ⏞     
εi j

+ ν
∂2uiu j

∂xk∂xk⏟     ⏞     
Di j

. (6.8)

This equation contains three unclosed terms, Ti j, Πi j and εi j. A short explanation of
the physical meaning of the individual terms that describe the substantial derivative
of uiu j is as follows:

Pi j: production of uiu j by the mean flow

Ti j: turbulent transport

Πi j: velocity–pressure gradient correlations

εi j: turbulent dissipation, which is the essential feature of turbulence; this can
be imagined as energy transfer through a cascade process from the large
scales to the smallest ones in which the energy at the final stage is dissipated
into heat

Di j: viscous diffusion.
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Based on the statistical concept, the conservation equation of the kinetic energy
of turbulent flows can be derived as shown by Hinze [54]. For this purpose, the
decomposition of the variables introduced in Equation (6.3) is complemented by
the following rule:

UiUi = U iU i + 2U iui + uiui = U iU i + 2U iui + q2 . (6.9)

Applying these relations to Equation (2.11) leads to

1
2
∂U iU i

∂t
+

1
2
∂q2

∂t⏟                 ⏞                 
I

= −
∂

∂xk
Uk

⎛⎜⎜⎜⎜⎝P
ρ

+
U iU i

2

⎞⎟⎟⎟⎟⎠⏟                    ⏞                    
II

+ ν
∂

∂xk

⎡⎢⎢⎢⎢⎣U i

⎛⎜⎜⎜⎜⎝∂Uk

∂xi
+
∂U i

∂xk

⎞⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎦⏟                          ⏞                          
III

(6.10)

− ν

⎛⎜⎜⎜⎜⎝∂Uk

∂xi
+
∂U i

∂xk

⎞⎟⎟⎟⎟⎠ ∂U i

∂xk⏟                     ⏞                     
IV

−
∂

∂xk
uk

(︃
p
ρ

+
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,

where k = q2/2 represents the kinetic energy of turbulence.
The individual terms in Equation (6.11) can be physically interpreted as follows
(where all descriptions are defined as per unit mass and time):

I: local change of kinetic energy

II: change in convective transport of the total energy due to the mean flow

III: work done by the viscous stresses of the mean flow

IV: direct dissipation, εd

V: convective transport of the total energy due to turbulent fluctuations

VI: work done by the turbulent stresses

VII: work of deformation by the turbulent stresses

VIII: work done by the viscous shear stress of the turbulent motion

IX: dissipation by the turbulent motion, ε.
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It is clear that the processes governing the above equation are related to both
the mean flow and turbulence. The contribution of the turbulent motion will be
addressed specifically in the following discussion. It can be explicitely described
in terms of the transport equation of the kinetic energy of turbulence [63]:
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+ Uk
∂k
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∂xk∂xk⏟     ⏞     
Dk

. (6.11)

This equation can also be derived by contraction of Equation (6.8) on setting i = j.
The the physical meaning of the individual terms are related in both equations and
the nomenclature is used accordingly.

6.1.2 Basic equations for laminar flow with superimposed
small disturbances

The stability of laminar flow is traditionally analysed considering an underlying
laminar field that is exposed to two-dimensional perturbations applying the method
of small disturbances [106]. This procedure forms the basis for the derivation of
the Orr–Sommerfeld equation. In spite of simplifying assumptions in its derivation,
this equation is found to determine the criteria leading to transition of boundary
layer flows in a satisfactory manner. However, this ansatz fails in predicting the
critial conditions of internal flows [106].
Compared with the traditional procedure, Jovanović et al. [65] use a more general
approach and express the motion of laminar flow in a statistical frame. The
resulting basic equations governing the motion of laminar flow that is exposed to
disturbances are summarized as follows.
The incompressible laminar flow field with superimposed disturbances is governed
by the continuity equation and the Navier–Stokes equations given in Equations (2.4)
and (2.5). Starting from these equations, the method of separating the instantaneous
velocity Ui and the pressure P into the mean-laminar contribution, U′i and P′, and
disturbances superimposed on it, u′i and p′, is introduced:

Ui = U′i + u′i , P = P′ + p′ . (6.12)

This approach is related to that applied to turbulent flow. There, the instantaneous
flow quantities are decomposed into a time-averaged part, which differs from the
laminar contribution, and a fluctuating deviation. In general, the derivation of the
transport equations is similar in both flow regimes. However, it differs in the fact



30 6 Theoretical analysis of transitional and turbulent flows

that the disturbances in the laminar regime are assumed to be much smaller than
the corresponding quantities of the underlying flow:

u′i << U′i , p′ << P′ . (6.13)

Thus, the influence of products of fluctuating quantities is supposed to vanish. This
fact ensures that the motion of the mean flow is not influenced by the disturbances
and is governed by the simple continuity (2.4) and Navier–Stokes equations (2.5).
Further, the equations for the disturbances are derived by applying the previous
assumption [65]:

∂u′i
∂xi

= 0 , (6.14)
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By systematic manipulation of Equations (6.15) and (6.14), the transport equations
for the “apparent stresses” u′iu

′
j can be derived and are given by Jovanović et

al. [65]:
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(6.16)

Obviously, the above set of equations are related to the equations for the turbulent
stresses (6.8). However, their complexity is reduced and they only imply two
different types of unknown correlations: the velocity–pressure gradient correlations,
Πi j, and the dissipation correlations, εi j.

6.1.3 Interpretation of the statistical flow properties using
invariant theory

Based on the statistical description of turbulent flow, Lumley and Newman [82] use
kinematic considerations for the construction of a space that bounds all physically
realistic states of turbulence. This space is defined in terms of the two independent
scalar invariants of the anisotropy tensor, ai j, and is shown to enable the transparent
illustration of outstanding properties of turbulent flow.
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To quantify the anisotropy in uiu j, Lumley and Newman [82] introduce the tensor

ai j =
uiu j

q2
−

1
3
δi j , (6.17)

and its scalar invariants:

II = ai ja ji ,

III = ai ja jkaik , (6.18)

where δi j represents the Kronecker delta. With ai j it is possible to distinguish the
anisotropy of uiu j from all other flow quantities. Physically, II can be understood
as the magnitude of anisotropy, III as its type. Thus, for isotropic turbulence ai j = 0
holds and consequently II = III = 0.
A configuration of uiu j that permits the anisotropy to be quantified is the case of
axisymmetric turbulence. In such turbulence the invariants are described by [63]

II =
3
2

(︃
4
3
|III|

)︃2/3

. (6.19)

For the case of two-component turbulence the relationship between the invariants
gives rise to [63]

II =
2
9

+ 2 III . (6.20)

In Figure 6.1 these relations are plotted. The resulting “triangle” defines the
anisotropy invariant map and covers all realizable states of turbulence. The in-
tersections of the lines representing axisymmetry and two-componentality in the
stress tensor define the corners of the map. The upper branch of the map at the
position (III, II) = (2/9, 2/3), where the anisotropy is maximal, is referred to as
the one-componental state of turbulence. The lower left corner of the map at the
position (III, II) = (−1/36, 1/6) denotes the isotropic two-componental state of
turbulence.
In the present investigation, the anisotropy invariant map is used to visualize the
statistical properties of wall-bounded flows. For this flow, fluctuations are forced
to be two-componental when approaching the wall while they reach an almost
isotropic state in the center of the domain. The trajectory for turbulent channel
flow [5] is sketched in Figure 6.1 to illustrate the characteristic development. When
moving away from the wall, it can be seen, that the anisotropy in the flow first
increases and reaches its maximum at the edge of the viscous sublayer (x+

2 ≃ 8) [63].
Further, the flow approaches the isotropic state in developing along the right branch
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Figure 6.1: Anisotropy–invariant map [82]. The boundaries and corner points of the map
represent outstanding states of turbulence that are assigned in the figure. Additionally, the
arrows illustrate possible configurations of the stress tensor represented by the boundaries
of the map. The trajectory for turbulent channel flow at the friction Reynolds number
Reτ = 180 [5] (line with dots) shows a characteristic development of wall-bounded flows.

of the map indicating an almost axisymmetrical configuration of the stresses.
The development of Lumley and Newman originally aims at a description of
turbulence. So far the findings have strong and long lasting implications for
the development of turbulent closure approximations that have the potential to
describe a wide range of shear flows [63]. It was also shown that the invariant map
represents a powerful tool for the illustration of mechanisms that accompany drag
reduction in turbulent flows. The success of various turbulent control strategies for
wall-bounded flows was related to the level of anisotropy in the turbulent stresses
that is achieved at the wall [41].
The implication of high anisotropy and the axisymmetric state of the stresses on the
energy dissipation in the flow is discussed next. In the present flow configurations,
x1 is always defined as the direction of the mean flow and axisymmetry in the
stresses is limited to invariance of the stresses under rotation about this axis. In
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the case of full axisymmetry in such a flow, the stress tensor can be expressed as
follows [63]:

uiu j = Fδi j + Gλiλ j , λi (1, 0, 0) , (6.21)

with F and G being scalar functions.
Next to turbulent flow, the anisotropy map can be also used to analyse statistically
described laminar flow. In this way, Jovanović et al. [65] derive constraints for
the persistance of stable laminar flow and consequently for the intended delay of
laminar to turbulent transition.
Thus, the representation of the stresses in the anisotropy–invariant map is expected
to be a powerful tool for the aim of investigating mechanisms leading to low energy
dissipation in internal flows. In particular, it enables the simultaneous investigation
of the configuration of the stresses in the different flow regimes.

6.2 Physical models for reduced friction losses of
wall-bounded flows

The theoretical considerations followed within this chapter are based on the statisti-
cal properties of disturbances in laminar flow and of fluctuations in fully developed
turbulent flow. In this framework, analytical constraints can be formulated that
lead to reduced friction losses. In general, the implementation of these constraints
is supposed to be associated with benefits in internal and external flows, while the
former flow situation is the focus of this work.

6.2.1 Kinematic consideration of velocity fluctuations

The analysis is based on the theoretical findings from Jovanović and Hiller-
brand [67] for the peculiar properties of velocity fluctuations in the near-wall
region. In their investigation, the implication of axisymmetry in the fluctuations is
studied using kinematic considerations.
For this purpose, the flow above a plane wall is considered were x1 is the direction
of the mean flow, x2 is the wall-normal coordinate with origin on the wall and x3
is the spanwise coordinate. A Taylor series expansion of the instantaneous velocity
fluctuations reads as [87]:

u1 = a1x2 + a2x2
2 + ...

u2 = b1x2 + b2x2
2 + ...

u3 = c1x2 + c2x2
2 + ... (6.22)
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where the coefficients ai, bi and ci are functions of time and the space coordinates x1
and x3. In order to satisfy the continuity equation close to the wall, the coefficient
b1 vanishes, b1 → 0.
For axisymmetric disturbances that are invariant to rotation about the streamwise
x1 coordinate, the following relation is obtained for the statistics of the velocity
derivatives of nth order [45]:(︃
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, (6.23)

On inserting the series expansion (6.22) into these expressions, and comparing
terms corresponding to the same power of x2, it follows that all coefficients ai, bi

and ci must vanish in order to satisfy constraints imposed by axisymmetry. Thus,
it is concluded, that velocity fluctuations, and therefore the turbulent properties of
the flow, must vanish in the close proximity of the solid boundary, for the assumed
state of the fluctuations [67]. This finding also implies that the dissipation due to
turbulent fluctuations vanishes at the wall for this particular state of the stresses.
In general, the stresses at the wall are forced to be two-component due to constraints
imposed by the continuity equation. The additional constraint of axisymmetry
leads to the one-component state. In the anisotropy invariant representation of
the stresses, the one-component limit denotes the state of maximum anisotropy,
since II denotes the magnitude of anisotropy (see Figure 6.1). Using data from
direct numerical simulations of turbulent wall-bounded flows, Jovanović and Hiller-
brand [67] correlate the dissipation at the wall with the magnitude of anisotropy. In
Figure 6.2 their original illustration is replotted and supplemented with additional
data. The extrapolated trend in the data (dashed line) supports the conclusions
from the theoretical findings: If axisymmetry in the stresses at the wall, and thus
the one-component limit, is reached, the dissipation due to turbulent fluctuations
vanishes.
From the findings of Jovanović and Hillerbrand [67], strategies for reduced energy
dissipation in the different flow regimes can be derived. Their considerations
focus on the statistical properties of turbulent flow. However, the similarities in
the statistical description results in a related statement for the laminar regime:
disturbances cannot be amplified if they are axisymmetrical. The physical models
for energy savings in both flow regimes are formulated in the following paragraphs.

6.2.2 Delay of transition to turbulence

In Figure 4.2 it was demonstrated that the flow resistance due to friction forces
in a cylindrical pipe is much lower in laminar flow than in the turbulent regime.
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Figure 6.2: Turbulent dissipation rate at the wall versus the magnitude of anisotropy at
the wall following the illustration of Jovanović and Hillerbrand [67]. Numerical data from
wall-bounded flows are used to extrapolate the trend. Pipe flow: Eggels et al. [32], Unger
and Friedrich [112], Fukagata and Kasagi [42]. Channel flow: Kim et al. [69], Moser et
al. [88], Alamo and Jimenez [5], Gilbert and Kleiser [47], Horiuti [57], Iwamoto et al. [59].
Flat plate boundary layer: Spalart [109], Spalart [108]. The dissipation rate is normalized
with the wall shear velocity and the kinematic viscosity of the fluid.

Additionally, this difference increases with increasing Reynolds number. Thus, it is
logical to conclude that keeping flow laminar in situations in which it will usually
turn into turbulence is very promising if energy losses are to be minimized.
In Section 6.1.2 the statistical discription of laminar flow subjected to disturbances
was introduced. The presence and appearance of such disturbances form the basis
for considerations of the laminar to turbulent transition process in different types
of wall-bounded flows [65, 67]. In the previous paragraph it was shown that the
dissipation term in Equation (6.16) vanishes in the near-wall region, if the velocity
fluctuations are forced to be axisymmetrical. Thus, it can be concluded that laminar
flow in the near-wall region is stable to any level of disturbances if they appear in the
statistically axisymmetric state. The same conclusion is also drawn by Jovanović et
al. [65] in a theoretical investigation on the persistence of laminar flow in the flat
plate boundary layer. However, it is found that reaching the one-component state at
the wall is only a necessary but not sufficient condition for the disturbances, if the
stability of the flow is in question. In their formulation of the transition criterion,
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they assume laminar flow to be exposed to small axisymmetrical disturbances that
are invariant under rotation about the axis of the main flow direction. Further, they
consider local equilibrium to exist between the production and dissipation. From
the dissipation equation, by requesting that ε must always be positive, they derive
a criterion that determines conditions that guarantee maintenance of the laminar
regime. The limit for the ensurance of laminar flow is quantified in terms of the
magnitude of the anisotropy in the disturbances in the free stream, II∞ [65]:

II∞ ≥ 0.141 . (6.24)

In general, this formulation is supposed to be valid for a wide range of flow
situations, if the superimposed disturbances are axisymmetrical. The authors tested
the validity of the criterion for transition and the breakdown to turbulence in the
flat plate boundary layer. Comparison of the theoretically derived criterion with
experimental data shows good agreement. Experimental findings and recent results
from numerical investigations of transition in the flow through a cylindrical pipe
also support these theoretical results: the laminar to turbulent transition process in
the flow is characterized by decreasing anisotropy in the disturbances [33, 93].
These findings are used to derive a physical model of how the laminar flow regime
can persist at high Reynolds numbers, which is summarized in Figure 6.3. If the
disturbances superimposed on laminar flow are axisymmetrical and reach a high
level of anisotropy, they cannot be amplified and the transition to turbulence is
delayed. In principal, the described strategy is supposed to hold for external and
internal flows. The aim is to achieve the axisymmetrical configuration of the dis-
turbances, which leads to reduced friction losses, due to geometrical modification
in the fluid–solid boundary. This approach is considered to result in practically
realizable solutions. For external flows, an appropriately designed surface mor-
phology is expected to result in the target state (left branch of Figure 6.3), while
it might be provoked by the cross section shape of ducts in internal flows (right
branch of Figure 6.3). The latter aspect is addressed in numerical investigations
in the following chapters. Since the flow is controlled passively, reduced friction
losses will directly result in energy savings, as discussed in Section 4.4.
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Figure 6.3: Physical model aiming at low friction losses and persistence of the laminar
regime in wall-bounded flows.
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6.2.3 Reduction of dissipation in turbulent flows

Laminar flow with superimposed disturbances and turbulent flow have common
properties. However, the situation in turbulent flow is more complex: the fluctua-
tions modify the mean flow, as can be seen in Equation (6.5).
The entire energy dissipation rate in turbulent flow, Φ, gives rise, according to the
corresponding terms in Equation (6.11), to

Φ = ν
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The contribution controlled by the mean flow is referred to as direct dissipation, εd,
and the contribution originating from the fluctuating motion is termed as turbulent
dissipation, ε. The order of magnitude analysis shows that direct dissipation,
εd, is of the order 𝒪

(︁
U2/L2

)︁
where L is defined by the size of the flow domain

and is constant. The turbulent contribution, ε, is of the order 𝒪
(︁
q2/λ2

)︁
and λ

is the Taylor micro-scale, which decreases with increasing Reynolds number.
These relationships suggest that the contribution of turbulence to Φ prevails at
large Reynolds numbers. Data from direct numerical simulation of plane channel
flow support this statement [38, 76]. Thus, at high Reynolds numbers, which
are of particular importance in practical applications, the decrease and possible
minimization of ε is promising for the achievement of significant reduction in the
entire dissipation, Φ. The control strategy emphasized in subsequent paragraphs is
derived from this deduction.
Kinematic considerations of velocity fluctuations in wall-bounded flows show that
the turbulent dissipation at the wall vanishes, if the velocity fluctuations are forced
to be axisymmetrical around the axis of the mean flow (see Section 6.2.1). This
state of the fluctuations imply that they reach the one-component state at the wall.
Frohnapfel et al. [41] study the impact of axisymmetric disturbances in the near-
wall region on the turbulent dissipation in the entire flow field. For this purpose,
numerical experiments in turbulent plane channel flow are performed. In the
simulations, the flow in the vicinity of the wall is forced to be axisymmetrical
by damping of the spanwise velocity fluctuations in the near-wall region. It is
found, that this state of fluctuations at the wall results in a decrease in the turbulent
dissipation in the entire flow field. In the simulations, the number of points in the
wall-normal direction, for which the forcing is applied, is varied. A comparison of
the results shows, that the decrease in the turbulent dissipation is more pronounced
if the axisymmetric state extends further into the flow field.
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The observations made in the numerical experiment can be summarized as follows:
the constraint of axisymmetry (u2

2 = u2
3 and uiu j = 0 for i , j) leads to the

conclusion, that the production of turbulent kinetic energy vanishes, Pk → 0 (since
Pk = −u1u2 ∂U1/∂x2). The equilibrium consideration suggests that production and
dissipation are balanced in the flow, Pk ≃ ε, resulting in the same behavior for ε as
for Pk, namely ε → 0.
The impact of changes in the turbulent dissipation rate on the flow can be discussed
as follows. A general property of turbulent flow is the separation of scales. In
internal flows, the largest spatial scale, L, is fixed due the restriction of the flow
domain while the smallest scales are defined in terms of ε and ν and are in the order
of the Kolmogorov length scale, ηK. The strength of turbulence can be expressed in
terms of the spectral separation in the flow, L/ηK, and might be defined as function
of the turbulent Reynolds number, Rλ. Vanishing turbulence is accompanied by
vanishing spectral separation, L/ηK → 1 as Rλ → 0, and strong turbulent activity
is characterized by large spectral separation, L/ηK ≫ 1 when Rλ ≫ 1. The
Kolmogorov length scale is connected to ε as follows [63]:

ηK =

(︃
ν3

ε

)︃1/4

. (6.26)

Obviously ηK increases as ε is decreased leading to a decrease of the spectral
separation in the flow. Therefore we may expect that Rλ decreases with decreasing
ε, which additionally corresponds to a reduced turbulent contribution to the total
dissipation. This qualitative behavior of changes induced by decreasing ε leads
to the conclusion that any changes induced in turbulence with the intention of
decreasing ε will have a strong tendency to provoke laminarization in the flow.
Similar conclusions can be drawn for fully developed flows, if the transport equa-
tion of the mean flow (6.5) is considered and the turbulent fluctuations interacting
with the mean flow field are assumed to be axisymmetrical. In this state, the
stresses can be expressed in the linear fashion given in Equation (6.21). For such
turbulence, Equation (6.5) can be rewritten as follows [78]:
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In this equation, turbulent fluctuations have a similar impact on the flow as the
pressure. Both quantities can be expressed together as a modified pressure term,
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P*. For fully developed flow in channels, pipes and ducts, this equation leads to
solutions that coincide with solutions for laminar flow.
The tendency towards laminarization for producing reduced friction losses is sup-
ported by many flow situations when looking at the evolution of turbulence across
the anisotropy invariant map. An example in this respect is the drag reduction
due to the addition of dilute polymers [68]. The same can also be concluded
from numerous examples of wall-bounded flows, where the same or similar drag
reducing effects are observed [38]. In all of these documented examples it turns
out that achieving drag reduction and a tendency towards laminarization of the
flow is accompanied by the restructuring of turbulence towards the statistically
axisymmetric state with invariance to rotation about the axis aligned with the
main flow.
This analysis of the effect of axisymmetry in the stresses on turbulent flow is
summarized schematically in Figure 6.4 and forms the basis of the physical model
for reduced friction losses in this flow regime. The major goal is to approach the
axisymmetric state of the stresses, which implies that the fluctuations at the wall
tend towards the one-component state. As a consequence, the turbulent dissipation
and also spectral separation are decreased. For full axisymmetry, turbulent activity
is totally suppressed, resulting in pure laminar flow and significant energy savings.
The open question is how to actually achieve axisymmetry in wall-bounded flows.
For this purpose, geometrical modification in the bounding walls are proposed.
The present concept for turbulent flow is essentially similar to that introduced
for laminar flow in Figure 6.3. Again the possibility of controlling external and
internal flow is considered, which is represented by the left and right branch of
the model, respectively. The following numerical studies address the impact of
geometrical modification on internal flows but similar geometrical designs can be
imagined to result in the required configuration of the fluctuations in both flow
situations.
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Figure 6.4: Physical model aiming at the reduction of energy dissipation and laminarization
of turbulent flow.
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6.2.4 Review of investigations on friction drag reduction
due to surface modifications

The impact of the surface design on the friction losses of flows at higher Reynolds
numbers has been studied frequently in the past. The majority of the proposed
surface structures are aligned with the mean flow direction, exceptions are rep-
resented by, for example, dimples [80] or distributed roughness elements [101].
In Figures 6.3 and 6.4, axisymmetry of the stresses about the axis aligned with
the main flow direction is shown to be associated with reduced energy dissipation.
Geometrical modifications in the fluid–solid boundary in the form of structures that
are aligned with the bulk flow and control the development of the wall normal and
spanwise component of the stress tensor are proposed to provoke the desired state.
Major findings for this class of surface structures in the literature are summarized
as follows.
One of the earliest suggestions in this respect was presented in a patent by Kramer
from 1937 [71]. He proposes thin wires to be arranged a small distance above a
flat surface. The wires are parallel to each other and aligned in the flow direction.
In spite of the surface area increase, an overall drag reduction is reported [38].
Since the pioneering work of Kramer, different types of structure geometries
have been investigated, which are referred to as riblets. Generally, riblets are
beneficially applied to turbulent external and internal flows. However, in most of
these investigations the riblets are implemented in channel walls. This set-up was
discussed in the context of laminar flows in Section 5.3. During corresponding
numerical and experimental studies, riblets are found to reduce the friction losses
of turbulent flow by up to 10% [11, 21]. It is observed that the maximum reduction
is reached for a narrow range of dimensionless riblet spacings, namely for s+ ≈ 15.
For the evaluation of s+, the spacing s between two riblet tips is normalized with
the characteristic viscous length scale calculated according to Equation (2.10),
yielding s+ = s uτ/ν. For larger riblet spacings, drag increase is observed. Note
that this dependence on s+ differs from the findings in laminar flow, where drag
reduction can only be observed if the riblet structure is wide enough.
In the literature, different mechanisms are discussed to lead to the observed friction
behavior of turbulent flow over riblets. However, they actually agree, that the
flow is beneficially influenced in the near-wall region within valleys between the
structures [21, 37]. The effect of riblets can also be interpreted in the context of
the strategy proposed in the previous section, as shown by Frohnapfel et al. [41].
Similar conclusions can be drawn from recent numerical results from Fink [37] for
channel flow over the riblet geometry shown in Figure 6.5. In the direct numerical
simulations, the friction Reynolds number, Reτ = uτδ/ν, which is based on the
friction velocity, uτ, and half of the channel height, δ, is set to Reτ ≃ 180. The
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numerical work accompanies experiments performed by Güttler [50]. For s+ = 17,
the experimental as well as the numerical investigation result in DR ≃ 6%, while
for s+ = 30 drag increase is observed (DR ≃ −3%). The observed decrease in
the friction loss is supposed to be associated with the expected trend towards
axisymmetry in the stresses. In Figure 6.5 the data along the symmetry line
between two riblets are plotted in the anisotropy invariant map. For comparison,
the wall point arising from flat channel flow at a similar Reynolds number [5]
is marked. In fact, for s+ = 17, a strong tendency to reach axisymmetry in the
near-wall region and thus the one-component limit at the wall is observed. In the
drag increasing case, this trend is also present when comparison is made to the flow
over flat channel walls (see black arrow in Figure 6.5). However, it is significantly
weaker and obviously the resulting benefits do not overcome the increase in the
wetted area and possible negative effects on the riblet tip.
The impact of riblets that are implemented in cylindrical pipes is also investigated
by several authors. The drag reduction obtained is found to be similar to that in
channel flow, but appears at slightly higher values of s+ [81, 89].
From the results obtained for turbulent flow over riblets, it can be concluded that
the impact of these structures is restricted since the maximal drag reduction is
comparatively low. The laminarization of turbulent flow is not observed.
Along with the strategies for reduced energy dissipation presented in Section 6.2,
a surface topology consisting of square grooves was developed. The size of the
grooves is significantly smaller than that of riblets, namely in the order of 5
viscous length scales. Analysis of the impact of this type of surface morphology
on turbulent channel flow is presented by Frohnapfel [38]. The investigation of
the flow field within surface embedded grooves arising from DNS indeed shows
a strong tendency of the flow to reach the statistical axisymmetric state in the
near-wall region. However, the beneficial effect appearing within the grooves does
not persist along the entire wall.
The turbulent flow through ducts with embedded corner regions along the perimeter
is investigated numerically by Lammers et al. [78]. The spacing of the resulting
structures is significantly larger than that of the riblets of grooves. Changes in the
flow field that are linked with the modified cross section shape are discussed in
the statistical framework proposed within this chapter. These findings are closely
related to the present investigation and will be discussed further in Chapter 9.
Compared with the summarized results for turbulent flow, investigations concerning
the impact of surface structures on the stability of laminar flow are only rarely
presented in the literature and are mainly conducted experimentally. In this context,
riblets are tested for their potential to delay the laminar to turbulent transition of
boundary layer flows [48, 77] and of fully developed pipe flows [77]. However, the
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Figure 6.5: Left: Sketch of the considered riblet geometry. Right: Anisotropy invariant
mapping of the stresses in turbulent channel flow over riblets at Reτ ≃ 180. DNS results
for a drag reducing (s+ = 17) and a drag increasing (s+ = 30) configuration are shown [37].
The trajectories are plotted along the symmetry line between two riblets which is marked
by a dotted line in the sketch. The wall point for flat channel flow at Reτ ≃ 180 [5] whose
trajectory is plotted in Figure 6.1 is highlighted by a black arrow for comparison.

results provide no clear answer about changes in the transition Reynolds number
and in the physical properties of the flow due to the presence of the riblets. In
another experimental investigation, surface embedded grooves show indications of
stabilizing laminar channel flow [64].

6.3 Conclusions for further investigation of
internal flows

In Section 6.2, flow states that are capable of provoking flow laminarization and
delay of transition, and consequently resulting in low energy dissipation, were
presented. A common mechanism was found to be responsible for benefits in both
flow regimes. The next task is to investigate whether geometrical properties of
the flow domain can lead to the described behavior, as is proposed in Figures 6.4
and 6.3.
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In general, the desired state of axisymmetry in the stresses is more likely to be
achieved in duct flows than in channel flows: the cross section shape of the duct
directly influences the flow in the entire domain while in plane channel flow it
is only manipulated in the near-wall region due to structured walls. The invari-
ant representation of the turbulent stresses in Figure 6.6 supports the arguments
about differences between channel and duct flows. Obviously, the magnitude of
anisotropy (II) and the axisymmetry at the wall is increased in circular pipe flow
compared with channel flow. In addition, the details of the trajectories along the
right boundary of the invariant map (Figure 6.6 right) show a stronger tendency
towards the axisymmetric state for the circular pipe flow. The geometrical configu-
ration of the circular pipe provokes the stress tensor uiu j to follow axisymmetry
by definition at the centerline of the pipe. The observed impact of geometrical
properties of duct flows is in agreement with findings from Pfenniger [96]: in
experimental investigations of a pipe flow he observes laminar flow to persist up to
very high Reynolds numbers, for which channel flow typically turns to turbulence.
Based on these arguments, the subsequent chapters will focus on the investigation
of duct flows.
Besides these physical reasons, the consideration of duct flows also addresses
the general formulation of the optimization problem in Section 4.4, namely the
minimization of the dissipation arising from a fixed flow rate. The difference from
the findings for pure laminar flow may be highlighted in this respect. There, the
cylindrical pipe is optimal [107] and benefits can be obtained only for the special
case of channel flow.
In order to achieve reduced energy dissipation in pipe flows, the surface of the pipe
has to be designed to achieve an extension of the axisymmetry in uiu j from the
core region towards the wall of the pipe. For this purpose, structures whose scales
are significantly increased compared with the previously mentioned riblets are
proposed. Initial attempts towards this goal are made by Lammers et al. [78] in the
scope of the Erlangen pipe concept. His findings confirm the arguments about the
strong impact of geometrical properties in the flow domain on the axisymmetrical
behavior of the stresses.
Within the present investigation, direct numerical simulations are performed for
the investigation of the flow through ducts of different cross section shapes. This
approach allows a detailed study of the properties in the Reynolds stress field
arising from the cross section configuration and enables a comparison with the
theoretically derived mechanisms leading to reduced energy dissipation.
Based on the findings in the previous sections, a plan for the numerical procedure
consisting of 5 steps is elaborated and summarized in Figure 6.7. The goal of
the present study is, when starting from the laminar and turbulent flow states in
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Figure 6.6: Anisotropy invariant mapping for the stresses arising from DNS of turbulent
pipe and channel flow for the same friction Reynolds number Reτ = 180. Pipe flow: Eggels
et al. [32]. Channel flow: Alamo and Jimenez [5].

step (1) to develop duct shapes that stabilize the flow leading to the persistence of
laminar flow or the laminarization of turbulent flow (5). This strategy is motivated
by the fact that a common mechanism is theoretically shown to lead to these
goals. However, the numerical prediction of flow laminarization and transition is
demanding and not straightforward.
In previous analyses of transition in circular pipe flow, it is shown that the decay of
turbulent spots is a random event and the distribution of their lifetimes follows an
exponential law [8, 34]. In subsequent studies, Avila et al. [8] perform at least 100
simulations for a certain Reynolds number starting from different initial conditions
in order to clearly identify this association for the lifetimes. Based on these studies,
a beneficial modification of the duct shape is supposed to lead to shorter lifetimes
of turbulent spots at a certain Reynolds number. In order to test whether this
behavior is achieved with a certain duct shape, similar analyses to those shown by
Avila et al. have to be performed. This procedure requires a huge numerical effort
that is outside the scope of the present study.
Laminarization of turbulent flow is studied numerically by Uhlmann et al. [111].
Their proposed value for the critial Reynolds number in square duct flow also
involves an extensive computational effort and requires specific codes which,
however, are limited to certain geometries.
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The previously described theoretical investigations, which are represented by
step (2) in Figure 6.7, form the basis for a different approach to the subject.
From comparison of Figures 6.3 and Figure 6.4 is can be concluded that the
same statistical property, namely axisymmetry in the stresses, leads to benefits in
transitional and turbulent flow.
In order to use this similarity for the development of beneficial duct shapes, it has
to be checked whether the theoretically proposed state can be provoked in both
flow regimes by a certain geometrical property. For this purpose, the flow field in
ducts, which are known to lead to coexisting laminar and turbulent flow regions,
are investigated in step (3).
Further, the impact of different geometrical properties of ducts are investigated
in fully turbulent flow (4). Based on the verification of the theoretically derived
behavior in (3), the results for turbulent flow also allow conclusions to be made for
the influence of certain geometrical designs on the flow in the laminar regimes. The
tendency in the flow for laminarization and the delay of transition can be discussed
in this context. This approach represents a significant reduction of the numerical
effort compared with the alternative direct investigation of the processes.
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Figure 6.7: Procedure for the investigation of low energy dissipation in duct flows based
on theoretical analysis for laminar and turbulent flow.



7 Presentation and evaluation of
the numerical method

Within the present study, direct numerical simulations (DNS) of turbulent flow
in straight non-circular ducts with different cross section shapes are carried out.
It is focused to investigate the distribution of the Reynolds stress field based on
these simulations. For this purpose a finite volume method in combination with
polyhedral meshes is used. Since this approach is rather unusual for DNS studies,
evaluation of its accuracy restrictions was considered to be essential.
Firstly, the general properties of the chosen approach together with its strong points
and limits are briefly summarized and the basic set-up of the computational models
together with the boundary and initial conditions are introduced.
In order to evaluate the accuracy of the method for the simulation of turbulent
flow in non-circular ducts, a calculation of the flow in a square duct is performed.
Owing to previous numerical investigations, detailed data for comparison are
available for this duct shape. In this context, the impact of the duct length is also
studied, the importance of which for the DNS of non-circular duct flows is not
clearly determined in literature. The effects of the mesh type, which are of crucial
importance in the context of this work, are also investigated for the square duct.
Finally, the ability of the present approach to predict flow laminarization in corner
regions is tested. As mentioned previously, the investigation of coexisting laminar
and turbulent flow fields forms the basis for the present procedure, which aims to
develop duct shapes leading to low energy dissipation. However, since these flows
are rarely studied in the literature, the ability to make quantitative comparisons is
limited.

7.1 Numerical procedure for the calculation of
turbulent flow in non-circular ducts

The theoretical considerations in Chapter 6 proposed that statistical axisymme-
try of the stress tensor leads to a reduced energy dissipation of transitional and
turbulent flows. The aim of this investigation, within a numerical framework, is
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to establish whether a preferential state can be reached in turbulent flows due to
certain geometrical properties of duct shapes. Thus, the numerical approach needs
to be capable of accurately predicting second order turbulent statistics, namely the
Reynolds stress tensor, in order to produce meaningful results. For this reason,
DNS studies are performed, since this approach is not biased by errors resulting
from modeling of turbulent motion. However, to perform a reliable DNS of tur-
bulent flow, the numerical procedure has to account of the outstanding physical
properties of turbulence.
Since turbulence is a three-dimensional and instationary phenomenon, its direct
simulation in principle requires the resolution of all temporal and spatial scales
of the flow. Since in turbulence the spectral separation is large, a considerable
numerical effort will be required. For statistically fully developed internal flows
that are simulated using periodic boundary conditions, the streamwise extension of
the domain is critical for the proper representation of the large scales of the flow:
typically two-point correlations of the solution are monitored in this context, which
need to decay in the middle of the streamwise extension of the computational
domain [86]. In addition, the flow in this domain has to be resolved temporally
and spatially in order to capture the smallest scales of turbulence defined by the
Kolmogorov time scale, τK, and length scale, ηK. In practice, it was observed that
the smallest resolved length scale is only required to be of 𝒪(ηK) [86]. At the
same time, the flow field has to be averaged temporally in order to allow statistical
analysis. In this context, an averaging period, which is much larger than the time
periods of the fluctuating motion, is required.

7.1.1 Numerical method

Basically, different numerical methods are applicable for the DNS of turbulent
flow. These methods are shown to lead to similar results if the high resolution
requirements are fulfilled [15]. One of the first attempts at the DNS of wall-
bounded flows was performed by Grötzbach [49] using a finite difference method.
In general, spectral methods are the most popular for the DNS of turbulent flow
fields due to their high accuracy at a sufficient resolution. If all scales of the
turbulent motion are resolved, the approximation error decreases exponentially with
the number of grid points, N, and thus much faster than it can be observed for e.g.
finite-volume and finite-difference methods [15]. Results from spectral simulations
essentially supported the fundamental understanding of turbulence. However, the
application of spectral methods is restricted to rather simple geometries, e.g. plane
channel flow and in most cases is not applicable for engineering purposes [86].
Thus, the use of a different method is required for the simulation of more complex
flow situations.
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Within the present work, a second-order finite volume method is applied for the
spatial approximation of the continuity (2.4) and the Navier–Stokes equations (2.5).
Time discretization is achieved using the second-order implicit Euler-backward
scheme. The corresponding flow solver is integrated in the open source code
OpenFOAM R○. Since this work concentrates on the investigation of physical mech-
anisms rather than on the development of a numerical code, the major properties of
the numerical procedure are only briefly summarized. A more detailed description
may be found in related literature [61, 113].
In the present approach, variables on the cell faces are approximated by second-
order linear interpolation. The continuity and Navier–Stokes equations are coupled
for the calculation of the pressure using the PISO-algorithm. This method ensures
the conservation of mass and momentum by definition. However, the collocated-
mesh arrangement does not ensure the conservation of the kinetic energy [36].
Nevertheless, it is commonly used for turbulence simulations in complex geome-
tries due to its simpler form in curvilinear coordinates. A similar numerical method
is introduced by Felten and Lund [35] and tested in terms of conservation errors
in a large eddy simulation of a plane channel flow. They observe good agreement
with reference data provided that the simulation is run at a sufficiently high mesh
resolution.

7.1.2 Spatial and temporal discretization

The majority of the duct cross sections that will be discussed are discretized using
meshes consisting of prism-layers along the walls and polyhedral core cells. This
approach allows higher flexibility in the resolution of critical regions of complex
duct shapes compared with the alternative usage of block-structured, hexahedral
meshes. This behavior is nicely demonstrated by Perić [94] for the simulation
of turbulent flow over riblet mounted surfaces. The meshes are initially set up
to ensure
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≤ 1.6 × 4.6 where x2 is the wall-normal and x3

is the spanwise direction. Here and subsequently, the superscript “+” stands for
wall units: l+ = l/Lc = l uτ/ν. The viscous length is based on the friction velocity
uτ estimated a priori by the Blasius correlation [106]. This spacing ensures the
resolution of the viscous sub-layer (up to x+

2 = 5) with three volume cells [32, 49].
The grids are extruded in the streamwise (x1) direction. The streamwise mesh
spacing is set to ∆x+

1 = 9.4 according to findings of Gavrilakis [44] for DNS of
square duct flow. These mesh properties are used for all subsequent cases if not
explicitly highlighted differently, and are summarized in Table 7.1. Since the skin
friction arising from the simulations deviates from Blasius law, the actual mean
resolution differs from the initial estimation and will be given for the individual



52 7 Presentation and evaluation of the numerical method

Table 7.1: Standard domain size and spatial discretization where the viscous units are
calculated using the fluid viscosity and the friction velocity estimated a priori with the
Blasius correlation [106].
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cases. In addition, the values of uτ vary along the side walls of non-circular ducts.
The normalization based on the local value at the most critical position provides
the most conservative estimation of the grid resolution. The corresponding values
are also provided for the different flow cases.
The total streamwise extensions are set to Lx1 = 5Dh unless noted otherwise. This
duct length corresponds to the set-up of Eggels et al. [32] for the DNS of circular
pipe flow. However, the impact of the duct length on the result for non-circular
duct flow is considered explicitly in Section 7.2.
As mentioned previously, the temporal resolution of the scales of turbulent flow is
another important issue. To do this, the time step is chosen to ensure a Courant
number of Comax ≤ 0.21, which follows informations in the literature [44].

7.1.3 Initialization and evaluation of the turbulent flow field

Owing to the homogeneity of the flow in streamwise direction, periodic boundary
conditions are used. The simulations are carried out under a constant flow rate
condition, fixing the hydraulic Reynolds number in the simulations.
For the evolution of turbulent flow in the duct, appropriate initial conditions have
to be defined. Various possibilities are known for how the flow can be disturbed in
order to lead to the breakdown to turbulence [60]. However, as long as the transition
to turbulence is triggered, the final turbulent flow field is memoryless with respect
to the initial condition [34]. Within the present investigations, turbulent flow is
initiated by a laminar parabolic profile with superposition of random disturbances
u′i = 0.1 Ub unless indicated otherwise. This procedure was also used by Faisst
and Eckhardt for numerical investigation of the lifetimes of turbulent spots in pipe
flow [34].
For the evaluation of the statistical properties of the flow, time averaging is per-
formed for at least 40 turnover times, Dh/uτ. Symmetries in the cross section and
spatial averaging in the homogeneous streamwise direction are also used in order
to speed up the convergence of statistics and to limit the computational costs.
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The present approach certainly is a compromise between performing highly ac-
curate turbulent simulations and using numerical tools for the development of a
practically realizable flow control technique leading to energy savings in internal
flows. It can be understood as an attempt to use a tool, which until now has been
mostly restricted to scientific research for an investigation motivated by needs in
engineering practice. This approach is only possible due to the considerable growth
of computational resources within recent decades. The careful evaluation of the
potentials and restrictions of the numerical procedure for the simulation of non-
circular duct flows is felt to be of great importance for the reasonable interpretation
of the results and will be discussed later. For this purpose, the turbulent flow in
duct geometries that are known to show specific features of non-circular duct flows
is investigated. The results are compared with findings in the literature in order to
validate the present procedure for the aimed investigation of the distribution of the
Reynolds stress field. It is noted, that studying the individual terms of the transport
equation of the stresses (6.8) is not focused in the following and thus the ability of
the present procedure for their computation is not evaluated.

7.2 DNS of turbulent flow in a square
duct - comparison to literature data

7.2.1 Computation model

The turbulent flow through a straight square duct has been studied in direct nu-
merical simulations, providing detailed reference data for comparison. The data
obtained by Gavrilakis [44] and by Pinelli et al. [97] for Reh = 4410 are considered
in this respect. The former author uses a second-order finite difference approach for
spatial discretization while in the latter investigation a spectral method is applied.
Within these studies, the numerical results are validated by experimental data from
different authors. Square duct flow includes the typical property of non-circular
duct flows, i.e. the non-homogeneous distribution of the Reynolds stresses along
the wall leading to the formation of secondary flow of Prandtl’s second kind. Thus,
this flow situation is considered to be a reasonable validation case for the present
purpose.
Within the present study, the validity of the numerical method together with the
chosen spatial and temporal discretization are considered. Further, the influence of
the domain length on the computational result is analyzed, which has a significant
impact on the numerical effort, e.g. the number of grid points that are required.
Since the present investigation addresses the comparison of the flow through a
number of differently shaped ducts, it is aimed at limiting the numerical cost
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in this respect. From previous studies of circular pipe flow, it was found that
the convergence of different turbulence statistics depends on the length of the
computational domain [19]. The requirements for the pipe length are more critical
for higher order statistics. According to Chin et al. [19], a duct length of 4πδ,
where δ corresponds to the pipe radius, is sufficient for the convergence of the
turbulent intensity components that will be studied in this work. However, owing
to the special properties of non-circular duct flow, it is uncertain whether the same
requirements hold here. For this reason, the results arising from square ducts
with a streamwise extension of 5 Dh (which approximately corresponds to the
requirement for circular pipe flow) and 10 Dh are compared.
As already mentioned, use of polyhedral cells for the discretization of complex
duct shapes is particularly suitable. This choice is of course not logical for the
discretization of a square duct. However, this duct shape offers the possibility of
systematically investigating the influence of a polyhedral mesh on the computa-
tional result. The lower left quadrant of the meshes used within this study is shown
in Figure 7.1.
A principal sketch of the computational domain together with the applied coor-
dinate system is shown in Figure 7.2. The symmetries within the duct shape are
used for the evaluation of statistical data. For the declaration of the characteristic
positions, the lower left quadrant of the domain is used. The domain sizes, mesh
types and grid sizes of the cases considered within this validation study together
with the information for the reference cases are summarized in Table 7.2. Some dif-
ferences in the mesh spacings are emphasized in particular. For the present meshes
consisting of hexahedral cells, the streamwise grid size is increased compared
with the standard set-up given in Table 7.1. In general, the mesh spacing used for
the present simulations should be geared to that used by Gavrilakis [44] since the
numerical methodologies are also related. The deviation provides insights into
the requirements for the streamwise resolution and has to be kept in mind for the
interpretation of simulation results.
Note that the wall units in Table 7.2 are calculated based on the fluid viscosity and
the friction velocity uτ estimated a priori with the Blasius correlation. However,
since the values of uτ vary along the side walls of non-circular ducts, the normal-
ization based on the local wall-shear velocity gives the most realistic impression
of the grid quality in the near-wall region. The grid resolution at the most critical
points, namely at x3/H = 0.5, is calculated based on this definition and given
in Table 7.3.
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Figure 7.1: The lower left quadrant of the computational grids consisting of hexahedral
(left) and polyhedral (right) cells used for the DNS of the turbulent square duct flow.
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Figure 7.2: The computational domain for the simulation of turbulent flow in a square duct.
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Table 7.2: DNS of turbulent flow in a square duct: domain size and spatial discretization in
the current study and in the reference cases. The viscous units are calculated using the fluid
viscosity and the friction velocity estimated a priori with the Blasius correlation [106].

case cell type Reh Lx1/Dh ∆x+
1 ∆x+

2,min ∆x+
2,max

Current study
hex, Lx1 = 10Dh hexahedral 4405 10 15 1.6 3.3
hex, Lx1 = 5Dh hexahedral 4405 5 15 1.6 3.3
poly, Lx1 = 10Dh polyhedral 4405 5 9.4 1.2 5

DNS cases in literature
Pinelli et al. [97] hexahedral 4410 2π 14.7 0.07 5.2
Gavrilakis [44] hexahedral 4410 20π 9.4 0.45 4.6

Table 7.3: Spatial discretization close to the wall at the most critical positions in the current
study’s cases with normalization based on the maximum friction velocity. The averaging
time is expressed in terms of the mean wall shear velocity and the bulk velocity.

case ∆x+
1 ∆x+

2 ∆x+
3 averaging time

hex, Lx1 = 10Dh 16.8 1.8 3.6 73Dh/uτ or 1035Dh/Ub

hex, Lx1 = 5Dh 17.1 1.8 3.6 44Dh/uτ or 623Dh/Ub

poly, Lx1 = 10Dh 10.2 1.3 2.6 73Dh/uτ or 1082Dh/Ub



7.2 DNS of turbulent flow in a square duct - comparison to literature data 57

7.2.2 Special properties of the velocity field

Theoretical considerations indicate that reduced energy dissipation in turbulent
flows originates from a defined appearance of the Reynolds stresses as discussed
in Chapter 6. Thus, the correct prediction of these quantities is essential in order to
evaluate duct flows in the context of the analytical findings.
In Figure 7.3 the normal components of the Reynolds stress tensor resulting from
the present simulations are compared with the results from Gavrilakis [44]. For
this purpose, the development at two different spanwise positions is presented
since the presence of side walls leads to a non-homogeneous distribution of the
velocity field in the x3-direction. Generally, a good agreement for all quantities
can be observed for the different simulation cases. In particular, the data from the
hexahedral meshes with different duct lengths generally collapse. This behavior
suggests that the influence of the duct length is only marginal for the quantities
analysed within this framework and a duct length of Lx1 = 5Dh can be assumed to
be sufficient.
However, if the development of the data is analysed in more detail, small systematic
deviations can be observed: The magnitude of u3,rms is overestimated in the
simulations with the hexahedral grids compared with the literature data. In contrast,
the results produced form the polyhedral grid show a very good agreement with
the data from Gavrilakis [44]. The development of u2,rms for the different meshes
suggests that a similar trend than that observed for u3,rms appears, even if the
corresponding literature data are not available for comparison. This behavior
indicates a slight overestimation of turbulent activity with the hexahedral meshes
and might be related to the increased grid spacing in the x1-direction.
Finally, the results for u1,rms show very small deviations at the position x3/H = 0.35,
while they increase at the position closer to the side wall, x3/H = 0.15. Obviously,
the side walls have a strong impact leading to an increased complexity of the flow
field. This behavior is also reflected by the larger deviations in the numerical
results. The same trend is observed in a comparison of Gavrilakis’ results with
those of Pinelli et al. [97].
It can be shown analytically that the observed non-homogeneity of the Reynolds
stress distribution along the duct walls leads to the well known peculiarity of
turbulent flow through non-circular ducts, namely the formation of secondary
flow of Prandtl’s second kind [100, 104]. These counter-rotating vortices, which
transport fluid from the duct center towards its corners, can be observed in all
studies. A typical vortex pattern is shown in vector representation for the upper left
quadrant of the simulation with hexahedral mesh and Lx1 = 10Dh (see Figure 7.4).

At the same time, the magnitude of the secondary motion, namely
√︁

U
2
2 + U

2
3 is
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Figure 7.3: Development of the rms-values of the normal Reynolds stresses normalized
with Ub at two different spanwise positions: x3/H = 0.15 (upper figure), x3/H = 0.35
(lower figure).
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shown as a contour plot in the cross section area of the duct. In the reference
work, the magnitude of the secondary flow is found to be maximal at the spanwise
position x3/H = 0.23 and reaches 1.9% of Ub [44]. Within the simulation with
the polyhedral mesh, this value is reached fairly well. The results arising from
the hexahedral mesh show a slight overestimation of the secondary motion, its
magnitude reaches 2.1% of Ub. At the same time, the corresponding position
moves closer to the wall to x3/H = 0.20.
The secondary motion is studied in more detail in Figure 7.5, where the develop-
ment of U3 at x3/H = 0.15 is shown. This spanwise position is close to the place,
were the magnitude of the cross flow reaches its maximum. It can be clearly seen
that the velocity of the secondary flow is slightly overpredicted with the hexahedral
meshes and again the duct length has only a minor effect on the computational
result. The agreement of the data achieved with the polyhedral mesh with literature
data is very good especially in the corner region up to x2/H = 0.15, where the duct
diagonal is reached. Obviously, U3 has a negative sign along the diagonal meaning
that fluid is transported towards the duct corner.
Even if the magnitude of the secondary motion only reaches about 2% of Ub

it influences the development of the mean streamwise velocity profile U1. In
Figure 7.6, U1 is also shown at x3/H = 0.15. At this position, the secondary
motion provokes the velocity maximum to appear on the duct diagonal. This effect
is met in all simulations. It is noted that the previously observed trend for the
different meshes does not occur. The same holds for the development of U1 along
the duct centerline shown in Figure 7.6. Obviously, the overall prediction of the
mean streamwise velocity is less sensitive to the streamwise grid spacing than was
previously found for other flow quantities.

7.2.3 The friction behavior

The special properties of the velocity distribution in non-circular duct flow strongly
affects the friction behavior along the duct walls. In Figure 7.7 the wall shear stress
distribution is shown for all simulations and normalized with the corresponding
value calculated from the Blasius correlation. The non-homogeneity of the profiles
along the wall is a feature of non-circular duct flow. In the duct corner the wall
shear stress vanishes, while its maximum is reached in the middle of the wall. The
appearance of secondary motion leads to additional local extrema in the distribution.
These interacting effects are illustrated in Figure 7.4, where the normalized wall
shear stress distribution is shown together with the secondary motion.
These general trends are visible in all data sets shown in Figure 7.7. However,
differences in the friction behavior at the duct walls can be observed: For the
simulations with hexahedral meshes an overestimation of the literature data along
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together with the resulting distribution of the friction on the wall for the square duct.
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Figure 7.7: Development of the wall shear stress along the duct walls.

the entire duct wall is present. Again, basically no influence of the duct length is
visible. In contrast, the data arising from the polyhedral mesh are in reasonable
agreement with the findings from Gavrilakis [44]. The deviations around the center
of the wall cannot really be explained, since the distribution is also different for
the two reference cases in this region [44, 97].
Finally, from the average wall shear stress the dimensionless friction factor f can
be evaluated according to Equation (4.3). It is shown for all simulations, together
with the correlations of Blasius [106] and Jones [62], in Figure 7.8. The Jones
correlation represents an improvement in the calculation of the friction in turbulent
rectangular duct flows compared with, for example, the Blasius correlation. It is
based on experimental data and is defined as

f −1/2 = 2 log10

(︁
2.25 Reh f 1/2

)︁
− 0.8 , (7.1)

for square duct flow [62, 97].
Obviously, the friction losses resulting from the reference cases and the simulation
with the polyhedral mesh are in very good agreement. All values are slightly
lower than predicted by the Jones correlation, while the deviation is less than 2%.
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Figure 7.8: The friction factor resulting from square duct flow: comparison of analytical
and empirical relationships with data from simulations with different grids and duct lengths.

In contrast, the friction factor for both simulations with hexahedral meshes agrees
with the Blasius correlation and thus deviates from the reference data by about 5%.

The friction behavior observed in the different simulations confirms the obser-
vations made for the velocity distribution: for the cases containing hexahedral
meshes, higher friction losses in comparison with the reference data appear due to
an overestimation of the turbulent activity. These deviations might be related to
the larger streamwise grid spacing in these cases and highlight the importance of
sufficient resolution in this respect. At the same time, variations in the duct length
do not influence the result significantly and the duct length Lx1 = 5Dh is chosen for
further studies. The flow field and the friction behavior arising from the polyhedral
mesh shows very good agreement with reference data. These results illustrate
that high quality DNS studies of non-circular duct flows can be performed using
polyhedral meshes.
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7.3 Simulation of the partial laminarization of
turbulent flow

Besides the typical features of turbulent non-circular duct flow discussed in the
previous section, an additional phenomenon is observed for a certain class of
duct shapes. Experimental investigations by Eckert and Irvine [30] show the
partial laminarization of turbulent flow in the proximity of the acute corner of
a triangular duct with an 11.5∘ apex angle, leading to coexisting laminar and
turbulent flow regions. In order to validate the numerical approach for prediction
of this phenomenon, the DNS result of the flow in the duct geometry is compared
with the few experimental data that are available. The outstanding properties of
the flow field and the physical mechanisms involved in the laminarization process
will be discussed in detail in Chapter 8.
The considered isosceles triangular duct with an apex angle of 11.5∘ is sketched in
Figure 7.9. Additionally, the computational grid in the corner region, namely up
to x3/H = 0.1, is shown. The benefit arising from the usage of polyhedral cells
is obvious: even if the corner region is very narrow, the appearance of critical
cells that are skewed and have high aspect ratios is limited to the immediate
vicinity of the tip. Additional details of the mesh and the computational domain
are given in Table 7.4, while the viscous units are calculated using the fluid
viscosity and the friction velocity, which is estimated a priori using the Blasius
correlation [106]. The grid resolution expressed in terms of the ratio of the grid
spacing to the Kolmogorov length, ηK, is another important issue for assessment
the grid resolution in turbulence simulations. The value of the Kolmogorov length
scale is estimated according to Lammers et al. [78],

η+
K

= (0.25 Reτuτ/Ub)1/4 , (7.2)

and yields η+
K
≈ 1.5 when the average friction velocity arising from the simulation

result is applied. The mesh spacings expressed in terms of the Kolmogorov length
scale are given in Table 7.5. In general, the quality of the mesh is considered to be
satisfactory. However, the ability of the present numerical procedure to simulate
the relevant scales of turbulent motion is studied in more detail. This critical
assessment is performed for the simulation of the turbulent flow in the triangular
duct. Similar results can be expected for the other flows which are studied.
In order to evaluate the adequacy of the spatial and temporal resolution of the DNS,
the energy spectra of the frequency and the streamwise wavenumber are studied
and are presented in Figure 7.10 and 7.11, respectively. These spectra are evaluated
at the spanwise position x3/H = 0.7 on the centerline of the duct where the flow is
found to be fully turbulent. The expected slopes for the energy containing large
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Figure 7.9: Sketch of the isosceles triangular duct with an apex angle of 11.5∘ where x1 is
the main flow direction (left) and the mesh in the corner region of the duct, namely up to
x3/H ≈ 0.1.

Table 7.4: DNS of turbulent flow in a square duct: domain size and spatial discretization in
the current study. The viscous units are calculated using the fluid viscosity and the friction
velocity estimated a priori with the Blasius correlation [106].

cell type Reh Lx1/Dh ∆x+
1 ∆x+

2,wall ∆x+
2,core ∆x+

3,wall

polyhedral 4500 5 9.5 1.6 5 4.6

Table 7.5: Spatial discretization in the triangular duct with an apex angle of 11.5∘ based on
Kolmogorov length scale.

∆x+
1 ∆x+

2,wall ∆x+
2,core ∆x+

3,wall

5.7η+
K

1.0η+
K

3η+
K

2.8η+
K
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Figure 7.10: Frequency spectrum normalized with Kolmogorov scales arising at the posi-
tion (x2, x3) = (0.0, 0.7H).

scale motion (−1) and the inertial subrange (−5/3) are also included in the plot.
Owing to the normalization with Kolmogorov length and time scales, it can be
observed that the flow is spatially and temporally discretized in a satisfactory
manner: scales of 𝒪( fK) and of 𝒪(ηK) are resolved. Additionally, the energy density
associated with the high wavenumbers is several decades lower than the energy
density corresponding to the low wavenumbers and there is no evidence of energy
pile-up at high wavenumbers (see Figure 7.11). These criteria are discussed by
Kim et al. [69] and indicate adequate grid resolution.
The available experimental data base compiled by Eckert [30] is restricted. How-
ever, the development of the mean streamwise velocity component along the
symmetry line of the duct can serve for the validation of the present approach to
predict flow laminarization. The data arising from DNS and from experiments
are compared in Figure 7.12. In experiments, the part of the flow having laminar
properties was found to be restricted to the corner region of the duct, namely to
x3/H < 0.25 [30]. The agreement of U1 in the laminar as well as in the turbulent
flow region is considered to be acceptable since the experimental data might also
be biased by inaccuracies in the measurement techniques.
Moving from x3/H = 0.25 in a positive x3-direction, the velocity profile was
found to deviate from the laminar parabolic shape [30]. This behavior can also be
observed in the calculated results. In Figure 7.13 the mean streamwise velocity
component is plotted along the x2-direction at the spanwise positions x3/H = 0.25,
x3/H = 0.3 and x3/H = 0.5. Parabolic shapes are included in order to explain the
laminar properties of the flow. Obviously, at the position x3/H = 0.25 the velocity
distribution is parabolic. This behavior is lost when moving away from the corner.
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Figure 7.11: One-dimensional energy spectrum of the streamwise wavenumber normalized
with Kolmogorov scales arising at the position (x2, x3) = (0.0, 0.7H).

Thus, the existence and extension of the laminar region observed in experiments is
also found in the numerical results. This leads to the conclusion that partial flow
laminarization appearing in a certain class of duct shapes can be simulated with
the present numerical approach.
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Figure 7.12: Development of the mean flow component U1 along the symmetry line of the
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8 Verification of the mechanism
leading to low energy
dissipation in duct flows

This chapter is dedicated to step (3) in the procedure for the development of energy-
efficient duct shapes presented in Figure 6.7. In the theoretical considerations,
particular statistical properties are suggested to characterize flow states with low en-
ergy consumption. Ducts leading to coexisting laminar and turbulent flow regions
are considered for verification purposes. These flows show that geometrical prop-
erties can provoke laminarization of turbulent flow and enable the investigation of
changes in the turbulent dissipation during the process. Most importantly, insights
into the statistical flow properties accompanying reverse transition, transition and
stable laminar flow are gained and a comparison with the theoretical findings can
be made. In this respect, the investigation of coexisting flow regions arising in
differently shaped ducts provides additional insights into the geometrical impact
on the processes.
In order to investigate the coexisting laminar and turbulent flow fields, DNS are
carried out with the method that was validated for this purpose in Chapter 7. The
cross section shapes of the ducts that are considered in this chapter are shown in
Figure 8.1. The shape in (a) represents a triangular duct with an apex angle of
12∘ and has been observed to result in the coexistence of laminar and turbulent
flow in experiments performed by Eckert and Irvine [30]. In (b) a triangular duct
with even smaller apex angle, namely 4∘ is shown, which has been investigated
experimentally by Carlson and Irvine [18]. These measurements suggest that flow
laminarization also takes place within this duct. Finally, a third duct shape was
constructed, which is shown in (c) and will be referred to as a diamond shape.
The ability of narrow corner regions to provoke the flow laminarization, which
is observed for the triangular shaped ducts, is also expected for the converging
angle in the corners of the diamond. All simulations are run at Reh = 4500 as a
significant laminar region and a turbulent region are expected under this condition.
In Table 8.1 the mesh spacing is given at the most critical positions, namely where
the wall shear velocity reaches its maximum.
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Figure 8.1: Cross section shapes provoking coexisting laminar and turbulent flow regions:
(a) isosceles triangular duct with 11.5∘ apex angle, (b) isosceles triangular duct with 4∘ apex
angle, (c) diamond shaped duct.

In addition, the averaging time employed for the statistical results that are discussed
in the following are also listed.
In this chapter, the flow field arising from the duct shape (a) in Figure 8.1 is initially
analysed and discussed within the context of experimental findings from Eckert
and Irvine [30]. The anisotropy invariant representation of the stresses is used for
the description of the variations in the flow field. This method allows a comparison
with theoretical findings and can also be used to describe the transition process
qualitatively. The findings for duct shape (a) are further compared with properties
of the stresses appearing in duct shapes (b) and (c) (see Figure 8.1). Similarities
and differences in the laminarization and the transition process are discussed.
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Table 8.1: Spatial discretization close to the wall at the most critical position in the flow
domains with coexisting laminar and turbulent flow fields. Normalization is based on the
maximum friction velocity and averaging time is expressed in terms of the mean wall shear
velocity and the bulk velocity.

case position of τw,max ∆x+
1 ∆x+

2 ∆x+
3 averaging time

(a) x3/H = 0.80 10.9 1.8 5.3 58Dh/uτ or 920Dh/Ub

(b) x3/H = 0.88 11.3 1.8 5.4 42Dh/uτ or 690Dh/Ub

(c) x3/H = 0.33 10.2 1.6 3.0 41Dh/uτ or 740Dh/Ub

8.1 Flow in a triangular duct with 11.5∘ apex angle

Eckert and Irvine [30] investigate the flow through a triangular duct with an apex
angle of 11.5∘ experimentally. Using flow visualization techniques, they observe
the coexistence of a laminar and a turbulent flow within the cross section of the
duct over a certain range of hydraulic Reynolds numbers where the flow is expected
to be fully turbulent. The properties of these flow regions are further investigated
in the following sections using detailed information of the flow extracted from the
DNS. The appearance of a coexisting laminar and turbulent flow region further
enables detailed studies of the transition process between the flow regimes. Based
on theoretical findings, the anisotropy invariant representation of the stresses is
expected to be a powerful tool for this purpose.

8.1.1 Properties of the coexisting laminar and turbulent
flow field

Mean flow field

In order to provide a general impression of the mean flow field arising in the
triangular duct with an 11.5∘ apex angle, contour plots of the mean velocity U1
and the magnitude of the secondary flow are shown in Figure 8.2 and Figure 8.3,
respectively.
In Chapter 7, the flow field arising from (a) was compared with available ex-
perimental data for validation purposes. The laminar flow region was detected
in the acute corner region of the duct up to approximately x3/H = 0.25 in the
present numerical investigation as well as in the experimental studies by Eckert
and Irvine [30]. Moving further in the x3-direction towards the core region of the
duct, the mean flow field deviates from the parabolic laminar distribution and turns
to the turbulent stage. In this part of the duct, secondary flows of Prandtl’s second
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kind [100] appear which are a characteristic phenomenon of turbulent flow through
non-circular ducts: the counter-rotating vortices directed towards the corners on
the right side are illustrated in Figure 8.3. It is observed that the magnitude of
this secondary motion, namely up to 2.5% of the bulk velocity, is slightly larger
than that in square duct flow, which Gavrilakis [44] found to be 1.9%. By contrast,
the secondary motion directed towards the acute angle is very weak and vanishes
when approaching the laminar part of the flow.
More details about the distribution of the mean streamwise velocity field can be
gained in the comparison of streamwise profiles plotted along the x2-direction at
several spanwise positions, as shown Figure 8.4. The mean streamwise velocity is
normalized with the corresponding local wall shear velocity, uτ. In the following
discussions the superscript “+” will refer to this type of normalization. For square
duct flows such scaling was shown to be appropriate for the investigation of the near-
wall region [44]. The characteristic profiles corresponding to the viscous sublayer,
given by U+

1 = x+
2 , and the logarithmic region, described by U+

1 = (1/κ)x+
2 + B

with κ = 0.41 and B = 5.2 [99], are also included in the plots.
Figure 8.4 (a) shows a velocity profile that is representative of the fully turbulent
part of the duct. The result shows the expected linear relationship in the near-
wall region. In the center of the duct U+

1 approaches a logarithmic distribution,
which is a common property of turbulent wall-bounded flows. The present data lie
slightly above the relation given in [99] for plane channel flow. This observation is
generally made for turbulent duct flows [32, 44]. When moving to positions closer
to the corner shown in Figure 8.4 (b) and (c), typical deviation from the turbulent
logarithmic distribution can be observed. The development towards a parabolic
flow profile indicates the laminarization of the flow.

U1/Ub

x3/H = 0.25

Figure 8.2: Contour plot of the mean streamwise velocity field U1 normalized with Ub.
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Figure 8.3: Contour plot of the magnitude of the secondary flow field
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ized with Ub together with the secondary flow developing in the corner regions. Note that
the vectors are scaled by the factor two close to the acute angle in order to distinguish the
direction of the secondary flow in this part of the duct.

Scales and energy dissipation of the turbulent motion

Analysis of the energy spectra evaluated at three different spanwise positions
highlight the changes in the scales of the turbulent motion when approaching the
acute corner. The energy spectra of the streamwise wave numbers, E(κ), is shown
in Figure 8.5, where all quantities are normalized using Kolmogorov scales. These
scales are estimated following Equation (7.2) and using the integral value of uτ
resulting from the simulation. In the turbulence-dominated region in the center of
the duct corresponding to x3/H = 0.7 and x3/H = 0.5, the energy spectra collapse
and indicate that the spectral transfer is being established towards features common
for the turbulent energy cascade at relatively low Reynolds numbers. The energy
containing, large scale motion illustrated by the slope “-1” is represented by a rather
narrow band of wave numbers. The wave number range connected to the inertial
subrange (slope “-5/3” in the plot) is also very restricted. This part of the spectrum
represents important features of turbulence and becomes progressively extended
for increasing Reynolds numbers [110]. Finally, at the high wave numbers, which
correspond to the small scales of the turbulent motion, dissipation takes place.
The energy spectra at the position close to the acute corner do not show the
development that is characteristic for turbulent flow. In particular, the wave number
corresponding to the small scales is reduced, indicating a decrease in spectral
separation in the flow.
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Figure 8.4: Mean streamwise velocity, U1, normalized with the local wall shear velocity, uτ,
plotted along the x2-direction at different spanwise positions: x3/H = 0.8 (a), x3/H = 0.5 (b)
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2 + B with κ = 0.41 and B = 5.2 [99].
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Figure 8.5: Wave number spectrum normalized with Kolmogorov scales at different
spanwise positions on the x3-axis of the triangular duct (a): (x2, x3) = (0.0D, 0.3H),
(x2, x3) = (0.0D, 0.5H) and (x2, x3) = (0.0D, 0.7H).

In Section 6.2.3 it was argued that decreasing spectral separation in the flow is
associated with reduced turbulent dissipation. The validity of this statement for the
flow behavior in the triangular duct is checked using the dissipation spectra arising
at the same positions considered in Figure 8.5. The dissipation spectra can be
evaluated from the wave number spectra, according to Tennekes and Lumley [110],

D(κ) = 2νκ2E(κ) , (8.1)

and are shown in Figure 8.6. Note that again Kolmogorov scales are used for
normalization.
The integration of a dissipation spectrum over the entire wave number range yields
a quantitative measure for the turbulent dissipation at the considered position in
the duct cross section [110]:

ε = 2ν
∫︁ ∞

0
κ2E(κ) dκ . (8.2)

Even if the dissipation spectra in Figure 8.6 show some scatter due to the restricted
number of data samples, a clear tendency for ε can be extracted. While the turbulent
dissipation is similar at the positions in the center of the duct, it is significantly
reduced when moving towards the acute corner of the duct.
From this analysis, the connection between decreasing spectral separation and the
energy dissipation of the flow becomes obvious. Moreover, it can be concluded that
the duct corner provokes the aimed tendency towards reduced turbulent dissipation,
resulting in ε → 0 and purely laminar flow in the close vicinity of the corner.
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Figure 8.6: Dissipation spectrum [110] normalized with Kolmogorov scales at differ-
ent spanwise positions on the x3-axis of the triangular duct (a): (x2, x3) = (0.0D, 0.3H),
(x2, x3) = (0.0D, 0.5H) and (x2, x3) = (0.0D, 0.7H).

Statistical properties of the fluctuating motion

The statistical framework introduced in Section 6.1 is used in the following dis-
cussions to describe the suppression of turbulent flow properties towards the acute
angle that accompanies the observed flow laminarization. In Figure 8.7 the domi-
nant components of the Reynolds stress tensor are plotted along the x2-direction
at several spanwise positions. Owing to the very elongated duct shape in the
x3-direction some affinity to the profiles of plane channel flow are expected. These
profiles for similar friction Reynolds numbers, Reτ = uτd/ν, are also included,
where 2d is estimated by the width of the duct at a certain x3-position. The exact
values for Reτ are: (a) Reτ = 160, (b) Reτ = 85 and (c) Reτ = 40, while channel
data for Reτ = 150 (a) and Reτ = 100 (b) and (c) are used for comparison. The
Reynolds stresses in Figure 8.7 (a) representing the core region of the duct in
general are in good agreement with the corresponding channel flow data. The
slight underestimation of the channel data in the near-wall region is also observed
by Gavrilakis [44] for square duct flow and is related to the scaling with the local
friction velocity, uτ. At a position closer to the acute angle shown in Figure 8.7 (b)
the magnitude of all stress components is considerably reduced compared with the
turbulent channel data for the lowest Reynolds number available. This tendency
increases when moving even further in the negative x3-direction (Figure 8.7 (c)),
where all components of the Reynolds stress tensor apart from u1u1 are almost
suppressed, suggesting a highly anisotropic state of turbulence. Compared with
channel flow data, a strong decrease of the maximum of u1u1 at x+

2 ≈ 20 in particu-
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lar is observed. This peak in the streamwise stress component is characteristic of
wall-bounded turbulent flows and accompanies the appearance of intense turbulent
structures in the near-wall region [99]. The flattened maximum arising from the
triangular shape of the duct indicates a strong damping of this near wall turbulent
activity causing the laminarization of the flow.
Even if the magnitude of the stresses is significantly reduced when approaching the
transition region, they still persist in the laminar part of the flow and are typically
referred to as instabilities, disturbances or apparent stresses. The development of
these stresses at two spanwise positions is shown in Figure 8.8. In contrast to the
turbulent behavior discussed previously, these stresses reach their maximum in the
center of the duct indicating the subcritical state of the flow [53].
In the close vicinity of the acute corner, only the streamwise stress component
is present (Figure 8.8 (a)). When moving further in the spanwise direction, the
spanwise component also increases in magnitude (Figure 8.8 (b)). This behavior is
in agreement with findings from Lemoult et al. [79] for channel flow subjected to
subcritical instabilities: for low Reynolds numbers they observe that the energy
of the fluctuations is primarily related to the streamwise motion, while for higher
Reynolds numbers spanwise fluctuations also gain in energy.
In addition to the observed increase in the streamwise and spanwise fluctuations
when moving towards the turbulent part of the flow, these quantities appear to be
correlated. This behavior indicates the initiation of production of turbulent kinetic
energy.
The development of the stresses in the turbulent and laminar region of the duct
can be further investigated using their invariant representation. This procedure is
supposed to provide insights into the configuration of the stress tensor and enables
the connection to the theoretical findings discussed in Section 6.2.
In Figure 8.9 the trajectories through the anisotropy invariant map are shown
at different spanwise positions in the turbulent part of the flow. Obviously, the
magnitude of anisotropy (II) at the wall and on the centerline increase when starting
in the core region of the duct (Figure 8.9 (a)) and approaching the corner region
(Figure 8.9 (c)). A closer look also suggests that the trajectories approach the right
branch of the map representing the statistical axisymmetrical state of the stresses
during this development. This observation is in agreement with the theoretically
derived constraints for flow laminarization.
In Figure 8.10, trajectories that are representative of the laminar flow region within
the duct cross section plane are drawn in the anisotropy invariant map. It is
observed, that in the immediate vicinity of the duct, were the disturbances are
found to be very small, only a narrow region in the invariant map is covered
(see Figure 8.10 (a)). This region denotes a high anisotropy of the disturbances.
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Figure 8.7: Reynolds stresses uiu j normalized with the local wall shear velocity uτ plotted
along the x2-direction at different spanwise positions: x3/H = 0.8 (a), x3/H = 0.5 (b) and
x3/H = 0.3 (c), together with the profiles for plane channel flow at similar values of Reτ.
(a) Reτ = 150 [73, 74], (b) and (c) Reτ = 100 [73–75].
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When moving in the positive x3-direction towards the transition to turbulence, the
magnitude of anisotropy decreases (see Figure 8.10 (b)). The entire trajectory
moves along the two-component limit of the map, indicating a significant deviation
in the stresses from the axisymmetrical state. These tendencies conform to the
theoretical findings since they clearly deviate from the conditions that are associated
with stable laminar flow.
The analyzed invariant representation of the stresses at certain spanwise positions
indicate an agreement with the theoretically derived constraints. In particular,
the behavior of the stresses on the centerline of the duct is observed to show
the characteristic trends. Thus, the trajectory along the centerline of the duct is
assumed to enable a representative continuous description of the flow field.

8.1.2 Description of the transition process using the
invariant representation of the stresses

So far, the properties of the flow in the laminar and the turbulent region appearing
in the cross section plane of the duct have mainly been discussed separately. Since
the present investigation focuses on discovering duct shapes that prevent turbulence
and thus provoke the laminar flow state, a deeper understanding of the transition
processes is essential.
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Figure 8.9: Trajectory through the anisotropy invariant map along the x2-direction at
different spanwise positions: x3/H = 0.75 (a), x3/H = 0.5 (b) and x3/H = 0.3 (c).
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Figure 8.10: Trajectory through the anisotropy invariant map along the x2-direction at
different spanwise positions: x3/H = 0.1 (a), x3/H = 0.2 (b).

The present flow showing the coexistence of the two flow regimes enables mecha-
nisms involved in the transition from laminar to turbulent flow, and vice versa, to
be investigated.
In addition, the following analysis might also contribute to a fundamental area in
fluid mechanics research. Even though transition has already been studied for many
years, there are still plenty of unanswered questions concerning the phenomenon
and the present statistical framework has rarely been used for its description.

Continuous description of the flow field

Based on the findings in the previous paragraph, the development of the stresses
along the centerline of the duct cross section is expected to provide a continuous
and characteristic description of the flow properties in the triangular duct [23].
The observation of decreased turbulent activity when moving towards the duct
corner is confirmed by the development of the rms-values of the normal stress
components along the x3-axis in Figure 8.11. In the region close to the acute
corner, the magnitude of all stress components is small, which is in agreement
with the observed laminar flow behavior. Eckert and Irvine [30] use criteria in
order to quantify the extension of the laminar and the turbulent flow region. These
experimentally determined borders are also included in Figure 8.11: (i) represents
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the “instability line” [30] and (iii) is called the “transition line” [30]. When moving
in the positive x3-direction, Eckert and Irvine define the “instability line” at the
position where they observe the first fluctuations by flow visualization. Passing this
line the magnitude of the disturbances progressively increases. When reaching the
“transition line” the mean flow profile starts to deviate from the laminar parabolic
shape indicating the breakdown to turbulence. These experimentally proposed
positions describing the transition process do partially coincide with outstanding
positions in the development of the normal stresses extracted from DNS. The rms-
values in Figure 8.11 are very small in the vicinity of the corner but stay almost
constant when passing (i) up to x3/H ≈ 0.20. After reaching this position, first
the magnitude of the streamwise stress component starts to increase significantly.
When (iii) is reached, finally an increase in all rms-components can be observed
indicating the breakdown to turbulence (compare also with Section 7.3). At
the spanwise position x3/H = 0.36, a local maximum of the streamwise rms-
component is found, which is referred to as (iv). When moving further in the
positive x3-direction the fully turbulent core region of the duct is approached:
at x3/H = 0.80 the mean streamwise velocity component reaches its maximum.
Passing this position the influences of the opposite wall become prominent and
the stresses show the expected behaviour of turbulent wall-bounded flows. These
effects are not the focus of subsequent discussions.
Until now, the transition from laminarity to turbulence was mainly observed to be
associated with a significant increase in the magnitude of the Reynolds stresses
(see Figure 8.7). The physical mechanisms that are involved in the transition
process will now be investigated further. In Chapter 6 the methodology to describe
the anisotropy tensor of the stresses in invariant space was presented, which
illustrates the appearance of the stress tensor rather than the magnitude of its
components. This tool offers the possibility to investigate the configuration of
disturbances in laminar flow (“apparent stresses”) and of the Reynolds stress tensor
in turbulent flow simultaneously. Based on the theoretical framework, it is expected
that the invariant representation of the stresses represents a powerful tool for the
investigation of the transition and reverse transition process since it is assumed to
illustrate the relevant mechanisms. In Figure 8.12 the corresponding development
from the corner to the core is shown in the invariant map and the resulting extrema
are highlighted.
While the maximum of anisotropy, namely the one-component state of the stresses
is reached within the corner (x3/H = 0.00), the stresses in the core (x3/H ≈ 0.80)
are almost isotropic. It is noted, that the latter spanwise position corresponds to
the point where the maximal mean streamwise velocity is reached. However, the
anisotropy in the stresses does not decrease monotonically from the wall to the
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Figure 8.11: Development of the normalized rms-values of the velocity fluctuations ui,rms

along the x3-axis. (i) “instability line” at x3/H = 0.10 [30], (iii) “transition line” at
x3/H = 0.24 [30], (iv) local maximum of u1,rms at x3/H = 0.36.

core but a rather complex trajectory through the anisotropy invariant map arises. In
the corner region of the duct, the trajectory first develops along the two-component
limit, which is associated with a strong deviation from the axisymmetrical state
of the stresses. After the initial decrease in anisotropy, the development changes
its direction at the position x3/H = 0.18. The anisotropy in the stresses increases
until x3/H = 0.24 is reached, corresponding to the transition point found by Eckert
and Irvine [30]. This behavior is followed by a monotonic decrease of II along the
axisymmetrical border of the map.
The theoretical findings suggest that a highly anisotropic and axisymmetric state
of the stresses causes reverse transition and stable laminar flow at the same time
[23]. Qualitatively, an agreement of the trends in the trajectory through the aniso-
tropy invariant map with these constraints is observed. However, a quantitative
estimation, in particular of the deviation from the axisymmetrical state of the
stresses, cannot really be made in this representation. In order to investigate the
behavior of the flow in the triangular duct in more detail, corresponding quantities
are proposed: the magnitude of anisotropy, II, and a measure for axisymmetry A,
which is defined following the ideas of Antonia et al. [7] as

A =
4/3|III|

(2/3 II)3/2 . (8.3)
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IImax = 2/3 and A = 1 correspond to the maximum in anisotropy and axisymmetry
in the stresses, respectively. The development of II/IImax and A along the centerline
of duct is plotted in Figure 8.13. The outstanding spanwise positions for the
magnitude of the stresses found in connection with Figure 8.11 are also included
in the plot. It is clear that a correlation of the magnitude of the stresses and
their configuration is present: the development of II/IImax and A also show an
exceptional behaviour at the spanwise position (i), (iii) and (iv) (compare with
Figure 8.11). The curves in Figure 8.13 highlight an additional spanwise position,
x3/H = 0.18, which is referred to as (ii).

Transition and reverse transition

Based on Figure 8.13, the trends in the configuration of the stresses within the
transition from laminar to turbulent flow will be discussed first. For this purpose,
the laminar region of the flow up to the transition line (iii) is investigated. In the
direct proximity of the corner, the disturbances have an one-component shape,
which agrees with the theoretical constraint for stable laminar flow. At the posi-
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tion where Eckert and Irvine [30] observe the first disturbances in the flow, the
stresses start to loose their initially axisymmetrical shape followed by a strong
and continuous decrease of A and II. This deviation of the stress tensor from the
theoretically derived stable state is provoked by fluctuations in the streamwise and
spanwise direction. Even if these stresses are very small during this development
their configuration describes the increasing instability of the flow. At x3/H = 0.18
a local minimum in A and II is finally reached, which is marked by (ii). After this
position, a significant increase of u1u1 can be observed in Figure 8.11 suggesting
that the flow breaks down to turbulence. However, the final transition to turbulence
in the mean flow field is not observed before (iii) (compare also with Figure 7.13).
The discrepancy between these observations concerning the transition point will
be further analysed in the next section.
Along with the transition from laminar to turbulent flow, the mechanisms involved
in the process of reverse transition or flow laminarization can also be analysed based
on Figure 8.13. In order to do so, this time the transition line (iii) is approached
coming from the turbulent part of the flow and the discussion concentrates on the
region 0.80 > x3/H > 0.24. When starting in the core region of the duct, where the
flow is almost isotropic on the centerline, the movement in the negative x3-direction
first is accompanied by a deviation in the stresses from the axisymmetric state. This
behavior is followed by a strong increase in A and II. It is observed, that the position
where the local maximum of A is finally reached corresponds to the position where
the local maximum of the streamwise rms-component is also reached (see (iv)
in Figure 8.13). When moving further in the negative x3-direction a significant
increase in II is observed while A stays approximately constant. This process
is associated with a drastic decrease of all rms-values (see Figure 8.11). At the
position were II also reaches a local maximum (iii), the mean flow is finally found
to turn into the laminar state. This behavior suggests that even if the axisymmetry
in the flow is very high, its final laminarization does not take place before a certain
anisotropy level in the flow is reached. However, it is noted that the magnitude of
the stresses within the region, were they are highly axisymmetrical (A ≈ 1), i.e. at
the spanwise position x3/H = 0.3, is strongly reduced compared with the turbulent
channel flow (see Figure 8.7 (c)). The same holds for the turbulent dissipation
(see Figure 8.6) indicating agreement with the analytically found effect of the
axisymmetrical state of the stresses.

The border between laminarity and turbulence

A comparison of the present flow with fully turbulent circular pipe flow is used to
detect the border between laminarity and turbulence. In Figure 8.14 the develop-
ment of II/IImax and A in the triangular duct is plotted starting from x3/H = 0.18
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or (ii) up to x3/H = 0.80. In this plot, the corresponding data from the literature
for fully turbulent pipe flow at Re = 4950 are also included [32]: the profiles are
shown along the radius of the pipe starting at the wall (x′3/S = 0.00) and reaching
the center at x′3/S = 1.0. The invariant properties close to the critical point (ii) in
the triangular duct and within the viscous region of circular pipe flow show notable
similarity. This behavior suggests that the turbulent flow in the triangular duct
begins at the laminar corner layer in a similar way to that found for fully turbulent
internal flows at the wall. Subsequently, (ii) is referred to as the “origin line”.
The development of the mean streamwise velocity U1 along the centerline of the
duct starting at (ii) can further support this finding. In Figure 8.15, U1 and x3
are normalized using the friction velocity arising at (ii). A comparison with the
expected linear behavior for turbulent flows close to the wall shows notable agree-
ment in the vicinity of (ii). At a certain distance from the origin, the turbulence-
dominated part of the flow is reached which is associated with a deviation from
the initial viscous behavior. The region where viscous effects dominate seems to
be extended compared with e.g., pipe flow. However, it is noted that the flow field
along the centerline of the duct is strongly affected by the diverging top and bottom
wall resulting in a rather complex flow situation.
Based on the comparison of the stress configuration and mean flow in the triangular
duct and the circular pipe it is found that the local minimum in II/IImax and A
indeed can be interpreted to be the border between the laminar and the turbulent
flow region in the triangular duct. However, the viscous sublayer of the turbulent
flow connects the two coexisting regions. The mean velocity in this layer has
essentially laminar properties. Thus, when considering the mean flow field, the
breakdown to turbulence cannot be distinguished in this part of the flow. This fact
explains the differences in the critical points that are found when considering the
mean or the fluctuating motion.
Despite the similarities of the flow in the triangular duct and in the circular pipe
discussed here, differences appear when moving more to the central part of the
ducts. These differences are assumed to originate from the fact that the triangular
shape of the duct induces the laminarization of the flow. The process of reverse
transition when approaching the critical point coming from the turbulent part of
the flow is investigated in the following discussions. While the maxima in II and
A are reached at similar radial positions in a circular pipe flow, A grows much
faster than II in the triangular duct (see Figure 8.14). However, the connected
process of laminarization is rather extended and the entire switch to laminar flow
is accompanied by a significant increase in the maximum of anisotropy.
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8.2 Comparison of coexisting laminar and
turbulent flow fields in related ducts

Along with the triangular duct with the 11.5∘ apex angle, additional geometries
affecting the coexistence of laminar and turbulent flow were presented in Figure 8.1.
A comparison of the observation made for the triangular duct with the 11.5∘

apex angle with the flow fields resulting from these geometries is expected to
further support the understanding of conditions in the flow that characterize stable
laminar duct flow [23]. Additionally, further insights into the constraints for
flow laminarization are expected from this comparison. Finally, the impact of
differences in the design of the corner regions on the transition scenario will be
discussed.
In the previous section, for the triangular duct with the 11.5∘ apex angle, it was
shown that the development of the magnitude of anisotropy, II, and the measure
of axisymmetry, A, along the symmetry line of the duct describe the mechanisms
involved in the transition from the laminar to the turbulent flow, and vice versa.
This illustration is also used in the following analysis of related flow fields.

8.2.1 Characterization of stable laminar duct flow

The extension of the laminar region in triangular ducts was found to be a function
of the apex angle, α. Bandopadhayay and Hinwood [10] worked out a model for
its prediction, which is validated by experimental data from Eckert and Irvine [30]
and Carlson and Irvine [18]. According to this model, the decrease in α results
in an increase of the laminar region persisting next to the turbulent flow. The
flow fields in the triangular ducts with 11.5∘ and 4∘ apex angles arising from DNS
agree with this finding. While in the former case the laminar flow field extends
to x3/H = 0.25, the latter case shows a laminar flow behavior up to x3/H ≈ 0.35.
Note that these are the spanwise positions after which the mean flow starts to
deviate from the laminar parabolic shape.
The extension of the laminar flow region in the triangular duct with the 4∘ apex
angle is confirmed by the magnitude of the rms-values along the x3-axis in Fig-
ure 8.16. In the close proximity of the corner, all normal stresses are vanishing and
only at some distance, u1u1 start to grow followed by an increase in u3u3. When
the transition point (iii) is reached, finally the wall normal component, u2u2, also
increases denoting turbulent flow behavior. The data plotted in Figure 8.16 show
some scatter in the region where the flow becomes unstable and breaks down to
turbulence. The origin of this scatter cannot be finally clarified. Typically, the
averaging time is expected to present an important parameter for the convergence
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Figure 8.16: Development of the normalized rms-values of the velocity fluctuations ui,rms

along the x3-axis of the triangular duct with the 4∘ apex angle (b): (iii) “transition line” at
x3/H = 0.35, (iv) local maximum of u1,rms at x3/H = 0.40.

of turbulence statistics. In Table 8.1, this period is given for the different duct
geometries investigated. The scaling that is usually used for turbulent flows is
applied. Obviously, the averaging time is comparable for all cases and was shown
to result in a converged data set for geometry (a). However, the discussion that
follows in Section 8.2.3 suggests differences in the transition scenarios arising in
the duct geometries investigated, which might also affect the typical time scales of
the flow and thus the time ranges that need to be considered for averaging (compare
with Equation (6.2)). In spite of the present uncertainties, it is felt reasonable to
discuss major trends in the data arising from geometry (b). It is also checked that
these tendencies do not vary during the last 10Dh/uτ of the averaging period.
The increase in the spanwise extension of the laminar flow region, compared with
the triangular duct with the larger apex angle, suggests that the flow in the latter
geometry is more stable towards the amplification of disturbances. This behavior
is further analysed using the invariant representation of the stresses. In Figure 8.17
the normalized magnitude of anisotropy, II/IImax, and the measure of axisymmetry,
A, are again plotted along the x3-axis of the duct. In the stable laminar region of the
duct, the flow is highly anisotropic and axisymmetric denoting the one-component
state in the stresses. The agreement of this observation with theoretical constraints
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Figure 8.17: Development of the magnitude of anisotropy, II/IImax (red circles), and of the
measure for axisymmetry, A (blue squares), along the x3-axis of the triangular duct with the
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for stable laminar flow indicates that the geometrical design of flow domains
actually provoke the analytically proposed configuration of the stresses.
However, after a certain distance from the corner, the axisymmetry and anisotropy
in the stresses decrease and the flow becomes unstable. This development does not
follow the clear trajectory that was observed for the triangular duct with the 11.5∘

apex angle: II/IImax and A fluctuate over a certain distance, before the mean flow
finally starts to deviate from its laminar properties at (iii). This fact most probably
arises from convergence issues in the statistics, which were discussed previously.

8.2.2 Constraints for flow laminarization

In the following discussion, the intention is to provide a more general view of the
mechanisms that are involved in the reverse transition process. For this purpose,
observations made for geometry (a) in Section 8.1 are compared with the flow
behavior in geometries (b) and (c) (see Figure 8.1 for references). This analysis is
again based on the development of the normal stresses, the magnitude of anisotropy,
II, and the measure for axisymmetry, A, along the x3-axis of the ducts, which are
shown in Figures 8.11, 8.13, 8.16, 8.17, 8.18 and 8.19. The geometrical symmetries
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of the diamond shaped duct are exploited in order to improve the convergence of
the statistical data set.
The normal stresses along the x3-axis in the turbulent part of the flow show a similar
behavior for all ducts: When moving from the center in the negative x3-direction,
first an increase of all components is observed while u2,rms ≈ u3,rms results in an
almost axisymmetrical state. However, the magnitudes of the wall-normal and
spanwise components decrease before the streamwise component reaches its local
maximum (this spanwise position is referred to as (iv) in the considered plots).
This behavior is connected to an increase of axisymmetry and anisotropy in the
stress tensor. Actually, A reaches a local maximum at position (iv) in all ducts.
The high axisymmetry in the stress tensor persists when moving from (iv) towards
the transition line (iii). The continuous decrease of the normal stress components
in this part of the flow indicates the reduction of turbulent activity. At the same
time, a sustained increase in the anisotropy of the stresses is observed whose local
maximum is reached at the transition line (iii).
Finally, it can be concluded that the reverse transition process indeed is character-
ized by high axisymmetry in the stress tensor. However, the final laminarization of
the flow field does not take place before the stresses also are highly anisotropic.
This behavior is similar for the ducts considered here, as is clearly emphasized for
the duct shapes (a) and (c) in the inset of Figure 8.19.

8.2.3 Impact of corner designs on the transition scenarios

Within the previous paragraphs, the connection of the theoretical framework with
the observations made for different coexisting laminar and turbulent flow fields was
established. For this purpose, particular similarities in the these flows were detected
and their physical meaning was discussed. The intention is now to concentrate on
differences in the transition processes within these ducts in order to connect their
distinct features to the individual corner designs. The following discussion is based
on a comparative analysis of the development of the magnitude of anisotropy, II,
and the measure for axisymmetry, A, along the centerline of the ducts shown in
Figures 8.13, 8.17 and 8.19.
The impact of the corner design on the laminar to turbulent transition process is
discussed first. The configuration of the disturbances in the laminar part of the
ducts shows that the stable laminar region is large in the triangular duct with the 4∘

apex angle (b) compared with the triangular duct with the 11.5∘ apex angle (a) and
the diamond shaped duct (c) when the duct height H is applied for normalization.
A similar conclusion can be drawn for the regions where the disturbances become
unstable and move along the two-component border in invariant space. In particular
for geometry (c) the area where II decreases is shortened and the critical origin
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Figure 8.18: Development of the normalized rms-values of the velocity fluctuations ui,rms

along the x3-axis of the diamond shaped duct (c): (iii) “transition line” at x3/H = 0.24, (iv)
local maximum of u1,rms at x3/H = 0.32.

point (ii) is associated with a higher magnitude of anisotropy in the stresses than
can be observed for geometries (a) and (b).
These differences in the flows can be quantified in terms of a transitional Reynolds
number, Re(iii). It is estimated using the local height of the duct at the spanwise
position (iii) as the characteristic length scale together with the bulk velocity
appearing at this position. The results are summarized in Table 8.2. In the former
discussion it was found that position (ii) in the flow domains describes fairly
physically the border between laminarity and turbulence. The Reynolds numbers
found at this position are also given in the table. However, since it is not possible
to quantify Re(ii) for geometry (b) due to non-uniformities in the transition process,
Re(iii) is used instead in the following analysis. The highest transition Reynolds
number is observed for geometry (c). Interestingly this value matches the range
that is found to be characteristic for plane channel flow, namely from 1100 to
1400 [17, 54]. The critical Reynolds number for channel flow is also given based on
the bulk velocity and the entire channel height. It is noted that the geometry of the
triangular duct with the 4∘ apex angle actually resembles a channel configuration
with a large aspect ratio. Compared with this case, the transition Reynolds numbers
resulting for geometries (a) and (c) are significantly reduced.
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“origin line” at x3/H ≈ 0.20, (iii) “transition line” at x3/H ≈ 0.24, (iv) local maximum
of u1,rms at x3/H = 0.32. The inset shows the development between the positions (ii) and
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considered.

This behavior might be connected to the individual appearance of mean secondary
motion in the ducts: For the diamond shaped duct, which corresponds to the

lowest Re(iii) the magnitude of the cross flow,
√︁

U
2
2 + U

2
3, reaches almost 3%

of the bulk velocity, as can be seen in Figure 8.20. It is noted that this value is
increased compared with the maximum value found for square duct flow at a similar
Reynolds number, which corresponds to 1.9% [44]. In Figure 8.21 the magnitude
of the secondary motion is also shown for a section of the triangular ducts, which
is bounded by the transition line (iii) and extends to the center region were the
scaling is adapted to the data range. It is clear that the magnitude of the secondary
motion within these ducts, which only reaches about 0.8% of the bulk velocity, is
significantly reduced compared with the diamond shaped duct. However, while a
directed motion still is visible for the larger apex angle, it disappears for geometry
(b). The weak cross flow that is visible for geometry (b) might be affected by
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Table 8.2: Local Reynolds number arising at the origin point (ii) and at the transition point
(iii) within the different duct geometries.

case Re(ii) Re(iii)

(a) triangular duct with 11.5∘ apex angle 210 600
(b) triangular duct with 4∘ apex angle - 1200
(c) diamond shaped duct 30 120

the averaging issues discussed earlier. Thus, the strength of secondary motion
in the turbulent region of the duct seems to be connected to the extension of
the neighboring laminar region. Physically this fact might be explained by the
convective properties of the cross flow: fluid with turbulent properties is directed
towards the neighboring laminar region and limits its extension.
If the turbulent part of the flows, namely the region x3/H > (iii) is reconsidered
in Figures 8.13, 8.17 and 8.19, it can be seen that the region of high axisymmetry
in the stresses is largest for geometry (c) and decreases in (a) and further in (b).
This tendency is similar to that observed for the strength of the secondary motion
in the different ducts and an interconnection in the processes is suggested: the
appearance of secondary motion is associated with highly axisymmetrical stresses
on the centerline or corner bisector of a duct.
The observed impact of corner designs on the transition scenarios in coexisting flow
situations shows that the strength of secondary motion can be linked to limits in the
extension of the stable laminar region and to an accelerated laminar to turbulent
transition process. However, at the same time the cross flow is accompanied with an
enlarged region of high axisymmetry in the stresses in the turbulent part. Recalling
findings from theoretical considerations in Section 6.2.3 and from simulations in
Section 8.1.1, this appearance of the fluctuations can be linked to reduced turbulent
dissipation. The interference of the secondary flow with the state of the stresses
is not clear at this moment and its investigation is not the focus of subsequent
discussions. Rather, it should be rather noted that the part of the flow where the
axisymmetry is high is limited and the following proposal is made for the design of
energy-efficient duct geometries: ducts consisting of corner regions that are shaped
to extend the state of high axisymmetry in the stresses to large parts of the flow
domain are suggested to promote the entire suppression of turbulent activity and
thus enable large energy savings to be made.
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9 Impact of duct corners on
turbulent flow

In the previous chapter, narrow corner regions in ducts were shown to locally
provoke high axisymmetry and anisotropy in the stresses. This state is associated
with stability of laminar flow and reduced dissipation of turbulent motion, which
is followed by its laminarization. Generally, laminar flow is associated with
significant lower friction losses than turbulence. Thus, ducts consisting of corner
regions which can ensure laminar flow in situations where it typically is turbulent,
are promising for the present optimization task of addressing reduced energy
consumption of the flow (see Section 4.4).
In this chapter, the question to be discussed concerns which geometrical properties
of corner regions in straight, non-circular ducts modify the flow in the theoretically
proposed manner and how the effect can be expanded to large parts of the flow
domain. For this purpose, the design of corners in the cross section plane and the
impact on turbulent flow is investigated.
Turbulent flow in non-circular ducts has already been studied frequently in the
literature in the past. These investigations mainly focused on the impact of several
duct shapes on the frictional resistance and the mean flow field. First, a summary
of these results will be given according to the historical sequence. In doing so,
these findings are discussed in connection with the goals followed in this work.
Further, the available results are complemented with data from numerical simula-
tions of novel duct shapes constructed of differently designed corner regions. These
data enable the systematic investigation of how specific geometrical properties of
the ducts influence the statistical flow field. Based on the findings in the previous
chapters, these results are used to establish the potential of a certain property
to promote the laminarization of turbulent flow and the delay of the laminar to
turbulent transition.
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9.1 Flow behavior in classical non-circular ducts

9.1.1 Review of findings in the literature

Friction resistance and energy dissipation

The impact of duct geometries on turbulent flow was studied intensively in the
first half of the 20th century. Schiller [105] focused on the evaluation of the flow
resistance of different types of non-circular ducts geometries, namely a square
duct, a rectangular duct with an aspect ratio of 3.5, an equilateral triangular duct
and a duct with a wavy boundary. These experiments investigated the validity of
the concept of hydraulic diameter (see Equation (4.6)).
Schiller’s results for the friction factor f of the equilateral triangular duct arising
from these experiments are plotted in Figure 9.1 together with corresponding
experimental data for the square duct [52] and isosceles triangular ducts with
11.5∘ and 4∘ apex angles [18, 31] (open symbols). The corresponding data from
the present simulations are also included in the plot (solid symbols) and a good
agreement for all duct geometries investigated can be observed.
In the laminar regime (Reh < 2300) analytical solutions for the friction factor are
available that obey the relationship given in Equation (4.7). For this flow regime
the values emerging from the non-circular duct geometries are lower compared
with the solution for the circular pipe. In contrast, the turbulent results for the
square duct and the equilateral duct indicate that the scaling with the hydraulic
diameter allows the adaption of the correlation describing the resistance of circular
pipes to non-circular ducts with reasonable accuracy [106]. In fact, this law for the
prediction of the flow resistance gives a good estimate for numerous duct shapes,
e.g., for elliptical ducts [91] and is widely used in engineering practice. In the
present illustration, however, a deviating tendency arises for the considered data:
while for the square duct the friction factor is only slightly reduced compared with
the Blasius correlation, this effect becomes more pronounced for the triangular duct
shapes. The tendency to lie below the empirical correlation of Blasius becomes
stronger if the angle of the duct is reduced (Figure 9.1 (a)-(d)) [24]. The triangular
shape with α = 11.5∘ (case (c)), for example, shows a constant reduction of f
for about 20% over the entire turbulent regime investigated [30]. This fact may
be explained using results for case (c) and (d) discussed in Chapter 8. There, the
partial laminarization of the flow in these ducts was observed suggesting reduced
friction losses compared with the fully turbulent flow state.
Moreover, it is noted that for the acute corners the transition from the laminar to
the turbulent regime takes place at lower Reynolds numbers. This fact indicates
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that the hydraulic diameter concept does not capture the underlying physics to
generally unify the critical conditions leading to the breakdown to turbulence.

Secondary motion

Besides the evaluation of friction losses arising in non-circular ducts, characteristic
structures of the mean flow field that are associated with a non-circular boundary
are frequently discussed in the literature. In the 1920s, Nikuradse [92] performed
pioneering work on the special properties of turbulent velocity fields appearing in
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Figure 9.1: Friction factor f plotted against the hydraulic Reynolds number Reh. Analytic
solution for circular laminar pipe flow, f = 64/Reh; Blasius correlation for turbulent flow,
f = 0.316/Re1/4

h [106]; (a) Square duct: analytic solution for laminar flow, f = 57/Reh;
open symbols, measurements from Hartnett et al. [52]; solid symbol, DNS; (b) Equilateral
triangular duct: analytic solution for laminar flow, f = 53/Reh; open symbols, measurements
from Schiller [92]; solid symbol, DNS; (c) Triangular duct (α = 11.5∘): laminar solution
for a circular sector, f = 50.3/Reh [30]; open symbols, measurements from Eckert and
Irvine [31]; solid symbol, DNS; (d) Triangular duct (α = 4∘): laminar analytic solution
for a circular sector, f = 48.85/Reh [18]; open symbols, measurements from Carlson et
al. [18], solid symbol, DNS. The right figure shows a comparative view of the DNS data at
Reh ≈ 4500 (highlighted in the left picture).
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straight non-circular ducts. He observed that the lines of constant mean streamwise
velocity are displaced towards the corners at some distance from the centers of
these ducts. Based on measurements of the streamwise flow field he and Prandtl
were able to indirectly conclude the existence of secondary motion in form of
streamwise vortices directed towards the corner of the duct for the first time [100].
Conclusively, the observed flow phenomenon is referred to as secondary motion
of Prandtl’s second kind. In Figure 7.4, the mechanism and the strength of the
secondary motion arising in a square duct are shown in an example manner. From
this illustration it becomes apparent that the corner vortices can be linked to the
distribution of the wall shear stress along the duct sides and thus contribute to the
friction behavior discussed in the previous section. In contrast to the phenomenon
corresponding to the straight non-circular ducts considered here, secondary motion
of Prandtl’s first kind is pressure induced and appears in curved ducts of any
cross section shape were centrifugal forces act at right angles to the main flow
direction [27].
Owing to improvements in measurement techniques, the results of Nikuradse are
followed by numerous experimental investigations involving direct measurements
of the secondary flow field and the Reynolds stress tensor. These data fostered
the physical understanding of the reasons for the appearance of secondary motion.
In this context, Brundett and Baines [16] show that the production of streamwise
vorticity is due to spatial variations of certain stress components, namely of (u2

2−u2
3)

and of u2u3, in the wall-normal and spanwise direction. These experimental studies
on secondary motion are extended by Gessner and Jones [46] who performed
more detailed measurements of all Reynolds stress components. From these data
they are able to determine on the dominant terms in the transport equation of the
mean streamwise vorticity. Related studies for turbulent corner flow developing at
approximately constant pressure and for turbulent flow in an equilateral triangular
duct were conducted by Perkins [95] and Aly et al. [6], respectively.
In the early days of numerical simulation, scientists and engineers only depended
on turbulence models for the calculation of turbulent flow fields. In the beginning,
models were only able to handle isotropic turbulence and thus there were large
restrictions in their applicability for the prediction of many flows of practical
relevance. In later stages, these models were complemented to account for the
anisotropic behavior of statistical flow fields and its spatial inhomogeneity. This
improvement enabled the prediction of the flow field in non-circular ducts that
frequently appears in engineering practice, e.g., in heat exchangers, ventilation and
air-conditioning systems, turbo machinery and open channels [27]. Corresponding
work was done, for example, by Hanjalić and Launder [51] and Nakayama et
al. [90] who tested their modeling approach for different duct geometries. A review
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of experimental and modeling work on turbulent flow in straight non-circular ducts
is given by Demuren and Rodi [27].
Owing to the increase of computational power, the DNS of the flow in a square
duct at low turbulent Reynolds numbers, namely Reh = 4410 or Reτ = 300, became
possible. The results of Gavrilakis [44] finally give detailed information of the
entire flow field, which are basically in agreement with previous experimental
findings. Huser and Biringen [58] extended the data base from direct numerical
simulation to a higher Reynolds number, Reτ = 600.
Further investigations in the present work follow the theoretical findings in Sec-
tion 6.2 and concentrate on the impact of the duct design on the distribution of the
stress field. The appearance of secondary motion is not explicitely discussed in
this context. However, the results from DNS and experiments that were summa-
rized earlier show that this property of the mean flow originates from the stress
distribution, and thus can be assumed to be captured by the present thinking.
Besides the secondary motion in the mean flow, quasi-coherent structures can
be identified in turbulent flow by conditional averaging. The interaction of the
arising near-wall streaks and the appearance of larger scale streamwise vortices,
namely secondary motion of Prandtl’s second kind, is recently discussed by Pinelli
et al. [97] using DNS data. Subsequently, these authors also investigate the
flow in a square duct at a marginally turbulent state [111]. Within this work,
the characteristic coherent structures appearing during flow laminarization are
discussed. Starting from a fully turbulent state, it is found, that flow laminarizes at
a Reynolds number of about Reh = 2154. This Reynolds number is higher than
the critical value found for channel flow but smaller than that of circular pipe flow.
The difference from channel flow is discussed in the context of the side walls that
limit the extension of the coherent flow structures in the spanwise direction. It is
found that flow laminarization is connected to walls that are shorter than 154 wall
units.
The results from Uhlmann et al. [111] support the present approach in two major
aspects. Firstly, their findings suggest that geometrical modifications leading to
spanwise limitations may interact with the transition behavior of the flow. Further,
they find that the required scale of these limitations is rather large and significantly
increased compared with that of, for example, riblets that act in turbulent flow
(compare with Section 6.2.4). The underlying reasoning for the interaction of
coherent structures with flow laminarization is not focused on here. However, an
outlook for related interpretation of the data that are presented in the following
sections is given in Section 9.2.3.
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9.1.2 Properties of the turbulent stresses

Following along the path of this work, the statistical properties of the flow in the
square duct and an equilateral triangular duct are investigated. Since these data are
only partially available in literature, the results from simulations carried out during
the course of the present work are used. In order to gain further insights into the
impact of the different duct geometries on the turbulent stresses, their development
along the corner bisectors with length Rb and along the wall bisectors with length
rb (see Figure 9.2) are discussed.
In Figure 9.3 the development of the Reynolds stresses along the wall bisector
and the corner bisector of the square duct are shown. In order to highlight the
special properties of the stresses in the non-circular duct, the corresponding data
for circular pipe flow and plane channel flow are also shown [5, 32]. Note that
the stresses in the cylindrical coordinate system of the circular pipe are adapted
to the cartesian system using uz = u1, ur = u2 and uϕ = u3. Firstly it is observed
that u1u1 is increased at some distance from the wall of the circular pipe compared
with the plane channel, while u2u2 and u3u3 are decreased, leading to an increase
in anisotropy of the stresses in the former flow. This tendency is even more
pronounced for the flow in the square duct along the wall bisector (upper plot
in Figure 9.3). The observation made for the square duct also results from the
scaling with the overall mean wall shear velocity arising from the simulation. It
is shown by Gavrilakis [44] that a scaling with the local value of uτ leads to a
reasonable agreement of the stresses along the wall bisector and in channel flow at
some distance beyond the viscous sublayer. However, since the present intention is
to discuss the statistical properties of the flow in the non-circular ducts at different
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Figure 9.2: Cross section plane of the square duct (left) and equilateral triangular duct
(right) with corner and wall bisectors. The wall bisectors with the length rb are shown as
dotted lines, the corner bisectors with the length Rb are shown as dashed lines.
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positions in a general frame, scaling with the mean wall shear velocity is felt
to be an appropriate choice. This scaling allows conclusions about the relative
changes in the flow within a certain duct geometry to be made. Thus, it is possible
to identify at which position the magnitude of turbulent stresses is increased or
decreased.
Compared with the observations made previously, the flow along the corner bisector
of the square duct (lower plot in Figure 9.3) shows a distinct behavior: due to
the geometrical properties of the duct, the stress tensor appears to simplify since
u2

2 = u2
3 and u1u2 = u1u3 suggesting an almost axisymmetrical state of the flow [16].

This state is associated with a significant decrease of all stress components up to
a considerable distance from the wall compared with the wall bisector and the
channel and pipe flow. Close to the corner of the duct, all stress components are
damped leading to the disappearance of turbulent properties in the flow.
The impact of the corner angle on the flow behavior can be studied if the flow in
the square duct is compared with that arising in an equilateral triangular duct. The
corresponding distribution of the stresses along the wall and the corner bisectors
of these ducts are shown in Figure 9.4. It is clear that the normal stresses along
the wall bisector are increased (see upper plot in Figure 9.3) for the triangular
duct. This behavior can be interpreted as enhanced turbulent activity in the area
of the wall bisector. The shear stresses, however, are only slightly affected by the
geometrical properties. For the square duct u1u3 and u2u3 vanish along the wall
bisector due to the geometrical symmetry of the duct [16]. A similar behavior is
observed for the triangular duct by Aly et al. [6] and in the present simulations.
In the lower plot in Figure 9.3, the stresses developing along the corner bisector
are compared. The tendency towards damped turbulent activity in the corner is
increased for the smaller angle of the triangular duct. In particular, the region in
which the turbulent stresses entirely vanish is extended compared with the square
duct. Additionally, the development of u1u1 is fairly untypical: in general, the
streamwise stress component is decreased compared with the square duct and no
characteristic peak value appears.
The configuration of the stresses in the square duct and the equilateral triangular
duct is further investigated in the anisotropy invariant map. In Figure 9.5 the
trajectories along the wall and the corner bisectors are presented. In general, the
behavior in the two different ducts is somewhat similar. Along the corner bisectors
(Figure 9.5 (b) and (d)) the one-component state is reached at the wall and an
overall strong tendency towards axisymmetry is observed. Differences in the
geometries appear along the wall bisector, where the anisotropy of the stresses in
the near-wall region is lower in the equilateral triangular duct.
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Figure 9.3: Reynolds stresses along the wall bisector (upper plot) and along the corner
bisector (lower plot) of the square duct. The data along the corner bisector are plotted
starting in the corner and using the local coordinate x′2 along the duct diagonal. uτ resulting
from the simulation that leads to Reτ = 150 is used for normalization. Literature data for
channel flow at Reτ = 180 [5] and for pipe flow at Reτ = 180 [32] are shown for comparison
and δ is equal to the channel half height and the pipe radius.
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Figure 9.4: Reynolds stresses along the wall bisector (upper plot) and along the corner
bisector (lower plot) of the equilateral triangular duct where rb and Rb is the length of the
bisector, respectively. The data along the corner bisector are plotted starting in the corner
and using the local coordinate x′2 in negative x2-direction. The data for the square duct are
also shown for comparison. uτ resulting from the corresponding simulations is used for
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Figure 9.5: Trajectory through the anisotropy invariant map along the wall and corner
bisectors of the square duct (a), (b), and the equilateral triangular duct (c), (d). Left column
and red color, wall bisector; right column and blue color, corner bisector.
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From the observations made for the statistical flow field in the square and equilateral
triangular duct, it can be concluded that duct corners with different corner angles
lead locally to a strong tendency towards axisymmetry in the stresses. This behavior
is observed along the corner bisectors of the ducts. In the vicinity of the corner
angle, the disappearance of turbulent properties is observed while the extension of
the effect is increased for the smaller angle. In contrast, along the wall bisector,
the anisotropy of the stresses and their tendency towards axisymmetry is reduced
and the flow shows similar properties to the turbulent channel or pipe flow.
The goal in the following sections is to extend the benefits resulting from duct
corners to a larger part of the flow domain. For this purpose, novel duct geometries
are designed, which are presented and analysed.
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9.2 Design of novel duct geometries using corner
effects

In addition to the frequently studied duct flows discussed in the previous section, a
few more investigations of turbulent flow through more complex non-circular ducts
are presented in the literature. Raiesi et al. [102] and Fukushima and Kasagi [43]
studied the flow in ducts with rhombic cross sections and focused on the impact
of different corner angles on the flow. The smallest angle considered in these
investigations is 30∘ and a tendency towards flow laminarization, similar to the
observations made in the previous chapter for the triangular ducts with 4∘ and
11.5∘ apex angles, is observed.
Lammers et al. [78] performed direct numerical simulations of the turbulent flow
through ducts of polygon-shaped cross sections using a Lattice–Boltzmann me-
thod. Starting from turbulent flow through the square duct the intention in their
work is to increase the anisotropy of turbulence along the entire wetted perimeter
due to an increase in corner bisectors. For this purpose, ducts consisting of
eight corner regions distributed regularly along the circumference are designed.
Within the resulting octagonal cross section, the cases of straight and profiled sides
are distinguished, which intersect at corner angles of 135∘ and 90∘, respectively.
Along the profiled sides of the duct the anisotropy at the wall is found to increase
and reaches almost the one-component limit at the corners. In contrast, for the
octagonal cross section with straight sides, no noticeable increase in anisotropy is
observed.
The present investigation follows the ideas of Lammers et al. In general, two major
features of duct geometries are expected to be connected to the statistical behavior
of the flow, namely the number of corner bisectors and the design of the corner
regions. This work concentrates on analysing the latter factor of relevance. For this
purpose, the number of corner bisectors is kept constant and set to nine. This choice
is based on experimental findings from Schiller [105], which will be discussed
in the context of the present results in Section 9.2.2. Variations in the design of
the corner region can generally imply different corner angles and alternatives for
the design of the connecting side walls, which are referred to as crests. In this
approach, an initial geometry with a star-shaped cross section, which is shown
in Figure 9.6 (a), is defined. The corner angle is set to 88∘, which is similar to
Lammers’ promising case. Starting from this cross section, further geometries
are derived in Figure 9.6 (b)–(d) by variations of the angle of the duct corners
together with the shape of the sides: (b) the crest and the tip regions are rounded,
(c) the crest region is rounded while the corner angle is kept constant, (d) the
crest region is rounded and the height of the surface corrugation is kept constant.
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(a) (b)

(c) (d)

Figure 9.6: Novel duct geometries with differently designed tip and crest regions. (a) Initial
geometry, (b)–(d) derived geometries. Case (a) includes edged corner and crest regions,
which are rounded in case (b). Additional sketches illustrate similarities and differences in
the design of the corner regions in cases (c) and (d) compared with case (a).

The corner and crest design in geometry (c) is fairly similar to Lammers’ case but
the number of bisectors is changed from eight to nine.

9.2.1 Impact on the turbulent stresses

The statistical flow fields that arise in the duct geometries shown in Figure 9.6
are now investigated. In order to analyse the impact of the differently designed
corners and crests on the flow, the data are again plotted along the corresponding
bisectors, which are illustrated as an example for geometry (a) in Figure 9.7. In
the following, the corner bisector is also referred to as tip bisector.
The Reynolds stresses developing along these lines in case (a) are shown in Fig-
ure 9.8. In the plots, the corresponding data for square duct flow (see Figure 9.3)
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Figure 9.7: Cross section plane of the star pipe with crest and corner bisector. The crest
bisector with the length rb is sketched with a dotted line, the tip bisector with the length Rb

is drawn with a dashed line, α = 88∘.

are also shown. The statistical properties of the flow in the ducts show similarities:
the distribution of the stresses along the crest or wall bisector resemble the charac-
teristic for turbulent wall-bounded flows, while the turbulent fluctuations along the
tip or corner bisector are damped. Above the crest region of the star-shaped duct
the extrema of all stress components are slightly increased and move closer to the
wall compared with the mid-wall region of the square duct. The increase is more
pronounced for the spanwise component than for the streamwise and wall-normal
components. Choi et al. [21] observed a similar behavior above the crest of riblets.
In general, the effect of the crest on the flow is felt to be somewhat small consider-
ing the fact that an acute corner extends into the flow domain. The development of
the Reynolds stresses along the tip or corner bisector are shown in the lower plot in
Figure 9.8 where the extension of the corner region in the x2-direction is marked
by a vertical line. This height of the corner region corresponds to approximately
50 wall units. The entire suppression of turbulence in the close vicinity of the
corners is observed in both geometries. Moving further along the diagonal of
the square duct, the geometrical properties of the duct lead to u2u2 = u3u3. This
behavior is not observed for the star-shaped pipe. Additionally, the damping of
the streamwise stress component, u1u1, is more pronounced than in the square
duct. These differences are noticeable due to the fact that locally the geometrical
boundaries of the domains are almost identical. Moreover, despite of the fact that
the extension of the corner region is limited, the turbulent motion above the tip is
affected in large parts of the corner bisector.
In the following discussions, the statistical flow field in the star pipe (case (a)) is
compared with the geometries (b)–(d). The extension of the corner region is again
marked by a vertical line in the development of the Reynolds stresses above the
tip. The height of the corner region is almost identical in the geometries (a), (b)
and (d) and only smaller in geometry (c) (compare the sketches in Figure 9.6). The
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Figure 9.8: Reynolds stresses along the crest bisector (upper plot) and along the tip bisector
(lower plot) of the star pipe (case (a) in Figure 9.6) where rb and Rb are the lengths of
the corresponding bisector. The data along the corner bisector are plotted starting in the
corner and using the local coordinate x′2 in negative x2-direction. The data for the square
duct (dashed lines) are also shown for comparison. uτ resulting from the corresponding
simulations is used for normalization.
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data arising from the different duct geometries are generally fairly similar. The
discussion will focus on highlighting the differences that appear.
In Figure 9.9 the effect of rounded crest and tip regions is illustrated. The effects
are minor and only a reduced damping of u1u1 when moving away from the tip is
observed.
The effect of entirely curved walls on the development of the stresses is shown in
Figure 9.10. The smoothing of the crest region, which also is accompanied by the
reduced extension in the flow compared with the other geometries investigated,
results in a decrease in the magnitude of all stress components in the near-wall
region. At the same time, the stresses in the vicinity of the corner are damped
in a similar manner as observed for the star-shaped duct. However, in particular
the u1u1-component increases faster in a certain distance from the tip of duct (c)
compared with the star-shaped pipe. This fact could be associated with the spatially
restricted influence of the corner region.
Finally, the impact of a stronger curvature of the side walls that is associated
with a smaller corner angle compared with the previous cases is analysed based
on Figure 9.11. In contrast to the observations made for geometry (c), a rather
high peak value of u1u1 above the crest region shows up. At the same time,
the development of the Reynolds stresses along the corner bisector highlights an
increased region, in which turbulent fluctuations are strongly damped. Contrary
to the duct geometries investigated previously, entire laminarization of the flow
is observed close to the acute corner. Moving away from the corner, the stress
component u1u1 develops similar to geometries (a) and (b) and a flattened peak
value is observed. This similarity together with the findings for geometry (c)
suggest that the depth of the surface structure rather than the corner angle is
responsible for this property of the flow.
In summary, the development of the stresses in the ducts composed of nine corner
regions indicate a slight enhancement of turbulence above the crest regions and a
significant damping in the corner regions. It is of particular interest in the context
of this work that the beneficial effect of the corner region extends far into the
flow field in order to compensate the expected negative effects originating from
the crests.
In order to gain further insights into the configuration of the Reynolds stresses in
geometries (a)–(d), the development of the anisotropy tensor is plotted in invariant
space. In Figure 9.12 the data are shown for geometries (a) and (b). While the
behavior is fairly similar in the center of the ducts, differences can be observed
at the wall. The anisotropy above the rounded crest of geometry (b) is increased
compared with geometry (a). The rounded corner region leads to the opposite
effect and the one-component state is not reached.
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Figure 9.9: Reynolds stresses along the crest bisector (upper plot) and along the tip bisector
(lower plot) of case (b) in Figure 9.6 where rb and Rb are the lengths of the corresponding
bisectors. The data along the corner bisector are plotted starting in the corner and using the
local coordinate x′2 in the negative x2-direction. The data for the pipe with star-shaped cross
section (dashed lines) are also shown for comparison. uτ resulting from the corresponding
simulations is used for normalization.
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Figure 9.10: Reynolds stresses along the crest bisector (upper plot) and along the tip
bisector (lower plot) of case (c) in Figure 9.6, where rb and Rb are the lengths of the
corresponding bisectors. The data along the corner bisector are plotted starting in the corner
and using the local coordinate x′2 in the negative x2-direction. The data for the pipe with
star-shaped cross section (dashed lines) are also sketched for comparison. uτ resulting from
the corresponding simulations is used for normalization.
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Figure 9.11: Reynolds stresses along the crest bisector (upper plot) and along the tip
bisector (lower plot) of case (d) in Figure 9.6 where rb and Rb are the lengths of the
corresponding bisectors. The data along the corner bisector are plotted starting in the corner
and using the local coordinate x′2 in the negative x2-direction. The data for the pipe with
star-shaped cross section (dashed lines) are also shown for comparison. uτ resulting from
the corresponding simulations is used for normalization.
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Above the corner regions of both ducts, a general trend in the data to approach the
axisymmetrical border of the map is seen.
The development of the invariants of the anisotropy tensor for geometries (c) and
(d) are presented in Figure 9.13. Again no significant difference can be observed
in the center of the ducts. The same holds for the behavior above the crest and
in the corner where in both ducts similar anisotropy levels are reached. For both
geometries, the one-component state is reached within the corner edge and a
tendency towards axisymmetry along the corner bisector is present.
In summary, the flow properties along the corner bisectors coincide with the
theoretically derived constraints for low energy dissipation in the flow. However,
the beneficial impact of the corners does not persist towards the crest regions. In
the following paragraph, an attempt is made to link the present local observations
in the stress field to global trends in the dissipative losses. From this analysis, the
potential of different corner shapes for the present goals, suppressing turbulent
dissipation and delaying the transition to turbulence, is assessed.
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Figure 9.12: Trajectory through the anisotropy invariant map along the crest and tip
bisectors of cases (a) and (b). Left column and red color, crest bisector; right column and
blue color, tip bisector.
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Figure 9.13: Trajectory through the anisotropy invariant map along the crest and tip
bisectors of cases (c) and (d). Left column and red color, crest bisector; right column and
blue color, tip bisector.
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9.2.2 Impact on the dissipative losses in the flow

The effect of the observed local properties of the stress distribution on the dissi-
pative losses in the flow is discussed in this section. For this purpose, the present
results for the global frictional resistance of geometry (b) are first complemented
by experimental results available in the literature. Further, the production of ki-
netic energy in the cross section and the dissipation along the wall are used for
comparative analysis of all duct shapes. The potential of the individual corner
designs to interact with the dissipative nature of turbulence is assessed.
Schiller [105] investigated the flow resistance of geometry (b) experimentally up to
Reh = 40000. The experimental data together with the results from the simulations
in the present work are shown in Figure 9.14 where a satisfactory agreement of the
data is observed [25]. Besides the numerical result for Reh = 4500, an additional
simulation is performed at Reh = 10000. At the lower Reynolds number, no
significant deviation from the Blasius correlation is observed. Interestingly, a least
square fit shows that the data tend to progressively lie below the Blasius correlation
for increasing Reynolds numbers. At the same time, the entire dissipation of
the flow is known to be progressively dominated by turbulent dissipation if the
Reynolds number increases [76]. Thus, the observed decrease of the flow resistance
might be brought about by a reduction in the turbulent dissipation. In the context
of the previously discussed localized effects on the configuration of the stresses,
the data for the friction factor suggest that overall the beneficial effects in corner
regions prevail over the critical behavior above the crest.
A data set of the friction factor arising in the duct geometries (a), (c) and (d) at
increasing Reynolds numbers is not available. However, since the observations
made for the stress fields in the different ducts in general are similar to geometry (b),
similar implications on the trend in the overall turbulent dissipation are also
expected.
Further investigations follow the physical model summarized in Figure 6.4. These
suggest, that reduced energy dissipation in turbulent flow is strongly related to low
production of kinetic energy of turbulence in the entire domain and low turbulent
dissipation, ε, at the wall and that these states are linked to high axisymmetry in
the stresses.
The trajectories in the anisotropy maps in Figures 9.12 and 9.13 have shown a
strong trend towards axisymmetry along the corner bisectors. This behavior is
assumed to be associated with a reduced production of kinetic energy of turbulence
at these positions. In Figure 9.16 the contour plot of Pk arising in geometry (b)
is shown where Pk is evaluated according to Equation (6.11). For comparison, a
contour plot of Pk arising in a cylindrical pipe at the same hydraulic Reynolds
number, Reh = 4500, is also presented.
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Figure 9.14: Friction factor f plotted over the hydraulic Reynolds number Reh for geometry
(b). The experimental data from Schiller [105] are shown together with data from present
DNS studies elaborated in collaboration with Krieger [72]. A least squares fit of the data
(dashed line) and the Blasius correlation [106] (solid line) are included.

In this configuration, Pk ≈ 80 is the maximum that is reached in the wall region
of the pipe. This value, as well as the distribution of Pk, is in good agreement
with findings from Eggels et al. [32] for circular pipe flow at a similar Reynolds
number. It can be seen, that the production of kinetic energy of turbulence is lower
within the corner regions of duct geometry (b) than along the wall of the cylindrical
pipe. Additionally, the magnitude of Pk remains low when moving from the corner
further towards the duct center. Since the color scale used for the ducts is the
same, Figure 9.15 also highlights that Pk above the crest regions of geometry (b) is
increased compared with the maximum appearing in the cylindrical pipe. Clearly,
this trend contrasts with the beneficial effect observed in the corner region.
In Figure 9.16, the distribution of Pk in all of the novel designed ducts is considered.
In general, the impression is similar for all shapes: The production of turbulent
kinetic energy is high above the crest region but this behavior marginally affects the
flow in the proximity of the corner bisectors. There, the self-sustaining mechanism
of turbulence can be assumed to be strongly damped. The chosen color scales also
demonstrate the maximum values of Pk for the individual ducts. In this comparison,
the maximum values of Pk above the crests are found to be the smallest for duct
geometry (c).
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Figure 9.15: Production of kinetic energy of turbulence, Pk, in the cross section of duct (b)
and a cylindrical pipe. Both calculations are run at Reh = 4500 and uτ resulting from the
corresponding simulation is used for normalization.

In Section 6.2, reaching the one-component state of the fluctuations, and thus
maximum anisotropy at the wall, was linked to the entire suppression of dissipation
originating from the fluctuating motion [66]. Thus, an increase in the anisotropy at
the wall was suggested to be correlated with reduced turbulent dissipation. This
trend is confirmed by literature data for wall-bounded flows in Figure 6.2. The
corresponding illustration is reconsidered and applied to the interpretation of the
results for non-circular duct flows. For this purpose, the first available data arising
at the corner and wall bisector of the square duct flow at Reh = 10300 [58] are
included, which agree fairly well with the extrapolated trend in the plot. These
data correspond to the extrema arising along the duct side and highlight that the
dissipation in the corner, where the stresses reach the one-component state, is
significantly decreased compared with the wall bisector.
The extrema in the anisotropy level that are reached on the crest (red color) and
in the corner (blue color) of the non-circular ducts studied in this section are
also indicated in the plot. For all geometries with acute corner edges, the one-
component state of the stresses is achieved in the corner. These geometries have
corner angles of 88∘ and 42∘. For a corner angle of 135∘ Lammers et al. [78]
did not observe this high level of anisotropy. Thus, the question still remains
as to which angle limits the possibility of reaching the one-component state in
the corner.
Figure 9.17 also shows that (II)wall is significantly smaller above the crests. It
is noted that the magnitude of anisotropy at these positions is also decreased
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Figure 9.16: Production of kinetic energy of turbulence, Pk, in the duct cross sections
(a)–(d). uτ resulting from the corresponding simulation is used for normalization.

compared with the value evaluated for circular pipe flow at a similar Reynolds
number, where (II)wall = 0.37 [32]. In addition, the comparison of (II)wall reached
above the crests of the duct geometries (a)–(d) to the value arising for the wall
bisector of square duct flow can provide insights into the impact of the wall
curvature on the dissipation. Generally, ε+ depends on the Reynolds number. Thus,
the anisotropy level that is reached on the wall bisector of square duct flow at a
similar Reynolds number is also indicated in the plot (green line). This suggests
that the dissipation above the crests of the ducts (a)–(d) is significantly higher than
above the flat wall of the square duct. Comparing the minima in (II)wall arising at
the crests, the lowest value is found for geometry (a) implying highest turbulent
dissipation. In contrast to the remaining geometries, the crest is not rounded in
this case.
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Figure 9.17: Extension and application of Jovanović and Hillerbrand’s [67] illustration of
the turbulent dissipation rate at the wall versus the magnitude of anisotropy at the wall for
analyses of non-circular duct flows. The references for numerical data of (cylindrical) pipe,
channel and boundary layer flows are given in Figure 6.2. Additionally, the data for the
corner and wall bisector of square duct flow at Reh = 10300 from Huser and Biringen [58]
are plotted and the anisotropy level on the wall at Reh = 4405 is shown. The anisotropy
levels at the wall arising from the present novel duct geometries (a), (b), (c) and (d) are also
included: red color, crest bisector; blue color, corner bisector (compare also Figures 9.12
and 9.13).

The comparison of the extrema in the anisotropy levels reached at the duct walls
suggests that overall (II)wall is highest for the geometries with acute corner angles
and profiled sides, (c) and (d) and that this configuration of the stresses is associated
with the smallest turbulent dissipation. This connection approves these geometries
for the present attempt towards the design of duct geometries leading to the
laminarization of turbulent flow. Since the one-componentality in the apparent
stresses at the wall is also found to provoke the persistence of laminar flow at high
Reynolds numbers, these geometries are also suggested to have largest potential
for the delay of transition.
Previous analyses have considered the production of kinetic energy in the cross
section plane and the distribution of the turbulent dissipation at the wall. These
assessment criteria suggest that geometry (c) has the highest potential for the
present purposes, namely the reduction of turbulent dissipation and the delay
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of laminar to turbulent transition. However, in general the impact of differently
shaped corner and crest regions is similar and the flow is only affected locally
in the required manner. In the most beneficial case, turbulent dissipation would
vanish across the entire flow field leading to laminar flow, which is not observed in
any case. The numerical simulation of the laminarization process was not intended
in the present approach (see Figure 6.7), since it results in a large numerical effort
for the complex duct geometries being considered. However, it is felt that this fact
requires to be pointed out. It is discussed further in the next paragraph.

9.2.3 Destabilization of the mean velocity profile

Limits for flow laminarization

The results in the previous paragraph indicate that turbulent dissipation is locally
reduced in duct geometries, including corner regions. This behavior is initiated
by beneficial effects on the statistical properties of the flow in the proximity of
the corner bisectors that locally lead to flow states that are related to laminar
flow. However, since the flow is not entirely laminarized, an attempt is made to
consider restrictions for the process. The discussion is based on the instabilities
induced by inflectional velocity profiles that can be connected to the appearance of
turbulence sustaining dynamic processes in the flow. Velocity profiles appearing in
geometry (b) are studied in detail in this context.
The velocity field of turbulent wall-bounded flows is characterized by the instanta-
neous formation of coherent structures in the form of quasi streamwise vortices [99].
The cross flow associated with these vortices transports slow moving fluid away
from the wall leading to a region of reduced streamwise velocity, which is typically
referred to as low speed streak. The streaks have a characteristic behavior, known
as bursting. With increasing downstream distance, a streak migrates away from the
wall, which leads to the ejection of low-speed fluid in the bulk flow. This process is
found to be largely responsible for the maintenance of turbulence in wall-bounded
flows. At the same time, a vortex transports higher-speed fluid from the bulk down
towards the wall leading to so-called sweeps.
The appearance and dynamics of coherent structures in turbulent wall-bounded
flows have been studied extensively in the past. Numerous of these investigations
deal with the interaction of the coherent structures with the stability of the flow.
In this context it was pointed out by Blackwelder [13] that the instantaneous
streamwise velocity profile over flat walls is typically characterized by inflection
points. These inflection profiles are generally found in the wall-normal as well as
in spanwise direction [14]. Further, in experimental investigations Kline et al. [70]
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observe that strong inflection profiles are a characteristic feature of the bursting of
streaks, which represents a prominent instability mechanism.
Holmes et al. [56] consider the particular appearance of the instantaneous stream-
wise velocity profile that is formed in connection with a streak. This profile is
expected to have an inflection point in the (x1, x2)-plane and two such points in
the (x1, x3)-plane, where x1 corresponds to the streamwise, x2 to the wall-normal
and x3 to the spanwise direction. The authors argue, that either the latter pair of
inflection points, or the former one, could be responsible for the instability, since
an inflectionary profile is inherently unstable. It is proposed that the growth rate of
the instability associated with the inflection points is dependent on the shear rate at
these points, ∂U1/∂x2 and ∂U1/∂x3.
In turbulent flow over a flat wall, the shear in the spanwise direction vanishes in the
temporally averaged velocity statistics. However, the instantaneous appearance of
coherent structures in the flow permanently induces shear and instability in the flow
in an instationary fashion. Surface structures, which are aligned with the mean flow
direction, additionally lead to variations of the temporally averaged streamwise
velocity profile in the spanwise direction. Thus, the presence of these structures can
be believed to permanently destabilize the flow. Despite the instability induced in
the spanwise direction, the surface structures might also affect the velocity profile
in the wall-normal direction.
These ideas on the impact of surface structures on the mean velocity profile can
be transferred to the duct shapes studied previously. To do this, the corresponding
flow field is chosen to be compared with the flow properties in a circular pipe
in a cylindrical frame of reference. This coordinate system for a segment of
geometry (b) is indicated in Figure 9.18 together with variables that are used in the
following discussion.
In turbulent flow through a circular pipe, the mean streamwise velocity, Uz, is a
function of the radial position and does not vary in the circumferential direction.
A different behavior is expected within the profiled duct shapes. The left plot in
Figure 9.19 shows the turbulent mean streamwise velocity profile along circular
arcs at different radial positions in geometry (b). The symbols for these positions
are chosen according to Figure 9.18 (left). When moving in the positive radial
direction, it can be observed that circumferential variations in the streamwise
velocity strongly increase when the duct wall is approached. At the position
r/rb = 0.9 the variation is fairly small but becomes significant at r/rb = 0.99. The
strong variation is mainly due to the fast growth of the velocity above the valley
region (ϕ+ = 0) were similar values of Uz are reached at the considered radial
distances. The observed variation of the velocity in circumferential direction leads
to inflectional points in the profiles.
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Figure 9.18: Segment of the cross section plane of geometry (b) with a cylindrical coordi-
nate system. Left sketch: investigated trajectories in circumferential direction together with
allocated symbols. Circular arcs at the positions r/rb = 0.9 (square symbol), r/rb = 0.95
(circular symbol) and r/rb = 0.99 (triangular symbol) are shown. B(r) denotes the length
of a circular arc. Right sketch: investigated trajectories in the radial direction. Allocated
symbols for the valley (circular symbol) and crest bisector (triangular symbol) with the
length Rb and rb, respectively.

Before these points are considered in more detail, the development of Uz in radial
direction is also studied. For this purpose, the profiles along the corner and crest
bisector are compared in the right plot of Figure 9.19. Additionally, the velocity
profile arising in circular pipe flow at a similar Reynolds number is sketched [32].
The symbols which are used in the plot are introduced in Figure 9.18 (right). It
can be seen, that the deviation of the mean streamwise velocity profile along the
crest bisector from the profile arising in circular pipe flow is marginal. Thus, it
is concluded that no additional instability is introduced due to the modified duct
shape at this position. By contrast, the development of Uz along the corner bisector
differs significantly from the behavior above the crest and inflection points can
clearly be identified in the profile.
However, the previously observed variations in the Reynolds stresses in the prox-
imity of the corner bisector towards statistical axisymmetry suggest a limited effect
of the inflection velocity profile on the stability of the flow. In the statistical frame,
the relationship of gradients in the mean flow and the Reynolds stresses determines
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Figure 9.19: Streamwise mean velocity profiles, Uz, along circular arcs (left plot) and
along the bisectors (right plot) for turbulent flow at Reh = 4500 in geometry (b). The
trajectories in the flow domain together with the corresponding icon shapes were introduced
in Figure 9.18. The data are fitted using bezier curves (red lines). The velocity profile of
circular pipe flow at Reh = 5300 is also shown in the right plot (blue line) [32].

the production of the kinetic energy of turbulence. In the cylindrical frame of
reference, Pk in the streamwise direction z is defined according to Rotta [104] as

Pk = uzur
∂Uz

∂r
+ uzuϕ

∂Uz

∂ϕ
. (9.1)

The distribution of the magnitude of the shear stress components appearing in this
equation are shown in Figure 9.20. It is evident that very small values are reached
along the corner bisector. Thus, the production of turbulent kinetic energy is low
at this position, even if gradients in the mean velocity are present.
Thus, the inflectional points induced by variations of the velocity profile in the
circumferential direction are assumed to be more critical for the stability of the
present flow situations. According to Holmes et al. [56] the destabilizing effect
can be further evaluated taking the shear at the inflection points into account. For
the flow case considered here, the instability induced at these points is suggested
to be associated with a number such as (∂Uz/∂ϕ) ν/u2

τ. For the calculation of
velocity derivatives in the circumferential direction, the velocity data in Figure 9.22
(left) are approximated by bezier curves. This procedure certainly includes some
inaccuracies. However, Figure 9.21 might serve for the discussion of major trends.
In general, the inflection point is found between the corner and the crest bisector.
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Figure 9.20: Magnitude of the shear stress components uzur and uzuϕ, in the cross section
of duct (b). Reh = 4500.

The shear and therefore the instability associated with this point significantly
increases when moving in the positive radial direction. For the position closest to
the wall (r/rb = 0.99), the inflection point is found fairly close to the crest region
of the duct. At this position, statistical axisymmetry in the flow is not preserved
and turbulence is assumed to be amplified by the induced instability.
The present attempt towards the identification of restrictive mechanisms for flow
laminarization shows that variations of the mean streamwise velocity profile in
circumferential direction provoked by the duct shape might be critical in this
respect. The findings suggest that the position of inflection instabilities and the
associated shear should be considered in future investigations aimed at the preferred
design of the duct shapes.

Potential for the persistence of laminar flow

In Chapter 8 it was argued that the same statistical properties are associated with
the laminarization of turbulent flow and the persistence of laminar flow. It was
shown that corner regions in ducts can provoke the required statistical states in
both flow regimes. However, in the previous paragraph it was discussed that
inflection instabilities might be a further parameter influencing the process of flow
laminarization. Similar indications exist for the persistence of laminar flow. The
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Figure 9.21: Shear of the streamwise velocity profiles Uz in the circumferential direction
along circular arcs in geometry (b). The derivatives are calculated from the fitted profiles in
Figure 9.22 and symbols are used accordingly. Reh = 4500.

impact of velocity profiles with inflection points on the stability of the laminar
boundary layer has been frequently studied in the past [106]. Recent investigations
by Hof et al. [55] suggest that inflection points are also characteristic for the
laminar to turbulent transition process in the flow through a cylindrical pipe.
In general, the modified duct shapes are assumed to lead to inflection velocity
profiles in the laminar and in the turbulent flow regime. However, since the velocity
distribution in the flow regimes is different, differences are also expected in the
destabilization of the flow.
Based on the findings for turbulent flow, the variations of the flow in the radial
direction are not believed to be critical in this respect and the following analyses
concentrate on the development in circumferential direction. The profiles along
circular arcs at the radial positions, which were previously analysed in the turbulent
regime, are shown in the left plot in Figure 9.22. Owing to the physical importance
in the laminar regime, the data are normalized with the bulk velocity Ub. In laminar
flow of a given medium that is governed by the Poisson equation (5.4), scaling
with Ub provokes the collapse of velocity distributions in a certain duct geometry
at different Reynolds numbers, as can be concluded from White’s findings for
viscous flow [114]. For the normalization of the spatial coordinate, the length of
the corresponding circular arc, B(r), is used (see Figure 9.18, left). In order to
compare the behaviour in both flow regimes, the mean streamwise velocity field
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Figure 9.22: Streamwise laminar and turbulent velocity profiles Uz and Uz along circular
arcs at the positions r/rb = 0.9 (square symbol), r/rb = 0.95 (circular symbol) and
r/rb = 0.99 (triangular symbol) in geometry (b). The circular arcs are given in Figure 9.18.
Left plot: turbulent flow at Reh = 4500. Right plot: laminar flow at Reh = 4500. The data
are fitted (red lines) using polynomial functions and bezier curves, respectively.

arising in turbulent flow at Reh = 4500 in geometry (b) is also normalized with
Ub in the right plot of Figure 9.22. Clearly, the development of the flow in cir-
cumferential direction is significantly smoother in laminar flow than in turbulence.
The difference in the profiles is based on the fact that in laminar flow the velocity
distribution is only governed by viscous effects leading to a less rapid increase
above the corner (ϕ/B = 0). In contrast to the observations made for turbulent flow,
the maximum value of Uz is different at all radial position investigated.
The differences in the velocity profiles in both flow regimes also indicate differences
in the resulting shear at the inflection points. For the estimation of the shear
distribution, the fitted lines through the data in Figure 9.22 are used and the result
is shown in Figure 9.23. For the applied scaling, it can be observed that in general
the shear is significantly higher in turbulent than in laminar flow.
The previous analyses suggest that the instability in the velocity profile induced by
the duct shape is less in laminar flow than in turbulence. Thus, it can be concluded
that the delay of transition to turbulence due to appropriate shaping of the ducts
generally is easier to establish than the laminarization of turbulent flow. In laminar
flow, the potential to prevent disturbances in the flow from increasing can be
imagined to prevail over the low instability in the flow profile induced by spanwise
variations in the boundary.
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Figure 9.23: Shear of the laminar and turbulent streamwise velocity profiles Uz and Uz in
the circumferential direction in geometry (b). The data are plotted along the circular arcs
given in Figure 9.18. The derivatives are calculated from the fitted profiles in Figure 9.22
and symbols are used accordingly. Reh = 4500.

The conclusions made for the destabilization of the flow due to the circumferential
shear rates of the turbulent and laminar flow in the duct can also be discussed in
the context of previous findings for surface structures aligned with the mean flow.
In general, it can be expected that surface structures are more likely to lead to
the delay of transition to turbulence than to laminarization of turbulent flow. This
conclusion is in agreement with experimental findings from Jovanović et al. [64]
for surface embedded grooves.





10 Quantification of potential
energy savings

This work aims at providing solutions for the optimization task formulated in
Section 4.4. The reduction of the energy dissipation associated with a given flow
rate is intended to be induced by changes in the cross section shape of internal flow
domains. Equation (4.10) suggests that the pumping power can be used to quantify
possible energy savings, which are of interest in this context.
In Chapter 5, losses appearing in laminar flow were discussed. Since the pressure
difference along the length of the flow domain, ∆P/l, resulting from a given volume
flow rate, V̇ , is analytically shown to be minimal in a pipe with a circular cross
section, the same conclusion follows for the pumping power [107].
At higher Reynolds numbers, for which the flow changes to the turbulent state, the
situation is more complex: the circular pipe can no longer be proven to be optimal
and corner regions in ducts are suggested to be a beneficial influence on the flow.
In Section 9.2, the impact of various corner designs on the physical properties of
the turbulent velocity field at Reh = 4500 were investigated. These flows will now
be reconsidered under the present energetic aspect. The geometries are labeled as
given in Figure 9.6, namely as (a)–(d).
In Figure 9.14, experimental and numerical values for the friction factor, f , arising
in duct (b) are plotted together with the estimated development based on the Blasius
correlation (4.5), fBlasius. The plot can be interpreted as comparison of the friction
behavior of the non-circular duct with that of a cylindrical pipe having the same
hydraulic diameter (4.6). For the presently considered hydraulic Reynolds number,
no significant deviation in the friction factor was observed. The comparison can
also be made for the remaining duct shapes and the results for

∆ f = 1 −
f

fBlasius
(10.1)

are summarized in Table 10.1. Clearly, a reduction of the dimensionless friction
factor can only be observed for geometry (d), which consists of very narrow corner
regions. This result is in agreement with findings for triangular ducts, where only
those having small apex angles lead to a deviation from the Blasius correlation
(see Figure 9.1).
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Table 10.1: Comparison of the friction factor and the pumping power resulting from
turbulent flow in the non-circular ducts (a)–(d) at Reh = 4500 with circular pipe flow. The
duct shapes are referenced according to Figure 9.6.

case ∆ f [%] ∆PP [%]

(a) ≈ 0 -31
(b) ≈ 0 -28
(c) ≈ 0 -15
(d) 15 -22

These considerations for the friction factor are based on the comparison of flows
having the same hydraulic Reynolds number. It is fixed by keeping UbDh constant.
Consequently, the flow rates through these ducts are different. For the estimation of
possible energy savings arising from corner regions, the pumping power that needs
to be applied to transport a fluid through a non-circular duct will be compared
with the pumping power that is necessary to transport this fluid with the same
volume flow rate through a cylindrical pipe. For this purpose, the length scale Dm

is introduced, which denotes the diameter of a circular-shaped pipe having the
same cross section area, Acs, as the modified duct:

Dm = 2
(︂Acs

π

)︂1/2

. (10.2)

Using the factor Dm/Dh, which depends on the non-circular duct shape considered
and is always positive, the previously introduced friction factors can be used
together with the relationships given in Equations (4.3) and (4.10) to evaluate
differences in the pumping power:

∆PP = 1 −
PP, (a)−(d), turbulent

PP, circular, turbulent
= 1 −

f
fBlasius

(︃
Dm

Dh

)︃5/4

with
Dm

Dh
=

C

2 (Acs π)1/2 , (10.3)

where C is the perimeter of the non-circular duct. According to this relationship,
the pumping power resulting from turbulent flow through each duct geometry (a)–
(d) is significantly increased compared with the cylindrical pipe leading to negative
values for ∆PP (see Table 10.1).
It should be noted that for turbulent flow in case (b) a progressive trend in f to
lie below the Blasius correlation for increasing Reynolds numbers was observed
in Figure 9.14. Extrapolating this tendency, a positive result for ∆PP and thus
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Figure 10.1: Numerical results for the friction factor f arising for geometry (b) and the
cylindrical pipe at Reh = 4950. The same initial conditions are used for the simulations [72].
The laminar friction law, f = 48/Reh, for the flow through geometry (b) and the Blasius
correlation [106] are included.

a reduction of the pumping power compared with the cylindrical pipe might be
possible for very high Reynolds numbers, namely beyond Reh = 170000.
The investigation of physical properties in the turbulent velocity field in Section 9.2
suggested that the proposed modified duct shapes have potential to ensure laminar
flow under conditions where it can be expected to be turbulent in the cylindrical
pipe. In the simulations discussed earlier, the flow is initially significantly dis-
turbed. For less disturbed conditions, direct numerical simulations performed by
Krieger [72] indicate that a pipe bounded by a wavy contour (see geometry (b) in
Figure 9.6) leads to laminar flow for certain initial conditions, which are found to
result in turbulent flow in a cylindrical pipe [72]. In this comparison the hydraulic
Reynolds number is fixed to Reh = 4950. The friction law for laminar flow in
geometry (b) evaluates to f = 48/Reh. Figure 10.1 shows that the friction factor of
the laminar flow is significantly lowered compared with the turbulent case, namely
by 75%. Similar to previous analysis, the set-up used in the simulations leads
to different volume flow rates through the pipes with the various cross section
shapes. Therefore, the reduction of the friction and, conclusively, the pressure drop
at a fixed hydraulic Reynolds number due to geometrical modifications does not
necessarily lead to benefits in the pumping power.
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The evaluation of benefits in the pumping power due to the persistence of laminar
flow in modified ducts is essential in order to evaluate the practical relevance
of the proposed flow control strategy. Its calculation will be demonstrated next.
The friction factor of a laminar, fully developed flow through a straight duct can
generally be expressed by f = a/Reh (4.7), where the value of a depends on the
cross section shape of the duct [106]. Following Equation (10.3), the pumping
power can again be evaluated based on the relationship of f / fBlasius:

∆PP = 1 −
PP, (a)−(d), laminar

PP, circular, turbulent
= 1 −

f
fBlasius

(︃
Dm

Dh

)︃5/4

=

= 1 −
a

0.316 Re3/4
h

(︃
Dm

Dh

)︃5/4

with
Dm

Dh
=

C

2 (Acs π)1/2 . (10.4)

The use of Dm corresponds to the evaluation of f at a Reynolds number at which
the volume flow rate through the cylindrical pipe is equal to that in the non-circular
duct. The difference in the friction factor at this Reynolds number is proportional to
∆PP and is illustrated in Figure 10.2 as ∆ f *. Obviously, the benefit in the pumping
power is significant if the flow stays laminar.
According to Equation (10.4), the possibility to reduce the pumping power due to
ensuring laminar flow in modified ducts depends on the duct shape, represented
by a characteristic value of a and Dm/Dh, and on the hydraulic Reynolds number.
Using the proposed procedure, the benefit in the pumping power for different pipes
can be quantified. The results at the Reynolds number considered by Krieger,
Reh = 4950, together with the individual laminar friction laws are summarized in
Table 10.2. It is evident that the possible gain in the pumping power is large for all
duct geometries considered.
Figure 10.2 illustrates that the difference in the friction factor and the pumping
power due to the persistence of laminar flow in the modified duct geometry in-
creases with increasing Reynolds number. From the dependence of f on Reh, it can
be seen that the friction factor f in the laminar regime is lower than in turbulence
for the entire range of Reynolds numbers where the flow might reach the turbulent
state, i.e., Reh > 2300. In contrast, for ∆ f *, and consequently for ∆PP, a similar
universal statement cannot be directly extracted from the plot. The border for the
hydraulic Reynolds number to achieve reduction of the pumping power compared
with turbulent flow in a cylindrical pipe gives rise to

Reh >

(︃
Dm

Dh

)︃5/3 (︂ a
0.316

)︂4/3
with

Dm

Dh
=

C

2 (Aπ)1/2 . (10.5)
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Figure 10.2: Reduction in the friction factor for laminar flow in geometry (b) at Reh = 4950
compared with turbulent flow in the cylindrical pipe. For the evaluation of ∆ f * the two
pipes have the same cross section area. ∆ f * is proportional to the differences in the pumping
power. The hydraulic Reynolds number that has to be reached in order to reduce PP is also
indicated. Numerical results from Krieger [72], the laminar friction law for the flow through
geometry (b) and the Blasius correlation [106] are included.

The previous equation is again derived for equal volume flow rates in the ducts.
The limiting values for Reh evaluated for the different ducts are summarized in
Table 10.2. They are below the critical value after which transition to turbulence
is expected, which is illustrated as an example for geometry (b) in Figure 10.2.
These results indicate that the delay of the transition to turbulence due to similar
modifications of the duct geometry, as considered here, will lead to benefits in
the pumping power in the entire Reynolds number range in which the flow in the
cylindrical pipe can be expected to be turbulent.
The high energy savings which result from the proposed flow control technique
might be attractive for various application areas: the transport of fluid in pipe sys-
tems is ubiquitous in many industrial and civil areas. Notable examples are found
in the chemical industry and in public water supplies. In the context of the aimed
practical application of ducts with non-circular cross section shape it should be
noted that the manufacturing of these ducts can be expected to be accompanied by
increased costs. The costs, together with possible novel manufacturing techniques,
have to be carefully considered.



142 10 Quantification of potential energy savings

Table 10.2: Friction laws for laminar flow in the non-circular ducts presented in Figure 9.6,
possible reduction of the pumping power at Reh = 4950 compared with turbulent flow in
a cylindrical pipe and the Reynolds number that has to be reached in order to obtain a
reduction in the pumping power.

case flaminar ∆PP [%] Reh limit

(a) 48/Reh 63 1180
(b) 48/Reh 65 1220
(c) 54/Reh 64 1160
(d) 40/Reh 67 1040

However, these costs only have to be accounted for once. The possible positive
economics of the permanent operation of pipe systems are significant and can be
expected to overcome the additional effort that is necessary for the installation.
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An investigation into the resistance of laminar and turbulent flows was undertaken
in the present work. In this context, stationary and fully developed flows through
straight ducts are considered, the entire dissipation of which can be balanced by
friction forces acting on the wall. Physical models are developed that theoreti-
cally can lead to reduction of the energy dissipated by the fluid motion and thus
potentially provide energy savings. An attempt is made to establish the relevant
mechanisms due to the appropriate design of internal flow domains.
In a laminar regime, the flow is solely governed by viscous effects and the cylin-
drical pipe can be proven to minimize the energy dissipation per volume flow
rate [107]. The optimality conditions of the pure circular cross section shape are
accompanied by the fact that they minimize the wetted perimeter compared with
the cross section area. In contrast, if the height of the flow domain is restricted
and channel flow is considered, unstructured walls are no longer optimal. Despite
the increase in the wetted surface, wall structures that are wide compared with
their height are shown to reduce the overall friction losses substantially. These
results highlight the major impact of variations in the channel height on the flow
resistance and suggest that using the available installation space in this respect has
high potential for energy savings in practical applications.
If the Reynolds number increases and the flow turns to the turbulent state, the
energy dissipated by the fluid motion increase significantly. Thus, ensuring the
laminar flow regime under conditions at which the flow is typically found to be
turbulent has a large potential for decreasing the flow resistance.
The application of statistical tools enables the derivation of related transport equa-
tions for transitional and turbulent flow [67, 103]. From this description of the
flow it is found that provoking axisymmetry in the stresses leads to suppression of
the dissipation originating from the fluctuating motion, and thus this is a common
goal for the delay of transition to turbulence and flow laminarization [65, 66]. The
potential of modifications to duct cross section shapes to provoke the theoretically
suggested mechanism is investigated in direct numerical simulations.
In this context, coexisting laminar and turbulent regions appearing in narrow
corner areas of ducts are studied. Examination of the statistical properties of the
flow shows that the stability of the laminar flow region and the process of flow
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laminarization obey the theoretically derived mechanism. Corner regions in ducts
are shown to provoke the intended tendency towards axisymmetry.
Further, the coexistence of laminar and turbulent flows allows the investigation
of the transition between the flow states. Based on the statistical description of
the flow, an attempt is made to contribute to the general understanding of this
process, which is of considerable scientific interest. The breakdown to turbulence is
observed to be associated with a decrease in the anisotropy and axisymmetry in the
stress tensor. This finding for the transition within the cross section plane of non-
circular ducts could be discussed further and possibly generalized in connection
with the transition process arising in, for example, a cylindrical pipe or flat plate
boundary layer flow.
The impact of corner regions on the statistical properties of turbulent flow is
investigated further. In order to do so, duct cross section shapes composed of
multiple corner regions are developed. To extend the axisymmetrical state of the
stresses to a large part of the flow, the scale of the corresponding wall structures
is significantly increased compared with that proposed for example for riblets,
which are known to mainly act in the near-wall region [21]. The design of the
corner and crest regions is varied within the investigation. In general, a tendency
towards axisymmetry is observed in the proximity of the corner bisector, which
causes vanishing turbulent dissipation but a deviation from this state is present
above the crest. However, experimental results in the literature [105] suggest that
the beneficial effect arising from corners prevails and this type of duct geometries
is recommended being considered for the present purposes. This investigation
shows that acute corner angles and profiled connecting walls optimize the overall
behavior. Future numerical work might further consider the preferred shaping of
ducts in investigating the limiting angle in the corner that is necessary to provoke
axisymmetry in the stresses. Since acute corners in internal flow domains are
difficult to manufacture, this fact is of importance for the practical implementation
of the described method for friction drag reduction.
In general, the theoretical analysis together with the findings for the coexisting
laminar and turbulent flow fields indicate that the same properties in the stresses
lead to laminarization and delay of transition, suggesting that the novel ducts are
suitable for both objectives. However, on further investigation of the mean flow
field in these ducts, it is found that the benefits due to the axisymmetrical state of
the stresses in the corner regions might be partially compensated. The considered
duct geometries induce inflection instabilities in the mean velocity profile in the
circumferential direction. Comparison of the inflection instability in a laminar
and turbulent velocity profile indicates that persistence of laminar flow is more
likely to be achieved than laminarization of turbulent flow. This argument is in
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agreement with previous observations on the influence of surface morphology in
the form of surface embedded grooves on transitional and turbulent flow [40, 64].
Crest regions in the form of smooth curvatures are assumed to limit the amount of
instability and should be further considered for the improvement of passive control
methods.
Based on the findings for particular duct geometries, it is concluded that the
cylindrical pipe might not be optimal if higher Reynolds numbers are considered:
corner regions have the potential to ensure laminar flow where the breakdown to
turbulence is expected in a pipe with a circular cross section. The related energy
savings are quantified and found to be substantially high, supporting the modified
duct shapes for numerous practical applications.
In order to explore the efficiency of ducts that include corner regions in practice,
their stabilizing effect has to be further assessed. For this purpose, experimental
investigations are proposed. Suitable pipes are already available commercially (e.g.,
Mendener Präzisionsrohr GmbH [1]). In these experiments, the impact of different
initial conditions on the possibility for laminar flow to persist can be tested. These
conditions, together with the Reynolds number under which the experiments are
run, will be initiated from the boundary conditions found in practice.
Besides investigating the physical mechanisms in the flow field that foster or limit
the potential for ensuring laminar flow, the impact of the present duct shapes on
the dissipation in the turbulent regime is analysed. At the relatively low Reynolds
number that is considered, the beneficial effects arising from the corners do not
overcome the increase in the wetted perimeter and the energy that has to be applied
in order to transport the flow is increased compared with the cylindrical pipe.
However, results for higher Reynolds numbers suggest that the modification of
the flow initiated by the cross section shape leads to an overall decrease in the
turbulent dissipation, which continues to prevail the entire dissipation [76, 105].
Thus, the present type of configurations might have potential for energy savings
in the high Reynolds number range that is important in practice, and which is
reached, for example, in water supply pipelines, even if the flow cannot be kept in
the laminar state.
For future work, the continuation of investigations on the impact of the duct geom-
etry on turbulent flow is proposed. Experimental investigations should tackle the
verification and possible extension of the discussed trend in the friction losses for
high Reynolds numbers, which can not really be reached numerically. Additionally,
the direct estimation of the turbulent dissipation within the cross section shape
is of interest. In particular, its comparison for different Reynolds numbers and
various cross section designs might support the physical understanding of turbulent
drag reduction and lead to further optimization of cross section shapes in this
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respect. However, the calculation of the turbulent dissipation is expected to be a
challenging issue for the numerical procedure applied within the present work. It
can be assumed that the non-orthogonal nature of a polyhedral mesh influences
the evaluation of the required gradients in the fluctuating field in a critical man-
ner. Certainly, a carefully extended validation study is necessary, including the
computation and balancing of all terms in the transport equation for the Reynolds
stresses.
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[94] R. Perić. Direct numerical simulation of turbulent channel flow with lon-
gitudinal riblets on one wall - Assessment of drag reduction. Bachelor
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Nomenclature

All indices used (i, j, k,...) run from 1-3. The superscript “+” indicates that the
quantity is normalized with the wall shear velocity uτ and the kinematic viscosity ν.

Latin letters

upper case

symbol SI unit description

II, III - scalar invariants of the anisotropy tensor ai j

A - measure for axisymmetry
B - constant, B ≃ 5.2
B(ϕ) m length of circular arc
Acs m2 cross section area
Aw m2 lateral surface
C m perimeter
Co - Courant number
Dm m diameter of circular pipe
Dh m hydraulic diameter
Eu - Euler number
F, G - scalar functions
H m duct height
2L m mean channel height
Lx1 m streamwise extension of the low domain
P kg/(s2 m) instantaneous pressure
P′ kg/(s2 m) time averaged pressure of laminar base flow

P kg/(s2 m) time averaged pressure of turbulent flow field
∆P kg/(s2 m) pressure difference between outlet and inlet
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Pk m2/(s3) production of kinetic energy of turbulence
PP kg/(s2 m) pumping power
Rb m length of corner bisector
Rλ - turbulent Reynolds number
Re - Reynolds number
Reh - hydraulic Reynolds number
Reτ - friction Reynolds number
S t - Strouhal number
Ui m/s instantaneous flow velocity
U′i m/s time averaged velocity of laminar base flow

U i m/s time averaged velocity of turbulent flow field
Ub m/s bulk flow velocity
Uz m/s laminar streamwise velocity

Uz m/s time averaged turbulent streamwise velocity
V m3 volume of the flow domain
V̇ m3/s flow rate

lower case

symbol SI unit description

a, b m variables describing structure geometry
a1, a2 - coefficients of Taylor series expansion
ai j - anisotropy tensor
b1, b2 - coefficients of Taylor series expansion
c1, c2 - coefficients of Taylor series expansion
f - friction factor
f s−1 frequency
fi m/s2 acceleration
fK s−1 Kolmogorov frequency scale
k=q2/2 m2/s2 kinetic energy of turbulence
2l m channel width
p kg/(s2 m) instantaneous turbulent pressure fluctuation
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p′ kg/(s2 m) instantaneous pressure disturbance
rb m length of wall/crest bisector
s m spacing of riblets
t s time
uτ m/s wall shear velocity
ui m/s instantaneous turbulent velocity fluctuation
ui,rms m/s root mean square of the velocity fluctuations
ui,rms m/s root mean square of the velocity disturbances
u′i m/s instantaneous velocity disturbance
uiu j m2/s2 Reynolds stresses

u′iu
′
j m2/s2 apparent stresses

uK m/s Kolmogorov velocity scale
xi m Cartesian coordinates
z, r, ϕ m Cylindrical coordinates
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Greek letters

upper case

symbol SI unit description

Φ m2/s3 dissipation per unit mass and time
⟨Φ⟩ kg m2/s3 entire dissipation rate of the working fluid

lower case

symbol SI unit description

α ∘ corner angle
δi j - Kronecker delta
δ m channel half height, pipe radius
ε m2/s3 turbulent dissipation
εd m2/s3 direct dissipation
ηK m Kolmogorov length scale
κ - constant, κ ≃ 0.41
κ m−1 wave number
λi - unit vector
µ kg/(m s) dynamic viscosity of the fluid
ν m2/s kinematic viscosity of the fluid
ρ kg/m3 density of the fluid
τik kg/(m s2) stress tensor
τw kg/(m s2) wall shear stress
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Abbreviations

symbol description

DNS Direct Numerical Simulation
DR Drag Reduction
DRA Drag Reducing Additive
hex hexahedral
PISO Pressure Induced with Splitting of Operator
poly polyhedral
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Table A.1: Drag reduction in channel flow due to wide surface structures: Comparison of the
results presented in Figure 5.2 which are evaluated according to the model of Bahrami [9],
numerical results and results from Pironneau and Arumugam [98].

a/(a + b) l/L model numerical result in l/b

result result literature [98]

1 9.4 ∼50% – 50% ∞

1 4.2 41% – 38% ∞

0.95 8.3 ∼48% 50% – 100
0.91 4.2 32% 33% – 25
0.74 8.3 ∼28% 30% – 20
0.74 4.2 18% 8.5% – 7.1
0.67 7.1 22% 23% – 14
0.59 8.3 ∼15% 16% – 14
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the present work aims at developing a practically feasible strategy how 
the energy which has to be applied to transport incompressible and 
Newtonian fluids can be reduced. in this respect, laminar and turbulent 
flow through straight ducts which are considered to be fully developed 
and stationary and are characteristic for many practical applications 
are focused. Based on the physical properties of the flow in a certain 
flow regime, first models are derived which theoretically lead to the 
reduction of the energy dissipated by the fluid motion and thus suggest 
potential for energy savings. the possibility to implement the proposed 
state due to appropriate design aspects in the cross section shape of 
the duct is investigated based on numerical simulations of the flow.
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