
M
is

h
a

St
ri

tt
m

at
te

r

The Karlsruhe Series on
Software Design

and Quality

31

A
 R

ef
er

en
ce

 S
tr

u
ct

u
re

 f
o

r
M

o
d

u
la

r
M

et
am

o
d

el
s

o
f

Q
u

al
it

y-
D

es
cr

ib
in

g
 D

o
m

ai
n

-S
p

ec
ifi

 c
 M

o
d

el
in

g
 L

an
g

u
ag

es

A Reference Structure for
Modular Metamodels of
Quality-Describing Domain-
Specifi c Modeling Languages

Misha Strittmatter

Δ

π

Ω

Σ

Misha Strittmatter

A Reference Structure for Modular
Metamodels of Quality-Describing
Domain-Specific Modeling Languages

The Karlsruhe Series on Software Design and Quality
Volume 31

Chair Software Design and Quality
Faculty of Computer Science
Karlsruhe Institute of Technology

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner

A Reference Structure for Modular
Metamodels of Quality-Describing
Domain-Specific Modeling Languages

by
Misha Strittmatter

Print on Demand 2020 – Gedruckt auf FSC-zertifiziertem Papier

ISSN 1867-0067
ISBN 978-3-7315-0982-0
DOI: 10.5445/KSP/1000098906

This document – excluding the cover, pictures and graphs – is licensed
under a Creative Commons Attribution-Share Alike 4.0 International License
(CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

The cover page is licensed under a Creative Commons
Attribution-No Derivatives 4.0 International License (CC BY-ND 4.0):
https://creativecommons.org/licenses/by-nd/4.0/deed.en

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark
of Karlsruhe Institute of Technology.
Reprint using the book cover is not allowed.

www.ksp.kit.edu

Karlsruher Institut für Technologie
Institut für Programmstrukturen und Datenorganisation

A Reference Structure for Modular Metamodels of
Quality-Describing Domain-Specific Modeling Languages

Zur Erlangung des akademischen Grades eines Doktors der
Ingenieurwissenschaften von der KIT-Fakultät für Informatik des
Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation

von Misha Strittmatter

Tag der mündlichen Prüfung: 22. Juli 2019
Erster Gutachter: Prof. Dr. Ralf Reussner
Zweiter Gutachter: Prof. Dr. Bernhard Rumpe

Acknowledgment

First, I thank my adviser (Doktorvater) Professor Ralf Reussner for his

supervision and input. I thank him for having faith in me and my work

and for giving me this opportunity. The work and research I did, entailed

a great degree of responsibility and freedom. Although this was not easy,

from these aspects I benefited the most. I thank my direct adviser Robert

Heinrich for his supervision and input. Especially for the cooperation in

the main paper of my thesis, his commitment improved the paper greatly.

By using his characteristic leadership style, Professor Reussner built the

SDQ chair in a way that fostered a cooperative and constructive work

atmosphere with many great colleagues. This chair was a great support to

me and my work. Therefore, my thanks also go out to all of my current

colleagues. You are awesome, and I wish you all the best for your research.

One part of me would have really liked to stay longer, but now is the time

for me to move on. For most of the time I worked at the chair, I shared an

office with Axel and then with Kiana. It really was a great time. Thank you

both. I also thank all of my former colleagues, many of which I miss dearly.

Lucia Happe, I thank for supervising me when I was still a diploma student

and for motivating me to go into research. For a long time, I participated

actively in the MDSD research group of the SDQ chair. I thank them for the

fertile discussions, their input, and their preciseness. Thanks to Professor

Jörg Kienzle for his cooperation and for inviting me to his workshop. My

research greatly benefited from both. Thanks to Professor Bernhard Rumpe

and Professor Hannes Hartenstein for taking an interest in my work. I also

thank all the students with whom I worked in the scope of my research.

Especially Amine Kechaou was an invaluable help. For that, I thank him

and wish him all the best for his future.

i

Acknowledgment

I thank all of my friends for their patience during the time I neglected

them. My family, I thank for supporting me and for giving me the chance

to pursue this path in the first place. Last but not least I thank my partner

Janine for her patience, understanding, love, and support.

ii

Abstract

ResearchContext Inmodel-driven engineering and software development,

domain-specific modeling languages (DSMLs) are used to model systems.

Models are created during system design or reengineering. They can be used

for analysis, verification, simulation, code generation, documentation, com-

munication, and so on. Modeling languages can be defined by metamodels.

Challenges The challenges posed by the use of metamodels are twofold.

They stem from metamodel maintenance (see my paper [SH16b]) and

metamodel reuse.

Maintenance Like all software artifacts, metamodels have to evolve to

remain useful. Over time, changes can lead to a degradation of the structure

of a metamodel. This includes a decline in understandability, maintainabil-

ity, and reusability. Subsequent evolution gets more time-consuming and

can potentially cause even more harm. These effects do also negatively

affect the development of tools that work on the metamodel (e.g., editors,

analyses, transformation, and simulators).

Reuse Often, metamodels are not built with reusability in mind. They

mostly support all-or-nothing reuse. Further, the reusability of a meta-

model is hampered by improper evolution. If new requirements arise,

these problems may lead to intrusive additions, branching of languages,

or newly developed languages to be built from scratch instead of reusing

existing language parts or extending an existing language. Intrusive addi-

tions bring the problems as mentioned above. Branches and new languages

are incompatible to the original language, even if they could be in part

compatible where they share common concepts. Additionally, they have

to be maintained on their own.

iii

Abstract

State of the Art Language engineering approaches are great to quickly

build new languages from existing languages or language fragments. They

are, however, not concerned with the compatibility of the newly formed

language to the original nor other derivations of the original language.

There are several approaches for modularizing or extending metamodels.

They do, however, not focus on the restructuring of dependencies. They,

therefore, do not utilize the full potential to improve the reusability of a

metamodel. Further related works investigate reoccurring negative patterns

in metamodels (i.e., bad smells), as well as ways to detect and correct them.

These works, however, mostly focus on errors that harm a the validity or

correctness of metamodels and less on problems to metamodel evolvability.

Solution To close this gap in state of the art, this thesis offers three

contributions.

This thesis presents an investigation of bad smells in metamodels. Bad

smells were identified in the review of a metamodel [Str+16a] and by a

transfer from object-oriented software design. For 12 of the bad smells,

automatic detections were developed.

The core contribution of this thesis is the reference structure [HSR19;

Str+15; SH16a], which enables design, evolution, and extension of metamod-

els for modeling languages that are used for quality analysis in a modular

and layered way. Applied to a metamodel, the reference structure approach

helps with the typical reuse scenarios from the domain of quality analysis.

Applying this reference structure will help counter the degradation of the

metamodel due to long-term evolution. By doing so, the reference structure

addresses several bad smells of the first contribution.

Applying the reference structure approach yields a modular metamodel.

To be able to couple the modules of metamodels in a meaningful way,

this thesis investigates metamodel extension mechanisms. The extension
mechanisms are also needed to extract parts of existing metamodels and to

remodel dependencies to make them conform to the reference structure.

Validation The automated bad smells detections are evaluated by execut-

ing them and manually investigating the reported occurrences for adverse

iv

Abstract

effects. By performing corrections and rerunning the detections, the effec-

tiveness of the corrections is evaluated. To evaluate the reference structure

approach, four metamodels were refactored according to the reference

structure. A scenario-based evaluation shows an improvement of evolv-

ability by determining complexity, coupling, and cohesion using metrics

that are rooted in information theory. A second evaluation shows that the

utilization of the metamodel increases. It, therefore, can be concluded that

the refactored metamodels are more suited for need-driven use and reuse.

The metamodel extension mechanisms are evaluated according to a catalog

of comparison criteria and compared with each other. For each extension

scenario, this enables to determine the most suited extension mechanism.

v

Zusammenfassung

Kontext In der modellgetriebenen Entwicklung werden domänenspezi-

fische Modellierungssprachen verwendet, um unter anderem Systeme zu

entwerfen, zu analysieren, zu simulieren und Code zu generieren. Solche

Modellierungssprachen können durch Metamodelle definiert werden.

Problemfelder Bei der Verwendung von Metamodellen ergeben sich aus

derenWartung (siehe hierzumein Artikel [SH16b]) undWiederverwendung

spezifische Herausforderungen.

Wartung Wie jedes andere Software-Artefakt auch, sind Metamodelle

sich ändernden Anforderungen ausgesetzt. Die Struktur von langlebigen

Metamodellen, welche über die Zeit viele Änderungen und Ergänzungen

erfahren, verschlechtert sich mehr und mehr. Nachfolgende Wartungsar-

beiten werden dadurch umso aufwendiger und potenziell noch nachteiliger.

Diese Auswirkungen beschränken sich nicht nur auf die Wartungsarbeiten

des Metamodells, sondern behindern auch die Entwicklung und Wartung

von Software-Werkzeugen, welche auf dem Metamodell aufbauen (z. B.

Editoren, Analysen, Transformationen und Simulatoren).

Wiederverwendung Oft werden Metamodelle nicht im Hinblick auf Wie-

derverwendung entworfen, wodurch eine bedarfsgerechte Teilwiederver-

wendung nicht möglich ist. Neue Anforderungen an den Sprachumfang

oder der Einsatz in einem anderen Kontext führen entweder zum intrusi-

ven Erweitern des Metamodells, zur Bildung eines Dialekts oder sogar zur

Entwicklung einer neuen Sprache. Die intrusive Erweiterung bringt die

oben genannten Probleme mit sich. Für Dialekte und neuen Sprachen fällt

jeweils eigener Wartungsaufwand an. Zudem sind diese nicht mehr ohne

Weiteres mit dem ursprünglichen Metamodell kompatibel.

vii

Zusammenfassung

Stand der Forschung Verwandte Sprachentwicklungsansätze konzentrie-

ren sich darauf neue Sprachen zu erstellen, teils indem sie Sprachfragmenten

wiederverwenden. Diese Ansätze haben den Nachteil, dass die Sprachen,

welche sie erzeugen, im Allgemeinen nicht miteinander kompatibel sind,

selbst wenn sie viel gemeinsam haben. Es gibt mehrere Ansätze zur Modu-

larisierung und Komposition von Metamodellen. Diese Ansätze behandeln

allerdings nicht die Umgestaltung von Abhängigkeiten und schöpfen daher

nicht das volle Potenzial der Verbesserung derWiederverwendung aus. Wei-

tere verwandte Arbeiten untersuchen wiederkehrende negative Muster in

der Metamodellierung (sogenannte Bad Smells) und Möglichkeiten diese zu

erkennen und zu beheben. Diese Arbeiten beschränken sich hauptsächlich

auf Modellierungsfehler, welche die Validität oder Korrektheit des Metamo-

dells betreffen, und somit weniger auf Probleme der Evolvierbarkeit.

Beiträge Um die Lücke im Stand der Forschung zu schließen, bietet die-

se Arbeit drei Beiträge.

Zum ersten wird eine Untersuchung der Bad Smells der Metamodellierung

präsentiert. Diese Bad Smells wurden bei der Durchsicht eines bestehen-

den Metamodells identifiziert [Str+16a] sowie aus der Objektorientierung

übertragen. Für 12 der Bad Smells wurde eine automatische Erkennung

entwickelt.

Die Referenzstruktur [HSR19; Str+15; SH16a] für Metamodelle von Mo-

dellierungssprachen für Qualitätsanalysen ist das Herzstück dieser Arbeit.

Wird solch ein Metamodell nach der Referenzstruktur gestaltet oder um-

gestaltet, hilft dies bei den typischen Wiederverwendungsszenarien in der

Domäne der Qualitätsanalyse. Das Metamodell wird modularer und somit

für Entwickler einfacher zu verstehen. Zudem macht es das Metamodell

langfristig evolvierbarer, indem Ursachen für strukturelle Verschlechterung

ausgeschlossen werden. Die Referenzstruktur adressiert somit einige der

Bad Smells des ersten Beitrags.

Das Anwenden der Referenzstruktur ergibt modulare Metamodelle. Um die

Module solcherMetamodellen sinnvoll koppeln zu können, untersucht diese

ArbeitMetamodellerweiterungsmethoden. Diese werden benötigt um Teile

aus bestehenden Metamodellen zu extrahieren und zudem Abhängigkeiten

so umzuformen, dass sie mit der Referenzstruktur konform sind.

viii

Zusammenfassung

Validierung Die automatischen Bad-Smell-Erkennungen wurden evalu-

iert, indem sie angewandt und die resultierenden Vorkommen manuell nach

ihren negativen Auswirkungen begutachtet wurden. Durch das Beheben

von Vorkommen und das erneute Ausführen der automatischen Erkennun-

gen, wurde die Wirksamkeit der vorgeschlagenen Korrekturen evaluiert.

Um die Referenzstruktur zu evaluieren, wurden vier Metamodelle nach der

Referenzstruktur restrukturiert. Durch eine szenariobasierte Evaluation mit

informationstheoretischen Metriken konnte gezeigt werden, dass sich die

Evolvierbarkeit der modularisierten Metamodelle verbessert. Zudem ver-

bessert sich der Metamodellnutzungsanteil, woraus sich folgern lässt, dass

eine bedarfsgerechtere Nutzung und Wiederverwendung möglich ist. Die

Metamodellerweiterungsmethoden wurden nach einem Kriterienkatalog

bewertet und miteinander verglichen.

ix

Contents

Acknowledgment . i

Abstract . iii

Zusammenfassung . vii

I. Prologue . 1

1. Introduction . 3

1.1. Scope . 11

1.2. Why Good Metamodel Design is Important 12

1.3. The Relation of Metamodeling and Object-oriented Design . 13

2. Foundations and Terminology . 15

2.1. Languages and Modeling . 15

2.2. Metamodeling . 18

2.2.1. Meta Object Facility 18

2.2.2. EMOF-based Metamodels 19

2.2.3. Metamodel Use and Reuse 22

2.2.4. Views and View Types 23

2.2.5. Metamodel Evolution 24

2.2.5.1. Metamodel Modification Types 25

2.2.5.2. Metamodel Refactoring 28

2.2.6. Metamodel Quality 29

2.2.7. Bad Smells . 31

2.2.8. Metrics . 32

2.2.9. EMF Refactor . 33

2.2.10. Roles . 33

2.2.10.1. Developer 34

xi

Contents

2.2.10.2. User . 34

2.3. Quality-Describing DSMLs and Metamodels 34

2.4. Feature Models . 36

2.5. Concepts and Approaches Relevant to the Validation 38

2.5.1. Goal Question Metric Approach 38

2.5.2. Types of Validity . 38

2.5.3. Graph and Hypergraph Metrics According to Allen . 39

2.6. Graphical Notation . 41

3. Problem Areas and Challenges . 45

3.1. Package Erosion and Growth of Dependencies 46

3.2. Loss of Knowledge . 47

3.3. Monolithic Metamodels . 48

3.4. Commonalities in Related Languages 49

3.5. Tool-specific Metamodel Content 49

3.6. Generality Compromise . 49

3.7. Metamodel Coupling . 50

3.8. Instance Incompatibility . 50

3.9. Incompatible Extensions . 51

3.10. Feature Overload in Metamodel-based Tools 51

II. Contribution . 53

4. Bad Smells and Anti-Patterns in Metamodeling 55

4.1. Research Questions . 56

4.2. Terms and Definitions . 56

4.3. Research Approach . 59

4.4. Bad Smells . 60

4.4.1. Abstraction . 62

4.4.1.1. Missing Class 62

4.4.1.2. Dead Classifier 64

4.4.1.3. Inconsistent Abstraction 65

4.4.2. Modularization . 68

4.4.2.1. Language Feature Scattering 68

4.4.2.2. God Class 70

4.4.2.3. Blob Package 71

4.4.2.4. Metamodel Monolith 72

xii

Contents

4.4.3. Hierarchy . 73

4.4.3.1. Missing Hierarchy 73

4.4.3.2. Instance Data Modeled by Inheritance . . . 76

4.4.3.3. Redundancies in Hierarchy 77

4.4.3.4. Wide Hierarchy 78

4.4.3.5. Speculative Hierarchy 79

4.4.3.6. Deep Hierarchy 81

4.4.3.7. Multipath Hierarchy 82

4.4.3.8. Concrete Abstract Class 84

4.4.4. Relation . 86

4.4.4.1. Dependency Cycle 86

4.4.4.2. Container Relation 89

4.4.4.3. Obligatory Container Relation 92

4.4.4.4. Specialized Relation 93

4.5. Automatic Bad Smell Detection 96

5. Metamodel Extension . 99

5.1. Research Question and Challenges 100

5.2. Terms and Definitions . 101

5.3. Mechanism Selection Criteria 106

5.4. Metamodel Extension Mechanisms 107

5.4.1. Intrusive Addition 108

5.4.2. Direct Inheritance 108

5.4.3. Referencing with External Container 109

5.4.4. Referencing with Reused Container 110

5.4.5. EMF Profiles . 110

5.4.6. Extension Point Inheritance 111

5.4.7. Decorator Pattern 112

5.5. Dismissed Mechanisms . 115

5.5.1. Intrusive Mechanisms 115

5.5.2. Metamodel-specific Mechanisms 116

5.5.3. Duplicate and Composed Mechanisms 117

5.5.4. Unavailable Approaches 118

5.6. Comparison Criteria Catalog 119

5.6.1. Metalanguage Support 120

5.6.2. Applicable without Preparation 120

5.6.3. Model Level Unintrusiveness 121

5.6.4. Content Retrieval Computational Complexity . . . 122

xiii

Contents

5.6.5. Applies to Subclasses 123

5.6.6. Orthogonality . 124

5.6.7. Multiplicity . 125

5.6.8. Model File Integrity 126

5.6.9. Containment Tree Integrity 126

5.6.10. Extension Object Deletion 128

5.6.11. Adds a Type . 129

6. A Reference Structure to Enforce Modularity in Metamodels . . . 131

6.1. Concepts and Best Practices of Related Disciplines 133

6.2. Research Questions and Challenges 135

6.3. Metamodel Modularization Concepts 138

6.3.1. Language Features 138

6.3.2. Feature Modeling 140

6.3.3. Metamodel Modules 141

6.3.4. Layers . 144

6.3.5. Layers, Feature Models, and Modules 145

6.3.6. Special Roles in the Scope of this Thesis 146

6.3.7. Discussing the Research Questions and Challenges 146

6.4. Layers in Metamodels for Quality Modeling and Analysis 149

6.4.1. Paradigm . 150

6.4.2. Domain . 150

6.4.3. Quality . 151

6.4.4. Analysis . 151

6.4.5. Discussing the Research Questions and Challenges 152

6.5. Refactorings . 153

6.5.1. Class Refactorings 154

6.5.1.1. Class Split 154

6.5.1.2. Dependency Inversion 155

6.5.2. Metamodel Module Refactorings 158

6.5.2.1. Horizontal Split 159

6.5.2.2. Extension Extraction 161

6.5.2.3. Feature Support Extraction 162

6.5.2.4. Vertical Split 163

6.5.2.5. Merge . 164

6.5.3. Feature Model Refactoring 164

6.5.3.1. Pull Up Relation 165

6.5.3.2. Transform Required into Mandatory Child 166

xiv

Contents

6.5.3.3. Merge Mandatory Child into Parent . . . 167

6.5.3.4. Transform Mutual Exclusion 167

6.5.3.5. Omit Transitive Relations 169

6.6. Application Process . 172

6.6.1. Creating a New Metamodel 172

6.6.2. Refactor an Existing Metamodel 179

6.6.3. Extending a Modular Metamodel 183

III. Validation . 187

7. Bad Smell Detection and Correction Evaluation 189

7.1. Evaluation Goals . 189

7.2. Evaluation Approach . 191

7.3. Subject Metamodel . 195

7.4. Metric Thresholds . 195

7.4.1. Metric Thresholds Determination Approach 195

7.4.2. Smell Metric Thresholds 197

7.5. Detection Result Overview 199

7.6. Bad Smell Occurrences . 200

7.7. Correction and Revaluation 207

7.7.1. Missing Class Primitive Obsession 207

7.7.2. Missing Class Shared Properties 208

7.7.3. God Class . 210

7.7.4. Wide Hierarchy . 211

7.7.5. Deep Hierarchy . 212

7.7.6. Dead Class . 215

7.7.7. Multipath Hierarchy 216

7.7.8. Concrete Abstract Class 217

7.7.9. Container Relation 219

7.7.10. Obligatory Container Relation 220

7.7.11. Specialized Relation 221

7.7.12. Speculative Hierarchy 223

7.7.13. Dependency Cycle 224

7.8. Result Overview . 225

7.9. Threats to Validity . 227

7.10. Result Interpretation . 227

xv

Contents

8. Metamodel Extension Mechanism Evaluation and Comparison . . 229

8.1. Extension Mechanism Evaluation 229

8.1.1. Intrusive Addition 230

8.1.2. Direct Inheritance 232

8.1.3. Referencing with External Container 234

8.1.4. Referencing with Reused Container 236

8.1.5. EMF Profiles . 238

8.1.6. Extension Point Inheritance 240

8.1.7. Decorator Pattern 242

8.2. Result Interpretation . 243

8.2.1. Extension Mechanism Appraisal 244

8.2.2. Metamodel Extension Process 245

8.2.3. Causal Relations 247

9. Case Studies of the Reference Structure Approach 251

9.1. Case Study Selection . 251

9.1.1. Initial Set . 252

9.1.2. Selection Criteria 253

9.1.2.1. Mandatory Criteria 254

9.1.2.2. Prioritization Criteria 255

9.1.3. Selection Result . 258

9.1.3.1. Discarded due to Mandatory Criteria . . . 259

9.1.3.2. Discarded due to Prioritization 262

9.1.3.3. Selected Candidates 263

9.2. Applied Extension Mechanisms 266

9.3. Modularization Stopping Criteria 266

9.4. Counting Metrics Results 267

9.5. Case Study Metamodels 267

9.5.1. Palladio Component Model 268

9.5.1.1. Original Metamodel 268

9.5.1.2. Modularization 271

9.5.1.3. Modular Metamodel 272

Paradigm 274

Domain 275

Quality 279

9.5.1.4. Uncorrected Bad Smells and Errors 280

9.5.1.5. Feature Model 281

9.5.1.6. Further Decoupling Potential 281

xvi

Contents

9.5.1.7. Predefined Metamodel Module Selections 283

9.5.2. Smart Grid Topology 284

9.5.2.1. Original Metamodel 284

9.5.2.2. Modularization 285

9.5.2.3. Modular Metamodel 285

Paradigm 286

Domain 286

Analysis 287

9.5.2.4. Feature Model 287

9.5.3. KAMP4aPS . 287

9.5.3.1. Original Metamodel 287

9.5.3.2. Modularization 288

9.5.3.3. Modular Metamodel 289

Paradigm 289

Domain 290

Quality 290

9.5.3.4. Feature Model 290

9.5.4. BPMN2 . 291

9.5.4.1. Original Metamodel 291

9.5.4.2. Modularization 294

9.5.4.3. Modular Metamodel 296

Paradigm 296

Domain 302

9.5.4.4. Feature Model 305

9.6. Module Repositories and Common Paradigm Modules . . 307

10. Validation of the Reference Structure Approach 317

10.1. Validation Goals and Metrics 317

10.1.1. Evolvability . 318

10.1.1.1. Goal Question Metric Plan 318

10.1.1.2. Extraction of Relevant Subgraphs 319

Rationale 320

Evolution Scenario Types 320

Extraction Procedure 321

10.1.1.3. Subgraph to Hypergraph Transformation 322

10.1.2. Need-specific Dependence and Use 323

xvii

Contents

10.2. Evaluation Design . 325

10.2.1. Evolvability . 325

10.2.1.1. Evaluation Metamodel Version 325

10.2.1.2. Evolution Scenario Collection Approach . 325

10.2.1.3. Reevaluating Historical Scenarios 326

Evaluability of Historical Scenarios 327

Evaluability Despite Subsequent Evolution 327

Impact of Subsequent Evolution 328

10.2.1.4. Evolution Scenarios 329

Palladio Component Model 329

Smart Grid Topology 332

KAMP4aPS 333

BPMN2 335

10.2.2. Need-specific Dependence and Use 335

10.3. Evaluation Results . 336

10.3.1. Evolvability . 336

10.3.2. Need-specific Dependence and Use 337

10.4. Interpretation and Discussion 341

10.4.1. Evolvability . 341

10.4.1.1. Overall 342

10.4.1.2. Complexity 344

10.4.1.3. Coupling 348

10.4.1.4. Cohesion 349

10.4.2. Need-specific Dependence and Use 350

10.5. Threats to Validity . 350

10.5.1. Internal Validity 350

10.5.2. External Validity 352

10.5.3. Construct Validity 353

10.5.4. Reliability . 354

10.6. Validation Conclusion . 355

IV. Epilogue . 357

11. RelatedWork . 359

11.1. Bad Smells and Anti-Patterns in Metamodeling 359

11.1.1. Metamodeling Errors and Flaws 359

11.1.2. Metamodel Quality Metrics 362

xviii

Contents

11.2. Metamodel Extension . 364

11.3. The Reference Structure Approach 367

11.3.1. Language Engineering 367

11.3.1.1. Metamodel-based 368

11.3.1.2. Grammar-based 372

11.3.1.3. Deep Modeling 373

11.3.2. Software and Language Product Lines 374

11.3.3. Modularity, Modularization, and Clustering 376

11.3.4. Structuring of Modeling Spaces 379

11.3.5. Metamodeling Patterns 380

11.3.6. Metamodel Quality Assurance 381

11.3.7. Coevolution . 381

11.3.8. Terminology in Related Approaches 382

11.4. Conclusion . 383

12. Conclusion . 387

12.1. Bad Smells and Anti-Patterns in Metamodeling 387

12.1.1. Summary . 387

12.1.2. Limitations . 391

12.1.3. Future Work . 392

12.2. Metamodel Extension . 393

12.2.1. Summary . 393

12.2.2. Limitations . 395

12.2.3. Future Work . 396

12.3. The Reference Structure Approach 397

12.3.1. Summary . 397

12.3.2. Limitations . 401

12.3.3. Future Work . 401

Appendix . 405

A. All Bad Smell Occurrences in the PCM 407

B. Technical Foundation of the Reference Structure Approach 423

B.1. Metamodel Modules . 423

B.2. Tool Support: The Modular EMF Designer 424

B.3. Readily Available Tool Support 428

xix

Contents

C. Evaluation Tooling and Setup . 431

C.1. Installation . 431

C.2. Concrete Versions Used in the Evaluation 432

C.3. Using the Validation Tool 433

Index . 473

List of Figures . 477

List of Tables . 481

xx

Part I.

Prologue

1. Introduction

Research Context In Model-driven Engineering (MDE) [Sch06], domain-

specific modeling languages (DSMLs) are used to capture the concepts and

reoccurring patterns of the domain. MDE is used in many domains like

aviation [FGH06], automotive [Cue+10; Für+09], automation [Dra+08],

mechatronics [Bec+14], business information systems [Reu+16], and busi-

ness processes [Obj14].

An instance of a DSML is a model. Besides documentation and commu-

nication, models are used constructively in MDE. They are the result of

the design or reengineering of a software-intensive system. During the

development of a system, models are not a byproduct of the engineering

process. They are central first-class artifacts. From these models, parts of

the software can be generated. In MDE, models are also used analytically.

They can be validated to test a static property that the system has to fulfill.

More complex aspects can be investigated by analyses and simulations that

are developed for the DSML. Such analyses and simulations usually evaluate

some quality properties. A metamodel that, in addition to domain concepts,

also captures quality properties is referred to as a quality-describing meta-

model. Quality characteristics may purely concern the software aspects

of the system (e.g., performance and maintainability). They may also re-

fer to the interplay between the software and other aspects of the system

(e.g., the timing of an automated production unit), or even to aspects that

do not involve software.

DSMLs can be defined by metamodels or grammars. The focus of this thesis

is metamodels (Section 1.3 gives the rationale). If they are used, metamodels

are the central artifact in MDE. All tools (e.g., analyses, simulators, edi-

tors, generators) depend on them. Quality properties and the results of

analyses and simulators may be included in a metamodel. If they are not

included, they have to be stored externally from the models in another

3

1. Introduction

format. The same holds for additional information that a tool needs like

configuration and input data.

Challenges There is, however, the open question of how to implement

multiple qualities and the data of multiple tools in a metamodel. Some

tools may share parts the information they require; other tools may require

completely different definitions in the metamodel. From an initial glance,

there are two opposing solutions. The first solution is to integrate all

information into one DSML. The second solution proposes to create a new

DSML for each quality or tool. Both approaches have shortcomings, which

will now be outlined.

To integrate all information into one language creates monolithic metamod-

els and can degrade the structure of these metamodels. This problem can

be generalized into the challenge of long-term evolution. To create a new

DSML for each tool poses a different set of problems. If, for example, the

same system should be analyzed for two quality characteristics, and these

need different languages, the system has to be modeled twice. Depend-

ing on how different the two languages are, the translation of the model

into the other language may require great manual effort. This problem

can be generalized into the challenge of reuse. The following paragraphs

outline these two challenges. The problems that this thesis addresses are

elaborated in much more detail by Chapter 3.

Evolution The long-term use of DSMLs and metamodels brings several

challenges (as outlined in my past publication [SH16b]). These can be

motivated by Lehman’s laws. Software has to evolve to adapt to changing

requirements in order to stay useful [Leh80]. Software that evolves tends to

become more complex, and more effort has to be spent in its maintenance

[Leh80]. As metamodels are software artifacts too, these laws also apply to

metamodels. Metamodel evolution has several types of causes: new features

should be expressed, features have to be adapted, and errors corrected.

The long-term evolution of a metamodel may degrade its inner structure.

Amongst others, this degradation manifests in: uncontrolled growth of

dependencies, feature scattering, feature lumping, inconsistent feature in-

tegration, and concept erosion. The metamodel gets more complex and

4

1. Introduction

looses its clear internal structuring. This leads to a decline in understand-

ability and maintainability.

The repeated intrusive addition of features (e.g., quality or analysis informa-

tion) leads to monolithic metamodels. Because of their lack of modularity,

they suffer from several shortcomings. They only allow all-or-nothing

reuse. The increased local complexity and feature overload make them

hard to understand.

As any software artifact, metamodels should also be documented to preserve

the knowledge about their elements. If this is omitted, or keeping the

documentation up to date is neglected, the risk to lose essential knowledge

about the metamodel rises as development team changes. By partitioning

the metamodel into a meaningful package structure, some information can

be encoded into the metamodel. This approach is, however, susceptible

to the repercussions of long-term evolution. As the package structure

degrades, so does this information.

Reuse Metamodels are often not built with reusability in mind. Lacking

modularity and hard coupling within a metamodel often lead to all-or-

nothing reuse. These problems can often be caused orworsened by improper

evolution. Coarse-grained reuse tends to be inappropriate, as it increases

the probability that the reused parts contain unnecessary constructs. This

may incite developers to develop a metamodel from scratch or to branch

the metamodel instead of reusing it as it is. Branches and new metamodels,

however, have to be maintained on their own. This approach, thus, cause

additional effort in the long run. A further problem is that branches and

new metamodels are not compatible with the original metamodel, not even

the parts that they may have in common. This leads to the above-mentioned

drawbacks of either double modeling or translation.

A further challenge to metamodel reuse is posed by a classical tradeoff

that is also known in software development. An artifact has to be general

enough in order to be used in different contexts. On the other hand, it has

to be specific enough to be useful. In the context of this thesis, the above-

mentioned challenges of the field of quality analyses tie in. To base an

analysis on a metamodel, it should not contain unnecessary details (i.e., be

general enough). If, however, the concepts that are needed by the analysis

5

1. Introduction

are intrusively integrated into the language, the language is no longer suited

as a basis for other analyses. This calls for another solution apart from all-or-

nothing reuse, branching, intrusive addition, and development from scratch.

State of the Art The main fields of related work of this thesis can be

categorized into metamodel composition, modularity, problem detection,

and quality assessment approaches.

Language composition approaches build new languages by composing lan-

guage fragments, or modifying and composing existing languages. They

are well suited to reduce the effort of creating new languages. They usually

strive to give as many options to modify the languages that are reused.

This has the drawback, that there is, in general, no compatibility between

related languages that are the result of such compositions. A set of in-

dependent languages is, unfortunately, not the solution to the problems

that are stated above. Further, these language composition approaches

do not take the evolution scenarios into account that are common to the

field of quality analyses.

There are several approaches towards modularity of metamodels. They

can be used to break down big metamodels in an attempt to increase their

modularity and, therefore, to reduce local complexity Some may be useful

as initial suggestions on how to modularize a metamodel. They, however, do

not consider how the language is used that is defined by the metamodel. The

internal separations that are imposed by the different ways the metamodel

can be used are a muchmore relevant factor for modularizations. If the ways

a metamodel is used are disregarded, a modularization does not improve a

metamodels reusability. Another drawback is that some approaches merely

partition metamodels. They do not restructure any dependencies. This does

not achieve proper modularity, as often partitions are still strongly coupled

and can only be used and understood together, even if that is not meaningful.

Several problem detection approaches, automatically inspect metamodels

for metamodeling problems. Most of them do, however, not focus on

maintainability, as they mainly report validity and semantic errors. Another

drawback is that these approaches work reactively. They address problems

after they have arisen. While this is useful, they cannot be the single final

6

1. Introduction

solution, even if they also addressed maintainability problems. A proactive

solution is still needed to prevent the degradation of metamodels.

Approaches that provide metamodel quality assessment by metrics also

tackle metamodel maintainability. These approaches suffer from the same

drawback as error detection approaches: they work reactively. They are,

nonetheless, useful for tracking the development of the quality of a meta-

model. They, however, mostly do not report actual points of improvement.

Solution This thesis addresses shortcomings of the related work by pro-

viding three contributions, which build upon each other: (1) an investigation

of maintainability problems in metamodels, (2) an evaluation of how to

properly couple parts of metamodels, and (3) the reference structure ap-

proach for modular metamodels. The contributions (1), (2), and a large part

of (3) apply to EMOF-based metamodels in general. Contribution (3) also

features a specific reference structure that applies only to quality-describing

metamodels. The three contributions are now briefly presented.

Metamodeling Bad-Smells To this thesis, it is essential to understand the

problems that hinder metamodel evolution. It should be investigated what

exactly the drawbacks of lacking modularity and monolithic metamod-

els are, and which problems arise from intrusive additions and long-term

maintenance. This understanding is essential to solve the problems of meta-

model maintenance. To achieve this, the concept of bad smells [Fow+99]

is investigated. A bad smell is a symptom for a possible design flaw that

degrades maintainability.

This thesis presents a collection of metamodel bad smells. They were col-

lected from two sources. Firstly, a monolithic, long-living metamodel was

reviewed that was subject to many intrusive additions. Secondly, bad smells

from object-oriented design were investigated whether they are also mean-

ingful in the scope of metamodeling. For each smell that was collected,

its effect, detection, and correction are discussed. Not all smells are auto-

matically detectable. The metamodel quality assurance tool EMF Refactor

[Are14] was extended to detect a subset of these metamodel bad smells.

7

1. Introduction

MetamodelExtensionMechanisms Modularity is the key to a kind of meta-

model reuse that enables compatibility of the parts that are shared between

languages. The parts of a metamodel, however, have to be coupled appro-

priately in order to form a truly modular and reusable metamodel. Unsuited

dependencies between metamodel parts lead to strong coupling, which

diminishes the possibilities of fine-grained reuse. This thesis investigates

a particular kind of coupling: one directional extension. It can be used to

add new features to existing classes without having to modify them. By

doing so, it enables refactorings that are essentials to properly modularize

a metamodel (e.g., dependency inversion and class split). Depending on

the needs of the user, an extension can be enabled or disabled. This can be

used to establish a variable language. As extension enables modularity, it

addresses several of the bad smells that were identified before. Leveraging

this mechanism is also beneficial to the specific field of quality analysis.

Having a common core of the metamodel that is used by several qualities

and analyses solves the challenge of double modeling and translation. The

data that are needed to model the quality characteristics and extensions

can be placed in optional extensions.

This thesis presents a list of extension mechanisms and assembles a set

of comparison criteria. These also include criteria that are derived by the

challenges of reuse. Those criteria enforce, for example, unintrusiveness,

compatibility of instances, and independent extensibility.

Reference Structure for Quality Analyses As a basis for quality analyses,

a modular and variable language is already a move in the right direction.

Such a modular structure is, however, also subject to long-term mainte-

nance and erosion. Instead of an unstructured set of extensions, a more

explicit structuring is required. To prevent the development of harmful

couplings over time, the dependencies have to restricted, and the devel-

oper properly guided.

To establish this, this thesis transfers modularity concepts (e.g., modules,

layers), and best-practices (e.g., acyclicity, dependency inversion) from re-

lated disciplines. These modularity concepts are enabled by the metamodel

extension mechanisms. This thesis proposes an approach to metamodel

modularization that divides a metamodel according to its language features.

A language feature represents a unit of use. The features of a language

8

1. Introduction

are explicitly expressed by a feature model. The individual features are

linked to the modules of the metamodel. This feature model is utilized by

the user to select the metamodel modules s/he wants to use in his model.

It is also used by the metamodel developer to navigate the metamodel, to

place new extensions, and to align new dependencies. The feature model

and its metamodel modules are partitioned according to layers, which

further restrict dependencies.

The aforementioned approach applies to metamodels in general. This thesis

also provides a reference structure for metamodels of the field of quality

analysis. It proposes four layers that separate fundamental patterns, domain,

quality, and analysis information. This separation supports the common

evolution scenarios of the field by leveraging the variability that is enabled

by metamodel extension. It supports multiple quality characteristics and

analysis data and does not fall into the trap of intrusive addition, branching,

or all-or-nothing reuse.

Validation The three contributions of this thesis are evaluated as follows.

The implemented bad smell detections were applied onto a metamodel. The

detection hits were manually investigated for whether they are correct and

harmful. All hits represent occurrences according to the definitions of their

smells. This can be seen as a partial confirmation of the correctness of the

detections. Except for one detection, meaningful corrections could be man-

ually identified that improved the metamodel at the reported occurrences.

This can be seen as an argument that these smells can indicate improvement

potential. For each smell, corrections were performed on its occurrences.

After each correction, the bad smell detections were performed a second

time. Each correction resulted in the addressed occurrence no longer being

detected. This demonstrates that the applied corrections are effective and

evaluates the correctness of the detections a second time.

The metamodel extension mechanisms were evaluated according to the

comparison criteria. This enables a comparison of the ext mechanisms. For

a set of scenarios that occur in metamodel extension, it allowed determining

the extension mechanisms that fit best for the individual scenarios.

Four case study metamodels were refactored to adhere to the reference

structure. On these four metamodels, two evaluations were conducted.

9

1. Introduction

A scenario-based evaluation used information-theory-based metrics to ana-

lyze the effect of the reference structure on the evolvability of the metamod-

els. For each metamodel, a set of evolution scenarios were collected. Based

on each scenario, the part of the metamodel was determined that is relevant

for the scenario. On these metamodel parts, the information-theory-based

metrics were applied. The evaluation shows that the evolvability of the

metamodels improved by applying the reference structure approach.

The second evaluation investigates how the reference structure influences

the degree to which the metamodels allow need-driven usage and reuse. For

each case study metamodel, a set of models were collected. The evaluation

analyzed the ratio of how much of a metamodel has to be deployed and

how much is used by the individual models. This allowed concluding the

reference structure approach enables fine-grained use and reuse.

Outline The remainder of this introduction is structured as follows. Sec-

tion 1.1 explains the scope of this thesis. Section 1.2 motivates the case for

good metamodel design. Section 1.3 elaborates on the commonalities and

differences of metamodeling and object-oriented design.

This thesis is structured into four parts. The first part is the Prologue, which

contains this introduction. Chapter 2 presents the foundations and termi-

nology on that this thesis is based. Chapter 3 presents the problems that

this thesis addresses. The Contribution part contains the chapters for the

three contributions of this thesis. Chapter 4 presents the contribution about

bad smells in metamodeling. Chapter 5 contains the metamodel extension

contribution. Chapter 6 presents the the reference structure approach. The

Validation part contains the evaluations of the contributions. Chapter 7 fea-

tures the detection and correction evaluation of the metamodel bad smells

contribution. Chapter 8 evaluates and compares the extension mechanisms

from the metamodel extension contribution. Chapter 9 presents the four

case studies that were refactored according to the reference structure ap-

proach. Chapter 10 validates the reference structure approach on the basis

of the case studies from the previous chapter. The Epilogue part concludes

this thesis. Chapter 11 elaborates on related work. Chapter 12 summarizes

the contributions and their validation, discusses limitations, and presents

future work. The Appendix contains supplementary material. Appendix A

contains the full result of the evaluation of the bad smell contribution.

10

1.1. Scope

Appendix B explains how the modularization concepts of the reference

structure are mapped to technical concepts. Appendix C presents the tool

that was used for the evaluation of the reference structure approach. The

index is a powerful resource to find the location where a term is explained.

1.1. Scope

The contribution of this thesis is focused on EMOF-based metamodels. This

section explains the rationale behind this decision.

A language can be defined by a metamodel or a grammar. Both approaches

are equal in expressiveness. This means every language can be expressed

by a metamodel or a grammar. Metamodel- as well as grammar-based

languages can both feature textual as well as graphical syntaxes. There

are, however, subtle differences. Metamodels focus on classes, their rela-

tions, and attributes. They are convenient for the construction of graphical

syntaxes, as usually graphical diagram elements are mapped onto most

classes. Grammars, on the other hand, emphasize the containment of ter-

minals. They are well suited to provide textual syntaxes. In the field of

modeling languages, however, metamodels are widely used. Therefore, this

thesis focuses on metamodels. As grammars and metamodels are similar,

some parts of the approach of this thesis may also apply to the technical

space of grammar-based modeling language engineering. This is, however,

not the focus of this thesis.

There are several metalanguages, that can be used to express metamodels.

This thesis focuses on MOF-based metamodels (see Section 2.2.1). The

reason for this is, MOF is an open international standard, that is widely

used. EMOF is one of two compliance level of the MOF standard. This

thesis focuses on EMOF, as it is much more established than the other

compliance level CMOF. EMF’s Ecore
1
is a free implementation of EMOF

for Eclipse. As EMF is open source, many supporting tools and frameworks

were developed for EMF (e.g., code generators, transformation languages,

editor frameworks). In contrast to CMOF, EMOF has no practical short-

comings (see Section 2.2.1).

1 https://www.eclipse.org/modeling/emf/ (last visited 23.08.2019)

11

https://www.eclipse.org/modeling/emf/

1. Introduction

However, most contributions of this thesis are also applicable to non-EMOF

metamodels that support concepts that are similar to or can be mapped

to EMOF concepts (classifiers, attributes, references, and the ability to

depend on classifiers of other metamodels). This is, however, not the

focus of this thesis.

1.2. Why Good Metamodel Design is Important

This section
2
briefly motivates why a particular focus should be put on

metamodels. A good metamodel design is essential, as metamodel debt

(technical debt in metamodels) accumulates over time and is the costlier,

the more dependencies exist onto the metamodel. There are four reasons

why good design is crucial: tight coupling, much dependent software,

modifications in generated code, and challenges in regeneration.

By the nature of metamodels, software that is dependent on it is tightly

coupled with it. From the outside, every class of a metamodel can be

referenced, and every concrete class can be instantiated. This means that

in principle, each intrusive modification of a metamodel has implications

onto external code. The more code depends on the metamodel, the higher

is the impact of the change.

The challenge of tight coupling is intensified by the fact, that in metamodel-

centric systems, many modules or programs are dependent on the meta-

model. Examples of such code can be editors, transformations, validators,

analyzers, and simulators. When changing the metamodel intrusively, all

these programs have to be adapted. Depending on the type of program,

this can be done with relatively little effort if the logic of the program is

oriented heavily on the structure of the metamodel (e.g., editors, validators).

However, if an external functionality is implemented (e.g., a model is inter-

preted), the change impact can be grave. A related issue is the migration

effort for models that are instances of the metamodel that was modified.

The more modifications were applied to the metamodel, the more effort

is necessary to update its models.

2
This section is based on [SH16b].

12

1.3. The Relation of Metamodeling and Object-oriented Design

Modifications that were made to generated code (e.g., model code, editor

code) pose another challenge. For changes of the metamodel to take effect,

it is necessary to regenerate the code from the metamodel. In general,

manual changes to the generated code are lost, as soon as the code is re-

generated from the metamodel. These changes then have to be reapplied

to the generated code. The more changes have been made to the gener-

ated code, the more of a burden it becomes to regenerate and reapply the

changes. This can go as far that the process of regeneration is delayed until

a certain number of changes to the metamodel has accumulated. It is even

possible that changing the metamodel is avoided at all. As a workaround,

it is possible to automate the reapplication of the changes. However, this

reapplication is dependent on the metamodel structure. If the structure

changes, the reapplication mechanism has to be co-evolved.

The challenge of modified generated code is intensified by generated code

remnants. When regenerating generated code, only existing classes are

regenerated (they overwrite existing code). However, if a class is deleted or

renamed, the deleted class or the class with the old name is not automatically

deleted in the model code. If there were no changes to the generated code,

the complete code could just be manually deleted and regenerated, thereby

ensuring a consistent code base. If this is done with a modified code base,

the changes are lost. When generating over existing code, these code

remnants have to be kept in mind. External code is still able to compile,

but will not incorporate the metamodel changes if remnant classes are

used. The resulting errors are masked by the outdated code and thus

are not easily identified.

1.3. The Relation of Metamodeling
and Object-oriented Design

Metamodeling is related to object-oriented design. Both fields describe

classes, their attributes, relations, inheritance hierarchies, and partitioning

into packages. As object-oriented design is more mature, several useful con-

cepts were established there. One goal of this thesis is to transfer concepts

from object-oriented design and related disciplines to metamodeling.

13

1. Introduction

On the other hand, however, object-oriented design and metamodeling are

not the same. Concepts for reuse and design principles cannot be simply

transferred from object-oriented design as they are. Their benefit cannot

just be assumed but has to be evaluated. To substantiate this claim, the

remainder of this section explains the differences between metamodeling

and object-oriented design.

In object orientation, the sum of classes defines a program. The classes are

used by instantiation. Their objects contain data, which is manipulated

through methods. These objects reside in the heap memory and are ref-

erenced by variables. A developer operates mostly on the internals of a

class and its methods through a textual view. For a user of the software,

its classes and objects are not visible.

Inmetamodeling, the sum of classes defines a language. In contrast to object-

orientation, the classes have to form a containment hierarchy. This means

each class that is not contained has instances that are roots of separate

model files. The classes are not used to be instantiated, but to generate code.

The generated code is then instantiated, to represent models in the memory.

The data that is carried by the objects is also important in metamodeling.

In contrast to object orientation, however, the object itself and its relation

to other objects are much more relevant than its methods. The objects are

persisted in model files. The developer interacts with metamodels mostly

through inter class views, which are either graphical diagrams or tress of

classes and packages. The user interacts with the instances of the classes of

a metamodel directly through graphical or textual representations.

In conclusion, metamodeling and object-oriented design are similar but

not the same. Object-orientation has a strong focus on the internals of

a class (e.g., its attributes and methods). Metamodeling focuses more on

the inter-class level (i.e., dependencies). These differences determine dif-

ferences in what is relevant for the maintainability of metamodel and

object-oriented designs.

14

2. Foundations and Terminology

This chapter introduces the foundations of this thesis. It defines terminol-

ogy that is important to this thesis. The index at the end of this thesis

can also be used for a quick look-up of terms. This chapter is structured

as follows. Section 2.1 explains the fundamental concepts of languages

and models. Section 2.2 provides the foundations of metamodeling. Sec-

tion 2.3 describes the concept of quality-describing DSMLs and metamodels.

Section 2.4 explains feature models. Section 2.5 provides several topics

that are relevant to the validation of this thesis. Section 2.6 presents the

graphical notation that this thesis uses.

2.1. Languages and Modeling

In contrast to natural languages, computer languages are formalized to

make their instances machine processable. For the sake of brevity, this

thesis refers to a computer language simply as language. Languages can be

further subdivided into programming languages and modeling languages.

The main purpose of a programming languages is for their instances (i.e.,
code) to be executed. The purpose of modeling languages, on the other

hand, is to specify information about a subject. Instances of a modeling

language (i.e., models) are used for various purposes: design, documentation,

communication, analysis, and generation of other artifacts. The boundary

between programming and modeling languages is, however, blurry. Lately,

executable modeling languages are being researched [Rum02; May+13]. On

the other hand, a programming language can also be seen an abstraction

(i.e., a model of computation).

Instances of modeling languages are models. The term model also has a

more general meaning, which is also applicable to instances of modeling

15

2. Foundations and Terminology

languages. According to Stachowiak [Sta73], a model represents a subject,

leaves out unnecessary details and has a purpose.

Models and modeling languages are heavily used inModel-Driven Engineer-

ing (MDE) and Model-Driven Software Development (MDSD). In MDSD

[SV06], modeling languages are created to capture reoccurring code in

the domain. Instances of such modeling languages are then used for code

generation. The generated code has to usually be completed with code

that is individual to the current software product and, therefore, cannot be

generated. In MDE [Sch06], on the other hand, code generation is not the

main goal of the use of models. Modeling languages are used for design-

ing and reasoning about systems (i.e., analysis, simulation, verification).

MDE is not intended for pure software projects, but the development of

software-intensive systems.

In addition to programming and modeling, there is another distinction

dimension that is orthogonal to the former. General-purpose languages
(GPLs) are opposed to special-purpose or domain-specific languages (DSLs)
[FP10]. A GPL is general enough to be applied for any purpose. A DSL

has a limited scope of application and expressiveness. It is, however, much

more specialized on its purpose and should, therefore, be more efficient

in its used. Examples for the different language variant are Java as a pro-

gramming GPL, SQL as a programming DSL, UML as a modeling GPL,

and PCM as a modeling DSL.

A domain-specific modeling language is also referred to as a DSML. DSMLs

are the main scope of this thesis; even though some concepts may also

apply to the other variants (especially modeling GPLs). A DSML captures

reoccurring patterns and concepts of a domain and makes them reusable.

A language consists of abstract syntax, concrete syntax and semantics. An

abstract syntax can be defined by a grammar or a metamodel. It defines

what valid instances of a language are. The concrete syntax defines how an

instance of the language is displayed. Usually, a concrete syntax of a lan-

guage is either textual or graphical. A graphical syntax is usually a diagram

with two-dimensional shape and connectors. Lately, however, more special

kinds of concrete syntaxes appeared. Examples are the tabular syntax and

the formulaic syntax as featured byMPS [VS10]. A language also has seman-

tics. The static semantics imposes further constraints onto the instances of

16

2.1. Languages and Modeling

the language that cannot be expressed in the abstract syntax. The dynamic
semantics describes how the elements of an instance are executed.

There can exist several tools that operate on a language. For grammar-based

programming languages, these are usually tools like compiler and inter-

preter. For metamodel-based languages, there can be analyses, simulators,

transformations, validators. In the scope of this thesis, these are referred

to as metamodel-based tools. An analysis processes an instance of a lan-

guage and produces a set of metrics. A simulator [Ban+00] is similar to an

analysis, with the distinction that a simulator has a concept of time and an

internal state that changes over the simulated time. Transformations [CH03;
MG06] process instances and produce another artifact based on the input.

Depending on the type of transformation the result may be an instance of

the same metamodel, another metamodel or even something completely

different. In this regard, the definition of a transformation overlaps with the

definition of analysis. A transformation that produces code is also named

a generator [Jun16a]. A transformation that adds elements to an instance

and only alters existing elements to include the new elements is named a

completion [Hap+14]. A validator traverses the structure of an instance and

checks for the compliance to one or multiple characteristic or constraints.

Validators are often defined by the static semantics that is in-built in a meta-

model. There can, however, also be other external validators that check

for something else. A validator can be seen as a special kind of analysis

that produces one or multiple Boolean results.

This thesis uses a particular terminology to address what is expressed

by a modeling language. A modeling concept (or concept in short) is a

subject that is expressed by a modeling language. Examples for concepts

are a person, a software component, a building, or an action in a business

process. A concept can either be first- or second-class. A first-class concept
can exist on its own. A second-class concept cannot exist on its own. Its

existence is either directly bound to a first-class concept or indirectly bound

to a first-class concept via one or multiple other second-class concepts.

A core concept is a concept that is always instantiated in a model when

the language is used. An abstraction is the specification of a concept in

a metamodel (or grammar) in a way that leaves out unnecessary details.

The notion of first- and second-class does also apply to abstractions, as

abstractions relate one-to-one to concepts.

17

2. Foundations and Terminology

2.2. Metamodeling

This section presents the foundations of metamodeling. It is structured

as follows. Section 2.2.1 presents the Meta Object Facility metamodeling

framework that is fundamental to this thesis. Section 2.2.2 explains meta-

models and their terminology. Section 2.2.3 elaborates on metamodel use

and reuse. Section 2.2.4 introduces terminology from view-driven modeling.

Section 2.2.5 provides the foundations of metamodel evolution. Section 2.2.6

elaborates on metamodel quality. Section 2.2.7 introduces the term bad

smell. Section 2.2.8 elaborates on metrics. Section 2.2.9 presents the EMF

Refactor approach. Section 2.2.10 explains the roles that are involved in

metamodeling and the use of metamodels.

2.2.1. Meta Object Facility

The Meta Object Facility (MOF) [Obj16] is an international standard of the

Object Management Group (OMG) that defines a metamodeling framework.

It provides two levels of compliance: Complete MOF (CMOF) and Essential
MOF (EMOF). CMOF includes EMOF and makes some extensions on it. It

enhances its reflection and tagging capabilities. MOF does only make one

constraint regarding the number of modeling levels. There have to be at

least two: the MOF level and the level containing MOF instances. Usually,

however, three explicit modeling levels are used: the meta-metalevel M3

that contains MOF, the metalevel M2 that contains metamodels, and the

model level M1. As MOF does not constrain the number of levels, even

more levels may be possible. M1 could be used to instantiate another level.

Usually, however, M1 is the level that is utilized by the user. EMOF has been

implemented by the Eclipse Modeling Framework (EMF). EMF extends the

integrated development environment (IDE) Eclipse. It provides the EMOF

conformant metamodel format Ecore. It further provides an Ecore editor and
a code generator for Ecore metamodels. Applied on a metamodel M1, the

code generator generates its model code and rudimentary editors. The editor

can be used to create instances ofM1 (i.e., models). Themodel code is needed

to programmatically create models and represent them in-memory. EMF

provides the functionality for the serialization and deserialization of models.

18

2.2. Metamodeling

2.2.2. EMOF-based Metamodels

As already mentioned, EMOF defines a metamodeling language. This means

its instances are metamodels. EMOF provides concepts similar to that of

class diagrams. An EMOF-based metamodel implements the abstractions

that the language provides by classifiers and their properties. A classifier
is either a metaclass, data type or enumeration.

In the scope of this thesis, a metaclass is merely referred to as a class.
Classes can own several class properties. This thesis refers to the properties

of classes as class properties to distinguish them from properties in the

general sense. The types of class properties are attribute, reference, inheri-
tance, operations, and constraints. All of these class properties introduce

dependencies to other classifiers. In EMOF, an abstraction is implemented

either by a class, multiple classes with relations, or even a class property.

An instance of a class in an object. Classes can be abstract. An abstract
class cannot be instantiated.

An attribute is typed by a data type or enumeration. It has a lower and

upper multiplicity bound. For example, a lower and upper bound of 1 means

that the attribute holds precisely one value. A lower bound of 0 and an

upper bound of ∗ means that there may be an arbitrary number of values.

A reference from a class C1 to class C2 establishes a “knows a” relation

from C1 to C2. C1 and C2 may be the same class. A reference also has a

lower and upper multiplicity bound. Two references can be assigned as

their respective opposites. This establishes a bidirectional reference.

An inheritance relation points to another class. In the context of the in-

heritance relation, the class that owns the inheritance relation is named

the subclass. The class to that the inheritance relation points is named

the superclass. The inheritance relation establishes an “is a” relation from

the subclass to its superclass. The subclass inherits all class properties

from its superclasses. In EMOF, multiple inheritance is allowed. In Ecore,

the conflicts that can be caused by multiple inheritance are prevented by

forbidding two attributes or relations from having the same name. In this

thesis, the graph that is constituted by classes and inheritance relations is

referred to as the class hierarchy of a metamodel. A further inheritance

related term is intermediate class. Consider the classes C1 and C2 that are

19

2. Foundations and Terminology

connected via a chain of inheritance relations. C1 indirectly inherits from

C2. This means there is at least one more class between C1 and C2. In

the scope of this thesis, these classes are refered to as intermediate classes.

From the viewpoint of C1, they are intermediate superclasses. From the

viewpoint of C2, they are intermediate subclasses.

A special type of reference is the containment reference. It establishes

a “has part” relation. A class that has a containment to a second class

is referred to as the container of the second class. A non-abstract class

that is not contained anywhere but has outgoing containments is named

a root container . A containment implies that instances of the contained

class can be contained in an instance of the container. In this thesis, the

graph that is constituted by classes and containments is referred to as the

containment hierarchy of a metamodel.

A containment reference may have an opposite reference. This opposite is

named a container reference, as it references a container. The multiplicity

bounds of a container reference can either be “0..1” or “1..1”. Higher bounds

are not possible, as an object can only be contained within one other object

at a time. If a class has a container reference with “1..1” multiplicity bounds,

its instances can only be contained in the container that is referenced.

A class that is the target of a containment is considered as directly contained
by its container (i.e., the class that owns the containment). A class that

can be reached from another class by following a path of at least two

containment relations and reversed inheritance relations is referred to

as indirectly contained by the second class. In most cases, in which the

distinction is not relevant, classes that are directly or indirectly contained

will be referred to simply as contained. The concept of indirect containment

is meaningful, as the effect of containment is transitive. Consider three

classes C1, C2, and C3. C1 contains C2. C2 contains C3. An instance of

C1 contains an instance of C2, which may contain an instance of C3. The

instance of C3 is therefore indirectly contained in C1. Subclasses in the

containment chain do also contribute to the indirect containment. Consider

C4 that inherits from C2. Instances of C4 are therefore also instances of

C2. As an instance of C1 can contain instances of C2 it can also contain

instances of C4. C1 is, therefore, an indirect container of C4.

A class can also contain constraints and operations. Constraints can be

expressed, for example, with the Object Constraint Language (OCL) [Obj06],

20

2.2. Metamodeling

and constitute the static semantics of the language. Operations are not

explicitly supported by MOF. Its tagging extension mechanism, however,

supports the addition of arbitrary information to metamodels. The EMF

code generator supports specific types of tags, which enable to express

operations. Operations have a name, a parameter list, and an operation

body. During code generation, operations are inserted into the model code.

They may carry helper functions to process the data of the class, or may

even implement parts of the dynamic semantics of the language.

Generics are a further feature, which is not specified by MOF but added

by EMF. They work the same way as generics in object-oriented program-

ming. Classes may have type parameters. These can be referred to by

the properties of the class. When inheriting, the type parameters may be

assigned a concrete type by a type argument. Type parameters can also

have type bounds, which specify that the used type has to be more general

or more specific as another type.

In this thesis, class dependency is the umbrella term for a relation from a

class to a classifier. If the context is unambiguous, class dependencies are

referred to merely as dependencies. All class properties cause dependencies.

Attributes, references, inheritances, cause a dependency to the classifier that

is the target of the class property. Generics contribute further dependencies

to the classifiers that are referred to by type bounds and type arguments.

Operations and constraints also cause dependencies to the classifiers that

they use in the constraint and operation body, and the operation’s parameter

list. If a figure illustrates a dependency but it is irrelevant what kind of class

property causes the dependency, the arbitrary dependency arrow is used.

In addition to classes, there are two other classifiers: data types and enu-

merations. A data type expresses a primitive type (e.g., a Boolean or a

number). Enumerations or enums function analogously to their counterpart

from object orientation. An enum specifies a list of literals. An attribute or

variable that is typed with the enum holds one of the literals as a value.

The classifiers of a metamodel are organized in a package structure (by some

referred to as package hierarchy). A package can contain classifiers and

other packages. In the simplest case, the hierarchy of a metamodel consists

of one package. The package structure of a metamodel does not influence

its semantics. A package gives its elements a namespace. In addition to that,

it is used by metamodel developers to group classifiers that are related.

21

2. Foundations and Terminology

In the scope of this thesis, a metamodel element is any constituent. This

includes classifiers, packages, and class properties.

EMOF-based metamodels are persisted in files. This thesis refers to these

files as metamodel files. A metamodel file usually has one package as a root

element that in turn may contain further packages and classifiers. It is,

however, possible for a metamodel file to contain multiple root packages.

Although the terms metamodel and metamodel file are often blurred, this

thesis draws a distinction. In the scope of this thesis, a metamodel consists

of one metamodel file or of several metamodel files that depend upon each

other. A dependency from one metamodel file F1 to another metamodel

file F2 is caused by a class of F1 being dependent on a classifier of F2.

As mentioned above, on the classifier level, a dependency is caused, for

example, by a reference, inheritance, or attribute. For a dependency between

two metamodel files to exist, the number of dependent classifiers and the

type of dependency is irrelevant. It is merely sufficient if one classifier of F1

depends on a classifier of F2. In the scope of this thesis, the term structure
of a metamodel refers to the metamodel files, their dependencies amongst

each other, and their package structures.

The concept of metamodel files does also translate to the model level. A

model consists of one or multiple model files. A model file contains objects
(i.e., instances of classes). In this thesis, the objects of a model are referred

to as model elements. A model file has a root object, which is the instance of

a root container. This root object directly or indirectly contains all other

elements of the model.

2.2.3. Metamodel Use and Reuse

A metamodel is used by tool user through the tools that are based on the

metamodel. They create and modify models using editors or transforma-

tions. Many more types of tools can be used to process models. These

types of tools were mentioned by Section 2.1. Tools depend on metamodels

by referring to their classes in their code. For a user to be able to use a

metamodel-based tool, the tool has to be installed, and the metamodel files

on that the tool depends on have to be deployed. In the scope of this thesis,

deploying a metamodel file means to install its compiled model code. In

order to deploy a metamodel file, all metamodel files on that it depends

22

2.2. Metamodeling

on have also to be deployed. In EMF, the model code is compiled into an

Eclipse plugin, which has to be installed in the Eclipse instance of the user.

When developing a new metamodel, there are several ways to reuse other
metamodels or parts thereof. One way is to depend on a metamodel file of

another metamodel by references, containments, attributes, or inheritances.

The drawback of this approach is that the whole metamodel file and all of

its dependencies have to be used as is. Possibly unneeded metamodel ele-

ments are still present in the reused metamodel files. Another approach to

metamodel reuse is simple copy and paste. The copied metamodel elements

are inserted into a metamodel file of the new metamodel. This decouples

the development of these metamodel elements from their original meta-

model, and they can be modified as needed. For example, unnecessary

metamodel elements can be removed. This approach, however, suffers from

the usual drawbacks that are also known from code duplication. Main-

tenance tasks that are meaningful in the context of both languages have

to be performed in both metamodels. The third approach to metamodel

reuse are language composition approaches, which weave together meta-

model files or possibly parametrized metamodel fragments. Section 11.3.1.1

presents such approaches in detail.

2.2.4. Views and View Types

In view-basedmodeling, models are not interacted with directly but through

views. Examples for view-based modeling approach are Vitruvius [Kra+15]

and OSM [ASB10], which are presented by Section 11.3.1.1. This thesis

does not build on view-based approaches. It, however, relies on some

of their terms [GBB12].

A view offers access to one or multiple models. A view is usually tailored

to the concern of a role, a specific task of a role, or even the needs of a

tool. It may limit access to a model, merge several models, and alter model

elements. A view type provides the type system for views. This means

a view is an instance of a view type.

Views are transient, which means that they are usually not persisted. The

underlying models persist the relevant data. Modifications of views are

23

2. Foundations and Terminology

propagated into the underlying models. Views may be persisted for the

purpose of caching to increase performance.

In the metamodel-based technology space, a view type is a metamodel, and

a view as an instance of a view type is a model file. There is a transformation

between the view type and the metamodel or metamodels that the view

operates on to propagate changes.

Looking at non-view-based modeling in terms of view-based modeling, a

model file can be seen as a simple view. A root container provides root

objects for model files. As a metamodel may have multiple root contain-

ers, it can also have multiple kinds of model files. In the literature, these

are sometimes referred to as sub-model [Bus+16]. Examples for such sim-

ple views or sub-models are the repository, assembly and resource envi-

ronment of the PCM.

2.2.5. Metamodel Evolution

This section
1
presents several aspects of metamodel evolution. First, the

causes of metamodel evolution and a coarse classification of metamodel

modifications are presented. Section 2.2.5.1 presents a detailed classification

according to its impact. Section 2.2.5.2 explains the notion of refactorings.

There are several types of causes for metamodel maintenance. If new require-

ments arise after the metamodel has been specified, content may have to be

added. This is also the case if requirements did not change, but have not been

met yet and have to still be implemented. Fixing an error or implementing

the change of a requirement does also necessitate metamodel modifications.

Regarding howmodifications can be realized and how they affect metamodel

files, they can be classified into two categories: changes and additions. A

change alters (deletion, property change) the content of a metamodel, while

an addition adds new metamodel elements.

Sometimes, changes are unavoidable, especially if errors have to be fixed

in the metamodel. A change can either be implemented intrusively in the

metamodel or as a branch. The benefit of intrusive modification is that the

shared metamodel is kept identical for all dependent software. However, the

1
This section is based on my past publication [SH16b].

24

2.2. Metamodeling

modification also affects all dependent software artifacts, which have to be

adapted to be again compatible with the metamodel. In contrast, creating a

branch and applying themodification only to that branch has the benefit that

only the software has to be adapted that is of interest to that modification.

The development of the branch is decoupled from the development cycle

of the main branch. Modifications in the main branch’s metamodel do not

impose any modifications of the software which works on the separate

branch. However, this has the disadvantage that the branch and software

that uses it gradually get more and more incompatible to the main branch.

An addition can be implemented intrusively, in a branch, or externally

in a new metamodel file. External additions have the advantage that the

original metamodel is not altered.

The effort caused by metamodel changes increases the later the changes are

carried out. E.g., it is easy to change a metamodel while it is being designed

or initially implemented. It gets more and more costly to modify it after it

has been implemented and further software is developed on top of it. Thus,

delaying refactorings has dormant consequences. If modifications are not

carried out, new functionality cannot be supported, and bugs cannot be

fixed which leads to an increase in technical (metamodel) debt.

2.2.5.1. Metamodel Modification Types

In his dissertation [Her11b], Herrmannsdörfer classifies metamodel mod-

ification types into primitive and composite modifications. A primitive

modification is atomic; a composite modification is a sequence of primi-

tive modifications. For this thesis, only the primitive modification types

are relevant. The primitive modification types are further subdivided into

structural and non-structural modification types. Structural modifications

add or remove metamodel elements; Non-structural modifications manip-

ulate metamodel elements.

In their paper [BG10], Burger and Gruschko present a metamodel that

describes modifications of MOF-based metamodels. They first classify mod-

ifications into existence modifications, property changes, and link changes.

They also do this from the viewpoint of model metamodel co-evolution.

25

2. Foundations and Terminology

This thesis slightly alters the classification, because of two reasons. First,

it is only concerned with the effect of modifications on the metamodel

level and not with their influence on models. Second, this thesis focuses on

EMOF, which is a subset of MOF. Thus, not all modification types of Burger

and Gruschko are relevant to this thesis. One major difference is that EMOF

does not support first-class associations, but the concept of second-class

references that belong to the source class. Adjusting the classification of

Burger and Gruschko allows to later make statements about groups of

modification types that have the same impact on the metamodel. The list of

modification operations by Burger and Gruschko is further complemented

with the help of the dissertation of Herrmannsdörfer [Her11b] and by

inspecting the Ecore meta-metamodel. In this thesis, modification types

are also classified into existence modifications and value changes. Figure 2.1

illustrates the classification.

Modification

Existence
Modification

Value
Change

Addition

Deletion

Dependency
Change

intrusive or
branched

intrusive,
branched,
or external

Figure 2.1.:Metamodel Modification Classification

Existence modifications are additions and deletions of metamodel elements.

In Ecore, there are existence modifications of the following metamodel

elements: packages, classes, data types, enumerations, enumeration liter-

als, attributes, references, operations, and constraints. The addition of

References, Attributes, and Operations does not establish a dependency

26

2.2. Metamodeling

to another metamodel element. This is not done until the value of the

type is set to the class to which the dependency should point to. Setting

the type does not belong to the existence modifications category, but to

the dependency changes category. On the other hand, a deletion of a

metamodel element E will remove all dependencies that are held by E. If

these dependencies are unset or removed by dependency changes before the

deletion of E, no dependencies are changed by the deletion itself. Without

loss of generality, deletions are defined to have no effects on dependencies.

The same principle applies for incoming dependencies. Before a classifier

can be deleted, all dependencies that point to the classifier have to be unset.

Value changes modify the value of a metamodel element that does not

establish, remove or modify dependencies between metamodel elements.

In Ecore, the relevant properties for the metamodel element types are

as follows.

Package Name, Namespace Prefix, Namespace URI

Classes Name, IsAbstract, IsInterface

Enumerations and DataTypes Name, IsSerializable, and Default Value

Enumeration Literals Name, Value, and Literal

Attributes and References Name, IsChangeable, Default Value, IsDerived,

Ordered, IsTransient, IsUnique, IsUnsettable, IsIdentifier (only for

Attributes)

Operations and Constraints Name, IsOrdered, IsUnique

Dependency changes establish, redirect, or remove dependencies between

metamodel elements. These changes concern the following values: su-

pertypes of classes, the package of classifiers, and exception references of

operations. For attributes, references, operations, type bounds, and type

arguments this includes the type. For references the following values are

included: IsContainment, IsContainer, and Opposite. For references, at-

tributes, operations, and constraints this includes the lower multiplicity

bound and the upper multiplicity bound.

27

2. Foundations and Terminology

2.2.5.2. Metamodel Refactoring

Refactoring is a term that stems from object orientation [Fow+99]. It means

to modify code to improve its quality without altering its functionality

and semantics. Mens and Tourwe [MT04] provide a survey of the field

of software refactoring. When transferred to metamodeling, a metamodel
refactoring modifies a metamodel without changing its semantics and ex-

pressiveness. Conceptually, this means that there has to exist a bidirectional

transformation between the initial and the modified metamodel versions

that fulfills the following requirement. Figure 2.2 illustrates the require-

ment. The transformation has to be able to transform all possible instance

of one metamodel version into the other and back again. The initial and the

transformed version of the instance have to be identical for a set of modifi-

cations to be considered a refactoring. This must be possible for instances

starting from the initial and the modified version of the metamodel. Iovino,

Di Ruscio, and Pierantonio provide a catalog
2
of metamodel refactorings.

Metamodel refactorings can either be performed manually or by using tools

(e.g., EMF Refactor as described by Section 2.2.9, or Edelta [Bet+17]).

ModificationsM M'

m:M

m':M'

Transform

m'':M

m''':M'

Transform

Transform

identical?

identical?

Figure 2.2.: Requirement for Modifications to be Considered a Refactoring

2 http://www.metamodelrefactoring.org/ (last visited 23.08.2019)

28

http://www.metamodelrefactoring.org/

2.2. Metamodeling

2.2.6. Metamodel Quality

Metamodel quality can be subdivided into several quality characteristics.

There are several works that either address metamodel quality in general,

elaborate specific characteristics, or implement ways to inspect charac-

teristics. This section, first, presents these works. It then discusses the

characteristics that are relevant for this thesis and refers to these sources.

Metamodel quality is, however, still a research field and characteristics

are still discussed and adjusted. Therefore, the characteristics are adapted,

extended or linked to other characteristics, where it is meaningful.

Bertoa and Vallecillo [BV10] transfer the qualitymodel for software from the

ISO/IEC standard 9126 [ISO01] to modeling. Their classification is staged

into characteristics, sub-characteristics, and attributes. They substantiate

the entries of their classification by further sources. The characteristics are

functionality, reliability, usability, efficiency, maintainability, and portability.

Their classification is extensive. Only a subset, however, applies to the meta-

model level. Some characteristics and sub-characteristics are described very

briefly, which makes it hard to operationalize them. In our past publication,

Hinkel [Hin+16] adapted the quality characteristics of Bertoa and Vallecillo

[BV10] into complexity, understandability, conciseness, modularity, con-

sistency, completeness, correctness, changeability, instance creation, and

transformations. The publication, however, only contains descriptions for

some characteristics. The ISO/IEC standard 25010 [ISO11] superseded 9126

[ISO01]. Like its predecessor, it proposes a quality model for software in

general. Therefore, not all of its characteristics and sub-characteristics can

be transferred to metamodeling. In our past publication [HSR19], Heinrich

breaks metamodel evolvability down into modifiability and analyzability.

The correctness of a metamodel refers to whether a metamodel expresses

the abstractions it is supposed to. This means whether it is able to express

all the instances it is supposed to without any unnecessary information.

Correctness can be further split into two dimensions: completeness and

preciseness. To be able to describe these terms, the term set of intended
models (IM) has to be introduced. IM contains all models that the metamodel

should be able to express. It is, therefore, potentially infinite. A correct

metamodel is complete as well as precise. An incorrect metamodel is

incomplete, imprecise, or both.

29

2. Foundations and Terminology

The preciseness [GBS12] of a metamodel specifies to which degree a meta-

model is able to only allow models from IM. E.g., an imprecise metamodel

allows to model irrelevant concept. A precise metamodel does not allow

any models that are not in IM. Preciseness is also related to the relevance

and correctness sub-characteristics of Bertoa [BV10].

The completeness [BV10] of a metamodel specifies to which degree a meta-

model is able to express the models of IM. A complete metamodel can

express all models of IM. For an incomplete metamodel, there are models

in IM that it cannot express. Metamodel completeness can be seen as an

adaption of the functional completeness sub-characteristic of software prod-

ucts [ISO11]. The completeness characteristic is addressed by the approach

of Ferdjoukh and Mottu [FM18].

The reusability of a metamodel refers to how well parts of the metamodel

can be reused for other languages. For example, it is detrimental for the

reusability of a metamodel if the metamodel is too specific. If parts of

the metamodel are reused by other languages, they contain irrelevant

abstraction. This means they are imprecise in their new context. The

problem of too high specificity can be alleviated by improved modularity.

By separating abstract concepts from their specifics, the concepts are more

suited for reuse. The definition of metamodel reusability is an adaption of

the reusability sub-characteristic of the ISO/IEC 25010 standard [ISO11].

A the extensibility of a metamodel refers to how well it lends itself to be the

basis of extensions. A metamodel is suited for extensions if the extension

can be applied in the metamodel in a way that includes no irrelevant ab-

stractions when the extension is used. In this regard, metamodel reusability

is analogous to metamodel reusability. A monolithic metamodel with many

specifics has bad extensibility. A modular metamodel that separates the

specifics from its abstractions offers a proper basis for extensions.

Themodularity of a metamodel is “the extent that its parts are systematically

structured and separated such that they can be understood in isolation”

[BV10, p. 9]. Strong coupling of many parts of a metamodel degrades its

modularity. Parts of a metamodel should only be coupled if it is necessary.

This is the casewhen dependencies cannot be avoided ormodeled differently.

One way to measure the perceived modularity of a metamodel is given

by Hinkel in our publication [HS18].

30

2.2. Metamodeling

The evolvability of a metamodel refers to how well the metamodel can be

evolved. In our past publication [HSR19], Heinrich elaborates on evolv-

ability. Starting from the evolvability model ob Breivold [BCE08] and the

ISO/IEC standard 25010 [ISO11], he transfers the characteristics to meta-

modeling that are meaningful in this context. He breaks evolvability down

into analyzability andmodifiability. He argues that these two characteristics

correspond to structural complexity, which also includes complexity-based

measures of cohesion and coupling.

The analyzability [BV10] of a metamodel refers to how easy it is to inspect

it for deficits or to identify parts of the metamodel that have to be modified.

Analyzability is influenced by modularity [BV10]. This makes sense, as

proper modularity of a metamodel limits the amount of information a devel-

oper is exposed to when examining the parts of a metamodel. This definition

of analyzability also corresponds to the analyzability sub-characteristic of

the ISO/IEC standard 25010 [ISO11].

The understandability is “the degree in which a metamodel is self-descri-

bing”, as stated by Hinkel in our past publication [Hin+16, p. 3]. The under-

standability of a metamodel is influenced by its complexity [BV10]. Under-

standability and analyzability are related, as an understandable metamodel

is also easier to analyze. By the same argumentation as for analyzability,

the understandability of a metamodel is also influenced by its modularity.

The modifiability of a metamodel refers to how well its structure supports

modifications (see maintainability and changeability by Bertoa [BV10]).

The modifiability of a metamodel is influenced by its modularity [BV10].

2.2.7. Bad Smells

In object-oriented software development, a bad smell [Fow+99] is considered
an indicator for a possible problem in the software’s design or code. Some

bad smells are always problematic. For example, identical code should

always be consolidated. Other bad smells do not always indicate problems.

E.g., a class or interface with allegedly too many methods can often point

to an insufficient modularization. Sometimes, however, it is the result of

the use of a facade design pattern [Gam+95]. The evaluation whether a

part of a program has a bad smell is often dependent on the context of the

31

2. Foundations and Terminology

software project. For example, what is considered an adequate length and

complexity of methods in an algorithmically heavy software project might

be a bad smell in a business information system project. In general, bad

smells are only indicators or symptoms. This means they are not problems,

but they point the developers to problematic spots in the code This is the

case for the divergent change bad smell [Fow+99] and the shotgun surgery

bad smell [Fow+99]. Divergent change occurs if a class changes because

of different reasons. Shotgun surgery occurs if the implementation of a

new feature modifies many classes. With some other bad smells, however,

the distinction between the bad smell and the underlying problem is not as

clear. For example, this is the case for duplicated code and large methods.

An anti-pattern was originally defined as being “... just like pattern, except

that instead of a solution it gives something that looks superficially like

a solution, but is none.” [Ris98]. However, the meaning of anti-patterns
changed over time to mean a recurring pattern that has negative conse-

quences [SW00; Jul13], regardless if it was purposely used or not.

When transferring these terms to the domain of metamodeling, some bad

smells can be defined as anti-patterns [ABT10]. Other bad smells may be

indicated by metrics [ABT10]. Some are only detectable through a manual

investigation. The remainder of this thesis is only concerned with bad

smells in metamodels. Therefore, it addresses metamodeling bad smells

simply as bad smells or just smells.

2.2.8. Metrics

A software metric or metric, in short, is the result of a quantification of a

property of a software artifact. Metrics are often used as heuristics to assess

the quality of software artifacts. Examples for software quality metrics are

cyclomatic complexity [McC76] or can be found in the ISO/IEC standard

25023 [ISO16]. Metrics that merely analyze the software artifact are popular

for quality assessments, as they can be computed automatically. In general,

however, the value of a metric does not provide a clear statement about the

quality of the software artifact. They have to be interpreted in the context

of the software project in that they were measured. A metric can also be

computed based on other metrics. These are named composed metrics.

32

2.2. Metamodeling

The term metric can be transferred to metamodeling. A metamodel metric
measures a property of a metamodel. Some metrics provide measures about

elements in a metamodel or the metamodel as a whole. Examples for metrics

for classes are the number of class properties, and the number of direct

subclasses. Examples for metamodel level metrics are the average number

of properties per class or the maximum number of classifiers in a package.

Metrics that provide a measure for a whole metamodel do not provide

direct indicators for improvement potential.

2.2.9. EMF Refactor

EMF Refactor [Are14; AT13] is a metamodel quality assurance tool. It can

be used to automatically evaluate metamodel metrics, detect bad smells,

and perform refactorings. Bad smell detections can either be specified by

an anti-pattern, or a metamodel metric and its threshold. If an occurrence

of an anti-pattern is found or a measure of the metric exceeds the threshold,

a bad smell is detected. It supports UML- and Ecore-based metamodels. The

tool can be extended by new metrics, bad smell detections, and refactorings.

For Ecore, EMF Refactor provides bad smell detections for the following

bad smells: Large EClass, Speculative Generality EClass, Unnamed EClass.

It features an even longer list for UML anti-patterns. A Large EClass is

detected if a class contains more attributes and operations than the specified

threshold. A Speculative Generality EClass is detected if an abstract class has

only one concrete subclass. An Unnamed EClass is detected if a class lacks a

name. In the scope of this thesis, this is, however, a validity error rather than

a bad smell. This is because it prohibits code generation for the metamodel.

2.2.10. Roles

There are three roles that work with metamodels: metamodel developers,

tool developers, and tool users. This section
3
briefly explains these roles.

3
This section is based on [HSR19] (©2019 IEEE).

33

2. Foundations and Terminology

2.2.10.1. Developer

Two developer roles can be distinguished depending on how they work with

metamodels: metamodel developer and tool developer. The metamodel de-
veloper implements, maintains, and extends metamodels. For example, s/he

creates the metamodel, fixes bugs, specifies constraints, modifies classifiers

according to changing requirements, and extends themetamodel by new fea-

tures. The tool developer develops andmaintains tools that work on themeta-

model. S/he writes and modifies code that uses the metamodel. This thesis

uses the term developer hereafter to refer to both roles at the same time.

2.2.10.2. User

This thesis also refers to the role of the users of a metamodel. The user

employs a metamodel via tools that operate on instances of the metamodel.

Thus, this role is addressed as the tool user . Tool users create and modify

models using editors. They process models with simulators and analyzers.

Further, they transform models into other formats (e.g., code, databases). A

tool user has specific needs regarding the abstractions that are implemented

by the metamodel. This thesis refers to specific sets of abstractions that

are usually used together and have a common theme as a concern of the

tool user. Examples of concerns are the modeling of static software design,

software behavior, software performance, and security.

2.3. Quality-Describing DSMLs and Metamodels

DSMLs are used to express various subjects. As they are domain-specific,

they usually describe the structure or behavior of concepts of their do-

main. Some DSMLs define quality properties for their concepts. This thesis

refers to such languages as quality-describing DSMLs. As Section 2.1 ex-

plains, quality-describing DSMLs are used in MDE to evaluate the quality

of systems.

A quality-describing DSML may feature quality properties of one multiple

quality dimensions. Alone for the domain of software, there are numerous

quality dimensions (see, e.g., the ISO/IEC standard 25010 [ISO11]). A DSML

34

2.3. Quality-Describing DSMLs and Metamodels

may describe a quality dimension descriptively. This serves, for example,

documentation and communication purposes. A DSML may also define

properties that are used as an input or output of quality analyses. How

quality properties are specified cannot be generalized. They can be dif-

ferent for different quality characteristics and can even differ when the

same characteristic is modeled for different domains or subjects. For the

scope of this thesis, the term of quality-describing DSMLs should be gener-

alized. This thesis is also concerned with DSMLs that are used for quality
analyses. Such DSMLs do not have to explicitly feature quality properties.

A quality assessment should, however, be deductible from such a DSML

by an analysis. The metamodel that defines a quality-describing DSMLs

is referred to as quality-describing metamodel or more general as a meta-
model for quality analysis. This thesis provides a reference structure, which
applies to such metamodels.

An example of a quality-describing metamodel is the Palladio Component

Model (PCM). The PCM is a DSML for the design and analysis of software-

architecture. Performance and reliability properties are inbuilt into the

metamodel. It also contains a basic notion of performability, which is

a combination of performance and reliability. For the PCM, several ad-

dons exist that add support for more quality characteristics. These bring

their metamodels, that add expression capabilities for their quality prop-

erties. Examples for such addons are KAMP [Ros+15], which analyzes

maintainability; IntBIIS, which analyzes the performance of business pro-

cesses in conjunction with the software architecture; and PASE, which

analyzes security rules.

A simplified explanation of the definition of performance properties in the

PCM is given as an example. The PCM models services that are provided by

components in a formalism that is similar to flow charts. Some of the actions

in the flow chart are specified with resource demands. Components have to

be deployed on a resource container, which is equipped with resources. A

resource has a specified processing rate. If, in the simulation of the system,

the service of a component is called, the flow chart is processed. Each time,

an action with a resource demand is encountered, the resource demand is

served by the respective resource of the component’s resource container.

This potentially creates contention on the resources if services are called

concurrently. As an output, the simulator of the PCM delivers, for example,

the response time and throughput of services. Resource demands of actions

35

2. Foundations and Terminology

and the processing rates of resources are the performance properties in the

PCM, which serve as an input for the performance analysis.

There are many more examples of metamodels from the field of quality

analysis. KAMP4Aps [Hei+18] evaluates the maintainability of automated

production systems. The Descartes Modeling Langauge [KBH14] can be

used to analyze the performance of self-adaptive systems during their

runtime. KLAPER [Gra+08; GMS05] is an intermediate language for trans-

formations between several component system models and several perfor-

mance models. In his survey of performance analyses for component-based

software systems [Koz10], Koziolek explicitly lists metamodel-based ap-

proaches. His survey can be seen as a guide to select metamodels for the

desired analysis approach.

2.4. Feature Models

The reference structure approach of this thesis uses feature models to ex-

press the features of a language. Based on a feature model, subsets of the

given features are selected to specify which features of a language are of cur-

rent interest for model instantiation and tool development. Feature models

are known from Feature-oriented Domain Analysis (FODA) [Kan+90] and

from the SPL community. A feature model [CE00] is a formalism to capture

the variability and interdependencies of features of a specific subject. A fea-

ture model consists of feature nodes (in the following referred to as features)

and their relations. Each feature model has one root feature. Except for the
root feature, each feature has precisely one parent. These parent-child rela-

tions form a tree. Parent-child relations are either of the type mandatory or

optional, or can be part of an alternative set or OR set [CE00]. Amandatory
child feature has to be selected if its parent feature is selected. An optional
child feature may be selected. From the features in an alternative set, exactly
one feature has to be selected. From the features in an OR set, at least one
feature has to be selected. In contrast to the usual use of feature models,

in the scope of this work, feature sets with only one feature are allowed.

A set with one feature (regardless of alternative or OR) has to always be

selected. The benefit is that later, more features can be added to the feature

set, without having to change the child relation type. Features can also

36

2.4. Feature Models

have requires relations and excludes relations to other features. Requires

relations are directional. Excludes relations are mutual. Feature relations

are not allowed to point to parent features or parents thereof. A required

relation would be redundant. A excludes relation would be contradictory.

A feature selection is a subset of the features from the feature model that

adheres to the constraints imposed by the feature relations. The root node

is always selected. Except for the root node, a feature can only be selected

if its parent is also selected. If a feature is selected that has children, the

following rules apply. Mandatory child features have to be selected. Op-

tional child features may be selected. From an OR set, one or more features

have to be selected. From an alternative set, exactly one feature has to

be selected. If a feature has required dependencies, these required fea-

tures have to be also selected. If a feature excludes other features, these

features cannot be selected.

As this thesis relies heavily on feature models, the following introduces

terms that allow a more concise description of feature models. Grouping
features are feature nodes that do not represent a language feature but

only serve as the parent for a group of related features or a feature set.

Feature dependency is the umbrella term for child relations and the requires

relation, as both establish a dependency to another feature. Sibling features
of a feature are all other features that share the same parent feature. A

descendant features of a feature are all direct and indirect child features.

This means feature A has feature B as a child; feature B has feature C as a

child; thus, B and C are descendants of A. Analogously, antecedent features
are all direct and indirect parent features.

This thesis is not strictly dependent on feature models. There are also

other variability modeling approaches (e.g., the Common Variability Lan-

guage [Hau+08]). The reference structure approach of this thesis will

also work with other variability languages, provided they support suffi-

ciently similar concepts to the ones it depends on from feature modeling

(dependencies, feature selection).

37

2. Foundations and Terminology

2.5. Concepts and Approaches
Relevant to the Validation

This section presents concepts that are essential to the validation of this the-

sis. Section 2.5.1 presents the Goal Question Metric approach. Section 2.5.2

elaborates on the types of validity of a validation. Section 2.5.3 explains the

hypergraph metrics of Allen, which are used by the evolvability evaluation

of the reference structure contribution of this thesis.

2.5.1. Goal Question Metric Approach

The Goal Question Metric (GQM) approach is an approach to derive met-

rics from goals. It was initially developed by Basili [BCR94] and aimed

towards software projects and products. Koziolek [Koz08] points out that

the approach can also be applied in other contexts. Basili postulates that

when a subject should be evaluated, the metrics should not be chosen

directly (bottom-up). They should rather be chosen in a goal driven top-

down manner. This avoids evaluating metrics that later turn out to not

measure what is relevant.

The result of an application of the GQM approach is referred to as a GQM
plan. The definition of a GQM plan is performed top-down. First, the goals

of the subject that ought to be evaluated are defined. E.g., the use of the new

library should speed up user requests. For a goal, one or more questions

are specified. E.g., does the performance of function f42 improve? For a

question, one or more metrics are specified. E.g., throughput and response

time. After the measurement, the GQM plan is evaluated bottom-up. By

observing the metrics, the questions are answered. How the questions were

answered gives conclusions about their goal.

2.5.2. Types of Validity

In their book [Run+12], Runeson et al. present four types of validity in

case study research in the field of software engineering. The validities are

internal validity, external validity, construct validity, and reliability. The

38

2.5. Concepts and Approaches Relevant to the Validation

stronger these validities are for a case study, the stronger are the conclusions

that are drawn from it. This thesis refers to these validity types, when it

discusses the validity of a case study evaluation.

Internal validity is concerned with whether the effects that are observed

stem from the cause that they are attributed to. Internal validity is com-

promised if there are unknown causes for the effects that are observed.

External validity refers to the ability to generalize the conclusions that are

obtained by a case study. External validity is compromised if the sample for

the case study is not diverse enough to draw valid conclusions for the scope

for which is claimed the conclusions should apply for. Construct validity ad-

dresses whether a construct (in the context of this thesis a metric) measures

what it is supposed to measure. Reliability is concerned with the repeatabil-

ity, i.e., whether the evaluation can be repeated by other researchers and

the same results be achieved. Reliability is compromised, for example, if

data or tools are not obtainable or the evaluation process is not known.

2.5.3. Graph and Hypergraph Metrics According to Allen

Allen et al. propose several metrics for graphs [All02] and hypergraphs

[AGG07]. This thesis utilize these metrics for its validation. They are based

on measures of information size in bits. In contrast to counting metrics,

the metrics of Allen take into consideration that reoccurring patterns in

the relations between entities require less effort from a developer to be

understood. Hypergraphs are similar to standard graphs, except that in-

stead of edges it features hyperedges. A hyperedge connects two or more

nodes. Coupling, complexity, and information size are evaluated on hyper-

graphs [AGG07]. Cohesion is graph-based [All02]. How Allen’s metrics

are calculated is explained by Heinrich in our paper [HSR19]:

“We use a hypergraph partitioned into several hypergraph

modules we denote as modular hypergraph H . A hypergraph
module is a set of nodes. Each node can only be contained in

one of the hypergraph modules of H . We denote hyperedges

crossing hypergraph module boundaries as inter-module hy-

peredges. Hyperedges that do not cross hypergraph module

boundaries are named intra-module hyperedges.

39

2. Foundations and Terminology

For calculating the complexity of a modular hypergraph, we

performed a procedure taken from [Jun16a] based on the

size metric by Allen et al. In order to calculate the size of a

hypergraph, we establish a pattern for each node describing

the hyperedges connected or not connected to the node in

form of ones and zeros. The pattern (i.e., sequence of ones

and zeros) for several nodes may be identical. In that case,

we aggregate them and remember the number of occurrences.

Then, we calculate the probability of each pattern p by the

ratio of number of occurrences and number of nodes in H
[AGG07]. Equation 2.1 and Equation 2.2 depict the metrics

for size and complexity. G is the modular hypergraph. Gi
is the modular hypergraph containing node i and all nodes

which are connected to this node. pL(j) provides the pattern
probability of node j. The size metric is first used on all Gi
partial hypergraphs and then on the complete hypergraph G.
Therefore, H indicates that different hypergraphs are passed

to the size metric.

Size(H) =

n∑
j=1

(−loд2 pL(i)) (2.1)

Complexity(G) =

(
n∑
i=1

Size(Gi)

)
− Size(G) (2.2)

The coupling of a modular hypergraph is specified as the com-

plexity of the hypergraph with only inter-module hyperedges

[AGG07]. Following the procedure for the computation of

coupling in [Jun16a], we construct a modular hypergraph H ∗

containing only inter-module hyperedges. Then, we calculate

the complexity of H ∗
.

Allen [All02] defines cohesion as the ratio of the complexity

of the intra-module graph MGo
and the complexity of the

complete graphMG(n)
. A complete graph is a graph for which

all nodes are interconnected by edges [All02]. We cannot

construct a meaningful complete graph for a hypergraph. This

40

2.6. Graphical Notation

is because a complete hypergraph would not only contain

hyperedges between two nodes but also all other hyperedges

for a given set of nodes [Jun16a]. Therefore, we apply the

cohesion metric by Allen [All02] to graphs, not hypergraphs.

We follow the procedure described in [Jun16a]. First, we

map the modular hypergraph H to a modular graph MG. We

replace each hyperedge by a set of edges connecting all nodes

that were previously connected by the hyperedge. Based on

MG, we then derive a graph containing only intra-module

edgesMGo
and construct a complete graph MG(n)

. Cohesion

is calculated as shown in Equation 2.3.”

Cohesion(MG) =
Complexity(MGo)

Complexity(MG(n))
(2.3)

2.6. Graphical Notation

Figure 2.3 shows the graphical notation that this thesis uses in its figures.

The notational elements are grouped after the themes in which they mostly

appear. The elements that are depicted in the legend are introduced in the

foundations or contribution chapters. It is not the purpose of this section

to explain these concepts. It merely presents the graphical notation and

explains some details. For a proper introduction, refer to the respective

chapter. To find the location where a concept is introduced, the index,

which is placed at the end of this thesis, should be used.

To express metamodels, this thesis uses the UML class diagram notation

[Obj17]. The extends relation uses the notation of UML stereotype ap-

plication. Like classes, objects are depicted in rectangles. The difference

is that object names are written in lower case and are underlined. The

“is instance” relation illustrates that an object is the instance of a class.

The arbitrary dependency illustrates a dependency induced by any class

property. The module boundary illustrates that classes are in different

metamodel modules.

This dissertation also presents concepts with the UML class diagram no-

tation. Like a class, a concept is also illustrated by a rectangle. Relations

41

2. Foundations and Terminology

Inheritance

Extends
Module Boundary

Arbitrary Dependency

C Class

Reference
Is Instance

Containment

o Object

Mandatory Child

Layer Separator

OR set
Implemented by (Module)

Alternative set

Δ
π Paradigm

Domain
QualityΩ

Feature Node

Optional Child

Requires

Metamodel Module or File
Module or File Dependency

Analysis

Empty Feature

Σ

Excludes

Layering

Modules and Files

Feature Model

Metamodel Internals

Others

Modification
Language Feature

Modeling Level Border

Figure 2.3.:Graphical Notation

between concepts are expressed by the standard class diagram arrows

(reference, containment, and inheritance).

This dissertation uses the standard feature model diagram notation. The

excludes relation is displayed as a two-headed arrow, as it works mutu-

ally. The “implemented by” arrow refers to a metamodel module, that

implements the feature.

Metamodel files and metamodel modules share the same notation. They

are conceptually similar. Some figures are valid for metamodel modules

42

2.6. Graphical Notation

and files. If it is relevant whether a file or module is meant, this is made

explicit by the context of the figure.

The reference structure proposes a layering of the modules of a metamodel.

The layer separator shows the border between two layers. The Greek

symbols are shortcuts for the names of the four layers that are proposed

in the reference structure.

A modification arrow symbolizes that the entities that are depicted on its

left side are transformed into those that are depicted on its right side. It

can express modifications of classes, modules, and features. The modeling

level border indicates that the objects or concepts on one side are instances

of classes or concepts of the other side.

43

3. Problem Areas and Challenges

This chapter
1
presents the problems and challenges this thesis tackles. From

these problems and challenges, the chapters of the contributions derive

their research questions. Instead of presenting the challenges and problems

in the chapters of the contributions, they are presented here, as some of

them are addressed by multiple contributions.

This chapter explains most problems by the example of the PCM, as the

PCM is a good representative for large and historically-grown metamodels.

This does not mean that these problems only affect the PCM. They concern

metamodels in general, e.g., other metamodels show similar weak spots
2
.

Thus, the PCM is used as concrete evidence where possible.

The PCM is an established and widely used metamodel. It provides various

features for quality modeling and analysis of component-based software

architectures as described by Reussner et al. [Reu+16]. The PCM consists of

24 packages that contain 203 classes. It is divided into five metamodel files.

Around 73 % of its classes reside in the largest metamodel file. Starting in

August 2006, the PCM has a long history of evolution. In the time from

spring 2007 to fall 2012, the PCM grew from under 100 to over 200 classes (as

reported in my paper [Str+16a]). There are at least 12 metamodel extensions

for the PCM
3
. However, many more exist that are not publicly documented

(e.g., student theses, experimental, incubation). Due to its historically grown

structure, the PCM exhibits some shortcomings described hereafter.

1
This section is based on [HSR19] (©2019 IEEE) and [SH16b].

2 https://sdqweb.ipd.kit.edu/wiki/EMOF_Bad_Smells (last visited 23.08.2019)

3 https://sdqweb.ipd.kit.edu/wiki/PCM_AddOns (last visited 23.08.2019)

45

https://sdqweb.ipd.kit.edu/wiki/EMOF_Bad_Smells
https://sdqweb.ipd.kit.edu/wiki/PCM_AddOns

3. Problem Areas and Challenges

3.1. Package Structure Erosion and
Uncontrolled Growth of Dependencies

Repeated maintenance and intrusive addition of new features over time is

detrimental to the internal structure metamodels. The results are twofold,

the deterioration of the package structure and uncontrolled dependencies.

When new features are implemented intrusively, their classes have to be

placed consistently in the package structure. If this is not done, the package

structure suffers. This is usually the case with long-living metamodels, as

their development teams change and design rationale is lost. It is caused

by implementing new features in packages of similar features or scattering

them in the packages of multiple related features. This is often the case

with cross-cutting concerns.

Language features are hard to grasp if they are not adequately reflected

in the package structure. In case a package contains classifiers of multiple

features or features are scattered over the package structure, it is not easy

for the developers to narrow down the part of the metamodel that is relevant

for their current task. Thus, the erosion of the package structure worsens

the understandability and therefore also the evolvability of a metamodel.

The fact that package structures allow free creation of new dependencies

to other packages within the same metamodel file causes another related

shortcoming: the accumulation of superfluous inter-package dependencies

and dependency cycles between packages.

Such uncontrolled growth of dependencies worsens the understandability

of a metamodel. This is because developers, while trying to understand the

semantics of a class, may follow dependencies to packages that are irrele-

vant to their current goals. Uncontrolled growth of dependencies further

increases the complexity of the metamodel. Unnecessary inter-package

dependencies increase coupling which impedes evolving the metamodel

and hinders developers who try to identify the parts of the metamodel

that are relevant to their tasks.

The problems of package structure erosion and uncontrolled dependencies

can be observed in the PCM (see my paper [SL14]). They were caused

46

3.2. Loss of Knowledge

by repeated intrusive additions and maintenance. The PCM was origi-

nally tailored for performance analysis. However, the scope of the PCM

broadened, and more structural features and quality properties were in-

corporated. Initially, new features were intrusively implemented in the

metamodel. Examples for such new features are the modeling of reliability

[Bro+12], event-based communication [Rat13], and infrastructure compo-

nents and middleware [Hau09]. As a consequence, the PCM suffers from

all of the above explained cases of package structure erosion, unnecessary

dependencies, and dependency cycles (as stated in my paper [Str+16a]).

3.2. Loss of Knowledge

A further problem that plays into the erosion of structure over time is the

loss of knowledge. If a metamodel is modified, the developer who carries out

the change should have sufficient knowledge of the metamodel or else the

change could be implemented incorrectly. If s/he has no prior knowledge,

s/he has to then spend time to learn and understand the metamodel. As

development teams change, knowledge of rationale about the design of

the metamodel is lost. Decisions that have been intentionally made at one

point may later seem counter-intuitive to someone else. If the modeling

is then changed or a workaround implemented, the initial good intention

may be lost and the stringency and consistency of the metamodel impaired.

The problem of loss of knowledge applies also to the PCM. Over time, almost

the complete team of developers changed. There are documentation texts

annotated onto the elements of the metamodel. From these, even a technical

report was generated automatically. They are, however, not complete.

Although the packages are mostly documented with non-trivial annotations,

they often do not cover strategic decisions about language features. The

history of inconsistent intrusive additions of the PCM demonstrates that the

documentation was not sufficient (argued by my papers [SL14; Str+16a]).

47

3. Problem Areas and Challenges

3.3. Monolithic Metamodels

Many conventionally developed metamodels are too large and lack sepa-

ration of concerns on the level of metamodel files. This applies especially

to metamodels that were maintained and extended over longer periods of

time. This causes two main problems.

Monolithic metamodels do not support to create dependencies in a need-

specific way, but offer only all-or-nothing dependence. The problem of

all-or-nothing dependence impacts the development of new languages,

language extensions, and metamodel-based tools. If a related language

is developed, it is not possible to only depend on a part of the original

language. The whole language has to be depended on, which causes a

bloating of the implementation of the new language. The same applies to

the development of language extensions. If an extension only needs a part

of the original metamodel, still the whole metamodel has to be depended

on. Lastly, this problem also concerns the development of tools that are

based on a monolithic metamodel.

The second problem is a consequence of the all-or-nothing dependence

issue, which is explained above. Due to the lacking modularity and the

depending on unneeded parts of metamodels, the understandability of the

metamodel suffers. When new languages are developed that use a mono-

lithic metamodel, new extensions, or metamodel-based tools are created,

metamodel developers are confronted with the full extent of the monolithic

metamodel. During development, they stumble over features that are ir-

relevant to them. These irrelevant features may confuse them, as it is not

always apparent at first glance what a set of classifiers is representing.

These problems can be observed with the PCM. Although the PCM consists

of several metamodel files, one of them contains with 148 most of the classes.

All these classes can only be used together, as the whole metamodel always

has to be deployed. For new developers, it is overwhelming to investigate

the metamodel, as it contains many language features.

48

3.4. Commonalities in Related Languages

3.4. Commonalities in Related Languages

Tomodel and analyze certain qualities, a particular language is required that

provides the modeling of the concepts for which the quality is evaluated. If

multiple qualities should be analyzed for the same subject, it has to be mod-

eledmultiple times. As a consequence, some parts of the subject aremodeled

multiple times in different languages. This causes unnecessary effort.

For example, a software architecture has been modeled in the PCM and

enriched with resource demands to conduct performance evaluation. To

document and analyze, for example, security, the system has to be remodeled

with UML
4
and supplied with security properties [Jür02]. A large part of the

software is modeled multiple times, which should be avoided considering

that the utilized concepts of the PCM and UML are related.

3.5. Tool-specific Metamodel Content

Another challenge in metamodel design as in maintenance is the compro-

mise between a clean and clear metamodel and on the other side incor-

porating auxiliary content for tooling. A metamodel that only contains

the necessary information to model a particular subject matter is precise,

easy to understand and to evolve. However, the complexity and the ef-

ficiency of tooling that works on the metamodel can be improved by in-

cluding utility content in the metamodel. If a metamodel becomes too

tool specific, however, it impedes its usability for specific tooling or its

reusability in other contexts.

3.6. Generality Compromise

Another trade-off that the metamodel developers have to tackle, even in

maintenance, is implementing the right degree of extensibility and general-

ity. Some extensions have to be provided with extension points beforehand

4
Although there currently is research towards security in the scope of the PCM, there is no

mature security specification and analysis approach at the time of writing this thesis.

49

3. Problem Areas and Challenges

to be able to implement them in a clean way. A metamodel for a very

specific purpose may be very precise. However, as requirements change,

such a precise metamodel may turn out to be inflexible and not well suited

for extension. On the other side, too many predefined extension points

increase the complexity of the metamodel. Making a metamodel too gen-

eral makes it too abstract, which impedes its usability, as the necessary

concepts are not modeled.

One end of this problem can be observed in the PCM. The PCMwas designed

specifically for performance and reliability prediction. These aspects are

hard-coded into the metamodel. The reusability of the PCM for other

quality dimensions is limited, as this specific content always has to be

depended and deployed.

3.7. Metamodel Coupling

The practice of externally extending a metamodel, is not yet adequately

understood. The same mechanisms apply when two metamodels are cou-

pled in general. There are several types of coupling, and some types have

different ways of how they can be implemented. It is not clear how they

compare and in which situations they should be used.

3.8. Instance Incompatibility

One way to unintrusively implement additions to the metamodel is to

branch it and implement the addition in the branch. The advantage is that

the master branch does not need to be altered, and the development of

master and other branches is decoupled. The addition branches, however,

need to be maintained to be up-to-date with the master. Further, instances of

metamodels from branches are not necessarily compatible with the master

metamodel nor the tools that operate on instances of the master metamodel.

As a consequence, tools have to be branched and maintained in specific

branches as well. Alternatively, a transformation between both metamodel

branches needs to be developed. It transforms parts of instances of the

branchedmetamodel to the original metamodel so that the original tools can

50

3.9. Incompatible Extensions

still be used. However, these transformations have to be maintained as well.

In summary, it should be possible to prevent incompatibilities on instance

level between closely related languages without explicit manual effort.

Concerning the PCM, the problem of instance incompatibility is relevant.

Some additions to the PCM that were developed in branches have never

been included in the PCM master branch (e.g., [Hei+17; KBK15; WBK14]).

These addition either cause additional maintenance effort to the maintainer

or were discontinued due to that extra effort.

In the scope of this thesis, instance compatibility refers to the instances of

an extended or modified metamodel still being instances of the original

metamodel (i.e., being compatible with the original model code). This also

means that tools that operate on the original metamodel can operate on

the instances of the extended or modified metamodel.

3.9. Incompatible Extensions

One option to implement an extension is to use inheritance to add new class

properties to an existing class. Inheritance is problematic as two different

extensions that subtype the same class cannot be used in combination. It

is only possible to create an instance of the subclass of one extension or

the other. The only way to use the combination of both extensions is to

create another extension that extends both existing extensions and creates

one class that inherits from both subclasses. This, however, means that

extensions cannot be developed independently, as all conflicting extensions

have to be extended to make them compatible.

The problem of incompatible extension can be observed in the PCM. Some

extensions to the PCM (e.g., [Hei+17]) use inheritance to introduce new

class properties to existing classes.

3.10. Feature Overload in Metamodel-based Tools

The intrusive addition of metamodel elements over time has further dis-

advantages. Users of tools that are based on a monolithic metamodel

51

3. Problem Areas and Challenges

are usually confronted with the full extent of its features. Especially op-

tional features that are not of interest to specific tool users can distract

and confuse them.

Such a feature overload is especially the case with the PCM, which is

mainly used for performance prediction. The metamodel features several

concepts that are not performance related (e.g., reliability) and many ad-

vanced features that are not relevant to basic performance prediction (e.g.,

infrastructure interfaces and events). When tool users create PCM models

for basic performance prediction, they have to use the whole metamodel.

Further, they are confronted with the full extent of the GUI of the Palladio

Bench tool. An inexperienced user is not able to identify the modeling

concepts that are relevant to him.

The problem of overburdening users by feature overload in tools brings

a related problem to the surface. It is not a primary problem but is a

consequence of applying the approach of this thesis. The overall complexity

of a metamodel that is modularized and coupled increases. Such an increase

brings disadvantages to metamodel-based tools that take a monolithic

approach. The code of these tools gets more complex, but it does not

bring any direct benefits. Furthermore, if a metamodel is modular and

extensible, but this software is not, the software has to be modified to be

able to support new metamodel extensions.

52

Part II.

Contribution

4. Bad Smells and Anti-Patterns
in Metamodeling

Like in conventional software, there are problems in metamodels that do

not impede their functionality but degrade their maintainability. These

are named bad smells. They arise in the initial design of metamodels, but

also accumulate over time when new features are added. The more bad

smells accumulate, the more effort is caused in the maintenance of the

metamodel. Related work covers the detection of various types of problems

in the metamodel. However, these works either provide minimal support

for EMOF [Are14], focus on metamodel defects [Ela12] or address semantic

errors [GBS12; FM18]. This chapter
1
presents the following contributions,

to address these problems. It defines the underlying fundamental regarding

problems in metamodeling, with a focus on bad smells. It presents bad

smells that stem from a manual metamodel review and a literature review

of bad smells from object orientation. Amongst other aspects, for each

smell, its effect, detection, and correction are explained. Automated de-

tections are implemented for several bad smells. Metamodel developers

should be aware of these bad smells. For the ones that can be automatically

detected, a detection should be performed regularly. This contribution is

evaluated in an explorative study. In this study, the harmfulness, detection,

and correction are inspected for the smells for which detections were im-

plemented. The subject metamodel on which the detections are performed

is the Palladio Component Model (PCM) [Reu+16].

Section 4.1 presents the research questions that this contribution addresses.

Section 4.2 introduces the terms and definitions that are fundamental to this

contribution. Section 4.3 explains the research approach for finding the bad

1
This chapter is in parts based on a master’s thesis that I supervised [Hah17]. The smell

description and the detection of smells were revised where necessary.

55

4. Bad Smells and Anti-Patterns in Metamodeling

smells. Section 4.4 presents the collection of bad smells. Section 4.5 briefly

presents the implementation of the automatic detection of bad smells.

This chapter is continued in subsequent parts of this thesis. Chapter 7

present the detection and correction evaluation. Section 11.1 elaborates

on related work. Section 12.1 concludes this chapter.

4.1. Research Questions

This section derives the research questions for this contribution from the

problems that Chapter 3 presented. Problem 1 states that the package

structure of metamodels erodes over time and that dependencies within

metamodel files can grow unconstrained. Problem 3 states that the un-

derstandability and reusability of monolithic metamodels are impaired.

Although these problems, some causes, and their effects were already out-

lined, a systematic investigation should be conducted. It is essential to

understand what exactly makes a metamodel less evolvable and how these

problems can be detected. Therefore, this section specifies the research

questions that are concerned with evolvability problems in metamodeling.

RQ Ia (Bad Smells): What are the types of problems that may impair the
evolvability of metamodels and what are their effects?

RQ Ib (Smell Identification): How can these problems be detected? Which
problems can be detected automatically?

RQ Ic (Smell Resolution): How can these problems be resolved?

4.2. Terms and Definitions

The problems and errors that are made by metamodel developers or that

manifest themselves throughout maintenance can be classified into validity

errors, semantic errors, and bad smells.

A validity error occurs if a metamodel is no longer conform to its meta-

metamodel. This means it is not considered a valid instance of its meta-

metamodel. Validity errors are the most basic type of error and are usually

56

4.2. Terms and Definitions

detected by the metamodeling framework. A validity error prevents the

generation of code that compiles, and, therefore, renders the metamodel

unusable in its current state. Examples of validity errors are attributes and

references without types, references that point to a no longer existing class,

and even simple errors like metamodel elements without names.

A semantic error occurs if a metamodel does not correctly reflect the subject

matter it represents. A semantic error damages the correctness of the

metamodel in that it occurs. It makes the metamodel either imprecise

or incomplete. Examples of semantic errors are missing or superfluous

references between classes, wrong attribute types, and wrong multiplicities.

A metamodel design flaw is a problem in a metamodel that does not intro-

duce semantic errors but impairs the evolvability of the metamodel. This

can happen, e.g., by introducing complexity because of unnecessary ele-

ments, increasing the coupling of the metamodel because of conceptually

flawed or unnecessary dependencies, or reducing its cohesion by lacking

or improper division. Design flaws can be refactored without changing

the semantics of the metamodel.

This contribution builds upon the definition of bad smells in Section 2.2.7.

Figure 4.1 illustrates the concept of bad smells.

A bad smell usually has one indicator . An occurrence of a bad smell is the

positive evaluation of an indicator. The occurrence includes the element

that violates the metric or the elements that are involved in the anti-pattern.

Some smells may have more than one indicator. An indicator is either

the violation of a metric threshold or the detection of an anti-pattern. All

metric violations can be automatically detected by evaluating the metric

on the metamodel. An anti-pattern can be purely syntactical. This means

that at least a portion of its occurrences can be automatically detected

by analyzing the metamodel solely. For example, a class that inherits

from a class from that one of its other superclasses already inherits. Some

anti-patterns may also involve the semantics of metamodel elements. The

semantic of metamodel elements is not formalized in the metamodel but is

either interpreted by a developer or persisted in the documentation of the

metamodel. Occurrences of semantic-based anti-patterns can, therefore,

only be detected by a manual investigation of the metamodel. For example,

if a package contains classifiers that implement concepts of many different

language features, the package and its content are difficult to understand

57

4. Bad Smells and Anti-Patterns in Metamodeling

Indicator Bad Smell Cause

Metric
Violation

Anti Pattern

Design Flaw Semantic Error

pureSyntax : bool ofOtherSmell : bool

Problem

Benign

Occurrence

Figure 4.1.:Metamodeling Bad Smells

in contrast to a properly modularized packaging. As the knowledge about

the meaning of the classifiers is not persisted in the metamodel, such anti-

pattern occurrences cannot be found automatically.

A bad smell has either a problematic or a benign cause. A problematic cause

is a design flaw or a semantic error. A bad smell that has a problematic

cause, is refered to as harmful in the scope of this thesis. It is possible

that a bad smell occurs because of the cause of another smell. In such

cases, the occurrence can be seen as secondary, and the bad smell which

is primary for the cause should be treated.

58

4.3. Research Approach

4.3. Research Approach

The bad smells that this chapter presents were inferred in two ways. First,

from a manual review [Str+16a] of the PCM. Second, from a transfer

[Hah17] of bad smells from a literature review in the domain of object-

oriented design.

Manual Metamodel Review The actual goal of the metamodel review of

the PCM was to understand its semantics. The metamodel was considered

package by package, class for class. Flaws in the design, especially ones

that hindered the understanding of the metamodel, were documented.

Transfer from Object Orientation Object-oriented smells cover a wide

range of abstraction levels and effects. Not all of these are relevant to

metamodeling. Thus, the scope of the literature review had to be set.

There are object-oriented smells on different levels of abstractions [GSS13]:

code, design, and architecture. Only design smells are relevant for a transfer

to metamodeling. Code smells might be relevant for code that is embed-

ded in metamodels through operations if the bodies of the operations get

sufficiently large. The development of large operation bodies is considered

to be coding rather than metamodeling. Therefore, this thesis focuses on

the design of classifiers and their relations, rather than the bodies of op-

erations. Architecture smells do not apply to metamodels, as this layer of

abstraction is not existent in metamodeling.

Another dimension of object-oriented smells is their effect [GSS13]: cre-

ational, structural, behavioral. Only structural smells are transferable to

metamodels. Creational smells are not applicable, as the creation of in-

stances is handled by the metamodeling framework. Behavioral smells

might be relevant to the bodies of large operations. However, as already

stated above, the development of large operation bodies is considered to

be coding rather than metamodeling.

For each remaining smell that was found in the literature, it was consid-

ered if and how it can be transferred to metamodeling and if it is still an

indicator for a problem.

59

4. Bad Smells and Anti-Patterns in Metamodeling

4.4. Bad Smells

This section presents the metamodel bad smells types. The smells are

grouped according to a classification of structural design smells by Ganesh

[GSS13]. Some smells are even named according to it. This is, however,

only the case when the expressiveness of the name is not limited. When

the classification is applied to metamodels, the smells are classified into

abstraction, modularization, hierarchy, and relation. Abstraction is con-

cerned with generalization and boundaries of concepts, and inadequate or

unnecessary details. Modularization is concerned with cohesion, coupling,

and the boundaries of language features. Hierarchy is concerned with

classification, hierarchical organization, and commonalities of concepts.

Relation is concerned with dependencies and their constrainment.

Table 4.1 provides an overview of the bad smells. The first two columns

provide the source of the bad smell: was it discovered in the metamodel

review or the transfer from object orientation. The next three columns show

the granularity level that the smell affects: classes, packages, or metamodel

files. The last five columns give an overview of how the smells can be

detected. The Automatic Detection column specifies whether the smell can

be automatically detected. The remaining detection columns do only apply

if an automatic detection is possible. They specify whether the detection

produces false positives and false negatives and whether the detection is

anti-pattern or metric-based. The last two columns show the effect of the

smells. The first show a check mark if a smell impairs the maintainability

of the metamodel. The second column specifies whether a smell weakens

the semantic correctness of a metamodel. If a non-benign smell occurrence

always weakens correctness, it is denoted with a check mark (✓). If a

non-benign smell occurrence sometimes weakens correctness, it is denoted

with a swung dash (~). If a non-benign smell occurrence does not affect

correctness, the cell is empty.

60

4.4. Bad Smells

S
o
u
r
c
e

L
e
v
e
l

D
e
t
e
c
t
i
o
n

E
ff
e
c
t

B
a
d
S
m
e
l
l
N
a
m
e

Metamodel Review

Object Orientation

Classes

Packages

Metamodel Files

Autom. Detection

False Positives

False Negatives

Anti-pattern

Metric

Maintainability

Semantic

M
i
s
s
i
n
g
C
l
a
s
s

✓
✓

✓
✓

✓
✓

✓
~

D
e
a
d
C
l
a
s
s
i
fi
e
r

✓
✓

✓
✓

✓
✓

✓
✓

I
n
c
o
n
s
i
s
t
e
n
t
A
b
s
t
r
a
c
t
i
o
n

✓
✓

✓
✓

✓
✓

L
a
n
g
u
a
g
e
F
e
a
t
u
r
e
S
c
a
t
t
e
r
i
n
g

✓
✓

✓
G
o
d
C
l
a
s
s

✓
✓

✓
✓

✓
✓

~

B
l
o
b
P
a
c
k
a
g
e

✓
✓

✓
✓

✓
✓

M
e
t
a
m
o
d
e
l
M
o
n
o
l
i
t
h

✓
✓

✓
✓

✓
✓

✓
M
i
s
s
i
n
g
H
i
e
r
a
r
c
h
y

✓
✓

✓
✓

✓
✓

✓
✓

~

I
n
s
t
a
n
c
e
D
a
t
a
b
y
I
n
h
e
r
i
t
a
n
c
e

✓
✓

✓
✓

✓
✓

✓
R
e
d
u
n
d
a
n
c
i
e
s
i
n
H
i
e
r
a
r
c
h
y

✓
✓

✓
✓

✓
✓

✓
✓

W
i
d
e
H
i
e
r
a
r
c
h
y

✓
✓

✓
✓

✓
✓

S
p
e
c
u
l
a
t
i
v
e
H
i
e
r
a
r
c
h
y

✓
✓

✓
✓

✓
✓

✓
D
e
e
p
H
i
e
r
a
r
c
h
y

✓
✓

✓
✓

✓
✓

✓
M
u
l
t
i
p
a
t
h
H
i
e
r
a
r
c
h
y

✓
✓

✓
✓

✓
C
o
n
c
r
e
t
e
A
b
s
t
r
a
c
t
C
l
a
s
s

✓
✓

✓
✓

✓
✓

✓
✓

D
e
p
e
n
d
e
n
c
y
C
y
c
l
e
s

✓
✓

✓
✓

✓
✓

✓
✓

C
o
n
t
a
i
n
e
r
R
e
l
a
t
i
o
n

✓
✓

✓
✓

✓
O
b
l
i
g
a
t
o
r
y
C
o
n
t
a
i
n
e
r
R
e
l
a
t
i
o
n

✓
✓

✓
✓

✓
~

S
p
e
c
i
a
l
i
z
e
d
R
e
l
a
t
i
o
n

✓
✓

✓
✓

✓
✓

✓

Table 4.1.: Bad Smell Overview

The smells are presented according to the following template:

1. Related smell definitions from object orientation are mentioned if

the smell was transferred from object orientation.

61

4. Bad Smells and Anti-Patterns in Metamodeling

2. A description of the smells is supplied.

3. The effect of the smell is explained.

4. Reasons for an accidental forming and rationale for a deliberate

creation are provided.

5. Ways to correct the smell are provided.

6. The detection of the smell is discussed.

7. Automatic treatment is discussed if a treatment is possible in a fully

automatic way. This is only the case if there are no false positives

and each occurrence of the bad smell is a problem.

8. The relation to object orientation is discussed if no related

object-oriented smell was found.

4.4.1. Abstraction

The bad smells of the abstraction category are concernedwith the encapsula-

tion of concepts and the adherence to levels of abstraction. The category fea-

tures the Missing Class, Dead Classifier, and Inconsistent Abstraction smells.

4.4.1.1. Missing Class

The Missing Class smell is known in object orientation as Primitive ob-

session [Fow+99; Are14] and Data Clumps [Fow+99; Are14]. It is fur-

ther related to the Large Class [Fow+99; CU06] and Divergent Change

[Fow+99] smells.

Description Missing Class occurs if groups of class properties (mainly

references and attributes) are used that would be better modeled in their

own class, as they represent a concept on their own. A less adverse case

is when the group of properties is only present in one class. It gets more

severe if the same group of properties is present in multiple classes. If

multiple classes need the group of properties, but it is not duplicated, it

leads to inadequate references. This means a class references another

62

4.4. Bad Smells

class not because of the concept the class implements but only because

of the group of properties.

Effect Missing Class impedes the understandability and changeability of

the metamodel. Understandability is affected, as the group of properties

is not immediately recognizable as an own concept. If inadequate refer-

ences exist, they can be misleading to developers. The changeability is

affected if multiple occurrences of the property group exist, as they have

to be evolved together.

Reason and Rationale There is no occasion where this bad smell could

be utilized on purpose. It is a mistake that was made in the design or

implementation of the metamodel. Sometimes a metamodel developer just

does not recognize when s/he implements an additional concept in a class.

Correction A Missing Class occurrence can be corrected, by creating a

class that holds the group of properties. This new class is then referenced

by all classes that contained the group of properties and all classes that

referenced another class merely because of the group of properties.

Detection It is possible to detect some Missing Class occurrences auto-

matically. Two heuristics can be applied.

The first heuristic is to identify classes that havemany attributes of primitive

types. The count of primitive attributes is defined as a threshold. False

positives occur, as in the modeling of certain subject matters, it is necessary

to create classes with many primitive attributes. This heuristic focuses on

primitive types instead of class properties in general. This differentiates

it from the God Class smell (see Section 4.4.2.2).

The second heuristic checks for identical groups of properties between

classes. Properties are identical if their name, type, and multiplicity are

equal. The size of a group of properties is also defined as a threshold. The

threshold should not be set to one, as there are usually many identical

properties that belong to several classes. On the other side, a concept

could be encoded in only one duplicated attribute. Further, if the types or

names of properties do just slightly vary, these occurrences also cannot

be detected. Thus, this detection suffers from false negatives. It does also

suffer from false positives, as it is possible that two groups of properties

do not model the same concept. The probability of this, however, drops

with increasing size of the groups.

63

4. Bad Smells and Anti-Patterns in Metamodeling

4.4.1.2. Dead Classifier

Dead Classifier is known in object orientation as Speculative generality

[Fow+99], and Unused classes [LR06; Are14]. The tool metaBest [LGL14b]

provides a property (D02) that is related to this smell. This smell descrip-

tion, however, considers more circumstances that make a class unusable

than pure isolation.

Description A dead classifier is a classifier that cannot be used (see also

my paper [Str+16a]). There are two types of dead classifiers: Dead Classes

and Dead Enums. A Dead Class has no incoming containments. Its super-

and subclasses also have no incoming containments. It is further not a

root container and has no subclass that is a root container. A dead enum

is not used as an attribute value by any class.

To identify dead classifiers, it is essential to not merely focus on the meta-

model file in which the classifier resides. It might be that a possible Dead

Class is contained by a class of another metamodel file or has a child in

another file that is a root container. In these cases, the class is not dead.

The same holds for the search for dead enums. Enums could be used by

classes of another metamodel file.

Effect There are two cases of Dead Classifiers. First, a dead classifier is

a classifier that is unnecessary and could be simply deleted. Second, it is

a classifier that is essential to the language but cannot be used because

of a missing containment or attribute. In this second case, the cause of

the bad smell is a semantic error, as it compromises the correctness of

the metamodel. In the first case, the understandability of the metamodel

is impaired, as metamodel developers might waste time to consider the

classifier as they stumble upon it. If the dead classifier is a class, the correct-

ness of the metamodel is impaired, as the Dead Class could be mistakenly

used as the root for a model.

Reason and Rationale There is no occasion where this bad smell could

be utilized on purpose. It is a mistake that was made in the design or

implementation of the metamodel. Regarding the first case that the effect

section mentioned, it is possible that a metamodel developer abandoned

the implementation of a classifier and simply forgot to delete it. Another

possibility is that a metamodel developer deleted a container, containment,

64

4.4. Bad Smells

or attribute and did not realize or check whether the referenced classifier

is still needed. Concerning the second case, it is merely a mistake of a

metamodel developer who did not model the essential containment or

attribute. This is also true for situations where a class that carried such

a containment or attribute is deleted, and it is forgotten to recreate the

containment or attribute in another class.

Correction Dead classifiers that are unnecessary should just be deleted.

If a language actually needs a dead classifier, a containment or attribute

has to be created that points to the dead classifier.

Detection All dead classes can be automatically detected, by determining

all classes that have no incoming dependencies. Therefore, this detection

has no false negatives. However, in EMF dead classes cannot be technically

distinguished from root containers and their parents. Therefore, a meta-

model developer still has to check whether the detected classes are actually

dead. Thus, this detection produces some false positives.

Dead enums can be automatically detected, by determining all enums that

are not used by attributes. This detection has no false negatives. It also

has no false positives, assuming all relevant metamodel files that might

use the enum are being analyzed.

4.4.1.3. Inconsistent Abstraction

This problem is known in object orientation as a violation of the dependency

inversion principle [Mar03].

Description The dependency inversion principle [Mar03] is a design princi-

ple from object orientation. When translated to metamodeling (in my paper

[Str+16a]), it states that high-level classes should not depend on low-level

classes. A high- and a low-level are regarding the degree of abstraction.

The principle also applies to packages and metamodel files. The dependen-

cies of a package andmetamodel are regarded as the combined dependencies

of their elements. The cause of the violation is a dependency that crosses

the boundary between packages or metamodel files. If the dependency

points into a more abstract package or metamodel file, the two packages

or metamodel files suffer from Inconsistent Abstraction.

65

4. Bad Smells and Anti-Patterns in Metamodeling

Part (a) of Figure 4.2 shows an Inconsistent Abstraction on the class and

package level. Package H contains high-level concepts, relative to which

the content of package L is low-level. Class A has a dependency (relation,

inheritance or containment) to K. Thus, a high-level class is dependent on

a low-level one. Class K contains further information about A (indicated

by the data attribute). Although it is illustrated as a single attribute, this

informationmay come in the form of attributes, relations, and containments.

A

K K

B A

K

High-Level
Abstractions

Low-Level
Abstractions

(a) (b) (c)

data data data

A

H

L

Figure 4.2.: The Inconsistent Abstraction Smell and its Correction [Str+16a]

Effect An Inconsistent Abstraction may have detrimental effects on the

maintainability of the metamodel. During evolution, modifications of a

language feature may influence a more low-level language feature. Such

violations do also hinder understanding the metamodel. If a developer tries

to understand a language feature, s/he may trace the outgoing relations

to more high-level language features. Thus, s/he may examine language

features which are not necessary for understanding the low-level language

feature and even irrelevant to her/his intent. On the metamodel file level, an

Inconsistent Abstraction impairs the reusability of the low-level metamodel

file. The low-level file erroneously depends on the high-level file. Thus, if

the low-level file is used, the high-level file also has to be deployed, even

if it does not provide any necessary concepts.

Reason and Rationale Occurrences of Inconsistent Abstraction are flaws

in the design of the metamodel and often stem from the intrusive addition

of language features. It is most convenient for a developer to extend an

66

4.4. Bad Smells

existing class hierarchy by adding dependencies that point to the new

content. However, there is a difference between object-oriented design and

metamodels. In object orientation, it is easier and more natural to introduce

new abstraction layers. In metamodels, on the other hand, interfaces cannot

be used similarly; because usually, it is not similar functionality that is added,

but new and different data. At first glance, it seems to be a good solution

just to create a new subclass, which adds the needed properties. However,

when multiple new independent properties are added this way, they cannot

be combined. Therefore, in metamodeling, it can be reasonable to violate

the dependency inversion principle in certain cases. A possible rule would

be to do so for core concepts of the language. A concept is considered a

core concept if it is used in every use case of the language and for every

possible kind of tool user. Core concepts should be integrated intrusively

into the metamodel with a violation of the dependency inversion principle.

This has the following advantages: type safety, adherence to cardinality

without having to resort to constraints and retrieval inO(1) (constant time).

In contrast, concepts that are only for special use cases or are generally less

often used, should not be added intrusively into the language.

Correction When implementing non-core concepts, it is important to

adhere to the dependency inversion principle. By performing dependency

inversion on the relation between A and K, the Inconsistent Abstraction

can be corrected. As the possibilities that replace the relation between A

and K are subject of Chapter 5 and the dependency inversion refactoring

is subject of Section 6.5.1.2, this section will only briefly discuss the most

prominent solutions. Figure 4.2 shows the solutions.

In (b), the new abstract class B is created as well as a containment from A

to B. Class K then inherits from B. Thus, the dependency is reversed and

now goes from L to H. This solution has some benefits. The instances of

K are contained in instances of A. This enables direct navigation and thus

retrieval in constant time. In addition, the cardinality can be controlled

directly without having to specify complex constraints. However, type

safety is not guaranteed, as the extended data is not placed in B but K.

This solution has to be enabled in the initial development, as the class B

is required. This is no issue if K is also already created during the initial

development or if the future extension of K can be foreseen. The main

disadvantage of this solution is that H has to be modified if this solution

is implemented in hindsight.

67

4. Bad Smells and Anti-Patterns in Metamodeling

In (c), an alternate solution is shown, which does not require a modifica-

tion of H. It uses the metamodel extension relation, which is presented in

Chapter 5, to associate instances of K to instances of A. The relation can

be implemented in several ways, e.g., by stereotype application [Lan+12;

Kra+12] or referencing [Jun+14; JHH16]. Compared to (b) this has the

disadvantage, that the lookup is inO(k), where k is the number of instances

of K; or a register of reversed pointers has to be stored and maintained

in memory. For more information, which includes pros and cons, refer

to Chapter 5 and Chapter 8.

Detection Inconsistent Abstraction occurrences are not automatically

detectable. An algorithm is not able to deduce if concepts are higher- or

lower-leveled compared to others.

4.4.2. Modularization

The bad smells of the Modularization category are concerned with the

cohesion, coupling, and boundaries of language features. The category

features the smells Language Feature Scattering, God Class, Blob Package,

and Metamodel Monolith.

4.4.2.1. Language Feature Scattering

Description The package structure of a metamodel is used for logical

partitioning of its content. The Language Feature Scattering smell (see

my paper [Str+16a]) occurs if the classes that constitute a feature of a

language are spread over multiple packages that do not share a meaningful

parent. Even cross-cutting language features can be modularized in a

more meaningful way.

Effect This bad smell has negative consequences on the understandabil-

ity and thus maintainability of metamodels. When a developer tries to

understand a metamodel, s/he examines its packages and from their con-

tent and documentation (if there is any) tries to conclude its purpose. If a

language feature is scattered, the purpose of the package cannot be fully

comprehended without tracing relations that leave the package. The smell

68

4.4. Bad Smells

may also increase coupling between affected packages and reduce the co-

hesion within the packages.

Reason and Rationale Language Feature Scattering occurs mostly when

new language features are implemented in an already existent metamodel.

The new language feature is related to the purpose of multiple other pack-

ages. Parts of the new language feature are then placed in related packages.

So, the new language feature is ripped apart.

Correction A better approach would be to place the new language feature

in its own package. The package should further contain sub-packages

for each related package, which then contain the related classes of the

new language feature. If there are larger groups of classifiers within the

implementation of the language feature, that are closer related, they should

be placed into their own subpackage (e.g., a class with its many subclasses).

The package of the new language feature should be placed meaningfully.

If it is a first-order language feature, it should be placed below the root

package. If it is a cross-cutting language feature, it should be placed on

the same level, as the language features with which it is intersecting. If

it is a second-order language feature, its package should be placed as a

subpackage of the parent language feature.

Moving classes can be done through refactorings. Even the code, which

depends on the classes, may be automatically fixed. A mere moving of

affected classes may lead to other bad smells if the dependencies are not

modified. The new dependencies between packages may lead to package

dependency cycles (see Section 4.4.4.1) and Inconsistent Abstractions on the

package level (see Section 4.4.1.3). This is not the fault of consolidating a

language feature, but of dependencies that were improper in the first place.

Detection This bad smell is not automatically detectable. An algorithm is

not able to automatically infer the semantics of parts of the metamodel.

Relation to Object Orientation In object orientation, there are issues simi-

lar to Language Feature Scattering, e.g., when cohesive classes are scattered

over packages or assemblies. Tomy knowledge, however, there is no explicit

smell that covers the problem on this level. Object orientation smells are

more concerned with the internals of packages: relations between classes

and the internals of classes and methods.

69

4. Bad Smells and Anti-Patterns in Metamodeling

4.4.2.2. God Class

God Classes are known in object orientation as The Blob [Bro+98], Fat

Interface [Mar03], and God Class [TT07]. EMF Refactor [Are14] detects

classes with many attributes and operations. The tool metaBest [LGL14b]

provides properties (M01 and M02) that are related to this smell. This

bad smell description, however, considers more class properties that con-

tribute to a God Class.

Description A God Class is a class with too many properties. It represents

a symptom and overlaps with several smells. Improper separation of several

concepts might cause it. It might coincide with the missing class smell if a

big group of properties is not encapsulated in their own class. It might also

appear together with the Missing Hierarchy smell as properties that would

typically reside in the superclass are located in the affected class.

Effect A large number of properties may make the class challenging to

understand. This is especially the case if a class implements two con-

cepts. If another smell causes a God Class occurrence, please refer to the

respective effect description.

Reason and Rationale There is no occasion where this bad smell could be

utilized on purpose. Usually, a God Class arises if a class is extended over

time, the number of its class properties grows, and it is not split.

Correction To resolve a God Class, some properties of the class have to be

factored out. If the class implements more than one concept, the metamodel

developer has to split the class. If another smell causes a God Class, please

refer to the respective correction description.

Detection God Classes can be automatically detected by scanning the

metamodel for classes that have more properties than a defined threshold.

What number of properties is appropriate, however, always depends on the

subject matter. Some circumstances necessitate a large number of properties.

Others do not. Thus, this detection may produce false positives.

70

4.4. Bad Smells

4.4.2.3. Blob Package

Description Conversely to the scattered language feature smell, a package

that contains classes of multiple language features is an occurrence of the

Blob Package smell (see also my paper [Str+16a]).

Effect Having multiple language features in one package, increases the

effort to understand the package because the developer has to identify

the contained language features and their respective classes. Simply put,

the package is needlessly complex. This bad smell also decreases the co-

hesion within the package.

Reason and Rationale Developers tend to place classes in packages that

hold their container or implement a closely related language feature. It is

just more convenient to use the existing package structure than to come

up with a new structure by oneself.

Correction How to modularize and package language features is already

well explained in the resolution part for the Scattered Feature Scattering

smell (see Section 4.4.2.1). As already suggested, new language features

should be placed in their own package. If a language feature is secondary,

its package should be placed as a subpackage. Often, a deeper subdivision

of a language feature in subpackages is meaningful.

Detection Blob Packages can be automatically detected. In general, a

package that contains multiple concerns has a higher number of classifiers.

To search for packages that contain more than a defined threshold can point

out some Blob Packages. However, if packages are used to finely subdivide

language features into their constituents, a package might only contain a

small number of classifiers, to begin with. If another small language feature

is then integrated into such a package, the overall number of classes is still

relatively low. Thus, this heuristic suffers from false negatives.

Relation to Object Orientation The relation of the Blob Package smell

to object orientation is analog to the Scattered Language Feature smell.

Insufficient modularization on the package level is also an issue in object

orientation. However, I am not aware of an explicit smell definition.

71

4. Bad Smells and Anti-Patterns in Metamodeling

4.4.2.4. Metamodel Monolith

Description A Metamodel Monolith is the analog of the Blob Package on

the level of metamodel files. A metamodel file that implements multiple

language features is an occurrence of the Metamodel Monolith smell. It

is even worse if a metamodel contains essential and optional language

features in combination. Optional language features are not relevant to

all tool users and therefore not always needed.

Effect Metamodel Monolith impacts the reusability of the metamodel file,

as it can only be depended on as a whole. If only a subset of language

features is needed, it is not possible for other metamodels, extensions, and

tools to selectively depend on the necessary language features. Due to the

lacking modularity, the complexity of the metamodel files is unnecessarily

high. This impacts the understandability of the metamodel during evolution,

reuse, and tool development. A Metamodel Monolith might even lead to

a low cohesion between the classifiers in the metamodel file.

Reason and Rationale There is no reason to create a Metamodel Monolith

on purpose. It develops because of ignorance of best practices, careless-

ness, and intrusive additions over time. Metamodel files grow, and it is

not noticed that they should be split although they implement multiple

language features.

Correction Metamodel Monoliths can be corrected by splitting metamodel

files according to their language features. Refactorings and a process for the

modularization of metamodels are presented in Section 6.5 and Section 6.6.2.

Detection Metamodel Monoliths can be automatically detected. This is

because, a metamodel that implements many language features tends to

be large. The size of a metamodel is best measured by the number of its

classifiers. If a metamodel exceeds the set threshold, it is considered a

Metamodel Monolith. This detection, however, suffers from false positives

and false negatives. The appropriate size of a metamodel file does vary

depending on the language feature that it implements. A language feature

might be complex enough to exceed the threshold on its own, thereby

causing a false positive. On the other hand, two simple language features

that would be better implemented in separate metamodel files may not

72

4.4. Bad Smells

exceed the threshold if they are implemented in onemetamodel file. Thereby

they cause a false negative.

Relation to Object Orientation The relation of the Metamodel Monolith

smell to object orientation is analog to the Blob Package smell. Compared

to object orientation, a metamodel file is analogous to a unit of compilation

(e.g., a project that results in a jar or exe). Insufficient modularization on the

level of compilation units is also an issue in object orientation. However,

I am not aware of any explicit smell definitions.

4.4.3. Hierarchy

The Hierarchy category is concerned with the classification, hierarchical

organization, and commonalities of concepts. It includes the smells Missing

Hierarchy, Instance Data by Inheritance, Redundancies in Hierarchy, Wide

Hierarchy, Speculative Hierarchy, Deep Hierarchy, Multipath Hierarchy,

and Concrete Abstract Class.

4.4.3.1. Missing Hierarchy

The Missing Hierarchy smell is known in object orientation as Missing

Inheritance [DDN02], Collapsed Type Hierarchy [Tri08], and Embedded

Features [Tri08].

Description A Missing Hierarchy occurs if type information is encoded

into attributes of a class. The attributes could be typed with basic data types

like boolean, string, or integer, or with an enum (see my paper [Str+16a]).

Effect In contrast to the proper use of inheritance, by decoding type

information in attributes, it is not possible to add features to parts of the

classification selectively. This might lead to the developer adding features

to the base class, which are only used for specific values of the attributes.

By doing that, the complexity of the class increases unnecessarily, and its

understandability suffers. In the special case of using an enum for additional

classifications, the classification is impossible to be extended externally.

Reason and Rationale Using attributes for classification is one possible

solution of how to model multiple orthogonal classifications. Figure 4.3

73

4. Bad Smells and Anti-Patterns in Metamodeling

illustrates the problem. It should be possible to classify the class Base as

either A1 or A2 and additionally either as B1 or B2. This is not possible

by using an class hierarchy of the depth of just one. Figure 4.4 shows a

solution by using an enum for the second classification dimension. This is

an occurrence of the Missing Hierarchy smell. A classification by a data

type works analogously.

Base

A1 A2

Aspect A

Base

B1 B2

Aspect B

a1 a2 b1 b2

Figure 4.3.: The Problem of Orthogonal Classifications [Str+16a]

Base

A1 A2

a1 a2

BType
b1
b2

BType
«enum»

B1
B2

Figure 4.4.:Missing Hierarchy Smell Occurrence: Classification by Enum [Str+16a]

The naive solution to modeling orthogonal classifications is shown in Fig-

ure 4.5. There, every possible combination is explicitly modeled by inheri-

tance. This has several disadvantages. It produces a high number of classes.

Although a single classification dimension is externally extensible, it is

not possible to develop independent extensions, as every combination of

every dimension has to be modeled.

74

4.4. Bad Smells

A1

B1

Base
A2

B2

A1B2 A2B2A2B1A1B1

Figure 4.5.:Naive Solution to Orthogonal Classifications [Str+16a]

Developers utilize classifications by class properties because of lack of

knowledge of more appropriate solutions. In addition, it looks simple and

little intrusive compared to the naive approach (see Figure 4.5). If, however,

the developer wants one classification to be closed for extension, s/he might

consciously go for a classification by enum or boolean. If a classification

does not carry any new features that vary for its subtypes, classifications

by basic types might be legitimate if they are intuitive.

Correction There are two ways to resolve a Missing Hierarchy. If the clas-

sification is already known when the metamodel is initially implemented, or

it is possible to modify the metamodel, the composition over inheritance prin-
ciple [Fre+04] should be applied. This is shown in part (a) of Figure 4.6. If

not, an extension should be created (see Chapter 5). This is shown in part (b).

BBase

A1 A2

(a)

(b)

B1

B2

Base

A

B

A1 A2

B1 B2

Figure 4.6.: Solutions to Orthogonal Classifications [Str+16a]

75

4. Bad Smells and Anti-Patterns in Metamodeling

Detection Missing Hierarchies are not automatically detectable. One

could scan for each usage of an enum to at least detect classifications by

enum. However, not every usage is a classification. Therefore, each enum

usage has to be checked manually. Classifications by data type referencing

attributes cannot be detected.

4.4.3.2. Instance Data Modeled by Inheritance

The Instance Data Modeled by Inheritance smell is known in object ori-

entation as Object Classes [LP09].

Description Instance Data Modeled by Inheritance occurs if inheritance

is used to model non-type information. Type information does not change

during the lifetime of an object. If it does, however, a new object of a

sibling class has to be created to replace the former object. This is a reliable

indicator that the inheritance does not model type information but state

information and should be replaced by one or multiple attributes.

Effect Instance Data Modeled by Inheritance affects tools that are based on

the metamodel. As new objects have to be created to perform changes in the

state that is modeled by the unnecessary hierarchy, the code of these tools

gets more complex. A Instance Data Modeled by Inheritance occurrence is

also bad for the understandability of the metamodel. As usually, only type

information is modeled using inheritance, a developer might wrongfully

assume that the unnecessary hierarchy models proper type information.

Reason and Rationale This bad smell is merely a flaw in the design of the

metamodel. The responsible metamodel developer simply did not realize

that the inheritance does not model type information.

Correction The inheritance should be replaced by one or multiple at-

tributes. It must be possible to cover the state that is covered by the

subclasses before the refactoring using the attributes. For example, two

subclasses can be replaced by one Boolean attribute; however, it cannot

replace three subclasses.

Attribute types with a closed value range should only be used if the state

space that is to be modeled is also closed and will not be expanded in the

76

4.4. Bad Smells

future. Closed attribute types are, e.g., booleans and enums. Open ones

are, e.g., numbers
2
and strings.

Note that it is not considered a good practice to encode complex state

information into strings. Instead, the state space should be modeled with

an additional class hierarchy. If the state classes do not carry any additional

attributes or references, they should be used as singletons. This approach

does not cause an occurrence of the Instance Data Modeled by Inheritance

smell, as the state information is modeled externally.

Detection Instance Data Modeled by Inheritance occurrences are not reli-

ably detectable. A rough heuristic is to look for classes withmany subclasses

that do not possess any properties. The number of subclasses is defined

as a threshold. This, however, produces false positives, as proper inheri-

tances are also detected. It also suffers from false negatives, as unnecessary

hierarchies could be smaller than the threshold or even feature some class

properties in the child classes.

4.4.3.3. Redundancies in Hierarchy

Redundancies in Hierarchy is known in object orientation as Orphan Sibling

Attribute [TT07], Incomplete Inheritance [Bie06], and Redundant Variable

Declaration [CU06]. It is related to the duplicate code smell [Fow+99].

The tool metaBest [LGL14b] provides a property (B01) that is identical

to this smell.

Description Redundancies in Hierarchy appear in two cases. In the first

case, class properties are duplicated in sibling classes (see in my paper

[Str+16a]). Classes are sibling if they share a common superclass. In the

second case, class properties are duplicated in a class and its direct or

indirect superclass.

Effect Redundancies in Hierarchy introduce redundancy. It impedes the

evolvability of a metamodel, as the class properties have to be evolved

together. By not doing so, inconsistencies may compromise the correctness

of the metamodel. The smell is also bad for the understandability of a

2
Technically, numbers are limited by the amount of memory that is used to represent the

specific data type. It is, however, unlikely that a class hierarchy exceeds the value range of

a numeric data type. For example, on most platforms the maximal integer value is 2
31 − 1.

77

4. Bad Smells and Anti-Patterns in Metamodeling

metamodel, as the duplication of the properties unnecessarily increases

its complexity. When they inspect the metamodel, developers have to

recognize that the redundant properties model the same thing.

Reason and Rationale Redundancies in Hierarchy may result as a mishap

in the design or implementation of the metamodel. Another reason is the

repeated addition of class properties by metamodel developers. Class prop-

erties could be introduced without noticing that they are already present

in a super or sibling class.

Correction If the class property is shared across all sibling classes, and

they are appropriate to the superclass, a pull-up refactoring should be

conducted [LR13]. If the class properties do not fit the semantics of the

superclass, a new superclass may be introduced. If only some siblings share

the class properties, a new superclass should be introduced only for them.

New superclasses may or may not inherit from the former superclass. This

depends on the semantics of the class properties that are factored out. If

class properties are shared between a class and its superclass, the properties

should be removed from the child class.

Detection Automated detection of Redundancies in Hierarchy is possible

but suffers from false negatives. Only duplicated class properties can be

detected that have identical names and types. As soon as there is a discrep-

ancy, the duplication can only be found manually. This detection may even

produce false positives. This is the case if two class properties are identical

but represent different concepts. This case could itself be considered to be

a bad smell. At least one of the properties should be renamed to indicate

that the properties represent different concepts.

4.4.3.4. Wide Hierarchy

The Wide Hierarchy smell is known in object orientation as Missing Levels

of Abstraction [MHK99], Coarse Hierarchies [MHK99], Getting Away from

Abstraction [CU06], and Fat Class Hierarchies
3
. Inheritance width is also

analyzed by the metaBest tool [LGL14b] (D05).

3 http://wiki.c2.com/?FatClassHierarchies (last visited 23.08.2019)

78

http://wiki.c2.com/?FatClassHierarchies

4.4. Bad Smells

Description A class with many subclasses is considered a wide hierarchy.

Wide hierarchies might be an indicator for missing intermediate super-

classes. Intermediate superclass refers to a class that lies in between two

classes in the inheritance hierarchy. Wide Hierarchies might occur together

with the Redundancies in Hierarchy smell, as intermediate superclasses are

missing that could provide common class properties.

Effect A wide inheritance hierarchy can be hard to understand. Espe-

cially, if there are meaningful partitions, that could be implemented using

intermediate superclasses. The code of metamodel-based tools may become

complexer. Considering a case where a meaningful intermediate superclass

could be referenced by the tool. As the intermediate superclass does not

exist, type safety is lost. The code has to refer to the next superclass that is

too general. To ensure type safety, type checks for the desired subclasses

have to be put in place.

Reason and Rationale Wide hierarchies are a flaw in the design or imple-

mentation of the metamodel. They can be caused by a metamodel developer

who repeatedly adds subtypes without considering or noticing the oppor-

tunity to introduce an intermediate superclass.

Correction Ametamodel developer can correctWide Hierarchies by insert-

ing intermediate superclasses and redirecting the inheritance accordingly.

If there are common class properties in the subclasses of the intermediate

superclass, the metamodel developer should pull them up. The correc-

tion of the Redundancies in Hierarchy smell already explained this (see

Section 4.4.3.3).

Detection Wide Hierarchies can be automatically detected with the metric

for the number of child classes. All classes of the metamodel are iterated and

reported if the metric exceeds a certain threshold. Of course, this is prone

to false positives. The appropriateness of the broadness of an inheritance

depends on the context. Sometimes, there just are many sibling classes, and

no meaningful partitioning by intermediate superclasses is possible.

4.4.3.5. Speculative Hierarchy

Speculative Hierarchy is known in object orientation as Extra Subclass

[CU06] and Speculative Generality [Fow+99]. The tool metaBest [LGL14b]

79

4. Bad Smells and Anti-Patterns in Metamodeling

provides a property (D03) and EMF Refactor offers a smell detection that

are identical to this smell.

Description The Speculative Hierarchy smell occurs if an abstract class

only has one subclass. Concrete superclasses with only one subclass are

no problem, as the superclass can be used on its own by instantiation. The

sole purpose of an abstract class, on the other hand, is to be the target of

inheritance. It is essential to not only examine the metamodel file in that

the class resides but also dependent metamodel files; dependent metamodel

files could very well add new subclasses into the inheritance hierarchy.

Splitting a class into a superclass and a subclass is sometimes done for

the sake of modularization. As long as the superclass and its subclass

provide meaningful semantics, the constellation is legitimate. A class with-

out properties and only one subclass, however, is definitely a design flaw

that should be corrected.

Effect An unnecessary intermediate class brings unnecessary complexity,

as there is one more class for the developer to consider. It is even worse for

the understandability of the metamodel if the semantics of the superclass

and its child are not meaningful.

Reason and Rationale Occurrences of Speculative Hierarchy are either

flaws in the design of the metamodel or introduced on purpose. A design

flaw occurred if the metamodel developer who introduced the abstract

intermediate class anticipated to add further subclasses or attributes, but

did not do so, as it was not necessary. On the other hand, a metamodel

developer introduces the smell on purpose if the intermediate superclass

is intended to serve as an extension point and extensions are expected in

the future. In such cases, the smell occurrence is benign.

Correction A Speculative Hierarchy is corrected by removing the inter-

mediate superclass (S). If S has superclasses, the child of S (C) has to inherit

from all superclasses of S. If S has properties, they are moved to C. All

incoming dependencies on S are redirected on C.

Detection Speculative Hierarchies can easily be automatically detected by

scanning a metamodel for abstract classes with only one subclass. For the

stricter version of Speculative Hierarchy, the detection ignores classes with

properties. As already mentioned, it is essential to not only analyze single

metamodel files but all files of a metamodel including metamodel extensions.

80

4.4. Bad Smells

In both detection modes, the normal and the strict variant, the detection

produces false positives, as the intermediate class could be a meaningful

extension point. The less strict detection mode of Speculative Hierarchy

produces more false positives, as it is unlikely that a large portion of inter-

mediate classes is unnecessary. The strict detection mode results in false

negatives, as flawed intermediate classes with properties are not detected.

4.4.3.6. Deep Hierarchy

Deep Hierarchy is known in object orientation as Deep Class Hierarchies
4
.

Inheritance dept is also analyzed by the metaBest tool [LGL14b] (M04).

Description A Deep Hierarchy occurs if there is an excessively deep in-

heritance hierarchy. Depth refers to the number of classes in a chain of

classes that are related through inheritance relations. The depth of the

inheritance chain of the furthest down subclasses and its highest superclass

is relevant to the Deep Hierarchy smell.

A deep inheritance hierarchy is not always problematic. For example, it is

legitimate if all classes in a chain of inheritances are meaningful on their

own. It can, however, be an indicator for problems like unnecessary or

poorly cut superclasses. A Deep Hierarchy may occur together with the

Speculative Hierarchy and the Instance Data Modeled by Inheritance smell,

but may also appear independently.

Effect Unnecessarily deep inheritance hierarchies damage a metamod-

els understandability. Unnecessary divisions of superclasses create un-

necessary complexity, and semantically inappropriate superclasses may

confuse developers.

The claim that it is difficult to discern all the features of a class if they are

scattered over many superclasses [Hah17] is false. With proper tool support,

all features of a class can be viewed at once. Such tool support is available in

EMF (e.g., the EClass Information view and the Contextual Explorer view).

Reason and Rationale As a Deep Hierarchy may occur together with the

Instance Data Modeled by Inheritance and Speculative Hierarchy smell,

their reasons and rationale coincide in these cases. To summarize, it is

4 http://wiki.c2.com/?DeepClassHierarchies (last visited 23.08.2019)

81

http://wiki.c2.com/?DeepClassHierarchies

4. Bad Smells and Anti-Patterns in Metamodeling

either a flaw in the design of the metamodel or caused by intentionally

placed extension points that are not yet needed. If a Deep Hierarchy oc-

curs independently of those smells, there are two reasons left. First, the

occurrence is harmless, as the depth of the class hierarchy is needed and

appropriate to model the subject matter. Second, the hierarchy is unnec-

essarily deep, and the depth is caused by semantic modeling errors that

lead to unnecessary classes in the hierarchy.

Correction If a Deep Hierarchy coincides with the Instance Data Mod-

eled by Inheritance or Speculative Hierarchy smell, refer to the correction

description of the respective smell. In summary, non-type information

should be transformed into attributes or references, and unnecessary in-

termediate classes should be fused with sub- or superclasses. If the Deep

Hierarchy smell occurs on its own and is not the result of a complex subject

matter, the semantic errors have to be identified and fixed. How this is

done depends on the concrete circumstance. It often entails the fusion

of levels in the class hierarchy.

Detection To automatically detect a Deep Hierarchy, the superclasses of

each class are crawled. Starting from a class, the inheritance relations to its

superclasses span a tree with the initial class as the root. Each branch of

the tree has to be traversed until a class is reached that does not have a su-

perclass. This means it is a leaf. While traversing the branches, the distance

of each superclass to the root is counted in terms of inheritance relations.

If a leaf reaches the defined threshold, it is a Deep Hierarchy occurrence.

This detection suffers from false positives, as not all deep hierarchies are

necessarily problematic, as mentioned in the description of this smell. This

detection also suffers from false negatives, as unnecessarily deep hierarchies

can exist that are shorter than the depth threshold.

4.4.3.7. Multipath Hierarchy

The Multipath Hierarchy smell is known in object orientation as Degener-

ate Inheritance [BL03], Repeated Inheritance [Mey09], and Diamon In-

heritance [Are14].

82

4.4. Bad Smells

Description Multipath Hierarchy describes a setting in which there are

multiple paths of inheritance from a class C to one of its superclasses S.

There are two cases of Multipath Hierarchy. Figure 4.7 illustrates both cases.

∙ ∙ ∙ ∙ ∙ ∙

C

S

C

S

∙ ∙ ∙

(a) Direct
Multipath

(b) Diamond
Multipath

Figure 4.7.: The Multipath Hierarchy Smell

In the first case (a), there is a direct inheritance from C to S. If C then

also inherits from another class that has S as a direct or indirect super-

class, this is referred to as a Direct Multipath Hierarchy. The inheritance

from C to S is redundant.

In the second case (b), C inherits from two or more classes that have S as a

direct or indirect superclass. This is referred to as a Diamond Multipath,

in reference to the diamond problem from object orientation. Compared

to the Direct Multipath Hierarchy, this setting is of a more benign nature.

If all inheritance relations from the superclasses of C to S are necessary,

this the Diamond Hierarchy cannot be avoided.

Effect In the Direct Multipath Hierarchy, the direct inheritance from C

to S is redundant. This unnecessarily increases the complexity of C. If a

developer inspects C, s/he may consider the direct inheritance as well as

the inheritance to the intermediate superclass. However, the information

from the direct inheritance is already contained in the inheritance to the

intermediate superclass.

Reason and Rationale The reason for a Multipath Hierarchy occurrence

is simply carelessness. It results from a metamodel developer who adds

83

4. Bad Smells and Anti-Patterns in Metamodeling

a new superclass via inheritance and not being aware that the superclass

is already an indirect superclass.

Correction To resolve a Direct Multipath Hierarchy, the direct inheritance

can just be deleted. The deletion has no adverse side effects.

As already mentioned, a Diamond Inheritance may be the only way to

abstract a specific subject matter. In such cases, it should not be removed.

On the other hand, a Diamond Hierarchy is resolvable if there are one or

multiple unnecessary inheritances between the superclasses of C and S.

The unnecessary inheritances can just be deleted.

Detection Multipath Hierarchies can be automatically detected by ana-

lyzing every class in a metamodel for multiple inheritance paths. To find

multiple inheritance paths of a class, the direct and indirect superclasses

have to be crawled and collected in a set. Before a superclass is added to

the set, it has to be checked if the set already contains the superclass. If so,

a Multipath Hierarchy is found. To detect all multipaths, all superclasses

have to be crawled. By storing information about the inheritance path for

the classes that are stored in the set of superclasses, the exact paths can

be reported that contribute to the Multipath Hierarchy.

Automatic Resolution A Direct Multipath Hierarchy can be detected with

full accuracy and can always be resolved without adverse effects. This

means this variant of theMultipath Hierarchy can be automatically resolved.

Each inheritance that points to the superclass that is already inherited via

another class can automatically be deleted.

Diamond Inheritances cannot be automatically resolved as it cannot be

automatically determined if an inheritance is unnecessary.

4.4.3.8. Concrete Abstract Class

Concrete Abstract Class is known in object orientation as Late Abstraction

[TT07], and Concrete Superclass [Are14]. The tool metaBest [LGL14b]

provides a property (D05) that is related to this smell.

Description Concrete Abstract Class is concerned with classes that should

be abstract, but are not (see my paper [Str+16a]). In a class hierarchy, a

class with subtypes is often abstract. However, not every occurrence is

84

4.4. Bad Smells

necessarily bad design, as sometimes even a concrete class might have

concrete subclasses. A concrete class that has abstract subclasses is an

even more severe case of this smell.

Effect If a class that should be abstract is not declared as such, this has a

negative impact on the metamodels correctness and understandability. Due

to the fact, that an instance of the metamodel may validly contain direct

instances of a class that should not have any instances, the metamodel is

less correct. Usually, this problem is hidden by self-built editors, which just

do not offer any possibility to create direct instances of the affected class.

When using entirely generated model editors (like the EMF tree editors),

however, this problem does manifest.

Further, the understandability of the metamodel is slightly reduced by a

Concrete Abstract Class. A developer, who investigates the metamodel,

cannot instantly identify the class as abstract and has to reflect.

Some claim [TT07] that a Late Hierarchy occurrence violates Liskov’s

Substitution Principle [LW94], as an abstract subclass cannot be instantiated

in contrast to its concrete superclass This is, however, dependent on the

interpretation of the principle, as originally it only applies to objects and is

therefore not applicable to an abstract and a concrete class.

Reason and Rationale A Concrete Abstract Class appears because of care-

lessness mistakes.

Correction The correction of a Concrete Abstract Class is trivial. The

affected class has to merely be declared as abstract.

Detection Occurrences of Concrete Abstract Class can only partly be

detected automatically. If a concrete class has subclasses, it might be a

pathological case of Concrete Abstract Class [ABT10]. If any of the sub-

classes are abstract, it is even more likely that there is an issue. However,

manual evaluation is still required, as it might be the case that the superclass

is validly concrete. Therefore, this detection suffers from false positives. In

constellations, where all subclasses of the concrete superclass are in exter-

nal metamodels, the smell can only be detected if the external metamodels

are considered in the detection. If they are not considered, the concrete

superclass might be wrongfully detected as a Dead Class (Section 4.4.1.2).

This is the case if the class and its superclasses are never used within the

85

4. Bad Smells and Anti-Patterns in Metamodeling

metamodel but carry the information of an abstract concept that should

be specialized in other metamodel files.

4.4.4. Relation

The Relation category is concerned with dependencies and their constrain-

ment. The category features the bad smells Dependency Cycles, Container

Relation, Obligatory Container Relation, and Specialized Relation.

4.4.4.1. Dependency Cycle

The Dependency Cycle smell is known in object orientation as Cyclic

Dependencies [Pag88], Bidirectional Relation [CU06], and Dependency

Cycle [Are14]. It is further related to the object-oriented smells Knows of

Derived [TT07; GSS13] and Curious Superclasses [BL03].

Description In metamodeling, dependency cycles (see my paper [Str+16a])

can appear on different levels: between classes, packages and metamodel

files. Dependencies between classes are caused by references, containments,

inheritance, type parameters, and type bounds (see also Section 2.2). De-

pendencies between packages are caused by the dependencies of classes

of the package that point to classes of another package. This is analogous

to metamodel files. The dependencies of a metamodel file are caused by

the classes that reside in the packages of the metamodel file. Dependencies

form a cycle when starting from one element (class, package, or metamodel

file) it is possible to follow dependencies to elements of the same type (class,

package, or metamodel file) and eventually reach the starting element again.

The cycle has to involve at least two elements. A dependency from an

element to itself does not constitute a cycle. A bidirectional dependency

causes a dependency cycle with two affected elements.

On the class level, dependency cycles are sometimes unavoidable to model

an interdependent relationship between concepts. Often, however, de-

pendency cycles and especially bidirectional dependencies are created to

mirror another dependency.

To explain this, a small toy example from the automotive domain is pre-

sented. Consider hardware controllers and sockets on which a controller

86

4.4. Bad Smells

can be placed. A socket knowswhich controller is placed on it. If a controller

also knows on which socket it is placed, this information is redundant.

Such bidirectional dependencies are unnecessary, as, in models, there is

enough information to navigate dependencies in the opposite direction.

This can be done in three ways. Firstly, in many cases, an object is reached

by following references. To navigate a reference in the opposite direction,

one can simply backtrack. For this, the objects that were visited have to

be kept in memory, which is usually the case. The second option is by

navigating to the source of the dependency via the root. This is, however,

more expensive, as the containment tree has to be crawled. The third option

is to create and maintain cross-referencing information for all or selected

references in either the memory or the model.

A special case of the Dependency Cycle smell is known in object orientation

as Knows of Derived. It is considered a bad practice if a superclass is

dependent on one of its subclasses. Figure 4.8 illustrates the problem. The

superclass has either a reference or a containment to at least one subclass. A

Knows of Derived occurrence violates the dependency inversion principle.

Figure 4.8.: Superclass is Dependent on Subclass

Effect Dependency cycles impede the understandability of a metamodel,

as for a full understanding it might be required to consider all elements in

the cycle. Themodularization of ametamodel is encumbered by dependency

cycles. They have to be resolved if they couple the parts of the metamodel

that should be separated.

Cycles between metamodel files are always harmful. They reduce the

reusability of the metamodel files, as the files within the cycle can only

be reused together. They even lead to compiler errors when code from

87

4. Bad Smells and Anti-Patterns in Metamodeling

the metamodels is generated into separate units of compilation (e.g., two

jars or projects).

Dependency cycles between classes are sometimes bad, sometimes benign.

Classes on the same level of abstraction that describe the same concept

can be involved in a cycle. These classes are then strongly coupled. This

is not a bad thing if they can only be used together from a conceptual

standpoint. If this does not apply, the cycle is harmful, and the drawbacks

that are described above apply.

The same principle from cycles between classes can also be applied to

packages. If the packages are intended to be used together, dependency

cycles are benign. This is the case in metamodel files that are appropriately

modularized. Metamodel files that are not adequately modularized tend to

contain many unnecessary dependencies and dependency cycles between

their packages. This is the case as in Ecore the creation of new dependencies

between packages within a metamodel file is not constrained.

A cycle violates the dependency inversion principle [Mar03] if elements

in the cycle are of different degrees of abstraction. This is also the case for

Knows of Derived occurrences, as the superclass is of a stronger abstraction

compared with its subclasses, it should not depend on them. Violations of

the dependency inversion principle are described by the Inconsistent Ab-

straction smell. For more details on the effects of Inconsistent Abstraction,

refer to Section 4.4.1.3.

Reason and Rationale A problematic class cycle is a design flaw that is

either introduced on purpose but without being aware of the adverse side

effects or unintentionally by adding a dependency and not being aware

that the new dependency closes a cycle. There is no rationale to utilize

metamodel file and package cycles deliberately. They are introduced by ig-

norance of the best practice or an intrusive addition that introduces a depen-

dency to another metamodel file or package and the metamodel developer

being unaware that the new dependency closes a cycle. Regarding package

cycles, in EMF, this is a drawback of using packages for modularization, as

packages do not constrain the creation of dependencies to other packages.

Correction Dependency cycles can be broken by splitting a class (see Sec-

tion 6.5.1.1), package, or even a metamodel file (see Section 6.5.2). To resolve

a cycle between packages or metamodel files, it may be sufficient to move

88

4.4. Bad Smells

one or more inadequately placed classes. If a Dependency Cycle is caused by

an Inconsistent Abstraction, the respective dependency should be reversed

(see Section 4.4.1.3). Sometimes, a cycle is merely caused by an unnecessary

or erroneous dependency. In such cases, the dependency can be deleted or

should be redirected. An example of an unnecessary dependency is a back-

reference that is only present for the ease of navigation, as explained earlier.

Detection The detection of Dependency Cylces can be performed auto-

matically. Dependency Cycles between classes, packages, and metamodel

files can be found by transforming the respective metamodel elements into

a directed graph and applying a cycle detection algorithm (e.g., Floyd’s

cycle detection algorithm [Flo67]). For example for packages, packages are

transformed into nodes, and dependencies between packages are trans-

formed into edges.

4.4.4.2. Container Relation

Description Containment in metamodeling is essential, as models form a

tree of objects that contain other objects. Containment relations are needed

to define this hierarchical structure and to build complex types. When

tools process models, it is often necessary to navigate from an object to

its container. In EMF, each object carries the generic eContainer reference

that points to its container. Except for model root objects, this reference is

always set. It is, however, also possible to create a new reference and declare

it as the opposite of a containment relation. This makes the reference a

container relation. In EMF, there is even a flag that indicates whether a

reference is a container relation. Container relations are considered a bad

smell (see my paper [Str+16a]).

Container relations have either a lower multiplicity bound of 0 or 1. Higher

values are not possible, as an object can only be contained in one other

object at any time. The Container Relation smell is concerned with con-

tainer relations with a lower bound of 0. A lower bound of 1 has further

implications and is discussed in the next section.

Effect Container relations create unnecessary complexity. The explicit

container relation is not needed, as the information is already present

in the eContainer reference. The unnecessary complexity is especially

89

4. Bad Smells and Anti-Patterns in Metamodeling

bad if a class is contained from several other classes and, thus, has many

container relations. Only one of the container relations is set at a time. The

unnecessary container relations clutter the class. In the PCM, there is a

particularly severe case. One class carries 17 container relations.

As a container relation opposes a containment relation, it creates a depen-

dency cycle between the contained class and its container. This comes

with all the drawbacks of dependency cycles (see Section 4.4.4.1). It is

detrimental to reusing the metamodel, as the container always has to be

deployed with the contained class. Even if another container is used and the

container to which the container relation exists is unnecessary. This gets

more severe if the container and the containee are in different metamodel

files. This establishes a hard coupling between both metamodel files and,

thus, the modularization is in vain.

Container relations do some harm to the maintainability of a metamodel.

Depending on the editor that is used to modify the metamodel if the con-

tainer is deleted, the container relations remains and points nowhere. The

contained class has then to be adapted.

ReasonandRationale There are two reasons for Container Relations. First,

metamodel developers might consciously use explicit container relations,

as they think that they ensure type safety. The second reason are trans-

formations from other meta-languages. These reasons are discussed in

the following.

At first glance, onemay think that an explicit container relation ensures type

safety when it is used in the code of tools. This is, however, only the case if

there is only one type of container. In these cases, the explicit container

is always correctly set and typed. On the other hand, the eContainer

reference has to be cast to the container type. However, in this situation,

the eContainer reference can always be successfully cast to the container

type. Thus, in this case, the only benefit from the explicit container reference

is the avoidance of the cast. This could, however, also be achieved by a

helper method that casts eContainer.

The other case that has to be considered regarding type safety is the ex-

istence of multiple types of containers. In such situations, the explicit

container relation might point to a container object of the type of the con-

tainer relation, or it is not set. This means before working with the container

90

4.4. Bad Smells

relation, it has to be tested if it is set. To find the container, it is necessary

to test different container relations until the proper container is found. In

contrast, the eContainer relation is always set but has to be checked for

the type of the container. Checking the type of the eContainer is similar to

testing whether the container relations are set or not. Thus, also in the case

of multiple types of containers, explicit container relations bring no benefit.

The second reason for container relations is the translation of a metamodel

from another meta-language. For example, in UML class diagrams, both

ends of relations can be named. To informal models, this affects, that they

become more explicit. If such models are transformed into metamodels,

however, relations with two named ends are usually translated into two

opposing references. If the relation in UML is a composition, this results

in a Container Relation smell occurrence.

Correction The solution to Container Relations is simply to delete the

container reference. In the code of tools that work with the metamodel,

access to the container relation has to be replaced with the eContainer

reference. If the explicit container was not checked for null, eContainer can

be cast to the container type. In this case, the cast can be replaced by a call

to helper method. If, on the other hand, the container relation is checked for

null, eContainer has to be checked and cast to the expected container type.

Detection Container Relations can be automatically detected. For each

reference, it has to be checked if the container flag is set to true.

Automatic Resolution Container Relations can be detected with full accu-

racy and can always be removed without implications onto the metamodel.

Thus, Container Relations can be automatically resolved. Each Container Re-

lation that is detected to have a lower multiplicity bound of 0 can be deleted.

Relation to Object Orientation Container Relations do not exist in object

orientation, as there are in general no explicit containers. Objects are con-

tained in the heap memory and are merely referenced by other objects

or the stack. If no more references to an object exist, the object is even-

tually deleted. In metamodeling and modeling, on the other hand, each

object except for the model root must have a container. If that container

is deleted, all contained elements are also deleted, and all references to

the deleted elements are unset.

91

4. Bad Smells and Anti-Patterns in Metamodeling

4.4.4.3. Obligatory Container Relation

Description A Obligatory Container Relation is a special case of the Con-

tainer Relation smell (see Section 4.4.4.2). If a containment relation has an

opposite reference that has a lower multiplicity bound of 1, it is an Obliga-

tory Container Relation (see my paper [Str+16a]). Figure 4.9 illustrates the

smell. Class C1 contains A, and the container relation is obligatory.

AC1
1 *

*C2

Figure 4.9.: The Obligatory Container Relation Smell [Str+16a]

Effect A cannot be used in any other context. E.g., although C2 has a

containment relation to A, an instance of C2 can never contain any instances

of A. An object can only be contained in at most one other object. This

means only one container relation can be set. As the container relation to

an instance of C1 has a lower bound of 1, it always has to be set. In such

cases, the EMF framework does not even allow code generation for C2.

Even if it is foreseeable that the class will not be reused in other metamodels,

an obligatory container relation should not be used. It may still be necessary

to instantiate the class independently of a proper complete model. E.g., this

is the case when fragments are created for documentation or as alternatives

for automatic optimization
5
.

Reason andRationale There are some reasons why one might want to use

an obligatory container reference. It ensures type safety when navigating to

the container, as it prohibits any other type of container. It is also possible

that the metamodel developer wants to restrict reuse explicitly. In most

circumstances, however, the metamodel developer was most likely unaware

of this consequence. Like the Container Relation smell, Obligatory Con-

tainer Relations can also be the result of a translation from another format

or language (e.g., UML) by a transformation. Especially when informal

5 https://sdqweb.ipd.kit.edu/wiki/Architecture_as_Connection_between_

Requirements_and_Quality_Prediction (last visited 23.08.2019)

92

https://sdqweb.ipd.kit.edu/wiki/Architecture_as_Connection_between_Requirements_and_Quality_Prediction
https://sdqweb.ipd.kit.edu/wiki/Architecture_as_Connection_between_Requirements_and_Quality_Prediction

4.4. Bad Smells

class diagrams are designed, there is a tendency to explicitly specify both

directions of a containment relation.

Correction To fix a Obligatory Container Relation, remove the container

reference. Regarding code that uses A, the eContainer reference of A can

be cast to C1, as long as there are no other containers like C2. If there are

other containers, the type of the eContainer reference has to be checked.

Detection Obligatory container relations can be automatically detected.

For each reference, it has to be checked if the container flag is set and if

the lower multiplicity bound is 1. There are no false positives and no

false negatives.

Relation toObject Orientation As with Container Relation, the Obligatory

Container Relation smell is not relevant in object orientation, as there is

no explicit containment.

4.4.4.4. Specialized Relation

Specialized Relation is known in object orientation as Specialization Ag-

gregation [PS16; Are14].

Description The Specialized Relation smell is concerned with references

that are respecified in a subclass with amore specific target class. Figure 4.10

(a) illustrates the Specialized Relation smell on an abstract level. Class

A references B through reference r1. The subclass A’ of A provides the

reference r2 that points to B’, which is a subclass of B. There may be further

intermediate classes between A and A’ as well as between B and B’. In the

simplest case, A’ and B’ are direct subclasses. To specialize a reference

means that in a subclass a reference expresses the same relationship but

is limited in its type range. For a simple example, consider part (b) of the

figure. A System references Software, but its subclass EmbeddedSystem

references EmbeddedSoftware. EmbeddedSystem does not need r1, as it has

r2 as a more specific alternative. In MOF, the specialization of references

without any further arrangements is considered a bad smell. This is a

limitation of MOF in contrast to other meta-languages that support the

refinement of references (e.g., NMF [Hin18]). If r2 is flagged as derived

and transient or A’ features a constraint that prohibits the use of r1, r2 is

93

4. Bad Smells and Anti-Patterns in Metamodeling

not considered a Specialized Relation smell occurrence. More information

about this is provided in the correction section.

A

A'

B

B'

r1

r2

∙ ∙ ∙ ∙ ∙ ∙

Embedded
System

System

(a) Abstract Definition (b) Example

Embedded
Software

Software
r1

r2

Figure 4.10.: The Specialized Relation Smell

Effect The main problem with specialized references is that the original

relation still exists and can be used independently from the specialized

one. This introduces redundancy.

It impacts the correctness of the metamodel as it leads to errors while using

the metamodel. If it is assumed that with an instance of A’ only r2 is used,

but r1 is used, the referenced instances of B’ are stored in different sets.

This is the case if code of a metamodel-based tool either accidentally uses

r1 or an instance of A’ is treated as A and, thus, only r1 is accessible.

A specialized reference also impedes the understandability of a metamodel.

r2 does not declare any ties to r1. From the metamodel, it is not apparent

that two references model the same thing. To discover this relation might

cost a metamodel developer some time.

A specialized reference also slightly impacts the maintainability of the

metamodel. On deletion of the target class, the specialized reference loses

its type and has to be adapted.

Reason and Rationale A Specialized Relation occurs either because the

metamodel developer has overlooked that a more general reference already

exists in a superclass that could have been used instead. It is also possible

that the metamodel developer was aware of the more general reference

94

4.4. Bad Smells

but wanted to specialize it nevertheless to constrain its type range. In

that case, s/he was not aware that there are better ways to support this

implementation. This is explained in the next section.

Correction If the specialized reference is unnecessary, it can just be

removed, and the more general reference can be used. This solution reduces

complexity, but also loses the limitation on the more specific class B’.

An alternative solution is to flag r2 as derived and transient and provide a

custom implementation that accesses the entries of r1 that are of the type B’.

When the values of the r2 are read, the values of r1 are filtered for instances

of B’. Additions and removals are also delegated to r1, as r1 can handle

instances B’. Alternatively to a custom derived reference, a feature map can

be used [EMF04]. In A, a feature map has to be already present or has to

be set up instead of the reference r1. Based on that feature map, further

derived references can be created in A and its subclasses.

It is also possible to create a constraint for A’ that does not allow instances

of classes except B’ in r1. This can be combined with making r2 derived and

transient. This solution violates Liskov’s substitution principle [LW94], as A’

can no longer be used like its superclass A. Depending on the circumstances,

however, this can be legitimate in modeling. E.g., A is not referenced in ex-

ternal code, as it is only used to provide class properties through inheritance.

Detection Specialized Relations can be automatically detected by iterating

over all classes and comparing inherited references with local references. A

local reference is defined in the class, in contrast to an inherited one. Con-

sidering the references r1 and r2 from the figure, the following conditions

have to be fulfilled for r2 to be a Specialized Relation smell occurrence:

• r2 has a more specific class than an inherited reference (i.e., r1).

This means it references a subclass of B.

• r1 and r2 have to both be either a normal reference or a containment.

If one of them is a containment and the other is not, they model

different relations and are, therefore, not a smell occurrence.

• r2 is not flagged as derived and transient.

Not all references that are detected this way are problematic. If the refer-

ences model different relations, the detection of the smell is a false positive.

95

4. Bad Smells and Anti-Patterns in Metamodeling

4.5. Automatic Bad Smell Detection

To enable automatic detection of bad smells, the metamodel quality as-

surance tool EMF Refactor (see Section 2.2.9) was migrated to the current

Eclipse version. The source code can be found online
6
. It was further modi-

fied to handle the input of multiple metamodel files at once to be able to

process modular metamodels efficiently. Using the predefined extension

points, the following 14 bad smell detections were implemented. The list

is divided into quantity- and anti-pattern-based smell detections.

The Speculative Hierarchy detection was already implemented in EMF

Refactor. It was, however, adjusted only to detect abstract classes that have

one subclass. Before the adjustment, it detected abstract classes that had

one concrete subclass. Abstract subclasses were ignored. An abstract class

with one concrete subclass and further abstract subclasses is, however, not

problematic. The abstract subclasses could provide further meaningful

subclasses. This would mean, that the abstract superclass is not speculative

but meaningful. The detection was further adjusted to be able to process

modular metamodels.

Metric-based Bad Smell Detections:

• Missing Class — Primitive Obsession: Classes with many attributes

of primitive data types

• Missing Class — Shared Properties: Classes that share a specific

number of identical attributes (name, type, multiplicity)

• God Class

• Wide Hierarchy

• Deep Hierarchy

6 https://github.com/kit-sdq-emf-refactor-fork (last visited 23.08.2019)

96

https://github.com/kit-sdq-emf-refactor-fork

4.5. Automatic Bad Smell Detection

Quantity-based Bad Smell Detections:

• Dead Classifier — Dead Class

• Dead Classifier — Dead Enum

• Multipath Hierarchy

• Concrete Abstract Class

• Dependency Cycles

• Container Relation

• Obligatory Container Relation

• Specialized Relation

• Speculative Hierarchy

97

5. Metamodel Extension

Reuse in DSL engineering is not yet very prevalent. There are several

approaches to reuse (see Section 11.3.1). These approaches include em-

bedding, composition, merging, and extension. In contrast to the other

approaches, extension aims to preserve compatibility to the tools of the

extended metamodel.

The practices of externally extending a metamodel and the coupling of

several metamodel files, however, are not yet adequately understood (see

Problem 7: Metamodel Coupling). It is not clear what the advantages and

disadvantages of the individual extension mechanisms are. It is unknown

whether there is a single extension mechanism that can be used universally.

If not, it is not clear which extension mechanisms should be used under

which circumstances.

This chapter
1
presents a catalog of EMOF-based extension mechanisms

and a catalog of comparison criteria. The extension mechanisms are evalu-

ated according to the comparison criteria. From this evaluation, a decision

process is derived, which guides a developer when s/he develops exter-

nal extensions.

There is not much related work that surveys and evaluates EMOF-based

extension mechanisms. Richard Braun, however, did extensive work in this

field. He created his dissertation [Bra17] partly in parallel to the research

that is presented in this chapter. The release of his dissertation, on the one

hand, helps to confirm the findings that are identical. On the other hand,

his dissertation opened the door to go further into detail by building on

his findings. In this part, this chapter presents novel research. Section 11.2

provides a detailed differentiation to his work.

1
This chapter is in parts based on [HSR19] (©2019 IEEE) and a bachelor’s thesis [Her17],

which I supervised.

99

5. Metamodel Extension

This chapter is structured as follows. Section 5.1 presents the research

question and presents further challenges. Section 5.2 clarifies the concept of

external extension and defines essential terminology. Section 5.3 specifies

the selection criteria that a mechanism has to fulfill in order to be considered

an extension mechanism and to be evaluated in the scope of this thesis.

Section 5.4 presents the extension mechanisms. Section 5.5 briefly lists the

mechanisms that were dismissed and explains why they did not fulfill the

selection criteria. Section 5.6 presents the list of comparison criteria.

This chapter is continued in subsequent parts of this thesis. Chapter 8

presents an evaluation and comparison of the extension mechanisms ac-

cording to the comparison criteria. Section 11.2 presents related work.

Section 12.2 concludes the metamodel extension contribution.

5.1. Research Question and Challenges

In contrast to the research questions of the first contribution from Chapter 4,

which were focused on treating problems retroactively, this chapter explores

the means to externally extend metamodels in order to circumvent the draw-

backs of intrusive evolution and to strengthen their separation of concerns.

RQ II (Extension Mechanism Comparison): Problem 7 states that the mech-

anisms of extending a metamodel are not yet sufficiently understood.

Therefore, this chapter explores the research question:

What are the advantages and disadvantages of different metamodel
extension mechanisms?

Beyond this research question, this chapter addresses several challenges.

This contribution classifies the types of external additions of metamodels

on a conceptual level. It investigates how the types of external additions

can be implemented.

Problem 1 states that intrusive evolution over time erodes the internal

structure of the metamodel. Therefore, this contribution investigates how

to add properties to existing classes without modifying the metamodel. By

doing so, a metamodel can be extended without violating separation of

concerns and without causing a feature overload.

100

5.2. Terms and Definitions

Problem 3 states that monolithic metamodels are plagued by several issues

like bad understandability and all-or-nothing reuse. The metamodel can be

modularized to fix such issues. To achieve this, it is sometimes necessary

to separate concerns in a class in a way that fulfills the DIP. With the

standard means of EMOF, this is difficult to achieve. This contribution

provides an approach to achieve this.

Problem 8 states that extensions should not make an instance incompatible

to the original metamodel and its tooling. Therefore, this contribution

investigates how a metamodel can be extended to still ensure the com-

patibility of extended instances.

Problem 9 states that for some extension mechanisms it is not possible to

independently develop compatible extensions for the same class. There-

fore, this contribution examines how to extend metamodels in a way that

allows extensions to be developed independently of each other and still

be used in combination?

5.2. Terms and Definitions

This section presents several terms and definitions that are essential to this

contribution. At first, it explains how external additions and extensions

fit in with the classification of metamodel modifications. Next, it presents

an illustration of the notation of external additions and extensions. Lastly,

the concept of extensions is defined.

Figure 5.1 shows how external additions fit into the classification of meta-

model modifications of Section 2.2.5. To recapitulate, an addition is an

existence modification that can either be performed intrusively, in a branch,

or externally. The figure explicitly shows the two types of external addi-

tions: the addition of a new subclass and the addition of a new property to

an existing class. This thesis refers to the latter as a class extension.

When adding new elements to a metamodel, external extension is, however,

not always the right approach. It depends on the nature of the features

that should be added to the language. If the features are always used when

the language is used, they should be added intrusively. Optional features,

which are not always used, should indeed be implemented externally.

101

5. Metamodel Extension

Addition
External
Addition

New Subclass

New Property
(Class Extension)

Figure 5.1.:Concept Overview: External Additions

Figure 5.2 (a) shows an illustration of the notation of external additions

of subclasses. The external addition of new subclasses is supported by

EMOF through the inheritance relation. The figure shows a subclass that

inherits from a superclass. The subclass resides in a separate metamodel

file. Thus, it implements an external addition.

Figure 5.2 (b) shows an illustration of the notation of class extensions. The

external addition of new properties is not supported by EMOF. There are,

however, several ways to implement it using the means of EMOF or addons

to EMOF. In the figure, a base class is extended by an extension class. The

notation that is used for the extends relation is taken from UML stereotypes.

Both classes reside in separate metamodel files. The extended metamodel

file is named the base metamodel file. The metamodel file of the extension

class is named extension metamodel file. The extension class carries an

arbitrary number of class properties. These are indicated by the arbitrary

dependency arrow that is labeled d. Class properties are, for example,

references and attributes. The extends relation implies that the properties

of the extension class are added to the base class. Together, the extends

relation and the extension class are named a class extension.

The labels extension class and extension metamodel file are context de-

pendent. In the figure, they relate to the extends relation that is shown.

There could be another class C in another metamodel file, that, in turn,

could extend the extension class. Concerning this other extends relation,

the extension class in the figure would be the base class, and C would

be the extension class.

102

5.2. Terms and Definitions

Extends
Relation

Class
Extension

d

Base Class

Extension
Class

Extension
Metamodel File

Base
Metamodel File

(b) Extension

(a) External Addition of
a new Subclass

Superclass

New Subclass

Figure 5.2.: Illustration of External Additions

103

5. Metamodel Extension

Figure 5.3 shows a conceptual description of class extensions. An extension
class owns at least one extends relation that points to exactly one other

class. The instance of an extension class is an extension object. It adds
its extension content to the base object. A base object is an instance of

the base class. Base objects are located in base model files. Depending

on the extension mechanism, extension objects are either located in the

base model file or in extension model files, which are separate from the

base model file. This is indicated by the gray coloring of the extension

model file concept and the containment from the base model file to the

extension object. Extension content are the values of the class properties of
an extension object’s extension class. As alreadymentioned, a class extension
consists of one extension class and one of its extends relations. Like any

class, an extension class carries class properties. For a class extension to be

meaningful, the extension class must carry at least one class property. An

extends relation is implemented by an extensionmechanism. For ametamodel

file to be an extension metamodel file, it has to contain at least one extension

class. A metamodel extension is a set of extension metamodel files that

contains at least one file. This thesis uses the term extension to refer to a

class extension, an extension metamodel file, or a metamodel extension in

cases where all terms apply. For example, the creation of an extensionmeans

the creation of an extension metamodel file that contains an extension

class; together, both constitute a new metamodel extension. The creation

of an extension object and assignment of its extends relation is named

extension instantiation.

Instead of externally, a class extension can also be implemented intrusively

or in a branch. In these cases, the extends relation does not cross metamodel

file boundaries. Such intrusive extensions are, however, not meaningful.

Instead of implementing an intrusive extension, the class properties that

are to be extended should better be intrusively added to the base class. If an

intrusive extension is used to separate concerns of a class, the extension class

should better be referenced by the base class. As they are not meaningful,

they are not further considered in this thesis.

Some extension mechanisms need extension points in order to be used. They

are prerequisites that a base class has to fulfill.

104

5.2. Terms and Definitions

Class
Extension

1

1..*

Base
Class

Extends
Relation

Extension
Class

Extension
Mechanism

Class
Properties

Extension
Metamodel

File

Metamodel
Extension

1..*

1..*

1..*

1..*

1

1

1

Extension
Content

Base
Object

1..*

1..*

Base Meta-
model File

1..*

Base
Metamodel

1..*

Base
Extension

M
odel Level

M
etam

odel Level

Base
Model File

1..*

Extension
Model File

1..*

Extension
Object

One of these
Containments
Applies

Figure 5.3.:Concept Overview: Metamodel Extension

105

5. Metamodel Extension

5.3. Mechanism Selection Criteria

For this contribution, only mechanisms that fulfill specific criteria are rele-

vant. E.g., the mechanisms should enable external extensions. Therefore,

a mechanism had to fulfill several criteria in order to be evaluated. Exten-

sion mechanisms that do not fulfill these criteria are briefly presented

in Section 5.5.

S1) Unintrusiveness Intrusive mechanisms were dismissed, as they do

not enable an external extension. Extension mechanisms were still

allowed to require extension points in the base metamodel. This is a

slight degree of intrusiveness, as a metamodel that does not feature

extension points has to be modified in order to support such an exten-

sion mechanism. If, on the other hand, extension points are already

present in the base metamodel, the extension mechanism is not in-

trusive. This selection criterion helps to address Problem 1 (Package

Structure Erosion and Uncontrolled Growth of Dependencies) and

Problem 3 (Monolithic Metamodels). By implementing extensions

externally and not intrusively, the effect of structural erosion over

time can be avoided; monolithic metamodel can be modularized and

coupled using external extensions. Intrusive additions, on the other

hand, are not the solution, but the reason for monolithic metamodels.

S2) Instance Compatibility Language Composition approaches that ei-

ther perform in-place modifications of a metamodel or produce a new

metamodel to which models of the original metamodel are no longer

compatible are dismissed in the scope of this evaluation. There are

cases of less severe instance incompatibilities that are allowed. Some

extension mechanisms add objects to a model whose classes are not

known to the metamodel of the model. Usually, at least one of the

superclasses of their class is from the extended metamodel. In such

cases, runtime errors may occur in tools, as the direct type of the

objects is not known. These errors can, however, be caught and

meaningfully handled, e.g., by ignoring the unknown content. This

selection criterion addresses Problem 8 (Instance Incompatibility).

S3) Metamodel Independent This evaluation only investigates exten-

sion mechanisms that work for all EMOF-based metamodels. Some

106

5.4. Metamodel Extension Mechanisms

extension mechanisms were explicitly developed for one metamodel.

They are not of interest for this contribution.

S4) Novel and Non-Composite This evaluation only investigates exten-

sion mechanisms that were not yet investigated. Combinations of

other extension mechanisms are less interesting, as they inherit the

properties of these extension mechanisms.

S5) Availability In order to evaluate an extension mechanism, it must

be possible to apply it. Without the option to use the extension

mechanisms, several comparison criteria cannot be assessed. If an ex-

tension mechanism requires an extension to the meta-metalanguage

or the modeling framework, but no implementation is available, the

extension mechanism cannot be applied and investigated.

5.4. Metamodel Extension Mechanisms

This section presents a collection of metamodel extension mechanisms.

They stem from experience and a literature review. To the best of my

knowledge and except for the dismissed mechanisms of Section 5.5, this

list is complete. In the future, however, new extension mechanisms may

be developed, that are not yet included in this list.

Figure 5.4 shows what the extension should accomplish. Subfigure (0) shows

the initial situation. It is simply the class B (short for base class). Subfigure

(1) shows what should be emulated by an external extension. It is the result

of an intrusive addition. An arbitrary dependency d is added to B. Arbitrary

dependencies (dotted arrows) represents one of the dependencies that were

introduced in Section 2.2 (attribute, reference, containment, inheritance,

type bound or argument). The goal is, however, to extend B externally.

This is shown in (2). The extension class E has an extends relation to B.

It carries the extension content, which in this case is d. The notation of

the extends relation is a filled arrow. It is taken from UML stereotyping.

This extends relation can be implemented in several ways by the extension

mechanisms that are presented in this section. Subfigure (1) could even

be the starting point of a modularization where one wants to factor out

107

5. Metamodel Extension

(1) Intrusive
Addition

d

(2) External
Extension

d

B B

E

(0) Initial
Situation

Base
Metamodel

File

Extension
Metamodel

File

B

Figure 5.4.: Intrusive Addition and External Extension

the dependency d. To separate concerns, d is extracted into the new class

E and placed in another metamodel file.

5.4.1. Intrusive Addition

Intrusive Addition is not a mechanism for external extension. It is, however,

mentioned here for comparison. Figure 5.4 (1) shows an intrusive addi-

tion. The arbitrary dependency d is added to B. Before the addition, B

did not contain d.

5.4.2. Direct Inheritance

Extension by Direct Inheritance is implemented by using a cross-module

inheritance relation from the extension class to the base class. Figure 5.5 (2)

shows an application of Direct Inheritance. The extension class E inherits

from the base class B. E carries the extension content. If the extension

is instantiated, E is instantiated instead of B. An instance of E can then

be used like an instance of B with the addition that it also carries the

extension content.

It is important to differentiate Direct Inheritance against the addition of

new subtypes. Direct Inheritance is not used to add true subtypes to a

containment but only to add new class properties to existing classes.

108

5.4. Metamodel Extension Mechanisms

r

Base
Metamodel

File

Extension
Metamodel

File

B

E

(1) Direct
Inheritance

d d

B

E

(2) Referencing with
External Container

Ct

d

r

d

B
c

E

(3) Referencing with
Reused Container

Ct

A B

E

(4) EMF
Profiles

Stereotype

Base
Metamodel

File

Extension
Metamodel

File

Figure 5.5.: Extension Mechanisms: Direct Inheritance, Referencing, EMF Profiles

IntBIIS [Hei+17; Hei14], for example, uses Direct Inheritance to estab-

lish extensions.

5.4.3. Referencing with External Container

An extension relation can also be realized by a reference (as explained

in a paper in which I collaborated [Jun+14]). When doing so, there are

several options to contain the extension class. This section first explains

these options and then focuses on the first one. The next option is pre-

sented in Section 5.4.4.

As already mentioned, there are several options to contain the extension

class. It could be a root container itself. This means, however, that each

of its instances produces a new model file. This is only reasonable if there

are only one or very few instances. This applies only to some special

109

5. Metamodel Extension

cases. In general, it is beneficial to provide a container for the extension

class. There are two ways to achieve this: (1) by providing a new container

in the extension metamodel, (2) by reusing an existing container in the

base metamodel. The second option is not always feasible, as a suitable

superclass has to exist.

Figure 5.5 (2) illustrates the first option. The base class B is referenced by

the extension class E. E is contained by the new container Ct. Ct is located

in the same metamodel file as E. The extension is instantiated as follows.

For a model file that ought to be extended, a newmodel file with an instance

of Ct as the root object is created. Tools that use the extension have to

locate this extension model file. This can be done, e.g., by depositing it in

the same location as the base model file and naming it accordingly. Each

instance of E is contained in the root Ct object. To find an extension of a

B object, the content of the root object must be iterated until one is found

that points to the B object in question.

The PASE extension
2
to Palladio uses Referencing with External Container

to establish extensions.

5.4.4. Referencing with Reused Container

When using a reference to realize a class extension, the second option

to contain the extension objects is to reuse an existing container in the

base metamodel. This is shown in Figure 5.5 (3). The extension class E

references the base class B. E also inherits from A, which is contained by

Ct. Ct and A are located in the base metamodel. A has to be a meaningful

superclass of E. Instances of E are stored in instances of Ct. Tools that

operate on the extension have to know where the Ct instance that contains

the extension objects is located.

5.4.5. EMF Profiles

There is no native support for stereotypes in EMOF and EMF. EMF Profiles

[Lan+11; Lan+12] is an extension to EMF that provides functionality similar

2 https://sdqweb.ipd.kit.edu/wiki/PASE (last visited 23.08.2019)

110

https://sdqweb.ipd.kit.edu/wiki/PASE

5.4. Metamodel Extension Mechanisms

to UML profiles and stereotypes [Obj17] (see also an adaption by Braun

[BE15a]). This evaluation considers the current version
3
[Kra+12] of EMF

Profiles. Figure 5.5 (4) shows the application of a stereotype. In this case, E

is not a class but a stereotype. It is not contained in a metamodel file but in

a profile. A profile contains a set of stereotypes. The arrow from E to B is a

stereotype application arrow. Its notation is identical to the notation of the

extends relation that is shown in Figure 5.4 (2). Attributes and references

can be specified in the stereotype. Addition of containments is not possible

in the current version. New complex data must be therefore defined in a

separate metamodel. Tools can instantiate stereotypes on base objects and

access their extension content via an API that is part of EMF Profiles. The

instance of a profile is contained in the base model file as an additional root

object. Such a profile instance contains instances of its stereotypes.

5.4.6. Extension Point Inheritance

In addition to Direct Inheritance, there is another way to leverage cross-

module inheritance to implement extensions. This extension mechanism,

however, requires an extension point in the base metamodel. Figure 5.6

shows the application of this extension mechanism. There are two variants.

Both variants have in common that the extension class E inherits from a

class A that is contained by B. In the local variant (1), B contains A directly.

In the global variant (2), B inherits from the superclass S that contains A. S

is the common superclass of all classes in the base metamodel, so all classes

can be extended this way if needed. In both variants, A has to be a proper

superclass to E. This means if A has any class properties, they must suit E.

To instantiate the class extension, an E instance is created and stored in the

B object. Tools that operate on the extension need to iterate the instances

that are contained in the B instance to find the proper extension object.

Kitalpha [LEZ14] uses Extension Point Inheritance with a global extension

point to establish extensions.

3 https://sdqweb.ipd.kit.edu/wiki/MDSDProfiles (last visited 23.08.2019)

111

https://sdqweb.ipd.kit.edu/wiki/MDSDProfiles

5. Metamodel Extension

Base
Metamodel

File

Extension
Metamodel

File
(1) Local Extension

Point

d
E

A B

(2) Global
Extension Point

d
E

A B

S

∙ ∙ ∙

Common
Superclass

Figure 5.6.: Extension Mechanisms: Extension Point Inheritance

5.4.7. Decorator Pattern

The decorator pattern is used to enrich an object by new class properties

[Gam+95]. When used correctly across metamodel module boundaries,

it also functions as an extension mechanism. Figure 5.7 illustrates the

application of two variants of the decorator pattern. Both variants have

several things in common. AD stands for abstract decorator. It is the

superclass for all decorators. More decorators may be provided by further

metamodel extensions. The concrete decorator E, which is the extension

class, inherits from AD. Through the containment of AD, a decorator can

contain a B instance or another decorator. This way, an arbitrary number of

decorators can be nested. When instantiating a decorator-based extension,

an E instance is placed in the containment c in which the extended B

instance would reside. The B instance is then contained by the decorator.

This way, the B instance is extended by the extension content of E. Tools that

operate on the extension follow c to retrieve the outermost decorator. The

decorators are then iterated until the data in question is found. This is either

the extension content of a decorator or the property values of the B instance.

Variant (1) requires a superclass to exist that fits the scope of the extension.

This means that the set of its subclasses contains all classes that should be

extended but no further classes. In the usual descriptions of the decorator

112

5.4. Metamodel Extension Mechanisms

(1) With Abstract Superclass

d

1

E

S

B AD

∙ ∙ ∙

(2) Without Abstract
Superclassc

d

1

E

S

B

AD

∙ ∙ ∙
d

E

B

AD

∙ ∙ ∙

1

c

c

d

1

E

S

B

AD

∙ ∙ ∙

c

(a) Predefined
(b) External

(c) Extension Specific

d
E

B

AD

∙ ∙ ∙

1

c

Base
Metamodel

File

Extension
Metamodel

File

Extension
Metamodel

File

Extension
Metamodel

File

Base
Metamodel

File

Base
Metamodel

File

Figure 5.7.: Extension Mechanisms: the Decorator Pattern

113

5. Metamodel Extension

pattern, S has only the class that ought to be decorated (B) and the superclass

for all decorators (AD) as subclasses. Other sibling classes of B that can

also be decorated are, of course, allowed. As a further requirement, all

incoming references and containments have to refer to S and not to B. If

this is not the case, some part of the model may refer to the B instance

directly and, thus, bypass the decorators.

If no such S exists as a superclass, variant (2) may be used. In this variant,

AD inherits directly from B. This includes all class properties of B. This has

the advantage that if only one decorator is instantiated, no instance of B is

necessary, as all class properties of B are already present in the decorators.

It, however, also has the disadvantage that class properties are redundant if

multiple decorators are instantiated. One decorator carries the values of

the class properties and the others are redundant and not needed. Either

they are left empty, which is only possible if their multiplicities have a

lower bound of 0, or their values are duplicated. In the case where only the

properties of one decorator are used, the outermost decorator should carry

the values. New decorators should be added to the innermost decorator as

not to displace the outermost decorator. In the case of duplication, all mod-

ifications of a value have to be propagated to all other decorator instances.

The classes that are necessary to realize a decorator-based extension may

be placed in metamodel files in various constellations. Of course, B and S

(only for the first variant) always reside in the base metamodel file. E is

always located in the extension metamodel file. In variant (1), AD may be

located either in the base metamodel file (a), an own metamodel file (b), or

the extension metamodel file (c). Regarding variant (2), AD can be located

in an own metamodel file (b) or in the extension metamodel file (c).

If AD is located in the base metamodel, it is named a predefined decoration (a).
Predefined decoration only makes sense for variant (1), as variant (2) does

not prepare a decoration. If a decoration had been prepared, there would

have been a proper superclass for the decorator to inherit from, which is the

case for variant (1). The benefit of predefined decoration is that the tools

that operate on the base metamodel expect a decoration and therefore can

handle decorated model files. This is not the case for the other (b) and (c),

as the tooling expects an instance of B in the containment c. If a decoration

is instantiated in (b) and (c), there is no B instance in c but a decorator

instance, which cannot be processed by the tooling of the base metamodel.

114

5.5. Dismissed Mechanisms

If the base metamodel does not feature an abstract superclass for decorators

(AD), it can be added externally. One way to do so is named an external
decoration (b). AD resides in its own metamodel file, which is separate from

the extension metamodel files. This option should be chosen if multiple

independent extensions are expected.

If only one extension is expected, AD can also be defined within the exten-

sion metamodel file. This is named extension specific decoration. This has the
benefit that fewer metamodel files are required. If further decorator-based

extensions ought to be developed, there are two options: the extensions

inherit from the existing AD class, or they define their own AD class.

Both options have a drawback. If the AD class is reused, the modularity

of the extensions is impaired. Further metamodel extensions depend on

the metamodel extension that defines AD, which contains further classi-

fiers that are not relevant for the depending metamodel extension. If the

AD class is respecified, the class is duplicated and, therefore, unnecessary

complexity is introduced.

5.5. Dismissed Mechanisms

This section presents mechanisms that have been dismissed. They do

not fulfill the selection criteria that were presented in Section 5.3. Each

mechanism is briefly presented; the reason for its dismissal is explained.

This list is not complete. Some research fields were not further explored

when it became apparent that they, for example, only pursue intrusive

mechanisms. The dismissed mechanisms are grouped into the following

categories: intrusive mechanisms (violating S1 and S2, see Section 5.5.1),

metamodel-specific mechanisms (violating S3, see Section 5.5.2), duplicate

and composed mechanisms (violating S4, see Section 5.5.3), and unavailable

mechanisms (violating S5, see Section 5.5.4).

5.5.1. Intrusive Mechanisms

Several approaches that are not considered by this evaluation, as they are

intrusive or do not provide instance compatibility. Therefore, they do not

fulfill the selection criteria S1 or S2.

115

5. Metamodel Extension

A model transformation [CH03; MG06] takes a model as an input and

automatically produces another model as output. A model completion

[Hap+14] is a special case of model transformation. It only adds new model

elements. Existing elements cannot be deleted. Values (i.e., the target of a

reference) are only modified to include the new elements. As a metamodel

is also a model, model transformations and completions can also be applied

to metamodels. A completion could be used to perform an addition of

class properties. If the completion is performed in-place, it is an intrusive

addition. Such a mechanism does not fulfill the selection criterion S1. If the

completion produces a new metamodel, it can be considered to be a branch.

Instances of the branched metamodel are, in general, not compatible with

the original version. As soon as the new class properties are used (e.g.,

an object provides a value for a new attribute), the model is no longer

compatible with the original version of the metamodel. Such a mechanism,

therefore, does not fulfill the selection criterion S2.

Aspect-oriented modeling (e.g., [KAK09]) uses a technique which is named

model weaving to insert new model elements. Model weaving is similar to

performing additions of class properties by using completions. It, therefore,

does not fulfill either S1 or S2 depending on whether it is used in-place or

produces a branched metamodel. Language composition approaches for

metamodel-based languages (e.g., Melange [Deg+15], metamodel merging

[ES06; Léd+01], template instantiation [ES06]) have the same problem. An

addition of class properties could be achieved bymerging a small metamodel

that contains only the desired class properties into the base metamodel.

Analogously to completions, however, S1 or S2 are not fulfilled.

5.5.2. Metamodel-specific Mechanisms

Architectural Templates [Leh18] is an extension mechanism for the PCM.

It is used to define architectural templates (i.e., patterns) and annotate

them to PCM models. Based on annotated templates, a PCM model is

automatically completed. Such templates, therefore, reduce the modeling

effort of PCM models. Architectural Templates does not fulfill the selection

criterion S3 as it cannot be applied onto other metamodels without further

ado. Further, it uses EMF Profiles to establish extensions. Architectural

Templates, therefore, does not fulfill criterion S4.

116

5.5. Dismissed Mechanisms

5.5.3. Duplicate and Composed Mechanisms

The Role pattern [Küh17] is a design pattern known from object orientation.

The pattern describes that objects can take part in different kinds of roles and

thereby relate to other objects. Figure 5.8 shows two possible application of

the Role pattern as an extension mechanism. Both do not fulfill the selection

criteria S4, as explained in the following paragraphs.

(1) External Role Pattern

d
RB E

(2) Internal Role Pattern

d

RP1 P2

B E

Extension Point Inheritance

Extension by
Referencing

Figure 5.8.: Extension Mechanisms: the Role Pattern

Subfigure (1) shows a variant in which the base metamodel does not prepare

the use of roles. The base metamodel only contains the base class B. The

role class R has to be implemented in the extension metamodel. It references

the base class B and the extension class E. E is located in the extension

metamodel and carries the extension content d. This variant does not fulfill

the selection criteria S4, as it uses a referencing extension mechanism.

Depending on the container of R, the Referencing with Reused Container or

(Section 5.4.4) or External Container (Section 5.4.3) extension mechanism

is used. It is also possible for R to reference a superclass of E in order

to enable other extension classes to use the same role. This, however,

does not affect the decision whether this Role pattern variant is a novel

extension mechanism.

Subfigure (2) shows a variant in which the base metamodel provides classes

for a role-based extension. The base metamodel contains the base class

B, the role class R, and two abstract superclasses for the participants for

the role (P1 and P2). In order to relate the participants, R references P1

and P2. In order to participate in the role, B inherits from P1. The external

117

5. Metamodel Extension

extension is implemented by a metamodel file crossing inheritance from E

to P2. This is, however, the same mechanism as Extension Point Inheritance.

This variant, therefore, does not fulfill the selection criteria S4.

Emerson and Sztipanovits [ES06] present metamodel composition methods.

These include Metamodel Interfacing and Class Specialization. As meta-

model composition methods, they are more general compared to metamodel

extension mechanisms. Transferred to an application as an extension mech-

anism, they are identical to the Referencing with External Container (Sec-

tion 5.4.3) and the Direct Inheritance (Section 5.4.2) extension mechanisms.

5.5.4. Unavailable Approaches

Braun developed four extension mechanisms [BE15b; Bra17]: Hooking,

Aspects, Plugins, and Addons. They require an extension to EMOF and

presumably an extension to the modeling framework runtime. For the

Hooking mechanism, the metamodel developer defines hooking points in

the base metamodel. With the help of these hooking points, class properties

can be added and modified, classes can be specialized, and classifiers can be

renamed. Aspects support the addition of reoccurring abstractions without

the need for prearrangement. Plugins enable the coupling of standalone

metamodels. Addons are related to plugins, but are less complex and may

depend directly on the base metamodel.

In the scope of this thesis, however, Braun’s extension mechanisms are

not considered, as the do not fulfill the selection criteria S5. In his paper

[BE15b], Braun specifies the extension of EMOF. To be usable, however,

an extension to a modeling framework runtime is missing. There is no

publicly available implementation, nor could the author provide one when

requested. Thus, it is not possible to evaluate these mechanisms.

Without the option to use the extension mechanisms, several comparison

criteria cannot be assessed. From the information that is available in publica-

tions, it cannot be reliably determined whether Braun’s mechanisms really

are extension mechanisms according to the definition given in Section 5.2.

As Braun mentions merging in the context of applying his mechanisms, it

118

5.6. Comparison Criteria Catalog

may be more appropriate to classify them as language composition mecha-

nisms. At least the Hooking mechanism in its entirety does not fulfill S2,

as it is possible to change types and rename classes.

5.6. Comparison Criteria Catalog

This section presents the comparison criteria that are used to evaluate the

extension mechanisms. This catalog could also be expressed as a QGM

plan. The goal, however, which is derived from RQ II (Extension Mech-

anism Comparison), is too broad. The goal is to find the advantages and

disadvantages of the extension mechanisms. This does not really fit the

QGM approach. If applied regardless, the criteria can be seen as evaluation

questions, which have only one metric. This metric is the metric that is

presented for each criterion.

Some of these criteria were derived from the challenges this contribution

addresses (see Section 5.1). The remaining criteria were specified from

experience. When experimenting with the extension mechanisms, one

notices characteristics that put them apart from other mechanisms. This

list contains the criteria most relevant to this thesis. It, however, is not

exhaustive. Some of the criteria overlap with the descriptions of Braun

[Bra17]. For a proper differentiation, see Section 11.2.

The criteria with a binary result are stated in a way that the TRUE result is

positive. This does not necessarily apply for the Extension Object Deletion

criterion. Whether an automatic deletion is desired is dependent on the

purpose of the extension.

These criteria were set up before the evaluation. As a consequence, they

contain causal relations. The causal relations that were discovered during

the evaluation are discussed in Section 8.2.3. These relations are, however,

not a weakness of the comparison criteria, even if some of them produce

identical or negated results. The comparison criteria express an effect,

which is a merit in itself.

119

5. Metamodel Extension

5.6.1. Metalanguage Support

This criterion checks whether an extension mechanism is supported by the

EMOF meta-metamodel. Some extension mechanisms can be used with

a standard EMOF Framework (e.g., EMF). Other extension mechanisms

require an extended EMOF meta-metamodel or additional libraries. Tools

that operate on content of extensions that are implemented by these ex-

tension mechanisms are dependent on the meta-metamodel extensions

and additional libraries.

The results of this criterion are:

Yes The extension mechanism is supported by standard EMOF.

No The extension mechanism requires some form of an addon to be in-

stalled.

5.6.2. Applicable without Preparation

This criterion assesses whether an extension mechanism needs to alter the

base metamodel in order to be applicable. Some extension mechanisms

can be applied in any case. Other extension mechanisms need predefined

extension points in the base metamodel.

This comparison criterion addresses Problem 1 (Package Structure Erosion

and Uncontrolled Growth of Dependencies). An extension mechanism

that requires preparation enriches the base metamodel a little. Compared

with an intrusive addition the effect is minimal. However, many extension

points may still clutter the metamodel. A completely unintrusive extension

mechanism that does not require preparation does not worsen the erosion

of a metamodel at all.

Heavyweight language composition methods that either do in-place modifi-

cations of the base metamodel or produce a new metamodel are considered

to be intrusive. Their intrusiveness is higher compared with extension

mechanisms that merely require extension points. In general, such heavy-

weight language composition methods, however, do not provide backward

compatibility and are therefore excluded from this investigation.

120

5.6. Comparison Criteria Catalog

The results of this criterion are:

Yes The extensionmechanism can be applied to any class in anymetamodel

and does not need any preparation in the metamodel.

No The base metamodel has to be prepared for the extension mechanism

to be applicable.

5.6.3. Model Level Unintrusiveness

This criterion rates if the instantiation of an extension on a base object

alters the model file of the base object. Some extension mechanisms persist

their instance data in separate files. Others add it to the model file that

contains the base object.

This criterion addresses Problem 8 (Instance Incompatibility). In EMF, the

loading of models is implemented to fail fast. This means a program is

interrupted on the detection of unknown objects, even if they are subtypes

of known classes. This leads most tools to be unable to load models with

unknown extension content. This can be counteracted only by manual

effort that is spent on implementing the handling of unknown extension

content in the tools. E.g., the Sirius framework for graphical editors ignores

unknown extension content. In general, however, the forward compatibility

of tools depends on whether the extension mechanism is unintrusive on the

model level. Figure 5.9 illustrates the problem of model level intrusiveness

and forward compatibility of tools. A tool that can operate on an instance

of B might not be able to operate on an extended instance of B. As already

mentioned, the compatibility of tools is not determined on the object level,

but on whole model files. A tool could be unable to load a whole model

file that contains an extended base object.

The results of this criterion are:

Yes The extension method is unintrusive regarding the model level.

No Themodel that is extended is altered by the application of the extension

mechanism.

121

5. Metamodel Extension

E

e

B

b2b1

Tool

possible?

LegendOperates on

Figure 5.9.: Forward Compatibility of Tools

5.6.4. Content Retrieval Computational Complexity

This criterion assesses the computational complexity of the retrieval of the

extension content of a base object. It uses the Bachmann–Landau notation

[Bac94; Lan74] to provide an upper bound for the growth in response time

as specific numbers of objects in the model or extension model increase.

Some extension mechanisms support the navigation from a base object

directly to its extension objects. In these cases, the response time is constant

as it is not influenced by the number of other objects in the base and exten-

sion model. The computational complexity of the content retrieval of such

extension mechanisms lies in O(1). For the other extension mechanisms,

objects have to be iterated and tested if they refer to the base object in ques-

tion. For some of these extension mechanisms, the number of objects that

have to be iterated in the worst case is the number of extension objects of

the metamodel extension (n). For other extensions, the number of extension

objects (m) that have been applied to a base object possibly bymultiple meta-

model extensions is relevant. To the remaining extensions, the number of

instances (k) that are contained by a containment in the base metamodel is

relevant. This number is constituted by several factors: extension objects of

the extension, of other extensions, and instances from the base metamodel.

If the search for the correct extension object is implemented explicitly on

every access in the code of a tool, the code complexity of the tools increases.

122

5.6. Comparison Criteria Catalog

Thus, helper methods should be provided by the developers of either the

extension mechanism or the metamodel extension to encapsulate this com-

plexity and ease the retrieval of the extension objects. Often, however, such

helper methods only hide the fact that the retrieval time grows linearly

with the number of objects that have to be searched. A workaround to

achieve better performance is to build an in-memory hash maps to retrieve

extension objects. Such hash maps can be implemented for every extension

mechanism that does not offer constant retrieval time. Hash maps, however,

take up additional memory, have to be maintained as the model and the

extension content changes, and are transient. Transient means that they

are not persisted and have to be build again if the model is loaded.

The results of this criterion are:

1 Extension content retrieval is possible in O(1) without any additional

maintenance overhead.

n The worst case extension content retrieval time grows linearly with the

number of extension objects of the metamodel extension. The computa-

tional complexity of the operation lies in O(n).

m The worst case extension content retrieval time grows linearly with the

number of extension objects that are applied to the base object. The

computational complexity of the operation lies in O(m).

k The worst case extension content retrieval time grows linearly with

the number of objects in the utilized containment. The computational

complexity of the operation lies in O(k).

5.6.5. Applies to Subclasses

This criterion evaluates if a class extension that extends a class B can also be

instantiated on the subclasses of B. Figure 5.10 illustrates the criterion. Usu-

ally, a class obtains all class properties from its superclass. If, however, class

properties are externally extended, it depends on the extension mechanism

whether the extended class properties are also inherited. Extension mecha-

nisms that rely on inheritance cannot be instantiated on subclasses usually.

123

5. Metamodel Extension

B E

C

ec

possible?

Figure 5.10.: The Applies to Subclasses Comparison Criterion

The results of this criterion are:

Yes The extension mechanism can also be applied on subclasses of the base

class.

No The extension only applies to precisely the class it extends.

5.6.6. Orthogonality

The orthogonality criterion states whether multiple class extensions can

refer to the same base class and be instantiated on the same base object.

Orthogonality should not be confused with multiplicity, which addresses

whether the same extension can be instantiated multiple times. Figure 5.11

illustrates the orthogonality criterion. In general, it is desirable to be able

to independently develop an arbitrary number of extensions for a class.

Some extension mechanisms, however, only support the instantiation of one

class extension on an extension object. This criterion addresses Problem

9 (Incompatible Extensions).

As a workaround, some extensionmechanisms can support the instantiation

of multiple extensions on one class if the class extensions know each other.

This is, however, undesirable. Extension developers should be able to

develop extensions independently. Extensions should not depend on other

extensions for technical reasons, but only if the contents of the extensions

are conceptually required. Thus, this workaround of making the extensions

124

5.6. Comparison Criteria Catalog

E1

e1

B E2

possible?

b e2

Figure 5.11.: The Orthogonality Comparison Criterion

compatible amongst each other does not count as the extension mechanism

supporting orthogonality.

The results of this criterion are:

Yes Multiple extensions developed independently using the extension

mechanism can be instantiated on one extension object.

No It is not possible to instantiate multiple extensions on one extension

object, or the extensions must know each other to be able to be com-

bined.

5.6.7. Multiplicity

The Multiplicity criterion is concerned with whether an extension that

has been defined can be instantiated multiple times on one base object.

Figure 5.12 illustrates the criterion. Extension mechanisms that cannot

be instantiated multiple times have to specify higher upper multiplicity

bounds to emulate multiple instantiations.

The results of this criterion are:

Yes The extension mechanism supports multiple instantiation on the same

base object.

No It is only possible to instantiate an extension once on a base object.

125

5. Metamodel Extension

E e1

B b

e2

possible?

Figure 5.12.: The Multiplicity Comparison Criterion

5.6.8. Model File Integrity

This comparison criterion is concerned with the integrity of model files

on which an extension has been instantiated. Some extension mechanisms

deposit their extension content in the base model files. Other mechanisms

create new model files to hold the extension objects and their content.

This is named model fragmentation. When model fragmentation occurs,

tools that operate on the metamodel and the extension have to know the

location of the extension model files. This can be done, e.g., by naming

the extension model file accordingly.

The results of this criterion are:

Yes The instantiation of the extension mechanism does not produce any

new model files.

No The instantiation of the extension mechanism causes model fragmen-

tation.

5.6.9. Containment Tree Integrity

This comparison criterion is concernedwith the integrity of the containment

tree of models for which an extension has been instantiated. A metamodel

forms a hierarchy concerning its containment relations. This also translates

to the instances (models) of a metamodel. E.g., if class A contains class C, a

is an object of A, and c is an object of C, then c can also be contained by a.

Figure 5.13 illustrates the criterion. Subfigure (1) shows the containment

tree of a model on that an extension should be instantiated. The b object

126

5.6. Comparison Criteria Catalog

should be extended. Subfigure (2) shows an extension that leaves the con-

tainment tree intact. The extension object e is contained by the base object

b. Subfigure (3) shows an extension that does not leave the containment

tree intact. This is named containment tree fragmentation. The extension
deposits its extension objects in a separate root container. This container

may reside in the base model file or a separate model file.

(1) Unextended
Model

b b

e

(2) Containment Tree
Intact after Extension

b e

(3) Containment Tree Fragmented
after Extension

Objects of the
Base Model

Figure 5.13.: The Containment Tree Integrity Comparison Criterion

127

5. Metamodel Extension

The results of this criterion are:

Yes The containment tree of a model stays intact if the extension

mechanism is instantiated.

Depends Whether the containment tree of a model stays intact depends

on the circumstances.

No The instantiation of the extension mechanism fragments the

containment tree of a model by creating further roots.

5.6.10. Extension Object Deletion

This comparison criterion is concerned with whether extension objects are

automatically deleted if their base object is deleted. An automatic deletion

occurs, e.g., with extension mechanisms with which the extension object is

contained by the base object. The extension content is lost on the deletion

of the base object. This may be undesirable if a tool or tool user that

is unaware of the extension deletes base objects for which the extended

information should remain. If extension objects are not deleted, they remain

in the extension model file with a void relation with which they used to

point to the base object. Tools that operate on the base metamodel and its

extension may explicitly delete extension objects if the respective objects

are deleted. If this is not done, extension objects with void references

remain and accumulate.

The results of this criterion are:

Yes Extension objects and extension content is deleted on the deletion

of the base object.

Depends Whether extension objects are deleted depends on the implemen-

tation of the helper methods of the extension mechanism.

No Extension objects and extension content remain even if the base

object is deleted.

128

5.6. Comparison Criteria Catalog

5.6.11. Adds a Type

The Adds a Type criterion rates whether the instantiation of a class exten-

sion using the extension mechanism makes the base object b an instance

of the extension class E. Figure 5.14 illustrates the criterion.

B E

eb

is instance?

Figure 5.14.: The Adds a Type Comparison Criterion

The results of this criterion are:

Yes An instantiation of a class extension makes the base object an

instance of the extension class.

Depends If multiple different class extensions are instantiated on a base

object, only one applies its type to the base object.

No There is no type added to the base object on the instantiation of

a class extension.

129

6. A Reference Structure
to Enforce Modularity
in Metamodels

In the context of MDE and domain modeling, metamodels are created

to describe specific subjects. Conventional metamodel design, however,

produces metamodels that tend to have certain shortcomings. They lack

modularity and are neither designed for reuse nor extension. The lack

of modularity leads to a high complexity of the constituent metamodel

files. Lacking modularity and high complexity severely impede a meta-

model’s understandability. An improper modularization favors problematic

dependencies that deteriorate the evolvability of a metamodel due to higher

coupling. The potential for reuse is diminished because of monolithic

metamodels. When languages that describe the same subject matter from

different points of view are developed, the developers are forced to imple-

ment large parts of the metamodel from scratch or clone parts of other

metamodels. It would be more favorable for these languages to share a

common core. This reduces effort and brings partial interoperability. This

is also beneficial for metamodels that are used for quality analysis. Fun-

damental patterns could be reused in different domains but are not. On a

domain model, several quality dimensions could be specified and analyzed,

but a lacking separation of concerns hinders this endeavor. For some anal-

yses, their specific input and output data is integrated into the language,

which further convolutes its metamodel.

Some approaches pursue various goals to tackle the challenges that were

mentioned above. An approach proposes the creation of languages by

reusing patterns [Pes+15; CG11], others offer operations that transform

and combine existing metamodels to form new languages [Deg+15], and

further ones compile metamodel fragments into complete metamodels

131

6. A Reference Structure to Enforce Modularity in Metamodels

[Com+18]. These types of approaches, however, have the shortcoming

that, in general, they do not enable partial interoperability between the

languages even though they share a common core. Other approaches

deal with metamodel modularization [Gar+14] and refactorings [Are14]

in general. These approaches, however, do not provide guidelines on how

to organize the overall structure of the metamodels.

This chapter
1
presents the core contributions of this thesis, an approach to

structure metamodels to improve their reusability and evolvability. This

contribution consists of two parts. One is beneficial to metamodels in

general. The other is specific for metamodels that are used for quality

analysis. In contrast to contribution I (Bad Smells and Anti-Patterns in

Metamodeling), this chapter takes a more proactive approach to properly

structure a metamodel to protect it from erosion over time. This chapter

transfers several concepts and best practices from related disciplines to

metamodeling. The approach of metamodel extension from the previous

contribution is necessary to apply some of these concepts and best practices

in metamodeling. This chapter proposes to structure metamodels to reflect

their language features to achieve proper separation of concerns. This is

achieved with the help of feature models. This chapter further presents

a specific layering as a reference structure for metamodels that are used

for quality analysis. A layering partitions a metamodel and only allows

layer-crossing dependencies in one direction. Layering is useful, as the

dependency direction restriction decouples more basic layers from more

advanced ones. This reference structure supports evolution scenarios that

are common for metamodels that are used for quality analysis.

This chapter is structured as follows. Section 6.1 provides an overview of

concepts and best practices that are transferred to metamodeling from re-

lated disciplines. Section 6.2 specifies the research questions and challenges

that the reference structure contribution addresses. Section 6.3 describes

metamodel modularization concepts that are fundamental to this contri-

bution and can be applied to metamodels in general. Section 6.4 proposes

the reference structure for metamodels that are used for quality modeling

and analysis. Section 6.5 describes refactorings of classes, modules and

feature models that are necessary to apply the reference structure approach.

Section 6.6 presents three processes of how to apply the reference structure

1
This chapter is partly based on [HSR19] (©2019 IEEE) and [SH16a; Str+15].

132

6.1. Concepts and Best Practices of Related Disciplines

approach in the scenarios: designing a modular metamodel, modularizing

a legacy metamodel, and extending a modular metamodel.

This chapter is continued in subsequent parts of this thesis. Chapter 9

presents case studies in which the reference structure was applied to meta-

models. Chapter 10 performs evaluations on the case studies to validate

the reference structure approach. Section 11.3 presents related work. Sec-

tion 12.3 concludes this chapter. Appendix B explains the mapping of the

modularization concepts onto the technical foundation and presents tool

support for the reference structure approach.

6.1. Concepts and Best Practices
of Related Disciplines

This contribution takes established concepts and best practices from related

disciplines and transfers them to metamodeling. Thus, this section first

justifies and motivates the transfer. Amongst the disciplines that are related

to metamodeling, there are object-oriented design, software architecture,

and Software Product Line development. Some of them are older and

more mature compared to metamodeling. Concepts and best practices have

been established that are not applied in metamodeling. These are modules,

reference architectures, the layered architecture pattern, feature models,

the acyclic dependency principle, the dependency inversion principle, the

separation of concerns principle, and the single responsibility principle.

For each concept and best practice, the following paragraphs provide a

brief explanation, a description of how it is transferred to metamodeling,

and a quick motivation for the use in metamodeling. A full explanation of

the rationale behind the concepts, however, cannot be provided until the

concepts were fully presented. This is done in Section 6.3.7 and Section 6.4.5.

The full explanation of how they are utilized in metamodeling is presented

in Section 6.3, Section 6.5, and Section 6.6.

Amodule [Par72] is a partition of a program. Originally, a module was a set

of subroutines that features an explicit interface for these routines. In con-

trast to a component, it does not provide multiple instantiation. The concept

of modules can loosely be transferred to metamodeling. Metamodels (i.e.,

133

6. A Reference Structure to Enforce Modularity in Metamodels

their classifiers) can also be partitioned. As a metamodel provides types, a

multiple instantiation is not always desired, as a it would result in multiple

different types with the same properties. The concept of explicit interfaces

can also be loosely transferred to making the metamodel files that a meta-

model file requires explicit. In order for a metamodel developer to introduce

a new dependency to another metamodel file that was not yet depended

on, s/he has to manually and explicitly allow the new dependency. This ap-

proach is also related to the import of packages or the loading of libraries in

software development. The rationale of the transfer of the module concept

to metamodeling is to enforce more conscious handling of dependencies.

A reference architectures proposes a template solution for software archi-

tectures of a specific domain or purpose. It suggest a specific partitioning

of the architecture and may even propose concrete components, modules,

interfaces, or data types. As a metamodel has no architecture as software

does, the term is adopted to metamodeling as reference structure. Applying

the concept of a reference structure to the internals of metamodels is not

meaningful, as this scope is already covered by metamodel design patterns.

It can, however, be applied to metamodel files and their relations. The

benefit of a reference structure is that it provides an explicit structure as

well as guidance to developers.

The layered architecture pattern [Bus+96] also establishes a partitioning and

enforces a directionality of relations between the layers. The concept of a

layer can be transferred to a set of metamodel files and their dependencies.

The dependencies of the metamodel files of a layer are only allowed to

go into metamodel files of the same layer or to metamodel files of more

basic layers. The benefit of such an approach is to decouple more base

layers from more specific ones. This makes basic layers reusable and more

specific layers easier to exchange.

Feature models (see Section 2.4) are used to explicitly and hierarchically

express functionality, its interdependencies, and variability. Feature models

can be used in arbitrary domains to map feature nodes to software artifacts

of said domain. By doing so, the mapped artifacts of selected feature nodes

can be further processed after a selection has been performed on the feature

model. This approach can also be applied to metamodels. Feature nodes can

be mapped to, for example, metamodel files. If a feature node is selected, its

metamodel file is deployed. The motivation behind using feature models is

134

6.2. Research Questions and Challenges

to explicitly model the relation of the language features and impose that

structure onto the larger structure of a metamodel. It also serves as a means

to give tool users an interface to select the features of a metamodel they

want to instantiate in a model.

The acyclic dependency principle [Fow03] from object-oriented design states

that the dependencies of packages or similar high-level partitions should not

form cycles. The principle can be transferred, for example, to metamodel

files and their dependencies. All metamodel files in a cycle can only be used,

reused, and understood together. Forbidding cycles breaks this coupling,

and some of themetamodel files no longer depend on all other files of the for-

mer cycle. This enables a more fine-grained use, reuse, and understanding.

The dependency inversion principle [Mar03] states that abstractions should

not depend on specifics, but specifics should depend on abstractions. As the

concepts of metamodeling also feature dependencies and express varying

degrees of abstraction, the principle can be transferred to metamodeling.

This is possible on several levels of granularity (e.g., classes and metamodel

files). By transferring the dependency inversion principle to metamodel

concepts, more abstract concepts can be decoupled from more specific ones.

This should increase the reusability of these concepts.

Separation of concerns [Dij82] and single responsibility [Mar03] are two prin-

ciples that propagate a modularization and encapsulation. These principles

can be transferred to metamodeling, as also a metamodel expresses con-

cerns and responsibilities on several levels of granularity. The concerns or

responsibilities in a metamodel can be seen as the definition of an abstract

pattern and the definition of a feature of the metamodel’s language. By

enforcing these principles, the metamodel should become more modular

and by that better understandable and reusable.

6.2. Research Questions and Challenges

This section presents the research questions of this contribution. For each

research question, it describes how it derives from the problem areas that

Chapter 3 presents. Next, this section presents further challenges that this

contribution addresses. These did not result in research questions as they

135

6. A Reference Structure to Enforce Modularity in Metamodels

are not validatable or could not be validated in the scope of this thesis. Nev-

ertheless, they represent questions that were important drivers of this thesis.

The following presents the research questions of this contribution. The

common theme for all research questions of this contribution is that they

proactively counteract problems that Chapter 3 presented.

RQ IIIa (Improve Evolvability): Problem 1 states that the erosion of the

package structure and uncontrolled growth of dependencies dam-

age the evolvability of a metamodel. The purpose of this research

question is to find an approach to structure a metamodel in a more

meaningful way. Therefore, a contribution of this chapter is to ex-

plore the following research question:

Can concepts from related disciplines be transferred to metamodeling
to improve the evolvability of metamodels?

RQ IIIb (Understandability): Problem 3 states, that conventionally devel-

oped metamodels suffer from structural shortcomings. These have

two effects. (1) they expose more internals to developers than neces-

sary. (2) they structure the abstractions that implement the features

of a language unfavorably. This damages the understandability of

such metamodels. Therefore, this chapter explores the following

research question:

Can concepts from related disciplines be transferred to metamodeling
to improve the understandability of metamodels?

RQ IIIc (Need-specific Dependence): Problem 3 states that large conven-

tionally developed metamodels do not enable developers to create

dependencies to parts of the metamodel in a need-specific way. Only

on whole metamodel files can be depended. Therefore, this chapter

explores the following research question:

Can concepts from related disciplines be transferred to metamodel-
ing to improve the potential to depend only on the desired parts of a
metamodel?

RQ IIId (Selective Use): When a tool user uses a metamodel, s/he is usually

only interested in specific language features. Problem 10 states

that with conventionally developed metamodels, the tool user is

not able to choose which parts of a metamodel to use according

136

6.2. Research Questions and Challenges

to her/his needs. Therefore, this chapter explores the following

research question:

Can concepts from related disciplines be transferred to metamodeling to
improve the ability of tool users to selectively use parts of a metamodel
according to their needs?

Beyond these research questions, this thesis addresses several challenges.

One of the main drivers of this thesis was to find a way to harden a meta-

model against degradation over time (addresses Problem 1: Package Struc-

ture Erosion and Uncontrolled Growth of Dependencies). This went hand

in hand with an effort to provide more explicit information to a metamodel

to ensure that structural design rationale is not lost (addresses Problem 2:

Loss of Knowledge) and to ensure that developers perform maintenance

more consistently (addresses Problem 1: Package Structure Erosion and

Uncontrolled Growth of Dependencies).

This contribution satisfies the need for a systematic process of how to pro-

ceed when working with modular metamodels. This includes the scenarios

of designing modular metamodels from scratch, refactoring legacy meta-

models into amodular form, and extendingmodularmetamodels. Such a sys-

tematic process is necessary to address Problem 3 (Monolithic Metamodels).

When metamodels are modularized in an unsystematic way, it is often

not clear how to prioritize the modularization of orthogonal dimensions

that are present in the metamodel. For example, a metamodel may define

several structural formalisms and quality properties. If these two dimen-

sions are orthogonal, each formalism has support for each quality property.

The metamodel could be first divided by formalisms or quality dimen-

sions. It is unclear how to start the modularization. The systematic process

that was mentioned above answers this question of orthogonal modular-

ization dimensions. This is necessary to address Problem 3 (Monolithic

Metamodels) adequately.

Problem 4 states that there is insufficient reuse between related languages.

This contribution aims to provide means to consolidate shared parts of

related languages to form a common base on which both languages can

then build extensions.

137

6. A Reference Structure to Enforce Modularity in Metamodels

The problems in Chapter 3 include two seemingly contradicting trade-off

decisions. Problem 6 explains that a general metamodel is very versatile

but may lack essential constructs for specific situations. A very specific

metamodel, on the other hand, is well suited for its purpose, but less so

for other purposes. Problem 5 reports that tool-specific content in a meta-

model is beneficial for the implementation of that exact tool. It is, however,

unnecessary if the metamodel is used with another tool or in another con-

text. By using the concepts from related disciplines as mentioned above,

this contribution proposes a decomposition and decoupling of general and

specific concepts. By doing this, this contribution addresses both of the

trade-off problems (Problem 6 and Problem 5).

6.3. Metamodel Modularization Concepts

Before describing the layered reference structure, this section defines the

fundamental concepts of this approach. These concepts are independent

of the purpose and the semantics of the language and therefore can be

applied to metamodels in general. They are language features, metamodel

modules, module dependencies and their restrictions, as well as layers. This

section also explains how feature models are involved with the modu-

larization concepts.

Figure 6.1 shows how the concepts relate on the type level. For the sake

of clarity, the figure does not completely define feature models. For a full

definition, refer to Section 2.4.

6.3.1. Language Features

Like a software product implements a set of functional requirements, a

language implements a set of language features. The term of language

features is introduced for the metamodel architect to be able to specify

what a language should be able to express on a conceptual level. In this

thesis, a language feature is an implementation-independent first-class

concept. This means, although a language feature may be implemented by

metamodel elements (e.g., packages, classifiers, references), it also exists if

there is no or multiple implementations of the language. A language feature

138

6.3. Metamodel Modularization Concepts

Modular
Metamodel

ordered

Feature Model Feature Node

Layer

Feature
Relation

∙ ∙ ∙∙ ∙ ∙ ∙ ∙ ∙

depends on

*

Module
*

*

*

implemented by

Language
Feature

1represents

1

belongs to

* *

Figure 6.1.:Metamodel Modularization Concepts

contains one or multiple concepts that ought to be modeled. It represents a

part of the language that is a unit of use. This means that a tool user either

needs the whole language feature or s/he does not need it at all.

An example from the embedded domain is a language feature that defines

types of microcontrollers. Also included in this language feature is infor-

mation about the pins of the microcontroller. A microcontroller is always

modeled with the information about its pins. Vice versa, it does not make

sense to model pins without a microcontroller. This means, that it is a legit-

imate language feature. Considering the additional concept of socket types,

it makes sense to model a socket type independent of a microcontroller.

Therefore the socket type concept is not in the same language feature as

the microcontroller type concept.

Language features can have feature dependencies to other language features.
Like the language features, their dependencies are also implementation-

independent. This means that the target and the direction of a dependency

are determined by what is conceptually correct in this context. Considering

139

6. A Reference Structure to Enforce Modularity in Metamodels

language features A and B. There is a dependency from A to B, but no depen-

dency from B to A. The relation between A and B is conceptually correct if
concepts from A depend on concepts from B and no concept from B depends

on any concept from A. The implication of the language feature dependency

for the tool user is, that if s/he wants to use A, s/he also has to use B.

As an example from the embedded domain, consider a language feature A

to contain the concept of microcontroller types and B to contain the socket

type concept. The concept of a microcontroller type owns the information

on which type of socket it fits. Therefore, the microcontroller type concept

is dependent on the socket type concept. However, a socket type does not

need to know which microcontroller types fit on it. Assuming A and B

do not contain any further concepts with conflicting dependencies, the

language feature dependency from A to B is conceptually correct.

There are two specific types of language features. A standalone language
feature has no feature dependencies and can, therefore, be used on its own.

Usually, most language features that implement view types are standalone

language features. A language feature that only adds new properties and

abstractions to other language features is addressed as an extension language
feature. A cross-cutting language feature is a language feature that depends
on many other language features.

6.3.2. Feature Modeling

In this thesis, language features and their dependencies are expressed using

feature models
2
. This achieves several goals: (1) to structure the dependen-

cies of language features hierarchically and more explicitly, (2) to express

variability, and (3) by using feature selections, tool users are given an

interface for model creation.

Almost every feature node in the feature model represents a language

feature. Those that do not, have no implementation. They are addressed as

empty features. Often, the root feature node and grouping feature nodes

are empty features. This is not necessarily always the case. By compacting

2
This approach is inspired by a diploma thesis that I supervised [Kan17] and the use of

feature models by the CORE [Sch+15] software engineering approach, which was used in

the thesis.

140

6.3. Metamodel Modularization Concepts

and simplifying a feature model by using refactorings (see Section 6.5.3),

root and grouping features can be consolidated with other features. If the

other feature is non-empty, the resulting feature is also non-empty.

For the sake of simplicity, this thesis does not distinguish between a lan-

guage feature and the feature node that represents the language feature.

Such cases will simply be addressed as a feature.

All language feature dependencies have to be covered by dependencies

in the feature models. As a reminder, dependencies in the feature model

are the child relations (optional and mandatory), the feature sets (OR and

alternative), and the requires relation. Figure 6.2 shows how language

feature dependencies can be covered by the feature model dependencies.

For reasons of clarity, the figure does not show feature sets, although they

also cover dependencies. (a) shows the dependency d from language feature

B to A. d can be directly covered by a featuremodel dependency from feature

node B to A. This is shown in (b). Only one of the dependencies is necessary.

More than one dependency is disallowed anyway. The dependency direction

of child relations and feature sets points from the child to the parent. This

means the child is dependent on its parent. (c) shows how the dependency

can be indirectly covered. There has to exist a path of dependencies in

the feature model that connects B to A. Note that feature dependencies

are not allowed to form cycles.

As already mentioned, tool users can use feature models to select the lan-

guage features they want to use. In contrast to a mere graph of language

features and their dependencies, a feature model forces the language fea-

tures into a hierarchical structure regarding the child/parent relation. Such

a feature hierarchy helps tool users during the feature selection, as tool

users can start at the root feature and only follow down on branches that

are relevant to them.

6.3.3. Metamodel Modules

In the reference structure approach, all language features are implemented

by metamodel modules. This thesis defines a metamodel module as a con-
tainer of packages and classifiers that has explicit dependencies. The

difference between an EMOF metamodel file and a metamodel module

141

6. A Reference Structure to Enforce Modularity in Metamodels

Language
Feature A

Language
Feature B

(a) Language
Feature

Dependency

d

Feature
Node A

Feature
Node B

requires

(b) Dependency
Directly
Covered

or

Feature
Node A

Feature
Node B

∙ ∙ ∙

(c) Dependency
Transitively

Covered

or

or

Figure 6.2.: Relation between Language Feature Dependencies and Feature Model

Dependencies

is that the dependencies between metamodel modules have to be declared

explicitly and follow certain restrictions. This thesis considers a metamodel

that was subdivided into multiple metamodel modules still as a metamodel.

As a metamodel module is based on a metamodel file, the concept of de-

ployment also applies to metamodel modules.

Classifiers of onemetamodel moduleMmay depend on classifiers of another

metamodel module N. If this is the case, it is regarded as M being dependent
on N. Section 2.2 explains the different types of dependencies between

classifiers. Additionally, this thesis introduced a new type of dependency

between two classes in Chapter 5. For a dependency to exist between

two metamodel modules, however, it is irrelevant precisely what types of

dependencies there are between both metamodel modules. The emphasis

is foremost on the presence and the direction of the dependencies. A

dependency from M to N implies that when a tool uses M or when a

metamodel extension reuses M, N has to be deployed as well. Together, a

set of metamodel modules and their dependencies form a dependency graph.
Inspired by the acyclic dependencies principle [Mar03], Metamodel module

142

6.3. Metamodel Modularization Concepts

dependencies are not allowed to form cycles. A cycle would mean that if

one of the metamodel modules is used, all of the metamodel modules in the

cycle have to be deployed, which makes the modularization meaningless.

There is a special case of dependencies between metamodel modules. A

transitive module dependency is a dependency between two metamodel

modules that are otherwise already dependent by a path of dependencies

via other metamodel modules. Figure 6.3 shows a simple case of such a

constellation where the path is only two dependencies long. M is dependent

on O and O is dependent on N. This makes the dependency from M to N

a transitive dependency. Transitive dependencies do not contribute new

metamodel modules to the dependency graph.

N

M

O

transitive
dependency

Figure 6.3.:A Transitive Metamodel Module Dependency

There are three special cases of metamodel modules. A root metamodel
module is a metamodel module that contains a non-abstract root container.

Root metamodel modules form the basis for view types.

An abstract metamodel module is a metamodel module that cannot be used

without other metamodel modules that build on it. Abstract metamodel

modules cannot implement a language feature on their own. This means

a language feature has to be implemented by at least one non-abstract

metamodel module. For a metamodel module M to be abstract, several

conditions have to be fulfilled:

• M does not contain a root container, or it contains a root container

that only contains abstract classes. The reason behind this condition

is the following. A root container can always be instantiated, as it is

by definition non-abstract. However, if the root container does not

contain any instantiable classes, it cannot be used on its own.

• M does not add any non-abstract subclass to a class that is

contained by a root container. The reason behind this condition is

143

6. A Reference Structure to Enforce Modularity in Metamodels

the following. A non-abstract subclass of a class that is contained by

a root container is itself contained by the root container (see

Section 2.2). A non-abstract class that is contained by a root

container can be instantiated in a root container instance.

Therefore, M would be usable and not abstract.

• M does not contain a class that extends a concrete class of another

metamodel module that is contained by a root container. The reason

behind this condition is the following. If M would extend a class that

is instantiable in a root container, the extending class can also be

instantiated. Therefore, M would be usable and, thus, not abstract.

It is possible but unusual for an abstract metamodel module M to depend

on a non-abstract metamodel module N. There may be references and

containments from classes of M that point into N. There may even be

inheritances and extends relations that point from M into N. However,

these must adhere to the constraints above, or else M would not be an

abstract metamodel module. Such inheritance and extends relations are

an indication of a part of M that is abstract and may be better placed in

an own metamodel module.

An extension metamodel module is a metamodel module that extends one

or multiple metamodel modules. A metamodel module extends another

metamodel module by having an extends relation to a class of the other

metamodel module. An extension is either abstract or non-abstract, de-

pending on whether it extends only abstract metamodel modules or at least

one non-abstract metamodel module.

6.3.4. Layers

A layer is a logical grouping of language features and metamodel modules

that implement a specific semantic. Each language feature and metamodel

module is allocated to exactly one layer. There can be an arbitrary number

of layers in a modular metamodel. Having just one layer is equivalent

to having no layering at all. The layers are ordered concerning the de-

pendencies of their language features and metamodel modules; similar to

the layered software architecture pattern [Bus+96], module dependencies,

feature required relations and parent relations may only point into the

144

6.3. Metamodel Modularization Concepts

same or more basic layers (basic concerning its level of abstraction). Here,

more basic means that they depend on fewer other layers. Cross-layer

dependency cycles are avoided as a basic layer is not allowed to depend on

a more specific layer. In this thesis, basic layers are graphically represented

at the top. This is analogous to class diagrams, where more abstract classes

are shown a the top and inheritance arrows point upwards.

6.3.5. Layers, Feature Models, and Modules

Figure 6.4 shows how layers, feature nodes, and metamodel modules relate

to each other. Each feature node knows the metamodel modules by which

it is implemented. These implemented-by relations may only point into

the same or more basic layers.

A non-abstract metamodel module should only implement one feature.

If a non-abstract metamodel module implements multiple features, this

indicates that it lacks in separation of concerns. A feature may be im-

plemented by multiple metamodel modules. This usually happens if it

is a cross-cutting feature.

G

F

N

M

req
.ex

cl
.

The module dependencies have to be supported by the feature model depen-

dencies for the module dependency graph to be valid. Amodule dependency

145

Figure 6.4.: Illustrative Example for the Relation Between the Modularization Con-

cepts (based on [HSR19])

6. A Reference Structure to Enforce Modularity in Metamodels

from metamodel module M to metamodel module N is considered as sup-
ported if by following dependencies from the feature that is implemented by

M (i.e., feature F) the feature that is implemented by N (i.e., feature G) can be

reached. If every module dependency is supported by feature relations, this

is addressed as the module dependencies being conform to the feature model.

Child/parent are followed from the child to the parent feature. Considering

the example in Figure 6.4, metamodel module M implements the language

feature F, and metamodel module N implements the language feature G. As

one can reach G from F, by first following the requires relation and then

following the parent relation, the dependency from M to N is supported.

6.3.6. Special Roles in the Scope of this Thesis

In addition to the general roles, which Section 2.2.10 introduced, this chapter

introduces two new roles, which execute the application of this approach.

The metamodel developer role is further subdivided into metamodel ar-

chitect and module developer. The module developer is responsible for the
internals of metamodel modules. S/he creates and modifies classes and their

properties. The metamodel architect is responsible for allowing module

dependencies, creating and evolving the feature model, linking features to

metamodel modules, and creating and evolving the layering of metamodel

modules and features. Both roles cooperate when creating or modifying

module dependencies, as these are determined by the classes within a meta-

model module. One or multiple persons may perform a role. It is possible

for someone to personify both roles.

6.3.7. Discussing the Research Questions and Challenges

This section explains the rationale behind the metamodel modularization

concepts. It explains how the rationale ties into the research questions

and challenges of this contribution (see Section 6.2). Note that several of

the metamodel modularization concepts can address the same research

question or challenge. It is not intended to evaluate the research questions

here but in Chapter 10.

146

6.3. Metamodel Modularization Concepts

By proposing metamodel modules with explicit dependencies and by forbid-
ding dependency cycles, this contribution tackles several research questions

and challenges.

The taming of dependencies on the metamodel module level aims to make

the decision of metamodel architects to introduce a dependency to a meta-

model module to which thus far no dependency existed yet more deliberate.

By having less conceptually incorrect or redundant dependencies on the

metamodel module level, unnecessary coupling could be prevented or re-

duced. Therefore, RQ IIIa (Improve Evolvability) is addressed.

The taming of dependencies further aims to improve the understandability

of metamodels. When developers navigate a modular metamodel, the com-

plexity they face is reduced, compared to a large entangled metamodel. This

is because they are merely confronted with the content of the metamodel

module of interest and possibly with the content of metamodel modules

to which dependencies exist. Together with a more fine-grained modular-

ization in self-contained metamodel modules instead of large metamodel

files, this addresses RQ IIIb (Understandability).

The division of a metamodel into metamodel modules further enables to

depend on parts of the modular metamodel according to the needs of the

metamodel-based tool or metamodel extension. Only the metamodel mod-

ule that are needed and their dependencies have to be deployed. Technically

this is achieved by implementing metamodel modules as Eclipse plugins

(see Appendix B). This addresses RQ IIIc (Need-specific Dependence). Fur-
ther, it enables metamodel-based tools like editors to implement support

for individual metamodel modules. By doing so, the tools may tailor the

extent of features that they offer the tool users. Models of modular meta-

models only instantiate the metamodel modules that are really needed for

instantiation. Therefore, the concept of metamodel modules also addresses

RQ IIId (Selective Use).

Decomposing a metamodel into metamodel modules, intends to foster reuse

between DSMLs. Metamodel modules can also be reused in other contexts

if they have a proper separation of concerns, which is addressed below. This

may even go as far as two DSMLs sharing a common core of metamodel

modules. Instances of this common core will then be compatible with

tools of both DSMLs if the parts of the languages that extend the core

are implemented using extension mechanisms that fulfill the criterion of

147

6. A Reference Structure to Enforce Modularity in Metamodels

Model Level Unintrusiveness (see Section 5.6.3). This addresses Problem

4 (Commonalities in Related Languages).

The use of feature models and the enforcement of module dependencies to

conform to feature dependencies addresses several goals.

The intent to provide an explicit structure is to mitigate the loss of knowl-

edge of the overall structure of the metamodel. This addresses Problem

2 (Loss of Knowledge).

By using the feature model, metamodel developers are guided when they

extend the metamodel. The hierarchical structure should help them to

introduce new language features more consistently. Thereby hardening the

metamodel against the degradation of its overall structure.

By forcing module dependencies to conform to feature dependencies, aims

to achieve two things. Firstly, module dependencies should become more

conceptually correct. This should increase the understandability and evolv-

ability of the metamodel, as inter-module dependencies are more mean-

ingful . This addresses RQ IIIb (Understandability). Secondly, it should

increase the potential of the metamodel to be dependent and used according

to the needs of the tool, extension or tool users. This addresses RQ IIIc
(Need-specific Dependence) and RQ IIId (Selective Use).

Having a feature model for a DSML can serve as an interface for tool users

to select the language features that they are interested in when they use

metamodel-based tools.

The purpose of layers is to group associated metamodel modules and to

enforce a dependency direction. Thus, layers prevent dependencies from

going into a more specific layer. More basic layers are therefore decou-

pled from the more specific layers regarding their decencies but also the

complexity that the developer faces. A further benefit is, that specific

layers can be exchanged or omitted to reuse more basic layers. As it is

another modularization concept, it addresses the goals in a similar way

as the concept of metamodel modules. Therefore, these shared goals are

only mentioned briefly. Layers tackle erosion and uncontrolled dependen-

cies, thereby increasing a metamodel’s understandability and evolvability.

As layers provide a more explicit structuring, they provide guidance for

developers and decrease the loss of knowledge.

148

6.4. Layers in Metamodels for Quality Modeling and Analysis

6.4. Layers in Metamodels for
Quality Modeling and Analysis

Themetamodel modularization concepts from the previous subsection apply

tometamodels in general and can be usedwith an arbitrary number of layers.

Based on the metamodel modularization concepts, this section gives more

specific guidance by proposing a reference structure for metamodels for

quality modeling and analysis. To recap, a layer groups several metamodel

modules, which in turn contain classifiers and their relations. The remainder

of this section briefly explains the rationale behind this concrete layering,

followed by the presentation of the individual layers.

When investigating metamodels that are used for quality modeling and

analysis as well as their extensions, it was identified that they reflect in

most cases language features from three categories: structure, behavior, and

quality. Features that fall into these categories can be found in metamod-

els like UML MARTE [Obj11], UMLSec [Jür02], the Descartes Metamodel

[KBH14], the PCM [Reu+16], AutomationML [Dra+08], ROBOCOP [GL03],

and BPMN2 [Obj14]. Not all of these metamodels cover all categories. For

a more detailed listing consider Table 9.1.

To analyze a model, further information is needed in addition to structure,

behavior, and quality that is produced by analyzers and simulators. Exam-

ples are input and output states and configurations like simulation length

or the number of measurements taken during evaluation. Based on this

observation, parts of the metamodel that deal with structure and behavior,

quality, and analysis should be separated into different layers in the refer-

ence structure. Structure and behavior are further divided into paradigm

and domain. This is beneficial, as paradigm contains domain-independent

concepts, which can be reused in other domains.

In conclusion, the above consideration results in four layers. The number

of layers is, however, not fixed. The layers can be further split to separate

different abstraction levels within the layers. Even fewer layers can be

used. The paradigm and domain layers can be used to model structural

information. By adding the quality layer, quality information can also

be modeled. The analysis layer is only necessary if analyses should be

149

6. A Reference Structure to Enforce Modularity in Metamodels

conducted. The paradigm, domain, and analysis layers are needed for

structural analyses. All four are needed for quality analyses.

6.4.1. Paradigm

The paradigm (π) is the most basic and most abstract layer. It defines ab-

stract classes for reoccurring patterns of structure and behavior but without

dynamic semantic. For example, in the automotive domain, components,

their interfaces, and connections may be specified in π without specifying

whether these are software, electronic, mechanical, or other types of com-

ponents. As it carries no semantics, a π layer is not intended to be used

without any additional layer. The advantage of having a π layer is that π
metamodel modules that originate from the development of other languages

can be reused if they fit the concepts to be modeled. This would not be

possible if domain-specific semantics were located on this layer. Thus, the

abstractions of the paradigm layer have to be domain-independent and

carry the potential to be reused for other domains. First-class concepts that

are defined by π should be abstract. This means they are implemented by

only abstract classes. If there are non-abstract first-class concepts, they

could be instantiated as is, which is not always meaningful. Exceptions

can be made for first-class concepts, for which it is meaningful to be in-

stantiated in another layer without adding further class properties. It is

not recommended to provide root containers in π to avoid instantiation of

concrete first-class abstractions in π . Second-class abstractions of π can

be concrete (i.e., non-abstract) but do not have to be.

6.4.2. Domain

The domain (∆) layer builds upon the π layer and assigns domain-specific

semantics to its abstract first-class concepts. ∆ builds on structural as well

as on behavioral abstractions. For example, by creating subclasses of

the component class (e.g., for the domains of software, mechanics, and

electrics), the abstract component class can be enriched by domain-specific

properties (attributes, references, ...). This will result in a metamodel module

for software components, a module for mechanical components and one

for electric components. If a developer is only interested in software, the ∆

150

6.4. Layers in Metamodels for Quality Modeling and Analysis

layer merely includes metamodel module with the software components.

It is also possible to have metamodel modules of multiple domains in the

∆ layer (e.g., mechanics and electrics). A language that consists only of a

π and ∆ layer can already be applied, e.g., for quality-agnostic design and

documentation of a system. If abstract first-class concepts are defined in π ,

these have to be inherited by classes of ∆ to be usable. ∆ abstractions can

also reuse (by containment) second-class abstractions of π and reference

other first-class abstractions of π . If new concepts are introduced on ∆
(without inheritance into π), it should be considered if they contain an

underlying pattern that can be modeled in π . Abstractions for modeling

or analyzing quality properties, however, are not located on the ∆ layer

but are part of the layers mentioned hereafter.

6.4.3. Quality

The quality (Ω) layer defines quality properties for the abstractions of ∆.
For example, reliability, performance or security properties could be added

to the component concept. To be more specific, resource demands can be

extended to the single processing steps of the services of a component, to

be able to evaluate the performance of a service. A Ω layer is not always

needed. To document the structure and behavior of a system merely the

layers π and ∆ are required. Analyzes can be conducted for structure and

behavior, and do not always need explicit quality information. The Ω layer

contains second-class abstractions that enrich the first-class abstractions of

∆. Abstractions that define quality properties that are contained in a root

container of Ω must not change during an analysis. If they change, they

model state information and have to be contained by a container from the

Σ layer. Ω does also model derived quality properties. They must not be

reachable from a root container in Ω by following containment relations.

They will instead be contained by containers from the Σ layer.

6.4.4. Analysis

The analysis layer (Σ) comprises abstractions used by specific analysis

approaches. Σ builds upon the previous layers by providing configuration

data, run-time state, output data, and input data that does not belong to the

151

6. A Reference Structure to Enforce Modularity in Metamodels

more general ∆ abstractions. Analyses may be either design time or runtime

analyses. This is orthogonal to this layering, as it may at the most influence

the content of metamodel modules of Σ. Σ can also be used to model data

that is needed by other tools (e.g., monitoring approaches). For example, a

sensitivity analysis needs a reference to a variable as input. The sensitivity

analysis modifies this variable over several analysis runs. The reference and

the value range are stored in modules of the Σ layer. In general, the features

of the more basic layers can be used in several analyses. Several analyses

may share modules from Σ. E.g., a performability analysis may reuse the

output module of a performance analysis. Analyses may also have their

own metamodel modules. On the Σ layer, new root containers, first-class

abstractions, and second-class abstractions can be created as required by an

analysis. Abstractions of the other layers should be reused when possible,

but analysis-specific abstractions should not be specializations of more

basic abstractions. This would mean, that Σ is not adequately separated

from the other layers. The only constraint that holds is the avoidance of

metamodel module dependency cycles.

6.4.5. Discussing the Research Questions and Challenges

This section explains the rationale behind the specific layering for meta-

models for quality modeling and analysis.

The clear separation of the four layers enables decoupling and exchange

of these layers. Thus, the layers π , ∆ and Ω can be reused for different

analyzers. π and ∆ can be reused for different quality properties. π can be

reused for different domains. The specific layering therefore tackles Prob-

lem 4 (Commonalities in Related Languages). By separating tool-specific

metamodel content, Problem 5 (Tool-specific Metamodel Content) is ad-

dressed. By separating abstract concepts from domain and even more

specific concepts, Problem 6 (Generality Compromise) is addressed. The

concrete layering further answers the question of how to prioritize or-

thogonal decomposition dimensions in the specific case of metamodels

for quality modeling.

152

6.5. Refactorings

6.5. Refactorings

This section describes class, metamodel module, and feature model refac-

torings. These refactorings are helpful or even necessary for applying the

processes that are presented in Section 6.6. The class refactorings are es-

sential in the application of the reference structure to separate concerns in

classes and fix dependency directions. The metamodel module refactorings

are essential when modularizing a legacy metamodel, but may also be used

in refining and correcting a modular metamodel that has been implemented

from scratch in a modular way. The metamodel module refactorings ei-

ther split or merge metamodel module. The feature model refactorings

are optional refactorings that can be used to clean up feature models after

they have been completely specified.

The refactorings were assembled as theywere used in applying the reference

structure and from general experience. The list is not necessarily complete,

as there may be more refactorings that can also be useful. This section does

not feature trivial refactorings (like renamings or reordering) nor elemental

modifications. For example, moving a class is even made trivial by the

Modular Designer (see Appendix B.2).

The refactorings are formalized by a graph transformation system. The

individual graph transformation rules are specified by diagrams, which

show the left- and right-hand side of the rules. If an element is shown on

the left-hand side but not on the right-hand side, the element is deleted.

Conversely, if an element is not present in the left-hand side but appears

on the right-hand side, the element is created. Labels track the identity of

elements. E.g., if the left-hand side shows a class that is labeled C1 and the

right-hand side shows a class with the label C1, both sides refer to the same

class. Elements that appear on both sides remain all of their properties, even

if they are not illustrated. E.g., if C1 has attributes and references, it keeps

them unless it is illustrated otherwise. Elements that in addition to their ex-

istence, carry no further information, are not labeled. This is not necessary,

as it is irrelevant whether they are preserved during the transformation or

merely deleted and recreated. Examples for such elements are the imple-

ment relation between features and metamodel modules, and unambiguous

feature relations (e.g., requires, optional child). The module dependencies

that Section 6.5.2 shows are not transformed and, therefore, also not labeled,

153

6. A Reference Structure to Enforce Modularity in Metamodels

as they are determined by the classifiers inside the metamodel modules.

They are merely illustrated to help to understand a module refactoring.

Some of the refactorings are supported by the Modular EMF Designer

(Modular Designer). The Modular Designer is the tool support for the

reference structure approach. Metamodel architects can use it to visualize

and modify the layers and module structure of a metamodel. For in-depth

information about the Modular Designer, consult Appendix B.2.

6.5.1. Class Refactorings

To apply this approach, several refactorings are necessary to split classes,

break dependency cycles and reverse the direction of dependencies. These

make use of the class extension relation that Chapter 5 introduced. The

class refactorings are executed by a module developer.

6.5.1.1. Class Split

The class split refactoring is used to separate concerns in a class. It is

shown in Figure 6.5 (1). Class properties of C are factored out into the new

class E, which extends the remainder of C, which is labeled C’. Incoming

dependencies remain on C’. Attributes, references, and containments can

be factored out without complications. Inheritance can also be factored out;

however, in EMOF it is not possible to substitute E for C’. Thus, factoring

out inheritances is only appropriate in cases where substitutability is not

required. These cases can be identified by analyzing incoming references

onto the superclass. If it is not referenced, the inheritance is only used to

inherit the class properties of the superclass and can be factored out.

The class split refactoring can be used to break dependency cycles. This

is shown in (2). C1 is split, and the outgoing dependency of C1 that con-

tributed to the cycle is factored out into E. As C1’ does not depend on

E, the cycle is broken.

154

6.5. Refactorings

(2) Breaking Dependency Cycles

(1) Class Split

D2

D1

C

E1

En

D1

D2 E

C'
...

E1

En

...

∙∙∙ ∙∙∙
C1 C2

C1'

C2

E

D0
D0

D1 Dn
D1

Dn

6.5.1.2. Dependency Inversion

Figure 6.6 (1) illustrates dependency inversion refactorings. They are

used by module developers to enforce the Dependency Inversion Prin-

ciple [Mar03]. The principle states that abstractions (class A in the figure)

must not depend on specifics (S), but specifics should depend on abstrac-

tions. Depending on the type of the dependency that should be inverted,

multiple refactorings are possible.

A reference (1a) can be inverted by using a class split (1ai). The reference

D is factored out into the new class E. This option should be chosen if S

implements a first-class abstraction (i.e., the existence of an instance of S

is not dependent on an instance of A). An indicator for this is when an

instance of S is referenced by multiple other objects.

The reference can also be inverted into an extends relation (1aii). This should

be done if S implements a second-class abstraction and is not referenced by

any other class. If S is referenced by multiple classes, a common superclass

N can be introduced for these classes, which is then extended by S (1aiii).

155

Figure 6.5.: The Class Split Refactoring (based on [HSR19])

6. A Reference Structure to Enforce Modularity in Metamodels

(i) (ii)

(1) Dependency Inversion

A

S

A

S

(1a) Reference

A

S

A

E

S

A

S

D D D

D

(1c) Containment

A

S

A

S

(2) Breaking Dependency Cycles

∙∙∙

C1 C2

∙∙∙

C1 C2

D0 D0

D1 D1Dn Dn

(1b) Bidirectional Reference

A

S

A

S

D1
D2

D1

(iii) (iv)

A N

S

∙∙∙
A

S

(1a) Reference (continuation)

(1d) Inheritance

(i) (ii) (iii)

A

S

A

S

A

N

S

A

S

I I

156

Figure 6.6.: The Dependency Inversion Refactoring (based on [HSR19])

6.5. Refactorings

Sometimes, the reference can be correctly owned by both A and S. In such

cases, the reference can just be reversed (1aiv).

A bidirectional reference between A and S (1b) is a special case of (1a).

In EMOF, a bidirectional reference consists of two standard references

that have each other set as opposites. This is indicated by the two labels

D1 and D2 that are next to the bidirectional reference. As explained in

Section 4.4.4.1, bidirectional references are unnecessary and should be

avoided. In such cases, the reference from A to S should be removed (only

the reference from S to A remains). If the relations between A and S are

simple references, a helper method can be provided that provides navigation

from A to S. If A and S are located in different metamodel modules, the

helper method should be placed with code that works on the metamodel

module of S. It should not be placed together with code that works on the

metamodel module of A, as this would violate the separation of concerns

on the code level. In the special case that the reference from S to A is a

containment, the reference from A to S is a container reference and can

be deleted without replacement (see Section 4.4.4.2).

A containment (1c) can be inverted by replacing it by an opposing ex-

tends relation.

In 1a and 1c, also the multiplicity of the original dependency from A to S

has to be modeled correctly after the refactoring. If the multiplicity has no

lower and upper bounds (i.e., “0..*”), no further modeling is necessary, as

an arbitrary number of instances of the extension class can be applied to

an instance of A. If there is at least an upper or lower bound, a constraint

has to be defined that enforces the multiplicity.

There are multiple ways to invert an inheritance from A to S (1d). If S is a

specialization of A, the inheritance was specified in the wrong direction.

Instances of A are sometimes erroneously typed with S, and the class

properties from S are not needed. In this case, the inheritance can be simply

reversed (1di). Some incoming dependencies may have to be redirected

from A to S depending on their meaning.

If A and S implement different abstractions, the inheritance is removed and

N, a new subclass of A and S, introduced (1dii). Incoming dependencies of

A and S must be redirected to the correct class (either A, S or N).

157

6. A Reference Structure to Enforce Modularity in Metamodels

If S is only used to add class properties to A and not for typing, the inheri-

tance can be replaced by an opposite extends relation. For this to be feasible,

there must not exist any incoming dependencies (except inheritance) to

S and its superclasses.

One case is not shown in the figure. If A possesses an attribute that does

not conform to A’s level of abstraction, the attribute can be factored out

using a class split. This is similar to (1ai) except S is not a class but a

data type or enumeration.

Dependency inversion can be used to break dependency cycles (2). Re-

versing one dependency in a cycle is sufficient. In the illustration, the

dependency from C2 to C1 is inverted, which breaks the cycle.

6.5.2. Metamodel Module Refactorings

The approach of applying the reference architecture relies on several refac-

torings that manipulate metamodel modules, their dependencies, and con-

tent. Many of these refactorings perform a split of a metamodel module,

which is supported by the Modular Designer. To split a metamodel module,

a metamodel architect first creates a new metamodel module and then uses

the Modular Designer to move classes or whole packages from the original

into the new metamodel module. The Modular Designer then automatically

updates incoming references on the moved classes. When the metamodel

module structure of a metamodel is altered, the respective feature model

should always be updated accordingly. Thus, the following metamodel

module refactorings also address the updating of the feature model.

The formalization of the module refactorings is different from the other

refactorings. The diagrams that are shown for the individual module refac-

torings are only illustrations. The module refactorings are composite refac-

torings that are composed of several smaller transformation rules. Figure 6.7

shows these transformation rules. The deletion of a metamodel module

or package is shown in (1). In (2), a new metamodel module or package is

created. (3) shows a class move from one package into another package.

The split and extraction refactorings perform metamodel module creations

and then move classifiers into the new metamodel modules. The merge

158

6.5. Refactorings

refactoring moves all the classifiers of one metamodel module into the other

and then deletes the empty metamodel module.

(1) Delete Module

(2) Create Module

C

(3) Move Class

P1 P2 P1

C

P2

Figure 6.7.:Metamodel Module Refactoring Constituents

6.5.2.1. Horizontal Split

If there are parts of a metamodel module for which it should be concep-

tually possible to use them independently of each other but which are

technically intertwined, a metamodel architect must split the metamodel

module. Consider the original metamodel module M and two resulting

metamodel modules M1 and M2. There may be a part P of M on which M1

and M2 both depend on. In such a case, the metamodel architect factors

P out in its own metamodel module. The horizontal split can be easily

generalized to a split into an arbitrary number of metamodel modules. For

the sake of simplicity, this section presents the horizontal split into two

metamodel modules (M1 and M2).

159

6. A Reference Structure to Enforce Modularity in Metamodels

The results of a horizontal split are illustrated in Figure 6.8. Note, this

section heavily refers to the subfigures of Figure 6.8. For the sake of brevity,

it only refers to the labels of the subfigure and does not explicitly reference

the figure. (0) shows the potential worst-case outcome. All resulting meta-

model modules could be mutually dependent. Depending on whether the

metamodel architect factors out a common part, P is present or not present

(illustrated by the large brackets). In subsequent refactoring steps, a module

developer has to use dependency inversion to bring the metamodel modules

into a state where their dependencies match the illustrations in (1), (2), or (3).

(1) shows the simplest case. Both metamodel modules are entirely unrelated.

In the feature model, this results in two unrelated features. In this case, it

is unlikely that there are many dependencies between classes of M1 and

M2. If there are dependencies, either classes are not placed correctly, the

dependencies are conceptually erroneous, or the cases (2) or (3) apply.

(2) represents the case where M1 and M2 are independent of each other, but

share a common base that was also contained in M before the refactoring.

In the feature model, the result is identical to (1) with the addition that

the resulting features have implemented-by relations to their respective

metamodel module and P. P does not implement an own feature. If this

were the case, the result would be (3) with an additional metamodel module

factored out. If there were dependencies from P to M1 and M2, these would

have to be reversed by a module developer. For dependencies between M1

and M2, the same applies as in (1): either classes are not placed correctly,

the dependencies are conceptually erroneous, or the case (3) applies.

(3) shows the case where one metamodel module depends on the other.

This split is similar to two splits that the remainder of this section presents.

The difference is that in this split, M1 can be a root metamodel module on

the same layer as M2 and no extension has to take place. In the feature

model, this results in two features. The feature that is implemented by M1

is dependent on M2 (either via child or requires relation). All dependencies

from M2 to M1 had to be reversed by a module developer.

160

6.5. Refactorings

M

P

M1 M2 M1 M2

M1

P

M1 M2

(0) Potential
Outcome

(1) Unrelated

(2) Unrelated with
Common Base

(3) Asymmetric
Dependence

M2

()

6.5.2.2. Extension Extraction

A metamodel architect uses this refactoring if a metamodel module M

has a part P that is optional but cannot be used independently. Figure 6.9

illustrates the extension extraction. The metamodel architect factors out

P into a new metamodel module and declares a dependency from P to M.

For this split to be an extension extraction, P cannot be a root metamodel

module, and an extension relation has to be part of the dependency from

P to M. A module developer may have to split classes that are essential to

M if they contain optional class properties that belong to P. The module

developer further reverses all dependencies from elements of M to P. If there

are incoming dependencies onto P from other metamodel modules, they

have to be considered for dependency inversion. Whether they should be

reversed depends on the conceptually correct feature dependencies of the

features they implement. Usually, metamodel modules that implement cross-

cutting features that are intrusively implemented have many incoming

dependencies that have to be reversed. In the feature model, a new feature

161

Figure 6.8.: The Horizontal Split Metamodel Module Refactoring (based on [HSR19])

6. A Reference Structure to Enforce Modularity in Metamodels

is created that is implemented by P. P is then either an optional child of

M or has a required relation to M.

M

M' M'

P'P

6.5.2.3. Feature Support Extraction

Features support extraction is a special case of the extension extraction.

It is illustrated in Figure 6.10. A metamodel architect can perform this

refactoring if there is a part P of a metamodel module M1 that is dependent

on another metamodel module M2 and it is meaningful to use M1 without P.

The metamodel architect creates a new metamodel module P and declares

dependencies from P to M1 and M2. If there are class dependencies from

M1 to P, a module developer must reverse them. S/he may also conduct

class split refactorings to separate the content of both features. For P a

new feature is created that is implemented by P and is in most cases a

child of F1. It may also be a child of F2. In both cases, a requires relation

points to the other feature.

This refactoring can be used to lift a feature up to a more abstract layer.

Consider F2 to be a very specific feature, which is therefore located on

a more specific (lower) layer. As F1 requires F2, F1 cannot be at a more

abstract layer. Else the required relation from F1 to F2 would violate the

layering. If F1 provides concepts that are more general than the layer of

F2, these concepts should be separated from their application onto F2. This

results in M1’ (the pure concepts) and P (their application onto F2). M1’

and its feature F1’ can then be lifted to the appropriate layer.

162

Figure 6.9.: The Extension Extraction Refactoring [HSR19] (©2019 IEEE)

6.5. Refactorings

M1 M2 M1' M2

F1

P

F2 F1'

G

F2
requires

requires

6.5.2.4. Vertical Split

The metamodel architect performs this refactoring if a metamodel module

could be assigned to multiple layers. Figure 6.11 illustrates the refactor-

ing. The metamodel architect divides the metamodel module in a way

that each classifier can be assigned to precisely one layer. If necessary, a

module developer has to split classes. The metamodel architect assigns

the resulting metamodel modules to their respective layers. If there are

module dependencies that violate the layering, a module developer has

to perform dependency inversion.

The feature model is updated accordingly. With the exception of π meta-

model modules, for each new metamodel module that resulted from the

split, a new feature is created and is assigned to the layer of the module. If

there are module dependencies between more special to more basic layer,

163

Figure 6.10.: The Feature Support Extraction Refactoring (based on [HSR19])

Figure 6.11.: The Vertical Split Refactoring [HSR19] (©2019 IEEE)

6. A Reference Structure to Enforce Modularity in Metamodels

conforming feature dependencies are created. Incoming feature relations

have to be respecified to reflect incoming module dependencies.

6.5.2.5. Merge

Merging can be used in various circumstances. Especially if there is a

mandatory child feature relation between two language features or a depen-

dency cycle between their metamodel modules, the metamodel architect

should consider whether it is meaningful to merge those features and their

metamodel modules. Figure 6.12 illustrates the refactoring. The figure

does not show dependencies between the two metamodel modules that are

merged because there may be various dependency constellations amongst

them. These constellations are one directional, bidirectional and no depen-

dency. A merge between two metamodel modules that are not dependent

occurs, e.g., if abstract classes that function as ubiquitous superclasses are

consolidated into one metamodel module even if they are not dependent

on each other. A metamodel architect performs a merge using the Modular

Designer by moving all classifiers of one metamodel module into the other

and then deleting the empty metamodel module. From the feature that was

implemented by the deleted module, all incoming and outgoing relations

are transferred to the other feature. Finally, the feature is deleted too.

6.5.3. Feature Model Refactoring

This section presents refactorings that make a feature model more precise in

certain situations. A metamodel architect performs these refactorings. The

refactorings do not change the module structure of a metamodel. They also

164

Figure 6.12.: The Module Merge Refactoring [HSR19] (©2019 IEEE)

6.5. Refactorings

do not change the feature selection behavior of a feature model. If they did,

they would not be refactorings. Most of the refactorings have preconditions

that have to hold for the refactoring to be applicable. If these preconditions

are violated after the refactoring has been applied, the selection behavior

of the feature model changes. Thus, these refactorings should be applied

to clean up the feature model after its completion.

6.5.3.1. Pull Up Relation

The pull up relation refactoring moves feature relations up on the par-

ent/child hierarchy. The refactoring is illustrated in Figure 6.13. The re-

lations that are refactored may either be requires or excludes relations.

Because of this, they are illustrated without arrowheads. In the illustrations,

only two child features are shown. The refactoring, however, can easily be

generalized to more than two child features. There are two cases where

this refactoring can be applied.

F

F1 F2 G

F

F1 F2 G

F

F1 F2 G

F

F1 F2 G

(1) from
mandatory
child

(2) from all
children

Legend

Optional or Mandatory Child
(used only in Refactoring Illustrations)

Requires or Excludes Relation

R R

Figure 6.13.: The Pull Up Feature Relation Refactoring

165

6. A Reference Structure to Enforce Modularity in Metamodels

In the first case (1), a relation is pulled up from a mandatory child. Even

tough F1 does not own the feature relations, the relation of F2 does also

apply to F1. This is the case, as to select F1, F has to be selected, as it is its

parent. To select F, F2 has to be select, as it is a mandatory child. Thus, the

relation can be pulled up to F. This refactoring increases the clarity of the

feature model, as it is immediately apparent that the whole subtree below F

is affected by the feature relation to G. This refactoring has to be reversed

if F2 is removed as a child of F or changes to an optional child.

If a feature F has several child features (F1 and F2) that all share a relation

to the same target G, the relation can be pulled up to F provided that F is

an empty feature. The refactoring is shown in (2). It reduces the number of

unnecessary elements of a feature model. The refactoring has to be reversed

if child features are added to F that do not share the feature relation to G.

6.5.3.2. Transform Required into Mandatory Child

Figure 6.14 shows the refactoring. It is used to remove common required

relations to a sibling feature (G) by turning the required feature into a

mandatory child. It is necessary that the parent F is an empty feature. If not,

this refactoring changes the selection behavior of F as G is always selected.

Another prerequisite is that all child features (F1 to Fn) are dependent on

G. This refactoring increases the clarity of a feature model by reducing

the number of required relations.

F1 Fn G

F

∙ ∙ ∙ F1 Fn G

F

∙ ∙ ∙

Figure 6.14.: The Transform Required Relation into Mandatory Child Refactoring

166

6.5. Refactorings

6.5.3.3. Merge Mandatory Child into Parent

This refactoring fuses a mandatory child with their parent. For example, an

empty root feature can be eliminated this way. Figure 6.15 (1) illustrates

the refactoring. The mandatory child feature G is merged into the parent F.

All implemented-by relations to metamodel modules from G are moved to

F. This refactoring can be used after the transform required relation into

mandatory child refactoring. If a language has precisely one mandatory

language feature, this refactoring should be used to make this language

feature the root feature. This refactoring can also be used to get rid of

grouping features that are no longer needed.

There is a special case of the merge mandatory child into parent refactoring

that can be used to ungroup features. The reversed refactoring can be used

to group features. It is illustrated in (2). To remove an empty grouping

feature G, it has to be a mandatory child. The children of G are made direct

children of the parent of G (F). The reversed refactoring takes some children

of a feature F and puts a mandatory empty grouping feature between them.

6.5.3.4. TransformMutual Exclusion

Using this refactoring, a set of mutually exclusive features is transformed

into an alternative feature set or an alternative feature set can be dispersed.

Figure 6.16 shows the refactoring. It is illustrated with three child features

but can be generalized for an arbitrary number of features.

To form an alternative feature set, a common parent is needed. If F, G, and

H are children of the same parent, this is already fulfilled. If not, the new

empty parent feature P is created. It also has to be considered if required

relations have to be specified to the former parent. This is the case if an

antecedent is a non-empty feature. In both cases, the excludes relations are

simply replaced by an alternative set relation. Especially, if the features

have the same parent, this refactoring reduces the complexity of the feature

model and improves its hierarchical structure.

To get rid of an alternative feature set, P has to be empty so that it can be

deleted. If it is not empty, it is not deleted but requires relations have to be

specified from its child features to P. This increases, however, the complexity

167

6. A Reference Structure to Enforce Modularity in Metamodels

F1 Fn G

F

∙ ∙ ∙

F1 Fn

F+G

G1 Gn∙ ∙ ∙

G1 Gn∙ ∙ ∙∙ ∙ ∙

F1 Fn G

F

∙ ∙ ∙

F1 Fn

F

G1 Gn∙ ∙ ∙

G1 Gn∙ ∙ ∙∙ ∙ ∙

(1) Merge Mandatory
Child with Parent

(2) Eliminate Empty
Child

R1
Rn

P1 Pn

R1
Rn P1

Pn

R1
Rn P1

Pn

R1
Rn

P1 Pn

Figure 6.15.: The Pull Up Mandatory Child Refactoring

168

6.5. Refactorings

of the feature model. In any case, the alternative set relation is replaced by

excludes relations between all features. Although this refactoring usually

increases complexity, it can be used to get rid of an alternative set that

turned out to be inadequate.

F

G

H GF H

P

Figure 6.16.: Transform Mutual Exclusion Refactoring

6.5.3.5. Omit Transitive Relations

To clean up feature models, redundant relations can be omitted. Several

cases are displayed in Figure 6.17 and Figure 6.18.

1. Transitive required relations can simply be omitted. In general, the

path of required relations from F to H via G may contain features

and required relations than just G.

2. The required relation from F to a feature H that is a mandatory

child of a feature G that is already required can be omitted. There

may be even further features and child relations between G and H

as long as there is a path of mandatory child relations between the

two features.

3. Required relations to features that are already required by the

parent should be omitted.

4. Required relations to descendant features are bad modeling. They

should be replaced by making the branch which connects the parent

with the descendant completely mandatory.

5. Required relations to a mandatory sibling can simply be omitted.

169

6. A Reference Structure to Enforce Modularity in Metamodels

6. Required relations to an optional sibling can be transformed into an

optional child relation.

F

G

H

F

G

H

F

G

H

F

G

H

(1) Transitive Required Relation

(2) Require Mandatory Child of
Required Feature

F

G

H

F

G

H

(3) Required Relation to Feature
Required by Parent

R R

Figure 6.17.: Feature Relation Refactorings (Part 1/2)

170

6.5. Refactorings

F

G

H

F

G

H

(4) Required Descendant

F

G

H

F

G

H

(6) Required Sibling to Parent

F

G

H

F

G

H

(5) Required Relation to
Mandatory Sibling

R R

Figure 6.18.: Feature Relation Refactorings (Part 2/2)

171

6. A Reference Structure to Enforce Modularity in Metamodels

6.6. Application Process

This section presents application processes for three scenarios: (1) the

creation of a new metamodel, (2) refactoring of an already existing meta-

model to fit the reference structure, (3) extending an existing metamodel

that was implemented or refactored according to the reference structure

approach (i.e., it is modular, layered and has a feature model representa-

tion). The main difference between the processes is: in 1, the feature model

is constructed before the metamodel modules are implemented; in 2, the

metamodel modules already exist and are modularized hand-in-hand with

an evolving version of the feature model; in 3, the modular metamodel and

its feature model already exist and are merely extended.

Metamodeling is a creative design process with many degrees of freedom.

The same is true for the process of refactoring and modularization. It is

the goal of the Modular Designer to support the developers as much as

possible and to automate as much as possible. However, most activities

in metamodeling are manual tasks that cannot be automated like: how to

implement the concepts of a language, how to group classes into meta-

model modules, where to use extensions, where to split existing classes

and metamodel modules, and so on.

When applying the reference structure approach, feature models are used

to express the variability of the language (in analogy to related approaches

[AKM13; Sch+15]). In the first and second process, a feature graph is used

as a predecessor stage of a proper feature model. It consists of features

and their relations. In contrast to a feature model, its parent-child relations

do not have to form a tree because there can be multiple roots (features

with no outgoing dependencies).

6.6.1. Creating a NewMetamodel

Figure 6.19 illustrates the process of creating a new metamodel using the

reference structure approach. The individual process steps are not meant

to be performed in a strict iterative manner. Some steps may be skipped,

which is explained in the descriptions of the respective steps. It can be

172

6.6. Application Process

beneficial to backtrack to a prior step (e.g., when it is discovered that a

feature was forgotten or a feature can be split).

If there is no reuse of metamodel modules, this is a pure top-down design

process. If there is reuse, it is a mixture of top-down (decomposing the

features of the language) and bottom-up (assembling the existingmetamodel

modules). The following presents the individual steps of the process.

1) Language Feature Identification At first, as with any software pro-

ject, the metamodel architects identify the requirements of the lan-

guage. This step does not differ from the usual design of metamodels

(see Section 2.2.5). The concerns of the tool users have to be identi-

fied. Each language concern results in a language feature. Note that

this is the requirements identification phase; no technical artifacts

are implemented. The result of this process step is a collection of

language features.

2) Reuse Readily available metamodel modules may exist in organiza-

tion-internal or even public online repositories. This step is skipped

if no reuse takes place. The metamodel architect assigns metamodel

modules that can be reused to implement language features to the

respective language features. Metamodel modules on which reused

metamodel modules depend on, have to also be incorporated. De-

pendencies of reused metamodel modules that implement an own

language feature that was not yet identified in the first process step

are assigned to that new language feature. Such metamodel modules

are usually root metamodel modules. Dependencies of reused meta-

model modules that do not implement a new language feature are

assigned to the language feature of the reused metamodel module.

The result of this process step is a collection of language features of

which some are already implemented by reused metamodel modules.

3) Creating the Feature Graph By creating an empty root feature node

and labeling it with the name of the language, a metamodel architect

starts the feature model. For each of the identified language features,

the metamodel architect creates a feature node that is named after

the language feature. As a reminder, a feature node and its language

feature are simply refereed to as a feature if both are addressed

simultaneously (see Section 6.3.2). A metamodel architect has to

173

6. A Reference Structure to Enforce Modularity in Metamodels

1
Feature

Identification

2Reuse

3
Creating the

Feature Graph

4Layering

5
Paradigm

Extraction

6Feature Grouping

7
Parent Feature

Identification

8
Child Type

Determination

9
Feature

Implementation

10
Revision and

Refinement

Process Step Result

Language Features

Language Features
with reused
Metamodules

Feature Graph

Layered
Feature Graph

Layered
Feature Model

Modular Metamodel
and Layered
Feature Model

Figure 6.19.: Process Overview: Creating a new Metamodel

174

6.6. Application Process

declare a relation from a feature F to another feature G according to

the following rules:

• A requires relation is declared if a reused module that im-

plements F has a dependency to a reused feature that imple-

ments G.

• A requires relation is declared if feature F is an extension of

feature G.

• A requires relation is declared if feature F is dependent on

concepts of feature G.

• A excludes relation is declared if feature F prohibits the use

of feature G or vice versa.

Cycles of requires relations are forbidden. A metamodel architect

has to solve cycles by reversing requires relations. The direction of

the requires relations has to be based on what is conceptually correct.

If a cycle seems to be unbreakable, probably one feature has to be

split as it covers too many concerns. Between two features that do

not rely on reused metamodel modules, a required relation can be

reversed instantly. If metamodel modules are involved, the module

dependencies that are not supported by the feature dependencies

have to be reversed in step 9 (feature implementation).

The result of this process step is a feature graph.

4) Layering In this step, features are vertically split and assigned to

layers following the guidelines in Section 6.4. A metamodel architect

assigns features that contain language features only relevant to a

single layer to that layer. S/he performs the following steps for each

layer except for π , starting from the next basic layer.

a) If an unassigned feature contains features relevant to the cur-

rent layer alongside with other features, s/he creates a new

feature to hold the concepts that are irrelevant to the current

layer. S/he assigns the original feature to the current layer;

the new feature remains unassigned (and will be handled

further when the next layer is modularized). S/he declares a

requires relation from the new feature to the original feature.

175

6. A Reference Structure to Enforce Modularity in Metamodels

Feature relations that pointed to the original feature are either

left unchanged, redirected or duplicated to the new feature.

b) S/he reverses all feature relations coming from features of

more basic layers to features of this layer.

After these points have been completed, some feature relations may

point from more basic into more advanced layers. This is the result

of a feature F extending a feature that is more specific. This can be re-

solved by performing a feature support split on F (see Section 6.5.2.3).

The result of this step is a feature graph in which each feature is

assigned to exactly one layer, all feature dependencies are non-cyclic

and do not violate the layering.

5) Paradigm Extraction In this step, concepts that could be reused in

other domains are extracted into their own layer. The root feature is

always part of the π layer. To form the remaining π , a metamodel

architect considers for each language feature whether it contains any

fundamental concepts or patterns. For these fundamental concepts

and patterns, s/he creates new features in π and creates requires

relations pointing to them from the dependent ∆ language features.

6) Feature Grouping The grouping of language features is either used

to achieve a logical structuring (without effect on feature selection) or

to form feature sets (with effects on features selection, see Section 2.4).

Groups of features can only be formed from features of the same

layer. For each group, a metamodel architect creates a new feature

within the same layer and makes it the parent of each feature of the

group. Grouping can be done according to multiple reasons. Multiple

features could share a commonality (e.g., they are all structural

abstractions, view types, or of the same type). In some cases, groups

are used to form feature sets (i.e., alternative sets or OR sets). If two

or more features are fully interconnected with excludes relations,

a metamodel architect has to use an alternative feature set. The

alternative feature set then replaces all excludes relations. If no

feature grouping is necessary, this step is skipped.

7) Parent Feature Identification In this step, the parents of each fea-

ture that does not yet have one from the grouping step are identified.

First, a metamodel architect identifies all features that are direct

176

6.6. Application Process

children of the root amongst the π and ∆ features. These are the

standalone features of the language. They represent view types

and usually have no outgoing feature dependencies. If they have

outgoing feature dependencies, then only to π features.

Next, the metamodel architect identifies the parents of the remain-

ing features, which do not have a parent yet. One of the features to

which a requires relation exists is usually the parent. If a feature is an

extension of another feature, the metamodel architect declares a par-

ent relation from the extending to the extended feature. In all cases,

the parent relation replaces an existing dependency relation between

the two features. Like the requires relations, a parent relation cannot

point into a more specific layer.

The result of this step is a layered feature graphwhere every non-root

feature has a parent declared.

8) Child Feature Type Determination Some features already got their

child type in step (5). These features are either part of alternative

sets or OR sets and remain this way. For the other features, which

do not yet have a parent, a metamodel architect specifies the child

features types as follows.

a) The root feature has no parent but is always mandatory.

b) Child relations that cross the π layer boundary are always OR

sets, even if the parent has only one child. This enforces that

π features cannot be selected on their own, but always

together with at least one child.

c) Grouping features and parents of feature sets are mandatory

if the child relation does not cross a layer border.

d) Child relations that cross the other layer boundaries are

optional. If this were not the case, there would be hard

coupling between the layers.

e) The remaining features, which do not yet have a type

assigned to their child relation, are optional.

177

6. A Reference Structure to Enforce Modularity in Metamodels

The result of this process step is a proper feature model that is

layered and conforms to the dependency constraints of the reference

structure approach.

9) Feature Implementation In this process step, module developers

implement each feature by metamodel modules. Exceptions are

empty features and features that are already entirely implemented

by reused metamodel modules. Empty features are the root feature

and the parents of feature sets and feature groups. If the module

developers introduce new module dependencies that are not con-

forming to the feature model, a metamodel architect and a module

developer carry out the following steps. Together, they consider the

new feature dependency d from the feature F that is implemented

by metamodel module M to the feature G that is implemented by

metamodel module N.

a) If the information that is modeled by d is already present in

the implementation of N and is only used to ease backward

navigation, the metamodel architect forbids the dependency.

b) If there is no opposing dependency (i.e., G is not dependent

on F) and the new dependency that will be introduced by d is

meaningful in this specific context, s/he allows the new

feature dependency d.

c) If there is an opposing feature dependency, the metamodel

architect considers dependency inversion of d (see

Section 6.5.1).

d) If none of the above options are feasible, the metamodel

architect allows the new feature dependency d. This will

result in a dependency cycle between F and G, which has to

be resolved in the next step.

The result of this process step is a modular metamodel with a feature

model, which may still contain some flaws regarding the confor-

mance of the module dependency graph to the feature model.

10) Revision and Refinement Using the module refactorings described

in Section 6.5.2, metamodel architects in cooperation with module

developers can revise and refine the feature model to resolve issues

178

6.6. Application Process

like dependency cycles, features that could belong to multiple layers

and features that fulfill multiple responsibilities. This step is skipped,

if no refinement is necessary. After each refactoring, a metamodel

architect updates the featuremodel accordingly. Finally, a metamodel

architect can use the feature model refactorings from Section 6.5.3 to

clean up and clarify the feature model. The result of this process step

is the final layered modular metamodel with feature model which

both fulfill the dependency constraints of the reference structure

approach.

6.6.2. Refactor an Existing Metamodel

This section specifies the process to refactor an existing metamodel to fit

the proposed reference structure. Figure 6.20 gives an overview. Like the

previous process, the single steps of the process are not intended to be

executed in a strictly sequential manner. Especially, when refactoring a

legacy metamodel with which the metamodel developers are not entirely

familiar with, the developers’ knowledge increases during the refactoring

process. Thus, dependencies and unmodularized language features become

apparent, and the modularization must be revised iteratively.

1) Horizontal Decomposition The metamodel architects subdivide ex-

istingmetamodel modules according to the horizontal decomposition

refactoring until they only implement a single responsibility. A good

starting point is given by the package structure and the outline of the

documentation if they exist. The dependencies are not yet adjusted,

this is done in a later step in the process.

In case a large number of models of the original metamodel is ac-

cessible, the parts of the metamodel that are used for instantiating

the models give hints for decomposition. If a metamodel module is

commonly instantiated only in parts, this indicates the metamodel

module must be further subdivided.

Sometimes, already implemented metamodel modules may be avail-

able from other metamodels that cover a similar subject matter. If

some of these metamodel modules offer abstractions that are suffi-

ciently similar to the ones of the currentmetamodel, thesemetamodel

179

6. A Reference Structure to Enforce Modularity in Metamodels

1
Horizontal

Decomposition

2
 Feature Graph

Creation

3
 Dependency

Alignment

4
Vertical

Decomposition

5
Paradigm

Extraction

6
Feature

Grouping

7
Parent Feature

Identification

8
Child Type

Determination

Intertwined
Metamodules

Modular Metamodel
and Layered
Feature Model

Feature Graph and
Metamodules

Feature Graph and
Conforming
Metamodules

Layered Feature Graph
and Conforming
Metamodules

0Input

Process Step Result

Monolithic Metamodel

Figure 6.20.: Process Overview: Refactoring a Legacy Metamodel

modules can be used to replace the respective parts of the metamodel.

In such a case, incoming classifier dependencies have to be redirected

to the reused metamodel modules. Depending on the extent of the

reuse, this enables to consolidate the common parts of two or even

more metamodels. This has the advantage that instances of common

180

6.6. Application Process

language features have to be modeled only once. Language-specific

extensions can then be applied on these instances.

The result of this step is a set of metamodel modules that may be

strongly interconnected and possibly contain dependency cycles.

These shortcomings have to be refactored in the following steps.

2) Feature Graph Creation In this process step, a feature graph is cre-

ated that represents the language features of the metamodel. First,

a metamodel architect has to consider for each metamodel mod-

ule whether it represents a language feature. Abstract metamodel

modules do not represent language features. Abstract metamodel

modules define abstractions that are needed by multiple metamodel

modules. Usually, all metamodel modules without incoming de-

pendencies represent language features. The exception are abstract

metamodel modules that merely implement extension points that are

currently not used. Metamodel modules that have incoming depen-

dencies either represent standalone features or extension features.

If the metamodel module can be used on its own, it implements a

standalone feature. If the metamodel module cannot be used on

its own but extends other metamodel modules, it implements an

extension feature.

Second, the metamodel architect creates a feature node for each

language feature that s/he identified. Third, regardless of the module

dependencies, the metamodel architect declares feature required

relations according to the conceptual dependencies of the language

features and the guidelines and constraints of the reference structure.

The result of this step is a set of metamodel modules and a feature

graph that represents the conceptual feature dependencies. The

module dependency graph does not yet conform to the feature de-

pendency graph.

3) Dependency Alignment In this step, a metamodel architect inspects

module dependencies that are not in line with the feature graph.

S/he starts with the most specific modules. These are usually the

ones with the least incoming dependencies. For each incoming and

outgoing dependency d on the classifier level that is not reflected in

181

6. A Reference Structure to Enforce Modularity in Metamodels

the feature graph, s/he executes the following steps. d points from

metamodel module M to N.

a) S/he checks whether the affected classifiers in both

metamodel modules are correctly placed. If not, s/he moves

the respective classifier into the other metamodel module.

b) If a classifier is encountered that does not fit M nor N, s/he

considers whether it either belongs to another metamodel

module or whether it (and possibly further classifiers) can be

factored out into a new metamodel module.

c) If there is a feature dependency from N to M, s/he considers

dependency inversion of d.

d) If there is no feature dependency from N to M, s/he considers

introducing a feature dependency from M to N.

e) If there is a feature dependency from N to M, s/he considers

reversing it. If it is meaningful to do so, s/he reverses all

inter-module dependencies that go from N to M as well.

S/he updates the feature graph accordingly. The result of this step

is a modular metamodel that is free of dependency cycles, and all

module dependencies conform to a feature dependency.

4) Vertical Decomposition Metamodels in the focus of this thesis can

be reused at least in parts for modeling and analyzing different qual-

ity properties or even different domains. This optional step can be

performed to improve the reusability of the metamodel. First, meta-

model architects assign metamodel modules that only implement

language features relevant to a specific layer to that layer. On each

metamodel module M that implements language features belonging

to multiple layers, metamodel architects and module developers per-

form the vertical split refactoring. A metamodel architect updates

the feature graph accordingly. The result of this step is a layered

modular metamodel that conforms to a layered feature graph.

5) Paradigm Extraction In this step, metamodel architects inspect ∆
for abstractions and patterns that are fundamental to the language

and can be reused in other domains. Suitable candidates are often

amongst the packages that contain mostly abstract classes. If there

182

6.6. Application Process

is an abstraction or pattern to be factored out whose classes are not

abstract, a module developer can factor it out into abstract classes

from which the concrete classes then inherit. A module developer

moves properties that belong to the abstractions or pattern into

the abstract classes, while domain-specific properties stay in the

concrete classes. Incoming dependencies remain on the concrete

classes. After each refactoring, a metamodel architect updates the

feature graph accordingly.

6-8) Feature Model Forming In these steps, the metamodel architects

transform the feature graph into a feature model. First, a metamodel

architect creates a root feature. Then the metamodel architects

perform the steps Feature Grouping, Parent Identification, and Child

Feature Types Determination from Section 6.6.1. The result of these

steps is a feature model and a modular metamodel of which all

module dependencies conform to the feature model.

6.6.3. Extending a Modular Metamodel

This section presents the process of how an existing language is extended.

Figure 6.21 illustrates the process. This process applies to the extension

of a layered modular metamodel for which a conforming feature model

exists. The process of extending a metamodel that is not layered, not

divided into modules, and has no feature model is much simpler as it is

much more unstructured. For such a plain metamodel extension, please

refer to Section 8.2.2.

1) Feature Identification In this process step, the metamodel archi-

tects make a requirements assessment of which new which new

concepts should be introduced. An important question that the meta-

model architects have to ask about the new concepts is whether they

(1) represent an intrusive addition to existing language features or

whether they (2) are optional extensions. They must only choose the

first case if the new concepts are essential to the language feature

to which they should be added. This means they are always used if

the language feature is used. For all concepts that fall under the first

case, the process ends here, as no metamodel extension takes place.

183

6. A Reference Structure to Enforce Modularity in Metamodels

1
Feature

Identification

2
Feature Model

Extension

3Layering

4
Paradigm

Extraction

5
Feature

Implementation

Set of new
Language Features

Modular Metamodel
and Layered
Feature Model

0Input

Process Step Result

Extended
Feature Model

Layered Extended
Feature Model

Extended Modular
Metamodel and
Layered Feature Model

Figure 6.21.: Process Overview: Extending a Modular Metamodel

The module developers implement them in the existing metamodel

modules to which they belong.

If there are any new concepts left that fall under the second case

(optional extension), the metamodel architects proceed as follows.

They group the concepts into language features. A language feature

is a unit of reuse. Thus, the metamodel architects should consider

whether a language feature is always used as a whole. If there are

parts of a language feature that could be used independently, they

have to be moved into an own language feature. The result of this

step is a set of new language features.

2) Feature Model Extension In this process step, the metamodel archi-

tects integrate the new language features into the feature model.

For each language feature, the metamodel architects create a new

184

6.6. Application Process

feature node. Next, they note down feature dependencies amongst

the new features. They then review the feature model to determine

which features the new language features depend on. They note

down these dependencies. For each new feature, they identify the

parent amongst its dependencies. If this is non-trivial, they use the

guidelines in step 6 (Feature Grouping) and 7 (Parent Feature Identi-

fication) of Section 6.6.1. New extension features are always optional

child features. For the remaining feature dependencies, a metamodel

architect creates required relations. The result of this process step

is an addition of new features to the feature model of the language

that is extended.

3-4) Layering andParadigmExtraction In this process step, a metamodel

architect places the new feature in the proper layer. The layering

must not be violated by the new feature dependencies. This means a

feature is at least as specific as the most specific feature it depends

on. If this is too specific, a metamodel architect performs a feature

support extraction (see Section 6.5.2.3). If a new feature does not

fit exactly one layer, a metamodel architect splits it as described in

step 4 (Layering) of Section 6.6.1. At last, the metamodel architects

perform paradigm extraction (see step 5 of Section 6.6.1). The result

of this process step is an extended feature model, which is properly

layered.

5) Feature Implementation In this final step, the module developers

implement the new language features by metamodel modules. If

class extensions have to be implemented, the process in Section 8.2.2

has to be followed. The module dependencies must conform to the

feature dependencies. If the feature dependencies seem insufficient,

they consult with the metamodel architects according to the decision

support in process step 9 (Feature Implementation) of Section 6.6.1.

The result of this process step is the finished extension of the modular

metamodel and its feature model.

185

Part III.

Validation

7. Bad Smell Detection and
Correction Evaluation

This chapter presents the explorative study which was conducted to eval-

uate smells, their detection implementation, and their corrections. Only

the implemented smell detections were evaluated. This evaluation was

conducted as an explorative study, as during the evaluation, this allowed

gained insights to improve this contribution’s concepts and implementation.

Examples of insights include improvements of smell definitions, their effect,

detection, correction, and the interplay between smells.

This chapter is structured as follows. Section 7.1 states the goals of this

evaluation. Section 7.2 presents the evaluation process. Section 7.3 briefly

presents the metamodel that is analyzed for smells. Section 7.4 explains

how the thresholds for the metric-based smells were chosen and lists the

thresholds. Section 7.5 gives an overview of the detection results by pre-

senting counts of smell occurrences. Section 7.6 presents a list of details

about the individual occurrences that were corrected. Appendix A shows

the full list, which contains all occurrences. Section 7.7 presents the cor-

rections that were performed. Section 7.8 gives an overview of the results.

Section 7.9 presents threats to the validity of this evaluation. Section 7.10

interprets the results.

7.1. Evaluation Goals

This evaluation refers to the research questions that were specified in

Section 4.1. From these research questions, the evaluation goals are de-

rived as follows.

189

7. Bad Smell Detection and Correction Evaluation

G1) Bad Smell Meaningfulness Research question RQ Ia (Bad Smells)

asks which bad smells exist and what their effects are. Therefore,

this goal is concerned with whether the types of bad smells that

are presented in Section 4.4 can be indicators for problems. Some

smells are always harmful where they appear. For most bad smells,

however, an occurrence is not necessarily a bad thing. For other

smells, the harmfulness of their occurrence depends on the subject

matter that is modeled. Some concepts have an inherently high

complexity or necessitate specific modeling strategies that might be

considered inadequate in other situations. To demonstrate that a bad

smell definition is meaningful, situations have to be identified where

the occurrence of a smell indicates improvement potential.

G2) Detection Appropriateness The research question RQ Ib (Smell

Identification) asks how the smells can be detected and which de-

tections can be performed automatically. For the smell detections

that have been implemented, it should be evaluated whether they

work like described in Section 4.4. This includes two aspects. First,

it includes, whether the reported occurrences fit the definition of

the smell. Second, it includes, whether all occurrences are reported

that should be reported according to the definition of the smell. This

evaluation focuses on the first aspect.

G3) Correction Appropriateness The research question RQ Ic (Smell

Resolution) asks how the bad smells can be corrected. Therefore, it

should be evaluated if the corrections that are specified in Section 4.4

resolve the smells and whether they are beneficial to the metamodel.

This evaluation does not focus on whether the detection tool is beneficial

in detecting the bad smell occurrences. This was already done by Arendt

[Are14] in a user study with students. Two groups had to perform several

tasks. One group used EMF Refactor. The other group used the basic tools

that are provided EMF. Arendt was able to show that the group that used

EMF Refactor performed the tasks quicker and made fewer mistakes.

190

7.2. Evaluation Approach

7.2. Evaluation Approach

As a course overview, this evaluation can be divided into the following

steps: detection, inspection, correction, and redetection. In the inspection

phase, the smell occurrences are investigated whether they adhere to their

respective smell definition in Section 4.4 and whether they are harmful. In

the correction phase, occurrences are corrected that have been discovered

in the detection phase. In the redetection phase, it is investigated, whether

the corrected occurrences disappear from the detection results.

These phases relate to the goals of the evaluation as follows. G1 (Bad

Smell Meaningfulness) is targeted, as the harmfulness of occurrences is

discovered in the inspection phase. The inspection phase also targets G2

(Detection Appropriateness), as the occurrences are investigated whether

they adhere to the detection definitions. G3 (Correction Appropriateness)

is targeted, as the effectiveness of the corrections that are performed is

evaluated in the redetection phase. The redetection phase also targets G2

(Detection Appropriateness), as it is inspected whether corrected smells

are no longer detected.

Figure 7.1 shows the evaluation approach in detail. The following list

explains the single process steps.

1) Detection As the first process step, all implemented smell detections

are performed on the metamodel.

2) Confirm Correctness Each smell occurrence is inspected whether

it is a correct occurrence according to the definition of the smells. If

in this step it is immediately apparent that an occurrence is harmful

or benign, this fact is documented.

3) Occurrence Selection In this process step, for each smell, two oc-

currences are selected that will be corrected later. This process step

is divided into several substeps. It is performed for each smell, as

indicated by the fork in front of process step 3.1. If there are no

occurrences of a smell, the smell is skipped.

3.1) Ignore Already Fixed Smell occurrences that are already fixed

as a side effect of a correction that targets an occurrence of

another smell are ignored. It is already demonstrated, that such

191

7. Bad Smell Detection and Correction Evaluation

occurrences can be corrected and that the detection recognizes

this. If the occurrence is already fixed, the process continues

with 3.5, otherwise with 3.2.

3.2) Inspect Occurrence The occurrence is inspected regarding

its harmfulness and whether it is caused by an occurrence of

another smell.

3.3) Put Aside Benign In practice, a benign occurrence should not

be fixed, as there is no meaningful correction. Although it does

not affect the goals of this evaluation, benign occurrences are

put aside to focus on the correction of harmful smells. Later,

they are only resorted to if there are no harmful occurrences

left that could be corrected. If the occurrence is harmful, the

process continues at 3.4. Otherwise, it continues at 3.5.

3.4) Put AsideCausedbyother Smell An occurrence that is caused

by the occurrence of another smell is corrected according to the

description of the other smell. Although the correction of the

other smell is also a legitimate correction for the current smell,

this evaluation focuses on occurrences that are not caused by

other smells. This is done to evaluate the corrections of the

current smell. If the occurrence is caused by the occurrence of

another smell, the process continues at step 3.5. Otherwise, it

continues at 3.8.

3.5) Uninspected Occurrences Remain If an occurrence is ignored

or put aside, this decision gate is reached. The purpose of

this decision is to iterate the occurrences of the smell until

enough have been selected for a correction. If there are still

occurrences left that have not yet been considered for a cor-

rection, the selection subprocess restarts at 3.1 to consider a

new occurrence. If all occurrences were examined, the process

continues at 3.6 to consider occurrences that have been put

aside before.

3.6) Occurrence Caused by other Smell Available The occurrences

that were put aside earlier include benign ones and occur-

rences that are caused by another smell’s occurrence. At this

point, no other occurrences remain, and, thus, these have to be

192

7.2. Evaluation Approach

considered for selection. This evaluation prefers occurrences

that are caused by the occurrence of other smells over benign

occurrences. This is done, as a correction of such an occur-

rence is meaningful, in contrast to a correction of a benign

occurrence. If an occurrence that is caused by the occurrence

of another smell is still available, the process continues at 3.8.

Otherwise, it continues at 3.7.

3.7) Is Benign Occurrence Available If there are only benign oc-

currences of the current smell available, such an occurrence is

selected in step 3.8. Otherwise, less than two occurrences are

chosen for the correction of this smell and the process contin-

ues with step 4. If the smell is metric-based, an adjustment of

the metric threshold has to be considered.

3.8) Select Occurrence The occurrence that is currently under

consideration is selected for the correction. This may either be

an ideal occurrence from step 3.4, a harmful occurrence that is

caused by another smell from step 3.6, or a benign occurrence

from step 3.7.

3.9) Two Occurrences Selected If two occurrences of the current

smell were selected for the correction, the process continues

at step 4. Otherwise, the process continues at step 3.5.

4) Correct This process step is executed for each occurrence that was

selected. This is indicated by the fork that is in front of this process

step. In this step, the occurrences are corrected. Each correction is

performed in a new copy of the PCM in order to be able to investigate

the effect of the correction individually.

5) Redetection In this process step, for each correction, a new detec-

tion of all smells is performed to determine the effect of the correction.

The differences to the initial result from step 1 are then documented.

193

7. Bad Smell Detection and Correction Evaluation

3.2Inspect Occurrence

Benign?

Caused by
other Smell?

Already Fixed? 3.1

Process Step

3.3

3.4

3.5

Two Occurrences
Selected?

Harmful Occurrence Caused
by other Smell Available?

3.6

3.7 Benign Occurrence Available?

Correction 4

3.9

Uninspected Occurrences
Remain?

yes

no

2 Confirm Correctness

yes

no

yes

Select Occurrence 3.8

yes

no

no

no

yes

no

yes

no

yes

1Detection

for each Smell

for each Occurrence

5 Redetection

Figure 7.1.: Evaluation Approach

194

7.3. Subject Metamodel

7.3. Subject Metamodel

The subject of this evaluation is the Palladio Component Model (PCM)

[Reu+16] version 4.1
1
. It is used for the modeling of component-based

software architectures. On such software architectures, analyses for several

quality properties can be performed. The most prominent analyses of

the PCM cover performance and reliability. The PCM consists of five

metamodel files, all of which were analyzed for bad smells in this evaluation.

The identifier metamodel file provides a superclass for all classes that

need an identifier attribute. The units metamodel file defines units and

provides a superclass that keeps track of a unit. The stoex metamodel file

defines arithmetic on random variables. The probfunction metamodel file

defines abstractions to model probability functions, which can be used in

stochastic expressions. The pcm metamodel file defines the concepts for

the component-based architecture and its quality properties.

7.4. Metric Thresholds

To determine the occurrences of metric-based smells, their metric thresholds

have to be defined. Section 7.4.1 presents the criteria after which the thresh-

olds were determined. Section 7.4.2 explains the determination process and

the final value of the threshold for every metric-based bad smell.

7.4.1. Metric Thresholds Determination Approach

In the scope of this evaluation, it was not a goal to find the optimal thresh-

olds that are suited for all metamodels. On the one hand, metrics have the

advantage that they are easy to compute. On the other hand, the interpreta-

tion of their results is not straightforward. Absolute benchmark values that

indicate optimal results do not exist in metamodeling. Even in other fields,

they are rare. The reason for this is that such absolute benchmark values are

only feasible if the evaluation of the metrics value is not dependent on the

subject that is investigated. This means for some metrics, whether a metric

1 https://sdqweb.ipd.kit.edu/wiki/PCM_4.1 (last visited 23.08.2019)

195

https://sdqweb.ipd.kit.edu/wiki/PCM_4.1

7. Bad Smell Detection and Correction Evaluation

value is considered good or bad depends upon the inherent complexity of

the domain. In such cases, the values have to be interpreted by a developer.

In the best case, when detecting a metric-based smell, all harmful occur-

rences and no false positives are detected. In general, however, this is

unachievable. For the analysis of the PCM, the thresholds were chosen

so that a satisfactory tradeoff could be achieved regarding the number of

occurrences. On the one hand, the detections should report enough occur-

rences. On the other hand, not too many benign occurrences should be

detected. Setting the threshold very high reduces the overall number of

reported occurrences but increases the ratio of harmful occurrences. Low-

ering the threshold results in more occurrences. At some point, however,

no harmful occurrences can be found anymore.

To achieve the goals of this evaluation, the metrics were adjusted to fulfill

the following criteria:

C1) Occurrence Count This criterion states that for a smell, at least two

occurrences should be detected. The occurrences are inspected to

ensure that they really are occurrences of the smell according to the

smells detection description. The two occurrences are then corrected

to evaluate the effectiveness of the correction. Thus, for metric-based

smells, this criterion is needed to evaluate G2 and G3.

C2) Harmfulness This criterion states that for a smell, at least one harm-

ful occurrence should be detected. This is needed to demonstrate

that a smell can have adverse effects (i.e., G1).

If there is further tolerance in the specification of the threshold, it may be

adjusted to improve the following two optional criteria:

O1) Many True Positives As many harmful should be reported as possi-

ble. This increases the significance of G1.

O2) FewFalse Positives The number of benign occurrences should be as

low as possible. All occurrences have to be reviewed for correctness.

They also have to be inspected for their harmfulness. This can be

time-consuming, as a meaningful correction has to be found in order

to declare an occurrence to be harmful.

196

7.4. Metric Thresholds

The threshold specification approach of this evaluation is not intended to be

applied for real applications of the smell detections. The disadvantage is that

it does not focus on finding as much of the harmful occurrences as possible.

In practice, in the tradeoff between O1 and O2, O1 should be prioritized a

little more. A lower threshold leads to more detected occurrences and has

the potential to increase the total number of detected harmful occurrences.

The larger quantity of occurrences should then be reviewed less thoroughly

compared with the review approach of this evaluation. The intention in

practice should be to cover as many occurrences as possible and to fix the

occurrences that are obviously harmful, as they tend to be the most harmful.

7.4.2. Smell Metric Thresholds

Table 7.1 shows the thresholds that were chosen for the analysis of the

PCM. The first five smell detections are metric-based.

Bad Smell Metric Threshold Occurrences
Missing Class: Primitive Obsession 3 1

Missing Class: Shared Properties 2 4

God Class 8 10

Wide Hierarchy 10 2

Deep Hierarchy 8 15

Dead Classifier: Dead Class 9

Dead Classifier: Dead Enum 0

Multipath Hierarchy 10

Concrete Abstract Class 2

Container Relation 41

Obligatory Container Relation 44

Specialized Relation 6

Speculative Hierarchy 5

Dependency Cycle 13

Dependency Cycle (with Cont. Ref.) (959)

Sum: 162

Table 7.1.:Metric Thresholds and Smell Occurrences in the PCM

The threshold of the Missing Class (Primitive Obsession) detection is set

to three. It specifies how many attribute with primitive types a class has

197

7. Bad Smell Detection and Correction Evaluation

to own to be detected as an occurrence. With a threshold of three, one

occurrence is reported. C1 is, therefore, not fulfilled. For the PCM this is,

however, a meaningful value. Higher thresholds report zero occurrences.

This prohibits the evaluation of G2 and G3. A lower threshold is in general

not meaningful, as two properties do not have to be factored out into a new

class necessarily. This would not produce any further harmful occurrences.

Therefore, O1 cannot be improved any more. Further, a lower threshold

at two reports an excessive number of occurrences. It would, therefore,

worsen O2. As the one reported occurrence is harmful, C2 is fulfilled.

The threshold for the Missing Class (Shared Properties) smell specifies the

number of identical class properties that two classes have to share to be

reported as an occurrence. For the analysis of the PCM, the threshold is

set to two. This results in four occurrences, which is sufficient to fulfill C1.

A higher threshold produces no occurrences at all. Therefore, O2 cannot

be improved any more. All four occurrences are harmful, which fulfills

C2. A lower value results in too many occurrences, and, thus, would go

against O2. Further, it is not meaningful as it is expected not to produce

many new harmful occurrences. In general, one shared class property

cannot be factored out without producing a new shared property (e.g., a

containment to the class that holds the extracted property). A lower value

would, therefore, not work towards O1.

The threshold of the God Class smell specifies how many class properties a

class has to own in order to be reported as a god class. For this evaluation,

the threshold is set to eight. This produces ten occurrences, which also

include seven harmful occurrences. Therefore, C1 and C2 are fulfilled for

God Class. O1 could be improved by lowering the threshold, as it can be

assumed that there are further classes with less than eight properties that are

not adequately modularized. The lowering of the threshold would, however,

produce many new occurrences and would, therefore, go against O2.

For the Wide Hierarchy smell, the threshold specifies how many or more

subclasses a class has to have to be reported as an occurrence. The threshold

is set to ten, which reports two occurrences. This is sufficient to fulfill C1.

None of the occurrences is harmful. This does not fulfill C2. Lowering

the threshold, however, is unlikely to produce harmful occurrences. It

would result in more benign occurrences and would go against O2. In

the PCM, there is currently no known improvement potential that would

198

7.5. Detection Result Overview

allow reducing Wide Hierarchies meaningfully. Therefore, new harmful

occurrences, are unlikely. A threshold of ten at least works towards O2.

The threshold of the Deep Hierarchy smell, specifies the number of classes

that have to be at least contained in a chain of inheritances. In this evalua-

tion, a threshold of eight results in 15 occurrences, all of which are harmful.

This fulfills C1 and C2. A lower threshold could improve O1 but would

go against O2. As 15 is already a relatively high value compared with the

other smells, the threshold was not further lowered.

7.5. Detection Result Overview

Table 7.1 shows the results of the bad smell detection on the PCM. The

first five bad smells are metric-based and therefore their threshold is also

shown. The lower bad smells are anti-pattern based, and therefore do not

require a metric threshold.

The number of dependency cycles is shown twice. The first number shows

the count of cycles that are detected after all container references were

removed from the PCM. A container reference leads to either a container

relation or an obligatory container relation occurrence. Together with its

opposite containment reference, a container reference causes a dependency

cycle between the two involved classes. The second count represents the

number of cycles as reported by EMF Refactor when applied onto the

unmodified PCM. The number is much higher as the sum of cycles and

container references, as the detection for dependency cycles also detects

combinations of cycles. Due to the many container references, a multitude

of combinations of cycles was detected. The number of Dependency Cycles

without container references does only contain separate cycles. There

are no connected cycles that lead to an increase in the number due to

cycle combinations. The total sum of smell occurrences does not include

the number of Dependency Cycles with container references. This would

bloat the sum and diminish the counts of the other occurrences. This is

why the number is shown in brackets. When reporting the results of the

smell occurrence corrections, the consequences are reported regarding the

number of Dependency Cycles with container references. This is done to

show the effect of the correction onto the unmodified PCM.

199

7. Bad Smell Detection and Correction Evaluation

7.6. Bad Smell Occurrences

Table 7.2 shows an excerpt of the details of the smell occurrences. It lists

only smell occurrences that have been directly targeted by corrections. A

full listing of the smell occurrences is shown in Appendix A. Both tables

have the same structure, which is explained in the following.

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d
Consequence

Missing Class: Primitive Obsession (1)
ProcessingResourceSpecifi-

cation

1 ✓ ✓ none

Missing Class: Shared Properties (4)
CollectionDataType,

CompositeDataType

2 ✓ ✓ none

InfrastructureCall,

ResourceCall

3 ✓ ✓ −47 Dependency Cycles,

−1 Container Relation,

−2 God Classes

God Class (10)
EntryLevelSystemCall 4 ✓ ✓ −58 Dependency Cycles,

−2 Container Relations,

+1Multipath Hierarchy

ScenarioBehaviour 5 ✓ ✓ −3 Container Relations,

−241 Cycles

Wide Hierarchy (2)
Entity 6 × ✓ +16 Deep Hierarchies

AbstractInternalControl-

FlowAction

7 × ✓ none

continues on next page

Table 7.2.:Metric Occurrences in the PCM and Corrections

200

7.6. Bad Smell Occurrences

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
Deep Hierarchy (15)
BasicComponent, Implemen-

tationComponentType,

RepositoryComponent,

InterfaceProvidingRequir-

ingEntity,

InterfaceRequiringEntity,

ResourceInterfaceRequiring-

Entity, Entity,

Identifier

8 ✓ ✓∗4 −1 Multipath Hierarchy,

+8 Dependency Cycles,

−1 Concrete Abstract

Class

BasicComponent, Implemen-

tationComponentType,

RepositoryComponent,

InterfaceProvidingRequir-

ingEntity,

InterfaceRequiringEntity,

ResourceInterfaceRequiring-

Entity, Entity,

NamedElement

8 ✓

CompositeComponent,

ImplementationComponent-

Type,

RepositoryComponent,

InterfaceProvidingRequir-

ingEntity,

InterfaceRequiringEntity,

ResourceInterfaceRequiring-

Entity, Entity,

Identifier

8 ✓

continues on next page

Table 7.2.:Metric Occurrences in the PCM and Corrections

201

7. Bad Smell Detection and Correction Evaluation

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
CompositeComponent,

ImplementationComponent-

Type,

RepositoryComponent,

InterfaceProvidingRequir-

ingEntity,

InterfaceRequiringEntity,

ResourceInterfaceRequiring-

Entity, Entity,

NamedElement

8 ✓

PowerExpression, Power,

Product, Term, Comparison,

BooleanExpression, IfElse,

Expression

9 ✓ ✓ −1 Speculative

Hierarchy

DeadClass (9)
DummyClass 10 ✓ ✓ none

ResourceInterfaceProviding-

RequiringEntity

11 ✓ ✓ −1 Multipath Hierarchy

Multipath Hierarchy (10)
System, ComposedProvid-

ingRequiringEntity,

ComposedStructure,

InterfaceProvidingRequir-

ingEntity,

InterfaceRequiringEntity,

ResourceInterfaceRequiring-

Entity,

InterfaceProvidingEntity,

Entity

12 ✓ ✓ none

continues on next page

Table 7.2.:Metric Occurrences in the PCM and Corrections

202

7.6. Bad Smell Occurrences

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
ResourceType, ResourceIn-

terfaceProvidingEntity,

Entity

13 ✓ ✓ none

Concrete Abstract Class (2)
ResourceInterfaceRequiring-

Entity,

InterfaceRequiringEntity

14 ✓ ✓ none

ResourceInterfaceProviding-

Entity,

ResourceType

15 ✓ ✓ none

Container Relation (41)
PCMRandomVariable,

ClosedWorkload

16 ✓ ✓∗17 −830 Dependency

Cycles,

−17 Container Relations,

−1 God Class

PCMRandomVariable,

PassiveResource

16 ✓

PCMRandomVariable,

VariableCharacterisation

16 ✓

PCMRandomVariable,

InfrastructureCall

16, 3 ✓

PCMRandomVariable,

ResourceCall

16, 3 ✓

PCMRandomVariable, Para-

metricResourceDemand

16 ✓

PCMRandomVariable,

LoopAction

16 ✓

PCMRandomVariable,

GuardedBranchTransition

16 ✓

PCMRandomVariable,

SpecifiedExecutionTime

16 ✓

continues on next page

Table 7.2.:Metric Occurrences in the PCM and Corrections

203

7. Bad Smell Detection and Correction Evaluation

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
PCMRandomVariable, Event-

ChannelSinkConnector

16 ✓

PCMRandomVariable,

AssemblyEventConnector

16 ✓

PCMRandomVariable, Loop 16 ✓
PCMRandomVariable,

OpenWorkload

16 ✓

PCMRandomVariable, Delay 16 ✓
PCMRandomVariable,

CommunicationLinkRe-

sourceSpecification

16 ✓

PCMRandomVariable,

ProcessingResourceSpecifi-

cation

16 ✓

PCMRandomVariable,

CommunicationLinkRe-

sourceSpecification

16 ✓

VariableUsage, UserData 17 ✓ ✓∗9 −762 Dependency

Cycles,

−9 Container Relations,

−1 God Class

VariableUsage, CallAction 17 ✓
VariableUsage,

SynchronisationPoint

17 ✓

VariableUsage,

CallReturnAction

17 ✓

VariableUsage,

SetVariableAction

17 ✓

VariableUsage, SpecifiedOut-

putParameterAbstraction

17 ✓

continues on next page

Table 7.2.:Metric Occurrences in the PCM and Corrections

204

7.6. Bad Smell Occurrences

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
VariableUsage,

AssemblyContext

17 ✓

VariableUsage,

EntryLevelSystemCall

17, 4 ✓

VariableUsage,

EntryLevelSystemCall

17, 4 ✓

Obligatory Container Relation (44)
Workload, UsageScenario 18 ✓ ✓ −3 Dependency Cycles

InfrastructureCall, Abstract-

InternalControlFlowAction

19 ✓ ✓ −1 God Class,

−10 Dependency Cycles

Specialized Relation (6)
ForkAction,

ForkedBehaviour

20 ✓ ✓∗5 −2 Container Relations,

−89 Dependency Cycles

ForkedBehaviour,

ForkAction

20 ✓

InternalCallAction,

ResourceDemandingInter-

nalBehaviour

20 ✓

RecoveryActionBehaviour,

RecoveryAction

21 ✓ ✓ −1 Obl. Container

Relation,

−1 Dependency Cycle

RecoveryAction,

RecoveryActionBehaviour

20 ✓

RecoveryAction,

RecoveryActionBehaviour

20 ✓

Speculative Hierarchy (5)
ServiceEffectSpecification,

ResourceDemandingSEFF

22 × ✓ +68 Dependency Cycles

continues on next page

Table 7.2.:Metric Occurrences in the PCM and Corrections

205

7. Bad Smell Detection and Correction Evaluation

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
ComposedStructure,

ComposedProvidingRequir-

ingEntity

23 × ✓ +1 God Class

Dependency Cycles without Container (13)
EventChannelSourceCon-

nector,

EventChannel

24 ✓ ✓∗2 none

EventChannelSinkConnec-

tor,

EventChannel

24 ✓

ResourceTimeoutFailure-

Type,

PassiveResource

25 ✓ ✓ none

Table 7.2.:Metric Occurrences in the PCM and Corrections

The occurrences are grouped after their smells. Each group of occurrences

is proceeded by a row that declares the bad smell and the size of the group

in brackets. These rows can be recognized as they are printed in bold. For a

smell occurrence, the first column lists the involved classes as reported by

EMF Refactor. The second column specifies which correction addresses the

occurrence. Some corrections have the side effect that they also fix other

smell occurrences. In these cases, the Correction No. column shows the

numbers of these corrections. As Appendix A shows, much more smell

occurrences were fixed compared with the number of corrections. Some

occurrences are even fixed by multiple corrections. The column with the

label Harmful specifies whether the smell occurrence is considered harmful.

A check mark denotes a harmful occurrence. A cross implies a benign

occurrence. The last two columns present the effect of the correction. The

Fixed column reports whether the correction eliminated the smell occur-

rence. The Consequence column lists the effect on other smell occurrences.

A minus indicates that further occurrences of another smell were fixed.

206

7.7. Correction and Revaluation

A plus states that new occurrences of another smell were detected. If a

correction fixes multiple occurrences of the smell that it initially addresses,

this is indicated by a multiplicator besides the check mark in the Fixed

column. In such cases, the Fixed and Consequence cells are only specified

for the first smell occurrence. They are also valid for the other fixed oc-

currences of the same smell. They can be found by looking for the same

number in the Correction No. column.

7.7. Correction and Revaluation

In this section, the correction and revaluation of the smells are presented.

For each smell at most two corrections were performed. If a smell occurs

less than two times, as much corrections were performed as possible. This

is only the case for the Missing Class (Primitive Obsession) smell, which

features one occurrence in the PCM. The Dead Classifier (Dead Enum) smell

does not occur in the PCM and therefore could not be fixed.

Each correction was performed separately. This way the effect of each cor-

rection can be measured in isolation. If multiple corrections are performed

at once, the effects cannot be attributed to the proper corrections.

The corrections are presented as follows. First, the smell occurrence is

explained, and it is discussed if the occurrence is harmful or benign. Second,

the correction is presented. Third, the effect of the correction is reported and

discussed: was the occurrence fixed, what was the benefit of the correction,

and how other smells were affected.

7.7.1. Missing Class Primitive Obsession

This smell detection only reported one occurrence. Therefore, this one

occurrence was fixed.

207

7. Bad Smell Detection and Correction Evaluation

Occurrence 1: ProcessingResourceSpecification

Description The class ProcessingResourceSpecification contains four at-

tributes with primitive types. Two of them are related. They model reliabil-

ity relevant properties. This occurrence is not considered to be harmful. It

is a matter of taste in modeling style, whether a new class should be intro-

duced to factor out two attributes. As this is the only occurrence of this smell

detection, it was nevertheless fixed to evaluate its detection and correction.

Correction (1) The new class ProcessingResourceReliabilitySpecification

was created. A new containment was created from ProcessingResourceSpec-

ification to ProcessingResourceReliabilitySpecification. The two attributes

were moved to the new class.

Result A detection run on the modified metamodel showed that the

occurrence was fixed. The refactoring causes the complexity of the affected

class to be factored out. No other smell occurrences were affected.

7.7.2. Missing Class Shared Properties

With a threshold at two shared properties, this smell detection reported four

hits. Two of them are in the pcm metamodel file. The other two of them are

in the dependencies of the PCM: one in stoex, one in probfunction. To focus

on the PCM, the two occurrences in the PCM were chosen to be corrected.

Occurrence 1: DataTypes

Description The classes CollectionDataType and CompositeDataType

share two class properties: inheritances to DataType and Entity. DataType

has one further subclass: PrimitiveDataType. It does not inherit from Entity.

These shared properties, however, can easily be consolidated, as Entity is a

very general superclass that also fits PrimitiveDataType. That both classes

are siblings is another indicator that this smell should be fixed. Thus, this

occurrence is considered to be harmful.

Correction (2) There are two ways to meaningfully fix this occurrence.

First, a new intermediate class is introduced between the two data types and

208

7.7. Correction and Revaluation

their superclass DataType. Second, the inheritance to Entity is pulled up

into DataType. The first solution does not affect the PrimitiveDataType class

but increases complexity as it adds a new class. The second solution makes

PrimitiveDataType an Entity, but keeps the complexity low. The second

solution was performed, as PrimitiveDataType may as well be an entity. It

gains the name and id attributes, which are suited for a PrimitiveDataType.

Result The correction fixed the occurrence and did not affect any other

smells. By reducing the total number of inheritances and organizing

them meaningfully into the class hierarchy, the complexity of the meta-

model is reduced.

Occurrence 2: UniqueCalls

Description The InfrastructureCall and ResourceCall share their inheri-

tance to CallAction, a constraint, and a containment to PCMRandomVari-

able that specifies a call count. This occurrence is considered harmful.

Three shared properties should be consolidated, especially amongst sib-

ling classes.

Correction (3) This occurrence was addressed by introducing a new su-

perclass for both classes (UniqueCallAction). Its theme was given to it by

the constraint that ensures that the call is unique within the containing

action. The inheritance from both call classes to the new superclass replaces

the inheritance to CallAction. The three shared properties were pulled up

to UniqueCallAction. Initially, the duplicated references to PCMRandom-

Variable both had opposite container references. During the pull-up, one

opposite reference had to be removed. The other was assigned as an oppo-

site to the reference from UniqueCallAction to PCMRandomVariable. This

container reference should have been removed to fix the resulting Container

Relation smell. However, to not muddle the effect of the correction, only

the occurrence of the Missing Class (Shared Properties) was addressed.

Result The correction removed the smell occurrence. By eliminating

three duplicated properties, one container reference and introducing just

one new class and one inheritance, the complexity of the metamodel was

reduced. As further consequences, the correction removed one Container

Relation occurrence, two God Class occurrences, and 47 Dependency Cycle

209

7. Bad Smell Detection and Correction Evaluation

occurrences. Both of the involved call classes were God Classes before the

correction. They are no longer God Classes because the properties were

factored out. By removing one container reference and splitting the classes

and therefore also their dependencies, many cycles were fixed.

7.7.3. God Class

At a threshold of eight properties, the God Class detection reported ten

occurrences. Of these, seven are harmful. All of them are located in the

PCM. Of these seven harmful occurrences, four were already fixed by the

corrections of other smells. One was even fixed by two independent correc-

tions. This indicates that God Classes also favor the occurrence of other

smells. Of the three remaining smells, two are caused by other smell occur-

rences. In conclusion, the one remaining occurrence that is independent

of other smells was corrected together with one harmful occurrence that

is caused by other smells.

Occurrence 1: EntryLevelSystemCall

Description EntryLevelSystemCall owns eight class properties. This in-

cludes two containments to VariableUsage as input and output parameters.

It does not inherit from the CallReturnAction class, which also features

these two properties. This occurrence is therefore considered to be harmful,

as EntryLevelSystemCall contains unnecessarily many properties because

of this missing inheritance.

Correction (4) To address this occurrence, an inheritance is defined from

EntryLevelSystemCall to CallReturnAction. Both containments including

their opposite container references to VariableUsage are deleted.

CallReturnAction is currently contained in the seff package. After the

correction, however, it has seff and usage model specific subclasses. Thus,

in a real development scenario, CallReturnAction should also be moved to

a more general package. This was not done in the scope of this correction

to not skew the results of the second detection.

Result The correction removed the occurrence. By reducing the number

of relations by four and introducing just one inheritance, the complexity of

210

7.7. Correction and Revaluation

the metamodel is reduced. As further consequences, the removal of the

two containments with their opposite references solved many dependency

cycles. The new inheritance, however, introduced a new Diamond Mul-

tipath. By its new superclass, EntryLevelSystemCall now has two paths

to Entity. As this is only a Diamond and not a Direct Multipath and both

paths to Entity are meaningful, this fix is also considered to be meaningful

even though it introduces a new Multipath occurrence.

Occurrence 2: ScenarioBehaviour

Description The ScenarioBehaviour class owns eight properties. Three

of them are container references, which are unnecessary. Thus, this

occurrence is considered to be harmful.

Correction (5) The smell was addressed by deleting the redundant con-

tainer references.

Result After the correction, the occurrence was no longer reported by

EMF Refactor. As the container references are irrelevant for understanding

ScenarioBehaviour, the correction makes the class easier to understand.

The three Container Relation occurrences were also fixed, as well as the

Dependency Cycles they were involved in (241 in total).

7.7.4. Wide Hierarchy

With a threshold of ten, the detection reports two occurrences. Both of

them are benign and located in the pcm metamodel file. To evaluate the

detection and correction of this smell, they were nevertheless corrected.

Occurrence 1: Entity

Description The Entity class is one of the three most abstract and widely

used classes in the PCM. With its 34 direct subclasses, it exceeds the thresh-

old by a factor of three. Through its inheritances to NamedElement and

Identifier, it provides its subclasses with a name and ID attribute. This is its

sole function. There are no incoming references. Under its subclasses, there

211

7. Bad Smell Detection and Correction Evaluation

are no classes that do not need the attributes that Entity provides. Nor can

groups of classes be identified that could benefit from a new intermediate

superclass. Therefore, this occurrence is considered to be benign.

Correction (6) As this is a benign occurrence, there is no meaningful fix.

Three new intermediate classes were introduced between Entity and its

subclasses. The intermediate classes inherit from Entity. Each intermediate

class was declared as the new superclass of nine of the subclasses. The

inheritance to the intermediate class replaced the inheritance to Entity.

Result The correction fixed the occurrence. This correction introduced 16

new deep hierarchy smells. The intermediate classes increase the depth of

the inheritance hierarchies. When new intermediate classes are introduced

that high in the inheritance hierarchy, many classes down in the inheritance

chainswere affected. As this was not supposed to be ameaningful correction

in the first place, the introduction of more smells is irrelevant.

Occurrence 2: AbstractInternalControlFlowAction

Description The AbstractInternalControlFlowAction has eleven direct

subclasses and is, therefore, an occurrence of the Wide Hierarchy smell.

Like with the last occurrence, there are no meaningful intermediate classes

that could be introduced between AbstractInternalControlFlowAction and

its subclasses. Therefore, this is also considered to be a benign occurrence.

Correction (7) Analogously to the Entity occurrence, one new intermediate

class was introduced. Analogously to the Entity occurrence, this is also

not a meaningful correction.

Result The correction eliminated the occurrence. It had no further

consequences, as the correction took place further down in the inheritance

hierarchy compared with the Entity occurrence.

7.7.5. Deep Hierarchy

Fifteen inheritance chains are at least eight classes long. Four of them are

located in the PCM. All eleven other occurrences end with the Expression

class of the stoex metamodel file. All occurrences are considered to be

212

7.7. Correction and Revaluation

harmful, as it was possible to identify meaningful ways to shorten them.

To focus on the PCM, its four occurrences were prioritized in the scope

of the correction. From the other occurrences, one was short enough to

be cut below the threshold. This occurrence was therefore chosen to test

the redetection after the correction.

Occurrences 1: BasicComponent and CompositeComponent

Description The most specific classes in the four chains of the PCM are

BasicComponent and CompositeComponent. These two classes are the start

for two deep hierarchies each. The classes Identifier and NamedElement are

the ends of two Deep Hierarchies each. This duplication results from Entity

being an indirect superclass of BasicComponent and CompositeComponent.

As Entity has NamedElement and Identifier as superclasses, the occurrences

are doubled. These four inheritance chains of the PCM can meaningfully

be shortened and are therefore considered harmful.

Correction (8) The class ResourceInterfaceRequiringEntity provides op-

tional abstractions. To fix the four DeepHierarchies, an extension extraction

(Section 6.5.2.2) on ResourceInterfaceRequiringEntity can be performed by

using dependency inversion (Section 6.5.1.2). This procedure is explained

in the following. ResourceInterfaceRequiringEntity has to be removed from

the inheritance chain. Incoming inheritances are redirected to its super-

class. The inheritance to its superclass is deleted. To be able to still use its

class properties when necessary, a reference was created from Resource-

InterfaceRequiringEntity to InterfaceRequiringEntity. As ResourceInter-

faceRequiringEntity is no longer part of the inheritance chain, it needs

a container. Thus, a new containment was created from Repository to

ResourceInterfaceRequiringEntity.

Result The correction resolved the four Deep Hierarchies in the PCM.

They all included ResourceInterfaceRequiringEntity. As it was removed

from the hierarchies, they were shortened enough to drop below the thresh-

old. The performed refactoring is beneficial for the metamodel, as an

abstraction that is not essential to the inheritance chains is factored out.

Through the reduced complexity, the classes below the removed superclass

become better understandable. The correction has further consequences

on other smells. One Multipath Hierarchy and one Concrete Abstract Class

213

7. Bad Smell Detection and Correction Evaluation

were fixed. The correction caused eight newDependency Cycle occurrences.

Removing ResourceInterfaceRequiringEntity from the inheritance chain

fixed a Multipath Hierarchy, as it provided an additional inheritance path

from ResourceInterfaceProvidingRequiringEntity to Entity. ResourceInter-

faceRequiringEntity was also a concrete class in an inheritance chain that

should have been abstract. It remains concrete and can be instantiated to

annotate InterfaceRequiringEntity instances. The new containment from

Repository to ResourceInterfaceRequiringEntity causes the Dependency

Cycles. Repository is already involved in many cycles, adding the new con-

tainment introduced even more. The creation of new cycles could have been

avoided in two ways. First, a new root container could have been created.

Such a new container does not cause any dependency cycles as long as no

inadequate containments are added to it. A new root container, however,

brings an additional model file when instantiated. Second, an inheritance to

an abstract class that is already contained could have been created. If the su-

perclass does not depend on more specific classes, new Dependency Cycles

are avoided. Such a suitable contained superclass class, however, could not

be found. In such cases, a superclass and a containment to it can be created.

Occurrence 2: PowerExpression

Description In the stoex metamodel file, there is an inheritance chain of

8 classes that starts from PowerExpression and ends at Expression. It is

considered harmful, as there are meaningful ways to shorten the chain.

Correction (9) The subclass of Expression in the chain is the IfElse class.

It has no properties and no incoming references. Expression has no other

subclasses. IfElse can, therefore, be merged into its superclass Expres-

sion. Two incoming inheritances of IfElse are redirected to Expression.

IfElse can then be deleted.

Result The correction shortened the inheritance chain by one class. As

it is now seven classes long, it does no longer reach the threshold. The

separation between Expressions and IfElse was unnecessary because of

two reasons. Firstly, there are only IfElse expressions. Secondly, there is

no separation of class properties between Expression and IfElse, as none

exist. By eliminating the unnecessary IfElse subclass, the complexity of

the inheritance chain is reduced. As a further consequence, a Speculative

214

7.7. Correction and Revaluation

Hierarchy occurrence was resolved. Expression had only IfElse as a subclass.

Now it has the two classes that formerly were subclasses of IfElse as its

own subclasses. This resolved the Speculative Hierarchy occurrence.

7.7.6. Dead Class

Nine dead classes were found. Seven of which are root containers and there-

fore benign occurrences. The remaining two are harmful. The following

corrections address these two occurrences.

Occurrence 1: DummyClass

Description DummyClass has no incoming containments and is, therefore,

a Dead Class. It has no class properties and no incoming dependencies.

It was used as a workaround to be able to use the QVT-R transformation

engine, as it needed a class in the root package of a metamodel. It is also

not used as a root container and therefore a harmful occurrence of the

Dead Classifier (Dead Class) smell.

Correction (10) To correct this Dead Class occurrence, DummyClass is

simply deleted. In the scope of this evaluation, it is assumed that the class is

no longer needed. Either the problemwas fixed in the transformation engine

or another transformation engine could be used. Under these assumptions,

this is a meaningful correction.

Result The correction fixed the occurrence. It no longer appeared in a

detection run on the corrected metamodel. As the correction removed

an unneeded class, the complexity of the metamodel was reduced. As

DummyClass had no relations to other classes, this correction did not affect

other smell occurrences.

Occurrence 2: ResourceInterfaceProvidingRequiringEntity

Description ResourceInterfaceProvidingRequiringEntity has no incoming

inheritances or containments. Its superclasses also have no incoming con-

tainments. As it is not used as a root container, it is a harmful Dead Class

215

7. Bad Smell Detection and Correction Evaluation

occurrence. This can also be explained on the semantic level. In the PCM,

some Entities provide ResourceInterfaces (i.e., ResourceTypes). There are

also Entities that require ResourceInterfaces (i.e., Components and Systems).

However, no single Entity provides and requires ResourceInterfaces.

Correction (11) To correct this smell occurrence, the Dead Class merely

is deleted. As there are no incoming dependencies, no further action is

necessary. In the scope of this evaluation it is assumed that in the future,

no ResourceInterfaceProvidingRequiringEntity will be introduced.

Result After the correction, the smell occurrence was no longer detected.

By deleting the Dead Class, the complexity of the metamodel was reduced.

The class will no longer distract developers that stumble upon it. The

correction also resolved a Multipath Hierarchy occurrence. ResourceIn-

terfaceProvidingRequiringEntity was the source of this occurrence, which

was a Diamond Multipath via its direct superclasses to Entity.

7.7.7. Multipath Hierarchy

For the Multipath Hierarchy, ten occurrences have been detected. All of

which are located in the PCM. Five of these occurrences have been identified

as harmful. Two other corrections also resolve the ResourceInterfacePro-

vidingRequiringEntity Multipath Hierarchy occurrence. Therefore, it is not

addressed by a correction, although it is a harmful occurrence. Two of the

remaining harmful smells were addressed by corrections.

Occurrence 1: System

Description System has two direct superclasses, ComposedProvidingRe-

quiringEntity and Entity. Entity is also an indirect superclass of Composed-

ProvidingRequiringEntity. This is, thus, a Direct Multipath Hierarchy

occurrence. It is considered harmful, as all direct multipath are harmful

per definition (see Section 4.4.3.7).

Correction (12) This occurrence can be addressed by removing the inheri-

tance to Entity from System. System is still an Entity, as it inherits from

ComposedProvidingRequiringEntity.

216

7.7. Correction and Revaluation

Result After the correction was performed, System is no longer the root

of a Multipath Hierarchy. Its remaining superclass ComposedProviding-

RequiringEntity still has a Diamond Multipath Hierarchy to Entity. It is,

however, included in the multipath that starts from CompositeComponent.

Therefore, it does not appear as a new Multipath Hierarchy occurrence.

By removing the unnecessary inheritance to Entity, the complexity of the

metamodel is reduced. The inheritance relation no longer shows up in dia-

grams. System can still be identified as an Entity, because of its superclass

ComposedProvidingRequiringEntity. In the Contextual Explorer, Entity is

still listed as an indirect superclass. Therefore, also the understandability

of the metamodel increases. This correction has no consequences for

the occurrences of other smells.

Occurrence 2: ResourceType

Description ResourceType has two direct superclasses: ResourceInterface-

ProvidingEntity and Entity. ResourceInterfaceProvidingEntity already in-

herits from Entity. ResourceType is, therefore, the root of a Direct Multipath

Hierarchy. The inheritance is therefore redundant, and this occurrence

is considered harmful.

Correction (13) To address this occurrence, the inheritance from Resource-

Type to Entity is removed.

Result The correction resolved the occurrence. Analogous to the previous

occurrence, the complexity and understandability of the metamodel were

improved through the elimination of redundancy. The correction had no

further consequences on the occurrences of other smells.

7.7.8. Concrete Abstract Class

Of this smell, two occurrences were detected in the PCM. Both of them are

considered harmful and are addressed by a correction each.

217

7. Bad Smell Detection and Correction Evaluation

Occurrence 1: ResourceInterfaceRequiringEntity

Description The concrete class ResourceInterfaceRequiringEntity has the

abstract subclass InterfaceRequiringEntity. It is therefore detected as a

Concrete Abstract Class occurrence. It is harmful, as ResourceInterfaceRe-

quiringEntity should be an abstract class. It makes no sense to instantiate

a class with such a high abstraction level.

Correction (14) To address this occurrence, ResourceInterfaceRequiring-

Entity is declared abstract.

Result After the correction, the occurrence was no longer detected in the

PCM. The benefit of this correction is, that the metamodel gets correcter,

as a class is no longer instantiable that should not have been instantiable in

the first place. The metamodel is also better understandable. ResourceInter-

faceRequiringEntity being concrete may no longer confuse developers. In

the corrected metamodel version, it is immediately apparent that the class

is not meant for instantiation but only for inheritance. The correction had

no further effect on the occurrences of other bad smells.

Occurrence 2: ResourceInterfaceProvidingEntity

Description This occurrence indicates that the concrete class ResourceIn-

terfaceProvidingEntity has the abstract class ResourceType as a subclass.

The occurrence is harmful. ResourceInterfaceProvidingEntity is not meant

to be instantiated. The class is too abstract.

Correction (15) To address this occurrence, ResourceInterfaceProviding-

Entity is made an abstract class.

Result After the correction, the occurrence was no longer detected in the

PCM. The benefit of this correction is analogous to the correction of the

previous occurrence. The metamodel is made correcter and better under-

standable. The correction did not affect the occurrences of other smells.

218

7.7. Correction and Revaluation

7.7.9. Container Relation

Forty-one occurrences of the Container Relation smell were detected in

nine classes. All occurrences are located in the pcm metamodel file. All

occurrences are harmful, as all container relations are redundant and there-

fore harmful. Several occurrences are also fixed by corrections of other

smells. Appendix A provides a detailed listing. The correction of the Con-

tainer Relation smell focuses on the two classes with the most occurrences:

PCMRandomVariable and VariableUsage. PCMRandomVariable has 17 Con-

tainer Relation occurrence. Two of which are also fixed by a correction

of another smell. VariableUsage has nine occurrences. Two of which are

also fixed by a correction of another smell.

Occurrence 1: PCMRandomVariable

Description PCMRandomVariable has 17 container references and there-

fore produces 17 Container Relation occurrences. All of them are considered

harmful by definition of the smell. Container relations are redundant re-

garding the functionality they provide. They only clutter the classes that

own them. Container references are irrelevant for understanding a class. If

incoming containments really have to be considered to understand a class,

the metamodel editors provide various ways to explain them. EMF provides,

for example, the Contextual Explorer view and the References view.

Correction (16) To address the occurrences of PCMRandomVariable, all

container references are just deleted. Every Ecore editor automatically un-

sets the opposite value of the containment reference that points to the

container reference.

Result After the correction, the 17 occurrences of PCMRandomVariable

are no longer detected. The correction reduced the number of references

of PCMRandomVariable to zero. Its only class properties that are left are

the inheritance to RandomVariable and a constraint. PCMRandomVariable

is, thus, much less complex and easier to understand, as the container ref-

erences are irrelevant to understanding it. The correction also fixed 830

Dependency Cycles. As a container reference is always involved in a De-

pendency Cycle with its containment reference, the 17 container references

219

7. Bad Smell Detection and Correction Evaluation

contributed significantly to Dependency Cycle combinations. The correc-

tion also fixed a God Class occurrence. With its 17 container references

alone, PCMRandomVariable was already a God Class. After the deletion, its

class count dropped to two, which is below the God Class metric threshold.

Occurrence 2: VariableUsage

Description VariableUsage owns nine container references and, thus, pro-

duces one Container Relation occurrence each. As container references

are redundant, the resulting occurrences are considered harmful.

Correction (17) To address the occurrences of VariableUsage, the container

references are deleted.

Result The correction fixed all nine occurrences. The benefit and further

consequences of the correction are analogous to the previous correction.

The complexity of the class is reduced and thus its understandability in-

creases. Regarding further consequences, 762 Dependency Cycles were

fixed, and VariableUsage is no longer a God Class.

7.7.10. Obligatory Container Relation

There are 44 Obligatory Container Relation occurrences in the PCM. All

occurrences are harmful because all Obligatory Container Relation occur-

rences are harmful in general. The argumentation can be found in the smell

definition Section 4.4.4.3. To summarize, an Obligatory Container Relation

is redundant regarding its functionality, is detrimental to understandability,

and hinders reuse. The following corrections address two occurrences that

were not fixed by the corrections of other smells.

Occurrence 1: Workload

Description The Workload class has a container reference to UsageSce-

nario with the lower bound of 1. Therefore it produces an Obligatory

Container Relation occurrence. The occurrence is harmful per definition.

220

7.7. Correction and Revaluation

Correction (18) To address the occurrence, the container reference is

deleted. The opposite attribute of the containment reference is automat-

ically unset.

Result The correction fixed the smell occurrence. The correction has the

benefits that were described above. Complexity is reduced. Understandabil-

ity and reuse are improved. As further consequences, three Dependency

Cycles were fixed in which the container reference was involved.

Occurrence 2: InfrastructureCall

Description InfrastructureCall has a container reference to AbstractInter-

nalControlFlowAction with a lower bound of 1. It, therefore, produces an

Obligatory Container Relation occurrence. As an Obligatory Container

Relation occurrence, it is harmful per definition.

Correction (19) The occurrence is addressed by removing the container

reference. The opposite attribute of the containment reference is auto-

matically unset.

Result The correction fixes the occurrence. The benefit of the correction

is analogous to the previous correction. This correction affects the occur-

rences of other smells as follows. One God Class occurrence disappeared

at the InfrastructureCall class. With one class property less, its property

count fell below the threshold. Ten Dependency Cycles were fixed in which

the container reference was involved.

7.7.11. Specialized Relation

Six Specialized Relation occurrences were detected. All six occurrences

are harmful, as they are caused by unnecessary container references. All

are located in the pcm metamodel file.

221

7. Bad Smell Detection and Correction Evaluation

Occurrence 1: ForkAction

Description ForkAction has a containment reference to ForkedBehaviour,

which features an opposing container reference. The containment refer-

ence specializes a container reference from a superclass of ForkAction

(i.e., AbstractAction) to a superclass of ForkedBehaviour (i.e., ResourceDe-

mandingBehaviour). The container reference has an opposing containment

reference. The container references from ForkedBehaviour to ForkedAction

specializes the containment between their two superclasses. This constella-

tion of classes and references, therefore, results in two Specialized Relation

occurrences. The occurrences are harmful, as the specialized container

reference and the specializing container reference are unnecessary.

Correction (20) The occurrences can be addressed by removing both con-

tainer references.

Result After the correction was performed, the occurrences were no

longer detected. The container reference between the superclasses was

also involved in three other occurrences which were also fixed. In total,

five Specialized Relation occurrences were resolved. As container ref-

erences were removed, the benefit of this correction is analogous to the

Container Relation corrections. Complexity is reduced, and understandabil-

ity is improved. The correction affected the occurrences of other smells

by removing two Container Relations and 89 Dependency Cycles in which

the container references were involved.

Occurrence 2: RecoveryActionBehaviour

Description RecoveryActionBehaviour has a container reference to Re-

coveryAction that specializes a relation between superclasses of the two

classes. As the reference is unnecessary, the occurrence is harmful.

Correction (21) The occurrence can simply be addressed by deleting the

container reference of RecoveryActionBehaviour.

Result The correction resolved the smell occurrence. As a container

reference was removed, the benefit of this correction is analogous to the

Container Relation corrections. As a further consequence, the removal

222

7.7. Correction and Revaluation

of the container reference resolved one Obligatory Container and one

Dependency Cycle occurrence.

7.7.12. Speculative Hierarchy

There were five Speculative Hierarchy occurrences detected in the PCM.

One occurrence is considered to be harmful. The harmful occurrence is

located in the stoex metamodel file. It is fixed by a Deep Hierarchy correc-

tion. The other occurrences are in the pcm metamodel file. Two of these

occurrences are targeted by the corrections below.

Occurrence 1: ServiceEffectSpecification

Description The abstract class ServiceEffectSpecification has only one

subclass, which is ResourceDemandingSEFF. Both classes have class proper-

ties and incoming references. Because of this, the separation between the

two classes is meaningful for the purpose of modularization and separation

of concerns. This occurrence is, therefore, considered to be benign. As no

other harmful occurrence is left, this occurrence is corrected to evaluate

the correction and redetection.

Correction (22) This occurrence can be addressed by merging the Service-

EffectSpecification into ResourceDemandingSEFF. To achieve this, several

steps have to be performed. All class properties of ServiceEffectSpecifica-

tion are moved to ResourceDemandingSEFF. The incoming reference to

ServiceEffectSpecification is redirected to ResourceDemandingSEFF. Ser-

viceEffectSpecification can then be deleted.

Result After the correction was performed, the occurrence was no longer

detected. As the occurrence is benign, this correction is not meaningful.

It has the benefit that a class is eliminated. This benefit is however over-

shadowed by the fact that the remaining class now has unnecessarily many

class properties. The class properties also belong to different language

features. This reduces the understandability of the class. As a further

negative consequence, 68 new Dependency Cycles were detected. Through

the merging of the two classes incoming references were directed to only

the remaining class. This caused the additional Dependency Cycles.

223

7. Bad Smell Detection and Correction Evaluation

Occurrence 2: ComposedStructure

Description The abstract class ComposedStructure has ComposedProvid-

ingRequiringEntity at its only subclass. It is, therefore, an occurrence of

the Speculative Hierarchy smell. Both classes have class properties, in-

coming dependencies and express separate concepts. A consolidation is

therefore not meaningful. This means the occurrence is benign. As no

other harmful occurrence is left, this occurrence is corrected to evaluate

the correction and redetection.

Correction (23) This occurrence can be addressed by merging the classes.

The class properties of ComposedProvidingRequiringEntity are moved to

ComposedStructure. All incoming inheritances are redirected from Com-

posedProvidingRequiringEntity to ComposedStructure. ComposedProvid-

ingRequiringEntity is then deleted.

Result The correction fixes the occurrence. The effect of the correction

is analogous to the previous correction. Although on class is eliminated,

the effect of the correction is mainly adverse. Modularity is reduced and,

therefore, also understandability. As a further consequence, the correction

causes a new God Class occurrence. As two classes were merged, the result-

ing class now contains more class properties than the God Class threshold.

7.7.13. Dependency Cycle

To get a better overview of the Dependency Cycles in the PCM, all container

references were removed before the cycle detection. Container references

always cause at least one Dependency Cycle with their opposing contain-

ment reference. More Dependency Cycles may arise from one container

reference due to combinations with other Dependency Cycles. As container

references are already covered by the Container Reference smell evaluation,

this evaluation focuses on non-container cycles.

In the modified PCM, 13 Dependency Cycles are detected. All reside in the

pcm metamodel file. Of these, seven are considered to be harmful. Two of

the harmful occurrences are addressed by the following corrections.

224

7.8. Result Overview

Occurrence 1: EventChannel

Description The EventChannel class is involved in two Dependency Cy-

cles, one with EventChannelSourceConnector and another with Event-

ChannelSinkConnector. Each is caused by a bidirectional reference. This

occurrence is harmful, as the bidirectional references are not necessary.

Correction (24) This occurrence is addressed by deleting the two opposite

references going from EventChannel to the connectors. This is meaningful.

Connectors have to know where they connect. An EventChannel must

not necessarily know, who is connected to it.

Result The correction fixed both occurrences. The benefit is a lower

complexity, which makes the EventChannel class more precise and better to

understand. This correction did not affect any occurrences of other smells.

Occurrence 2: ResourceTimeoutFailureType

Description ResourceTimeoutFailureType and PassiveResource form a

Dependency Cycle with the length of two because of their bidirectional

reference. This occurrence is harmful, as bidirectional references are not

meaningful in general and should be avoided.

Correction (25) This occurrence is addressed by removing the reference

that points from ResourceTimeoutFailureType to PassiveResource. A Pas-

siveResource does not need to know any FailureTypes that exist based on it.

Result The correction resolved the occurrence. As a result, the Pas-

siveResource class now has one pointless reference less and is, therefore,

less complex and easier to understand. The correction had no further

consequences on other smells.

7.8. Result Overview

The correction and redetection results are summarized in Table 7.3. All

162 detected occurrences were correct according to the definition of their

respective smell. The Dead Classifier (Dead Enum) detection did not find

225

7. Bad Smell Detection and Correction Evaluation

any occurrences. Although the Wide Hierarchy smell has to occurrences

in the PCM, they are both benign. Each of the 25 corrections was suc-

cessful in the sense that the occurrence that it targeted was no longer

detected after the correction was applied. Twenty-three corrections are

meaningful, as they target harmful smell occurrences. The 25 corrections

fixed 69 occurrences in total.

Bad Smell T
o
t
a
l
O
c
c
u
r
r
e
n
c
e
s

C
o
r
r
e
c
t
O
c
c
u
r
r
e
n
c
e
s

H
a
r
m
f
u
l

B
e
n
i
g
n

C
o
r
r
e
c
t
i
o
n
s
P
e
r
f
o
r
m
e
d

C
o
r
r
e
c
t
i
o
n
s
S
u
c
c
e
s
s
f
u
l

Primitive Obsession 1 1 1 0 1 1

Shared Properties 4 4 4 0 2 2

God Class 10 10 7 3 2 2

Wide Hierarchy 2 2 0 2 2 2

Deep Hierarchy 15 15 15 0 2 2

Dead Class 9 9 2 7 2 2

Dead Enum 0 0 0 0 0 0

Multipath Hierarchy 10 10 5 0 2 2

Concrete Abstract Class 2 2 2 0 2 2

Container Relation 41 41 41 0 2 2

Obligatory Container 44 44 44 0 2 2

Specialized Relation 6 6 6 0 2 2

Speculative Hierarchy 5 5 1 2 2 2

Dependency Cycle
2

13 13 7 6 2 2

Sum 162 162 135 20 25 25

Ratio (%) 100.0 83.3 12.3 100.0

Table 7.3.:Metric Occurrences and Corrections in the PCM

2
The detection was performed on a metamodel from which all container references were

removed.

226

7.9. Threats to Validity

7.9. Threats to Validity

This section refers to the types of validity that were presented in Sec-

tion 2.5.2.

Two threats to the internal validity of this evaluation are imposed by errors

in the judgment of an occurrences correctness or harmfulness. These are,

however, considered to be minor threats, as they only affect individual

occurrences. To seriously threaten the internal validity of the overall evalu-

ation, many misjudgments had to occur, which is unlikely. Regarding the

harmfulness judgment, all harmful occurrences of a smell would have to

be misjudged in order to threaten G1 (Bad Smell Meaningfulness) for this

one smell. For most smells, several harmful occurrences were detected,

which increases the margin for error. To further mitigate the threat for the

correctness judgment, the smell detections were thoroughly tested.

Another threat to the internal validity is the improper specification of a

threshold. In the worst case, this may lead a smell detection to either pro-

duce no occurrences or no harmful occurrences. Within this evaluation, all

metric-based smell detection produced occurrences. Regarding harmfulness,

the only metric-based smell detection that did not produce any harmful

occurrences is the detection for Wide Hierarchies. For this smell, there can

be no conclusions drawn concerning G1 (Bad Smell Meaningfulness). How-

ever, this only affects this one smell. The validity of the other metric-based

smells is unaffected. This is, further, considered a minor threat, as it does

not take effect unnoticed but obviously. This can be seen in the case of

Wide Hierarchies. No other metric-based smell is affected.

7.10. Result Interpretation

This section interprets the results from Section 7.8 regarding the evaluation

goals from Section 7.1.

G1) Bad Smell Meaningfulness This goal is concerned with whether

a smell indicates improvement potential. For a smell, this can be

demonstrated when at least one harmful is identified. From the 14 de-

tections that have been evaluated, 12 delivered harmful occurrences

227

7. Bad Smell Detection and Correction Evaluation

(see Table 7.3). For these smells, G1 was evaluated positively. For

the Wide Hierarchy and Dead Classifier (Dead Enum) detections, G1

was not validated in this evaluation.

G2) Detection Appropriateness This evaluation goal is concerned with

the correctness of the bad smell detections. This means whether

the reported occurrences are correct according to the definitions

of their respective smells. All 162 occurrences were investigated,

each positively. For 13 detections, the correctness of their reported

occurrences was confirmed. For these detections, G2 is evaluated

positively. The Dead Classifier (Dead Enum) detection did not report

any occurrence. Therefore, G2 was not evaluated for Dead Classifier

(Dead Enum).

As already mentioned, this does not guarantee a correct implemen-

tation. Just because every reported occurrence is correct, does not

necessarily mean that every occurrence which will ever be reported

by the detection is correct. In addition, a detection could also miss

correct occurrences (i.e., produce false negatives), which was not

evaluated in the scope of this study. These shortcomings can be

addressed in future work.

G3) Correction Appropriateness This evaluation goal is concerned with

whether the corrections for the smells fix their occurrences. This

means whether an occurrence that has been corrected is no longer

reported by its smell detection. All 25 corrections that were per-

formed were successful in this regard. For 13 smell detections, G3

is, therefore, evaluated positively. This means there is at least one

correction that successfully fixes the smell. For Dead Classifier (Dead

Enum) no correction could be performed, as no occurrences were

reported. For this smell variation, G3 was not evaluated.

For some smells, there are several ways how to correct their oc-

currences. This study can only claim an evaluation of G3 for the

corrections that were performed.

228

8. Metamodel Extension
Mechanism Evaluation
and Comparison

This chapter
1
presents the evaluation of the metamodel extension mecha-

nisms that Chapter 5 presented. The mechanisms are evaluated according

to the comparison criteria of Section 5.6. This enables a comparison of

the extension mechanisms.

This chapter is structured as follows. Section 8.1 presents the evaluation

of the extension mechanisms according to the comparison criteria. Sec-

tion 8.2 interprets the results of the evaluation and presents the metamodel

extension process. At the end of this thesis, Section 12.2 concludes the

metamodel extension contribution.

8.1. Extension Mechanism Evaluation

This section presents the evaluation of the extension mechanisms. It, first,

gives an overview of the results followed by the evaluation of the individual

extension mechanisms.

As stated by Section 5.6 the catalog of comparison criteria could also be

expressed as a QGM plan. The goal, however, which is derived from RQ
II (Extension Mechanism Comparison), is too broad. The goal is to find

the advantages and disadvantages of the extension mechanisms. This does

not really fit the QGM approach. If applied regardless, the criteria can be

1
This chapter is in parts based on a bachelor’s thesis [Her17], which I supervised.

229

8. Metamodel Extension Mechanism Evaluation and Comparison

seen as evaluation questions, which have only one metric. This metric is

the metric that is presented for each criterion.

Table 8.1 presents an overview of the results of the evaluation. The first col-

umn gives the names of the extension mechanism. The remaining columns

deliver the result of the evaluation of the comparison criteria. The fourth

column specifies the complexity class of the content retrieval operation

of the extension mechanism (i.e., O(...)). The other columns feature the

following values. A ✓means the extension mechanism fulfills the criterion.

A × means the extension mechanism does not fulfill the criterion. A ~

means the extension mechanism does not quite fulfill the criterion, but it

also does not fail the criterion. If a cell is empty, this means that the criterion

cannot be evaluated for the mechanism. This is, however, the case only

once for Intrusive Addition. Intrusive Addition is not an external extension

mechanism. It is shown here simply as a baseline for comparisons.

8.1.1. Intrusive Addition

Metalanguage Support Intrusive Additions are performed by adding and

altering metamodel elements. It is therefore supported by standard EMOF.

This means it has Metalanguage Support.

Applicable without Preparation Intrusive Addition does not need any

preparation. However, it is completely intrusive. As Intrusive Addition

is not a proper external extension mechanism, this criterion cannot be

appropriately assessed. This is indicated by the empty cell.

Model Level Unintrusiveness Intrusive Addition adds new class proper-

ties to the base metamodel. The extension content is therefore located

in the base model files.

DirectExtensionContentRetrieval Intrusive Addition adds new class prop-

erties intrusively to the base classes in the base metamodel. The base objects

carry the extension content. Thus, the extension content can be accessed

directly from the base objects in constant time.

Applies to Subclasses Intrusive Addition adds new class properties intru-

sively to the base class B. Therefore, these properties are also available

to all subclasses of B.

230

8.1. Extension Mechanism Evaluation

Extension
M
echanism

Metalanguage Support

Applicable without Preparation

Model Unintrusiveness

Content Retrieval Computational Complexity

Applies to Subclasses

Orthogonality

Multiplicity

Containment Tree Integrity

Model File Integrity

Extension Object Deletion

Adds a Type

Intrusive
A
ddition

✓
×

1
✓

✓
×

✓
✓

✓
D
irectInheritance

✓
✓

×
1

×
×

×
✓

✓
✓

✓
R
eferencing

(ExternalC
ont.)

✓
✓

✓
n

✓
✓

✓
×

×
×

×

R
eferencing

(R
eused

C
ont.)

✓
×

×
m

✓
✓

✓
×

✓
×

×

EM
F
Profi

les
×

✓
×

n
✓

✓
✓
∗

×
~

×
×

Extension
PointInheritance

✓
×

×
k

✓
✓

✓
✓

✓
✓

×

D
ecorator

(Predefi
ned)

✓
×

×
k

✓
✓

✓
✓

✓
~

~

D
ecorator

(External,Specifi
c)

✓
✓

×
k

✓
✓

✓
✓

✓
~

~

Table 8.1.: Extension Mechanisms: Evaluation of the Comparison Criteria

Orthogonality Multiple Intrusive Additions can be performed on a class.

The base class grows in size regarding its class properties. The only limita-

tion is that the names of class properties have to be unique. This, however,

231

8. Metamodel Extension Mechanism Evaluation and Comparison

can easily be circumvented by choosing new names for new class properties.

Intrusive Addition, therefore, supports Orthogonality.

Multiplicity There is no such thing as an instantiation of an Intrusive

Addition. A base object merely carries the values of the added class prop-

erties. This is only the case once and is bound by the multiplicity bounds

that were specified for the class properties. Multiplicity is, therefore, not

supported by Intrusive Addition.

Model File Integrity Intrusive Addition adds new class properties intru-

sively to existing classes. This means that also the extension content (the

values of the class properties) is located in the base model file. Intrusive Ad-

dition, therefore, does not produce any new model files and preserves

Model File Integrity.

Containment Tree Integrity Intrusive Addition adds class properties di-

rectly to the base class. Therefore, the containment tree is kept intact.

Intrusive Addition is the ideal benchmark to judge the maximal integrity

of the containment tree.

ExtensionObject Deletion The class properties that are added by Intrusive

Addition are located directly in the base classes. The extension content is,

thus, contained in the base objects. If a base object is deleted, the extension

content is too. The problem that tools delete extension content because

they are unaware of the extension, however, does not exist with Intrusive

Addition. Such tools are not able to handle a model file to with unknown

extension content has been added.

Adds a Type In a strict sense, Intrusive Addition cannot be evaluated

according to the Adds a Type criterion. There is no Extension class which

could be applied as a type to instances of B. The addition of new types,

however, can be easily implemented using Intrusive Addition. This is done

by creating a new inheritance to the desired superclass.

8.1.2. Direct Inheritance

Metalanguage Support Direct Inheritance uses an inheritance relation

that crosses the boundary of metamodel files. Inheritance relations are a

232

8.1. Extension Mechanism Evaluation

standard feature of EMOF, and so are metamodel file boundary crossing

relations. Thus, Direct Inheritance has Metalanguage Support.

Applicable without Preparation To establish an extension by using Direct

Inheritance merely an inheritance relation is created from the extension

class to the base class. No preparation is required. Thus, this extension

mechanism is entirely unintrusive.

Model Level Unintrusiveness As Figure 5.5 (2) shows, Direct Inheritance

creates a subclass E to add extension content to the base class B. When

instantiated, the instance of E takes the place of the B instance. It is con-

tained by the container that would also contain the B instance, which

is located in the base model file. Therefore, Direct Inheritance is intru-

sive on the model level.

Direct Extension Content Retrieval Direct Inheritance adds class proper-

ties to a base class B by subtyping B. On instantiation, the subtype E is

instantiated instead of B. The instance of E carries the values of the exten-

sion content. Thus, they can be retrieved in constant time.

Applies toSubclasses An extension that has been implementedwith Direct

Inheritance cannot be instantiated on other subclasses of the base class B. An

object can only be instantiated from precisely one class. Direct Inheritance

adds its class properties to B by supplying a new subclass E. If there are

more subclasses of B besides E, only one of them can be instantiated.

A workaround can be established by supplying extension classes explicitly

for all subtypes. This, however, results in increased extension metamodel

complexity and is only applicable to known subclasses. Subclasses that

have been externally added and are unknown are not supported.

Orthogonality Direct Inheritance does not support Orthogonality. The

reason is analogous to the evaluation of the Applies to Subclasses crite-

rion. Multiple class extensions that are implemented using Direct Inheri-

tance result in multiple subclasses of the base class B. Of these subclasses,

only one can be instantiated. Therefore, only one of the class extensions

can be used at a time.

A workaround is possible to establish orthogonality for specific class ex-

tensions. Consider two extension classes that extend the same base class.

By creating a new class that inherits from both extension classes, they

233

8. Metamodel Extension Mechanism Evaluation and Comparison

can both be instantiated by creating an object of the common subclass. If

there are more than two class extensions that ought to be used together,

every combination has to be subtyped. This approach, however, brings a

considerable increase in complexity and is, therefore, not practical.

Multiplicity Direct Inheritance does not support multiplicity. A class

extension that uses direct inheritance is instantiated by instantiating the

subclass E. This can only be done once, which means that all class properties

of E are also available only once.

Model File Integrity Direct Inheritance preserves the integrity of model

files. As this extension mechanism uses subtyping, an instance of the

extension class E is used instead of an instance of the base class B. This

implies that the model files are not fragmented, as the extension content

is deposited in the base model files.

Containment Tree Integrity Direct Inheritance preserves Containment

Tree Integrity. The reason is analogous to the evaluation of the Model File

Integrity criterion. When instantiating an extension that uses direct inheri-

tance, an extension object is used instead of the base object. It resides in the

same containment as the base object would. Therefore, the containment

tree is not fragmented by instantiating a Direct Inheritance extension.

Extension Object Deletion Direct Inheritance uses a subtype to add class

properties to the base class. When instantiated, an extension object is

used instead of a base object. On deletion, the extension object is removed

with all its extension content. This means that Direct Inheritance features

Extension Object Deletion.

Adds a Type Direct Inheritance uses an inheritance relation from E to B

to implement the extension. On instantiation, the base object is created as

an instance of E instead of B. The base object is, therefore, an instance of

the extension class. Therefore, Direct Inheritance adds a type.

8.1.3. Referencing with External Container

Metalanguage Support Referencing with External Container uses a ref-

erence that crosses metamodel file boundaries to establish the extension

dependency. In addition, it needs a class and a containment relation in

234

8.1. Extension Mechanism Evaluation

the extension metamodel file. These are all supported by EMOF. Thus,

Referencing with External Container is supported by the metalanguage.

ApplicablewithoutPreparation Referencing with External Container does

not require any preparation. A new container is used that is placed in ameta-

model file of the extension. Thus, this extension mechanism does not rely

on containment in the base metamodel. The only interaction between the

metamodel extension and the base metamodel is the reference that points to

the base class. Therefore, this extension mechanism is entirely unintrusive.

Model Level Unintrusiveness Referencing with external is unintrusive on

the model level. The extension class E is contained by the external container

Ct, which is located in the extension metamodel. On instantiation, an E

instance resides in the extension model file.

Direct Extension Content Retrieval When instantiated, the extension ob-

jects are located in the instance of the external container. The extension

objects reference their base objects. From a base object, however, direct navi-

gation to its extension objects is not possible with this extension mechanism.

To find all extension objects of a base object, all instances in the external con-

tainer of themetamodel extension have to be iterated and tested if they point

to extension object in question. This means the computational complexity

of the extension content retrieval is in O(n) for this extension mechanism.

n is the number of extension objects of the metamodel extension.

Applies to Subclasses This extension mechanism uses a reference to point

from the extension class E to the base class B. This reference can also be

set to point to an object of any subclass of B. Referencing with External

Container, therefore, also applies to subclasses.

Orthogonality This extension mechanism uses a reference to implement

the extends relation. There may be any number of extensions that are im-

plemented this way referring to the same base class B. An arbitrary number

of such extensions can be instantiated on a base object at the same time.

Referencing with External Container, therefore, enables Orthogonality.

Multiplicity To apply a class extension that is implemented with this

extension mechanism multiple times on the same base object, multiple

extension objects have to be created. Each of the extension objects is

placed in the Ct object and refers to the base object via the reference. Thus,

Referencing with External Container supports Multiplicity.

235

8. Metamodel Extension Mechanism Evaluation and Comparison

Model File Integrity Referencing with External Container brings its own

root container Ct to store its extension objects. When instantiated, the

root container object is stored in its own model file. Thus, Referencing

with External Container causes model file fragmentation and, therefore,

does not preserve Model File Integrity.

Containment Tree Integrity Referencing with External Container does

not store its extension objects in the base objects. The extension objects

are stored in new root container objects that are located in separate ex-

tension model files. Therefore, the containment tree is fragmented, and

Containment Tree Integrity is not supported.

Extension Object Deletion If a base object is deleted, all its extension ob-

jects remain in the Ct instance. The reference r is then void. Therefore,

Referencing with External Container does not provide automatic Exten-

sion Object Deletion. This has the advantage that extension content is not

lost. However, if these residue extension objects remain, they accumu-

late over time.

Adds a Type Referencing with External Container does not add a type.

As the extension object only references the base object, the base object is

not affected by this extension mechanism.

8.1.4. Referencing with Reused Container

Metalanguage Support Referencing with Reused Container uses a refer-

ence to establish the extension dependency and an inheritance to contain

the extension class. Both relations cross the metamodel file boundary. As

both relations are standard features of EMOF, Referencing with Reused

Container has Metalanguage Support.

ApplicablewithoutPreparation This extensionmechanism requires prepa-

ration, as it requires a suitable superclass in the base metamodel. If such a

superclass is not available, the extension mechanism is not applicable unless

a suitable superclass is created in the base metamodel. In such cases, the

extension mechanism is not completely unintrusive on the metamodel level.

Model Level Unintrusiveness Referencing with Reused Container is intru-

sive on the model level. The extension class E is contained by Ct which is

236

8.1. Extension Mechanism Evaluation

located in the base metamodel. When instantiated, an E object is contained

in a Ct object, which is located in a base model file. Thus, Referencing with

Reused Container is intrusive regarding model files.

Direct Extension Content Retrieval This extension mechanism does not

support direct navigation from a base object to the instances of its extension.

The extension objects are contained in the containment c. All A instances

that are stored in c have to be iterated until the one is found that points to

the B object in question. Thus, the computational complexity is in O(k). k
is the number of elements in c. As c is part of the base metamodel, k could

be constituted from objects of the same extension, of other extensions,

and of the base model itself.

Applies to Subclasses Referencing with Reused Container uses a reference

(r) to link extension objects to their base object. Instances of subclasses of

B can be substituted for B. This means instances of subclasses of B can be

referred to by r. Therefore, this extension mechanism applies to subclasses.

Orthogonality An arbitrary number of extension classes can be created,

each of which owns a reference that points to the same base class. From

these extension classes, multiple can be instantiated on the same base object.

This means, Referencing with Reused Container supports Orthogonality.

Multiplicity The evaluation of this criterion is analogous to Orthogonality.

Multiple extension objects can be created that refer to one base object. This

is also the case if the extension objects are all instances of the same extension

class. This means a class extension that uses Referencing with Reused

Container can be instantiated multiple times on a base object. Therefore,

this extension mechanism supports Multiplicity.

Model File Integrity Referencing with Reused Container preserves Model

File Integrity. As it reuses the existing container Ct in the base meta-

model, the extension objects are stored in a base model file. No further

model files are created.

Containment Tree Integrity This extension mechanism reuses the con-

tainer Ct that is not contained by B. If it were contained by B, it would be an

application of the Extension Point Inheritance mechanism (see Section 5.4.6).

Therefore, this extension mechanism does not deposit its extension objects

in their base objects and does not preserve Containment Tree Integrity.

237

8. Metamodel Extension Mechanism Evaluation and Comparison

Extension Object Deletion When a base object is deleted, the extension

objects that refer to it are not deleted. Their reference is merely set to void.

Referencing with Reused Container, therefore, does not provide automatic

Extension Object Deletion.

Adds a Type Referencing with Reused Container does not add a type. The

explanation is analogous to Referencing with External Container. The

extension class uses a reference to establish the extension. The type of

a base object is not affected.

8.1.5. EMF Profiles

Metalanguage Support EMF Profiles is not part of EMOF. To implement

and to instantiate stereotypes, an extension to the metametamodel and

an extension to the metamodeling framework is required. It is, therefore,

not supported by the metalanguage.

Applicable without Preparation EMF Profiles can be applied to any class

in any metamodel without prior preparation. There are no requirements a

metamodel has to fulfill to be extendable with EMF Profiles.

Model Level Unintrusiveness As EMF Profiles adds instances of stereo-

types to the base model, it is intrusive on the model level. In a model file,

EMF Profiles creates another root object, in which the stereotype instances

are deposited. EMF Profiles, thus, requires the EMF Profile plugin and

the extension metamodel to be installed to load and modify models that

contain stereotype applications.

DirectExtensionContentRetrieval EMF Profiles does not support constant

time retrieval of stereotype instances, which are the extension objects of this

extension mechanism. EMF Profiles supports an API with helper methods

which support this navigation. In the background, however, all stereotype

applications of a profile are iterated.

Applies to Subclasses A stereotype E can also be instantiated on an in-

stance of a subclass of B. Therefore, EMF Profiles fulfills the Applies to

Subclasses criterion.

238

8.1. Extension Mechanism Evaluation

Orthogonality EMF Profiles supports Orthogonality. There may be several

independent stereotype definitions that point to the same base class. They

may be instantiated on one base object at once.

Multiplicity At the time of writing this thesis, the current implementation

of EMF Profiles does not properly support Multiplicity. The definition of

stereotypes features an attribute that specifies the upper bound of stereo-

type applications on one base object. Manually, by using the basic tree

editor, multiple stereotype instances can be created that point to the same

base object. If the number of stereotype instances that point to one base

object succeeds the upper bound, an error is reported on validation. If the

number of stereotype instances adheres to the upper bound, the model

file is validated successfully. Therefore, by setting the upper bound to be

unlimited or greater than 1, multiple instances of the same stereotype can

be legitimately created on one base object. Thus, by using this mechanism

to instantiate a stereotype, EMF Profiles supports Multiplicity.

This procedure, however, is not the intended way to use EMF Profiles.

Usually, a user would either use the add stereotype function from a tree

editors context menu or use a custom editor that hides the fact that EMF

Profiles is used. Such a custom editor uses the API to create stereotype

instances programmatically. The respective API function, however, throws

errors on an attempt to instantiate a stereotype multiple times on one base

object. This happens even if the upper bound is adhered to. I assume this to

be an error, as there is even an API method that provides the functionality

to read multiple Stereotype applications of the same stereotype from one

base object. The tree editor support for EMF Profiles only enables to apply a

stereotype once to a base object. I assume, however, that this is a technical

limitation that is easy to fix, as the underlying metametamodel supports

Multiplicity. In conclusion, EMF Profiles supports Multiplicity, even though

there are currently some issues.

Model File Integrity If a stereotype only supplies attributes (i.e., tagged

values), there is no model file fragmentation. The stereotype applications

are deposited in the base model file in their profile container object, which

is an additional root object in the base model file. No further model files

have to be created. If the stereotype, however, should supply complex data

structures that have to be modeled by additional classes and references,

tagged values are not sufficient. In the current implementation, a stereotype

239

8. Metamodel Extension Mechanism Evaluation and Comparison

may not own containments. Therefore, either a new container has to be

created, or an existing one has to be reused to store the instances of the

new classes. New containers lead to model file fragmentation; reuse does

not. Whether EMF Profiles abides Model File Integrity, therefore, depends

on the circumstances.

Containment Tree Integrity Stereotype instances are stored in the base

model file, but they are not contained by their base objects. Every pro-

file container object is an additional root container in its base model file.

This fragments the containment tree. EMF Profiles, therefore, does not

preserve Containment Tree Integrity. If a stereotype refers to new classes

that are contained in external containers, the containment is fragmented

even more. Each external container results in a new model file with its

own containment tree.

Extension Object Deletion In the current implementation of EMF Profiles,

stereotype applications are not automatically deleted on the deletion of the

base object onto which they were applied. EMF Profiles, therefore, does

not provide Extension Object Deletion.

Adds a Type The application of a stereotype does not add a type.

8.1.6. Extension Point Inheritance

Metalanguage Support Both variants of Extension Point Inheritance use

an inheritance relation to establish the extension. As inheritance is a

standard EMOF feature, this extension mechanism is supported by the

metalanguage.

Applicable without Preparation Both variants of this extension mecha-

nism require preparation of the base metamodel. In both cases, the ex-

tension point subclass has to exist, or the extension mechanism is not

applicable. The extension point superclass and a containment to it can still

be created in the base metamodel. In this case, however, this extension

mechanism is not completely unintrusive on the metamodel level.

Model Level Unintrusiveness Both variants of the Extension Point Inher-

itance extension mechanism are intrusive on the model level. For local

extension points, E is contained by B. For global extension points, E is

240

8.1. Extension Mechanism Evaluation

contained by S, which is the superclass of B. Both, B and S are contained in

the base metamodel. Their instances and, therefore, also the instances of

E are contained in the base model files. Thus, this extension mechanism

is intrusive regarding models.

DirectExtensionContentRetrieval In both variants of this extensionmech-

anism, the base class contains the extension class. Therefore, a base object

contains its extension objects. The search for the correct extension object

is limited to extension objects of the base object instead of all extension

objects of one metamodel extension. The extension point class A can, how-

ever, also be used by other extensions. The computational complexity of

the retrieval is, therefore, in O(m).

Applies to Subclasses Both variants of Extension Point Inheritance can

also be applied to instances of subclasses. A subclass of B inherits the

containment to A. Therefore, extension objects can also be contained in

instances of B subclasses. This establishes their extension.

Orthogonality Both variants of Extension Point Inheritance support Or-

thogonality. There can be an arbitrary number of independent extension

classes that inherit from A. On instantiation, their extension objects are

all stored in the base object via its containment to A.

Multiplicity Both variants of Extension Point Inheritance support Multi-

plicity. Of an extension class, any number of instances can be created for

the same base object. They are all stored by the containment to A.

Model File Integrity Both variants of Extension Point Inheritance preserve

Model File Integrity. This is the case, as extension objects are stored in their

respective base objects. No further model files are necessary.

Containment Tree Integrity Both variants of Extension Point Inheritance

keep the containment tree intact. This is the case, as extension objects are

stored in their respective base objects. No new root objects are created.

Extension Object Deletion As extension objects are stored in their respec-

tive base objects, both variants of Extension Point Inheritance exhibit Ex-

tension Object Deletion. If an object is deleted, all objects it contains are

also deleted. This is also the case for a base object and the extension

objects it contains.

241

8. Metamodel Extension Mechanism Evaluation and Comparison

Adds a Type Neither variant of Extension Point Inheritance adds a type.

Storing an extension object in a base object does not alter its type.

8.1.7. Decorator Pattern

Metalanguage Support The Decorator Pattern uses inheritance and con-

tainment to establish the extension. As both relations are standard EMOF

functionality, this extension mechanism is supported by the metalanguage.

Applicable without Preparation The predefined decorator variant (a) re-

quires preparation, as the superclass for the decorators (AD) has to be

present in the base metamodel. The other variants (b and c) do not re-

quire preparation concerning AD, as they do not specify it in the base

metamodel. One could argue that the variants (1) require preparation, as

they require a superclass of the base class. Such a class could be added

intrusively. However, if this is not possible, the variants (2) can be used

as they do not require a superclass.

Model Level Unintrusiveness All variant combinations of the Decorator

pattern are intrusive regarding models. The extension class E is contained

by the containment c. The owning class of c is located in the basemetamodel.

Therefore, all instances of E are contained in the base model file.

Direct Extension Content Retrieval For all variant combinations of the

Decorator pattern, direct retrieval of extension content is not possible. The

search for the right extension object, however, is limited to the number

of decorator instances of the base object. In general, the base object is

located at the end of a chain of nested decorators. These decorators might

be from the same extension or from other metamodel extensions. Therefore,

the computational complexity for the extension content retrieval is within

O(m) for all variant combinations.

Applies to Subclasses For all variant combinations of the Decorator pat-

tern also apply to subclasses of B. A decorator instance can contain another

object as long as it is a subclass of S, which is the case for subclasses of B.

As the Decorator pattern uses this containment to establish the extension,

the Applies to Subclasses criterion is fulfilled.

242

8.2. Result Interpretation

Orthogonality All variant combinations of the Decorator pattern support

Orthogonality. No matter where AD is located, as it is a subclass of S and

all decorators can contain an arbitrary subclass of S, even Decorators with

different AD classes can be used in conjunction.

Multiplicity All variant combinations of the Decorator pattern support

Multiplicity. To instantiate a decorator multiple times on a base object, it

is simply nested as many times as desired.

Model File Integrity All variant combinations of the Decorator pattern

preserve Model File Integrity. All decorator instances are contained in

the base model file as they are directly or indirectly contained by c. No

further model files are produced.

Containment Tree Integrity All variant combinations of the Decorator

pattern preserve Containment Tree Integrity. The instantiations of the

Decorator pattern cause nested cascades of decorators a the locations where

they are applied in the model file. No new root objects are produced.

Extension Object Deletion Extension Object Deletion cannot be evaluated

across-the-board for the Decorator pattern. It depends on the code that

manipulates the model file. One would expect that such code will delete a

whole chain of decorators together with the base object. This is, however,

not the only alternative. It is also possible to just delete the base object

and leave the remaining decorator chain intact.

Adds a Type The Decorator pattern does not reliably add a type. From the

perspective of the containment c, the type of the outer decorator instance is

in effect. It is, however, not the case that every decorator class (i.e., extension

class) that is instantiated adds its type to the base object. This would be

necessary for the Decorator pattern to fulfill the Adds a Type criterion.

8.2. Result Interpretation

This section interprets the results of the mechanism evaluation (see Sec-

tion 8.1). It is subdivided into a summary of the extension mechanisms

(Section 8.2.1), a recommendation of how to proceed when implementing

243

8. Metamodel Extension Mechanism Evaluation and Comparison

extensions (Section 8.2.2), and an analysis of the causal relations of the

comparison criteria (Section 8.2.3).

8.2.1. Extension Mechanism Appraisal

Direct Inheritance is the ad-hoc approach to external extension. It is intu-

itive, quick, and effortless to implement. It is applicable without preparation,

provides immediate content retrieval and keeps the containment tree intact.

It has, however, the big drawback of not supporting orthogonality. Indepen-

dent development of extensions leads to incompatible extensions if the same

classes are extended. Therefore, Direct Inheritance is only recommended

for the development of prototypical extensions.

Referencing with a reused container requires some preparation. A suitable

superclass that is contained in the base metamodel has to be available. It

has the slowest content retrieval performance. Extension objects of this

metamodel extension and possibly of other extensions that use the container

have to be iterated. This is no problem if the size of the model and the

number of extension objects is small. If large models are expected, a hash

table should be used to speed up the retrieval. Referencing with a reused

container causes no model file fragmentation. It is intrusive on the model

level. If all tools are either robust regarding unknown subclasses or can

be modified to handle such cases, this poses no problem. In conclusion,

Referencing with a reused container should be preferred over referencing

with an external container, as it does not cause any additional model files.

Provided the tools can handle unknown subclasses.

Referencing with an external container is the most flexible extension mecha-

nism. It is applicable without preparation and is least intrusive, as it does not

alter base models. It, therefore, fragments containment trees and causes one

more model file. Content retrieval is rather slow, as all extension objects of

the metamodel extension have to be crawled. This can be tackled analogous

to referencing with a reused container. Whenever no adequate contained su-

perclass is available in the base metamodel and the base metamodel cannot

be altered, referencing with an external container should be used.

EMF Profiles requires an EMOF extension and is, therefore, the only ex-

tension mechanism that was investigated that is not supported by the

244

8.2. Result Interpretation

metalanguage. It has similar characteristics to the referencing extension

mechanisms. It requires no preparation, causes tree fragmentation and

possibly model file fragmentation, depending on the situation. EMF Pro-

files provides an API for reading and modifying stereotype applications.

It is model level intrusive and should, therefore, be handled in this regard

analogously to referencing with a reused container. The presence of the

API gives it an edge over Referencing with External Container.

Extension Point Inheritance requires preparation: either a global or local

extension point. A global extension point causes the least intrusion and

does not clutter the base metamodel. Extension Point Inheritance is model

level intrusive, which should be handled analogously to the previously

mentioned extension mechanisms that are model level intrusive. If an

extension point is present or a global extension point can be added, and the

tools can handle the model level intrusiveness, Extension Point Inheritance

should be preferred over other extension mechanisms. It features quick

content retrieval, and no model nor containment tree fragmentation. It,

therefore, causes minimal code complexity overhead in tools. Developers

should be aware of the automatic Extension Object Deletion. The automatic

deletion can also be an advantage, as extension objects do not accumulate

after their base object is deleted.

The Decorator pattern is model level intrusive. It either requires preparation

(variants 1) or suffers from unused class properties (variants 2). It adds

more complexity (considering the metamodel and tools) compared with

the other extension mechanisms. For some variants, existing tools cannot

handle decoration (1b, 1c). They have to be modified to support it. The

handling and deletion of cascading decorator chains have to be implemented

in editors. Therefore, this solution is considered less practical compared

with the other extension mechanisms.

8.2.2. Metamodel Extension Process

From the insights of Section 8.2.1, the following process was devised to

support the implementation of external additions. The process is illus-

trated in Figure 8.1.

245

8. Metamodel Extension Mechanism Evaluation and Comparison

Fast Prototyping?

1

3 Use Direct Inheritance

New Subclass?

no

yes
Core Functionality? 1.1 Implement Intrusively

2
yes

2.1 Externally Add New Class
no

yes
3.1

Legacy Tools Have
to be Supported?

4
Use Referencing with
External Container

no

yes
4.1

Extension Point Available
or Can be Added

5
Use Extension Point
Inheritance

no

yes
5.1

Contained Superclass
Available?

6
Use Referencing with
Reused Container

no

yes
6.1

Use EMF Profiles

no

7

Figure 8.1.:Metamodel Extension Process

1) Intrusive vs. External First, the nature of the features that ought to

be implemented has to be considered. It has to be decided if they

are core functionality of the language. Core features of a language

are always used if the language is used. Core features should be

implemented intrusively, and the process ends here. A non-core

feature is an optional feature. It should be implemented externally.

To do so, the process continues at step 2.

2) Extension Type If a new subclass ought to be added, inheritance

must be used. In this case, the process ends here. If class properties

should be added to an existing class, the process continues at step 3.

246

8.2. Result Interpretation

3) Prototyping If the goal of the extension is to quickly establish a

throwaway prototype, Direct Inheritance should be used. Otherwise,

the process continues at the next step.

4) External Container If legacy tools have to be supported that cannot

be altered to cope with model intrusion, Referencing with External

Container has to be used. Otherwise, the process continues at the

next step.

5) Extension Point If extension points are available, they should be

utilized through Extension Point Inheritance. If no extension points

are available and the metamodel can be modified, a global extension

point should be added and used. If the metamodel cannot be modified

and no extension points exist, the process continues at the next step.

6) Container Reuse If an adequate superclass that is contained in the

base metamodel is available, referencing with a reused container

should be used.

7) Stereotyping EMF Profiles can be used in all other cases. All tools

must be ensured to be able to support model files with multiple root

objects.

8.2.3. Causal Relations

This section presents and explains the causal relations that were discovered

in the scope of the evaluation. The propositional logic notation is used to ex-

press the relations. The meaning of a criterion is negated by the ¬ operator.

The binary implication operator (=⇒) expresses that if the left operand

is true, the right operand must also be true. The binary equality operator

(⇐⇒) expresses that the truth value of both operands must be equal. If

negations are used, two versions of the logical expressions are given: the

original version and a simplified in which the negations are eliminated. The

elimination happens by negating the meaning of the criterion.

The remainder of this section presents the causal relations. For every causal

relation, first, the logical formula is given. Then the formula is explained

and substantiated. At first, the universally valid causal relations are given.

247

8. Metamodel Extension Mechanism Evaluation and Comparison

Second, causal relations are given that are valid for the inspected extension

mechanisms, but which are not necessarily universal.

Model Unintrusiveness =⇒ ¬Model File Integrity

Model Unintrusiveness =⇒ Model File Fragmentation (8.1)

The causal Relation of Equation (8.1) describes that extension mechanisms

that are unintrusive on the model level cause model fragmentation. This

can be explained as follows. If an extension mechanism is unintrusive

regarding model files, its extension objects have to be contained somewhere

else. This is then either another model or another kind of file. As argued

above, this causal relation describes an effect between the two criteria. It

is, therefore, universally valid. It holds even if new extension mechanisms

are discovered or implemented.

Containment Tree Integrity =⇒ Model File Integrity (8.2)

Causal Relation 8.2 states that an extension mechanism that preserves Con-

tainment Tree Integrity also preserves Model File Integrity. Containment

tree integrity means that no further root objects are introduced. Model file

fragmentation is only possible with new root objects. Each new model file

has to have its own root object. Therefore, model file integrity is always

given if containment tree integrity is preserved. As argued above, this

causal relation describes an effect between the two criteria. It is, there-

fore, universally valid. It holds even if new extension mechanisms are

discovered or implemented.

¬ Model File Integrity =⇒ ¬ Containment Tree Integrity

Model File Fragmentation =⇒ Containment Tree Fragmentation (8.3)

This causal relation (Equation (8.3)) is the negation of the previous causation.

The simplified version states that if an extension mechanism causes model

file fragmentation, it also causes containment tree fragmentation. Each

model file needs its own root object. This means that the containment tree

248

8.2. Result Interpretation

must be fragmented. As argued above, this causal relation describes an

effect between the two criteria. It is, therefore, universally valid. It holds

even if new extension mechanisms are discovered or implemented.

Containment Tree Integrity =⇒ Compl(Retrieval() ∈ O(1)) ∨

Compl(Retrieval() ∈ O(k)) (8.4)

Containment tree integrity implies a faster extension content retrieval

compared with a fragmented containment tree. In an intact containment

tree, the extension content or the extension objects are contained by the

base objects. In the worst case, all extension objects of a base object have

to be iterated to find the extension object in question. Extension objects

of other base classes do not have to be considered as they are contained

by their respective base class. The computation complexity of such an

operation is O(k). As argued above, the Causal Relation 8.4 describes an

effect between the two criteria. It is, therefore, universally valid. It holds

even if new extension mechanisms are discovered or implemented.

¬ Containment Tree Integrity =⇒ Compl(Retrieval() ∈ O(n)) ∨

Compl(Retrieval() ∈ O(m))

Containment Tree Fragmentation =⇒ Compl(Retrieval() ∈ O(n)) ∨

Compl(Retrieval() ∈ O(m)) (8.5)

In a fragmented containment tree, more effort has to be spent to find

extension content. As the extension content is not contained by the base

classes, it has to be stored jointly somewhere else. This extension content

has to be iterated when searching for a specific extension content. As

argued above, the Causal Relation 8.5 describes an effect between the two

criteria. It is, therefore, universally valid. It holds even if new extension

mechanisms are discovered or implemented.

¬ Applicable without Preparation =⇒ ¬Model Unintrusiveness

Requires Preparation =⇒ Model Intrusiveness (8.6)

249

8. Metamodel Extension Mechanism Evaluation and Comparison

The simplified version of Causal Relation 8.6 states that an extension mech-

anism that requires preparation of the base metamodel is also intrusive

on the model level. This can be explained as follows. For all extension

mechanisms that require preparation, the preparation is an abstract class

(A) in the base metamodel that also is contained by a container (C) that is

located in the base metamodel. The extension mechanisms then use A as a

superclass for their extension classes. This causes the extension objects to

be contained by a C instance in a base model. This means the extension

mechanism is intrusive on the model level. As long as no other kind of

preparation is discovered, this causal relation holds.

¬ Containment Tree Integrity =⇒ ¬ Extension Object Deletion

Containment Tree Fragmentation =⇒ Extension Objects Remain (8.7)

The simplified version of Causal Relation 8.7 states that an extension mech-

anism that causes containment tree fragmentation does not provide auto-

matic Extension Object Deletion. The rationale behind this relation is that

in a fragmented containment tree, references are used to establish an exten-

sion. This means base objects do not contain their extension objects. If they

contained their extension objects directly, their extension objects would

be deleted. A referencing extension object, however, is not automatically

deleted. This relation is, however, only valid for the inspected extension

mechanisms. An extension mechanism could provide automatic Extension

Object Deletion by extending the modeling framework runtime.

¬Model File Integrity =⇒ ¬ Extension Object Deletion

Model File Fragmentation =⇒ Extension Objects Remain (8.8)

This causal relation (Equation (8.8)) is a less strict version of the previous

relation. Model file fragmentation causes containment tree fragmentation,

which does not provide automated Extension Object Deletion. Like the

previous relation, this relation is only valid for the investigated extension

mechanisms. An extension mechanism could provide automatic Extension

Object Deletion by extending the modeling framework runtime.

250

9. Case Studies of the Reference
Structure Approach

This chapter
1
is concerned with the four case studies that were conducted

in the scope of this thesis. A case study is a metamodel and its modular-

ization according to the reference structure approach from the previous

chapter (Chapter 6). Later in this thesis (Chapter 10), the case studies are

used for the validation of the reference structure approach. The raw meta-

model files of the original and modularized versions of the case studies

are publicly available online
2
.

This chapter is structured as follows. Section 9.1 presents the approach of

selecting the case study metamodels. Section 9.2 explains which extension

mechanisms were used to modularize the case studies. Section 9.3 proposes

the stopping criteria for the modularization of the case study metamodels.

Section 9.4 shows results of counting metrics as a first overview of the

case study metamodels. Section 9.5 presents the case study metamodels in

detail. Section 9.6 proposes the concept of metamodel module repositories

and presents patterns for reusable modules.

9.1. Case Study Selection

This section presents the initial set of case study candidates (Section 9.1.1),

the criteria to select the final case studies from the initial set (Section 9.1.2),

and the selection results (Section 9.1.3).

1
This chapter is in some parts based on [HSR19] (©2019 IEEE).

2 https://sdqweb.ipd.kit.edu/wiki/Metamodel_Reference_Architecture_Validation

(last visited 23.08.2019)

251

https://sdqweb.ipd.kit.edu/wiki/Metamodel_Reference_Architecture_Validation

9. Case Studies of the Reference Structure Approach

9.1.1. Initial Set

The following gives a brief overview of the initial set of case study candidate

metamodels. The list is a compilation of metamodels that I encountered

during my study, which are related to quality modeling and analysis. It

was not a goal to perform an exhaustive survey of metamodels for quality

modeling and analysis, but to find a set that sufficiently fulfills the selection

criteria. This is, therefore, not a complete list.

Palladio Component Model The Palladio Component Model
3
(PCM) is a

DSML for modeling of component-based software architectures

[Reu+16; BKR09; Reu+11]. Initially, the focus of the PCM was on

performance prediction. With time, extensions have been developed

to support further quality dimensions and analyses like reliability

and security. Chapter 3 already gave a brief introduction of the PCM.

Descartes Modeling Language The Descartes Modeling Language
4
(DML)

[KBH14; Hub+17] is a DSML for the architecture modeling and run-

time performance analysis and adaptation of self-aware distributed

software systems.

ROBOCOP ROBOCOP [GL03; BC06] is an approach & metamodel for com-

ponent-based software that targets mainly embedded real-time sys-

tems and provides analysis capabilities for several quality dimen-

sions.

SOFA2 SOFA2
5
[Her11a; Čer+09; BHP06] is a component framework and

metamodel that also provides capabilities for the modeling of struc-

ture, behavior and non-functional aspects.

Smart Grid Topology This metamodel
6
is used for impact and resilience

analysis for smart grid topologies [Ras+15]. I was involved in the

development of the metamodel. For reasons of space, this thesis has

to sometimes refer to it as SmartGrid.

3 https://www.palladio-simulator.com/ (last visited 26.08.2019)

4 http://descartes.tools/dml (last visited 26.08.2019)

5 https://sofa.ow2.org/ (last visited 26.08.2019)

6 https://sdqweb.ipd.kit.edu/wiki/Smart_Grid_Model (last visited 26.08.2019)

252

https://www.palladio-simulator.com/
http://descartes.tools/dml
https://sofa.ow2.org/
https://sdqweb.ipd.kit.edu/wiki/Smart_Grid_Model

9.1. Case Study Selection

Structured Metrics Metamodel The Structured Metrics Metamodel
7
(SMM)

[Obj18] defines software metrics.

AutomationML The Automation Markup Language
8
[Dra+08] provides

modeling capabilities for the engineering of automation systems.

KAMP4aPS KAMP4aPS
9
[Hei+18; Koc17] is used to model automated pro-

duction systems and predict the impacts of changes in these systems.

BPMN2 The Business Process Model and Notation
10
2 (BPMN2) [Obj14] is

a DSML that is used for the modeling of business processes.

Capella Capella
11
[Roq16] is a metamodel-based embedded systems engi-

neering tool.

AUTOSAR The AUTomotive Open System ARchitecture [Für+09] meta-

model is used for the development of embedded systems in the

automotive domain. AUTOSAR covers a wide abstraction range

from coarser units of the system down to the implementation level.

EAST-ADL EAST-ADL
12

[EAS13; Cue+10] is an architecture description

language (ADL) for embedded systems in the automotive domain. It

complements AUTOSAR by providing the architecture level.

9.1.2. Selection Criteria

I assembled two sets of selection criteria to find appropriate case study

metamodels: mandatory criteria and prioritization criteria. These criteria

are applied to the initial set of case study candidates in Section 9.1.3.

A metamodel has to fulfill all mandatory criteria to be feasible for modu-

larization as a case study. If it does not fulfill one mandatory criterion, it

is unfit as a case study and, therefore, is no longer a case study candidate.

The set of mandatory criteria is complete in the sense that, during the work

7 http://www.omg.org/spec/SMM/ (last visited 26.08.2019)

8 https://www.automationml.org/ (last visited 26.08.2019)

9 https://github.com/KAMP-Research/KAMP4APS (last visited 26.08.2019)

10 http://www.omg.org/spec/BPMN/ (last visited 26.08.2019)

11 https://www.polarsys.org/projects/polarsys.capella (last visited 26.08.2019)

12 http://www.east-adl.info/Specification.html (last visited 26.08.2019)

253

http://www.omg.org/spec/SMM/
https://www.automationml.org/
https://github.com/KAMP-Research/KAMP4APS
http://www.omg.org/spec/BPMN/
https://www.polarsys.org/projects/polarsys.capella
http://www.east-adl.info/Specification.html

9. Case Studies of the Reference Structure Approach

with the case study metamodels, there were no other reasons encountered

that prevented the modularization of metamodels.

The prioritization criteria aim to increase the internal and external validity

of the evaluations that are presented later in this thesis. From the case

study candidates, the subset that fulfills the prioritization criteria the best

is chosen as case study metamodels. There are two kinds of prioritization

criteria: simple prioritization criteria and heterogeneity criteria. Simple

prioritization criteria are evaluated on each candidate separately. They

either improve the internal or external validity of the validation. Which

type of validity is improved, is stated in the explanation of the criteria below.

Heterogeneity criteria are not evaluated on single case study candidates

but sets of candidates. Heterogeneity criteria are concerned with ensuring

the diversity of the case study candidates. They, therefore, improve the

external validity of the validation.

9.1.2.1. Mandatory Criteria

Public Availability The metamodel files that constitute a metamodel must

be publicly available. Without access to the metamodel files, the

metamodel files cannot be modularized and the reference structure

approach is not applicable.

Scope This thesis concentrates on quality modeling. Although the appli-

cation of the reference structure approach is broader, this is not

investigated here. Thus, the case study candidates are restricted to

those that are concerned with quality modeling and analysis.

Upper Size Limit The metamodels cannot be too excessive in size, as the

effort for understanding themetamodel, acquiring the domain knowl-

edge about how the metamodel is used and performing the refac-

toring significantly increases with the size of the metamodel. In the

first iteration of the modularization, the PCM was refactored. With

its over 203 classes and 567 dependencies, the PCM is considered

a large metamodel. The effort to obtain the necessary knowledge

and to modularize the metamodel was considerable. To keep the

modularization effort within a reasonable limit, the size of further

case studies cannot exceed the size of the PCM by much.

254

9.1. Case Study Selection

Lower Size Limit If a metamodel is so small that there is no modulariza-

tion potential, the application of the reference structure approach is

limited. At most, a paradigm extraction could be conducted if the

metamodel contains domain information. However, that would only

cover a small portion of the reference structure approach and would

not evaluate the overall benefit. Thus, the case study candidates are

restricted to metamodels that have at least minimal modularization

potential. To be specific, there must be at least one possible split or

extraction that is not a paradigm extraction.

9.1.2.2. Prioritization Criteria

Heterogeneity: Size To be able to evaluate if the reference structure ap-

proach has benefits for metamodels of different sizes, the set of

candidates should contain metamodels of various sizes. As the struc-

ture of a metamodel (package structure as well as dependencies) gets

more convoluted as larger they get, it is to be expected that the refer-

ence structure approach brings more benefits for larger metamodels.

Thus, it is important to also evaluate small metamodels.

Heterogeneity: Age The older a metamodel is, the more changes it has

witnessed due to maintenance. To be able to evaluate if the reference

structure approach has benefits for metamodels of different age, the

set of candidates should contain metamodels of various ages. The

argumentation here is analogous to the size criteria. As a metamodel

is changed over time, it tends to degrade structurally. It can be

expected that the reference structure approach brings more benefits

on metamodels that have more structural deficiencies. Thus, it is

important to also evaluate young metamodels.

Heterogeneity: Maturity The stage of maturity of a metamodel is deter-

mined by howmuch it changed recently and howmuch it potentially

changes in the near future. There are different stages of maturity.

These stages cannot be clearly separated. In the design stage, a

metamodel changes and grows rapidly as all of its features are imple-

mented. In the testing stage, the rate of modifications slows down.

Most of the features are implemented by now, but some errors are

255

9. Case Studies of the Reference Structure Approach

still fixed, and improvements and additions conducted. In the post-

release stage, there are still some changes made as tool users detect

errors and need to model further information.

Maturity is related to but not identical to age. For example, a young

metamodel might be very stable, or an old metamodel might be

frequently changed.

To be able to evaluate if the reference structure approach can be

applied to and has benefits for metamodels in different evolution

stages, the set of candidates should contain metamodels in various

stages of maturity.

Heterogeneity: Layers The reference structure approach is designed to be

used with any number of layers. Of course, the number of layers

should fit the metamodel to be meaningful. To be able to evalu-

ate if the reference structure approach is beneficial no matter how

many layers are produced, the set of candidates should contain meta-

models that carry information that can be classified into various

combinations of layers of the reference structure.

Heterogeneity: Domains and Analyses The reference structure approach is

meant formetamodels that are used in arbitrary domains for arbitrary

analyses. To be able to confirm this, the set of candidates should

cover various domains and should be used for various analyses.

Heterogeneity: Package Structure Depth Many metamodels consist only

of one package that contains a high number of classifiers (e.g., in the

AtlantEcore Zoo
13
[Vép+06]). It is to be expected that the reference

structure approach performs better in such flat metamodels, as they

tend to have more modularization potential. On the other side, the

evaluation should show that the reference structure approach brings

benefits for metamodels with package structures of various depths.

Thus, various package structure depths should be represented in the

set of candidates.

Meta-Language Metamodels can be specified in various meta-languages.

As the reference structure approach aims at Ecore-based metamodels,

13 http://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=Zoos

(last visited 23.08.2019)

256

http://web.imt-atlantique.fr/x-info/atlanmod/index.php?title=Zoos

9.1. Case Study Selection

the inputs for the approach have to be Ecore files. In this respect,

the origins of metamodel files can be classified into three categories:

1. The metamodel is implemented in Ecore.

2. The metamodel is implemented in another meta-language and

is then transformed into Ecore.

3. The original metamodel is not accessible but has been

reengineered in Ecore.

Metamodels from origin 2 may lack meta-language features that

Ecore provides. For example, metamodels that are transformed from

XSD (XML Schema Definition) into Ecore have a completely flat

package structure. Missing meta-language features are significant

drawbacks of such meta-languages, and it can be argued that it

is also a shortcoming of the metamodels that are defined in such

meta-languages.

Metamodels from origin 3 may be of a different quality compared

with the original, depending on the aspects that were important

the metamodel developer who reengineered the metamodel. For

example, if it was the primary goal of the metamodel developer to

reconstruct the entities and their relationships, s/he may neglect the

package structure.

In summary, metamodels that were transformed or reengineered in

Ecore may have artificial flaws. Depending on the types of flaws,

affectedmetamodels should get lower priority to improve the internal

validity of the validation.

Availability of Knowledge To be able to evolve a metamodel, sufficient

knowledge of the metamodel is required. Additionally, when modu-

larizing a metamodel according to its language features, knowledge

of the domain is required to be able to cut the metamodel properly.

The process of acquiring the necessary knowledge outweighs the

effort to perform the refactorings. Thus, concerning efficiency and

regarding the fact that knowledge is also needed in metamodel evo-

lution, it is advantageous to have as much knowledge about the case

study metamodels as possible. However, it should be possible to

apply approach with and without prior knowledge of the domain

257

9. Case Studies of the Reference Structure Approach

and the metamodel. Thus, to ensure external validity, for at least one

of the case study metamodels there should be no in-depth a priori

knowledge available.

Instance Availability An evaluation in this thesis needs models to evaluate

the ratio of usage of the metamodels. The more models are avail-

able, the stronger is the external validity of the evaluation. Thus,

metamodels that have more instances available are prioritized.

Changelog Availability An evaluation in this thesis needs modification sce-

narios to evaluate the evolvability of a metamodel. Such modification

scenarios can be extracted from changelogs. These modification sce-

narios were actually conducted and are, therefore, more credible

than hypothetical ones.

Another source for evolution scenarios are commit histories in ver-

sion control systems. Compared to explicit changelogs, evolution

scenarios cannot be extracted as easily. An evolution scenario may

be executed in several commits, or multiple evolution scenarios can

be performed in one commit. Sometimes, two separate evolution

scenarios are even entangled in the commit history, as they were

executed by multiple people concurrently.

If metamodel developers did not properly state the changes they

performed in the commit messages, the changes have to be extracted

from the differences between the commits. This is challenging, as

some changes alter the source of a metamodel in multiple locations.

E.g., depending on the used editor, the deletion of an element also

removes dependencies that point to the deleted element. To relate

these source changes to its respective change on the metamodel level

is challenging, especially, if the commit mixes multiple changes.

Thus, metamodels that have a public changelog are prioritized to

ensure internal validity.

9.1.3. Selection Result

The following explains why metamodels from the initial set of case study

candidates were selected or excluded. Table 9.1 gives an overview of the

258

9.1. Case Study Selection

criteria evaluation. The left column lists the metamodels. The final case

study selection is shown in bold. The next four columns show themandatory

criteria. A cell shows a “×” if the metamodel does not fulfill the criterion.

The next six rows show represent the heterogeneity prioritization criteria.

A “↑” represents a high value. A “~” represents a medium value. A “↓”

represents a low value. The layers column features the symbols of layers

if the metamodel defines concepts that belong into the layer. The π is not

shown, as π can be formed from any metamodel. Some layers are put into

parentheses, which means that the metamodel does not cover the layers,

but there are metamodel extensions that do. If a layer is marked with a

small question mark, I suspect that the metamodel covers the layer. The

domains and analyses criterion is rated with the following symbols. A

“×” means the metamodel is too similar to a metamodel that was has a

superior prioritization from other criteria (i.e., it is already set as a case

study). A “✓” means the metamodel features domains and analyses that

are unique compared to the other case study candidates. The remaining

four columns show prioritization criteria that do not target heterogeneity.

Criteria that lead to discarding a metamodel are shown in bold in the row

of the discarded metamodel.

The following explains the evaluation of the criteria starting with meta-

models that did not fulfill the mandatory criteria. Next, the final selection

on the basis of the prioritization criteria is discussed.

9.1.3.1. Candidates Discarded due to Mandatory Criteria

The following candidates did not fulfill at least one of the mandatory criteria.

SMM The SMM does not fulfill the scope criterion, as it only defines metrics.

Where the measurements are taken from is left open. Therefore, the

SMM does not fit into what is investigated in the scope of this thesis.

If the requirements for the scope of the candidates were less strict, the

SMM would be a good candidate, as amongst all candidates it covers

a unique domain (software metrics) and a unique layer combination

(πΩ). The SMMmetamodel is available in CMOF
14
. If the metamodel

14 https://www.omg.org/spec/SMM/ (last visited 26.08.2019)

259

https://www.omg.org/spec/SMM/

9. Case Studies of the Reference Structure Approach

M
a
n
d
.
C
r
i
t
e
r
i
a

H
e
t
e
r
o
g
e
n
e
i
t
y
P
r
i
o
.
C
r
i
t
e
r
i
a

P
r
i
o
.
C
r
i
t
e
r
i
a

M
e
t
a
m
o
d
e
l

Public Availability

Scope

Upper Size

Lower Size

Size

Age

Maturity

Layers

Domains & Analyses

Package Structure

Meta-Language

Knowledge

Instances

Changelog

PC
M

↑
↑

~
∆
Ω
(Σ
)

↑
✓

~
✓

✓
D
M
L

∆
Ω
Σ
?

×
✓

~

R
O
B
O
C
O
P

∆
Ω
Σ
?

↓
×

×

S
O
F
A
2

∆
Ω
Σ
?

×
✓

×

Sm
artG

rid
↓

~
↑

∆
Σ

✓
~

✓
✓

~
~

S
M
M

×
↑

Ω
✓

~
×

A
u
t
o
m
a
t
i
o
n
M
L

×
↓

↑
∆

✓
↓

~
×

K
A
M
P4aPS

↑
↓

↓
∆
Ω

✓
~

✓
~

~
~

B
PM

N
2

↑
~

↑
∆
(Ω

Σ
)
✓

↓
~

×
✓

×

C
a
p
e
l
l
a

×
↑

∆
Ω
?Σ

?
✓

×

A
U
T
O
S
A
R

×
×

↑
↑

∆
Ω
?Σ

?
✓

×

E
A
S
T
-
A
D
L

↑
∆
Ω
?Σ

?
×

~
×

Table 9.1.:Case Study Candidates: Criteria Evaluation

260

9.1. Case Study Selection

does not contain any features that are unsupported by EMOF, the

metamodel could be transformed from CMOF into Ecore.

AutomationML AutomationML does not fulfill the lower size limit criterion,

as the following elaborates. The core of AutomationML, which is

named CAEX (Computer Aided Engineering Exchange) [Com16;

FD05], defines concepts for the modeling of the hierarchical struc-

ture of plants. This hierarchical structure also establishes links to

two other languages (COLLADA and PLCopen). COLLADA (COL-

LAborative Design Activity) [Sta12] is used to model geometry and

kinematics. PLCopen [Com13], which defines the programming lan-

guage for PLCs (programmable logic controllers), is used to model

behavior. This link, however, is implemented by string references.

Such loose coupling comes with the loss of type safety, as arbitrary

objects may be referenced. On the other hand, the CAEX metamodel

is not coupled to COLLADA and PLCopen. This means for Automa-

tionML as a case study there is no need to factor these aspects out.

The remaining CAEX does not contain language features that could

be separated. Thus, AutomationML does not fulfill the lower size

limit criterion.

Compared with the other candidates, CAEX is a rather small meta-

model with its 37 classes. As it is a standard, it is of stable maturity.

It features a unique layer combination (π∆). It covers a domain that

is similar to KAMP4aPS but without the maintainability prediction

focus. It is available in Ecore
15
and XSD

16
. It has a flat package struc-

ture. This is most likely the result of a transformation from XSD into

Ecore.

Capella With its 413 classes, the Capella metamodel exceeds the upper size

limit criterion. It is available in Ecore
17
. With systems engineering

for embedded systems, its domain is quite similar to other languages

like ROBOCOP.

AUTOSAR The AUTOSAR metamodel is not publicly available. It also ex-

ceeds the upper size limit. Durisic et al. [Dur+14] report that version

15 https://github.com/kit-sdq/AutomationML-CAEX-Metamodel (last visited 26.08.2019)

16 http://www.plt.rwth-aachen.de/cms/PLT/Forschung/Projekte2/~ejwy/

CAEX-IEC-62424/ (last visited 26.08.2019)

17 http://git.polarsys.org/c/capella/capella.git/ (last visited 26.08.2019)

261

https://github.com/kit-sdq/AutomationML-CAEX-Metamodel
http://www.plt.rwth-aachen.de/cms/PLT/Forschung/Projekte2/~ejwy/CAEX-IEC-62424/
http://www.plt.rwth-aachen.de/cms/PLT/Forschung/Projekte2/~ejwy/CAEX-IEC-62424/
http://git.polarsys.org/c/capella/capella.git/

9. Case Studies of the Reference Structure Approach

4.1.2 of the metamodel contains over 6000 elements. This makes

it a magnitude larger than the next largest metamodel. As it is a

standard, it can be considered to be of stable maturity. It also covers

a unique domain (embedded systems down to the implementation

level).

9.1.3.2. Candidates Discarded due to Prioritization

The following candidates were discarded, as there were candidates that

fulfilled more prioritization criteria.

DML The DML is used to model component-based software architecture

with a focus on runtime performance prediction. In this aspect, it

is too similar to the PCM, which fulfills more prioritization criteria.

DML is available in Ecore. In-depth knowledge about the metamodel

is indirectly available to me, as a research contact is familiar with

the metamodel.

ROBOCOP The domain of ROBOCOP is quite similar to Capella, as it targets

embedded systems. On the other hand, it is also similar to the

PCM and DML as it covers performance analysis of component-

based systems. However, a more deciding factor is, that there is no

metamodel based version available. A version that was reengineered

from the specification and grammars is available [Koz11a]. This

reengineered version does not consider a package structure.

SOFA2 SOFA2 is used in the domain of component-based software archi-

tecture. It is therefore too similar to the PCM, which fulfills more

prioritization criteria. Its metamodel is available in Ecore.

EAST-ADL As it is a standard, it can be considered to be of stable maturity.

It covers the domain of embedded systems architecture. Therefore it

domain is very similar to Capella, ROBOCOP and the PCM, which

fulfills more prioritization criteria. Its metamodel is available as XSD

on request
18
.

18 www.east-adl.info/Specification.html (last visited 26.08.2019)

262

www.east-adl.info/Specification.html

9.1. Case Study Selection

9.1.3.3. Selected Candidates

This section presents the metamodels have been selected to be modularized

in the case studies. First, this section states the result of the prioritiza-

tion criteria for each metamodel without comparing them. Afterward,

it explains why the selection of metamodels is suited according to the

prioritization criteria.

Palladio Component Model With its 203 classes, the PCM is quite large. As

the development of the Ecore metamodel started in August 2006,

and the first version was made publicly available in October, it is the

oldest of the case study metamodels. In consequence, its structure is

historically grown (see my papers [SH16b; SL14]), as new features

were added to the metamodel and no refactorings were executed

to restore its structure. It is quite mature, as it has been relatively

stable. The PCM covers the π , ∆ and Ω layers. There are extensions

that feature Σ content, which are not subject of this case study but

will be used in the evaluation. The PCM has a deeply nested package

structure. However, its module structure is quite monolithic (one

metamodel module contains 73 % of all classes). It is available in

Ecore, and many instances are available to me. A changelog is also

available
19
.

Before my modularization work on the PCM, I knew the PCM as

a user and the development of a second level analysis tool [Str11;

SH12; Str13]. However, I had no in-depth knowledge of the class

structures of the metamodel. This knowledge grew as I worked with

the PCM [Str+13a; SL14; BSK15; Str+16a; Str+16b].

Smart Grid Topology With 30 classes, the Smart Grid Topology metamodel

is small compared to the other candidates. Its development started in

January 2014. Thus, I consider it of medium age. It has not changed

much in the last years. So it can be considered to be stable. It covers

the π , ∆ and Σ layers. It does not need a Ω layer, as the analyses

operate solely on the structural parts of the topology that are defined

in ∆. Its domain, the resilience of smart grid topologies, is unique

amongst case study candidates. It is quite modular, as its 30 classes

19 https://sdqweb.ipd.kit.edu/wiki/PCM_Changelog (last visited 26.08.2019)

263

https://sdqweb.ipd.kit.edu/wiki/PCM_Changelog

9. Case Studies of the Reference Structure Approach

are divided into three metamodel modules. The package structure of

the metamodel modules is flat, which is adequate considering their

size. The metamodel is available in Ecore. I have in-depth knowledge

about the metamodel, as I was involved in its development. There are

some models publicly available. A proper changelog is not available,

only the history in the version control.

KAMP4aPS With its 185 classes, the KAMP4aPS metamodel is rather large.

It has been under development since 2016 [Koc17], so it is compara-

tively young. At the time it was considered as a case study, it just

recently completed its initial development. So, it has a low maturity.

It occupies the ∆ and Ω layers. As it is used for maintainability

prediction of automated production systems, it covers a unique do-

main/analysis combination. It is already quite evenly modularized.

The package structure of the metamodel modules is mostly flat but

adequate. KAMP4aPS is available directly in Ecore. I was able to

request expert knowledge about the metamodel from its initial de-

veloper. The instances that were used to evaluate the metamodel

are available [Koc17]. A proper changelog is not available, only the

history in the version control.

BPMN2 BPMN2 only covers the π and ∆ layer. It nevertheless fulfills

the mandatory scope criterion, as there exist approaches to quality

analyses for BPMN2. Literature research conducted by Heinrich

[Hei14] yielded several such approaches. For example, Saeedi et al.

[SZS10] enable modeling of time, cost, and reliability. Gulla [Gul07]

introduces modeling capabilities for performance information. The

modularization case study, however, focuses on the BPMN2 meta-

model, which occupies the π and ∆ layer.

With 161 classes, BPMN2 is in the upper range regarding range.

Its predecessor specification (BPMN) was first released in March

2007. At first, no metamodel was available. It was released with the

BPMN2 specification in January 2011. So, the BPMN2 metamodel is

of medium age. As it is a standard, it has a stable maturity. With the

domain of business processes, it covers a unique domain amongst the

case study candidates. The metamodel is officially available in CMOF

and XSD. There are open source tools that feature an Ecore version.

Even though CMOF supports deep package structures, the package

264

9.1. Case Study Selection

structure of the BPMN2 is entirely flat. I had no prior knowledge

of BPMN2. There are many instances publicly available, as there

is an online repository for BPMN2 models. There is no changelog

publicly available that I am aware of. Changes from version 1.2 to

2.0 are reported in the specification [Obj14]; however, they are too

coarse-grained to extract evolution scenarios.

The PCM was already set as a case study, as it was a pilot project for

metamodel modularization. In the process of modularizing the PCM, a

significant part of the reference structure approach was developed. In

retrospect, however, the PCM performs well when evaluated according

to the prioritization criteria.

The final candidates perform well regarding the (non-heterogeneity) prior-

itization criteria. All metamodels are available in Ecore. There are many

instances available for the PCM and BPMN2, and at least some for Smart

Grid Topology and KAMP4aPS. A plus factor for the PCM is the availability

of a changelog. In-depth knowledge is available to me for Smart Grid Topol-

ogy and KAMP4aPS. However, not all metamodels were well known to me,

as I had no in-depth knowledge about the BPMN2 metamodel. Another

plus factor for the BPMN2 is its status as a standard.

The heterogeneity of the final selection is good, as the following will now

elaborate. Concerning size, the selection covers small metamodels (Smart

Grid Topology) and large metamodels (PCM). With the PCM as an old

metamodel and KAMP4aPS as a young metamodel, the selection is di-

verse concerning age. Regarding maturity, the selection is heterogeneous.

KAMP4aPS was still in an early stage; Smart Grid Topology and BPMN2 are

stable. On the one hand, the PCM is historically grown with all detriments

that come with it. On the other hand, Smart Grid Topology and KAMP4aPS

had a rather short history of maintenance. The selection covers a diverse

range of layer combinations: π∆ by BPMN2, π∆Ω by PCM and KAMP4aPS,

π∆Σ by Smart Grid Topology. Each metamodel of the final selection covers

a unique domain. The depth of package structures is diverse, as the PCM

has a very deep and the BPMN2 has a very flat package structure. Further,

the selection contains modular metamodels (KAMP4aPS and Smart Grid

Topology) as well as monolithic ones (PCM and BPMN2).

265

9. Case Studies of the Reference Structure Approach

9.2. Applied Extension Mechanisms

The implementation of the case studies uses the Extension Point extension

mechanism (see Section 5.4.6) and Referencing with Reused Container (see

Section 5.4.4) where possible, as they introduce the least number of new

classes. Where these extension mechanisms could not be used, Referencing

with External Container (see Section 5.4.3) was used. The applicability

of EMF Profiles (see Section 5.4.5) is identical to the applicability of Ref-

erencing with External Container, as the use of both mechanisms does

not depend on the presence of predefined containers. The number of new

classifiers (if a stereotype is considered a classifier) introduced by both

extension mechanisms is equal if the extension references further classes.

If only attributes are added, EMF Profiles requires one classifier less than

Referencing with External Container, as the stereotype can directly contain

the attributes. These are named tagged values. On the other hand, Referenc-

ing uses the standard Ecore modeling concepts. This simplifies gathering

evaluation results, as the standard EMF API and tools can be used to process

metamodels and models. Referencing with External Container was chosen

because of this reason. If EMF Profiles had been used, the modularized

versions of the metamodels would be even less complex.

9.3. Modularization Stopping Criteria

All four case studies were refactored until they satisfied the following

criteria: (1) full vertical decomposition (each metamodel module can be

assigned to exactly one layer), (2) no feature dependencies and no module

dependencies violate the layering, (3) full horizontal decomposition (each

metamodel module is at most as extensive as a language feature), (4) no

dependency cycles. The PCM, Smart Grid Topology, and KAMP4aPS case

studies fulfill an additional criterion: (5) dependency inversion was applied

to decouple all metamodel modules from all other metamodel modules that

represent extensions. In BPMN2 as many extensions were decoupled until

a point was reached where further dependency inversion would merely

decrease coupling and, thus, further increase the observed benefit.

266

9.4. Counting Metrics Results

9.4. Counting Metrics Results

To give an overview of the case studies, several basic counting metrics

were applied to all metamodels. Table 9.2 shows the results. The first row

shows the names of the metamodels. They are grouped after the four case

studies. Within a group, the left metamodel is the original version; the

right metamodel is the modularized version. The metamodel elements that

were counted are listed in the first column. Although a containment is

a special case of reference, the number of containments is not included

in the number of references. The dependencies row shows the sum of all

dependencies (attributes, inheritances, references, containments).

Metamodel P
C
M

m
P
C
M

S
m
a
r
t
G
r
i
d

m
S
m
a
r
t
G
r
i
d

K
A
M
P
4
a
P
S

m
K
A
M
P
4
a
P
S

B
P
M
N
2

m
B
P
M
N
2

Metamodel modules 5 27 3 6 5 9 4 28

Packages 24 42 3 7 12 23 4 31

Classes 203 229 30 34 185 185 157 163

Attributes 56 54 9 9 14 14 135 135

Inheritances 193 194 25 25 163 163 157 162

References 198 174 15 18 117 115 134 151

Containments 120 131 11 14 101 92 103 79

Dependencies (Σ) 567 553 60 66 395 384 529 527

Table 9.2.:Case Studies: Counting Metric Results

9.5. Case Study Metamodels

This section presents all case study metamodels: the PCM (Section 9.5.1),

Smart Grid Topology (Section 9.5.2), KAMP4aPS (Section 9.5.3), and BPMN2

(Section 9.5.4). For each metamodel, this section presents the original meta-

model, describes the modularization and presents the resulting modular

metamodel. The description of the modular metamodels does not go into

267

9. Case Studies of the Reference Structure Approach

detail about transitive dependencies, as they do not influence the depen-

dency graph (see Section 6.3.3).

It is important to note that the modular versions of the case study metamod-

els were created for the validation (see Chapter 10). They were refactored

solely according to the rules of the reference structure. Bad smells that the

reference structure does not address were not fixed, as this would damage

the internal validity of the validation.

This section provides several diagrams that were exported from theModular

Designer. The Modular Designer is the tool support for the reference

structure approach. Metamodel architects can use it to visualize and modify

the layers and module structure of a metamodel. For in-depth information

about the Modular Designer, consult Appendix B.2.

9.5.1. Palladio Component Model

The starting point for the modularization is version 4.1
20
of the PCM.

9.5.1.1. Original Metamodel

The PCM features six view types. These view types are good indicators for

the topmost decomposition. these view types are now briefly explained.

For more in-depth information, please consult the respective literature

[Bus+16; Reu+11]. The Repository view type is used to define components

and interfaces. Components provide and require Interfaces, which results

in Provided Roles and Required Roles. The definitions of the Components

is independent of the software systems in which they are used. The SEFF
(Service EFFect Specification) view type enables the modeling of the be-

havior of the services of the components and their resource demands. It

resembles a flowchart and an activity diagram. There is an abstract SEFF

class that allows for the extension of SEFFs of arbitrary type (e.g., data flow).

For the sake of simplicity, however, behavior describing SEFFs are simply

addressed as SEFF. Systems and Composed Components can be described

using the Assembly view type. There, Components can be instantiated

20 https://sdqweb.ipd.kit.edu/wiki/PCM_4.1 (last visited 26.08.2019)

268

https://sdqweb.ipd.kit.edu/wiki/PCM_4.1

9.5. Case Study Metamodels

(by so-called Assembly Contexts), and their Roles can be connected. In the

Resource Environment, Resource Containers, which represent servers and

workstations, their connections, and resources are modeled. In the Alloca-
tion view type, the Assembly Contexts of a system can then be deployed to

Resource Containers of a Resource Environment. The Usage Model enables
the modeling of behavior of the users of the system.

The module structure of the PCM is shown in Figure 9.1. It consists of five

metamodel modules. Identifier provides a superclass for all classes that

need an identifier attribute. Units defines units and provides a superclass

that keeps track of a unit. StoEx, which is short for stochastic expression,

defines arithmetic on random variables, which are used in the PCM to

define and modify parameter values. ProbFunction defines abstractions to

model probability functions, which can be used in stochastic expressions.

Modular metamodel

pcm

units

stoex

probfunction

identifier

Figure 9.1.: PCM Module Structure (Modular EMF Designer Diagram)

Around 73 % of the classes of the PCM metamodel reside in the PCM meta-
model module. This metamodel module defines all main concepts of the

PCM like components, interfaces, composition, assembly, resource envi-

ronments, deployment, and usage models. Figure 9.2 shows the package

structure of the PCM metamodel module. If a package is located within an-

other package, it means the outer package contains the inner package. The

arrows between the packages represent dependencies between the classes

of the packages. The figure makes several simplifications to ensure clarity.

Dependencies to and from the packages on the third nesting level (e.g.,

composition) count towards the dependencies of their parent packages (e.g.,

core in the case of composition). The figure omits transitive dependencies

269

9. Case Studies of the Reference Structure Approach

pcm

core

entity

composition

repository usagemodelresourcetype

allocation

subsystem

resourceenvironment

protocol

reliability

seff

seff performance

seff reliability

qosannotations

qos performance

qos reliability

system

parameter

Figure 9.2.: Package Structure of the PCM [SL14]

and dependencies to the entity package as these are numerous. All view

types of the PCM are reflected in the package structure. The Assembly view

type is implemented in the Composition package.

The PCM package is the root package of the PCM metamodel module.

It merely contains the other packages. The Core package contains the

270

9.5. Case Study Metamodels

entity and composition package, as well as a class that implements ran-

dom variables. Entity provides several abstract superclasses. Composition,
Repository, UsageModel, ResourceEnvironment, Allocation, and SEFF contain

mostly classes that implement their respective view types. However, they

also contain classes of cross-cutting features and extensions. These are con-

sidered to be bad smells. The System and Subsystem packages contain one

class each, which represents a software system and a software subsystem

respectively. ResourceType contains classes that specify Resource Types,

which are used by the Resource Containers. Protocol provides one single
abstract class, which can be used as an extension point to define protocols

[Reu01]. It is currently unused. Parameter implements abstractions for

the specification and manipulation of variable values. Reliability provides

modeling of failure types and their occurrences. The SEFF Performance sub-
package provides resource related calls as well as resource demands. This

may suggest, that its parent package SEFF is free from resource-dependent

abstractions. However, it is not. SEFF Reliability provides abstractions to

handle recovery from failures. It has the same problem as the SEFF Per-

formance package, as the classes in SEFF still contain reliability related

properties. QoS Annotations stands for quality of service annotations and

implements an extension point for Systems. This extension point can be

utilized by performance and reliability abstractions that are defined in its

subpackages QoS_Reliability and QoS_Performance.

9.5.1.2. Modularization

The refactoring of the PCM, split the PCMmetamodelmodule into 23 smaller

metamodel modules to separate its language features (see my paper [SL14])

properly
21
. The modularization of the PCM metamodel module was driven

by the effort to separate the view types and to extract their advanced features

to make them extensions. By doing so, the basic view type metamodel

modules would be decoupled from their advanced features. The other four

metamodel modules were already sufficiently modular and fitted well into

the π layer. The number of classes in the modular PCM (mPCM) grew from

203 to 229. This is due to splitting classes during refactoring and the creation

of new containers for extensions. The number of references dropped from

21
The mPCM feature model was further influenced by a diploma thesis [Kan17].

271

9. Case Studies of the Reference Structure Approach

198 to 174, as redundant dependencies that violated the reference structure

were removed or remodeled. The number of containments increased from

120 to 131, as new extending classes needed to be contained.

The next section presents the metamodel modules of the mPCM and ex-

plains the PCM was refactored to achieve the modularization. During the

refactoring, the refactorings and modifications of the following types were

performed many times. Concrete modifications and refactorings will only

be mentioned if they are of particular interest.

• Moving of classifiers between packages (possibly packages of

different metamodel modules)

• Moving packages into another package (possible into another

metamodel module)

• Creating, deleting, renaming packages and modules

• The deletion of redundant relations that violated the constraints of

the reference structure

• The reversion of dependencies that violated the constraints of the

reference structure

• The creation of a new root container for a metamodel module

• The creation of containments from root containers

• Renaming of classes (e.g., after factoring out properties belonging to

another concern)

9.5.1.3. Modular Metamodel

Figure 9.3 shows the module structure of the mPCM. For the sake of simplic-

ity, transitive dependencies are hidden. This section presents the resulting

metamodel modules. For each metamodel module it explains its purpose,

its dependencies, and how it was created in the refactoring process.

272

9.5. Case Study Metamodels

Modular metamodel

 π base

repository
environment

variables

annotations
seff

composition
usage

stoex
probfunction

identifier units

 Δ
software repository

software seff

resources

allocation

software composition

internal behaviour
events

infrastructure

resource interfaces
abstract component types

software usage

Ω
reliability

rel annotationsperf annotations
performance

Figure 9.3.:mPCM Module Structure (Modular EMF Designer Diagram)

273

9. Case Studies of the Reference Structure Approach

Paradigm The π layer contains the unaltered metamodel modules Identi-

fier, Units, Probfunction and StoEx. It also contains the two basic metamodel

modules Base and Variables that are used by many other metamodel mod-

ules. π further contains 5 metamodel modules that define view types.

Base The Base metamodel module provides two superclasses that are com-

monly inherited from. The NamedElement class provides a name

attribute. Entity inherits from NamedElement and the Identifier class

(from the Identifier metamodel module) to combine the name and

ID attributes. As almost all other metamodel modules use these

superclasses, dependencies to Base are not explicitly mentioned. The

Base module does also contain a dummy class, which is not used and

was only introduced to the PCM as a technical workaround. The

execution engine of the transformation language QVT-R was not

able to handle a root package without any classes. The class was

not removed, as it does not violate the constraints of the reference

structure. Thus, by removing it, it would have harmed the internal

validity of the evaluation. The large initial horizontal split created

Base. It originates from the Entity package. It was not split as a

language feature, but as a featureless metamodel module that is used

by other language features.

Variables This metamodel module enables to model properties of variables.

It does that on the basis of the arithmetic of random variables and

thus depends on the StoEx metamodel module. Variables originated

from the Parameter package. It was factored out due to a horizontal

split to separate its language feature. The class PCMRandomVariable,

which is now part of the Variables metamodel module, had many

outgoing container relations, which were redundant. As Variables

is a π metamodel module, many of the referenced containers are

located in more specific layers. Container relations to such classes

violated the constraints of the reference structure and had to be

removed. The other container relations remained, except if they

caused a dependency cycle, to not harm the internal validity of the

evaluation.

Repository The Repository now contains the most basic versions of the

abstractions of the former repository view type. All extensions

(e.g., infrastructure, events) and content of more specific layers (e.g.,

274

9.5. Case Study Metamodels

software, performance, reliability) was factored out. What remains

are Components, Interfaces and their relations (Roles). Repository

was formed in the scope of the big initial horizontal split and the

subsequent paradigm extraction from its ∆ counterpart.

Composition This metamodel module lays the abstract superclass Com-

posedStructure for all structures in the PCM that contain instances

of components and their connectors. Composition provides the new

superclass Containable. From this superclass, all classes that can be

contained in a ComposedStructure must inherit. This metamodel

module defines AssemblyContexts and Connectors as containable.

Composition depends on Repository, as an AssemblyContext refer-

ences a Component. In addition, some ComposedStructures need

Interfaces. So, a further superclass in Composition inherits from a

superclass in Repository that provides Roles. Composition is transi-

tively dependent on Variables, as a ComposedStructures may feature

parameters. Composition originated from the initial horizontal split

and the subsequent paradigm extraction from its ∆ counterpart.

Usage, SEFF The metamodel modules Usage and SEFF implement the do-

main-independent portion of their respective view types Usage

Model and SEFF. Both metamodel modules are dependent on Vari-

ables, as they use random variables. Both originate from the initial

horizontal split and the subsequent paradigm extraction from their

∆ counterpart.

Environment The environment resulted from the resource environment

view type. All resource-dependent content was factored out into

∆ metamodel modules. ResourceContainers are now Containers,

LinkingResources, which connect Containers, are now Links.

Annotations Annotations contains the quality independent part of the QoS

Annotations package. It establishes an extension for services of Sig-

natures and is, therefore, dependent on the Repository metamodel

module. It originated from the initial horizontal split and the subse-

quent paradigm extraction from its ∆ counterpart.

Domain The ∆ layer of the mPCM provides abstractions for the domain

of software components. Therefore, the ∆ layer extends the view type

275

9. Case Studies of the Reference Structure Approach

implementing metamodel modules of Repository, Composition, Environ-

ment, SEFF, and Usage by respective ∆ modules.

Software Repository This metamodel module extends its counterpart in π
by domain-specific content: exceptions and interfaces that provide

operations. It also defines an atomic component that has an abstract

class as a generic extension point to specify the effects of services.

Although the behavior describing SEFF metamodel module uses this

extension point, it is not behavior-specific and can, therefore, be

used for other kinds service effect specifications. Therefore, this

metamodel module is free from content of the behavior features.

On its own, the Software Repository can be used to define software

components their interfaces and operations. It is, however, mostly

used together with composition and SEFF. Software Repository is

transitively dependent on Variables, as it enables component-wide

parameters for their operations. Software Repository originated

from the initial horizontal split. It implements a standalone feature

and therefore needs to be separated from metamodel modules it is

not dependent on.

Abstract Component Types This is a small metamodel module, which de-

fines two abstract component types. They can be used as blueprints

in the component architecture of a system, as components with

full service effect specifications are not yet available. As soon as

they are available, they can replace the abstract components. This

metamodel module distinguishes implemented components from

unimplemented components. Thus, it is ∆ content and depends on

the Software Repository instead of only depending on the Reposi-

tory metamodel module. It is transitively dependent on Repository.

This metamodel module resulted from an extension extraction from

Software Repository. It is not essential for the modeling of Software

Repositories; therefore it is an extension.

Resources This metamodel module extends the Environment metamodel

module’s containers and links by hardware resource specifications.

These can either be used just for documentation or to simulate per-

formance, as these resources process the resource demands that can

be extended into SEFFs. In addition to its dependency to Environ-

ment, Resources also depends on Units, as for a ResourceTypes a Unit

276

9.5. Case Study Metamodels

can be assigned. An extension extraction separated the Resources

language feature from Environment. To achieve this, several classes

were split and a new root container created.

Software Composition The Software Composition metamodel module ex-

tends its counterpart from the π layer by domain-specific abstrac-

tions. It provides several concrete classes that inherit from the ab-

stract Composition concepts. These classes are System, Composite-

Component, SubSystem, and several Connectors. They are specific

to the domain of component-based Software. Therefore, this meta-

model module is necessary in this context. This metamodel module

can only be used together with Software Repository to describe how

ComposedStructures (e.g., Systems and CompositeComponents) are

internally structured. In addition to Composition, this metamodel

module is dependent on Software Repository and transitively on

Repository, as in Composition Components are instantiated into

AssemblyContexts. This metamodel module originated from the

initial horizontal split.

Allocation The Allocation metamodel module implements the Allocation

view type. It provides the concepts that are necessary to deploy

AssemblyContexts on Containers. Therefore it is dependent on

Software Composition and Environment. It is transitively dependent

on Composition. This metamodel module originated from the initial

horizontal split.

Software SEFF This metamodel module provides many concrete classes

that represent domain-specific Activities that it adds to SEFF. It fur-

ther extends the Software Repository by behavior as it provides a

new subclass of the generic extension point that was mentioned

earlier. Therefore, this metamodel module depends on SEFF and Soft-

ware Repository. It depends transitively on Variables and Repository.

This metamodel module originated from the initial horizontal split.

Internal Behavior This metamodel module is an extension of Software

SEFF and enables to model SEFFs that are not called through the

interfaces of a component, but internally from other SEFFs. They

are analogous to private methods in object-oriented programming.

This metamodel module is dependent on Software SEFF, as it is

an extension. It is transitively dependent on SEFF and Software

277

9. Case Studies of the Reference Structure Approach

Repository. An extension extraction removed these concepts from

Software SEFF.

Software Usage This metamodel module extends its π counterpart by

domain-specific concepts. It adds the description of workloads and

user-specific data. It enables the modeling of activities that call

into the software system (so-called EntryLevelSystemCalls). It is

therefore dependent on the Software Repository, as it references

Operations; and Composition, as it references the provided role of a

ComposedStructure. It is transitively dependent on Variables. This

metamodel module originated from the initial horizontal split.

Infrastructure This metamodel module is an extension of the SEFF, Reposi-

tory, and Composition view types. It introduces a new type of compo-

nent, interfaces, roles, connectors, and calls. These new abstractions

are named infrastructure and are used to model middleware. Besides

the dependencies to the view type implementing metamodel modules

it extends (SEFF, Software SEFF, Repository, Software Repository,

and Composition), it is transitively dependent on Variables. Like the

following cross-cutting extensions (Events and Resource Interfaces),

an extension extraction created this metamodel module. As it is a

cross-cutting extension, it had to be extracted from the packages of

the respective view types.

Events This metamodel module is an extension of the SEFF, Repository,

Composition, and Allocation view types. It introduces abstractions

to model event-based communication. It provides event interfaces,

roles, emit actions, connectors and also event channels that can

be assembled and allocated. Besides the dependencies to the view

type implementing metamodel modules it extends (SEFF, Software

SEFF, Repository, Allocation, and Composition), it is transitively

dependent on Variables.

Resource Interfaces This metamodel module is an extension of the SEFF,

Repository, Composition, and Environment view types. It provides

modeling concepts to place resource demands on specific resources

from within SEFFs. Besides the dependencies to the view type im-

plementing metamodel modules it extends (SEFF, Software SEFF,

Repository, and Composition), it extends Resources and is transi-

tively dependent on Variables.

278

9.5. Case Study Metamodels

Quality The quality layer contains two metamodel modules that imple-

ment abstractions to model Performance and Reliability. Further, two ex-

tension metamodel modules provide advanced concepts for Performance

and Reliability respectively.

Performance The Performance metamodel module enables the modeling

of performance determining properties. This is achieved by adding

resource demands to the activities within SEFFs and processing rates

to Resources. This metamodel module is therefore dependent on

SEFF, Software SEFF and Resources. Aswell as transitively dependent

on Variables. An extension extraction created Performance, to rid

the quality-independent language features SEFF and Resources from

performance abstractions.

Performance Annotations The Performance Annotations metamodel mod-

ule allows to add unparametrized performance specifications to the

operations of required roles of systems and to provided roles of com-

ponents. Usually, the performance of an operation is determined

by the resource demands of its SEFF and the processing rate and

the contention on the required resources. However, it is not always

possible to specify such detailed descriptions of the behavior and

demand of an operation. Therefore, Performance Annotations can be

used as a coarse performance abstraction. An extension extraction

created Performance Annotations.

Reliability In short, the Reliability metamodel module provides several fail-

ure types and modeling constructs to apply failure rates to Activities

of SEFFs and to Resources. It also enables the modeling of recovery

behavior after a failure. An extension extraction created Reliability,

to rid the quality-independent language features SEFF, Repository

and Resources from reliability-specific abstractions.

Reliability Annotations This metamodel module allows to specify the reli-

ability of Operations that are required by a System. It is dependent

on Annotations and Reliability. An extension extraction created this

metamodel module.

279

9. Case Studies of the Reference Structure Approach

9.5.1.4. Uncorrected Bad Smells and Modeling Errors

As already mentioned, only bad smells and modeling errors were refactored

that violated the constraints the reference structure approach imposes. This

section briefly elaborates on the bad smells and modeling errors that were

not fixed as well as on general improvements that were not implemented.

By using the extension mechanisms (see Section 5.4), a large portion of

the QoS Annotations metamodel modules could be dropped. The two π
metamodel modules SEFF and Usage have a large overlap and should be

consolidated. The class ResourceTimeoutFailureType has a reference to

PassiveResource, which breaks modeling levels. Either ResourceTimeout-

FailureType is not a FailureType but a failure occurrence, or the reference is

nonsensical. HDDProcessingResourceSpecification has redundant relations

to ResourceContainer. The modules identifier and base could be merged,

as they are both concerned with identity. They were not merged, as it

was the goal not to modify the five metamodel modules the original PCM

metamodel module is dependent on. ExceptionType is not a first-class

concept, as it is not contained in a root container but in the Signature class.

This conflicts with ExceptionType being a type, as it should be possible

to use instances of types from multiple places.

The following bad smells that were manually detected. For the full results

of the automatic bad smell detection on the PCM, refer to Appendix A.

ResourceInterfaceProvidingRequiringEntity is a Dead Class, as it is not

referenced by any other class. Even if it were, it should not be abstract.

Either RequiredResourceDelegationConnector or ResourceRequiredDele-

gationConnector is a Dead Class. There is a possible dead reference from

Signature to FailureType. CharacterisedVariable may be a Dead Class. Be-

fore resolving possible dead properties and classes, they should be confirmed

by searching dependent code for references. If no references are found,

the class or property should be deleted, assuming there are no plans to

use it in the future. There are still many redundant references that did not

cause Dependency Cycles between metamodel modules and did not violate

the layering. These include redundant opposite relations and all container

references. ExceptionType might be a Dead Class.

280

9.5. Case Study Metamodels

9.5.1.5. Feature Model

Figure 9.4 shows the feature model of the mPCM. All relations are required

relations. Therefore, it omits the explicit required labels. Quality, View

Types, Behavior, Structure, and Cross-cutting Extensions are grouping

features and are therefore mandatory. The view types are subdivided into

structural and behavioral features. Only the direct child features of the

grouping features are classified by the grouping feature. For example, SEFF

is a view type; its child feature Internal Behavior is not a view type. It is

placed as a child of SEFF to demonstrate that it is an extension of SEFF

and nothing else (in contrast to the Cross-cutting Extensions). Resources

and Abstract Component Types are also extensions and no view types.

The Cross-cutting Extensions are advanced features and have no incoming

requires relations from the rest of ∆. This means they could even be put in

a sub-layer between ∆ and Ω to enforce this decoupling. The small arrow

that marks a required relation indicates that the relation was pulled up

from all child features. For example, the requires relation from Quality to

Resources was initially present in the Reliability and Performance feature.

Due to space constraints, the figure does not show the feature model to-

gether with the metamodel module structure. This would have visualized

the relations between the features and metamodel modules. Therefore,

this paragraph explains these relations. The grouping features do not have

implementing metamodel modules. Neither has the mPCM root feature.

The remaining feature nodes represent language features, are implemented

by exactly one metamodel module and are named like this feature. The

π metamodel modules have no counterparts in the feature model, as they

cannot be used without domain modules. Therefore they do not imple-

ment language features.

9.5.1.6. Further Decoupling Potential

By looking at the feature model (Figure 9.4), more decoupling potential

becomes apparent. This decoupling is not mandated by the guidelines of

the reference structure, as the respective language features are intended

to be used together. Such decouplings, however, increase the degree of

indirection and complexity.

281

9. Case Studies of the Reference Structure Approach

View
Types

Software
Repository

Usage
Environ-

ment

Resources
Compo-

sition

SEFF

Resource
Interfaces

Abstract Com-
ponent Types

Internal
Behavior

Events

Allocation

Infra-
structure

Reliability Performance

Performance
Annotations

Reliability
Annotations

mPCM

Quality

Cross-cutting
Extensions

StructureBehavior

↑

↑

↑

↑

Δ

Ω

Figure 9.4.:mPCM Feature Model

SEFF and Usage are dependent on Software Repository. By performing fea-

ture support extractions, the two features could be decoupled from Software

Repository. This would enable the creation of system-independent Usage

and SEFF Models without the need to install and load the Software Reposi-

tory metamodel module. For example, Usage could be decoupled quite easily

by moving the EntryLevelSystemCall class into a new metamodel module.

As EntryLevelSystemCall has no incoming dependencies within the ∆Usage

metamodel module, this would decouple ∆ Usage from Software Repository.

The cross-cutting extensions are dependent on several view types like the

name suggests. If one of the extension features is selected, all required

282

9.5. Case Study Metamodels

view type features are also selected. If it is desired to use only a subset

of the view types with a specific extension, feature support extractions

have to be performed to separate the parts of the respective extension that

depend on the individual view types.

Both quality features are dependent on the SEFF and Resources features.

By feature support extractions the parts that are dependent on these two

features could be split. For example, this enables to model the performance

of resources without being dependent on SEFF.

9.5.1.7. Predefined Metamodel Module Selections

The modularization of the PCM enables a selection of language features

according to the needs of the tool user. Based on the feature model in

Figure 9.4, this section presents selections that fulfill the needs of specific

user groups of the PCM.Of course, any selection is possible that fulfills to the

constraints of a feature selection. However, these predefined selections will

cover the needs ofmost tool users. For two selections, two variants are given:

a basic one and an advanced, which is indicated by the plus after its name.

The basic version is the minimal selection, which is suited, for example, for

novices. The advance version contains all optional features for the concern.

ADL ADL stands for architecture description language. In the context of

the PCM, this means the description of the component architecture

without any quality information. This selection is usually used in

early design stages orwhen reengineering the architecture of a legacy

software system It consists of all structural view types: Software

Repository, Composition, Allocation, Environment, and Resources.

Optionally, if the description of behavior is also needed, SEFF, Usage

or both can also be selected.

ADL+ This selection contains all selected features from the ADL selection

with the addition of advanced features for expert tool users. It in-

cludes Abstract Component Types and all cross-cutting extensions.

Optionally, if behavior is included in the ADL selection, Internal

Behavior is also selected.

Performance Prediction This selection includes all view types as well as the

Performance feature. As Quality is the parent feature of Performance,

283

9. Case Studies of the Reference Structure Approach

its required relations have to also be satisfied. Therefore, Resources

is also selected. SEFF is already selected, as it is a view type.

Performance Prediction+ This is the advanced version of the Performance

Prediction selection. It includes the same additional features as the

ADL+ selection with the addition of Performance Annotations.

Reliability This selection is used for reliability analysis. It includes all

view types, Resources, and the Reliability feature. Optionally, the

advanced ∆ features can be included as well as the Reliability Anno-

tations feature.

9.5.2. Smart Grid Topology

9.5.2.1. Original Metamodel

The Smart Grid Topology metamodel features four view types: the topol-

ogy, types of devices in the topology, input state and output state. Input

and output state are used by the analysis that is performed on the meta-

model. It predicts the impact of the current power supply onto the smart

devices in the topology.

Figure 9.5 shows the module structure of the Smart Grid Topology meta-

model. It consists of three metamodel modules. The Input and Output state

view types are implemented in their own metamodel modules. The Topo

metamodel module implements the device type and topology view types.

Modular metamodel

input
topo

output

Figure 9.5.: Smart Grid Topology Module Structure (Modular EMF Designer Dia-

gram)

284

9.5. Case Study Metamodels

9.5.2.2. Modularization

During the modularization, the input and output metamodel modules re-

mained unmodified. The main metamodel module was split in several

ways to separate the two view types and also to extract π metamodel

modules. The number of classes increased from 30 to 34. The number

of dependencies increased from 60 to 66.

9.5.2.3. Modular Metamodel

Figure 9.6 shows the module structure of the modular metamodel. It popu-

lates the layersπ , ∆, and Σ. The following presents the resulting metamodel

modules. For each metamodel module, this section explains its purpose, its

dependencies, and how it was created in the refactoring process.

Modular metamodel

 π
base

graph

 Δ topo
typerepo

SGT.DeviceTypes

SGT.Topology

 Σ
input

output

SGT.Input SGT.Output

SGT.ImpactAnalysis

Figure 9.6.:Modular Smart Grid Topology Module Structure and Feature Model

(Modular EMF Designer Diagram)

285

9. Case Studies of the Reference Structure Approach

Paradigm This layer contains the domain-independent metamodel mod-

ules Base and Graph.

Base This metamodel module defines abstract superclasses that are used by

all other metamodel modules. They provide name and ID attributes.

As almost all other metamodel modules depend on Base, incoming

dependencies will not be mentioned. This metamodel modules has

no dependencies. Base originated from the horizontal split of Topo.

It is not a language feature. It was factored out, as it is used by

several metamodel modules.

Graph This abstract metamodel module defines a simple network graph

structure. Nodes are connected by logical and physical connections

and can be connected to power supply. Graph originated from the

horizontal split of Topo.

Domain The ∆ layer provides abstractions that are specific to the domain

of smart grids. It contains the Topo and TypeRepo metamodel modules.

Topo This metamodel module provides several smart-grid-specific types

of devices and extends them into the graph structure by means of

subtyping. It, therefore, depends on Graph. This metamodel module

originated from the horizontal split of the original Topo metamodel

module.

TypeRepo TypeRepo extends SmartMeters, NetworkNodes, and Physical-

Connections by Types that are stored in a Repository that is inde-

pendent of concrete smart grid topologies. The base classes lie in

Topo and Graph. The horizontal split of the original Topo meta-

model module factored TypeRepo out. Originally the devices and

connections knew their types. Thus, a horizontal splits were per-

formed to remove the type-dependent properties from the devices

and connections. As this type information does not belong in the

type definitions either, a new root container that now holds the three

kinds of type applications was created.

286

9.5. Case Study Metamodels

Analysis The Σ layer contains the Input and Output metamodel modules.

They were not modified, as they were already sufficiently modular and

fit the Σ layer well.

9.5.2.4. Feature Model

The feature model for the modular Smart Grid Topology metamodel is

shown directly in the layered module diagram (Figure 9.6). The root node

represents the Topology language feature. As the Topology language feature

is always used, its feature was pulled up and merged with the formal root

feature. Thus, it is implemented by the Topo metamodel module and its

dependencies. As the TypeRepo is an extension metamodel module, it is

reflected by the optional child feature DeviceTypes. ImpactAnalysis is a

grouping feature node. Usually, grouping features are mandatory child

features. However, it is best located on the Σ layer. Therefore it is optional,

as its parent relation crosses a layer boundary. From a functional feature

selection perspective, it is equivalent if the feature is placed on ∆ or Σ. It is
also equivalent if it is mandatory or optional as long as its children are all

optional. The optional child features of ImpactAnalysis are implemented

by their respective metamodel module.

9.5.3. KAMP4aPS

9.5.3.1. Original Metamodel

The KAMP4aPS metamodel features three view types. The Automated Pro-

duction System (APS) view type is used to model the structure of such a sys-

tem. The Field of Activity view type adds information about artifacts that are

relevant for the evolution of the system. This includes information about the

staff, tests, documentation, specifications, and further documents and files.

The Modification Marks view type describes how the system is modified.

Based on the information of the three view types, the KAMP4aPS analysis

predicts the extent of maintenance of the automated production system.

Figure 9.7 shows themodule structure of the original KAMP4aPSmetamodel.

The APS, Field of Activity and APS Modification Marks metamodel modules

287

9. Case Studies of the Reference Structure Approach

implement their view type. The Modification Marks metamodel module is

a generalized part from the KAMP metamodel that is reused by the APS

Modification Marks metamodel module. Basic contains superclasses that

contribute name and ID attributes.

Modular metamodel

aps modificationmarks

modification marks
aps

field of activity annotations

basic

Figure 9.7.:KAMP4aPS Module Structure (Modular EMF Designer Diagram)

9.5.3.2. Modularization

During the modularization, the APS metamodel module was split into parts

of different specificity: Automation Systems (AS), automated production

systems, and a specialization for a specific kind of automated production

system named a pick and place unit (PPU). The same kind of modularization

was performed on the module that describes modifications. In the scope of

these two modularizations, several dependency inversions were performed

to direct the module dependencies to go from the most specific to the most

abstract metamodel modules.

The refactoring increased the number of metamodel modules from 5 to

9. The number of classes stayed constant at 185 as existing containers

could be well utilized. The number of dependencies dropped from 395 to

390, as some redundant opposite references were removed that violated

the reference structure.

288

9.5. Case Study Metamodels

9.5.3.3. Modular Metamodel

Figure 9.8 shows the module structure of the modular metamodel. It pop-

ulates the layers π , ∆, and Ω. This section presents metamodel modules

that resulted from the modularization or were modified. For each meta-

model module it explains its purpose, its dependencies, and it was created

in the refactoring process.

Modular metamodel

 π
basic modification marks

 Δ (AS)
as

K4aPS.AS

 Δ (APS)
aps K4aPS.APS

 Δ (PPU) ppu
K4aPS.PPU

 Ω
as modification marks

as field of activity annotations

aps modification marks

ppu modification marks

K4aPS.FoAA

K4aPS.AS_ModificationMarks

K4aPS.APS_ModificationMarks

K4aPS.PPU_ModificationMarks

<<requires>>

<<requires>>

Figure 9.8.:mKAMP4aPS Module Structure and Feature Model (Modular EMF De-

signer Diagram)

Paradigm The π layer contains the Basic and Modification Marks meta-

model modules. They were not changed, as they are already sufficiently

modular and domain-independent.

289

9. Case Studies of the Reference Structure Approach

Domain The ∆ layer contains the metamodel modules that originated

from the horizontal split of the APS metamodel module. The more specific

of these metamodel modules depend on the more abstract ones, as new

subclasses are introduced and existing classes are referenced.

The ∆ layer is subdivided into three sublayers to enforce the proper di-

rection of the dependencies. This subdivision is optional. It, however,

demonstrates nicely that the number of layers is not fixed to the ones that

the reference structure suggests.

AS The AS metamodel module contains quite general abstractions that can

be used to model a wide range of automation systems. Such general

modeling comes, however, with the loss of specificity.

APS The APS metamodel module introduces more specific abstractions

that are concerned with automated production systems.

PPU The PPU metamodel module provides abstractions for pick and place

units.

Quality The Ω layer contains the Field of Activity Annotations meta-

model module, which was not altered, as it is already sufficiently modular

and only references the most abstract concepts from the AS metamodel

module. All metamodel modules of the Ω layer, are located here as they

define abstractions that are needed to determine the maintainability of an

automation (or more specific) system.

Modification Marks The Ω layer further contains the three metamodel mod-

ules that resulted from the split of the APS Modification Marks meta-

model module. It was split in a way to mirror the structure of the ∆
layer: one metamodel module for the Modification Marks of the AP

metamodel module, one for APS, and one for PPU. These metamodel

modules reference their respective ∆ counterpart as well as the AS

Modification Marks module, as it provides superclasses.

9.5.3.4. Feature Model

The feature model for mKAMP4aPS is shown directly in the layered module

diagram (Figure 9.8). The root node represents the AS language feature.

290

9.5. Case Study Metamodels

As the AS language feature is always used, its feature was pulled up and

merged it with the formal root feature. Thus, it is implemented by the AS

metamodel module and its dependency Basic. The structure of the feature

model pretty much mirrors the module structure. PPU is an optional child

of APS. APS is an optional child of AS. AP, APS, and PPU have their re-

spective ModificationMarks as optional children. AS, APS and PPU, their

ModificationMarks and FoAA are implemented by their respective meta-

model modules. Additionally, AS ModificationMarks is implemented by the

abstract π ModificationMarks metamodel module. As the APS and PPU

ModificationMarks features are dependent on the AS ModificationMarks

feature, they have required relation pointing towards it.

9.5.4. BPMN2

9.5.4.1. Original Metamodel

Figure 9.9 shows the internal structure of the BPMN2 concepts that is con-

veyed by the standard [Obj14]. It suggests a layered and modular structure.

However, a look at the classes that implement these concepts shows that

they are often mutually or cyclically coupled by dependencies. Starting

from the basic concepts in the middle, this section gives a brief overview of

the concepts shown in the figure. For a more detailed explanation, please

consult the standard [Obj14]. Some of these concepts were introduced by

in BPMN2 (choreography, conversation, event sub-processes, ...); these are

good candidates to be modularized out, as they are optional concepts.

Infrastructure Infrastructure contains the most basic classes of BPMN2:

Definitions, the root container of all BPMN2 models, and Import,

which is used to reference external resources.

Foundation Foundation, which is not shown in the figure, provides classes

that are fundamental to an abstract syntax and are needed by the

three other core packages.

Commons Commons (Common Elements in the figure) provides classes

that are needed by the advanced concepts Process, Choreography,

and Collaboration.

291

9. Case Studies of the Reference Structure Approach

Figure 9.9.: BPMN2 Concept Structure [Obj14]

Services Services provides fundamental abstractions that are needed to

model services, interfaces, and operations.

Process A Process is a sequence of activities. It is related to flowcharts

and activity diagrams. It consists of tasks, interactions with events,

branching, loops, and many more. These elements can be partitioned

into pools and lanes. A pool represents the actor who performs the

process.

Collaboration Collaborations are used to model the interactions between

processes and their message exchanges.

Choreography A Choreography is used to express the interaction between

processes in a sequential way.

Data Data can be required by activities. It can represent information or

physical objects and is used in messages.

Activities Activities are the main elements of a process. The most impor-

tant activities are tasks, calls, and sub-processes. Tasks are atomic

activities that can be performed. Calls invoke a global process or

292

9.5. Case Study Metamodels

task. Sub-processes contain a flow of activities and can be used for

hierarchical decomposition.

Human Human is needed to express the involvement of persons in business

processes. E.g., there are several types of tasks that have to be

performed by a person.

Conversations A Conversation diagram is used to provide an overview of

which pools interact with each other, but not how they interact in

detail. The details of processes are usually not shown in the pools.

Figure 9.10 shows the module structure of the BPMN2 version 2.0.2. It

consists of 4 metamodel modules. Themetamodel source was retrieved from

the BPMN2 Modeler Eclipse plugin
22
version 1.4.2. The main metamodel

module is BPMN2, which contains classes for all BPMN2 concepts. The three

other metamodel modules are only used to express diagram information.

One is BPMN specific. The others are more general and could be reused by

other languages to express diagrams. There is a dependency cycle between

BPMN2 and BPMN Diagram Interchange. This dependency hardly couples

BPMN2 models with their diagram representation, which is undesirable.

Modular metamodel

BPMN2

BPMN Diagram Interchange

Diagram Interchange

Diagram Commons

Figure 9.10.: BPMN2 Module Structure (Modular EMF Designer Diagram)

22 https://www.eclipse.org/bpmn2-modeler/ (last visited 23.08.2019)

293

https://www.eclipse.org/bpmn2-modeler/

9. Case Studies of the Reference Structure Approach

9.5.4.2. Modularization

The only metamodel module that was refactored is the BPMN2 metamodel

module. As it implemented all concepts of BPMN2, there was great modu-

larization potential. As a starting point, the metamodel module was modu-

larized into the groups of concepts that are proposed by the specification

(as presented earlier).

Figure 9.11 reconstructs the result of the initial horizontal split. The diagram

does not represent an exact state of the metamodel module structure in the

refactoring of the BPMN2, as in the modularization process other refactor-

ings (e.g., dependency inversion) were performed in between the steps of

the big horizontal split. The purpose of this figure is to illustrate the level

of entanglement between the parts that the layering in Figure 9.9 suggests.

The final metamodel modules span two layers: π and ∆. The main meta-

model module was modularized into 25 metamodel modules according to

its language features, which resulted in 28 metamodel modules in total.

16 of these metamodel modules are on the π layer; 9 are on the ∆ layer.

The number of classes grew only slightly from 157 to 163, as it was pos-

sible to often inherit from the abstract class RootElement. RootElement

is contained in the root container Definitions and therefore provides a

convenient generic extension point. The number of dependencies slightly

reduced from 529 to 527 (mainly because of redundant relations that vi-

olated the reference structure).

The dependency from the original BPMN2 metamodel module to the BPMN

Diagram Interchange metamodel module was not refactored. Removing or

inverting the dependency would have decoupled the BPMN2 metamodel

module entirely from the diagram-related metamodel modules. In the eval-

uation, this would have improved the results for the modular metamodel

significantly. However, it was important to show the benefits of this ap-

proach regarding the more subtle and difficult modularization of metamodel

modules. Although the dependency in question violates the constraints

of the reference structure, these benefits should not be overshadowed by

the results of such an easy refactoring.

The metamodel that was obtained contained one peculiarity that had to

be resolved. It contained the class DocumentRoot, which is not covered in

294

9.5. Case Study Metamodels

Modular metamodel

activities

choreographies

collaborations

commons

conversations

data

foundation

human

infrastructure

processes

services

BPMN Diagram Interchange

Diagram CommonsDiagram Interchange

Figure 9.11.: BPMN2 Module Structure after Horizontal Split According to the Struc-

ture in the Specification (Reconstructed, Modular EMF Designer Diagram)

295

9. Case Studies of the Reference Structure Approach

the standard. DocumentRoot holds a containment reference to every other

class in the metamodel. This is strange, as these classes already form a

proper containment hierarchy. This is a grave design flaw, as it completely

breaks the modularity of the metamodel. It had to be removed in both

metamodels (the original and the modularized version) to get comparable

results. Table 9.2 does not include the DocumentRoot and its properties.

9.5.4.3. Modular Metamodel

Figure 9.12 shows the module structure of mBPMN2. For the sake of simplic-

ity, the figure does not show transitive dependencies (e.g., the dependency

between BPMN Diagram Interchange and Diagram Commons).

The following presents the resulting metamodel modules. For each meta-

model module its purpose, its dependencies, further modularization poten-

tial where applicable, and how it was created in the refactoring process is

explained. The names of the new metamodel modules relate strongly to

concepts of the BPMN2 specification [Obj14]. Thus, here, their internals

will only be referred to where necessary.

Paradigm Many BPMN2 concepts are not limited to the use of modeling

business processes (e.g., many concepts are shared with or could extend

flowcharts); thus, many metamodel modules are located at the paradigm

layer. It was seldom the case that a general concept contained domain

information and a paradigm extraction had to be performed. Thus, many

of the paradigm metamodel modules contain concrete classes. This is,

however, justifiable for a refactored legacy metamodel.

Core This metamodel module implements the most basic concepts: Defi-

nitions, which is the root container of all BPMN2 models; RootEle-

ment, the superclass for all first-class concepts; Documentation; and

BaseElement, which provides an ID and a reference to documen-

tation. Core has only one outgoing dependency, a containment to

BPMN Diagram Interchange. Almost all other metamodel modules

depend on Core. The core metamodel module was not explicitly

factored out of another metamodel module. It was the remainder of

the modularization.

296

9.5. Case Study Metamodels

Modular metamodel

 π core

groupexternals

correlations

messaging

flows

gateways

expressions

resources

activities

events

subprocesses

looping

data

services

artifacts

 Δ processeshuman resources advanced events

collaborationschoreographiesadvanced event expressionsprocess resources

auditing and monitoring human interaction

conversations

 Diag Diagram Interchange

Diagram Commons

BPMN Diagram Interchange

Figure 9.12.:mBPMN2 Module Structure (Modular EMF Designer Diagram)

297

9. Case Studies of the Reference Structure Approach

Artifacts This metamodel module provides all BPMN2 Artifacts except

Groups (i.e., Association and TextAnnotation). This metamodel mod-

ule is domain-independent and is, therefore, paradigm content. Arti-

facts is only dependent on Core. Five metamodel modules reference

the Artifact metamodel module. Here may be further refactoring

potential in reversing these references to decouple the dependent

metamodel modules from Artifacts. This would make Artifacts an

extension metamodel module. Artifacts was factored out of Core due

to a horizontal split to separate language features. To make Core in-

dependent of Artifacts, Relationship now inherits from RootElement

and the explicit containment from Definitions was removed.

Groups This metamodel module defines Groups and the Category concept.

A Group is an Artifact that groups values of a Category (i.e., Flow-

Elements). It, therefore, has dependencies to Flows and Artifacts and

a transitive dependency to Core. It has no incoming dependencies

and, thus, is a pure extension. Groups was factored out due to a fea-

ture support extraction from Artifacts (dependencies to Flow were

factored out). To decouple Flows from Groups, the reference from

FlowElement to CategoryValue was removed. The opposing refer-

ence, which was derived and transient, was made a proper persistent

reference.

Externals Externals provides capabilities to link external data and extend

arbitrary data into BPMN2 models. These are usually used by Tools

(mostly diagram editors) to store their tool-specific data, which the

BPMN2 metamodel does not cover. Core is the only dependency of

the Externals metamodel module. With no incoming dependencies,

this metamodel module is a pure optional extension. Externals is the

result of an extension extraction from Core. The incoming references

from the BaseElement and Definitions classes of Core were reversed

and a new container for the now containerless classes was introduced.

A redundant derived reference from ItemDefinition, which is now

located in the Data metamodel module, was removed to decouple

the class from Externals.

Flows Flows is a basic metamodel module that defines flow sequences

and abstract classes for their elements. The only dependency of

Flows is to Core. This metamodel module was extracted with a

298

9.5. Case Study Metamodels

horizontal split to extract the respective concern. To decouple Flows

from the much more specific concern of Processes and to resolve the

dependencies layer violation, the redundant derived reference from

FlowNode to Lane was removed.

Data This metamodel module defines data, abstractions for data in- and

outputs, and many more data related abstractions. The notion of

data that the metamodel module defines is general enough to be

considered a part of π . As three classes can be part of a flow, it

has inheritances on FlowElement and is dependent on the Flows

metamodel module. It further has a transitive dependency on Core.

A horizontal split was performed to separate this metamodel module.

Messaging Messaging defines abstractions for messages and their flows

in a domain-independent way. It depends on the Data metamodel

module, as a Message can hold data. It has a transitive dependency

on Core. It is possible that there is more modularization potential in

this metamodel module. The dependency to data could be inverted,

to make data an extension of messaging. This would make data a

pure extension without incoming dependencies. However, due to

missing domain knowledge, it could not be decided which depen-

dency direction is better. Messaging was separated in the scope of

horizontal splitting.

Gateways This metamodel module introduces gateways, which can be used

to fork flows. The gateways do not contain domain information and

are therefore located in the paradigm layer. It is only dependent

on Flows. An abstract superclass inherits from FlowElement and

has several subclasses that define concrete gateways. Gateways was

factored out with an extension extraction. However, it could be

that flows are always used together with gateways. In this case,

the modularization is unnecessary, and the two metamodel modules

should be merged.

Correlations In the BPMN2 specification [Obj14], it is written that “Cor-

relation is used to associate a particular Message to an ongoing

Conversation between two particular Process instances.”. However,

correlations are also used by FormalExpressions, which are paradigm

concepts. This and the abstract nature of the concept contributed

to the decision to assign the Correlations metamodel module to the

299

9. Case Studies of the Reference Structure Approach

paradigm. The metamodel module only depends on the Message

class. It further has transitive dependencies to Data and Core. If

Correlations is only rarely used by Processes and FormalExpression,

there is more modularization potential here. To perform a feature

support split would decouple both metamodel modules from Corre-

lations. Correlations was factored out from Messaging in the scope

of an extension extraction.

Services Although there is no explicit service class in BPMN2, the content

of this metamodel module follows the BPMN2 specification that

proposes a Services package. It defines Interfaces, which contain

Operations, and service endpoints that can be externally extended.

These abstractions are general enough to fit the paradigm layer. This

metamodel module depends on Messaging and transitively on Data,

as an Operation may have Messages and Data as input and output.

It has a further transitive dependency to Core. Services was created

due to horizontal decomposition.

Events The paradigm metamodel module for events defines the basis on

which the domain metamodel module builds upon. It defines the

abstract superclass and concrete classes like Start- and StopEvents.

It depends on messaging, as Events can be the source and target of

MessageFlows. Thus, the Events superclass inherits from Interac-

tionNode. Transitive dependencies exist to Core, Data, and Flows.

The Events metamodel module was created due to a paradigm ex-

traction, which separated it from its domain counterpart.

Activities This metamodel module defines the activities within a flow. It

is strongly coupled to the Services module, as Activities contains

several classes that reference Operations and CallableElements as

the represent or use services. Activities depends transitively on

Data, Flows, and Messaging. Here is, again, potential modularization

potential. If service-oriented activities are not always used, they can

be factored out. The Activities metamodel module was extracted

with a horizontal split. To resolve a dependency cycle and a layer

violation, a redundant derived reference was removed from Activity

to BoundaryEvent.

Resources A Process may be performed by a Resource. This metamodel

module contains the domain-independent parts of the Resource

300

9.5. Case Study Metamodels

concept. The metamodel module depends on Activities, as a Re-

sourceRole, which connects a Resource and a Process, references

further activities that may be performed by a Resource. Resources

also depends transitively on Data and Core. Resources was made

an extension, as it is not essential to define Processes and Activities.

It was separated from Commons and incoming dependencies from

Activities was inverted.

Subprocesses Subprocesses are activities that contain an inner Process.

This is achieved by inheriting from FlowElementsContainer of the

Flow metamodel module. Subprocesses also has transitive depen-

dencies to Activities, Artifacts, and Messaging. A horizontal split

factored it out from Activities.

Looping The Looping metamodel module enables loops in flows. This

module depends on activities, as the Activities superclass can be

extended by LoopCharacteristics. It is also dependent on Events,

as certain loops can throw multiple events. Looping has transitive

dependencies to Data and Core. Looping was extracted to make

it an extension of Activities, as it is a rather specific feature. As

loops are specific activities, Activities were decoupled from Looping

using dependency inversion. The containment from the Activity

superclass to the LoopCharacteristics superclass was removed. As

LoopCharacteristics was no longer contained anywhere, a new con-

tainer class was created. The container class was made a subclass

of RootElement (i.e., using variant b of the referencing extension

mechanism) to prevent model fragmentation. LoopCharacteristics

could have also been made a subclass of RootElement, which would

have reduced complexity, as no new container class would have

been needed. As this has the potential to severely clutter the set of

RootElements in a Definition, it was decided against it.

Expressions This metamodel module implements informal and formal Ex-

pressions. FormalExpressions may be executed by a simulator or

interpreted by an analyzer. Many concepts like Gateways, Sub-

processes, Loops, Correlations, and Resources use Expressions to

express conditions. Thus, this metamodel module depends on Gate-

ways, Subprocesses, Loops, Correlations, and Resources. It is further

transitively dependent on Data and Flows. As Expressions depends

301

9. Case Studies of the Reference Structure Approach

on so many advanced features, there is more modularization po-

tential. A drawback of the current state of Expressions is by using

or reusing it, all its dependencies are required, even if they are not

needed by the user or reuser. It could be beneficial, to perform sev-

eral feature support refactorings, to decouple the general concept of

expressions from all the extended metamodel modules. The meta-

model module was first created, when during the big vertical split

of the Commons. Expressions is a cross-cutting feature, and many

metamodel modules depended on it. However, as it is not essential

for defining BPMN2 models, a dependency inversion was conducted

to make it a cross-cutting extension. The Expressions superclass was

also made a RootElement.

Domain The ∆ layer provides modeling abstractions for the domain of

business processes. It contains the view type implementing metamodel

modules Processes, Collaborations, Choreographies, and Conversations. It

further extends π metamodel modules by business process specific content

like events, auditing, monitoring, and human interactions.

Process Resources This metamodel module contains the domain-specific

part of the original Resource concept. Its only purpose is to extend

the Processes metamodel module. As the Processes module is ∆
content, this metamodel module also belongs in ∆. Thus, it depends
on the Process metamodel module and on the Resources metamodel

module of π . A dependency inversion was performed to decouple

Process from Process Resources. The resulting dependency was

extracted into Process Resources. A class split refactoring separated

this dependency from the ResourceRole class in order to achieve a

paradigm extraction.

Human Resources Human Resources contributes human-specific resource

concepts. Its only dependency is to the Resources metamodel module

of π , as it uses Performer as a superclass. A horizontal split created

this metamodel module from the Process Resources metamodel mod-

ule in order to separate the human-specific content.

Advanced Event Expressions This metamodel module implements a fea-

ture support of the π Expressions metamodel module for Advanced

302

9.5. Case Study Metamodels

Events of ∆. It extends two events with Expression support. As

the supported feature is part of ∆, this metamodel module is also in

∆. It is, only dependent on Expressions of π and Advanced Events.

At first, the dependencies from Events to Expressions were revised

to make it an extension and to decouple Events from Expressions.

To decouple Expressions from Events, the Advanced Event Expres-

sions metamodel module was extracted as feature support. This was

done by splitting the Expressions superclass, which was carrying

the reversed dependencies.

Advanced Events This metamodel module holds Events that are too BPMN

specific for the π layer. It is, of course, dependent on the Events of π .

It also depends on Activities, as Boundary- and CompensateEvents

reference the Activity superclass. It has transitive dependencies to

Core, Data, Services, and Messaging. It was factored out of Events

with a paradigm extraction.

Processes This metamodel module defines the Process concept, which con-

tains LaneSets, which in turn contain Lanes. Processes is part of ∆, as
it contains properties that are domain-specific. However, if a concept

that is similar to Processes should be defined for another domain,

all the classes of π that Processes uses can be reused. It depends

on Artifacts and Correlations, as a Process contains the Artifacts

superclass and CorrelationSubscriptions. As mentioned earlier, here

is further modularization potential. This metamodel module further

depends on Services, as a Process is a CallableElement. This meta-

model module is transitively dependent on Core, Data, and Flows.

Processes was separated due to horizontal decomposition. A refer-

ence from Process to Collaboration was reversed, as Collaboration

builds on the Process concept but not vice versa.

FlowElementsContainer from Flows is a superclass of Process. The

FlowElementsContainer had a containment to the LaneSet class of

Processes. To decouple Flows from Processes, the containment was

pushed down to the Process class. This was possible, as the contain-

ment is not used in the other subclasses of FlowElementsContainer

(Choreography and SubChoreography) as stated in the standard.

Having this containment at this point in the inheritance hierarchy

was not only a layer violation but is also a dead inherited property.

303

9. Case Studies of the Reference Structure Approach

Collaborations Collaborations are used to express the interaction between

Processes. Thus, the Collaboration class references the Process class.

Collaborations has transitive dependencies to Core, Services, Cor-

relations, Messaging, and Artifacts. This metamodel module was

created in the initial horizontal decomposition. Further, a redundant

reference from Collaboration to Choreography was removed. This

reference was used to keep track of Choreographies that exist be-

tween the Processes of a Collaboration. As these Choreographies

can also be found by iterating over all Choreographies and checking

which Processes are involved, this utility reference can be replaced by

a helper method. This decoupled Collaboration from Choreographies

and broke the dependency cycle.

Choreographies Choreographies are used to define the interaction between

Processes in a sequential way. Choreographies depends on Collabo-

rations, as a Choreography is a subclass of Collaboration. Further,

the Participants of a Collaboration are referenced by the activities

of a Choreography. Choreographies has transitive dependencies

to Flows, Correlations, Messaging, and Artifacts. This metamodel

module was created in the initial horizontal decomposition.

Conversations Conversations are used to give an overview of which partic-

ipants (Pools) interact with each other. It is dependent on Collabora-

tions because of several dependencies. A Conversation expresses the

interplay between several participants; a participant is a class from

Collaborations. A Conversation may refer to Collaborations between

participants. Conversations is transitively dependent on Core, Cor-

relations, and Messaging. Conversations was created in the scope of

the big horizontal split. Instances of Conversation classifiers were

initially contained in Collaborations. To decouple Collaborations

from Conversations, dependency inversion was used and Conversa-

tionContainer was created as a container for all conversation specific

first-class concepts.

Auditing and Monitoring BPMN2 does not define abstractions for the mod-

eling of auditing and monitoring information. This metamodel mod-

ule encapsulates one specific extension point for each of these two

concepts. It is part of ∆, as Auditing and Monitoring are business

304

9.5. Case Study Metamodels

process concepts. It depends on Flows, as a common superclass for

Auditing and Monitoring classes was created there.

The Auditing and Monitoring metamodel module was extracted into

an extension, as Auditing and Monitoring are rarely used optional

features. As already mentioned, the new superclass FlowAnnotation

was introduced in Flows, as a generic extension point for further

extension of Flow elements. The containments to the Auditing and

Monitoring classes from Process and FlowElement was replaced by

containments to FlowAnnotation. This decoupled Processes and

Flows from Auditing and Monitoring.

It would have also been possible to simply make Auditing and Mon-

itoring inherit from RootClass. This would have reduced the com-

plexity. However, this would also clutter the RootClass containment

in Definitions.

Technically, these two classes are even redundant. Their purpose can

also be fulfilled by using the extension mechanism that is defined

in Externals. As the existence of Auditing and Monitoring does not

violate the reference structure, they were factored out instead of

removing. Removing them would have skewed the internal validity

of the evaluation.

Human Interaction Human Interaction provides several types of Tasks that

are performed by humans. It is therefore dependent on Activities, as

the Task and GlobalTask classes are used as superclasses. Human In-

teraction is transitively dependent on Core. This metamodel module

was created in the scope of the initial horizontal split. It was also

horizontally split from the Human Resources metamodel module to

separate resource and task-specific concepts.

9.5.4.4. Feature Model

Figure 9.13 shows the feature model of mBPMN2. All relations are re-

quired relations. Therefore, it omits the explicit required labels. As the

mBPMN2 occupies only the π and ∆ layer, the feature diagram consists

only of the ∆ layer. The non-abstract metamodel modules of the π layer

resulted in ∆ features.

305

9. Case Studies of the Reference Structure Approach

Expres-
sions

Processes

Collabo-
ration

Groups

Externals

Extensions

mBPMN2

Conver-
sations

View
Types

Choreogra
-phies

Auditing and
Monitoring

Gateways EventsActivities

Looping

Subpro-
cess

Resources

Human

Human
Expressions
for Events

Δ

Figure 9.13.:mBPMN2 Feature Model

Extensions and View Types are grouping features and are therefore manda-

tory. Processes, Choreographies, Conversations, and Collaborations are

view types. Resources and Human are no view types but extensions.

Due to space constraints, the figure does not show the feature model to-

gether with the metamodel module structure. This would have visualized

the relations between the features and metamodel modules. Therefore,

this paragraph explains these relations. The two grouping features Ex-

tensions and View Types do not have implementing metamodel modules.

Neither has the root feature. The remaining feature nodes represent lan-

guage features, are implemented by exactly one metamodel module and

are named like this feature.

306

9.6. Module Repositories and Common Paradigm Modules

Compared with the module diagram (see Figure 9.12), the number of fea-

tures is less than the number of metamodel modules. This is the case, as

many metamodel modules are abstract and many other metamodel modules

are strongly coupled to them. The metamodel modules Core, Services, Cor-

relations, Artifacts, Flows, Data, and Messaging are abstract and therefore

do not implement language features. As mentioned in Section 9.5.4.3, by

using dependency inversion, some of these metamodel modules could be

turned into extensions (e.g., artifacts and messaging). This would result

in further feature nodes in the feature model.

9.6. Module Repositories and
Common ParadigmModules

By creating modular layered metamodels, their metamodel modules are

made reusable. A promising way to foster reuse in metamodeling is to

build public repositories for metamodel modules of the π and ∆ layers.

Feature model, on the other hand, cannot be reused, as they are specific

to a variable language.

Besides the reuse of metamodel modules, there is also another important

side effect. Sufficient reuse leads to the sharing of metamodel modules be-

tween related metamodels. The common core of two or more metamodels is

then interoperable. This means that the parts of the models that instantiate

the common metamodel modules can be viewed, edited, and used with the

tools of the related languages. Metamodel-specific content is then extended

on such a common core. Consolidating such a common core from related

metamodels has the potential to provide a common platform for language

engineering in the respective domain. E.g., by enriching the modular PCM

with metamodel modules from related languages, a common platform for

component-based software architecture modeling could be created as a

base for future extensions of new qualities and analyses.

The π metamodel modules that resulted from the case studies are, however,

not necessarily the best choice for a public repository. The reason is that

they were altered as little as possible to fulfill the constraints of the reference

structure. Each refactoring that is not necessary to achieve this goal could

307

9. Case Studies of the Reference Structure Approach

have damaged the internal validity of the validation (see Section 10.5).

Therefore, there is still optimization potential in these metamodel modules

to make them more general and reusable.

In general, the metamodel modules that suit reuse the best, do not stem

from the refactoring of legacy metamodels but from designing modular

metamodels from scratch. The problem with refactoring legacy metamodels

is that by knowing the current state of the metamodel metamodel archi-

tects and module developers might unknowingly impose structures of the

concepts of the domain onto the abstract π concepts. For practical reasons,

they might even consciously be inclined to preserve a great resemblance

of the internals of the modular metamodel to the original version. This

reduces the migration effort for existing tools and models. It, however,

also results in paradigm metamodel modules that are not optimal for reuse.

Metamodel modules from design from scratch are more promising for reuse,

as they are not biased from preexisting solutions.

The remainder of this section presents π metamodel modules which have

high potential to be reused in other domains. They are not presented as they

are in the modularized case study metamodels. Instead, they are generalized

to make them more reusable, cleaner, and better to understand. In one

instance, it is also demonstrated how to combine multiple patterns in such

a way that they still remain sufficiently decoupled and, therefore, reusable.

The PCM features the concepts of components, interfaces, and roles. As

components and interfaces are first-class concepts, they are defined inde-

pendently from each other. By using roles, a component can provide and

require interfaces. What further constitutes a component or an interface

is left to be defined on the ∆ layer.

The pattern of interfaces and roles is general enough to be reused in other

domains. Figure 9.14 shows a simplified generalization of the pattern. The

component concept was generalized to Entity. Via Roles, an Entity can

provide and require interfaces. In this simplified version, a connector links

the roles of two Entities. Entity, Interface, and Connectors have to be

contained by a domain module in order to use the pattern. If they are made

abstract, they have to be subclassed in the ∆ layer, and their subclasses

have to be contained.

308

9.6. Module Repositories and Common Paradigm Modules

Entity Role Interface
1*

Provided
Role

Required
Role

Connector

11

Figure 9.14.: Pattern: Interfaces, Roles, and Connectors

In the PCM, connectors are on another instance level as components. As-

semblies are the instances of components, and are connected by assembly

connectors. Figure 9.15 shows a generalized version of the pattern. It

consists of two metamodel modules. The metamodel module for the type

layer contains Entity, the Roles, and Interface. The Instances module con-

tains instances for Entity and Roles. In this version, a Connector links

two RoleInstances. The Instances module is coupled to the Types mod-

ule, but not vice versa. Thus, the Types module can be used without the

Instances module if desired. As a side note, with deep modeling, the ref-

erences that go from the Instances module into the Types module can be

replaced by instantiation relations.

Composition is a simple pattern that can be applied to many concepts.

In the PCM, composite data types are implemented using the composite

pattern [Gam+95]. Figure 9.16 illustrates the pattern. An Entity is either

an Atom or composed of other Entities. Cho and Gray present further

variants of the pattern [CG11].

309

9. Case Studies of the Reference Structure Approach

1

Entity Role Interface
1*

Provided
Role

Required
Role

Instance Connector

1

Provided
RoleInstance

Required
RoleInstance

11

11

RoleInstance
*

Types

Instances

Figure 9.15.: Pattern: Interfaces, Roles, and Connectors on two Instance Levels

In the PCM, another variant of composition is also used. It enables a

component to contain instances of components. Figure 9.17 shows the

variant of the pattern.

The composition pattern variant with Instances can also be combined with

the Interfaces and Roles pattern variant with Instances. This demonstrates

310

9.6. Module Repositories and Common Paradigm Modules

Entity
*

Atom Composite

Figure 9.16.: Pattern: Composite [Gam+95]

Entity

*

Atom Composite

Instance

Figure 9.17.: Pattern: Composition of Instances

how to build reusable modules that adhere to the dependency inversion

principle and separation of concerns. Figure 9.18 shows a possible imple-

mentation. The classes that are needed to model instantiation are placed

in their own metamodel module. Composition was separated from In-

stantiation. Composition, however, contains an abstract superclass for all

possible Entities. The Atom class is only one possible concrete exemplar.

The extension metamodel module InstantiationWithInterfaces provides

Roles to Entities. It also provides RoleInstances to Instances. The extension

metamodel module CompositionWithInterfaces provides Connectors to

Composites. By doing so, a Composite contains Instances and the Con-

nectors that link the Roles of those instances.

311

9. Case Studies of the Reference Structure Approach

*

1

Entity

Role Interface
1*

Provided
Role

Required
Role

Instance

Connector

1

Provided
RoleInstance

Required
RoleInstance

11

11

RoleInstance
*

RolesAndInterfaces

Connection

Atom

RoleInstance
Ownership

Connector
Ownership

*

Composite

CompositionInstantiation

Instantiation
With
Connections

Composition
With
Connections

Role
Ownership

Figure 9.18.: Pattern: Instantiation, Roles and Interfaces, and Composition

312

9.6. Module Repositories and Common Paradigm Modules

To illustrate the module coupling, Figure 9.19 shows the metamodel module

view of Figure 9.18. In Figure 9.19, it can be seen how modular the patterns

are implemented, which enables fine-grained reuse. For example, in the ∆
layer, one could just reuse the Instantiation module. It is also possible to

just reuse Instantiation and Composition. InstantiationWithConnections

and its dependencies (Instantiation and RolesAndInterfaces), which are

automatically reused when InstantiationWithConnections is reused, are a

further option. The last option is to reuse all metamodel modules, which

adds Connectors to Composites. Even more patterns could be implemented

in such a way that they are coupled as little as possible. Because of reasons

of limited space of figures, this demonstration stops here. The remaining

patterns are presented individually.

RolesAnd
Interfaces

Connection

Instantiation
With

Connections

Instantiation Composition

Composition
With

Connections

Figure 9.19.:Module Coupling View of the Previous Pattern Composition

In the PCM, a (hardware) Environment consists of containers that are linked

and on which other entities can be allocated. This pattern is general enough

to be used in diverse contexts. On the∆ layer, the containers and links can be

enriched by further concepts. In the context of the PCM, these are resources

that are associated with the containers and links, as well as the allocation

313

9. Case Studies of the Reference Structure Approach

of software components to hardware containers. Figure 9.20 illustrates

the generalized version of the pattern. There, Entities are independent of

the Environment. A coupling module contains the Allocation class that

assigns Entities to Containers.

2

*

Environment

Container

Link
*

Allocation
1

Entity

1

Figure 9.20.: Pattern: Allocation

Language features like flowcharts (or activity diagrams) are sufficiently

general and already used in several contexts. The PCM uses separate

definitions for its SEFFs and UsageModels. A quite similar construct is

also used by BPMN2. A common abstract definition in a π metamodel

module would be beneficial. The flowchart pattern can be extended by

activities that require a resource. Figure 9.21 shows a simple implementation.

The FlowChart module should not contain too specific actions to still be

general enough. It is better to supply advanced actions through extension

metamodel modules. As an example of an advanced action, the figure shows

the ResourceRequiringAction that was extended externally. It represents

an action that needs a resource.

In the case studies, further patterns were encountered that are general

enough to be reused.

314

9.6. Module Repositories and Common Paradigm Modules

1

1..*

Action

Start Stop Gate

Resource
Requiring
Action

∙ ∙ ∙

Resource

FlowChart

Figure 9.21.: Pattern: Flow Chart and Resource Requiring Actions

Stochastic Expressions is a π metamodel module that can be used if calcu-

lations with random variables are needed. This metamodel module was

already available before the refactoring of the PCM. It is too complex to

be illustrated here.

A common theme when dealing with values is to assign them units. This

is also done in the PCM. It is also a good candidate as a reusable π meta-

model module.

Directed graphs are a further pattern that is used in many contexts. The

Smart Grid Topology metamodel is based on such a graph. In the ∆ layer,

edges can be extended by properties and nodes can be subtyped and by

that also enriched by further properties.

The description of modification is essential to the domain of change im-

pact analysis. For every domain, for which a change impact analysis is

315

9. Case Studies of the Reference Structure Approach

implemented, this fundamental pattern is needed. By making it sufficiently

general, the pattern can be reused. [Bus+18; HBK18]

Further patterns can be drawn from work that focuses on building DSMLs

from patterns [Pes+15; CG11; ES06] and object orientation (e.g., from

[Gam+95]). This is, however, not the focus of this thesis, and, thus, re-

mains future work.

316

10. Validation of the Reference
Structure Approach

This chapter
1
describes the validation of the reference structure. It analyzes

the case study metamodels from Chapter 9 that were refactored according

to the reference structure approach of Chapter 6. Instead of language fea-

tures, this chapter refers mainly to metamodel modules and their contained

packages, as it evaluates the case studies on a technical level.

This chapter is structured as follows. Section 10.1 presents the goal ques-

tion metric plans (see Section 2.5.1). Section 10.2 explains the evaluation

design. Section 10.3 presents and Section 10.4 interprets and discusses

the results. These four subsections are subdivided to deal with the two

evaluation goals: (1) evolvability and (2) need-specific dependence and

use. Section 10.5 discusses threats to validity. Section 10.6 concludes the

validation. Appendix C explains the validation tool and the exact setup of

the validation environment. At the end of this thesis, Section 12.3 concludes

the reference structure contribution.

10.1. Validation Goals and Metrics

This section derives evaluation goals from the research questions that

Section 6.2 specified and breaks them down to specific metrics. The first

subsection deals with evolvability understandability. The second subsection

deals with need-specific dependence and selective use.

1
This chapter is partly based on [HSR19] (©2019 IEEE).

317

10. Validation of the Reference Structure Approach

10.1.1. Evolvability

In the following, the GQM plan for the evolvability evaluation of the ref-

erence structure approach is explained. This section further explains why

the evaluation is scenario-based and how the parts of a metamodel that

are relevant to an evolution scenario are extracted. Lastly, it explains

how such a part of a metamodel has to be transformed before the met-

rics can be evaluated.

10.1.1.1. Goal Question Metric Plan

This evaluation addresses the following research questions.

RQ IIIa (Improve Evolvability) Can concepts from related disciplines be

transferred to metamodeling to improve the evolvability of meta-

models?

RQ IIIb (Understandability) Can concepts from related disciplines be trans-

ferred to metamodeling to improve the understandability of meta-

models?

The evolvability of metamodels can be broken down into modifiability, and

analyzability (see Section 2.2.6). Modifiability is heavily influenced by the

coupling between metamodel modules and the cohesion within metamodel

modules. Analyzability and understandability can be approximated by the

complexity of a metamodel (see Section 2.2.6). Thus, the goal question

metric plan for evolvability is specified as follows.

Goal 1 Evaluate the improvement of the evolvability of metamodels by

comparing the original versions to the versions that was modularized

according to the reference structure.

Validation Question 1.1 Is the refactored metamodel version more

modifiable than the original version?

Metric 1.1.1 Coupling

Metric 1.1.2 Cohesion

318

10.1. Validation Goals and Metrics

Validation Question 1.2 Is the refactored metamodel version more

analyzable than the original version?

Metric 1.2.1 Complexity

Goal 2 Evaluate the improvement of the understandability of metamodels

by comparing the original versions to the versions that was modu-

larized according to the reference structure.

Validation Question 2.1 Is the refactored metamodel version more

understandable than the original version?

Metric 2.1.1 Complexity

Instead of using counting-basedmetrics to answer the questions of the GQM

plan, this validation use metrics by Allen et al. [AGG07; All02]. They are

based onmeasures of information size in bit. In contrast to counting metrics,

the metrics of Allen take into consideration that reoccurring patterns in the

relations between entities require less effort from a developer to be under-

stood. How the metrics of Allen are calculated, is described in Section 2.5.3.

Evolvability is, however, not an absolute property of a software artifact. It

is always to be considered in the context of a specific evolution scenario

[Ros+15]. Because of this, Allen’s metrics are not applied on metamodels

as a whole. Instead, a scenario-based evaluation [Koz11b] is performed

by applying the metrics on the part of the metamodel that is relevant to

the evolution scenario.

10.1.1.2. Extraction of Relevant Subgraphs

This section explains, how the parts of a metamodel are determined that are

relevant to an evolution scenario as well as the rationale behind it. In the

following, the part of a metamodel that is relevant to an evolution scenario

is addressed as the relevant subgraph (or subgraph in short) of the scenario.

319

10. Validation of the Reference Structure Approach

Rationale When a developer performs an evolution scenario, s/he needs to

sufficiently understand the metamodel or at least the part of the metamodel

that is relevant to the current scenario. The initial goal of the developer is

to find the metamodel elements that are relevant to the evolution scenario.

If a developer’s knowledge is not yet sufficient, s/he tries to understand

the metamodel by inspecting parts that seem relevant. If there is no docu-

mentation, the usual starting point is the package structure (see my paper

[Str+16a]), which has to be navigated when searching for specific features of

a language. While s/he navigates the package structure, the developer tries

to understand the purpose of the packages. This is sometimes accomplished

by merely considering the name of the package. If the subject is complex

and the name is not sufficient, the developer has to inspect classifiers within

the package. To understand the purpose of a classifier, its name and proper-

ties are considered. For a class, this may involve following dependencies to

other classes, especially to superclasses. For complex subject matters, these

other classes may also have to be at least partially understood. Incoming

dependencies from outside of a package and especially from another meta-

model module or metamodel file are not relevant, as the developer is not

aware of them. To evaluate an evolution scenario, a relevant subgraph of a

metamodel is extracted that approximates the part of a metamodel that is

relevant for this kind of inspection of classes and their packages.

Evolution Scenario Types This scenario-based evaluation inspects differ-

ent types of evolution scenarios. Figure 10.1 shows the hierarchy of these

evolution scenario types. The leaves that are written in bold are concrete

scenario types. The other nodes (evolution scenario and modification) are

umbrella terms. An evolution scenario is either an extension scenario or a

modification scenario. Extension scenarios represent the implementation of

an extension module (i.e., new metamodel modules that depend on exist-

ing ones). Extension scenarios do not alter the extended metamodel. In a

modification scenario, one or multiple classes are modified. A modification

changes, creates, or deletes a class property (e.g., attribute, reference, in-

heritance) of an existing class. The concrete type of modification scenario

depends on how the evolution scenario was identified. Historical modifica-
tion scenarios are those that were performed on the metamodel in the past.

Potential modification scenarios are modifications that might be performed

in the future. A generic modification scenario merely states that there is a

320

10.1. Validation Goals and Metrics

modification of classifiers of a package. These are used to achieve a full

coverage of the package structure with evolution scenarios. Section 10.2.1

explains the approach of how these evolution scenarios were collected.

Evolution
Scenario

Extension Modification

Historic Potential Generic

Figure 10.1.:Hierarchy of Evolution Scenario Types

An evolution scenario is defined by its affected classes. For modification type

scenarios, these are the classes that are affected by the modification. For

extension type scenarios, these are the classes on which the classes of the

extension depend. The affected classes have to be known and understood

by the metamodel developer to be able to perform an evolution scenario.

Extension scenarios can be analyzed almost in the same way as modifi-

cation scenarios. For modification and hypothetical evolution scenarios,

the affected classes are simply declared. For an extension scenario, the

extension metamodels have first to be analyzed to determine the classes

that are extended. The extended classes are then the affected classes.

Extraction Procedure For each evolution scenario, a subgraph was ex-

tracted as an approximation of the part of the metamodel to be inspected

by the developer when s/he is conducting the evolution scenario. The

subgraphs are formed starting with the affected classes of an evolution

scenario. From these affected classes, a subgraph is built by following con-

tainment references, the superclass hierarchy, dependencies due to generics,

mandatory references (i.e., references having a lower multiplicity bound

of at least one) and including all classes from the same package.

321

10. Validation of the Reference Structure Approach

10.1.1.3. Metamodel Subgraph to Hypergraph Transformation

To be able to apply themetrics to a subgraph, metamodel concepts have to be

mapped tomodular hypergraph concepts. First, all packages of the subgraph

are mapped to hypergraph modules. Second, each class of the subgraph is

mapped to a node, and the node is placed in the correct hypergraph module.

Third, edges are constructed between the nodes. Non-generic inheritances,

references, containments, type bounds and extends relations of classes of

the subgraph are transformed into regular edges (hyperedges with only two

ends). References and inheritances to generic classes are transformed into

a hyperedge with potentially more than two ends due to type arguments.

The ends of such a hyperedge are the class which owns the dependency,

the class the dependency points at and all classes which appear in type

argument if there are any. During the transformation of dependencies to

hyperedges, classes might depend on other classes that lie outside of the

relevant subgraph. This is only the case if the dependency is a reference

with a lower multiplicity of 0. For such classes, nodes are also created and

placed into the right hypergraph module. Their outgoing dependencies,

however, will not be transformed. Such border classes must be included, as

they resemble a dependency to a part outside of the subgraph, which may

be considered by the developer. However, the developer does not need to

know all the dependencies of the class, as they are outside of her/his scope.

It can be seen as an interface to another metamodel module. Attribute

types do not play a role in the understanding of the metamodel on the

overview level and are thus ignored.

To transform packages to hypergraph modules has some implications. Cou-

pling is measured between packages and cohesion is measured within

packages. The alternative to transforming packages to hypergraph modules

is to transform metamodel modules to hypergraph modules. This evalua-

tion transform packages, as several case study metamodels are monolithic.

They consist of one large metamodel module and few smaller ones. These

monolithic metamodels would perform very poorly when transforming

metamodel modules. Thus, I decided to calculate the metrics based on

packages to allow a more nuanced evaluation.

322

10.1. Validation Goals and Metrics

10.1.2. Need-specific Dependence and Use

This evaluation addresses the following research questions:

RQ IIIc (Need-specific Dependence) Can concepts from related disciplines

be transferred to metamodeling to improve the potential to depend

only on the desired parts of a metamodel?

RQ IIId (Selective Use) Can concepts from related disciplines be transferred

to metamodeling to improve the ability of tool users to selectively

use parts of a metamodel according to their needs?

To evaluate both research questions, it has to be shown that a metamodel

that has been refactored according to the reference structure enables more

targeted dependence and use. Both research questions can be evaluated

together if the acts of depending on a metamodel module (as a developer)

and using a metamodel module (as a tool user) are sufficiently similar. In

the following, this is elaborated.

Reuse is done when a metamodel developer creates a new dependency from

a metamodel module to the reused metamodel module. Use is only possible

via a tool that has dependencies to the metamodel modules it uses. These

requires dependencies are defined by tool developers and used by tool users

if they need the language features in question.

Tool users create models and may use tools to process them. Thus, the

content of models reflects the needs of the user for features that s/he wants

to express and analyze. On the other hand, a model that is meant for

processing has to instantiate the concepts that are necessary for the tool

that should be applied. To use a metamodel extension, a model is necessary

that contains instances of the concepts the extension is based on.

In summary, a good mix of models reflects the needs of usage (of tool users)

as well as the needs of dependence (of metamodel extensions and tools).

Therefore, it was decided to evaluate dependence and use together through

models, as they are readily available and easy to analyze in high numbers.

Thus, the GQM plan is specified as follows:

Goal 3 Evaluate the improvement of need-specific dependence and use by

comparing the original metamodel to the metamodel that is modu-

larized according to the reference structure.

323

10. Validation of the Reference Structure Approach

Validation Question 3.1 Is the ration of the of the refactored meta-

model version that is used by its instances larger than the ratio

of the original version? This means, does the ratio improve by

applying the reference structure approach?

Metric 3.1.1 Metamodel Utilization

To be able to quantify the improvement of need-specific dependence and use,

it is necessary to calculate the ratio of howmuch of a metamodel is used by a

model. For this, themmUtil metric, which is short for metamodel utilization,

is defined (see Equation 10.1). The utilization metric divides the number

of classes that a modelM instantiates (NumInstantiatedClasses(M)) by the

total number of classes (NumClasses(...)) of the metamodel modules that are

necessary to load the model (InstantiatedModules(M)). As the smallest unit

of dependence and use is a metamodel module, InstantiatedModules(M) is

used. If a model instantiates at least one class from a metamodel module,

the whole metamodel module has to be deployed. The more classes (from

a constant set of metamodel modules) are used, the higher the utilization

gets. A high mmUtil is good, as it means that there are less unnecessary

metamodel elements in the used metamodel modules. The best value of

mmUtil is 1. This is the case whenM instantiates all classes at least once.

A class also counts as instantiated if it has a subclass (it does not have to

be a direct subclass) that is instantiated. Each instantiated class is counted

only once, regardless of how often it is instantiated.

mmUtil(M) =
NumInstantiatedClasses(M)

NumClasses(InstantiatedModules(M))
(10.1)

To compute mmUtil, the types (i.e., classes) of the objects in the mod-

els are determined. Then all superclasses are collected. This results in

NumInstantiatedClasses. Then it is determined which metamodel modules

have to be deployed to be able to load the model (InstantiatedModules(M)).

These are the metamodel modules, where the instantiated classes and their

superclasses are located and also all metamodel modules these modules

depend on. The total count of classes in these metamodel modules is

NumClasses(...).

324

10.2. Evaluation Design

10.2. Evaluation Design

This section explains the rationale behind the evaluation design for the

evolvability evaluation (Section 10.2.1) and for the dependence and use

evaluation (Section 10.2.2). The selection of metamodels has already been

explained in Section 9.1.

10.2.1. Evolvability

This section first explains how the evolution scenarios were collected. Next,

it explains why it is justifiable to evaluate a metamodel with historical

evolution scenarios that took place before the evaluated metamodel version.

It then presents the evolution scenarios for the case studies.

10.2.1.1. Evaluation Metamodel Version

During the design of the evaluation, two alternative approaches had to

be considered for case studies that involved historical evolution scenarios.

Which version of the metamodel should be modularized: (1) take an old

version of the metamodel from before all historical evolution scenarios. (2)

take the most up-to-date version of the metamodel. These approaches have

some pros and cons. Approach (1) is open to a point of criticism. If it

is known how the PCM evolves, it can be shaped in a way that supports

the evolution scenarios optimally. A disadvantage of this approach is that

the analysis of up-to-date extensions is not possible if they are built on

classifiers that were added after the modularized version. Approach (2)

has the practical advantage that a modularization might be beneficial to

the future development of the metamodel. In conclusion, this validation

follows approach (2).

10.2.1.2. Evolution Scenario Collection Approach

First, historical modification scenarios and extension scenarios were gath-

ered, as these are the most realistic evolution scenarios. To collect extension

scenarios, the Ecore files of the metamodel extensions had to be accessible

325

10. Validation of the Reference Structure Approach

in order to determine the affected classes of an extension. The affected

classes of an extension scenario are the classes in the extended metamodel

that have incoming dependencies from the extension metamodel. The

extension also had to be compatible with the current version of the meta-

model. To collect historical modification scenarios, available changelogs

were searched for modifications. From a modification in a changelog, the

modified classes resulted in the affected classes of a historical modification

scenario. Next, potential scenarios were collected. This was done by review-

ing the metamodel and identifying classes that might be subject of a change

or an extension in the future. Indicators were design flaws, semantic errors,

and extension potential. If the search for historical and potential scenarios

did not yield enough results, so-called generic scenarios were created. A

generic scenario has only one affected class. For every package for which

no evolution scenario existed that contained only affected classes from the

package, a generic evolution scenario was specified by randomly choosing

one class from the package as affected class. This was done to increases

the variety of the extracted subgraphs. The variety increases if a generic

scenario produces a subgraph that includes packages or a combination of

packages that was not yet covered by any other scenario’s subgraph. As

every single package is covered by an evolution scenario, this produces

subgraphs that include packages that are unreachable from most other

subgraphs. Possible examples of a generic scenario are modifications of

names and multiplicities, additions of attributes and dependencies to new

classes, and deletions of class properties.

10.2.1.3. Reevaluating Historical Scenarios

As already mentioned, the up-to-date versions of the case study metamodels

were modularized. For some case studies, historical modification scenarios

were collected. This raises several questions: (1) how can a modification

scenario be evaluated on a metamodel on which it was already applied? (2)

can a historical modification be evaluated on a metamodel that evolved fur-

ther in the meantime? (3) what impact does the evolution of the metamodel

that took place between the initial application of the evolution scenario

and the evaluated metamodel version have? The following three subsec-

tions answer these questions. Questions (1) and (2) are concerned with the

technical feasibility of reevaluation and are therefore not concerned with

326

10.2. Evaluation Design

the accuracy of the result. The questions consider the metamodel change

types (see Section 2.2.5.1). These change types are classified into existence

modifications, property changes, as well dependency changes.

Evaluability of Historical Scenarios Considering the procedure in Sec-

tion 10.1.1, the evaluation of a historical modification scenario is straight-

forward except for the deletion of classes. For example, if a property change

is evaluated on a later version of the metamodel, the class is simply de-

clared as an affected class. For the subgraph extraction procedure, it is

irrelevant which property of the element was changed and how it changed.

Thus, it is unproblematic if the historical modification scenario was al-

ready applied in the past.

As already mentioned, the deletion of classes is an exception. Historical

modification scenarios that contain class deletions can, however, still be

evaluated. The deleted class has to be removed from the set of affected

classes of the scenario, as it is no longer present in the metamodel and would

cause errors in the subgraph extraction. The dependencies of the deleted

class have to be then added manually to the affected classes according to

the rules of the subgraph extraction (see Section 10.1.1.2). This enables the

inclusion of all dependencies of the deleted class in the subgraph extraction.

Assuming no further evolution took place, it produces the same result as

an evaluation of the historical modification scenario on the version of the

metamodel on which it was performed.

Evaluability Despite Subsequent Evolution Analogous to the evaluation

of deletions in historical scenarios, the type of modifications of subsequent

evolution needs the same procedure as aforementioned for scenarios that

contain deleted classes. If a class that is contained in the affected classes of a

historical modification scenario is deleted after the scenario was performed,

all dependencies of the class at the time of its deletion are added to the

affected classes, and the deleted class is removed for the affected class

set. By doing so, the subgraph of the historical scenario can be recreated,

assuming no further evolution took place.

327

10. Validation of the Reference Structure Approach

Impact of Subsequent Evolution on the Evaluation This section is con-

cerned with historical modification scenarios and the impact that later

evolution of the metamodel has onto the results of the reevaluation. De-

pending on the types of the modifications that were performed between the

initial execution of the scenario and its evaluation, the subgraph that is ex-

tracted for the scenario may be altered. The subgraph extraction processes

class dependencies. Therefore, a change can only influence the outcome of

the evolvability evaluation if it influences class dependencies. The follow-

ing explains that existence modification and property changes do not alter

dependencies; dependency changes alter dependencies and may change the

outcome of the subgraph extraction, and how to deal with this issue.

Existence modifications do not alter dependencies between classifiers. They

affect the following metamodel elements: packages, classes, data types,

enumerations, enumeration literals, attributes, references, operations, and

constraints. All element types except classes are irrelevant, as the subgraph

extraction does not process them (see Section 10.1.1.2). Even existence mod-

ifications cannot influence dependencies between classes, as by definition

they have to be unset before a deletion can be performed. The deletion of a

class that has no incoming and outgoing dependencies does not change the

subgraphs of evolution scenarios. If an evolution scenario has the deleted

class as an affected class, the procedure from the preceding paragraph has

to be used. In summary, as existence modifications do not alter depen-

dencies, they do not influence the subgraph extraction and therefore do

also not influence the evaluation results.

By definition, property changes do not change dependencies between classi-

fiers (see Section 2.2.5.1). For example, changing the name of an attribute or

another type of metamodel element is irrelevant for the subgraph extraction.

Dependency changes may or may not influence the subgraph extraction.

For example, a class in the subgraph contains a reference with a lower

bound of 0. The subgraph extraction will not include the type of the refer-

ence in the subgraph. If the reference is changed to a containment or the

lower bound is set to 1, however, the target type will be included in the

subgraph as soon as the class that owns the containment is included. On

the other hand, the declaration or the release of a reference as the opposite

of another reference does not affect subgraph extractions. Dependency

328

10.2. Evaluation Design

changes that do not influence the subgraph extraction are unproblematic

for the evolvability evaluation.

Considering that some dependency changes influence the results of the

evolvability evaluation of a historical modification scenario, raises the

question of how valid the results of the evaluation of such scenarios are.

This is discussed in the section about threats to validity (see Section 10.5.3).

10.2.1.4. Evolution Scenarios

This section presents all evolution scenarios for the four case study meta-

models. The scenarios are marked with their scenario type: extension
+
,

historical modification
†
, potential modification

×
, and generic modification

◦
.

The affected classes of generic modification scenarios are not explicitly

mentioned, as they consist only of one class after which the scenario is

named. In some scenarios, it may seem that affected classes are missing. In

these cases, one affected class is strongly coupled (e.g., by containment or

inheritance) to the seemingly missing affected classes, so that these classes

will be included in the relevant subgraph anyway.

Palladio Component Model For the PCM, two historical extension scenar-

ios, ten historical modification scenarios, one potential evolution scenario

and 30 generic evolution scenarios were collected. In total, the evolution

scenarios for the PCM amount to a count of 43.

The extension scenarios for the PCM are optional extensions, i.e., they do

not implement any core features of Palladio and are therefore not delivered

with a standard installation of the PCM. The extension scenarios for the

PCM are IntBIIS [Hei+17] and KAMP [Ros+15] (not to be confused with

KAMP4aPS, which is a standalone DSML). They were chosen because

they are up-to-date and heterogeneous concerning the parts of the PCM

they depend on. Figure 10.2 shows the module structure of the PCM and

these two extensions.

The first extension is the Integrated Business IT Impact Simulation (IntBIIS)

[Hei+17] for modeling and analyzing the performance of business processes

and information systems. It consists of one metamodel module, 16 classes

and has 21 inter-module dependencies that target 11 classes of the PCM. It

329

10. Validation of the Reference Structure Approach

Modular metamodel

PCM

pcm

units

stoex
probfunctionidentifier

Extensions

bppcm
component internal dependencies field of activity annotations modification marks

KAMPIntBIIS

Figure 10.2.:Metamodel modules of PCM extensions (Modular EMF Designer Dia-

gram)

builds mostly on the user behavior defining parts of the PCM. Transferred to

the mPCM, it depends on the metamodel modules Identifier, Base, Variables,

Repository, Usage, and Software Usage. Its metamodel modules are located

at the ∆, and Ω layers.

The second extension is theKarlsruhe Architecture Maintainability Prediction
(KAMP) [Ros+15] for modeling modifications and analyzing their propaga-

tion on the software architecture level. It consists of three metamodel mod-

ules, 62 classes and has 42 inter-module dependencies that target 12 classes

of the PCM. It builds on the structural parts of the PCM that belong toπ and

∆. Transferred to the mPCM it depends on the metamodel modules Iden-

tifier, Base, Repository, Software Repository, Composition, and Software

Composition. Its metamodel modules are located at the ∆, Ω, and Σ layers.

Eleven historical modification scenarios were collected for the PCM from

its changelog
2
. The collection started with the most recent changes and

selected the ones that actually changed the structure of the metamodel and

2 https://sdqweb.ipd.kit.edu/wiki/PCM_Changelog (last visited 23.08.2019)

330

https://sdqweb.ipd.kit.edu/wiki/PCM_Changelog

10.2. Evaluation Design

not just the genmodel, version numbers or namespaces. It skipped repeated

modifications of the same classes. In addition, there was one proposed

modification in the changelog that is considered as a potential evolution

scenario. Table 10.2 shows extension, historical and potential evolution

scenarios and their respective affected classes. The following presents the

evolution scenarios of the PCM.

Scenario Name Affected Classes
IntBIIS

+
ScenarioBehaviour, CollectionDataType,

NamedElement, Identifier, Entity,

AbstractUserAction, PCMRandomVariable,

DataType, OpenWorkload,

CompositeDataType

KAMP
+

AssemblyConnector, DataType,

RequiredRole, ProvidedRole, Entity,

RepositoryComponent, Role,

OperationProvidedRole, Interface,

Signature, Connector, Identifier

AttributeTypes
†

NamedElement, Repository,

ExternalCallAction, EntryLevelSystemCall

CallAction
†

CallAction, AbstractAction, Entity

ComLinkResType
†

CommunicationLinkResourceType,

ResourceType, ProcessingResourceType

LocalRoleConstraint
†

InfrastructureCall, ResourceCall,

ExternalCallAction

MultiAllocation
×

AssemblyContext, AllocationContext

ProcResSpec
†

ProcessingResourceSpecification, Identifier

ResourceDemandingBehaviour
†

ResourceDemandingBehaviour, Identifier

ResSign
†

ResourceSignature

SchedulingPolicy
†

SchedulingPolicy

SyncPoint
†

SynchronisationPoint, Entity

UniqueCallTargets
†

InfrastructureCall, ResourceCall,

ParametricResourceDemand

Table 10.2.:Non-generic Evolution Scenarios of the PCM

The AttributeTypes† scenario changed types of attributes of NamedElement,

Repository, ExternalCallAction, EntryLevelSystemCall from UML types to

Ecore types. In the CallAction† modification scenario, the superclass of

331

10. Validation of the Reference Structure Approach

CallAction was changed from AbstractAction to Entity, as CallAction is not

intended to be used as a stand-alone Action. The CallAction class is located

in the behavior metamodel module of ∆. In the ComLinkResType† sce-

nario, a supertype of CommunicationLinkResourceType (of the Resources

metamodel module) was changed to ResourceType (Resources) instead of

ProcessingResourceType (Resources). The LocalRoleConstraint† scenario
added OCL constraints, which check if the referenced roles belong to the

component in which the calls/action is contained, to the classes Infras-

tructureCall, ResourceCall, and ExternalCallAction. The MultiAllocation×

scenario aims to enable 1:n mapping of AssemblyContext to Allocation-

Context by changing the multiplicity of the respective reference. In the

ProcResSpec† scenario, an inheritance relation was introduced from Pro-

cessingResourceSpecification (Resources) to the Identifier class (Identifier).

The ResourceDemandingBehaviour† scenario made the ResourceDemand-

ingBehaviour inherit from Identifier. The ResSign† scenario changed the

multiplicity of the parameter Reference of the ResourceSignature class.

The SchedulingPolicy† scenario removed the SchedulingPolicy Enum and

created SchedulingPolicy class. In the SyncPoint† scenario, a reference was
created between the CallAction and the SynchronizationPoint classes. The

UniqueCallTargets† scenario introduced OCL constraints, which check if the
requested target is unique within the same action, to the InfrastructureCall,

ResourceCall, and ParametricResourceDemand classes.

The scenarios AllocationContext, DelegationConnector, EmitEventAction,

EventChannelSinkConnector, ExternalFailureOccurrenceDescription, Fail-

ureOccurrenceDescription, ForkedBehaviour, InfrastructureCall, Infrastruc-

tureSignature, InternalCallAction, LinkingResource, NetworkInducedFail-

ureType, ParametricResourceDemand, PrimitiveDataType, ProvidesCom-

ponentType, RecoveryActionBehaviour, ReleaseAction, Repository, Repos-

itoryComponent, RequiredDelegationConnector, RequiredInfrastructure-

DelegationConnector, ResourceCall, ResourceEnvironment, ResourceIn-

terfaceProvidingEntity, ResourceRequiredDelegationConnector, Resource-

RequiredRole, ScenarioBehaviour, SinkRole, SystemServiceExecutionTime

and Workload are generic and therefore not shown in the table.

Smart Grid Topology The Smart Grid Topology metamodel has been quite

stable since its initial release. As there is no explicit changelog, only few

332

10.2. Evaluation Design

historical modification scenarios could be collected. In the recent past,

two changes were conducted. These result in two historical modification

scenarios. Following the remaining scenario collection procedure, which

was presented earlier, results in three potential and six generic evolution

scenarios. In total, the evolution scenarios for the Smart Grid Topology

metamodel amount to a count of 11. Table 10.4 shows the historical and

potential scenarios and their respective affected classes.

Scenario Name Affected Classes
AbstractType

×
Repository, NamedIdentifier, SmartMeterType,

NetworkNodeType, ConnectionType

AddCoordinates
†

NetworkEntity

NewCommEntity
×

CommunicatingEntity

NewPhysicalConn
×

PhysicalConnection, SmartGridTopology

SmartMeter
†

SmartMeter

Table 10.4.:Non-generic Evolution Scenarios of Smart Grid Topology

By the AbstractType× scenario, an abstract superclass is set in place for

all types in the TypeRepo. The AddCoordinates† scenario adds two at-

tributes that represent geo-coordinates to the NetworkEntity class. The

NewCommEntity× scenario introduces a new type of communicating device

by adding a subclass to CommunicatingEntity. In the NewPhysicalConn×

scenario, an alternative to PhysicalConnection is created. As Physical-

Connection does not have an abstract superclass that would be eligible

for inheritance, the root class SmartGridTopology has to also be modified.

The SmartMeter† scenario modifies the SmartMeter class by removing the

aggregation attribute.

The scenarios Cluster, InputEntityState, NetworkNodeType, OutputEntityS-

tate, and ScenarioResult are generic and therefore not shown in the table.

KAMP4aPS For the KAMP4aPS case study, 31 evolution scenarios were

collected (10 potential and 21 generic). Table 10.6 shows the potential

scenarios and their respective affected classes.

The scenario DocuApplication× consists of removing the redundant con-

tainer reference from all DocumentationFiles classes. In the next scenario,

333

10. Validation of the Reference Structure Approach

Scenario Name Affected Classes
DocuApplication

×
ComponentDocumentationFiles,

InterfaceDocumentationFiles,

StructureDocumentationFiles,

ModuleDocumentationFiles

DocumentationFiles
×

DocumentationFiles

FoAARepo
×

FieldOfActivityAnnotationRepository, Entity

MechanicalAssembly
×

MechanicalAssembly

Panel
×

Panel, Component, ComponentRepository

ParentEntity
×

Module, Interface, Entity

Plant
×

Plant

Ramp
×

Ramp, Component, MechanicalAssembly

Structure
×

Structure, Plant

TurningTable
×

TurningTable, Component, Module

Table 10.6.:Non-generic Evolution Scenarios of KAMP4aPS

DocumentationFiles×, the DocumentationFiles class is changed from an

interface to an abstract class. The FoAARepo× scenario makes FieldOfActiv-

ityAnnotationRepository an Entity. In the MechanicalAssembly× scenario

the class MechanicalAssembly is moved into the MechanicalComponents

package. The Panel× scenario change the reference from the Panel class

to Component to point to ComponentRepository. In the ParentEntity×

scenario the redundant or even dead reference to Entity is removed from

Module and Interface. The Plant× scenario adds structural features to Plan.

For example, the redundant plantName attribute could be removed, as it is

already provided by its superclass. The Ramp× scenario consists of moving

the Ramp to the Component package and changing the superclass from

MechanicalAssembly to Component, as the Ramp is not a mechanical ele-

ment. In the Structure× scenario, the container reference is removed from

the abstract Structure class. In the TurningTable× scenario Component is

added to the superclasses of the TurningTable class.

For reasons of space, the names of some generic scenarios had to be short-

ened. In these cases, the name of the affected class is shown within

the parentheses. The generic scenarios are: Arm, BusMaster, Compo-

nentRepository, ControlCabinet, ConveyorBelt, Entity, EtherCATSlave,

334

10.2. Evaluation Design

HWPropagation (ChangePropagationDueToHardwareChange), Interfac-

eRepository, ModifyMicroSwitch (ModifyMicroSwitchModule), Modify-

Module, ModifySignalinterface, ModuleRepository, MonostableCylinder,

PneumaticNetwork, PneumaticSupply, Potentiometer, ReturnSpring, Seed-

Mods (KAMP4aPSSeedModifications), SuspensionRack, and VacuumGrip-

perModule.

BPMN2 The version jump from BPMN to BPMN2 (see [Obj14]) was too

big to extract any fine-grained historical modification scenarios. In ad-

dition, the maturity and complexity of the metamodel made it hard to

identify any potential modification scenarios. Therefore, for the BPMN2

case study, 23 generic evolution scenarios were collected. These are Re-

sAssignExp (ResourceAssignmentExpression), ComplBehDef (ComplexBe-

haviorDefinition), CorrSubscription (CorrelationSubscription), GlobBRule-

Task (GlobalBusinessRuleTask), GlobChoreoTask (GlobalChoreography-

Task), ParticipantAssoc (ParticipantAssociation), AdHocSubProc (AdHoc-

SubProcess), ImplThrowEvent (ImplicitThrowEvent), InOutBinding (In-

putOutputBinding), ItemAwareElem (ItemAwareElement), Artifact, Au-

diting, BoundaryEvent, CategoryValue, FormalExpression, InteractionN-

ode, LaneSet, ParallelGateway, PotentialOwner, Relationship, Rendering,

RootElement, and SequenceFlow.

10.2.2. Need-specific Dependence and Use

To evaluate themmUtil for the PCM, Smart Grid Topology, and KAMP4aPS

case studies, all available models that were collected. These are 611 PCM

models, 28 Smart Grid Topology models, and 30 KAMP4aPS models.

The PCM models include the Media Store case study [SK16] and the Com-
mon Component Modeling Example (CoCoME) [Hei+15], as both are rep-

resentatives of realistic models. The remaining PCM models stem from

internal sources.

The Smart Grid Topology models were collected from the project repository
3
.

I was involved in creating these models for various purposes. Some were

3 https://svnserver.informatik.kit.edu/i43/svn/code/SmartGrid/smartgrid.model.

examples/ anonymous/anonymous (last visited 23.08.2019)

335

https://svnserver.informatik.kit.edu/i43/svn/code/SmartGrid/smartgrid.model.examples/
https://svnserver.informatik.kit.edu/i43/svn/code/SmartGrid/smartgrid.model.examples/

10. Validation of the Reference Structure Approach

created to test the metamodel, the editors and the simulations. Some were

created to visualize a topology, others model reference power grids.

The KAMP4aPS models were collected from the developer of the metamodel.

These models were mainly created for the evaluation of the approach.

The number of BPMN2 models is much higher because, in contrast to the

other case studies, there is a public online repository with BPMN2 models
4
.

For BPMN2, 103 models were collected from internal sources [PSH18; Pil18]

and 3739 from the repository. From all these models, 46 models were invalid,

could not be loaded and were therefore ignored by the analysis.

To remove potentially sensitive information from the models from inter-

nal sources, these models were preprocessed in the following way. The

file names were replaced by numbers. Model element names, labels, text

annotations and documentation properties were censored. This loss of in-

formation is irrelevant to the evaluation, as it is not required. It is relevant,

however, which classes are instantiated. This information is still present.

10.3. Evaluation Results

This section presents the results of the evolvability evaluation, followed

by the need-specific dependence and use evaluation. The raw data is ac-

cessible online
5
.

10.3.1. Evolvability

The results of the hypergraph metric analysis are shown in Figure 10.3

(PCM), Figure 10.4 (PCM), Figure 10.5 (Smart Grid Topology), Figure 10.6

(KAMP4aPS), and Figure 10.7 (BPMN2). The results for the PCM are split.

The first diagram shows coupling and complexity; the second diagram

shows cohesion. The remaining diagrams show the results for the metrics

that are labeled on the right side: the upper box contains complexity results,

4 https://github.com/camunda/bpmn-for-research/tree/

1416f6f2104ae597eafa3097946140ebc2136a53 (last visited 23.08.2019)

5 https://sdqweb.ipd.kit.edu/wiki/Metamodel_Reference_Architecture_Validation

(last visited 26.08.2019)

336

https://github.com/camunda/bpmn-for-research/tree/1416f6f2104ae597eafa3097946140ebc2136a53
https://github.com/camunda/bpmn-for-research/tree/1416f6f2104ae597eafa3097946140ebc2136a53
https://sdqweb.ipd.kit.edu/wiki/Metamodel_Reference_Architecture_Validation

10.3. Evaluation Results

the middle box shows the coupling (between packages), and the lower

box presents the cohesion (inside packages). The values of the metric are

denoted at the y-axis at the left side. At the x-axis, the names of the evolution

scenarios are listed. The scenarios are marked with their scenario type:

extension
+
, historical modification

†
, potential modification

×
, and generic

modification
◦
. For each scenario, both versions of the metamodel were

evaluated: the original one (black) and the version that was modularized

according to the reference structure (gray).

The cohesion results for the PCM (Figure 10.4) are clipped at 0.065 to im-

prove the visibility of the differences between the results of lower value. The

result values for the mPCM that are not visible are 1 for FailOccDescription,

0.315 for LinkingResource, and 0.203 for PrimitiveDataType.

If scenarios produce the same subgraph, they result in identical metric

results. In these cases, only the name of the alphabetically first scenario

is shown. How many scenarios produced the same result, is denoted by

the bracketed number beside the name. Such a group of identical results

is referred to as a result group. Table 10.8 lists the exact content of the

result groups. The left column shows the name of the alphabetically first

scenario, which is also the name of the group. The right side shows all other

scenarios that produced the same result. Only result groups are shown

that contain more than one scenario.

The unit for complexity and coupling is bit, as both metrics measure in-

formation size as known from information theory. Their value range is

unbounded. Low complexity and low coupling values are good. The unit

for cohesion is a ratio of bits: the ratio of the current cohesion compared

to the cohesion of the maximal cohesive graph. Thus its value range is

between zero and one. A high cohesion value is good.

10.3.2. Need-specific Dependence and Use

The results of the metamodel utilization metric are shown in Figure 10.8

(PCM), Figure 10.9 (Smart Grid Topology), Figure 10.10 (KAMP4aPS), and

Figure 10.11 (BPMN2). Each case study has its own boxplot. The x-axis

shows the name of the metamodel. The left one is always the original

version, and the right one is the modularized version. The y-axis shows

337

10. Validation of the Reference Structure Approach

ComplexityCoupling

AllocContext◦(2)
AttributeTypes†(1)

CallAction†(2)
ComLinkResType†(2)

DelegationConnector◦(1)
EmitEventAction◦(1)

EventChannelSinkConnector◦(1)
ExtFailOccDescription◦(1)

FailOccDescription◦(1)
ForkedBehaviour◦(3)
InfrastructureCall◦(1)

InfrastructureSignature◦(1)
IntBIIS+(1)

InternalCallAction◦(1)
KAMP+(2)

LinkingResource◦(1)
LocalRoleConst†(1)

NetworkInducedFailureType◦(1)
ParametricResourceDemand◦(1)

PrimitiveDataType◦(1)
ProcResSpec†(2)

ProvidesComponentType◦(1)
RecoveryActionBehaviour◦(1)

Repository◦(1)
RepositoryComponent◦(1)
ReqInfrDelegConnector◦(1)

ResourceCall◦(1)
ResourceRequiredRole◦(1)

ResReqDelegationConnector◦(1)
ResSign†(2)

ScenarioBehaviour◦(1)
SinkRole◦(1)

SystemServiceExecutionTime◦(1)
UniqueCallTargets†(1)

Workload◦(1)

0

500

1000

15000
100
200
300
400

Scenario

Value (bit, bit)
PCM

m
PCM

Figure 10.3.: Evolvability Metric Results: PCM (Complexity and Coupling)

338

10.3. Evaluation Results

0.00

0.02

0.04

0.06

AllocContext◦(2)
AttributeTypes†(1)

CallAction†(2)
ComLinkResType†(2)

DelegationConnector◦(1)
EmitEventAction◦(1)

EventChannelSinkConnector◦(1)
ExtFailOccDescription◦(1)

FailOccDescription◦(1)
ForkedBehaviour◦(3)
InfrastructureCall◦(1)

InfrastructureSignature◦(1)
IntBIIS+(1)

InternalCallAction◦(1)
KAMP+(2)

LinkingResource◦(1)
LocalRoleConst†(1)

NetworkInducedFailureType◦(1)
ParametricResourceDemand◦(1)

PrimitiveDataType◦(1)
ProcResSpec†(2)

ProvidesComponentType◦(1)
RecoveryActionBehaviour◦(1)

Repository◦(1)
RepositoryComponent◦(1)
ReqInfrDelegConnector◦(1)

ResourceCall◦(1)
ResourceRequiredRole◦(1)

ResReqDelegationConnector◦(1)
ResSign†(2)

ScenarioBehaviour◦(1)
SinkRole◦(1)

SystemServiceExecutionTime◦(1)
UniqueCallTargets†(1)

Workload◦(1)

Scenario

Value (bit:bit)

PCM
m
PCM

Figure 10.4.: Evolvability Metric Results: PCM (Cohesion)

339

10. Validation of the Reference Structure Approach

Com
plexity

Coupling
Cohesion

Ab
stra

ctT
ype

× (2)

Ad
dCo

ord
ina

tes
† (2)

Clu
ster

◦ (3)

Inp
utE

ntit
ySt

ate
◦ (1)

Nam
edI

den
tifie

r◦ (1
)

New
Phy

sica
lCo

nn
× (2)

0
50
100
150
200

0

20

40

60

0.0
0.1
0.2
0.3
0.4

Scenario

Va
lu
e
(b
it:
bi
t,
bi
t,
bi
t)

SmartGrid mSmartGrid

Figure 10.5.: Evolvability Metric Results: Smart Grid Topology

the scale for themmUtil metric. The unit formmUtil is a ratio of classes:
the ratio of instantiated classes compared to the total number of classes

from all metamodel modules that have to be loaded. Thus, its value range

is between zero and one. A high value is good. The lower and upper border

of the box represent the first and third quartiles. The bar in the middle

of the box shows the median. The whiskers extend from the borders of

the box to the last value within 1.5 times the interquartile range. The

individual results are represented as points. The results are scattered to

prevent overplotting. Thus, within results for one metamodel version, the

x-position has no meaning.

340

10.4. Interpretation and Discussion

Com
plexity

Coupling
Cohesion

Arm
◦ (5)

Bus
Ma

ster
◦ (7)

Com
pon

ent
Rep

osit
ory

◦ (5)

Con
tro
lCa

bin
et
◦ (1)

Do
cuA

ppl
icat

ion
× (3)

Eth
erC

AT
Sla
ve
◦ (1)

HW
Pro

pag
atio

n◦ (
3)

Inte
rfac

eRe
pos

itor
y◦ (

1)

Mo
dify

Mic
roS

wit
ch
◦ (1)

Mo
dify

Sig
nal

inte
rfac

e◦ (1
)

Pne
um

atic
Sup

ply
◦ (1)

Pot
ent

iom
ete

r◦ (1
)

Sus
pen

sion
Rac

k◦ (
1)

0
500
1000
1500

0
300
600
900

0.0
0.1
0.2
0.3
0.4

Scenario

Va
lu
e
(b
it:
bi
t,
bi
t,
bi
t)

KAMP4aPS mKAMP4aPS

Figure 10.6.: Evolvability Metric Results: KAMP4aPS

10.4. Interpretation and Discussion

This section interprets the results that the previous section presented. It

discusses the reasons for differences in the results between the original and

the modular versions of the metamodels and their implications.

10.4.1. Evolvability

This section first provides an interpretation for effects that influence all

three metrics. Next, it interprets the results for the individual metrics.

341

10. Validation of the Reference Structure Approach

Com
plexity

Coupling
Cohesion

Ad
Ho
cS
ub
Pr
oc

◦ (1
)

Ar
tif
ac
t◦ (
1)

Au
dit
ing

◦ (1
)

Bo
un
da
ry
Ev
en
t◦ (
1)

Ca
teg
or
yV
alu
e◦
(1)

Co
mp

lBe
hD
ef

◦ (1
)

Co
rrS
ub
scr
ipt
ion

◦ (1
)

Fo
rm
alE
xp
res
sio
n◦
(1)

Gl
ob
BR
ule
Ta
sk

◦ (1
)

Gl
ob
Ch
or
eo
Ta
sk

◦ (1
)

Im
plTh

ro
wE
ve
nt

◦ (1
)

InO
utB

ind
ing

◦ (1
)

Int
era
cti
on
No
de

◦ (1
)

Ite
mA

wa
reE

lem
◦ (1
)

La
ne
Se
t◦ (
1)

Pa
ral
lel
Ga
tew

ay
◦ (1
)

Pa
rti
cip
an
tA
sso
c◦ (
1)

Po
ten
tia
lO
wn
er

◦ (1
)

Re
lat
ion

sh
ip

◦ (1
)

Re
nd
eri
ng

◦ (1
)

Re
sA
ssi
gn
Ex
p◦
(1)

Ro
otE

lem
en
t◦ (
1)

Se
qu
en
ce
Flo
w

◦ (1
)

0
500
1000
1500
2000

0
100
200
300

0.00
0.02
0.04
0.06
0.08

Scenario

Va
lu
e
(b
it:
bi
t,
bi
t,
bi
t)

BPMN2 mBPMN2

Figure 10.7.: Evolvability Metric Results: BPMN2 (based on [HSR19])

No reliable reference values can be provided for complexity and coupling

that would represent good values. This evaluation, however, uses the met-

rics to compare the original versions of the metamodels to their modularized

versions. Thus, the absolute values of the complexity and coupling metrics

are of lesser importance.

10.4.1.1. Overall

Before the individual metrics are interpreted, there are some observations

that affect all three metrics.

The BPMN2 results of all metrics for the original metamodel are constant

over all scenarios. This is the case, as the package of the main metamodel

342

10.4. Interpretation and Discussion

Result Group Name Scenarios
PCM
AllocationContext MultiAllocation

CallAction ReleaseAction

ComLinkResType SchedulingPolicy

ForkedBehaviour ResourceDemandingBehaviour, SyncPoint

KAMP RequiredDelegationConnector

ProcResSpec ResourceEnvironment

ResSign ResourceInterfaceProvidingEntity

Smart Grid Topology
AbstractType NetworkNodeType

AddCoordinates NewCommEntity

Cluster OutputEntityState, ScenarioResult

NewPhysicalConn SmartMeter

KAMP4aPS
Arm Entity, MonostableCylinder, PneumaticNetwork,

VacuumGripperModule

BusMaster ConveyorBelt, MechanicalAssembly, Panel, Ramp,

ReturnSpring, TurningTable

ComponentRepository ModuleRepository, ParentEntity, Plant, Structure

DocuApplication DocumentationFiles, FoAARepo

HWPropagation ModifyModule, SeedMods

Table 10.8.: Evolvability Evaluation Result Groups

module of the original BPMN2 is very large. As it is dependent on all

other metamodel modules, this leads to the whole metamodel to always

be included in the subgraph.

There is a similar effect with the results for the PCM. Although it is not

as extreme as with the BPMN2, as the AllocContext and IntBIIS scenarios

deviate from the majority of the results. In contrast to the BPMN2, the

classes of the PCM are distributed over much more packages. It is to be

suspected that the many dependency cycles of the PCM cause the subgraph

to subsume all classes that are involved in the cycles. All except two

scenarios seem to include these big dependency cycles.

343

10. Validation of the Reference Structure Approach

0.0

0.2

0.4

0.6

PCM mPCM
Metamodel

m
m
U
til

(c
la
ss

co
ut
:c
la
ss

co
un

t)

Figure 10.8.:Utilization: PCM (based on [HSR19])

There is one scenario of the PCM that stands out. For the mPCM, complexity

and cohesion cannot be evaluated for the FailOccDescription. Cohesion

results in a value of one for the mPCM. The reason is that FailOccDescrip-

tion is the only class in its package and has no outgoing dependencies.

The package contains several subpackages, but these do not contribute

to the subgraph. Thus, the relevant subgraph for the scenario consists

only of this one class.

10.4.1.2. Complexity

Across all case studies and for all evolution scenarios, the complexity for

the modular version has decreased in contrast to the complexity for the

original version of the metamodels. The only exception is the Suspension-

Rack scenario of KAMP4aPS in which the values are identical for both

metamodel versions.

344

10.4. Interpretation and Discussion

0.25

0.50

0.75

1.00

SmartGrid mSmartGrid
Metamodel

m
m
U
til

(c
la
ss

co
ut
:c
la
ss

co
un

t)

Figure 10.9.:Utilization: Smart Grid Topology (based on [HSR19])

The improvement is attributed to the constrainment of dependencies (lay-

ering, no cycles, conformance to language feature dependencies) and to

slicing metamodel modules according to language features. Due to these

measures, the subgraphs of the modularized metamodels include less un-

necessary language features.

By enforcing a directional layering amongst the metamodel modules, mean-

ingless dependencies that point from basic metamodel modules into more

advanced ones are prevented. By applying the reference structure, such

dependencies are either removed or remodeled by splitting classes and

relocating them into more specific metamodel modules. This brings the po-

tential to reduce the subgraphs of the evolution scenarios. For the developer,

this indicates a decrease in the complexity of the parts of the metamodel

that are relevant to the evolution scenarios. It is not meaningful to follow

a dependency to a more advanced abstraction that is not essential to the

abstraction that he is currently inspecting.

345

10. Validation of the Reference Structure Approach

0.25

0.50

0.75

KAMP4aPS mKAMP4aPS
Metamodel

m
m
U
til

(c
la
ss

co
ut
:c
la
ss

co
un

t)

Figure 10.10.:Utilization: KAMP4aPS (based on [HSR19])

The prohibition of dependency cycles between metamodel modules also

has the potential to reduce subgraph sizes. If multiple packages of several

metamodel modules form a cycle, including one package in a subgraph

causes the whole cycle to be included. If such a cycle is broken, the prop-

agation of the subgraph is reduced. Dependency cycles might lead the

developer to explore elements of all packages that are involved in the cy-

cle. They usually indicate either a problem with modularization or with

dependencies that violate abstraction levels. Breaking the cycle not only

improves the modularity of the metamodel, but developers are also kept

from exploring the cycle unnecessarily long.

The definition of language features provides necessary and sufficient de-

pendencies as well as their directions. By forcing the metamodel module

dependencies to conform to the language feature dependencies, unneces-

sary and faulty dependencies between metamodel modules are prevented.

Subgraphs no longer propagate along such dependencies. For the developer,

346

10.4. Interpretation and Discussion

0.2

0.4

0.6

BPMN2 mBPMN2
Metamodel

m
m
U
til

(c
la
ss

co
ut
:c
la
ss

co
un

t)

Figure 10.11.:Utilization: BPMN2 (based on [HSR19])

this means that there are less unnecessary and faulty dependencies to con-

sider and that might lead her/him astray.

Slicing metamodel modules according to language features resulted in

smaller package sizes, as before too many language features were lumped

together. This also reduces the subgraphs. On the one hand, packages con-

tain fewer classifiers. On the other hand, fewer classes mean less outgoing

dependencies that might increase subgraphs further. For developers, this

indicates that smaller and less complex parts of metamodels are relevant

to their evolution scenarios.

The overall complexity of the modularized metamodels was not reduced.

Conversely, it grew due to additional indirections and class splits. How-

ever, a less complex subgraph of an evolution scenario indicates that the

complexity of the part of the metamodel that is relevant to the metamodel

developer, who is working on the evolution scenario, is reduced.

347

10. Validation of the Reference Structure Approach

10.4.1.3. Coupling

The results for the coupling metric are mixed. For the PCM, the coupling

decreased for all scenarios. For the other case studies, however, there are

more scenarios where the coupling increased. For Smart Grid Topology,

the coupling increased in three result groups. For three result groups (Ab-

stractType, AddCoordinates, and NewPhysicalConn), the coupling value

for the original metamodel cannot be computed, as the subgraph for these

scenarios consists only of one package. In these result groups, the cou-

pling cannot be compared to the coupling of the modularized version. In

the NamedIdentifier scenario, the coupling cannot be computed for both

metamodel versions, as only the package of the Base metamodel module is

involved in the subgraph. The coupling results for KAMP4aPS increased for

seven result groups, remained constant for one result group, and dropped

for five result groups. For BPMN2, the results increased in 15 result groups,

remained equal in one result group and decreased in seven result groups.

The mixed results for coupling are to be attributed to different factors.

Vertical module splits contribute considerably, as they turn parts of cohesion

of modules into coupling. Paradigm extraction also contributes, as abstract

classes are extracted and placed in another module. The resulting modules

in the ∆ layer are thus strongly coupled to their modules in the π layer.

In some cases, the extraction of cross-cutting features contributed to the

coupling, as the metamodel modules of these features contain a package

structure that mirrors the structure of metamodel modules that are extended

(see my paper [Str+16a]). Such structuring helps developers to navigate.

These packages are strongly coupled and tend not to contain many classes

and, thus, contribute more to coupling than cohesion.

In the particular case of BPMN2, the coupling for the original metamodel

is very low compared to KAMP4aPS and PCM, which have a similar size.

This is a result of the main package that contains all language features

except the ones that are concerned with graphical diagrams. This coupling,

which is rather low, is the only contributor to the overall coupling. When

the main package was split, a part of the cohesion of this package was

transformed into coupling which caused the growth.

Due to the dependency constraints of the reference structure approach,

the effect of a higher coupling is not adverse. To explain this, two cases of

348

10.4. Interpretation and Discussion

package coupling have to be distinguished: coupling of packages within

a metamodel module and coupling between packages of different meta-

model modules.

In the reference architecture approach, package hierarchies within meta-

model modules are only used for the logical structuring of classes to guide

developers. Coupling of packages within a module can be viewed as a sort

of cohesion within a module, especially as the packages within a module

are intended to be always used together. Thus, strong coupling of pack-

ages within a module does not harm the evolvability and reusability of the

metamodel, even if it is bidirectional or contains cycles. One may suspect

that an increase in intra-module package coupling increases complexity

and, therefore, damages evolvability. This, however, cannot be observed, as

the complexity decreased across all scenarios. An increase in intra-module

package coupling accompanied by the complexity remaining constant could

also be obscured by a decline in cohesion. This is, however, not the case,

as the cohesion increases in all scenarios.

Concerning coupling between metamodel modules, the reference archi-

tecture forbids dependency cycles. This especially includes bidirectional

coupling, which is the smallest form of a dependency cycle. If in the modu-

larized version, a metamodel module (M) is coupled to another metamodel

module (N), N can indeed be used without M, but M is always intended

to be used together with N.

Consequently, a strong package coupling is not a problem, if it is either

package internal, or unidirectional and has been introduced by intention

according to the reference architecture.

10.4.1.4. Cohesion

The values of the cohesion metric increased across all evolution scenarios

of all case studies. This is attributed to the modularization according to

language features. Classes that implement the same feature tend to be

related more strongly. This means they have more dependencies amongst

each other and less to classes of other language features. Thus, putting

classes of one language feature into the same package and removing classes

of other features, tends to increase the cohesion. The increase in cohesion

349

10. Validation of the Reference Structure Approach

is to be interpreted positively, as it helps developers to better and faster

understand language features.

10.4.2. Need-specific Dependence and Use

For all case studies, the utilization has improved. For the Smart Grid Topol-

ogy and the KAMP4aPS studies, the best utilization for the original meta-

model is less than the worst utilization for the modularized metamodel.

When comparing the utilization of PCM and BPMN2 for each individual

model, the utilization of the modular metamodel is better than the utiliza-

tion of the original metamodel. In conclusion, the metamodel utilization

improved across the board after applying the reference structure approach.

This is attributed to the modularization according to language features.

Models contain instances of specific language features. If the structure of

the metamodel supports the independent use of language features that are

not dependent on each other, the metamodel utilization increases, as EMF

requires only relevant metamodel modules to load the model. These posi-

tive results tell that the reference structure helps to improve the potential

for need-specific dependence and use.

10.5. Threats to Validity

Section 2.5.2 presented the four types of validity in case study research ac-

cording to Runeson [Run+12]: internal validity, external validity, construct

validity, and reliability. This section addresses the threats to these types

of validity. It refers multiple times to the raw evaluation data and sources

for the case studies. These are available online
6
.

10.5.1. Internal Validity

In the case studies, the metamodels were refactored according to the guide-

lines and constraints of the reference structure approach. The refactored

6 https://sdqweb.ipd.kit.edu/wiki/Metamodel_Reference_Architecture_Validation

(last visited 26.08.2019)

350

https://sdqweb.ipd.kit.edu/wiki/Metamodel_Reference_Architecture_Validation

10.5. Threats to Validity

metamodels were then compared to the original metamodels. Modifications

that are conducted during the refactoring that are not mandated by the

reference structure approach may have a positive effect on the results of the

refactored metamodel version. If this positive effect is then attributed to the

application of the reference structure approach, this damages the internal

validity of the evaluation. This is why bad smells and other design flaws

that are not addressed by the reference structure were not corrected in the

modularization to preserve the internal validity of the evaluation. To ensure

transparency, the case study metamodels and their revision history, which

reflects the refactoring process for each metamodel, are publicly available.

Another threat to validity is posed by optimizing the refactored metamodel

version to produce good results concerning the metrics that are evaluated.

As there is a degree of freedom in the modularization process, this may even

be possible within the bounds of the constraints and guidelines that the

reference structure approach imposes. This threat is addressed by conduct-

ing two evaluations using metrics that measure opposing aspects. In the

evolvability evaluation complexity, coupling and cohesion are measured. It

is possible to optimize after these aspects, by grouping classes together that

are strongly interconnected and by reducing the degree of interconnected-

ness between packages. On the other side, the need-specific dependence

and use evaluation measures the degree to which a metamodel is utilized by

its instances. It is possible to optimize the utilization, by grouping classes

together that are always instantiated together by the models. It would even

be beneficial to divide a metamodel into tiny packages to increase its utiliza-

tion values. This would, however, achieve very bad coupling and cohesion

values. Contrariwise, optimizing for complexity, coupling and cohesion

could produce bad utilization results, as using classes together does not

imply a high cohesion between the classes nor low cohesion to other classes.

Thus, using these dissimilar metrics addresses the threat of optimizing the

refactored metamodel to improve the results of the evaluations. As with

the first threat to internal validity, this argumentation is reinforced by the

metamodels and their revision history being publicly available.

351

10. Validation of the Reference Structure Approach

10.5.2. External Validity

External validity is compromised if the selection of metamodels for the case

studies is not representative enough. This would mean that the reference

structure approach is not applicable or not beneficial to the target range

of metamodels. In the case of this thesis, the target range is metamodels

for quality modeling and analysis. To address this threat, metamodels were

selected that are as heterogeneous as possible. See Chapter 9 for the details

of the case study metamodel selection. Metamodels were selected from

different domains (information systems, smart grid, production automation,

and business process) to ensure the reference structure approach is not

limited to a specific domain. The evaluation results show the metamodels

from all the selected domains benefit from applying the reference structure.

External validity is also compromised if merely case studies were chosen

for that the reference structure approach works well. The search for case

studies encountered metamodels of different degree of modularity. As

it was a goal to evaluate metamodels as diverse as possible in the case

studies, metamodels of varying degree of modularity were chosen. The

benefits of the reference structure approach are less pronounced, the more

modular the original metamodel version is and the closer the metamodel

modules match the granularity and dependencies of its ideal feature model.

This can be observed in the results for the KAMP4aPS and Smart Grid

Topology. These metamodels were already quite modular. Thus, they show

smaller improvement compared to the other case studies. Nevertheless,

the results gathered for KAMP4aPS and Smart Grid Topology show clear

improvements when applying the reference structure in comparison to the

original metamodels. Consequently, metamodels that already had a quite

modular structure also show positive evaluation results. This tackles the

threat of investigating only case studies for which the reference structure

approach works well.

For the evolvability evaluation, the external validity is also compromised if

only evolution scenarios are evaluated, that perform well for the mod-

ularized case study metamodels. To address this threat, the evolution

scenarios were selected according to a fixed process, which is presented

in Section 10.2.1.2. Especially the selection of the generic modification

352

10.5. Threats to Validity

scenarios supports fairness, as it ensures full coverage of the package struc-

ture by evolution scenarios.

10.5.3. Construct Validity

The selection of evolution scenarios for the case studies is another threat

to validity. For the case studies, different types of scenarios are used as

described in Section 10.1.1: historical extension, historical modification,

potential modification, and generic modification. Historical evolution sce-

narios are considered a minor threat as they are derived from changelogs

and existing extensions to the metamodels. Thus, the metamodel faced this

evolution in the past. Potential modifications were derived by reviewing

the metamodel and identifying potential future changes. Generic modi-

fications were specified by randomly choosing packages that did not yet

contain an affected class for an evolution scenario. The selection of po-

tential and generic modifications might threaten the construct validity of

the evolvability evaluation. However, from the evaluation results, differ-

ent characteristics for potential and generic modifications could not be

identified in comparison to historical evolution scenarios.

Although historical modification scenarios are considered to be more repre-

sentative than other types of evolution scenarios, theymay under certain cir-

cumstances pose a risk to construct validity. As explained in Section 10.2.1.3,

the evolution of the metamodel from the version on which the scenario

was initially performed and the version on which it is reevaluated might

alter the outcome of the evolvability evaluation. This concerns the results

of the version of the reevaluated version compared to the results of an

evaluation on the version on which the scenario was initially performed.

Preferably each historical scenario should be evaluated on the version of

the metamodel on that it was executed, no earlier nor later. To be able

to evaluate the reference structure, however, the metamodels have to be

modularized. As such a modularization is very time-consuming, it is not

practical to perform it on the metamodel version of each historical sce-

nario. Thus, as Section 10.2.1.1 explains, the current metamodel version

was chosen to be modularized. The impact of subsequent evolution is,

however, only a minor threat to the evolvability evaluation of historical

modification scenarios. As the evaluation of the historical modification

353

10. Validation of the Reference Structure Approach

scenario is performed on the initial and the modularized version of the

metamodel, the impact of subsequent evolution applies to both versions.

If subsequent evolution skews the results for one metamodel version, the

results for the other metamodel version are skewed in the same direction.

A further reason why the impact of subsequent evolution is only a minor

threat is that by ignoring the historical background of a historical scenario,

merely a generic scenario remains. The benefit of a historical scenario,

which is its realism, would then be lost.

Another threat to construct validity is, the subgraphs extracted for evalua-

tion may not be an adequate approximation for the part of the metamodel

that is relevant for an evolution scenario. A further threat is that the

transformation from subgraphs into hypergraphs may not map metamodel

concepts to hypergraph concepts in a way that enables to measure the

information size of the metamodel properly. These are minor threats, as the

subgraph extraction and transformation is applied by the same mechanism

on both metamodel versions. If the results for one metamodel version are

skewed, the results for the other metamodel version are skewed in the same

direction. Further, these two threats do only apply to the evolvability evalua-

tion. If they turned out to damage the validity of the evolvability evaluation,

the need-specific dependence and use evaluation would still be valid.

10.5.4. Reliability

If an evaluation is not reproducible by other researchers, it is not reliable.

Several arrangements were met to ensure reproducibility. The evaluation

tools, input and sources of the case study metamodels are publicly available.

It is further explained how the evaluation tooling has to be set up, used and

which exact versions were used. This information is sufficient to ensure

the reproducibility of the evaluation results by third parties.

To ensure the reliability of the evaluations, the effects of interpretation by a

specific researcher must be eliminated. Therefore, two kinds of metrics are

applied in two evaluations (metrics based on information theory as well as

the metamodel utilization metric). These metrics give reasonable evidence

and reduce the need for interpretation. Due to the experiment design, there

is hardly an interpretation that may lead a researcher to another conclusion.

354

10.6. Validation Conclusion

In most cases, the results that are depicted in the diagrams, are unambigu-

ous. Sometimes, however, the results are close enough, that they cannot

be easily distinguished by merely looking at the diagram. Section 10.4.1,

however, explicitly describes the tendencies of all results. In addition, the

raw evaluation data may be consulted to compare the results of the original

metamodels against their modularized versions.

10.6. Validation Conclusion

To address the research questions that drive the reference structure ap-

proach, Section 10.1 set up a GQM plan. Two evaluations compared the

original versions of the case study metamodels to those versions that were

modularized according to the reference structure. These case study meta-

models are the PCM, Smart Grid Topology, KAMP4aPS, and BPMN2 (see

Section 9.5).

The first evaluation is scenario-based. In total, for all case studies, 108

evolution scenarios were collected. The improvement in evolvability was

inspected through metrics that take information size into account. These

metrics were evaluated for each evolution scenario on the parts of the

metamodel that are approximations of the parts that are relevant to the

evolution scenario.

The results of the hypergraph analysis show positive results across all sce-

narios for complexity and cohesion. The results for coupling are mixed.

The increase in coupling is justifiable because of several reasons (see Sec-

tion 10.4.1). The reference structure forbids dependency cycles and bidirec-

tional coupling between metamodel modules. It further enforces coupling

based on conceptual dependencies. This means if a metamodel modules

is coupled to another metamodel modules, this coupling is intended and

inevitable. The increase in cohesion shows that packages group classes that

are closely related and may evolve together. Considering the GQM plan of

Section 10.1.1.1, it can be concluded that the modifiability of a metamodel

is increased by applying the reference structure approach (Question 1.1).

The evolvability evaluation reported positive results for the complexity

metric across all scenarios. The decrease in complexity helps metamodel

355

10. Validation of the Reference Structure Approach

developers when they try to understand and navigate a metamodel, there-

fore the analyzability and understandability increases (Question 1.2 and

Question 2.1).

Goal 1 is to evaluate the improvement of evolvability when the reference

structure approach is applied. All validations questions of Goal 1 were

positively answered: Question 1.1, which asks about modifiability, and

Question 1.2, which asks about analyzability. Therefore, Goal 1 is fulfilled
and leads to conclude that the research question from which the goal was

derived is also fulfilled. This means RQ IIIa (Improve Evolvability) is

answered positively. The evolvability of metamodel can be improved by

transferring concepts from related disciplines to metamodeling.

Goal 2 is to evaluate the improvement of understandability when the refer-

ence structure approach is applied. With the positive complexity results, all

validations questions of Goal 2 were positively answered. Therefore, Goal
2 is fulfilled and leads to conclude that the research question fromwhich the

goal was derived is also fulfilled. This means RQ IIIb (Understandability) is

answered positively. The understandability of metamodel can be improved

by transferring concepts from related disciplines to metamodeling.

The second evaluation inspects the ratio of how much of a metamodel

is instantiated by its models. This ratio is named metamodel utilization.

As Section 10.1.2 argues, the utilization leads to conclude about the abil-

ity of metamodels to support need-specific dependence and selective use.

Metamodel utilization was analyzed for the original and the refactored

metamodel versions.

The evaluation of the metamodel utilization shows very positive results,

as the application of the reference structure improved the utilization for

each model that was analyzed. This answers Question 3.1 positively. It

further fulfills Goal 3, as it is the only question of the goal. The goal is

directly derived from the research questions RQ IIIc (Need-specific Depen-
dence) and RQ IIId (Selective Use). Both research questions are, therefore,

answered positively. In conclusion, concepts from related disciplines can

be transferred to metamodeling to improve the ability of metamodels to

provide need-specific dependence and selective use.

356

Part IV.

Epilogue

11. RelatedWork

This chapter
1
presents work that is related to the contributions of this the-

sis. It is subdivided according to these contributions. Section 11.1 presents

related work for the bad smell contribution. Section 11.2 presents related

work for the metamodel extension contribution. Section 11.3 presents re-

lated work for the metamodel reference structure contribution. Section 11.4

summarizes the related work chapter.

11.1. Bad Smells and Anti-Patterns
in Metamodeling

The bad smell contribution of this thesis provides definitions for bad smells

and explains how they can be detected and corrected. By correcting bad

smells, the quality of metamodels can be improved. Related work to this

contribution can be grouped into approaches that deal metamodeling er-

rors and flaws (Section 11.1.1) and approaches that deal with metamodel

quality (Section 11.1.2).

11.1.1. Metamodeling Errors and Flaws

Bettini et al. [Bet+19] present an approach to metamodel quality improve-

ment by bad smell treatment. They link bad smells to metamodel quality

aspects. This allows goal-driven metamodel improvement regarding the

quality aspect on that should be focused. They present automatic detections

1
This chapter is in parts based on my previous publications [Str+15; SH16a; Str+16a; HSR19;

KS18; Com+18].

359

11. Related Work

and corrections for five smells from my past publication [Str+16a]: Dupli-

cate Features in Sibling Classes, Dead Class, Redundant Container Relation,

Classification by Enum, and Concrete Abstract Class. The detection and cor-

rections are implemented in the Edelta language [Bet+17]. Edelta is a DSL

for the specification of refactorings. The correction of smells is realized by

model weaving and Edelta operations. They evaluated their approach on ten

metamodels. They first injected a bad smell, corrected it automatically, and

observed how several metrics behaved. The observed metrics were main-

tainability, complexity, understandability, and reusability. If the correction

improved the metrics, the correction was judged as a success. In contrast to

the work of Bettini et al., this thesis presents new metamodel-based smells.

EMF Refactor [Are14; AT13] is a tool that can be used to automatically

detect bad smells and perform refactorings in Ecore-based metamodels and

UML models. It is explained in more detail in the foundations (Section 2.2.9).

EMF Refactor features several UML class diagram design smells, which

were also considered in the literature review to find bad smells that are

transferable to EMOF metamodels. For Ecore, EMF Refactor provides only

a few automated smell detections (Large EClass, Speculative Generality

EClass, Unnamed EClass). Unnamed EClass is not even a proper bad smell,

but a simple validity error. Compared to the number of bad smell detections

that EMF Refactor features for UML, this number is insufficient. The bad

smell contribution of this thesis builds on EMF Refactor by extending it

by further bad smell detections for Ecore.

Elaasar [Ela12; EBL11] developed an approach for automated detection of

patterns and anti-pattern in MOF-based models. His approach provides

a ready to use catalog with patterns specifications but also supports the

creation of new pattern specifications by the user. His MOF anti-patterns

are grouped in the categories well-formedness, semantic and convention.

In contrast to the smells that are presented in this thesis, the anti-patterns

mostly resemble validity errors or are too fine-grained to be design-level

bad smells.

López et al. [LGL14b] propose a language to specify metamodel properties

and the tool metaBest to evaluate such properties on metamodels. In their

paper, they provide a catalog of properties. They categorize the properties

in: design flaws, best practices, naming conventions and metrics. The prop-

erties either detect anti-patterns or breaches of thresholds for the following

360

11.1. Bad Smells and Anti-Patterns in Metamodeling

metrics: number of attributes per class, degree of fan-in and -out, depth of

inheritance tree and the number of direct subclasses. The metaBest tool

does not operate directly on EMOF but is kept metalanguage-independent

to increase its range of application [LGL14a]. Different metalanguages

can be supported by providing transformations from the metalanguages

to the metamodeling concepts of metaBest. Several of their properties are

mere validity errors in Ecore (e.g., no overridden inherited attributes, upper

multiplicity bound is not zero). They are not relevant to this thesis.

Three properties that are proposed by López et al. [LGL14b] report con-

stellations that are not harmful in EMOF. As this paragraph elaborates,

they should not be reported as problematic. Property D10 states that “No

class contains one of its superclasses, with cardinality 1 in the composition

end (this is not finitely satisfiable)” [LGL14b]. In general, such constructs

are meaningful. They are used, e.g., in the Decorator pattern [Gam+95],

where a concrete decorator contains its superclass with a lower and upper

multiplicity bound of 1. BP03 states “There is a root class that contains all

others” [LGL14b]. In general, multiple root classes may exist in a meta-

model (e.g., PCM [Reu+11]). On the contrary, an extension metamodel

may not need a root class at all. This is, for example, the case if new sub-

classes are added to the base metamodel. BP04 states “No class can be

contained in two classes” [LGL14b]. This is unproblematic in general, and

even best practice for second-class concepts that are used in many places.

An example from the PCM is the RandomVariable class. For a second-class

concept, the existence of its instances is dependent on the first-class con-

cept which uses it (e.g., a process or a usage model). For this reason, it is

not meaningful to deposit them in only one central container and refer-

ence them where they are needed. If this were the case, they would exist

independently of their container. It is better to contain RandomVariable

from every class that needs a random variable. Further counterexamples

for BP04 are the Composite pattern [Gam+95] and the Decorator pattern

[Gam+95]. In addition to the containment from the metamodel that uses

the pattern to the pattern’s superclass, a Composite and Decorator both

contain the already contained superclass.

As discussed in Section 4.4, metaBest already provides four smells of the bad

smell contribution of this thesis. There are further properties that are similar

to three smell. Even though their contribution overlaps with this thesis, the

bad smell contribution of this thesis features 15 smells that are not covered

361

11. Related Work

by metaBest. In contrast to this thesis, they do not give reasons why a

property has negative ramifications. This manifests in several properties

that are, at least in EMOF, not beneficial to enforce. This was explained in

the previous paragraph. This thesis, on the contrary, provides the reasons

for the presented bad smells being harmful. It also performs an evaluation,

in which the detection results were inspected for their harmfulness, to

further affirm their negative effects.

Gómez et al. [GBS12] propose an approach, which aims at evaluating the

correctness of a metamodel; i.e., whether it allows invalid instances (pre-

ciseness) and whether it can express all instances it is supposed to (expres-

siveness). Their approach automatically generates a preferably small set

of instances to evaluate these two criteria. Ferdjoukh and Mottu [FM18]

propose a related approach in which correctness is tested by instantiating

models with expected multiplicity counts. Failing to instantiate means

there is a semantic error.

The approaches of Gómez and Ferdjoukh are related to the bad smell contri-

bution in the sense that they detect problems in metamodels. As they focus

on semantic errors and the bad smell contribution focuses on design flaws,

the approaches of Gómez and Ferdjoukh are not in competition with this

thesis. They can even be applied in conjunction to improve metamodels.

11.1.2. Metamodel Quality Metrics

A goal of the bad smell contribution of this thesis is to improve the quality

of metamodels. Section 2.2.6 presents further information on metamodel

quality. The approaches described hereafter propose metamodel metrics to

investigate metamodel quality and are, therefore, related. The bad smell

contribution of this thesis, on the other hand, pinpoints specific spots in

metamodels that should be improved. Therefore, both types of approaches

are not in competition. They can be applied cooperatively to analyze and

improve the quality of metamodels.

Metrics, in general, do not provide a direct evaluation of the quality of a

metamodel. Somemetrics can provide indicators for good or bad metamodel

quality if they are correctly interpreted. This is done by Vépa et al. [Vép+06].

They present a repository for metamodels, models, and transformations.

362

11.1. Bad Smells and Anti-Patterns in Metamodeling

They apply metrics that were initially designed for class diagrams onto

metamodels of the repository. The applied metrics are: several size metrics

(as a basis for other metrics), depth of inheritance tree (DIT), several number

of features per class metrics, number of inherited attributes and attribute

inheritance factor. For some of the metrics, Vépa et al. provide a rationale

of how they relate to metamodel quality.

Di Rocco et al. [Di +14] applied metrics onto a large set of metamodels. Be-

sides the usual size metrics, they also feature the number of isolated classes

and the number of concrete immediately featureless classes. Further, they

searched for correlations of the metrics among each other. E.g., they found

that the number of classes with a superclass is positively correlated with the

number of classes without features. Based on the characteristics they draw

conclusions about general characteristics of metamodels. Their long-term

goal is to draw conclusions from metamodel characteristics concerning the

impact onto tools and transformations that are based on the metamodel.

Although an assessment of metamodel quality is not their main focus, some

metrics they apply can be used to assess the quality of metamodels.

García et al. [GGF09] developed a set of domain-specific metamodel quality

metrics for multi-agent systems modeling languages. They propose three

metrics: availability, specificity, and expressiveness. These metrics take

domain knowledge into account, e.g., the “number of necessary concepts”

or the “number of model elements necessary for modeling the system of

the problem domain”.

There is much work on quality metrics for object-oriented design and UML

class diagrams [CK91; Mar98; MGP03; Gen+07]. Further, there are publi-

cations that present empirical analyses of object-oriented design metrics

[BBM96; SK03]. E.g., Subramanyam found that the correlation between

metrics and bug detection varied when applied to different programming

languages and observed interactions between metrics. Metamodeling and

object-oriented design have many commonalities. On the other hand, the

purpose and usage of object-oriented design and class diagrams are very

different compared to that metamodels. Thus, their benefit cannot be as-

sumed for metamodels. Section 1.3 elaborates on the differences between

metamodeling and object-oriented design.

363

11. Related Work

11.2. Metamodel Extension

This thesis explored metamodel extension mechanisms that are unintrusive,

provide instance compatibility, and enable the independent development

of extensions. Publications that explore and survey metamodel extension

mechanisms are considered as related work to this contribution.

Mechanisms that enable the addition of class properties are not considered

to be related work. They are subjects of the evaluation that is presented in

Chapter 8. Some mechanisms were not considered in the evaluation, as they

do not fulfill the required criteria of Section 5.3. These dismissed mecha-

nisms are presented in Section 5.5. The section also discusses why they are

not considered. It also discusses the completeness of the list. The dismissed

mechanisms are transformations [CH03; MG06], completions [Hap+14],

aspect-orientedmodeling (e.g., [KAK09]), language composition approaches

for metamodel-based languages (e.g., Melange [Deg+15], metamodel merg-

ing [ES06; Léd+01], template instantiation [ES06]), Architectural Templates

[Leh18], the Role pattern [Küh17], and Braun’s mechanisms [BE15b; Bra17]

(Hooking, Aspects, Plugins, and Addons).

There are several frameworks that practice language reuse through dif-

ferent types of language composition. Such approaches are intrusive, do

not provide instance compatibility, or even both. They are presented in

Section 11.3.1, as they are more closely related to the reference structure

contribution of this thesis.

Braun [Bra15] conducted a literature study about the extensibility of en-

terprise modeling language. In contrast to this thesis, he did not focus on

EMOF-based mechanisms. He investigated metalanguages and languages

that are related to enterprise modeling. MOF is amongst the metalanguages,

but no EMOF-specific mechanisms are mentioned. He mentions the in-built

annotation mechanism that allows the addition of unstructured data to the

metamodel (EAnnotations). For EMOF, however, this mechanisms does

not influence the model level (without the generator being aware of the

annotations). He further proposes a classification of extension purposes

and extension mechanism types.

Braun wrote his doctoral thesis [Bra17] about the extensibility of enterprise

modeling languages. As there was an overlap in the time frames in which his

364

11.2. Metamodel Extension

and my thesis were developed, some of the findings overlap. As both theses

are closely related, his thesis will be discussed in detail. In the following,

first, the commonalities are explained. In these parts, my research confirms

his findings. The release of his dissertation, however, opened the possibility

to build on his findings and go into detail where he did not. Thus, secondly,

it is briefly explained in which aspects this thesis presents novel findings.

Both works overlap in two dimensions: extension mechanisms and com-

parison criteria. Braun also investigates the extension mechanisms Direct

Inheritance, Profiles, and Decorator. As comparison criteria, he also uses

Applicable without Preparation, Multiplicity, and Metalanguage Support.

In contrast to Braun, this thesis pursues a different scope. Focusing on

EMOF-based languages, allows this thesis to specify comparison criteria

that are more tailored to this scope. This thesis also focuses on unintrusive

mechanisms, as intrusive mechanisms do not tackle the problems of mono-

lithic metamodels and metamodel erosion. In addition to the extension

mechanisms of Braun, this thesis investigates Referencing with External

Container, Referencing with Reused Container, Extension Point Inheritance

in two variants, and the Decorator pattern in several new variants. Re-

garding comparison criteria, this thesis adds Model Level Unintrusiveness,

Content Retrieval Computational Complexity, Applies to Subclasses, Or-

thogonality, Containment Tree Integrity, Model File Integrity, Extension

Object Deletion, and Adds a Type.

Happe et al. [Hap+14] present their experiences with the extension to per-

formance modeling languages. They discuss model completions, intrusive

additions, external extension by dependency, and EMF Profiles. External

additions are, however, only presented superficially without going into

detail about possible realizations. Model completions do only improve a

model. They do not affect the metamodel.

Atkinson et al. [AGF13] investigated modeling language extensibility. Their

insights are metalanguage-independent. They provide a classification with

two dimensions: extension use-case and extension strategies. The two use

cases are as follows. In language enhancement, the language is extended by

information from the domain of the language. In language augmentation,

the language is extended by information that does not belong to the same

domain. The tree extension strategies are orthogonal to the use cases. Meta-

model customization corresponds to intrusive addition in the terms of this

365

11. Related Work

thesis. Built-in extension mechanisms are supported by the metalanguage.

Model annotation is realized bymodifying the models (e.g., by weaving). For

EMOF, they did not present any built-in extension mechanisms. As stated

in Chapter 5 of this thesis, no built-in extension mechanisms are directly

supported, but several extension mechanisms can be realized by using the

means EMOF provides. Atkinson et al. identified several shortcomings of

the extension strategies. They propose Deep Modeling (also named Multi-

level Modeling) to be used as a modeling framework to solve these problems.

In contrast to the extension mechanisms that are presented in Section 5.4

of this thesis, Deep Modeling in itself, however, does not solve Problem 9

(Incompatible Extensions) and Problem 8 (Instance Incompatibility).

Degueule et al. [Deg+17] propose the concept of model types. Models

may conform to one or several model types and can be manipulated and

dynamic semantic accessed through these types. Model typing is, however,

no option to replace extension mechanisms. The reason for this is that

without metamodel extension, there has to be a metamodel that supports all

model types. This metamodel (see also VSUMM from Section 11.3.1.1) has

all the problems of a monolithic metamodel that erodes over time. Further,

it is not clear how existence modifications (see Section 2.2.5) behave when

they are performed through model types. Deletions of container that carries

data that is not visible in the current model type might lead to data loss.

When additions are performed, and a model is valid for the current model

type, there may be mandatory features still missing for other model types.

Jiang et al. [Jia+04] present a classification of UML extensions. They present

four levels of increasing expressiveness. When transferred from the concep-

tual view of the paper to a technical realization, their levels of metamodel

extension are either intrusive additions of classes and class properties (level

1), and intrusive or external additions of classes and subclasses (level 2 to

4). Similar results can also be achieved with the UML stereotyping exten-

sion mechanism, which, however, is not supported by MOF nor EMOF. In

contrast, this thesis is focused on EMOF-based extension mechanisms.

366

11.3. The Reference Structure Approach

11.3. The Reference Structure Approach

Work that is related to the metamodel reference structure contribution of

this thesis can be subdivided into several fields. Section 11.3.1 presents

related language engineering and language composition approaches. Sec-

tion 11.3.2 presents the software product line concept and related language

product line approaches. Section 11.3.4 presents approaches that struc-

ture and dissecting modeling spaces. Section 11.3.3 presents approaches

that deal with metamodel modularity. Section 11.3.6 presents metamodel

quality assurance approaches. Section 11.3.5 presents works that deal with

metamodeling patterns. Section 11.3.7 presents approaches that tackle the

coevolution of metamodels and related artifacts. Section 11.3.8 explains

the choice of terminology that is used in this thesis.

11.3.1. Language Engineering

The reference structure approach uses the metamodel extension mecha-

nisms to establish modularity and reuse in metamodeling. Approaches from

the language engineering community reuse and compose languages and

language fragments to create new DSMLs and are therefore related work.

These approaches can be subdivided into metamodel- and grammar-based

approaches. Metamodel-based approaches are more closely related to the

reference structure contribution. In the following, first, the COLD approach

is presented, which is a conceptual vision that encompasses grammar-

and metamodel-based solutions. Second and third, metamodel-based (Sec-

tion 11.3.1.1) and grammar-based approaches (Section 11.3.1.2) are presented

and discussed. Fourth, Section 11.3.1.3 discusses DeepModeling approaches.

As there are metamodel- and grammar-based Deep Modeling approaches,

they are located in a separate section. Language product lines, which

are presented in Section 11.3.2, are very closely related to the language

engineering approaches that are presented in this section.

The COLD [Com+18] (Concern-Oriented Language Development) initiative,

in which I participated, represents a vision to language reuse. It provides

concepts and methods to support holistic language reuse. The conceptual

part is independent of the approaches that implement it. Its implementa-

tions may be metamodel- or grammar-based. In [Com+18], the approaches

367

11. Related Work

that are presented to support the COLD approach are the GEMOC Studio

[CBW17], MontiCore [HR17], and Neverlang [VC15]. These approaches are

further investigated in the remainder of this section. A language concern is a

configurable unit of reuse that provides multiple perspectives of a language.

A perspective is the definition of a part of a language on the meta-metalevel

(e.g., abstract syntax, concrete syntax, static semantics, or apart of a modular

tool). A perspective may refer to one or multiple metalanguages (e.g., meta-

metamodels) and relate them. A facet is the instance of a perspective and is

constituted by one or multiple artifacts depending on how many metalan-

guages its perspective entails. An artifact is an instance of a metalanguage,

e.g., an Ecore metamodel or a grammar. A language concern features three

interfaces. The variation interface presents a feature model to select the

configure the desired features of the concern. The customization interface

provides an extension-point-like to concretize feature of the language. The

usage interface provides the means to instantiate the language concern.

The reference structure aims mainly at realizations of the abstract syntax

perspective (i.e., abstract syntax facets). COLD is, therefore, much broader.

The reference structure approach is, therefore, not in competition with the

COLD vision. In addition, this thesis focuses on language-feature-based

metamodel decomposition, compatibility-preserving metamodel composi-

tion, and domain guidance to metamodel implementation. The reference

structure approach may be adjusted to fit into the concepts and processes

of the COLD approach. This is, however, out of the scope of this thesis

and is, therefore, future work.

11.3.1.1. Metamodel-based

The GEMOC Studio2 [CBW17] provides a language workbench and a model-

ing workbench for executable models. Relevant to this thesis is the language

workbench aspect. It provides several features like capabilities to define

animations of executable semantics, generation of execution traces, and

support to provide further metamodel-based tooling.

Relevant to this thesis is the Malange [Deg+15] approach that is part of

the GEMOC language workbench. Melange is an approach to a modular

2 http://www.gemoc.org/studio (last visited 23.08.2019)

368

http://www.gemoc.org/studio

11.3. The Reference Structure Approach

and reusable development of DSMLs by combining and subtyping existing

DSML artifacts. It handles syntax and semantics. The following only ad-

dresses the syntax aspect, as this is the focus of this thesis. Melange provides

the following language operators: merge, inherit, and slice. Reuse is mainly

established through merge or inherit. Regarding the syntax of a language,

the merge operator adds the classes of one metamodel to another. Classes

that have identical names are merged. This means after the merge they

contain the properties from both classes. The inherit operator functions like

the merge operators; it, however, ensures that the sub-language is still com-

patible with the parent language. This denies some possibilities of a merge.

For example, it is not allowed to merge mandatory properties into a class.

Concerning the challenges this thesis addresses, there are some reasons

why this thesis cannot build on the Melange approach. By using the lan-

guage operations, the approach creates new metamodels. It does not ensure

instance compatibility. By adding new classifiers or properties to an existing

metamodel, the instances of this extended metamodel are no longer com-

patible with the original tooling. This drawback is somewhat relieved by

the fact that Melange provides the same operations for interpreter pattern

based tooling. So at least such tooling can be reused. What is even more

critical, however, Melange does not provide independent extensibility. If a

metamodel is extended by inheritance by two other metamodels, these two

extensions cannot be used in conjunction without having to create a third

extension that extends the first two extensions. Another hindrance to inde-

pendent extensibility is the power of the merge operator. E.g., an extension

using merging may be incompatible with another extension if they specify

classes with the same name which represent different concepts. The result-

ing collision makes it impossible to use the conflicting extensions together.

One workaround is to rename the conflicting class of one extension, which

would be against the principle of independent extensibility.

Leduc et al. [LDC18] present an approach for the composition of language

concerns that also allows the composition of particular dynamic seman-

tics. The approach is integrated into the Ecore-based ALEX metamodel-

ing framework, which supports the definition of dynamic semantics. By

composing language concerns, using their approach, abstract syntax and

semantics are composed. This concerns their specification and implemen-

tation. Their approach proposes explicit interfaces for the composition

of dynamic semantics.

369

11. Related Work

In contrast, the reference structure approach focuses on the abstract syntax

of a language. On this level, the reference structure approach does not need

implementation level composition, as a metamodel (i.e., abstract syntax)

extensions also extend the implementation level. The approach of Leduc

is currently not focused on offering any modularization or structuring

guidelines regarding the larger structure of a modular language. Nor does

it specialized on a specific application domain. Both approaches could,

however, be used in conjunction. The reference structure provides guidance

on how to modularize and build the larger structure. Metamodel modules

could be realized as language concerns. This would enable the composition

of semantics within an instance of the reference structure.

CORE (Concern-Oriented REuse) [Sch+16; AKM13] is an approach to soft-

ware development with a strong focus on reuse. A software program is

composed of configurable concerns. A concern from the CORE approach

features interfaces that are similar to those of COLD (see Section 11.3.1),

as COLD was influenced by CORE. Through the variation interface, the

feature of a concern can be selected. The fragments that are associated with

the features are then woven together by a model weaver.

Although aimed at software development in general, the CORE approach

is metamodel-based. It works similarly to projectional editing in class

diagrams. The difference to the reference structure approach is that its focus

is on software development in general. Although configurable metamodels

can be realized using the CORE approach (see a diploma thesis [Kan17] that

was supervised by me), it has some drawbacks that prevent it from being

used as a foundation of the reference structure approach. Regarded as an

extension mechanism, the core model weaving is intrusive, does not offer

instance compatibility, and does not support independent development of

extensions (see Section 5.3 and Section 5.6).

Vitruvius [Kra+15; KBL13] is an approach to view-based modeling. It

enables to couple several metamodels into a Virtual Single Underlying

Metamodel (VSUMM). The metamodel should at least partly describe the

same concepts. The instances of the VSUMM metamodels are synchro-

nized by special transformations. They form the Virtual Single Underlying

Model (VSUM). The user operates on the VSUM through views [Bur14].

Views are defined by view types, which are technically metamodels with

synchronizing transformation into to the VSUM.

370

11.3. The Reference Structure Approach

The goal of Vitruvius is to construct a holistic virtual metamodel from

legacy models. In contrast to the reference structure approach, it does not

offer any structuring guidance for a specific domain. The two approaches,

however, can complement each other. Once the VSUMM is constructed, the

Vitruvius approach has a maintenance problem. If the metamodels of the

VSUMM evolve, models, transformations, view-types, and all view-based

tool have to evolve in order to stay functional. By applying the reference

structure approach, the VSUMM could be evolved into a more modular form.

Future additions to the VSUMM should use external extension mechanisms

when possible. This could improve the evolvability of the VSUMM.

JetBrains MPS [VS10] is language workbench with a focus on domain-

specific programming languages. It enables the extension of languages.

Even GPLs like Java or C can be extended. This is handled by transforming

the extension into the GPL’s code. DSLs can be developed separately or as an

internal DSL in a GPL. For DSLs that are developed with MPS, projectional

editors are provided. In contrast to a parser-based editor, a projectional

editor does in general not allow the user to input arbitrary text. Through

autocompletion, only a valid string can be entered which fits the current

context in the code. By integrating several existing DSLs in a new DSL or

an extension of a DSL, MPS allows the composition of languages.

In contrast to the reference structure approach, MPS has a strong focus on

programming languages. It further does not take into consideration the

specifics of a possible target domain. Its focus is not on the long-term evo-

lution of languages. The two approaches could, however, be united to bring

the benefits of maintainability to the language development style of MPS.

Emerson and Sztipanovits [ES06] present several metamodel composition

and reuse techniques. These include the metamodel merging, metamodel

interfacing, class refinement, and their own contribution template instantia-

tion. In contrast to the other composition techniques, template instantiation

can be performed multiple times within a metamodel. The focus of their

contribution is different from the reference structure approach. It provides

no structuring guidance considering a specific domain. It does not strive

to form a common basis for related languages, that would provide partial

instance compatibility. Template instantiation can, however, be used in

combination to the reference structure approach to reuse paradigm patterns.

371

11. Related Work

11.3.1.2. Grammar-based

There are language workbenches and language engineering approaches that

are grammar-based. For this thesis, their capability of language composition

or language extension is relevant.

MontiCore [KRV08; HR17] is a workbench for language-based grammars. It

supports the development of language components and modular languages.

Amongst others, MontiCore provides support for parser generation, analy-

ses, and transformations. MontiCore supports several language composition

methods [Völ11; Hab+15]. Language extension is enabled by language com-

ponents featuring external nonterminals, which can be seen as extension

points. Languages can also reference each other. This enables language

inheritance, aggregation, and embedding. Through language inheritance,

new nonterminals can be added, and existing nonterminals can be rede-

fined. In language embedding, a language completely reuses one or more

already existing languages. This can also be achieved by redefining nonter-

minals to inject a language into another. Language aggregation is similar

to language embedding. It is, however, less thorough, as, for example, the

concrete syntax is not automatically composed. MontiCore also supports

modularity of the infrastructure of a language. There is support for the com-

positionality of visitors, symbol management, context conditions, editors

[But+18a] and generators [But+18b].

As an additional extension mechanism, tagging languages [Gre+15] can be

used. A tagging language is a separate language, which also enables the

separation on the instance level (extended instance vs. tagged information).

This helps to keep the original language definition and the original models

clean. The tagging language is specific to the language that is extended.

This means that in contrast to a generic tagging language, a new tagging

language has to be developed for each DSL that ought to be extended. The

effort can, however, be alleviated by generating as much of the language

infrastructure of the tagging language as possible.

Neverlang [VC15] is a grammar-based programming language development

framework. It supports modular development of languages. A slice defines

a feature of a language. A slice contains several roles (e.g., syntax, type-

checking and evaluation). Based on a language’s slides, Neverlang composes

the infrastructure of the language (e.g., a compiler or interpreter).

372

11.3. The Reference Structure Approach

In contrast to the reference structure approach, grammar-based language

engineering approaches provide no guidance towards structuring or mod-

ularizing a language regarding the specifics of its domain. Both types of

approaches reside in different technology space (i.e., grammar-based vs.

metamodel-based). It is, however, likely that these approaches may benefit

from each other. The reference structure approach could benefit from the

advantages of the grammar-based world. Examples for such advantages are

the ease of language extension and support for programming languages.

The reference structure approach may provide incentives on structuring

and improving the maintainability of large modular language structures.

As both types of approaches are conceptually quite different, this may be

an endeavor of considerable effort.

11.3.1.3. Deep Modeling

Deep Modeling approaches [LG10a; AG16; Hin16b] enable the modeling

of multiple instance layers by the user as well as the language developer.

EMOF, in contrast, does only offer the model layer (M1) to the user. The

metamodel or grammar layer (M2) is developed by the language developers

(e.g., metamodel developers). This poses some challenges when the user

should model more than one instance level. For example, the metamodel

developer wants users to be able to model their own data types and also

be able to model instances of these data types. The instance relation from

the data type instances to their data type has to be modeled by a reference,

which is a workaround that does not enable regular type checking.

There are several Deep Modeling approaches. Melanee [AG16] is a meta-

model-based approach that is compatible with EMF. When defining a class

inMelanee, the graphical syntax of the instances of the class can be specified

[AG13]. This makes separate editor generation or development unneces-

sary. NMF [Hin16b] is a metamodel-based approach for the .Net Framework.

In contrast to the other approaches, NMF does not need explicit instance

layers [Hin16a]. MetaDepth [LG10a] is a grammar-based approach.

DeepModeling usually blurs the border between themetamodel or grammar

layer (M2) and the model layer (M1). Part of the language should be frozen

or hidden in order to be protected from the meddling of users. Some deep

modeling approaches feature potencies. For classes, they specify how long

373

11. Related Work

an instantiation chain starting from a class can get. On attributes and their

values, the potency specifies how many instantiation levels the attribute is

carried over and when it can be modified. Some deep modeling approaches

feature the refinement or specialization of references. On a lower instance

level, the target types of references can be further limited.

In contrast to the reference structure approach, Deep Modeling proposes

another way to partition a language: along with the type/instance borders.

The reference structure approach does not support multiple instance levels,

as a shortcoming of its metalanguage EMOF. This is where the reference

structure approach could benefit from Deep Modeling, as it enables the

user to model as many instance level as necessary. Deep modeling can be

especially beneficial for the definition of paradigm patterns. By refining

the references of a paradigm pattern in the domain layer, the classes that

are involved in the pattern can be limited to that of a specific domain.

The reference structure approach, on the other hand, brings the benefit of

language structuring, extensibility, and improved evolvability.

De Lara and Guerra [LG10b] propose the adoption of reuse mechanisms

from generic programming for deep modeling. Concepts specify require-

ments onto dynamic semantics. Templates enable the reuse of patterns

that are parametrized with Concepts. Mixin layers are Templates that are

applied on the metamodel level. They provide an implementation for the

deep modeling framework MetaDepth. Their focus lies strongly on pa-

rameterized reuse. The reference structure approach, however, uses reuse

by language extension, which assures instance compatibility between the

extended and the original language.

11.3.2. Software and Language Product Lines

The reference structure approach of this thesis uses feature models to

express the variability of a modular metamodel. A selection of features is

instantiated by merely deploying the desired metamodel modules. Software

Product Lines (SPLs) [WL99; CN01] are related in the sense that they also

provide variability in the functionality of the software. Of particular interest

to this thesis are SPL approaches that either work on models or languages.

374

11.3. The Reference Structure Approach

SPLs are used to handle families of software. In a family, software products

have common parts but differ in so-called variation points. If each soft-

ware product is maintained individually, this multiplies the maintenance

effort. The SPL community aims to tackle this problem by consolidating

software families, modeling their variability and generating variants. There

are approaches that offer automatic extraction of variability models from re-

lated software artifacts [Fon+15; Kla14; KKW14; KKK13]. Possible ways to

model variability are feature models (see Section 2.4), MontiArc
HV

[Hab+11]

for component-based software, the Common Variability Language (CVL)

[Hau+08] for MOF models, and Clafer [BCW11]. The variability models are

linked with fragments of software artifacts. The result is sometimes refered

to as a 150 percent model [Grö+08], as it contains more functionality than

needed for one software product. From such 150 percent models, a software

product can be generated by combining the fragments according to the

desired selection of the variability specification.

The following approaches are software product lines that either work on

models or put forward explicit language product lines (LPLs). Méndez-

Acuña et al. [Mén+16b] present a survey such LPLs.

Font et al. [Fon+15] propose an automated extraction of a variability model

from a family of models. The variability and model fragments are specified

in CVL. The CVL then allows a materialization of a model according to

the desired variability selection.

MontiCore [HR17] supports the composition of independently developed

modeling languages as well as of language components [But+18b; But+18a].

Syntax, as well as semantics, can be composed. The composition is config-

ured by a language product line. The selection of the product line configures

the template-based code generation of the language infrastructure.

On first glance, the concepts of SPLs seems to fit the problem of variability

of metamodels, which this thesis addresses. Some SPL approaches even

work on MOF models (e.g., [Fon+15]) and can be used to produce a family

of metamodels. The variants, however, do not feature partial instance

compatibility for the parts the metamodels have in common. Nevertheless,

this thesis picks up the useful concept of variability modeling that was

made popular by the SPL community.

375

11. Related Work

11.3.3. Modularity, Modularization, and Clustering

The reference structure approach proposes modularization concepts for

metamodels. It provides modularization guidelines for the development

of new metamodels and the refactoring of legacy metamodels. It also

enforces a structuring of a modular metamodel according to its language

features. In these aspects, several works are related that are concerned with

modularization concepts and metamodel modularization.

Degueule et al. [DCJ17] motivate language interfaces, which abstract the

different constituents of a language (abstract and concrete syntax as well

as semantics). Similar to model typing, several languages could provide the

same language interface. Tools could operate on interfaces and by doing

so operate on arbitrary languages that conform to the interface. They are

thus no longer bound to a single language. Interfaces could be used for

language composition, as required and provided interfaces.

If such interfaces are developed, they have to fulfill some requirements

in order to be applicable in the scope of the reference structure approach.

These are similar challenges as with model typing. They would have to

ensure independent extensibility, instance compatibility, and model manip-

ulation through an interface should not lead to data loss or invalid models.

A modular language should also be able to provide several interfaces if

it expresses several language features.

Méndez-Acuña et al. [Mén+16a] present Puzzle, which is an approach to

treat clones in metamodels. A clone is a part of a metamodel that has been

reused by copy and paste. Puzzle features the search for clones and can ex-

traction them into separate metamodels. These can then be reused. The tool

refactors the original metamodels by cutting the mutual part out and creat-

ing dependencies from the remainders of the original metamodels. Puzzle is

related to the reference structure, as it is used to modularize metamodels. It

does, however, not guide the modularization or structuring of single meta-

models. It may, instead, be used if language families should be consolidated

into a single modular metamodel that conforms to the reference structure.

Strüber et al. [SST13] propose to use clustering to modularize large meta-

models. The clustering algorithm optimizes cohesion and coupling. High

cohesion within a cluster and low coupling between clusters are desired.

376

11.3. The Reference Structure Approach

The approach also takes the different types of relations into account (ref-

erence, containment, inheritance).

In contrast to the clustering approach of Strüber et al., the reference struc-

ture approach modularized a metamodel according to its language features.

A division according to coupling does not necessarily reflect the parts of

a metamodel that are used together (see Section 10.4). Clustering may

initially be a good starting point for a modularization or might assist the

metamodel developers in modularization decision. It should, however, not

be used as the final state of the modularization of a metamodel.

Further work by Strüber et al. involves an approach [Str+14] and tools

support [SLT14] for model and metamodel splitting. It uses information

retrieval techniques that operate on natural language descriptions of the

model or metamodel. Similarly to Strübers clustering approach, informa-

tion retrieval can provide a good initial proposal for the modularization

of a metamodel. It, however, does not achieve a meaningful coupling of

the modules. To do so necessitates knowledge about the relations of the

language features that the metamodel provides and involves dependency

refactorings like, e.g., dependency inversion (see Section 6.5.1.2).

Strüber et al. present a concept [Str+13b] and implementation [Str+16c]

for composite models. Composite models are motivated by the needs of

distributed modeling and are inspired by component-based software de-

velopment. It proposes to supply metamodels with export and import

interfaces. These interfaces can be used on the model level. An import

interface refers to the export interface of another model. An export inter-

face can be referred to by multiple import interfaces. The remainder of

the models is encapsulated, which establishes information hiding [Par72]

as known from software development.

Although the interfaces of the composite model approach can also be used

to split metamodels into metamodel components, it is not the focus of

the approach to guide the metamodel developer in the structuring and

modularization of a metamodel. In this regard, the reference structure

and the composite model approach can be combined. The reference struc-

ture provides guidance and improved evolvability on the metamodel level;

the composite model approach provides modularity and information hid-

ing on the model level.

377

11. Related Work

EMF Splitter [Gar+14] provides an approach to modularity on the model

level. A metamodel is annotated with the modularization concepts Projects,

Packages, and Units. These are based on well-known concepts from IDEs

like projects, folders or packages, and files. The instances of the annotated

metamodel (i.e., models) are persisted according to the annotation of the

modularity concepts. This helps to tackle the problem of large models.

Although EMF Splitter could be applied to metamodels (metamodels are

models, too), it is not intended for this purpose. Metamodels are usually

small compared to models. Thus, the benefit of the approach would be small.

Even if used for metamodels, EMF Splitter would merely enforce multiple

metamodel files. More important is a meaningful logical structuring, which

is not in the scope of the tool. The tool and the reference structure approach,

however, can be used in combination. The reference structure improves the

evolvability of metamodels. EMF splitter keeps model files small.

The modularity of the semantics of a language is a whole file of research

in itself. The reference structure approach focuses on the abstract syntax

of a DSML. Approaches for semantic modularity could be integrated or

aligned with the reference structure approach. Duran et al. [Dur+17]

propose a formalism to compose language modules and their semantics.

The mechanism is implemented in the e-Motions DSL, which is used to

specify time-dependent behavior [RDV09]. Regarding the abstract syntax

of the language, however, the approach is intrusive and does not ensure

instance compatibility. They also propose to make the specification of non-

functional properties reusable [DZT13]. Moreno-Delgado et al. [Mor+14]

reimplemented a part of the PCM and the Palladio Simulator using their

approach. Further approaches to modular semantics are presented by

Liang [LH96] and Mosses [Mos04]. Liang and Hudak present a monadic ap-

proach to modular dynamic semantics of programming languages. Mosses

proposes modular structural dynamic semantics for concurrent systems

and programming languages.

A further related topic is the modularity and extensibility of metamodel-

based tools. This overlaps partly with the research field of modular seman-

tics, if interpreters, simulators, and analyzers are considered. Jung [JHH16;

Jun16a] proposes a composition approach for generators. Rentschler devel-

oped an approach for modular transformations [Ren15]. Föhrdes [Föh14]

378

11.3. The Reference Structure Approach

presents a modularization of EventSim into simulation components. Event-

Sim [MH11] is a performance simulator, which operates on the PCM. Al-

though the modularity of his solution is not as flexible as the modularity

of metamodels that is achieved by the extension mechanisms of Chapter 5,

his solution provides improved extensibility compared to the monolithic

version of EventSim. These approaches are interesting, as they deal with

artifacts which are used in conjunction with metamodels. However, theses

modularization approaches cannot be directly transferred onto metamodels.

11.3.4. Approaches for Structuring and
Dissecting Modeling Spaces

The reference structure approach provides an explicit structure to the high-

level module structure of modular metamodels. It divides the modeling

space of a metamodel into levels of different abstraction (paradigm, domain,

quality, and analysis). This helps developers to navigate existing modular

metamodels, to place their extensions, and to structure new modular meta-

models. In this regard, approaches that propose explicit structuring and

divisions of modeling spaces are related to the reference structure approach,

even if they are not applicable to metamodels.

Atkinson et al. [ASB10] propose the Orthogonal Software Modeling (OSM)

approach. A software model is accessed through views that correspond to

coordinates in an orthogonal space that is spanned by several dimensions.

These dimensions include: abstraction level, encapsulation, projection, and

language. Similarly to the reference structure approach, OSM dissects the

modeling space for software modeling. By doing so, it provides the software

modeler a structure to navigate the software model. It is, however, aimed

at software models and not applicable to metamodels.

Coad’s UML archetypes [Coa99] for object-oriented design are used to

classify classes into things, temporal concepts, roles, and descriptions. The

UML archetypes are, therefore, related to the reference structure approach

in the sense that they divide the design space of classes into the provided

categories. This provides developers information that would not be there

otherwise and gives them an aid when designing classes. Although UML

archetypes have been devised for classes of object-oriented design, they

379

11. Related Work

can be applied to classes in metamodel when they are appropriate. In the

scope of the reference structure approach, the classification according to

the archetypes takes place within metamodel modules. UML archetypes

and the reference structure approach are, therefore, not in competition

but complementary.

Siedersleben [Sie04] proposes a reference structure for software archi-

tectures, where components are categorized into so-called blood types

(technical, domain, and library). Similarly to the previously mentioned

approaches, the blood types propose a division of the modeling space. As

metamodels do not feature technical or library content, the blood types

do not apply to metamodeling.

11.3.5. Metamodeling Patterns

The reference structure approach promotes reuse of parts of DSMLs. The

paradigm layer (π) defines domain-independent patterns and constructs.

Therefore, works that propose patterns or metamodel construction through

pattern instantiation are related to the reference structure approach. Such

patterns can be provided in metamodel module repositories to enable their

reuse in the scope of the reference structure approach.

Pescador et al. [Pes+15] propose pattern-based development of DSMLs.

They propose a taxonomy of patterns into: domain patterns, design patterns,

concrete syntax patterns, dynamic semantic patterns, and infrastructure

patterns. Patterns are configurable through role cardinalities and feature

models. Their approach is supported by a tool, which is named DSL tao.

It composes not only the abstract syntax of patterns but also services and

graphical syntax. It is, however, not applicable in the scope of the reference

structure approach, as they do not focus on providing partial instance

compatibility between languages that share the same patterns.

Cho and Gray [CG11] present several metamodel design patterns. These

include classifier and relationship, typed relationships, and container. Emer-

son and Sztipanovits [ES06] propose the metamodel design patterns: com-

positionality, components and ports, state charts, data flow graphs, the

Proxy design pattern.

380

11.3. The Reference Structure Approach

More patterns can be found in the classic sources for object-oriented design

(e.g., Gamma et al. [Gam+95]). Not all of these patterns can be directly

transferred tometamodeling. Most will have to be adapted to fit into the con-

tainment tree of a metamodel. Others may not apply to metamodels at all.

11.3.6. Metamodel Quality Assurance

The reference structure approach of this thesis provides guidelines and con-

straints on themodularization and design of metamodels in order to increase

their quality. In the metamodeling research community, several approaches

deal with metamodel quality assurance. Their goal is also to increase the

quality of metamodels. Quality assurance approaches include metamodel

quality metrics, error and bad smell detection, and correctness analysis.

Quality assurance approaches were already presented in Section 11.1.

In contrast to quality assurance approaches, the reference structure con-

tribution takes a proactive approach. By prescribing structure guidelines,

constraints, and modularization concepts, it prevents unfavorable meta-

model structures. Quality assurance approaches, on the other hand, detect

problems after they manifested. Thus, quality assurance approaches are

not in competition to the reference structure from this thesis. They rather

complement each other and can, therefore, be employed together during

metamodel development and maintenance.

11.3.7. Coevolution

The reference structure approach of this thesis promotes amodularization of

legacy metamodels. Considerable research was conducted towards evolving

a metamodel together with the artifacts that are based on the metamodel.

Artifacts that can be coevolved include models, transformation, generators,

and software in general. Coevolution approaches do not offer guidance in

metamodel evolution, structuring, or modularization. They are, however,

useful when a legacy metamodel is modularized and adjusted according

to the reference structure. The effort for migrating the metamodel-based

artifacts to the new version of the metamodel is significantly reduced or

even entirely automated.

381

11. Related Work

Favre [Fav03] presents an overview of the dimensions of coevolution. Her-

rmannsdörfer and Wachsmuth [HW14] present a survey of model meta-

model coevolution approaches. Burger and Gruschko [BG10] evaluated

the metamodel modification types considering whether they break the in-

stances (i.e., models) of a metamodel. Burger and Toshovski [BT14] present

an approach to difference-based conformance checking for metamodels.

Other approaches are based on the logging of metamodel modifications.

Their approach, however, analyzes two arbitrary metamodels and needs

no further information. A metamodel M1 conforms to another metamodel

M2 if all instances of M1 are also instances of M2. Their approach can

be used, e.g., to determine whether coevolution effort is even necessary.

Levendovszky et al. [Lev+14] propose the Model Change Language (MCL)

[Nar+09] and a tool that performs model modifications according to specifi-

cations in MCL. Cicchetti et al. [Cic+08] propose an approach to automatic

coevolution that is based on automatic transformation generation. As input,

the approach needs a recorded difference model of the evolution that took

place in the metamodel. Herrmannsdoerfer also presents COPE [HBJ09;

Her11b], which is an approach to the coupled evolution of models and

metamodels. In COPE, metamodel modifications are recorded together with

their respective model migration operations.

11.3.8. Terminology in Related Approaches

Related language engineering approaches bring forth their terminologies.

This section elaborates, why this thesis defines some new terms in Sec-

tion 6.3 instead of relying on existing terminology.

The language workbench MontiCore [HR17; KRV10] uses the terms lan-
guage components, and component grammars to address the abstract syntax

definition of language components. This thesis uses the term of modules

instead of components, as a metamodel module cannot be instantiated mul-

tiple times (in contrast to the component concept from Component-based

Software Development [Reu+16]). Of course, it is possible to have multiple

other metamodel modules depend on a metamodel module M, but on the

type level, M is the same from the perspective of all dependent metamodel

modules. In the scope of the Concern-oriented Language Development

(COLD) approach [Com+18], a language concern is a configurable unit of

382

11.4. Conclusion

reuse that provides multiple perspectives (abstract & concrete semantics,

...) of a language. Thus, in the terminology of COLD, this thesis aims

mainly at realizations of the abstract syntax perspective (i.e., abstract syn-

tax facets). This thesis still uses the term metamodel module, as it more

strongly conveys that modularization takes place and the individual pieces

are only puzzle pieces in the big picture. In addition to explicit dependency

control, this is also the case why this thesis does not merely refer to them

as metamodels as Degueule does in his approach [Deg+15].

Based on the general meaning of feature in the context of software, this

thesis uses the term language feature as a unit of use. The term abstract

syntax facet from COLD is not used to emphasize this aspect. By using

the term language feature, the separation of the language part, i.e., the

abstraction of a thing to be modeled, from its implementation in a meta-

model module is emphasized.

11.4. Conclusion

This chapter discussed work that is related to the contributions of this thesis.

For the metamodeling bad smells contribution, these are metamodel quality

assurance approaches. Works that survey metamodel extension mecha-

nisms are related to the metamodel extension contribution. Related to the

reference structure contribution are language engineering, metamodel mod-

ularization and modularity, metamodel quality assurance, metamodeling

patterns, and coevolution approaches. The remainder of this section sum-

marizes the differentiation of these contributions from their related work.

The bad smell contribution of this thesis is related to other metamodel

quality assurance approaches, as they are all concerned with improving the

quality of metamodels. Quality assurance approaches can be categorized

into approaches that detect bad smells and errors in metamodels, as well

as works that investigate metamodel quality using metrics.

Metric-driven quality approaches strive to assess the quality of metamodels

in order to assess changes and track the quality throughout evolution. The

bad smell contribution of this thesis, on the other hand, detects concrete

spots in metamodels that should be improved. Therefore, both approaches

383

11. Related Work

have different takes on improving quality. They can, however, be applied

in combination during the evolution of a metamodel.

Approaches that detect problems in metamodels are more closely related to

the bad smell contribution of this thesis. In the bad smell contribution, a

specific subset of metamodeling problems, namely bad smells, is investi-

gated. The contribution presents a catalog of EMOF-based bad smells and

examines their consequences. Some related approaches have a different

focus. They detect semantic or mere validity errors or do not work for

EMOF. Other related approaches only offer implementations of known

metamodeling smells. They do not present any evidence nor discussion

on why the bad smells that they treat are detrimental.

In the metamodel extension contribution of this thesis, lists of extension

mechanisms and comparison criteria were assembled. The extension mecha-

nisms were evaluated regarding the comparison criteria. Works that survey

metamodel extension or related mechanisms are, therefore, related.

Such works, however, do either not focus on EMOF, or another kind of

focus compared to the metamodel extension contribution. Some include

mechanisms that merely modify models and do not enable the modeling

of new information. Others provide mechanisms that do not implement

external additions as the presented mechanisms are intrusive, do not offer

instance compatibility, or independent extensibility. Some only mention

mechanisms without any evaluation or in-depth discussion.

The closest related work for the metamodel extension contribution is the

dissertation of Braun [Bra17]. It was partly developed in parallel to this

thesis. This thesis confirms a part of his findings. It does, however, not focus

on EMOF-based unintrusive mechanisms. This allows this thesis to set up

more specific comparison criteria. In addition to Braun’s findings, four new

extension mechanisms with several variants and eight new comparison

criteria are presented and evaluated.

The reference structure contribution of this thesis is related to language

engineering, and language product line approaches. The commonalities

are language reuse, composition, and variability. The related approaches,

however, are either not applicable to metamodels, or do not ensure instance

compatibility and independent extensibility. In contrast to the reference

384

11.4. Conclusion

structure, it is also not their focus to guide modularizations to improve

maintainability, and also do not consider domain specifics.

The reference structure approach proposes metamodel modularity concepts,

enforces modularity in metamodels, and guides metamodel modularization

and design. In these aspects, the reference structure approach is related

to metamodel modularization and clustering approaches, and modular-

ization concepts for metamodels and related artifacts. Some metamodel

splitting and clustering approaches do not consider the usage of the lan-

guage. Such modularizations, therefore, do not enable need-specific use

and reuse. These approaches also do consider domain specifics. Other

approaches do not apply to a single metamodel but extract commonalities

from a set of metamodels. This is not the scope of the reference structure

approach. It, however, can be used in conjunction if a family of metamodel

should be consolidated. Other approaches do not focus on abstract syntax.

They, therefore, do not provide independent extensibility, and instance com-

patibility. Further works provide modularity concepts but do not offer any

guidance in modularization. Lastly, there is much work on the modularity

of artifacts that are related to or based on metamodels. This is not the scope

of the reference structure but should be considered complementary.

The reference structure approach, as well as metamodel quality assurance

approaches, strive to improve the quality of metamodels. Quality assurance

approaches, on the one hand, support metamodel development reactively.

They warn if problems in the metamodel are detected or a quality indicator

drops below a threshold. The reference structure approach, on the other

hand, enforces modularity and provides guidance to prevent problems in

metamodels proactively.

In the paradigm layer of the reference structure, patterns can be defined to

be reused in higher layers. There are also other works that propose patterns.

The two types of approaches have in common that they endorse reuse and

more specifically pattern reuse. Some works simply offer patterns. These

can be reused within the scope of the paradigm layer of an instance of the

reference structure. Another approach offers intrusive pattern instantiation.

It can be used in the scope of the reference structure approach. However,

only in the initial design of the paradigm layer, as its goal is not to produce

a variable metamodel that offers instance compatibility.

385

11. Related Work

The reference structure approach proposes a process to modularize mono-

lithic legacy metamodels. Coevolution approaches are related, as they

investigate the evolution of a metamodel. They also support the auto-

matic or at least semiautomatic evolution of artifacts that are based on

the metamodel. They do not offer guidance towards structuring or mod-

ularization of metamodels as the reference structure approach does. The

automatic coevolution of metamodel-based artifacts is out of the scope

of the reference structure approach, which focuses on metamodels. Co-

evolution approaches can, however, be applied in combination with the

modularization of a legacy metamodel.

386

12. Conclusion

This chapter presents the conclusion of the three main contributions of

this thesis. Each contribution is summarized, and it is explained how it

addresses the challenges that Chapter 3 presented. Limitations and future

work are also presented for each contribution. Section 12.1 contains the

conclusion for themetamodel bad smell contribution. Section 12.2 concludes

the metamodel extension contribution. Section 12.3 presents the conclusion

for the reference structure approach.

12.1. Bad Smells and Anti-Patterns
in Metamodeling

This section concludes the metamodel bad smells contribution. Next, Sec-

tion 12.1.1 summarizes the contribution and addresses its research questions.

Section 12.1.2 addresses its limitations. Section 12.1.3 presents future work.

12.1.1. Summary

The chapter of the metamodel bad smell contribution first defined the under-

lying concepts of metamodel problems: validity error, semantic error, and

design flaw. In contrast to these three, a bad smell indicates a potential prob-

lem. The indicated problems mostly impair maintainability and are, thus,

design flaws. For some bad smells, the cause is a semantic error. A bad smell

has an indicator according to which it is identified. According to Arendt

[Are14] the indicator of a smell can be a metric violation or an anti-pattern.

RQ Ia (Bad Smells) from Section 4.1 asked what types of problems impair

the evolvability of metamodels. In the scope of this contribution, nineteen

387

12. Conclusion

bad smells for EMOF-based metamodels were collected. These smells were

either discovered through a metamodel review of the PCM or found and

transferred to metamodeling from a literature review of object-oriented bad

smells. None of these sources guarantee an exhaustive discovery of meta-

modeling bad smells. However, they complement each other. The identified

smells mainly concern the appropriateness of abstraction, modularization,

inheritance hierarchies, and relations between classes.

Five of the presented smells are exclusive tometamodels. The threemodular-

ity smells amongst these five smells, do also pose issues to object orientation.

However, as object orientation places another focus on modularity, these

smells are minor issues there.

RQ Ia (Bad Smells) also asked for the effects of the bad smells. Thus, for

each smell, the effect of a harmful occurrence is discussed. Some smells add

unnecessary complexity. Others impair understandability by obfuscating

design decisions or the intended structure of the metamodel. Some have

negative effects on coupling and cohesion of packages and metamodel files.

The causes of these smells are design flaws that have detrimental effects

on the maintainability metamodels. Three smells always indicate semantic

errors, if an occurrence is not benign. Occurrences of four other smells

may include a semantic error as their cause.

RQ Ib (Smell Identification) asked how the smells could be detected and

which of them could be detected automatically. For each smell, its detec-

tion was explained and whether it can be performed automatically. An

automatic detection is possible for 17 smells. For 12 smells, an automatic

detection was implemented. For two of these smells, the detections of two

variants were implemented, which results in a total of 14 implemented

detections. This was done by extending the metamodel quality assurance

tool EMF Refactor [Are14].

RQ Ic (Smell Resolution) asked how the smells can be corrected. For

each smell, corrections were presented. Two smells can be detected and

fixed in a fully automated way. The 15 other automatically detectable

smells cannot be automatically resolved. Either the correction cannot be

performed automatically, or their detection suffers from false positives,

and, thus, the detection results have to be manually reviewed so that no

benign occurrences are fixed.

388

12.1. Bad Smells and Anti-Patterns in Metamodeling

To evaluate the metamodel smell contribution, an explorative study was

performed. First, the implemented smell detections were performed on

the PCM. The resulting occurrences were inspected for their correctness

to evaluate the detection implementations. This, however, does not en-

sure that the detection does not miss any occurrences. To achieve this

remains future work. The reported occurrences were also inspected for

their harmfulness to evaluate whether a smell can indicate improvement

potential. Harmful smell occurrences were identified and corrected for 12

smell detections. Twenty-five corrections were performed to evaluate the

corrections of 13 detections. The benefit of the correction for the metamodel

was argued. The positive effect of the correction can be seen as a deficit

that is caused by the smell’s occurrence. Regarding the harmfulness of the

smells, this thesis, however, can only argue for plausibility. The explicit

validation of the effect of smells remains future work. After each correction

was executed, the smell detections were rerun to investigate whether the

correction was successful. All corrections removed the smell occurrence

that was targeted. This demonstrates the effectiveness of their correction

type in curing the respective smell.

The metamodel smell contribution yields several insights that are valuable

for this thesis as well as to metamodeling in general.

First of all, it answers the question of why monolithic metamodels are bad,

which addresses Problem 3 (Monolithic Metamodels). Between the pack-

ages of a metamodel, new dependencies can be created without limitation.

Monolithic metamodels are especially at risk. In monolithic metamodels, it

is tempting to generously introduce new dependencies as no constraints

have to be considered. They are, thus, prone to smells that include unnec-

essary or inconsistent dependencies. This includes especially the smells

Inconsistent Abstraction and Dependency Cycle.

The second important insight of the metamodel smells contribution is the

knowledge about the negative consequences of intrusive addition. This

addresses Problem 1 (Package Structure Erosion and Uncontrolled Growth

of Dependencies). Through intrusive addition, new abstractions are added

to the metamodel. To just add newmetamodel elements to the most relevant

parts of the metamodel may seem the easy option. With this approach,

however, the enforcement of modularity is often not taken into consid-

eration. When concepts are developed iteratively, they are first lumped

389

12. Conclusion

together with related concepts and then modularized as soon as they have

reached a sufficiently large size. In the initial development, the bound-

aries of the abstractions are often sufficiently present to the developer as

s/he is usually working on it in a confined period. Intrusive additions

over time, on the other hand, may be performed with longer pauses or

by different developers. Thus, it is more likely that it is overlooked that

a modularization should be performed.

A further problem of intrusive additions is the following. No matter how

good the initial structure of a metamodel may be, if new abstractions are

added intrusively, the structure may be either forgotten or misunderstood.

If new abstractions are added inconsistently to the existing packages and

classifiers regarding the boundaries of concepts and their abstraction, the

structure of the metamodel and its understandability suffer. Metamod-

els that are subject to repeated intrusive additions are, therefore, prone

to smells that concern modularity and abstraction levels. This includes

the smells Inconsistent Abstraction, Language Feature Scattering, God

Classes, and Blob Packages.

The beforehand described problems get even worse in combination. As they

do not present a modular structure, monolithic metamodels are prone to in-

trusive additions. Over time, the problems of unnecessary and inconsistent

dependencies and inadequate modularity build up.

The consequences of bad smells are even worse if the metamodel is long

living, is evolved and the smells accumulate without being fixed. Metamod-

els tend to live in metamodel-centric software systems. Many tools, like

editors, analyzers, and simulators, are built upon them. If the metamodel is

changed, all tools have to be fixed. The effort caused by resolving smells

in the metamodel increases over time, as new dependencies pile up. Thus,

smells should be fixed as early as possible.

To proactively counter bad smells, several countermeasures are possible.

Metamodels should be designed in a more modular way. Monolithic meta-

models should be considered for modularization. With standard EMOF,

however, it is not always straightforward how to divide abstractions. There-

fore, the next contribution (Chapter 5) deals with new ways to couple

metamodel files. The insights of Chapter 5 can further be used to counter

the adverse effects of intrusive additions by instead performing external

extension. A modular metamodel also needs an explicit structuring to be

390

12.1. Bad Smells and Anti-Patterns in Metamodeling

hardened against degradation over time, which is caused by loss of knowl-

edge and ignorance for the structure. This is where Chapter 6 proposes its

solution by a layering according to levels of abstraction and using an explicit

way to express the module structure and the relations between the modules.

For each smell, this section explained how it might come into being. Some

smells are built in by mere carelessness or lack of knowledge. Therefore,

knowledge of these metamodel smells is very valuable to metamodel devel-

opers. Other smells, however, do only manifest with time, when multiple

evolution steps have been performed (some of them in a shortsighted man-

ner). Thus, it is beneficial to include regression testing into continuous

integration. With every new change to the metamodel that is committed to

the source repository, the smell detection should be executed. If new smells

occur, a warning should be generated. In addition, it can be beneficial to

generate a report of all smell occurrences. It can also be beneficial to flag

persisting smells that are benign as such. This way, they do not have to

be considered every time the report is inspected. From time to time, how-

ever, it might be worthwhile to consider even the smells that are flagged

as benign, as the context of the occurrence might have changed, and the

occurrence could have turned into an adverse one.

12.1.2. Limitations

This thesis focuses on EMOF-based metamodels. Section 1.1 gives the

rationale behind this decision. Therefore, the metamodel smell contribution

also focuses on bad smells of EMOF-based metamodels.

Metamodel developers that work on metamodel to correct bad smells need

expertise in metamodeling, and the necessary domain knowledge to un-

derstand the metamodel. This expertise and knowledge are necessary to

judge whether a smell is harmful and to decide which type of correction is

suited. This is, however, not a bigger requirement than what is imposed on

metamodel developers in order to do plain metamodeling. The detection,

on the contrary, makes them more efficient and reduces their required

knowledge about the bad smells.

391

12. Conclusion

12.1.3. Future Work

Future work to the contribution of metamodel bad smells includes the dis-

covery of further smells. They may be found in reviews of other metamodel

reviews and further transfer from object orientation or other related disci-

plines. Sometimes, bad smells can be formulated merely from experience,

e.g., during metamodeling when a metamodel developer notices that a

particular constellation is detrimental.

The effect of smells can be further validated. This could either be done

by correlating smell occurrences to metamodel metrics, manual quality

assessments, or by conducting user studies. A validation by a correlation

to metrics is, however, always only as valid as the metrics that are used.

In a user study, for example, metamodel comprehension or how well an

evolution scenario is performed could be measured. The results of a meta-

model without a smell occurrence could be compared to a version of the

metamodel with the occurrence.

Further future work entails the determination of proper thresholds for

the metric-based smell detections. By manually inspecting metamodels,

sensible thresholds could be determined. This is, however, not scientific. For

scientific sound values, the thresholds have to be validated. This validation

could be performed analogously to the validation of the negative effect of

smells, i.e., correlations to metamodel quality metrics or by user studies.

Future work also entails automation tool support. Detections for the re-

maining smells that can be automatically detected can be implemented.

Fully automated resolutions could be implemented for the smells that allow

automatic detection, automatic resolution, and are always beneficial to

correct. The current tool support (EMF Refactor) would also benefit from an

API that allows headless execution, e.g., for automated regression tests. A

more ambitious task is to develop a guidance system that presents possible

corrections for smell occurrences that were found to the metamodel devel-

oper. By selecting a correction, the system could automatically perform

the changes necessary to resolve the occurrence.

In the evaluation, some smells were not completely covered. For the Wide

Hierarchy detection, the evaluation goal G1 was not evaluated, as it did

not yield any harmful occurrences. Dead Classifier (Dead Enum) did not

392

12.2. Metamodel Extension

yield any occurrences, and, thus, G1, G2, and G3 were not evaluated. G1

is concerned with the meaningfulness of the definition of a smell. G2 is

concerned with the correctness of the smell’s detection. G3 is concerned

with the appropriateness of the correction of a smell. By conducting further

evaluations on other metamodels, harmful occurrences should be searched

for these two smells to evaluate the missing evaluation goals.

The evaluation of the metamodel smell contribution evaluates only the

corrections that were performed. In general, there may be several types of

corrections for one smell. In future studies, all corrections options can

be evaluated.

12.2. Metamodel Extension

This section concludes the extensionmechanism contribution. Section 12.2.1

summarizes the contribution and draws conclusions regarding the chal-

lenges of Chapter 3. Section 12.2.2 recaps its limitations. Section 12.2.3

presents future work, which builds on the contribution.

12.2.1. Summary

Section 5.1 poses several challenges for metamodel extension. One of them

is the clarification of the addition type concept, which is presented in

Section 5.2. Additions can be intrusive, branched, or external. An addition

can either be a new subclass or a new class property to an existing class.

External additions of properties can be implemented in several ways. These

are the extension mechanisms that were investigated in the evaluation.

The metamodel extension contribution addresses the following challenges,

which were presented in Section 5.1 and Chapter 3. Of course, the con-

tribution addresses Problem 7 (Metamodel Coupling), as it thoroughly

investigates ways to compose modular metamodels. All extension mech-

anisms that were investigated provide the means to couple metamodel

files without being intrusive. This is ensured by the selection criterion

S1 (Unintrusiveness). They, therefore, enable modularity of metamodels

and prevent several problems that were stated by Problem 3 (Monolithic

393

12. Conclusion

Metamodels) and Problem 1 (Package Structure Erosion and Uncontrolled

Growth of Dependencies). By using the presented mechanisms, it is possible

to factor out optional parts of classes and metamodels into optional external

extensions. Problem 1 is also addressed by the Applicable without Prepara-

tion comparison criterion. Extension mechanisms that require preparation

cause minimal erosion, if their prerequisites are not already fulfilled. Exten-

sion mechanisms that require no preparation cause no erosion. Problem 8

(Instance Incompatibility) is addressed by the Model Unintrusiveness com-

parison criterion and by the selection criterion S2 (Instance Compatibility).

S2 ensures that the extensions do not cause insurmountable incompatibility

of extended models to the original tooling and metamodel. If the Model

Unintrusiveness comparison criterion is not fulfilled for an extension mech-

anism, technical workarounds have to be implemented in order to support

the forward compatibility of the original tools and metamodels. Problem 9

(Incompatible Extensions) is addressed by the Orthogonality comparison

criterion. All extension mechanisms except Direct Inheritance support the

criterion. Metamodel extension enables to form a common base for related

languages and to separate abstract and specific metamodel parts. This paves

the way for the third contribution (see Chapter 6) of this thesis to address

Problem 4 (Commonalities in Related Languages), Problem 5 (Tool-specific

Metamodel Content), Problem 6 (Generality Compromise), and Problem

10 (Feature Overload in Metamodel-based Tools).

Section 5.1 specifies the single research question that drives the metamodel

extension contribution. RQ II (Extension Mechanism Comparison) asks

about the advantages and disadvantages of the metamodel extension mech-

anisms. In this evaluation, six extension mechanisms (11 variants in total)

were evaluated according to 11 comparison criteria. No extension mecha-

nism dominates the others in all comparison criteria. They instead have

different advantages and shortcomings. These cannot be weighted against

each other so that no single score can be computed for the extension mech-

anisms. They rather are suited for specific circumstances. Some extension

mechanisms even complement each other. A decision support of how to

select an appropriate extension mechanism can be found in Section 8.2.2.

By using external extensions, some of the metamodeling bad smells that

were investigated by Chapter 4 can be corrected. The extends relation

enables two important refactorings: Dependency Inversion (Section 6.5.1.2)

and Class Split (Section 6.5.1.1). These two refactorings are needed to correct

394

12.2. Metamodel Extension

several smells. Inconsistent Abstraction requires Dependency Inversion to

redirect the reference that violates abstraction levels. To correct a God Class

smell, a Class Split can be performed to separate concerns. To split a Blob

Package, classes may need to be split to separate concerns and dependencies

might have to be inverted to establish a meaningful dependency direction

between the two new packages. Dependency Cycles can be fixed using

Dependency Inversion or Class Splits. To split a Metamodel Monolith, De-

pendency Cycles that will cross the metamodel file bounds have to be fixed.

The extends relation is a solution to the problem of orthogonal classification

dimensions. It, therefore, helps to correct Missing Hierarchy smells.

12.2.2. Limitations

There are two sources of limitations to the metamodel extension contribu-

tion: the focus on EMOF-based mechanisms and the filtering of mechanisms

according to the selection criteria (see Section 5.3). These two sources of

limitations are explained in the following.

The reference structure approach, which is the main contribution of this

thesis, is based on EMOF. Section 1.1 gives the rationale behind this decision.

For this reason, the metamodel extension contribution is also focused on

EMOF-based mechanisms. This focus, however, brings another advantage.

The comparison criteria are applicable to all extension mechanisms, and

essential criteria are already specified. Some comparison criteria might not

apply to extension mechanisms of other metalanguages. On the other hand,

extension mechanisms of other frameworks might need further comparison

criteria to be evaluated appropriately. The more similar another framework

is to EMOF, however, the more appropriate the comparison criteria that

were specified for EMOF become.

The selection criteria of Section 5.3 were specified to tackle several problems

(see Chapter 3). These criteria, of course, impose limitations on the scope

of the mechanism evaluation of Section 5.4. They include unintrusiveness,

instance compatibility, metamodel independence, and novelty.

395

12. Conclusion

12.2.3. Future Work

As stated by the limitations section, the investigated extension mechanisms

are EMOF-based. Possible future work may entail the investigation of

extension mechanisms of other modeling frameworks. Building on that

is the strive to either create or find a meta-language that supports perfect

extensibility according to the comparison criteria and that can support

the reference structure approach.

Other future work aims at the second limitation, which is the focus on mech-

anisms that fulfill the selection criteria (see Section 5.3). By loosening those

criteria, mechanisms are admitted to the evaluation, that were not yet in-

vestigated. If one is interested in, for example, intrusive mechanisms, mech-

anisms that do not preserve instance compatibility, or mechanisms that are

specific to a metamodel, these mechanisms could be surveyed and evaluated.

A possible comparison criterion that was not evaluated is coupling (see also

modularity by Braun [Bra17, p. 80]). It could still be evaluated in future

work. The criterion states how strongly the extension is coupled to the base

metamodel. This criterion was not prioritized in this thesis for the following

reason. Some extension mechanisms require an extra extension metamodel

that is referenced by the extends relation but has no reference to the base

metamodel. Others do not need such an explicit extension metamodel but

may use one optionally. If none is used, the extension is strongly coupled to

the base metamodel. The extension, thus, cannot be used in other contexts.

If a separate extension metamodel is used, the extension metamodel is not

coupled and thus reusable in other contexts. Thus, an easy workaround

exists, that prevents the shortcoming of strong extension coupling.

Several aspects were not in the focus of this thesis, as they are too technical.

In future work, they could be investigated. These aspects are the follow-

ing. The compatibility of different extension mechanisms amongst each

other could be investigated. It could be investigated whether an extension

mechanism allows the specification of constraints that also restrict the base

models and when these constraints apply. It is unclear how compatible

the extension mechanisms are with metamodel-based tools and how much

additional complexity they cause in those tools. This could be investigated,

for example, for transformation and editor frameworks.

396

12.3. The Reference Structure Approach

12.3. The Reference Structure Approach

This section concludes the reference structure contribution of this thesis.

The reference structure approach was presented by Chapter 6. It was

applied to case studies in Chapter 9 and validated in Chapter 10. This

section is structured as follows. Section 12.3.1 summarizes the contribution

and draws conclusions regarding the challenges of Chapter 3. Section 12.3.2

states the limitations of the reference structure contribution. Section 12.3.3

discusses future work.

12.3.1. Summary

The reference structure contribution transfers concepts and best practices

from related disciplines to metamodeling. It also proposes a novel approach

of modularizing a metamodel according to parts that are used together.

This includes restricting the dependencies between these parts to enforce

a meaningful coupling. It also uses the extends relation from Chapter 5

to assert the dependency inversion principle. The contribution addresses

several of the bad smells that were identified in Chapter 4. The addressed bad

smells are mainly those that cause lackingmodularity and rampant coupling.

The contribution also features the first reference structure for metamodels

of the field of quality analysis to improve their compatibility and reuse.

The reference structure approach proposes the concept of language fea-

tures. A language feature is a unit of use. This means, it is always used

as a whole and expresses the smallest possible concern of a user. The

language features of a metamodel are captured in a feature model. A fea-

ture model serves several purposes. When instantiating models, the tool

user can select the language features he wants to use. Developers use it

to navigate the metamodel, as it provides a high-level overview. More

specific, metamodel developers use it to place new extensions properly.

Features are implemented by so-called metamodel modules. This enforces

fine-grained modularity and separation of concerns. A metamodel module

is quite similar to a metamodel file. The difference is, however, that depen-

dencies to other metamodel modules have to be declared explicitly. With

mere metamodel files and packages, new dependencies can be introduced,

without any restriction, between packages that were not related before.

397

12. Conclusion

In long-living metamodels, this may lead to unnecessary couplings and

poor understandability. The need to declare module dependencies explicitly

forces metamodel developers to act more consciously when they introduce

new dependencies. Module dependencies are constrained through several

factors. The feature model defines what dependencies are allowed between

metamodel modules. For example, a parent relation allows a module depen-

dency from a module of the child feature to a module of the parent feature.

An additional constraint is that no cycles are allowed between metamodel

modules. To be able to implement these dependencies as prescribed, it is

necessary to use the metamodel extension relation to realize dependency

inversion. The reference structure approach also adopts the concept of

layers. The features and modules of a metamodel are partitioned into layers,

which further restrict module dependencies. Dependencies are only allowed

within the same or to more basic layers. This decouples the more abstract

layers from the more specific ones. The concepts and constraints of the

reference structure approach are supported and enforced by a tool, which

is named the Modular EMF Designer. To provide a technical foundation,

Appendix B maps the concepts of the reference structure approach onto

EMF and presents the Modular EMF Designer.

The concepts and constraints that were mentioned earlier apply to meta-

models in general. The reference structure contribution also provides a

specific reference structure for metamodels from the field of quality analysis.

It is a layering template for creating, reusing, and extending metamodels

from that field. To capture reoccurring themes in quality analysis metamod-

els, the approach proposes four layers: fundamental patterns and concepts

(paradigm); domain information, structure, and behavior (domain); quality

properties (quality); as well as analysis information and state (analysis). The

patterns from the paradigm layer can be reused in other domains. Upon the

domain layer, one or more quality characteristics can build. On the quality

layer, analysis modules can be based. This decouples the modules according

to their specificity. Domain modules should be free of quality information,

as there could be multiple quality dimensions. Quality modules should be

free of analyzer information, as there may be multiple analyzers.

The reference structure approach also provides three application processes.

They guide the design of new modular metamodels, the refactoring of

legacy metamodels to conform to the reference structure, and the extension

of modular metamodels. Several refactorings that are essential to apply the

398

12.3. The Reference Structure Approach

approach are provided. These fall into three categories: class refactorings,

module refactorings, and feature model refactorings.

In conclusion, the reference structure approach addresses several of the

challenges that Chapter 3 and Section 6.2 presented. The restriction of

dependencies addresses Problem 1 (Package Structure Erosion and Uncon-

trolled Growth of Dependencies), as it prevents dependency proliferation

and, thereby, unwanted coupling. The modularization according to lan-

guage features addresses Problem 3 (Monolithic Metamodels), as it induces

fine-grained modularization. The layered feature model provides an explicit

structure, which reduces erosion (Problem 1) and the loss of knowledge

(Problem 2: Loss of Knowledge) over time. By utilizing the metamodel

extensions, the reference structure approach also addresses the following

problems. As it enables to establish common bases for language families, it

addresses Problem 4 (Commonalities in Related Languages). This is done

by creating extension metamodel modules for language features that are

specific to a single language. Common language features result in meta-

model modules that are shared. For example, with the specific reference

structure for quality analysis, multiple quality modules may share the same

domain modules. Problem 5 (Tool-specific Metamodel Content) is also

addressed, as tool content can be factored out into optional extensions. E.g.,

the reference structure places these extension modules in the analysis layer.

By doing so, the analysis data does not clutter any quality modules, which

makes them more reusable. Problem 6 (Generality Compromise) is solved

by enforcing the dependency inversion principle, which decouples abstract

from specific modules. For example, the more abstract paradigm modules

are not dependent on any other layer. This makes them easy to reuse in

multiple domains, as they do not contain any domain-specific concepts.

The same is true for the domain and quality layers. As they are not de-

pendent concepts that are beyond their specificity, they can be reused in

more specific layers. On the other hand, the domain, quality, and analysis

layers are specific enough to be used without any more specific layer. For

example, even the domain layer can be used without quality and analysis

for the purpose of quality-agnostic design and documentation. By enabling

modularity in the metamodel, the reference structure approach enables the

development of modular editors. When using such an editor, the tool user is

only confronted with the language features, that he selected. Therefore, the

reference structure approach also addresses Problem 10 (Feature Overload

399

12. Conclusion

in Metamodel-based Tools). The selective activation or deactivation of

language features may also be provided on top a monolithic metamodel

by a monolithic editor that explicitly implements this variability. Such an

editor would, however, be less maintainable as a modular implementation.

The reference structure approach was applied in four case studies. In each

case study, a metamodel was refactored according to the guidelines and

restrictions of the approach. The case study metamodels are: (1) the Palladio

Component Model (PCM), which models component-based software archi-

tectures with a focus on performance and reliability; (2) a DSML to model

smart grid topologies and to analyze their resilience; (3) KAMP4Aps, which

is used to analyze the maintainability of automated production systems;

and (4) BPMN 2, which is used to model business processes.

The four case study metamodels were inspected in two evaluations. A

scenario-based evaluation analyzed whether the application of the ref-

erence structure improved the evolvability and understandability of the

metamodels. A metamodel utilization evaluation analyzed whether the ap-

plication of the reference structure improved the ability of the metamodels

to support need-specific dependence and selective use.

In the first evaluation, evolvability and understandability were broken down

to complexity, coupling, and cohesion. Several evolution scenarios were

collected for the case study metamodels. For each scenario, the relevant part

of the metamodel was approximated. On these parts, complexity, coupling,

cohesion were analyzed using entropy-based metrics. The metrics mea-

sure the information size and are better suited than mere counting metrics.

The results for coupling are mixed. This is, however, justifiable as after

applying the reference structure, the coupling is one-directional, and not

all the measured package coupling affects module coupling. Section 10.4.1.3

elaborates in detail why the coupling is benign. For complexity and cohe-

sion, the results report improvements across all evolution scenarios. From

these results, it can be concluded that the reference structure improves the

evolvability and understandability of metamodels.

In the second evaluation, models were collected for each case study meta-

model. Models reflect how the metamodel is used by the tool user and,

therefore, also on which parts of the metamodel tools are dependent. For

each model, the metamodel utilization was measured. The metamodel uti-

lization is the ratio of which parts of the metamodel need to be deployed

400

12.3. The Reference Structure Approach

and which parts thereof are used to load a model. For all models, the meta-

model utilization improved by applying the reference structure to their

metamodel. Thus, it can be concluded the reference structure improves

the ability of metamodels to provide need-specific dependence for tools

and extensions, and selective use for tool users.

12.3.2. Limitations

The reference structure approach has two scopes. One part of the approach

can be applied to metamodel-based language with EMOF-based metamodels.

Section 1.1 explains the rationale behind this limitation. The concrete

layering for metamodels of the field of quality analyses is, of course, only

applicable to metamodels of that field.

12.3.3. Future Work

This section discusses future work for the core contribution of this thesis,

which is the reference structure approach. Future work for the metamodel

bad smell and extension contributions are presented by Section 12.1.3 and

Section 12.2.3.

Some future work can be derived from the limitations, which the previous

section presented. As the alternative to metamodel-based languages are

grammar-based ones, the reference structure approach could be transferred

to the technical space of grammars. The approach could also be adapted for

other metalanguages. Metalanguages that enable deep modeling are inter-

esting candidates, as they can express multiple levels of instantiation. This

can be leveraged, for example, to instantiate patterns from the paradigm

layer and to refine the references between the participating classes. The spe-

cific four-layered reference structure for metamodels of the field of quality

analysis is, of course, only applicable to that field. New reference structure

could be provided for other fields, as the remaining modularity concepts of

the reference structure contribution apply to metamodels in general.

There is also future work that targets the modularization of legacy meta-

models. An initial suggestion for the language features of a metamodel

could be identified by analyzing a large set of its models. Classes that are

401

12. Conclusion

instantiated by groups of models may suggest a cohesive language fea-

ture. Such an approach needs to implemented and validated. If sufficient

numbers of models are not available, a clustering approach could be used

as an initial suggestion for a modularization (e.g., [SST13]). Clustering

according to coupling and cohesion could be investigated. It is, however,

unclear if it results in a modularization that is sufficiently similar to the

language features of a metamodel.

Further future work can be conducted to align the reference structure ap-

proach with related approaches. The reference structure approach could be

aligned with the concepts and process of the COLD initiative [Com+18].

Work on language interfaces [DCJ17] could be transferred to the refer-

ence structure approach. Language interfaces can be used to establish

information hiding and to decouple tools from specific metamodels. A

deep modeling metalanguage could be used to enable the instantiation

of patterns and refinement of their references to constrain their use to

the proper domain classes.

The concepts and constraints of the reference structure approach can also

be further developed and extended. It should be investigated, whether it

makes sense to restrict the types of relations between the layers of the

reference structure for metamodel from the field of quality analysis. For

example, it may be wrong to specify an extends relation from a class from

the domain layer to a class of the paradigm layer.

Regarding the feature model, the introduction of a new relation may be

worthwhile: the feature support relation. Some features are cross-cutting.

They provide extensions to other features. Such features have several

implementing metamodel modules that each extend the metamodel module

of another feature. This feature relation has to be implemented in the

Modular EMF Designer.

Regarding the application of the reference structure, future work involves

the modularization of more metamodels. Metamodels that support related

concepts could even be consolidated to share a common base. Such candi-

dates are, for example, the Palladio Component Model and the Descartes

Modeling Language. Themed metamodel module repositories may be con-

structed by identifying reoccurring metamodel modules. The metamodel

modules of a repository can then readily be reused when new related lan-

guages are created. In the future, instances of the reference structure will

402

12.3. The Reference Structure Approach

also be used to base further quality dimensions and analyses. For exam-

ple, ongoing research on software security could be based on the modular

version of the Palladio Component Model.

Metamodel-related tools, like transformation, simulators, analyses, and edi-

tors, are also involved in future work. The modularization and composition

of analyses and simulators is a whole field of research by itself. If such tools

could support the same modularity as metamodels, tool fragments could

be bundled with their metamodel modules. As demonstrated in one of my

publications [Str+16b], modular editors are possible. Prototypes for modu-

lar editors were implemented for the editor frameworks Sirius and Graphiti

in a masters thesis [Jun16b], which I supervised. Future work encompasses

an approach that unifies the development of modular metamodels and their

modular editors. Such future work further addresses Problem 10 (Feature

Overload in Metamodel-based Tools).

The tool support for the reference structure approach can be further im-

proved. A useful new feature would be the loading or identification of

metamodel modules that have incoming dependencies into the currently

displayed metamodel. Suchmetamodel modules that were are not present in

the current diagram may reside in the workspace or platform. Another new

feature would be to inform the user of broken dependencies in a modular

metamodel. These can currently be detected by validating the metamodel

modules individually. Detection or at least tagging of abstract, root, and ex-

tension metamodel modules could also be implemented. A module context

view that shows outgoing and incoming dependencies could be beneficial

when working with large modular metamodels.

403

Appendix

405

A. All Bad Smell Occurrences
in the PCM

This table shows all smell occurrences that were detected in the PCM in

the scope of the evaluation in Chapter 7. The thresholds that were used

for the detection of the metric-based smells can be found in Section 7.4.

Section 7.6 explains the structure of the table.

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
Missing Class: Primitive Obsession (1)
ProcessingResourceSpecifi-

cation

1 ✓ ✓ none

Missing Class: Shared Properties (4)
NormalDistribution,

LognormalDistribution

✓

CollectionDataType,

CompositeDataType

2 ✓ ✓ none

InfrastructureCall,

ResourceCall

3 ✓ ✓ −47 Dependency Cycles,

−1 Container Relation,

−2 God Classes

NotExpression,

NegativeExpression

✓

God Class (10)
PCMRandomVariable 16 ✓

continues on next page

Table A.1.:Metric Occurrences in the PCM and Corrections

407

A. All Bad Smell Occurrences in the PCM

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
AssemblyConnector ×

EntryLevelSystemCall 4 ✓ ✓ −58 Dependency Cycles,

−2 Container Relations,

+1 Multipath Hierarchy

ScenarioBehaviour 5 ✓ ✓ −3 Container Relations,

−241 Cycles

ImplementationComponent-

Type

×

VariableUsage 17 ✓
ExternalCallAction ×

InfrastructureCall 2, 19 ✓
ResourceCall 3 ✓
ProcessingResourceSpecifi-

cation

✓

Wide Hierarchy (2)
Entity 6 × ✓ +16 Deep Hierarchies

AbstractInternalControl-

FlowAction

7 × ✓ none

Deep Hierarchy (15)
BasicComponent, Implemen-

tationComponentType,

RepositoryComponent,

InterfaceProvidingRequir-

ingEntity,

InterfaceRequiringEntity,

ResourceInterfaceRequiring-

Entity, Entity,

Identifier

8 ✓ ✓∗4 −1 Multipath Hierarchy,

+8 Dependency Cycles,

−1 Concrete Abstract

Class

continues on next page

Table A.1.:Metric Occurrences in the PCM and Corrections

408

A. All Bad Smell Occurrences in the PCM

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
BasicComponent, Implemen-

tationComponentType,

RepositoryComponent,

InterfaceProvidingRequir-

ingEntity,

InterfaceRequiringEntity,

ResourceInterfaceRequiring-

Entity, Entity,

NamedElement

8 ✓

CompositeComponent,

ImplementationComponent-

Type,

RepositoryComponent,

InterfaceProvidingRequir-

ingEntity,

InterfaceRequiringEntity,

ResourceInterfaceRequiring-

Entity, Entity,

Identifier

8 ✓

CompositeComponent,

ImplementationComponent-

Type,

RepositoryComponent,

InterfaceProvidingRequir-

ingEntity,

InterfaceRequiringEntity,

ResourceInterfaceRequiring-

Entity, Entity,

NamedElement

8 ✓

continues on next page

Table A.1.:Metric Occurrences in the PCM and Corrections

409

A. All Bad Smell Occurrences in the PCM

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
CharacterisedVariable,

Variable, Atom, Unary,

Power, Product, Term,

Comparison,

BooleanExpression, IfElse,

Expression

✓

ProbabilityFunctionLiteral,

Atom, Unary, Power,

Product, Term, Comparison,

BooleanExpression, IfElse,

Expression

✓

Parenthesis, Atom, Unary,

Power, Product, Term,

Comparison,

BooleanExpression, IfElse,

Expression

✓

IntLiteral, NumericLiteral,

Atom, Unary, Power,

Product, Term, Comparison,

BooleanExpression, IfElse,

Expression

✓

DoubleLiteral,

NumericLiteral, Atom,

Unary, Power, Product,

Term, Comparison,

BooleanExpression, IfElse,

Expression

✓

continues on next page

Table A.1.:Metric Occurrences in the PCM and Corrections

410

A. All Bad Smell Occurrences in the PCM

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
BoolLiteral, Atom, Unary,

Power, Product, Term,

Comparison,

BooleanExpression, IfElse,

Expression

✓

StringLiteral, Atom, Unary,

Power, Product, Term,

Comparison,

BooleanExpression, IfElse,

Expression

✓

PowerExpression, Power,

Product, Term, Comparison,

BooleanExpression, IfElse,

Expression

9 ✓ ✓ −1 Speculative

Hierarchy

NotExpression, Unary,

Power, Product, Term,

Comparison,

BooleanExpression, IfElse,

Expression

✓

NegativeExpression, Unary,

Power, Product, Term,

Comparison,

BooleanExpression, IfElse,

Expression

✓

FunctionLiteral, Atom,

Unary, Power, Product,

Term, Comparison,

BooleanExpression, IfElse,

Expression

✓

DeadClass (9)
UnitRepository ×

continues on next page

Table A.1.:Metric Occurrences in the PCM and Corrections

411

A. All Bad Smell Occurrences in the PCM

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
DummyClass 10 ✓ ✓ none

ResourceInterfaceProviding-

RequiringEntity

11 ✓ ✓ −1 Multipath Hierarchy

UsageModel ×

Repository ×

ResourceRepository ×

System ×

ResourceEnvironment ×

Allocation ×

Multipath Hierarchy (10)
System, ComposedProvid-

ingRequiringEntity,

ComposedStructure,

InterfaceProvidingRequir-

ingEntity,

InterfaceRequiringEntity,

ResourceInterfaceRequiring-

Entity,

InterfaceProvidingEntity,

Entity

12 ✓ ✓ none

ExternalCallAction,

AbstractAction,

CallReturnAction,

CallAction,

FailureHandlingEntity,

Entity

continues on next page

Table A.1.:Metric Occurrences in the PCM and Corrections

412

A. All Bad Smell Occurrences in the PCM

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
ResourceInterfaceProviding-

RequiringEntity,

ResourceInterfaceProviding-

Entity,

ResourceInterfaceRequiring-

Entity,

Entity

8, 11 ✓

ResourceType, ResourceIn-

terfaceProvidingEntity,

Entity

13 ✓ ✓ none

CompositeComponent,

ImplementationComponent-

Type,

RepositoryComponent,

InterfaceProvidingRequir-

ingEntity,

InterfaceRequiringEntity,

ResourceInterfaceRequiring-

Entity,

InterfaceProvidingEntity,

ComposedProvidingRequir-

ingEntity,

ComposedStructure, Entity

✓

EmitEventAction,

AbstractAction, CallAction,

Entity

RecoveryActionBehaviour,

ResourceDemandingBe-

haviour,

FailureHandlingEntity,

Entity, Identifier

continues on next page

Table A.1.:Metric Occurrences in the PCM and Corrections

413

A. All Bad Smell Occurrences in the PCM

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
SubSystem, ComposedPro-

vidingRequiringEntity,

ComposedStructure,

InterfaceProvidingRequir-

ingEntity,

InterfaceRequiringEntity,

ResourceInterfaceRequiring-

Entity,

InterfaceProvidingEntity,

RepositoryComponent,

Entity

ResourceDemandingSEFF,

ResourceDemandingBe-

haviour,

Identifier

✓

InternalCallAction,

CallAction, AbstractInternal-

ControlFlowAction,

AbstractAction, Entity,

Concrete Abstract Class (2)
ResourceInterfaceRequiring-

Entity,

InterfaceRequiringEntity

14 ✓ ✓ none

ResourceInterfaceProviding-

Entity,

ResourceType

15 ✓ ✓ none

Container Relation (41)
PCMRandomVariable,

ClosedWorkload

16 ✓ ✓∗17 −830 Dependency

Cycles,

−17 Container Relations,

−1 God Class

continues on next page

Table A.1.:Metric Occurrences in the PCM and Corrections

414

A. All Bad Smell Occurrences in the PCM

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
PCMRandomVariable,

PassiveResource

16 ✓

PCMRandomVariable,

VariableCharacterisation

16 ✓

PCMRandomVariable,

InfrastructureCall

16, 3 ✓

PCMRandomVariable,

ResourceCall

16, 3 ✓

PCMRandomVariable, Para-

metricResourceDemand

16 ✓

PCMRandomVariable,

LoopAction

16 ✓

PCMRandomVariable,

GuardedBranchTransition

16 ✓

PCMRandomVariable,

SpecifiedExecutionTime

16 ✓

PCMRandomVariable, Event-

ChannelSinkConnector

16 ✓

PCMRandomVariable,

AssemblyEventConnector

16 ✓

PCMRandomVariable, Loop 16 ✓
PCMRandomVariable,

OpenWorkload

16 ✓

PCMRandomVariable, Delay 16 ✓
PCMRandomVariable,

CommunicationLinkRe-

sourceSpecification

16 ✓

PCMRandomVariable,

ProcessingResourceSpecifi-

cation

16 ✓

continues on next page

Table A.1.:Metric Occurrences in the PCM and Corrections

415

A. All Bad Smell Occurrences in the PCM

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
PCMRandomVariable,

CommunicationLinkRe-

sourceSpecification

16 ✓

ScenarioBehaviour,

UsageScenario

5 ✓

ScenarioBehaviour,

BranchTransition

5 ✓

ScenarioBehaviour, Loop 5 ✓
Parameter,

InfrastructureSignature

✓

Parameter,

OperationSignature

✓

Parameter, EventType ✓
Parameter,

ResourceSignature

✓

VariableUsage, UserData 17 ✓ ✓∗9 −762 Dependency

Cycles,

−9 Container Relations,

−1 God Class

VariableUsage, CallAction 17 ✓
VariableUsage,

SynchronisationPoint

17 ✓

VariableUsage,

CallReturnAction

17 ✓

VariableUsage,

SetVariableAction

17 ✓

VariableUsage, SpecifiedOut-

putParameterAbstraction

17 ✓

VariableUsage,

AssemblyContext

17 ✓

continues on next page

Table A.1.:Metric Occurrences in the PCM and Corrections

416

A. All Bad Smell Occurrences in the PCM

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
VariableUsage,

EntryLevelSystemCall

17, 4 ✓

VariableUsage,

EntryLevelSystemCall

17, 4 ✓

VariableCharacterisation,

VariableUsage

✓

AbstractAction, ResourceDe-

mandingBehaviour

20 ✓

ResourceDemandingBe-

haviour,

AbstractLoopAction

✓

ResourceDemandingBe-

haviour,

AbstractBranchTransition

✓

ForkedBehaviour,

SynchronisationPoint

✓

ForkedBehaviour,

ForkAction

20 ✓

ResourceContainer,

ResourceEnvironment

✓

ResourceContainer,

ResourceContainer

✓

Obligatory Container Relation (44)
ResourceProvidedRole,

ResourceInterfaceProviding-

Entity

✓

ResourceRequiredRole,

ResourceInterfaceRequiring-

Entity

✓

Connector,

ComposedStructure

✓

continues on next page

Table A.1.:Metric Occurrences in the PCM and Corrections

417

A. All Bad Smell Occurrences in the PCM

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
ResourceRequiredDelega-

tionConnector,

ComposedStructure

✓

EventChannel,

ComposedStructure

✓

AssemblyContext,

ComposedStructure

✓

Workload, UsageScenario 18 ✓ ✓ −3 Dependency Cycles

UsageScenario, UsageModel ✓
UserData, UsageModel ✓
AbstractUserAction,

ScenarioBehaviour

✓

BranchTransition, Branch ✓
PassiveResource,

BasicComponent

✓

RepositoryComponent,

Repository

✓

ProvidedRole,

InterfaceProvidingEntity

✓

DataType, Repository ✓
Interface, Repository ✓
RequiredCharacterisation,

Interface

✓

EventType, EventGroup ✓
InfrastructureSignature,

InfrastructureInterface

✓

RequiredRole,

InterfaceRequiringEntity

✓

OperationSignature,

OperationInterface

✓

continues on next page

Table A.1.:Metric Occurrences in the PCM and Corrections

418

A. All Bad Smell Occurrences in the PCM

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
InnerDeclaration,

CompositeDataType

✓

ResourceSignature,

ResourceInterface

✓

ResourceType,

ResourceRepository

✓

SchedulingPolicy,

ResourceRepository

✓

ResourceInterface,

ResourceRepository

✓

InternalFailureOccurrence-

Description,

InternalAction

✓

ExternalFailureOccurrence-

Description,

SpecifiedReliabilityAnnota-

tion

✓

FailureType, Repository ✓
AbstractBranchTransition,

BranchAction

✓

ServiceEffectSpecification,

BasicComponent

✓

ResourceDemandingInter-

nalBehaviour,

ResourceDemandingSEFF

✓

SynchronisationPoint,

ForkAction

✓

InfrastructureCall, Abstract-

InternalControlFlowAction

19 ✓ ✓ −1 God Class,

−10 Dependency Cycles

ResourceCall, AbstractInter-

nalControlFlowAction

✓

continues on next page

Table A.1.:Metric Occurrences in the PCM and Corrections

419

A. All Bad Smell Occurrences in the PCM

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
ParametricResourceDe-

mand,

AbstractInternalControl-

FlowAction

✓

RecoveryActionBehaviour,

RecoveryAction

21 ✓

SpecifiedQoSAnnotation,

QoSAnnotations

✓

QoSAnnotations, System ✓
SpecifiedOutputParameter-

Abstraction,

QoSAnnotations

✓

LinkingResource,

ResourceEnvironment

✓

ProcessingResourceSpecifi-

cation,

ResourceContainer

✓

CommunicationLinkRe-

sourceSpecification,

LinkingResource

✓

AllocationContext,

Allocation

✓

Specialized Relation (6)
ForkAction,

ForkedBehaviour

20 ✓ ✓∗5 −2 Container Relations,

−89 Dependency Cycles

ForkedBehaviour,

ForkAction

20 ✓

InternalCallAction,

ResourceDemandingInter-

nalBehaviour

20 ✓

continues on next page

Table A.1.:Metric Occurrences in the PCM and Corrections

420

A. All Bad Smell Occurrences in the PCM

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
RecoveryActionBehaviour,

RecoveryAction

21 ✓ ✓ −1 Obl. Container

Relation,

−1 Dependency Cycle

RecoveryAction,

RecoveryActionBehaviour

20 ✓

RecoveryAction,

RecoveryActionBehaviour

20 ✓

Speculative Hierarchy (5)
Expression, IfElse 9 ✓
ServiceEffectSpecification,

ResourceDemandingSEFF

22 × ✓ +68 Dependency Cycles

ComposedStructure,

ComposedProvidingRequir-

ingEntity

23 × ✓ +1 God Class

InterfaceRequiringEntity,

InterfaceProvidingRequir-

ingEntity

InterfaceProvidingEntity,

InterfaceProvidingRequir-

ingEntity

Dependency Cycles without Container (13)
EventChannelSourceCon-

nector,

EventChannel

24 ✓ ✓∗2 none

EventChannelSinkConnec-

tor,

EventChannel

24 ✓

AbstractUserAction ×

ResourceTimeoutFailure-

Type,

PassiveResource

25 ✓ ✓ none

continues on next page

Table A.1.:Metric Occurrences in the PCM and Corrections

421

A. All Bad Smell Occurrences in the PCM

Involved Classes C
or
re
ct
io
n
N
o.

H
ar
m
fu
l

Fi
xe

d

Consequence
Interface ×

CompositeDataType ×

HardwareInducedFailure-

Type,

ProcessingResourceType

✓

NetworkInducedFailure-

Type,

CommunicationLinkRe-

sourceType

✓

InternalFailureOccurrence-

Description,

SoftwareInducedFailure-

Type

✓

AbstractAction ×

RecoveryActionBehaviour ×

HDDProcessingResource-

Specification,

ResourceContainer

✓

ResourceContainer ×

Table A.1.:Metric Occurrences in the PCM and Corrections

422

B. Technical Foundation of the
Reference Structure Approach

Although my approach is widely based on EMOF, not all the concepts that

Section 6.3 proposes are supported by EMOF. The concepts that are already

supported by EMOF are classifiers, properties of classes and dependencies

to other metamodels. Concepts that are not supported are metamodel

modules, layers, dependency restriction, feature models and extension

relations, which Chapter 5 already covered.

This section is structured as follows. Appendix B.1 explains howmetamodel

modules can be supported by EMF. Appendix B.2 presents the graphical

editor which supports the remaining concepts.

B.1. Metamodel Modules

Ametamodel module can be realized as ametamodel file that is encapsulated

in an Eclipse plugin. In EMF, dependencies of a class to another package or

to a metamodel file that resides within the same plugin are not restricted.

The current graphical tooling (Ecore diagram editor) and the tree editor,

however, require an explicit declaration if the content of a metamodel

file from another plugin is referenced. After such a declaration is put

in place, the tooling adds the dependency to the dependency list of the

plugin. From then on, it is allowed to add new dependencies to classes

of that specific metamodel.

If a tool needs a particular set of language features, s/he merely has to

deploy the metamodel modules that implement the features. Eclipse then

automatically deploys further metamodel modules from dependency list

of the plugin.

423

B. Technical Foundation of the Reference Structure Approach

B.2. Tool Support: The Modular EMF Designer

The Modular EMF Designer1 (Modular Designer) [KS18] is a graphical edi-
tor that visualizes metamodel modules, module dependencies, layers, and

feature models. It also detects dependency violations and can perform

move refactorings of classifiers. In the scope of my approach, the Modular

Designer is used by metamodel architects.

Except for move refactorings, the editor is not intended to create or ma-

nipulate the internals of metamodel modules. This functionality is already

covered by the standard Ecore diagram editor. In conjunction, however,

both editors can be used to either create layered modular metamodels

or refactor an existing metamodel into a modular and layered form that

adheres to the constraints of the reference structure.

Figure B.1 shows a screenshot of the complete graphical user interface (GUI)

of the Modular Designer (except for a part of the palette). The different parts

of the GUI are: (1) the diagram pane, (2) the palette, (3) the model explorer,

and (4) the properties view. Figure B.2 exemplarily shows the notational

elements of a Modular Designer diagram. The diagram pane contains a

container that in turn contains the layers and modules of a metamodel. The

Modular Designer is intended to develop modular metamodel. Thus, the

container is always labeled “Modular metamodel”, even if the metamodel

that is displayed consists of only one module. The remainder of this section

explains the notation and functionality of the Modular Designer.

Layers The metamodel architect uses the Modular Designer to view, cre-

ate, delete, and name layers. An arbitrary number of layers can be

created.

Metamodel modules The Modular Designer visualizes metamodel mod-

ules. New empty metamodel modules can be created via the palette.

Existing metamodel modules can be loaded via the palette or by

drag and drop from the model explorer. If a metamodel module is

loaded into the diagram, all metamodel modules it depends on are

also loaded automatically. A metamodel module is always contained

1
The Modular Designer was developed in the scope of a bachelor’s thesis [Kec17] that I

supervised.

424

B.2. Tool Support: The Modular EMF Designer

1

23

4

Figure B.1.: Screenshot of the GUI of the Modular EMF Designer

in exactly one layer. Metamodel modules can be moved between

layers by drag and drop.

Module Dependencies The Modular Designer visualizes dependencies be-

tween metamodel modules. Transitive dependencies can be hidden

on demand. This helps to make large Modular Designer diagrams

clearer. Transitive dependencies may be omitted, as they are less im-

portant compared to non-transitive dependencies (see Section 6.3.3).

Profiles Like metamodel modules, existing EMF profiles can be loaded into

a Modular Designer diagram. Profiles are visualized like a depen-

dency between two metamodel modules with the exception that the

name of the profile and stereotype is shown in guillemets.

425

B. Technical Foundation of the Reference Structure Approach

M
odular m

etam
odel

 Layer 1

m
odule1

Som
ePackage

Som
eClass

m
odule3

N
otationD

em
o.RootFeature

N
otationD

em
o.M

andatoryChild N
otationD

em
o.O

ptionalChild

 Layer 2m
odule2

N
otationD

em
o.AlternativeChild1

N
otationD

em
o.AlternativeChild2

N
otationD

em
o.O

rChild1

N
otationD

em
o.O

rChild2
m

odule4
<

<
requires>

>

<
<

excludes>
>

<
<

requires>
>

<
<

excludes>
>

Figure B.2.:Notational Elements of Modular EMF Designer Diagrams

426

B.2. Tool Support: The Modular EMF Designer

Dependency Violations The Modular Designer reports on module depen-

dency violations. As seen in both figures, it highlights dependency

cycles (in red) and violations against the layering (in orange).

Module Dependency Details The Modular Designer provides detailed infor-

mation about the dependencies between two metamodel modules

(which classes are dependent with what kinds of dependencies). This

is shown in Figure B.1. The dependency from the Performance meta-

model module to HardwareComponents is selected and therefore

highlighted in blue. In the properties view (4) a text box lists all

class dependencies that constitute the module dependency. It dis-

tinguishes between the following types of dependencies: attribute,

superclass, reference, operation (return type and parameter), generic

type reference (type parameter bound or type argument).

Move Refactoring The Modular Designer can perform move refactorings

of classifiers and packages between metamodel modules. Usually,

metamodel modules are shown as boxes with an empty compartment.

The compartment is used to visualize packages and classifiers that

should be moved. In Figure B.2, a package and a class are shown in

the compartment of module1. Either the class or the package could

be drag-and-dropped on the compartment of another metamodel

module.

When theModular Designer performs a move refactoring, it automat-

ically updates all incoming dependencies from metamodel modules

that are loaded into the diagram. If such a refactoring is be per-

formed manually, all incoming dependencies break, and have to be

fixed manually. There are some ways to circumvent this; however,

the metamodel developer needs to know and link all metamodels

with incoming dependencies. Having all related metamodel modules

in a Modular Designer diagram is much more convenient, as the

developer is relieved of tracking incoming dependencies.

Feature Nodes, Relations In addition to the layered metamodel module de-

pendency graph, the Modular Designer enables to create and embed

feature models in a Modular Designer diagram. The feature models

are saved in model files that are separate from the metamodel mod-

ule dependency graphs. This decouples Modular Designer diagrams

427

B. Technical Foundation of the Reference Structure Approach

from feature models, and it is possible to define multiple feature

models for one metamodel module dependency graph.

The Modular Designer supports creating, renaming, and deleting

feature notes. The root node is highlighted by a dashed border. The

graphical notation is not yet fully developed and therefore differs

a bit from the usual feature model visuals. Optional child relations

are indicated by a little empty triangle as its arrowhead. Mandatory

child relations are indicated by a little black triangle as its arrowhead.

Requires and excludes relations are simple arrow connectors with

requires or excludes in guillemet. Alternative feature sets are shown

as a white rhomb on the border of the parent node. OR feature sets

are shown as a black rhomb. The child features of the feature set

are connected by lines to the rhomb. The metamodel modules that

implement a feature are connected with a dashed arrow.

B.3. Readily Available Tool Support

As already mentioned, besides the Modular Designer, further tools are

needed to work with the internals of metamodels. The metamodel tree edi-

tor and the graphical Ecore diagram editor are the main tools that are used

to create, modify and delete metamodel elements. There are two additional

Eclipse views, which are less well known, that can be used to explore a

metamodel and retrieve information about its elements. The Amalgam Con-
textual Explorer view provides useful information about the incoming and

outgoing dependencies of a class. Considering the Amalgam Contextual

Explorer shows information of a class C, it provides the following infor-

mation: classes that have a reference to C, superclasses of C, subclasses

of C, inherited attributes and references, and all classes C is dependent

on. Incoming dependencies are, however, only registered when they come

from within the same metamodel file or from a metamodel file that is a

dependency. The Show Reference View provides more detailed information

about incoming references. Whereas the Amalgam Contextual Explorer

shows all classes that have references to a class C, the Show Reference View

does not list classes that inherited a reference C and do not have own refer-

ences to C. For each class with references to C, it also provides detail of the

428

B.3. Readily Available Tool Support

references. It, however, has the same drawback as the Amalgam Contextual

Explorer, as it does not register classes from metamodel files that cannot be

reached by following dependencies. In conclusion, both views provide use-

ful information when working within the same metamodel file. In modular

metamodels, however, they are less helpful. Thus, the Modular Designer

provides in-depth summaries for metamodel module dependencies.

429

C. Evaluation Tooling and Setup

In this section, I briefly present the tool that I implemented to automate

the evaluation of the evolvability and the need-specific dependence and

use. I call the tool the Modular Reference Structure validation tool (MRS

validation tool). It hopefully proves useful to future research that has

to evaluate metamodel utilization or Allen’s metrics on metamodels. It

provides a GUI to configure the analysis and define its inputs. It automates

the processing of metamodel extensions and model files, the subgraph

extraction and the transformation from subgraphs into hypergraphs. It

passes the hypergraphs to the Architecture Evaluation Tool [JHH16; Jun16a]

(AET). The AET then evaluates Allen’s metrics on the hypergraphs. In

the remainder of this section, I describe (1) the setup of the MRS validation

tool, the AET and its dependencies, (2) the specific versions and revisions

that I used for the evaluation, and (3) an overview of the functionality of

the MRS validation tool and a brief user guide.

C.1. Installation

As the MRS validation tool is a very special purpose tool, there is no update

site for comfortable installation. The MRS validation tool and its dependen-

cies have to be installed manually. An advantage of the manual installation

is the explicit control over the versions of the dependencies of the MRS vali-

dation tool. This enables a more exact reproducibility of the validation setup.

Eclipse The MRS validation tool and its dependencies are Eclipse plugins.

I developed and used them with Eclipse Neon and Oxygen. I highly

suggest using the Modeling Tools Package of Eclipse, as it provides

many dependencies like the EMF.

431

C. Evaluation Tooling and Setup

AET All AET plugins have to be imported. These should be obtained from

my fork
1
.

Dependencies To get AET to compile, several plugins are required. The

Generator Composition (GEKO) Framework has to be installed
2
. All

Kieler Lightweight Diagrams have to be installed
3
(Ptolemy is not

needed). The Xcore SDK and m2e (Maven Eclipse integration) have

to be installed via the Eclipse releases update site. If any Maven

errors occur, Tycho connectors have to be installed. Import all AET

plugins.

MRS validation tool All plugin projects have to be imported from SVN
4
.

Runtime Instance To enable the MRS validation tool to read model files, the

respective plugins also have to be imported that carry the metamodel

and the model code. Finally, an inner eclipse instance can be started.

Within this instance, the MRS validation tool can be used.

C.2. Concrete Versions Used in the Evaluation

Results are expected not to change with future versions. To replicate the

exact results, however, the following version and revisions can be obtained.

• Eclipse Oxygen.2 Release version 4.7.2

• EMF SDK version 2.13.0.v20170609-0928

• MRS validation tool revision 12607

• AET commit a842ce1a3824a131b87b6c2f87ff425055463db8

• GEKO version 1.0.0.201801100455

• Xcore SDK version 1.5.0.v20170613-0242

1 https://github.com/MishaStrittmatter/architecture-evaluation-tool

(last visited 23.08.2019)

2 http://build.se.informatik.uni-kiel.de/eus/geco/snapshot (last visited 23.08.2019)

3 http://rtsys.informatik.uni-kiel.de/~kieler/updatesite/release_pragmatics_

2016-07/ (last visited 23.08.2019)

4 https://svnserver.informatik.kit.edu/i43/svn/palladio/misha.strittmatter/

ResearchProjects/MetamodelReferenceStructure/evaluationtooling/

(last visited 25.09.2019)

432

https://github.com/MishaStrittmatter/architecture-evaluation-tool
http://build.se.informatik.uni-kiel.de/eus/geco/snapshot
http://rtsys.informatik.uni-kiel.de/~kieler/updatesite/release_pragmatics_2016-07/
http://rtsys.informatik.uni-kiel.de/~kieler/updatesite/release_pragmatics_2016-07/
https://svnserver.informatik.kit.edu/i43/svn/palladio/misha.strittmatter/ResearchProjects/MetamodelReferenceStructure/evaluationtooling/
https://svnserver.informatik.kit.edu/i43/svn/palladio/misha.strittmatter/ResearchProjects/MetamodelReferenceStructure/evaluationtooling/

C.3. Using the Validation Tool

C.3. Using the Validation Tool

The GUI of my MRS validation tool can be started in the Eclipse toolbar by a

button that carries an icon that shows a pair of glasses. Figure C.1 shows the

GUI. The MRS validation tool supports several modes of operation. These

are subdivided into modes that compare two metamodels and modes that

analyze one metamodel only. The inputs that are required have to be speci-

fied in two ways. A project may be highlighted in the project explorer or

up to two metamodels have to be specified in the lower two control groups.

The control groups provide the PCM and mPCM as predefined metamodels.

Alternatively, a modular metamodel can be referenced by providing a prefix.

All projects from the workspace that start with the provided prefix are then

considered as part of the metamodel. Dependent metamodel modules are

automatically loaded. Therefore, at least the metamodel modules without

incoming dependencies have to be captured by the prefix. How inputs have

to be provided depends on the selected mode and is described in the info

tooltip beside the radio button of the mode. All comparison modes require

two metamodel versions to be specified through the two control groups.

The modes perform the following functionality.

Extension Comparison The extension comparison evaluates a series of

metamodel extension to extract affected classes. It then extracts

the relevant subgraphs and transforms them into hypergraphs to

evaluate Allen’s metrics. This is performed for two versions of a

metamodel. It requires the project that contains metamodel exten-

sions that are each contained in an own folder. A metamodel exten-

sion may provide several metamodel files if it originally consisted of

multiple metamodel modules.

Modification Comparison The modification comparison evaluates Allen’s

metrics on a subgraph that is determined by classes that are mod-

ified. A modification description consists of a list of classes that

are affected by the modification. This mode is performed on two

metamodel versions. It requires a project to be selected that contains

the modification descriptions.

Model Comparison The model comparison evaluates metamodel utilization

on two metamodel versions. It requires a project to be selected in

the project explorer that contains models.

433

C. Evaluation Tooling and Setup

Figure C.1.: The GUI of the MRS validation tool

Metamodel Comparison The metamodel comparison does not work on

subgraphs but on whole metamodels. It evaluates counting met-

rics, Allen’s metrics, and performs a dependency analysis on two

metamodel versions. No explorer selection is required.

Metamodel The metamodel mode performs the same functionality as the

metamodel comparison mode, but only on a single metamodel. It

only requires the projects that belong to the metamodel to be selected

in the project explorer.

434

C.3. Using the Validation Tool

Metamodel Folders The metamodel folders mode performs the same func-

tionality of the metamodel comparison on a series of potentially

different metamodels. It requires a project to be selected in the

project explorer that contains a collection of folders that contain

metamodel files.

In the comparison modes, the input (extension, modification list, and mod-

els) has to belong to the first specified metamodel version. The MRS vali-

dation tool processes the input and also applies it on the second specified

metamodel version. This means it is not necessary to reimplement the same

extension for the other version or to recreate each model with the second

metamodel version. However, this also means that when a metamodel

extension, a list of modifications, or the instantiated classes of a model are

processed, the MRS validation tool has to locate the affected classes or in

the case of model analysis types in the second metamodel version. Usually,

the MRS validation tool matches these classes one to one according to an

exact match of the classes names. The MRS validation tool, however, also

supports the handling of several special cases. If a class is split, an imply

matching exception can match multiple classes in the second metamodel

version. If several classes carry the same name or if the name of a class

is changed, a distinguish match exception can be used to map the classes

correctly. The matching exceptions are provided in a text file in the input

project that is selected in the project explorer.

435

Bibliography

[ABT10] Thorsten Arendt, Matthias Burhenne, and Gabriele Taentzer.

“Defining and checking model smells: A quality assurance

task for models based on the eclipse modeling framework”.

In: BENEVOL workshop. 2010.

[AG13] Colin Atkinson and Ralph Gerbig. “Harmonizing Textual

and Graphical Visualizations of Domain Specific Models”.

In: Proceedings of the Second Workshop on Graphical Model-
ing Language Development. GMLD ’13. Montpellier, France:

ACM, 2013, pp. 32–41. isbn: 978-1-4503-2044-3. doi: 10.1145/

2489820.2489823.

[AG16] Colin Atkinson and Ralph Gerbig. “Flexible Deep Modeling

with Melanee”. In: Modellierung 2016 - Workshopband. Ed.
by Stefanie Betz and Ulrich Reimer. Bonn: Gesellschaft für

Informatik e.V., Mar. 2016, pp. 117–122. url: https://dl.gi.

de/20.500.12116/843.

[AGF13] C. Atkinson, R. Gerbig, and M. Fritzsche. “Modeling Language

Extension in the Enterprise Systems Domain”. In: 2013 17th
IEEE International Enterprise Distributed Object Computing
Conference. Sept. 2013, pp. 49–58. doi: 10.1109/EDOC.2013.
15.

[AGG07] Edward B. Allen, Sampath Gottipati, and Rajiv Govindara-

jan. “Measuring size, complexity, and coupling of hypergraph

abstractions of software: An information-theory approach”.

English. In: Software Quality Journal 15.2 (2007), pp. 179–212.
issn: 0963-9314. doi: 10.1007/s11219-006-9010-3.

437

https://doi.org/10.1145/2489820.2489823
https://doi.org/10.1145/2489820.2489823
https://dl.gi.de/20.500.12116/843
https://dl.gi.de/20.500.12116/843
https://doi.org/10.1109/EDOC.2013.15
https://doi.org/10.1109/EDOC.2013.15
https://doi.org/10.1007/s11219-006-9010-3

Bibliography

[AKM13] Omar Alam, Jörg Kienzle, and Gunter Mussbacher. “Concern-

Oriented Software Design”. In: Proceedings of the 16th Interna-
tional Conference on Model-Driven Engineering Languages and
Systems - MODELS 2013. Ed. by AnaMoreira, Bernhard Schätz,

Jeff Gray, Antonio Vallecillo, and Peter Clarke. Vol. 8107. Lec-

ture Notes in Computer Science. Springer Berlin Heidelberg,

2013, pp. 604–621. isbn: 978-3-642-41532-6. doi: 10.1007/978-

3-642-41533-3_37.

[All02] Edward B. Allen. “Measuring graph abstractions of software:

an information-theory approach”. In: Software Metrics, 2002.
Proceedings. Eighth IEEE Symposium on. 2002, pp. 182–193.
doi: 10.1109/METRIC.2002.1011337.

[Are14] Thorsten Arendt. “Quality Assurance of Software Models

– A Structured Quality Assurance Process Supported by a

Flexible Tool Environment in the Eclipse Modeling Project”.

PhD thesis. 2014. doi: 10.17192/z2014.0357. url: https:

//archiv.ub.uni-marburg.de/diss/z2014/0357/pdf/dta.

pdf.

[ASB10] Colin Atkinson, Dietmar Stoll, and Philipp Bostan. “Or-

thographic Software Modeling: A Practical Approach to

View-Based Development”. In: Evaluation of Novel Ap-
proaches to Software Engineering. Ed. by LeszekA. Maci-

aszek, César González-Pérez, and Stefan Jablonski. Vol. 69.

Communications in Computer and Information Science.

Berlin/Heidelberg: Springer, 2010, pp. 206–219. isbn: 978-3-

642-14819-4.

[AT13] Thorsten Arendt and Gabriele Taentzer. “A Tool Environ-

ment for Quality Assurance Based on the Eclipse Modeling

Framework”. In: Automated Software Engineering 20.2 (June

2013), pp. 141–184. issn: 0928-8910. doi: 10.1007/s10515-

012-0114-7.

[Bac94] Paul Bachmann. Die analytische Zahlentheorie. Leipzig: Teub-
ner, 1894.

[Ban+00] Jerry Banks, John S. Carson, Barry L. Nelson, and David M.

Nicol. Discrete-Event System Simulation. 3rd ed. Prentice Hall,

2000. isbn: 0130887021.

438

https://doi.org/10.1007/978-3-642-41533-3_37
https://doi.org/10.1007/978-3-642-41533-3_37
https://doi.org/10.1109/METRIC.2002.1011337
https://doi.org/10.17192/z2014.0357
https://archiv.ub.uni-marburg.de/diss/z2014/0357/pdf/dta.pdf
https://archiv.ub.uni-marburg.de/diss/z2014/0357/pdf/dta.pdf
https://archiv.ub.uni-marburg.de/diss/z2014/0357/pdf/dta.pdf
https://doi.org/10.1007/s10515-012-0114-7
https://doi.org/10.1007/s10515-012-0114-7

Bibliography

[BBM96] V.R. Basili, L.C. Briand, andW.L. Melo. “A validation of object-

oriented design metrics as quality indicators”. In: Software
Engineering, IEEE Transactions on 22.10 (Oct. 1996).

[BC06] E. Bondarev and M.R.V. Chaudron. “Compositional Perfor-

mance Analysis of Component-Based Systems on Heteroge-

neous Multiprocessor Platforms”. In: Software Engineering
and Advanced Applications, 2006. SEAA’06. 32nd EUROMICRO
Conference on. IEEE. 2006, pp. 81–91. isbn: 0769525946.

[BCE08] Hongyu Pei Breivold, Ivica Crnkovic, and Peter J. Eriksson.

“Analyzing Software Evolvability”. In: 32nd Annual IEEE In-
ternational Computer Software and Applications Conference.
IEEE, July 2008, pp. 327–330. doi: 10.1109/COMPSAC.2008.50.

[BCR94] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach.

“The Goal Question Metric Approach”. In: Encyclopedia of
Software Engineering - 2 Volume Set. Ed. by John J. Marciniak.

John Wiley & Sons, 1994, pp. 528–532.

[BCW11] Kacper Bąk, Krzysztof Czarnecki, and Andrzej Wąsowski.

“Feature and Meta-Models in Clafer: Mixed, Specialized, and

Coupled”. In: Software Language Engineering. Ed. by Brian

Malloy, Steffen Staab, and Mark van den Brand. Berlin, Hei-

delberg: Springer Berlin Heidelberg, 2011, pp. 102–122. isbn:

978-3-642-19440-5.

[BE15a] Richard Braun and Werner Esswein. “Designing Dialects of

EnterpriseModeling Languages with the Profiling Technique”.

In: 2015 IEEE 19th International Enterprise Distributed Object
Computing Conference. Sept. 2015, pp. 60–67. doi: 10.1109/
EDOC.2015.19.

[BE15b] Richard Braun and Werner Esswein. “Extending the MOF for

the Adaptation of Hooks, Aspects, Plug-Ins and Add-Ons”.

In: Model and Data Engineering: 5th International Conference,
MEDI 2015, Rhodes, Greece, September 26-28, 2015, Proceedings.
Ed. by Ladjel Bellatreche and Yannis Manolopoulos. Cham:

Springer International Publishing, 2015, pp. 28–38. isbn: 978-

3-319-23781-7. doi: 10.1007/978-3-319-23781-7_3.

439

https://doi.org/10.1109/COMPSAC.2008.50
https://doi.org/10.1109/EDOC.2015.19
https://doi.org/10.1109/EDOC.2015.19
https://doi.org/10.1007/978-3-319-23781-7_3

Bibliography

[Bec+14] Steffen Becker, Stefan Dziwok, Christopher Gerking, Wilhelm

Schäfer, Christian Heinzemann, Sebastian Thiele, Matthias

Meyer, Claudia Priesterjahn, Uwe Pohlmann, and Matthias

Tichy. The MechatronicUML Design Method - Process and Lan-
guage for Platform-Independent Modeling. Tech. rep. tr-ri-14-
337. Version 0.4. Heinz Nixdorf Institute, University of Pader-

born, Mar. 2014.

[Bet+17] Lorenzo Bettini, Davide Di Ruscio, Ludovico Iovino, and Al-

fonso Pierantonio. “Edelta: An Approach for Defining and

Applying Reusable Metamodel Refactorings”. In: Proceedings
of MODELS 2017 Satellite Event co-located with ACM/IEEE
20th International Conference on Model Driven Engineering
Languages and Systems (MODELS 2017). Austin, Texas, USA:
CEUR-WS, Sept. 2017, pp. 71–80. url: http://ceur-ws.org/

Vol-2019/me%5C_4.pdf.

[Bet+19] L. Bettini, D. Di Ruscio, L. Iovino, and A. Pierantonio. “Quality-

Driven Detection and Resolution of Metamodel Smells”. In:

IEEE Access 7 (2019), pp. 16364–16376. issn: 2169-3536. doi:
10.1109/ACCESS.2019.2891357.

[BG10] Erik Burger and Boris Gruschko. “A Change Metamodel for

the Evolution of MOF-Based Metamodels”. In: Proceedings of
Modellierung 2010. Ed. by Gregor Engels, Dimitris Karagiannis,

and Heinrich C. Mayr. Vol. P-161. GI-LNI. Klagenfurt, Austria,

Mar. 2010, pp. 285–300. url: http://sdqweb.ipd.kit.edu/

publications/pdfs/burger2010a.pdf.

[BHP06] Tomáš Bureš, Petr Hnetynka, and František Plášil. “SOFA 2.0:

Balancing Advanced Features in a Hierarchical Component

Model”. In: Proceedings of the Fourth International Conference
on Software Engineering Research, Management and Applica-
tions (SERA). Washington, DC, USA: IEEE Computer Society,

2006, pp. 40–48. isbn: 0-7695-2656-X. doi: 10.1109/SERA.

2006.62.

[Bie06] Matthias Biehl. “APL-A Language for Automated Anti-Pattern

Analysis of OO-Software”. In: CS846: Source Transformation
Systems, Project Report. University ofWa terloo (2006).

440

http://ceur-ws.org/Vol-2019/me%5C_4.pdf
http://ceur-ws.org/Vol-2019/me%5C_4.pdf
https://doi.org/10.1109/ACCESS.2019.2891357
http://sdqweb.ipd.kit.edu/publications/pdfs/burger2010a.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/burger2010a.pdf
https://doi.org/10.1109/SERA.2006.62
https://doi.org/10.1109/SERA.2006.62

Bibliography

[BKR09] Steffen Becker, Heiko Koziolek, and Ralf Reussner. “The Palla-

dio component model for model-driven performance predic-

tion”. In: Journal of Systems and Software 82 (2009), pp. 3–22.
doi: 10.1016/j.jss.2008.03.066.

[BL03] Dirk Beyer and Claus Lewerentz. “CrocoPat: Efficient pattern

analysis in object-oriented programs”. In: Program Compre-
hension, 2003. 11th IEEE International Workshop on. IEEE. 2003,
pp. 294–295.

[Bra15] Richard Braun. “Towards the state of the art of extending

enterprise modeling languages”. In: 2015 3rd International
Conference on Model-Driven Engineering and Software Devel-
opment (MODELSWARD). Feb. 2015, pp. 1–9.

[Bra17] Richard Braun. “Extensibility of Enterprise Modelling Lan-

guages”. Doctoral Thesis. TU Dresden, Mar. 2017. url: nbn-

resolving.de/urn:nbn:de:bsz:14-qucosa-219873.

[Bro+12] Franz Brosch, Heiko Koziolek, Barbora Buhnova, and Ralf

Reussner. “Architecture-based Reliability Prediction with the

Palladio Component Model”. In: IEEE Transactions on Software
Engineering 38.6 (Nov. 2012), pp. 1319–1339. issn: 0098-5589.

doi: 10.1109/TSE.2011.94.

[Bro+98] William H. Brown, Raphael C. Malveau, Hays W. "Skip" Mc-

Cormick, and Thomas J. Mowbray. AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis. 1st. New York,

NY, USA: John Wiley & Sons, 1998. isbn: 0471197130.

[BSK15] Axel Busch, Misha Strittmatter, and Anne Koziolek. “As-

sessing Security to Compare Architecture Alternatives of

Component-Based Systems”. In: Proceedings of the IEEE Inter-
national Conference on Software Quality, Reliability & Security.
QRS ’15. Acceptance Rate (Full Paper): 20/91 = 22%. Vancou-

ver, British Columbia, Canada: IEEE Computer Society, 2015,

pp. 99–108. doi: 10.1109/QRS.2015.24.

[BT14] Erik Burger and Aleksandar Toshovski. “Difference-based

Conformance Checking for Ecore Metamodels”. In: Proceed-
ings of Modellierung 2014. Vol. 225. GI-LNI. Vienna, Austria,
Mar. 2014, pp. 97–104. url: http://sdqweb.ipd.kit.edu/

publications/pdfs/burger2014a.pdf.

441

https://doi.org/10.1016/j.jss.2008.03.066
nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-219873
nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-219873
https://doi.org/10.1109/TSE.2011.94
https://doi.org/10.1109/QRS.2015.24
http://sdqweb.ipd.kit.edu/publications/pdfs/burger2014a.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/burger2014a.pdf

Bibliography

[Bur14] Erik Burger. “Flexible Views for View-based Model-driven

Development”. PhD thesis. Karlsruhe, Germany: Karlsruhe

Institute of Technology, July 2014. isbn: 978-3-7315-0276-0.

doi: 10.5445/KSP/1000043437. url: http://digbib.ubka.

uni-karlsruhe.de/volltexte/1000043437.

[Bus+16] Axel Busch, Robert Heinrich, Jörg Henss, Martin Küster, Se-

bastian Lehrig, Misha Strittmatter, Max Kramer, Erik Burger,

and Ralf H. Reussner. “Architectural Viewpoints”. In: Mod-
eling and Simulating Software Architectures – The Palladio
Approach. Ed. by Ralf H. Reussner, Steffen Becker, Jens Happe,

Robert Heinrich, Anne Koziolek, Heiko Koziolek,Max Kramer,

and Klaus Krogmann. Cambridge, MA: MIT Press, Oct. 2016.

Chap. 3, pp. 37–73. url: http://mitpress.mit.edu/books/

modeling-and-simulating-software-architectures.

[Bus+18] Kiana Busch, Dominik Werle, Martin Löper, Robert Heinrich,

Ralf Reussner, and Birgit Vogel-Heuser. “A Cross-Disciplinary

Language for Change Propagation Rules”. In: 14th IEEE Inter-
national Conference on Automation Science and Engineering
(CASE). IEEE, 2018, pp. 1099–1104.

[Bus+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Som-

merlad, and Michael Stal. Pattern-Oriented Software Architec-
ture – A System of Patterns. Wiley & Sons, New York, NY, USA,

1996.

[But+18a] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard

Rumpe, and Andreas Wortmann. “Controlled and Extensible

Variability of Concrete and Abstract Syntax with Independent

Language Features”. In: Proceedings of the 12th International
Workshop on Variability Modelling of Software-Intensive Sys-
tems. VAMOS’18. Madrid, Spain: ACM, Jan. 2018, pp. 75–82.

url: http://www.se-rwth.de/publications/Controlled-a

nd-Extensible-Variability-of-Concrete-and-Abstract-

Syntax-with-Independent-Language-Features.pdf.

[But+18b] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard

Rumpe, and Andreas Wortmann. “Modeling Language Vari-

ability with Reusable Language Components”. In: Proceeed-
ings of the 22Nd International Conference on Systems and Soft-

442

https://doi.org/10.5445/KSP/1000043437
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043437
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043437
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://www.se-rwth.de/publications/Controlled-and-Extensible-Variability-of-Concrete-and-Abstract-Syntax-with-Independent-Language-Features.pdf
http://www.se-rwth.de/publications/Controlled-and-Extensible-Variability-of-Concrete-and-Abstract-Syntax-with-Independent-Language-Features.pdf
http://www.se-rwth.de/publications/Controlled-and-Extensible-Variability-of-Concrete-and-Abstract-Syntax-with-Independent-Language-Features.pdf

Bibliography

ware Product Line. SPLC ’18. Gothenburg, Sweden: ACM, 2018,

pp. 65–75. isbn: 978-1-4503-6464-5. doi: 10.1145/3233027.

3233037.

[BV10] Manuel F Bertoa and Antonio Vallecillo. “Quality attributes

for software metamodels”. In: Proceedings of the 13th TOOLS
Workshop on Quantitative Approaches in Object-Oriented Soft-
ware Engineering (QAOOSE 2010). 2010.

[CBW17] Benoit Combemale, Olivier Barais, and Andreas Wortmann.

“Language Engineering with the GEMOC Studio”. In: 2017
IEEE International Conference on Software Architecture Work-
shops (ICSAW). Apr. 2017, pp. 189–191. doi: 10.1109/ICSAW.
2017.61.

[CE00] Krysztof Czarnecki and Ulrich W. Eisenecker. Generative Pro-
gramming. Addison-Wesley, Reading, MA, USA, 2000. isbn:

0-201-63361-2.

[Čer+09] Ondřej Černý, Petr Hošek, Michal Papež, and Václav Remeš.

SOFA 2 Component System Developer’s guide. Nov. 2009. url:
https://sofa.ow2.org/docs/index.html.

[CG11] Hyun Cho and Jeff Gray. “Design Patterns for Metamodels”.

In: Proceedings of the Compilation of the Co-located Workshops
on DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, &
VMIL’11. SPLASH ’11 Workshops. Portland, Oregon, USA:

ACM, 2011, pp. 25–32. isbn: 978-1-4503-1183-0. doi: 10.1145/

2095050.2095056.

[CH03] Krzysztof Czarnecki and Simon Helsen. “Classification of

Model Transformation Approaches”. In: OOPSLA 2003 Work-
shop on Generative Techniques in the context of Model Driven
Architecture. Last retrieved 2008-01-06. Oct. 2003. url: http:

//www.softmetaware.com/oopsla2003/czarnecki.pdf.

[Cic+08] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and

Alfonso Pierantonio. “Automating Co-evolution in Model-

Driven Engineering”. In: Proceedings of the 2008 12th Inter-
national IEEE Enterprise Distributed Object Computing Con-
ference. EDOC ’08. Washington, DC, USA: IEEE Computer

Society, 2008, pp. 222–231. isbn: 978-0-7695-3373-5. doi: 10.

1109/EDOC.2008.44.

443

https://doi.org/10.1145/3233027.3233037
https://doi.org/10.1145/3233027.3233037
https://doi.org/10.1109/ICSAW.2017.61
https://doi.org/10.1109/ICSAW.2017.61
https://sofa.ow2.org/docs/index.html
https://doi.org/10.1145/2095050.2095056
https://doi.org/10.1145/2095050.2095056
http://www.softmetaware.com/oopsla2003/czarnecki.pdf
http://www.softmetaware.com/oopsla2003/czarnecki.pdf
https://doi.org/10.1109/EDOC.2008.44
https://doi.org/10.1109/EDOC.2008.44

Bibliography

[CK91] Shyam R. Chidamber and Chris F. Kemerer. “Towards a Met-

rics Suite for Object Oriented Design”. In: SIGPLAN Not. 26.11
(Nov. 1991), pp. 197–211. issn: 0362-1340. doi: 10 . 1145 /

118014.117970.

[CN01] Paul C. Clements and Linda Northrop. Software Product Lines:
Practices and Patterns. SEI Series in Software Engineering.

Boston, Mass. ; London: Addison-Wesley, Aug. 2001.

[Coa99] Peter Coad. Java modeling in color with UML : enterprise com-
ponents and process. Upper Saddle River, NJ: Prentice Hall

PTR, 1999. isbn: 013011510X.

[Com+18] Benoit Combemale, Jörg Kienzle, Gunter Mussbacher, Olivier

Barais, Erwan Bousse, Walter Cazzola, Philippe Collet,

Thomas Degueule, Robert Heinrich, Jean-Marc Jézéquel,

Manuel Leduc, Tanja Mayerhofer, Sébastien Mosser, Matthias

Schöttle, Misha Strittmatter, and Andreas Wortmann. “Con-

cern-oriented language development (COLD): Fostering reuse

in language engineering”. In: Computer Languages, Systems
& Structures 54 (2018), pp. 139–155. issn: 1477-8424. doi: 10.
1016/j.cl.2018.05.004. url: http://www.sciencedirect.

com/science/article/pii/S1477842418300496.

[Com13] International Electrotechnical Commission. IEC 61131-3:2013
– Programmable controllers – Part 3: Programming languages.
3rd ed. Feb. 2013. url: https://webstore.iec.ch/publicat

ion/4552.

[Com16] International Electrotechnical Commission. IEC 62424:2016 –
Representation of process control engineering – Requests in P&I
diagrams and data exchange between P&ID tools and PCE-CAE
tools. 2nd ed. July 2016. url: https://webstore.iec.ch/

publication/25442.

[CU06] Munkhnasan Choinzon and Yoshikazu Ueda. “Detecting de-

fects in object oriented designs using design metrics”. In:

Proceedings of the 2006 conference on Knowledge-Based Soft-
ware Engineering: Proceedings of the Seventh Joint Conference
on Knowledge-Based Software Engineering. IOS Press. 2006,

pp. 61–72.

444

https://doi.org/10.1145/118014.117970
https://doi.org/10.1145/118014.117970
https://doi.org/10.1016/j.cl.2018.05.004
https://doi.org/10.1016/j.cl.2018.05.004
http://www.sciencedirect.com/science/article/pii/S1477842418300496
http://www.sciencedirect.com/science/article/pii/S1477842418300496
https://webstore.iec.ch/publication/4552
https://webstore.iec.ch/publication/4552
https://webstore.iec.ch/publication/25442
https://webstore.iec.ch/publication/25442

Bibliography

[Cue+10] Philippe Cuenot, Patrick Frey, Rolf Johansson, Henrik Lönn,

Yiannis Papadopoulos, Mark-Oliver Reiser, Anders Sandberg,

David Servat, Ramin Tavakoli Kolagari, Martin Törngren, and

Matthias Weber. “The EAST-ADL Architecture Description

Language for Automotive Embedded Software”. In: Model-
Based Engineering of Embedded Real-Time Systems. Ed. by
Holger Giese, Gabor Karsai, Edward Lee, Bernhard Rumpe,

and Bernhard Schätz. Vol. 6100. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2010, pp. 297–307. isbn:

978-3-642-16276-3. doi: 10.1007/978-3-642-16277-0_11.

[DCJ17] Thomas Degueule, Benoit Combemale, and Jean-Marc

Jézéquel. “On Language Interfaces”. In: Present and Ulterior
Software Engineering. Ed. by Manuel Mazzara and Bertrand

Meyer. Springer International Publishing, 2017, pp. 65–75.

isbn: 978-3-319-67425-4. doi: 10.1007/978-3-319-67425-

4_5.

[DDN02] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz.

Object-oriented reengineering patterns. Elsevier, 2002.

[Deg+15] Thomas Degueule, Benoit Combemale, Arnaud Blouin,

Olivier Barais, and Jean-Marc Jézéquel. “Melange: A Meta-

language for Modular and Reusable Development of DSLs”. In:

8th International Conference on Software Language Engineer-
ing. SLE 2015. Pittsburgh, PA, USA: ACM, Oct. 2015, pp. 25–

36. isbn: 978-1-4503-3686-4. doi: 10.1145/2814251.2814252.

url: https://hal.inria.fr/hal-01197038.

[Deg+17] Thomas Degueule, Benoit Combemale, Arnaud Blouin,

Olivier Barais, and Jean-Marc Jézéquel. “Safe Model Poly-

morphism for Flexible Modeling”. In: Computer Languages,
Systems & Structures 49.C (Sept. 2017), pp. 176–195. issn:

1477-8424. doi: 10.1016/j.cl.2016.09.001.

[Di +14] Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino, and Alfonso

Pierantonio. “Mining Metrics for Understanding Metamodel

Characteristics”. In: Proceedings of the 6th International Work-
shop on Modeling in Software Engineering. MiSE 2014. Hyder-

abad, India: ACM, 2014, pp. 55–60. isbn: 978-1-4503-2849-4.

doi: 10.1145/2593770.2593774.

445

https://doi.org/10.1007/978-3-642-16277-0_11
https://doi.org/10.1007/978-3-319-67425-4_5
https://doi.org/10.1007/978-3-319-67425-4_5
https://doi.org/10.1145/2814251.2814252
https://hal.inria.fr/hal-01197038
https://doi.org/10.1016/j.cl.2016.09.001
https://doi.org/10.1145/2593770.2593774

Bibliography

[Dij82] Edsger W. Dijkstra. “On the Role of Scientific Thought”. In:

Selected Writings on Computing: A personal Perspective. New
York, NY: Springer New York, 1982, pp. 60–66. isbn: 978-1-

4612-5695-3. doi: 10.1007/978-1-4612-5695-3_12.

[Dra+08] Rainer Drath, Arndt Luder, Jorn Peschke, and Lorenz Hundt.

“AutomationML - the glue for seamless automation engineer-

ing”. In: 2008 IEEE International Conference on Emerging Tech-
nologies and Factory Automation. Sept. 2008, pp. 616–623. doi:
10.1109/ETFA.2008.4638461.

[Dur+14] Darko Durisic, Miroslaw Staron, Matthias Tichy, and Jörgen

Hansson. “Evolution of Long-Term Industrial Meta-Models -

An Automotive Case Study of AUTOSAR”. In: 40th EUROMI-
CRO Conference on Software Engineering and Advanced Appli-
cations, EUROMICRO-SEAA 2014, Verona, Italy, August 27-29,
2014. 2014, pp. 141–148. doi: 10.1109/SEAA.2014.21.

[Dur+17] Francisco Durán, Antonio Moreno-Delgado, Fernando Ore-

jas, and Steffen Zschaler. “Amalgamation of domain specific

languages with behaviour”. In: Journal of Logical and Al-
gebraic Methods in Programming 86.1 (2017), pp. 208–235.

issn: 2352-2208. doi: 10.1016/j.jlamp.2015.09.005. url:

http://www.sciencedirect.com/science/article/pii/

S2352220815000875.

[DZT13] Francisco Durán, Steffen Zschaler, and Javier Troya. “On the

Reusable Specification of Non-functional Properties in DSLs”.

In: Software Language Engineering. Ed. by Krzysztof Czar-

necki and Görel Hedin. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2013, pp. 332–351. isbn: 978-3-642-36089-3.

[EAS13] EAST-ADL Association. EAST-ADL Domain Model Specifi-
cation – Version 2.1.12. Nov. 2013. url: http://www.east-
adl.info/Specification.html.

[EBL11] Maged Elaasar, Lionel Briand, and Yvan Labiche. “Domain-

Specific Model Verification with QVT”. In: ECMFA. Springer,
2011. isbn: 978-3-642-21470-7. doi: 10.1007/978- 3- 642-

21470-7_20.

446

https://doi.org/10.1007/978-1-4612-5695-3_12
https://doi.org/10.1109/ETFA.2008.4638461
https://doi.org/10.1109/SEAA.2014.21
https://doi.org/10.1016/j.jlamp.2015.09.005
http://www.sciencedirect.com/science/article/pii/S2352220815000875
http://www.sciencedirect.com/science/article/pii/S2352220815000875
http://www.east-adl.info/Specification.html
http://www.east-adl.info/Specification.html
https://doi.org/10.1007/978-3-642-21470-7_20
https://doi.org/10.1007/978-3-642-21470-7_20

Bibliography

[Ela12] Maged E. Elaasar. “An Approach to Design Pattern and Anti-

pattern Detection in MOF-based Modeling Languages”. PhD

thesis. Ottawa, Ontario, Canada, Canada: Carleton University

Ottawa, 2012. isbn: 978-0-494-93678-8.

[EMF04] EMF. FeatureMaps. draft. Eclipse Foundation, June 2004, p. 6.
url: https://www.eclipse.org/modeling/emf/docs/overv

iews/FeatureMap.pdf.

[ES06] Matthew Emerson and Janos Sztipanovits. “Techniques for

metamodel composition”. In: OOPSLA–6th Workshop on Do-
main Specific Modeling. 2006, pp. 123–139.

[Fav03] Jean-Marie Favre. “Meta-model and model co-evolution

within the 3D software space”. In: Evolution of Large-scale
Industrial Software Evolution Workshop (ELISA@ICSM). Vol. 3.
Royal Netherlands Academy of Arts and Sciences, Amster-

dam, The Netherlands, Sept. 2003, pp. 98–109.

[FD05] M Fedai and R Drath. “CAEX – a neutral data exchange for-

mat for engineering data”. In: ATP International Automation
Technology 1.2005 (2005), p. 3.

[FGH06] Peter H. Feiler, David P. Gluch, and John J. Hudak. The Archi-
tecture Analysis & Design Language (AADL): An Introduction.
CMU/SEI-2006-TN-011. Carnegie Mellon University, Software

Engineering Institute, Feb. 2006. url: http://www.sei.cmu.

edu/library/abstracts/reports/06tn011.cfm.

[Flo67] Robert W. Floyd. “Nondeterministic Algorithms”. In: Journal
of the ACM 14.4 (Oct. 1967), pp. 636–644. issn: 0004-5411. doi:

10.1145/321420.321422.

[FM18] Adel Ferdjoukh and Jean-Marie Mottu. “Towards an Auto-

mated Fault Localizer while Designing Meta-models”. In:

MDEbug@MODELS, International Workshop on Debugging
in Model-Driven Engineering. 2018.

[Föh14] Christoph Föhrdes. “Simulation components for software

quality simulation in Eclipse”. Master’s Thesis. Karlsruhe

Institute of Technology (KIT), Germany, 2014.

447

https://www.eclipse.org/modeling/emf/docs/overviews/FeatureMap.pdf
https://www.eclipse.org/modeling/emf/docs/overviews/FeatureMap.pdf
http://www.sei.cmu.edu/library/abstracts/reports/06tn011.cfm
http://www.sei.cmu.edu/library/abstracts/reports/06tn011.cfm
https://doi.org/10.1145/321420.321422

Bibliography

[Fon+15] Jaime Font, Manuel Ballarín, Øystein Haugen, and Carlos

Cetina. “Automating the Variability Formalization of a Model

Family by Means of Common Variability Language”. In: Pro-
ceedings of the 19th International Conference on Software Prod-
uct Line. SPLC ’15. Nashville, Tennessee: ACM, 2015, pp. 411–

418. isbn: 978-1-4503-3613-0. doi: 10.1145/2791060.2793678.

[Fow+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and

Don Roberts. Refactoring: Improving the Design of Existing
Code. Addison-Wesley object technology series. Boston, MA,

USA: Addison-Wesley, Reading, MA, USA, 1999. isbn: 0-201-

48567-2.

[Fow03] Martin Fowler. UML Distilled: A Brief Guide to the Standard
Object Modeling Language, Third Edition. Addison-Wesley,

Reading, MA, USA, 2003.

[FP10] Martin Fowler and Rebecca Parsons. Domain Specific Lan-
guages. 1st. Addison-Wesley, Reading, MA, USA, 2010. isbn:

9780321712943.

[Fre+04] Eric Freeman, Elisabeth Robson, Bert Bates, and Kathy Sierra.

Head First Design Patterns. Head First. O’Reilly Media, 2004.

isbn: 9780596800741.

[Für+09] Simon Fürst, JürgenMössinger, Stefan Bunzel, ThomasWeber,

Frank Kirschke-Biller, Peter Heitkämper, Gerulf Kinkelin,

Kenji Nishikawa, and Klaus Lange. “AUTOSAR–AWorldwide

Standard is on the Road”. In: 14th International VDI Congress
Electronic Systems for Vehicles, Baden-Baden. Vol. 62. 2009.

[Gam+95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-

sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading, MA, USA, 1995. isbn:

0-201-63361-2.

[Gar+14] Antonio Garmendia, Esther Guerra, Dimitrios S. Kolovos, and

Juan de Lara. “EMF Splitter: A Structured Approach to EMF

Modularity”. In: Proceedings of the 3rd Workshop on Extreme
Modeling. Vol. 1239. CEUR-WS, Sept. 2014, pp. 22–31. url:

http://ceur-ws.org/Vol-1239/xm14_submission_3.pdf.

448

https://doi.org/10.1145/2791060.2793678
http://ceur-ws.org/Vol-1239/xm14_submission_3.pdf

Bibliography

[GBB12] Thomas Goldschmidt, Steffen Becker, and Erik Burger. “To-

wards a Tool-Oriented Taxonomy of View-Based Modelling”.

In: Proceedings of the Modellierung 2012. Ed. by Elmar J. Sinz

and Andy Schürr. Vol. P-201. GI-Edition – Lecture Notes in

Informatics (LNI). Bamberg: Gesellschaft für Informatik e.V.

(GI), Mar. 2012, pp. 59–74. isbn: 978-3-88579-295-6.

[GBS12] Juan J. C. Gómez, Benoit Baudry, and Houari Sahraoui.

“Searching the Boundaries of a Modeling Space to Test

Metamodels”. In: 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation (ICST). Los Alami-

tos, CA, USA: IEEE Computer Society, Apr. 2012, pp. 131–140.

isbn: 978-0-7695-4670-4. doi: 10.1109/ICST.2012.93.

[Gen+07] Marcela Genero, Esperanza Manso, Aaron Visaggio, Gerardo

Canfora, and Mario Piattini. “Building measure-based predic-

tion models for UML class diagram maintainability”. English.

In: Empirical Software Engineering 12 (5 2007). issn: 1382-3256.

[GGF09] I. García-Magariño, J. Gómez-Sanz, and R. Fuentes-Fernández.

“An evaluation framework forMASmodeling languages based

on metamodel metrics”. In: Agent-Oriented Software Engineer-
ing (2009).

[GL03] Jean Gelissen and Ronan Mac Laverty. ROBOCOP: Revised
specification of framework and models (Deliverable1.5). Tech.
rep. Information Technology for European Advancement,

2003.

[GMS05] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta.

“From Design to Analysis Models: a Kernel Language for

Performance and Reliability Analysis of Component-based

Systems”. In: WOSP ’05: Proceedings of the 5th international
workshop on Software and performance. Palma, Illes Balears,

Spain: ACM Press, 2005, pp. 25–36. isbn: 1-59593-087-6.

[Gra+08] Vincenzo Grassi, Raffaela Mirandola, Enrico Randazzo, and

Antonino Sabetta. “KLAPER: An Intermediate Language for

Model-Driven Predictive Analysis of Performance and Relia-

bility”. In: The Common Component Modeling Example: Com-
paring Software Component Models. Ed. by Andreas Rausch,

Ralf Reussner, Raffaela Mirandola, and František Plášil. Berlin,

449

https://doi.org/10.1109/ICST.2012.93

Bibliography

Heidelberg: Springer Berlin Heidelberg, 2008, pp. 327–356.

isbn: 978-3-540-85289-6. doi: 10.1007/978-3-540-85289-

6_13.

[Gre+15] Timo Greifenberg, Markus Look, Sebastian Roidl, and Bern-

hard Rumpe. “Engineering Tagging Languages for DSLs”. In:

Conference on Model Driven Engineering Languages and Sys-
tems (MODELS’15). ACM/IEEE, 2015, pp. 34–43. url: http:

//www.se-rwth.de/publications/Engineering-Tagging-

Languages-for-DSLs.pdf.

[Grö+08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bern-

hard Rumpe. “Modeling Variants of Automotive Systems

using Views”. In: Modellbasierte Entwicklung von eingebet-
teten Fahrzeugfunktionen. Informatik Bericht 2008-01. TU

Braunschweig, 2008, pp. 76–89. url: http://www.se-rwth.

de / topics / ~ / rumpe / publications20042008 / Modeling -

Variants-of-Automotive-Systems-using-Views.pdf.

[GSS13] Samarthyam Ganesh, Tushar Sharma, and Girish Surya-

narayana. “Towards a Principle-based Classification of Struc-

tural Design Smells”. In: Journal of Object Technology 12.2

(2013).

[Gul07] Jon Atle Gulla. “Using Models in Enterprise Systems Projects”.

In: Conceptual Modelling in Information Systems Engineer-
ing. Ed. by John Krogstie, Andreas Lothe Opdahl, and Sjaak

Brinkkemper. Berlin, Heidelberg: Springer Berlin Heidelberg,

2007, pp. 107–122. isbn: 978-3-540-72677-7. doi: 10.1007/978-

3-540-72677-7_7.

[Hab+11] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer,

and Frank van der Linden. “Hierarchical Variability Model-

ing for Software Architectures”. In: Software Product Lines
Conference (SPLC’11). IEEE, 2011, pp. 150–159. isbn: 978-1-
4577-1029-2. url: http://www.se- rwth.de/publication

s/Hierarchical- Variability- Modeling- for- Software-

Architectures.pdf.

[Hab+15] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, An-

tonio Navarro Perez, Bernhard Rumpe, Steven Völkel, and

Andreas Wortmann. “Integration of Heterogeneous Model-

450

https://doi.org/10.1007/978-3-540-85289-6_13
https://doi.org/10.1007/978-3-540-85289-6_13
http://www.se-rwth.de/publications/Engineering-Tagging-Languages-for-DSLs.pdf
http://www.se-rwth.de/publications/Engineering-Tagging-Languages-for-DSLs.pdf
http://www.se-rwth.de/publications/Engineering-Tagging-Languages-for-DSLs.pdf
http://www.se-rwth.de/topics/~/rumpe/publications20042008/Modeling-Variants-of-Automotive-Systems-using-Views.pdf
http://www.se-rwth.de/topics/~/rumpe/publications20042008/Modeling-Variants-of-Automotive-Systems-using-Views.pdf
http://www.se-rwth.de/topics/~/rumpe/publications20042008/Modeling-Variants-of-Automotive-Systems-using-Views.pdf
https://doi.org/10.1007/978-3-540-72677-7_7
https://doi.org/10.1007/978-3-540-72677-7_7
http://www.se-rwth.de/publications/Hierarchical-Variability-Modeling-for-Software-Architectures.pdf
http://www.se-rwth.de/publications/Hierarchical-Variability-Modeling-for-Software-Architectures.pdf
http://www.se-rwth.de/publications/Hierarchical-Variability-Modeling-for-Software-Architectures.pdf

Bibliography

ing Languages via Extensible and Composable Language

Components”. In: Model-Driven Engineering and Software De-
velopment Conference (MODELSWARD’15). SciTePress, 2015,
pp. 19–31. url: http://www.se- rwth.de/publications/

Integration - of - Heterogeneous - Modeling - Languages -

via- Extensible- and- Composable- Language- Components.

pdf.

[Hah17] René Hahn. “Bad Smells and Anti-Patterns in Metamodel-

ing”. MA thesis. Karlsruhe, Germany: Karlsruhe Institute of

Technology (KIT), Nov. 2017.

[Hap+14] Lucia Happe, Erik Burger, Max Kramer, Andreas Rentschler,

and Ralf Reussner. “Completion and Extension Techniques

for Enterprise Software Performance Engineering”. In: Future
Business Software – Current Trends in Business Software Devel-
opment. Ed. by Gino Brunetti, Thomas Feld, Joachim Schnitter,

Lutz Heuser, and Christian Webel. Progress in IS. New York,

Heidelberg: Springer International Publishing, 2014, pp. 117–

131. isbn: 978-3-319-04143-8. doi: 10 . 1007 / 978 - 3 - 319 -

04144-5.

[Hau+08] O. Haugen, B. Moller-Pedersen, J. Oldevik, G.K. Olsen, and

A. Svendsen. “Adding Standardized Variability to Domain

Specific Languages”. In: 12th Intl. Software Product Line Con-
ference, 2008. Sept. 2008, pp. 139–148. doi: 10.1109/SPLC.
2008.25.

[Hau09] Michael Hauck. “Extending Performance-Oriented Resource

Modelling in the Palladio ComponentModel”. Diploma Thesis.

Germany: University of Karlsruhe (TH), Feb. 2009. url: http:

//sdqweb.ipd.uka.de/publications/pdfs/hauck2009a.

pdf.

[HBJ09] Markus Herrmannsdörfer, Sebastian Benz, and Elmar Juer-

gens. “COPE – Automating Coupled Evolution of Metamodels

and Models”. In: European Conference on Object-Oriented Pro-
gramming. Ed. by Sophia Drossopoulou. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2009, pp. 52–76. isbn: 978-3-642-

03013-0.

451

http://www.se-rwth.de/publications/Integration-of-Heterogeneous-Modeling-Languages-via-Extensible-and-Composable-Language-Components.pdf
http://www.se-rwth.de/publications/Integration-of-Heterogeneous-Modeling-Languages-via-Extensible-and-Composable-Language-Components.pdf
http://www.se-rwth.de/publications/Integration-of-Heterogeneous-Modeling-Languages-via-Extensible-and-Composable-Language-Components.pdf
http://www.se-rwth.de/publications/Integration-of-Heterogeneous-Modeling-Languages-via-Extensible-and-Composable-Language-Components.pdf
https://doi.org/10.1007/978-3-319-04144-5
https://doi.org/10.1007/978-3-319-04144-5
https://doi.org/10.1109/SPLC.2008.25
https://doi.org/10.1109/SPLC.2008.25
http://sdqweb.ipd.uka.de/publications/pdfs/hauck2009a.pdf
http://sdqweb.ipd.uka.de/publications/pdfs/hauck2009a.pdf
http://sdqweb.ipd.uka.de/publications/pdfs/hauck2009a.pdf

Bibliography

[HBK18] Robert Heinrich, Kiana Busch, and Sandro Koch. “A Method-

ology for Domain-spanning Change Impact Analysis”. In:

2018 44th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). IEEE, 2018, pp. 326–330. doi:
10.1109/SEAA.2018.00060.

[Hei+15] Robert Heinrich, Stefan Gärtner, Tom-Michael Hesse, Thomas

Ruhroth, Ralf Reussner, Kurt Schneider, Barbara Paech, and

Jan Jürjens. “The CoCoME Platform: A Research Note on

Empirical Studies in Information System Evolution”. In: In-
ternational Journal of Software Engineering and Knowledge
Engineering 25.09&10 (2015), pp. 1715–1720. doi: 10.1142/

S0218194015710059. eprint: http : / / www . worldscientifi

c . com / doi / pdf / 10 . 1142 / S0218194015710059. url: ht

tp : / / www . worldscientific . com / doi / abs / 10 . 1142 /

S0218194015710059.

[Hei+17] Robert Heinrich, Philipp Merkle, Jörg Henss, and Barbara

Paech. “Integrating business process simulation and infor-

mation system simulation for performance prediction”. In:

Software & Systems Modeling 16.1 (2017), pp. 257–277. issn:

1619-1366. doi: 10.1007/s10270-015-0457-1.

[Hei+18] Robert Heinrich, Sandro Koch, Suhyun Cha, Kiana Busch,

Ralf Reussner, and Birgit Vogel-Heuser. “Architecture-based

change impact analysis in cross-disciplinary automated pro-

duction systems”. In: Journal of Systems and Software 146

(2018), pp. 167–185. issn: 0164-1212. doi: 10.1016/j.jss.

2018.08.058. url: http://www.sciencedirect.com/scienc

e/article/pii/S0164121218301717.

[Hei14] Robert Heinrich. Aligning Business Processes and Information
Systems: New Approaches to Continuous Quality Engineering.
Springer, 2014. isbn: 978-3-658-06517-1. doi: 10.1007/978-

3-658-06518-8.

[Her11a] Lukáš Hermann. User documentation of the SOFA 2 UML. July
2011. url: https://sofa.ow2.org/docs/index.html.

[Her11b] Markus Herrmannsdörfer. “Evolutionary Metamodeling”.

PhD thesis. München: Technische Universität München,

2011.

452

https://doi.org/10.1109/SEAA.2018.00060
https://doi.org/10.1142/S0218194015710059
https://doi.org/10.1142/S0218194015710059
http://www.worldscientific.com/doi/pdf/10.1142/S0218194015710059
http://www.worldscientific.com/doi/pdf/10.1142/S0218194015710059
http://www.worldscientific.com/doi/abs/10.1142/S0218194015710059
http://www.worldscientific.com/doi/abs/10.1142/S0218194015710059
http://www.worldscientific.com/doi/abs/10.1142/S0218194015710059
https://doi.org/10.1007/s10270-015-0457-1
https://doi.org/10.1016/j.jss.2018.08.058
https://doi.org/10.1016/j.jss.2018.08.058
http://www.sciencedirect.com/science/article/pii/S0164121218301717
http://www.sciencedirect.com/science/article/pii/S0164121218301717
https://doi.org/10.1007/978-3-658-06518-8
https://doi.org/10.1007/978-3-658-06518-8
https://sofa.ow2.org/docs/index.html

Bibliography

[Her17] Rüdiger Heres. “Vergleich von Metamodell-Erweiterungsme-

thoden in EMOF”. Bachelor’s Thesis. Karlsruhe, Germany:

Karlsruhe Institute of Technology (KIT), Oct. 2017.

[Hin+16] Georg Hinkel, Max Kramer, Erik Burger, Misha Strittmatter,

and Lucia Happe. “An Empirical Study on the Perception of

Metamodel Quality”. In: Proceedings of the 4th International
Conference on Model-Driven Engineering and Software Devel-
opment. Rome, Italy, Feb. 2016, pp. 145–152. isbn: 978-989-758-

168-7. url: http://www.scitepress.org/DigitalLibrary/

PublicationsDetail.aspx?ID=9KRBAJDhYyc%3d.

[Hin16a] Georg Hinkel. Deep Modeling through Structural Decomposi-
tion. Tech. rep. Karlsruhe: Karlsruhe Institute of Technology,
2016. url: http://nbn-resolving.org/urn:nbn:de:swb:90-

576330.

[Hin16b] Georg Hinkel. NMF: A Modeling Framework for the .NET Plat-
form. Tech. rep. Karlsruhe: Karlsruhe Institute of Technology,

2016. url: http://nbn-resolving.org/urn:nbn:de:swb:90-

537082.

[Hin18] Georg Hinkel. “Implicit Incremental Model Analyses and

Transformations”. PhD thesis. Karlsruhe Institute of Tech-

nology (KIT), 2018. 475 pp. doi: 10.5445/IR/1000084464.

[HR17] Katrin Hölldobler and Bernhard Rumpe. MontiCore 5 Lan-
guage Workbench Edition 2017. Aachener Informatik-Berichte,

Software Engineering, Band 32. Shaker Verlag, Dec. 2017.

isbn: 978-3-8440-5713-3. url: http://www.se- rwth.de/

phdtheses/MontiCore- 5- Language- Workbench- Edition-

2017.pdf.

[HS18] Georg Hinkel and Misha Strittmatter. “Predicting the Per-

ceivedModularity ofMOF-basedMetamodels”. In: Proceedings
of the 6th International Conference on Model-Driven Engineer-
ing and Software Development (Funchal, Portugal). Jan. 2018.
url: http://sdqweb.ipd.kit.edu/publications/pdfs/

hinkel2018a.pdf.

453

http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=9KRBAJDhYyc%3d
http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=9KRBAJDhYyc%3d
http://nbn-resolving.org/urn:nbn:de:swb:90-576330
http://nbn-resolving.org/urn:nbn:de:swb:90-576330
http://nbn-resolving.org/urn:nbn:de:swb:90-537082
http://nbn-resolving.org/urn:nbn:de:swb:90-537082
https://doi.org/10.5445/IR/1000084464
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/hinkel2018a.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/hinkel2018a.pdf

Bibliography

[HSR19] Robert Heinrich, Misha Strittmatter, and Ralf Heinrich Reuss-

ner. “A Layered Reference Architecture for Metamodels to

Tailor Quality Modeling and Analysis”. In: IEEE Transactions
on Software Engineering (2019). issn: 0098-5589. doi: 10.1109/
TSE.2019.2903797.

[Hub+17] Nikolaus Huber, Fabian Brosig, Simon Spinner, Samuel

Kounev, and Manuel Bähr. “Model-Based Self-Aware Per-

formance and Resource Management Using the Descartes

Modeling Language”. In: IEEE Transactions on Software Engi-
neering (TSE) 43.5 (2017). doi: 10.1109/TSE.2016.2613863.

[HW14] Markus Herrmannsdörfer and Guido Wachsmuth. “Evolv-

ing Software Systems”. In: ed. by Tom Mens, Alexander

Serebrenik, and Anthony Cleve. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2014. Chap. Coupled Evolution of Software

Metamodels and Models, pp. 33–63. isbn: 978-3-642-45398-4.

doi: 10.1007/978-3-642-45398-4_2.

[ISO01] ISO/IEC 9126-1:2001(E). Software engineering – Product qual-
ity – Part 1: Quality model. International Organization for

Standardization, Geneva, Switzerland, 2001.

[ISO11] ISO/IEC 25010:2011(E). Software engineering – Software prod-
uct Quality Requirements and Evaluation (SQuaRE) – System
and software quality models. International Organization for

Standardization, Geneva, Switzerland, 2011.

[ISO16] ISO/IEC 25023:2016(E). Systems and software engineering –
Systems and software Quality Requirements and Evaluation
(SQuaRE) – Measurement of system and software product qual-
ity. International Organization for Standardization, Geneva,

Switzerland, 2016.

[JHH16] Reiner Jung, Robert Heinrich, and Wilhelm Hasselbring.

“GECO: A Generator Composition Approach for Aspect-

Oriented DSLs”. In: Theory and Practice of Model Transforma-
tions: 9th International Conference on Model Transformation,
ICMT 2016. Springer International Publishing, 2016, pp. 141–
156. isbn: 978-3-319-42064-6. doi: 10 . 1007 / 978 - 3 - 319 -

42064-6_10.

454

https://doi.org/10.1109/TSE.2019.2903797
https://doi.org/10.1109/TSE.2019.2903797
https://doi.org/10.1109/TSE.2016.2613863
https://doi.org/10.1007/978-3-642-45398-4_2
https://doi.org/10.1007/978-3-319-42064-6_10
https://doi.org/10.1007/978-3-319-42064-6_10

Bibliography

[Jia+04] Yanbing Jiang, Weizhong Shao, Lu Zhang, Zhiyi Ma, Xiang-

wen Meng, and Haohai Ma. “On the Classification of UML’s

Meta Model Extension Mechanism”. In: UML 2004 — The Uni-
fied Modeling Language. Modeling Languages and Applications.
Ed. by Thomas Baar, Alfred Strohmeier, Ana Moreira, and

Stephen J. Mellor. Berlin, Heidelberg: Springer Berlin Heidel-

berg, 2004, pp. 54–68. isbn: 978-3-540-30187-5.

[Jul13] Klaus Julisch. “Understanding and overcoming cyber security

anti-patterns”. In: Computer Networks 57.10 (2013), pp. 2206–
2211. issn: 1389-1286. doi: 10.1016/j.comnet.2012.11.023.

url: http://www.sciencedirect.com/science/article/

pii/S1389128613000388.

[Jun+14] Reiner Jung, Robert Heinrich, Eric Schmieders, Misha

Strittmatter, and Wilhelm Hasselbring. “A Method for

Aspect-oriented Meta-Model Evolution”. In: Proceedings
of the 2Nd Workshop on View-Based, Aspect-Oriented and
Orthographic Software Modelling. VAO ’14. York, United King-

dom: ACM, July 2014, 19:19–19:22. isbn: 978-1-4503-2900-2.

doi: 10.1145/2631675.2631681.

[Jun16a] Reiner Jung. “Generator-Composition for Aspect-Oriented

Domain-Specific Languages”. Doctoral Thesis/PhD. Faculty

of Engineering, Kiel University, Aug. 2016. url: http : / /

eprints.uni-kiel.de/33602/.

[Jun16b] Michael Junker. “Flexible Graphical Editors for Extensible

Modular Meta Models”. MA thesis. Karlsruhe Institute of

Technology (KIT), 2016. url: http://nbn-resolving.org/

urn:nbn:de:swb:90-669277.

[Jür02] Jan Jürjens. “UMLsec: Extending UML for Secure Systems

Development”. In: International Conference on The Unified
Modeling Language. Ed. by Jean-Marc Jézéquel, Heinrich Huss-

mann, and Stephen Cook. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2002, pp. 412–425. isbn: 978-3-540-45800-5.

[KAK09] Jörg Kienzle, Wisam Al Abed, and Jacques Klein. “Aspect-

oriented multi-viewmodeling”. In: Proceedings of the 8th ACM
international conference on Aspect-oriented software develop-
ment. AOSD ’09. Charlottesville, Virginia, USA: ACM, 2009,

455

https://doi.org/10.1016/j.comnet.2012.11.023
http://www.sciencedirect.com/science/article/pii/S1389128613000388
http://www.sciencedirect.com/science/article/pii/S1389128613000388
https://doi.org/10.1145/2631675.2631681
http://eprints.uni-kiel.de/33602/
http://eprints.uni-kiel.de/33602/
http://nbn-resolving.org/urn:nbn:de:swb:90-669277
http://nbn-resolving.org/urn:nbn:de:swb:90-669277

Bibliography

pp. 87–98. isbn: 978-1-60558-442-3. doi: 10.1145/1509239.

1509252.

[Kan+90] Kyo C Kang, Sholom G Cohen, James A Hess, William E

Novak, and A Spencer Peterson. Feature-oriented domain
analysis (FODA) feasibility study. Tech. rep. Carnegie-Mellon

University Pittsburgh PA Software Engineering Inst, 1990.

url: https : / / resources . sei . cmu . edu / asset _ files /

TechnicalReport/1990_005_001_15872.pdf.

[Kan17] Ilknur Kanatsiz. “Entwicklung eines durch ein Feature-

Modell konfigurierbaren Palladio-Metamodells mit dem

CORE Ansatz”. Diploma Thesis. Karlsruhe, Germany: Karl-

sruhe Institute of Technology (KIT), Nov. 2017.

[KBH14] Samuel Kounev, Fabian Brosig, and Nikolaus Huber. The
Descartes Modeling Language. Tech. rep. Department of Com-

puter Science, University of Wuerzburg, Oct. 2014, p. 91. url:

http://www.descartes-research.net/dml/.

[KBK15] Johannes Kroß, Andreas Brunnert, and Helmut Krcmar. “Mod-

eling Big Data Systems by Extending the Palladio Component

Model”. In: Softwaretechnik-Trends 35.3 (2015).

[KBL13] Max E. Kramer, Erik Burger, and Michael Langhammer.

“View-Centric Engineering with Synchronized Heteroge-

neous Models”. In: Proceedings of the 1st Workshop on View-
Based, Aspect-Oriented and Orthographic Software Modelling.
VAO ’13. Montpellier, France: ACM, 2013, 5:1–5:6. isbn: 978-

1-4503-2070-2. doi: 10.1145/2489861.2489864. url: http:

//sdqweb.ipd.kit.edu/publications/pdfs/kramer2013b.

pdf.

[Kec17] Amine Kechaou. “A graphical approach to modularization

and layering of metamodels”. Bachelor’s Thesis. Karlsruhe,

Germany: Karlsruhe Institute of Technology (KIT), 2017, p. 42.

doi: 10.5445/IR/1000078437.

[KKK13] Benjamin Klatt, Martin Küster, and Klaus Krogmann. “A

Graph-Based Analysis Concept to Derive a Variation Point

Design from Product Copies”. In: Proceedings of the 1st Interna-
tional workshop on Reverse Variability Engineering (REVE’13).
Genua, Italy, Mar. 2013, pp. 1–8.

456

https://doi.org/10.1145/1509239.1509252
https://doi.org/10.1145/1509239.1509252
https://resources.sei.cmu.edu/asset_files/TechnicalReport/1990_005_001_15872.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalReport/1990_005_001_15872.pdf
http://www.descartes-research.net/dml/
https://doi.org/10.1145/2489861.2489864
http://sdqweb.ipd.kit.edu/publications/pdfs/kramer2013b.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/kramer2013b.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/kramer2013b.pdf
https://doi.org/10.5445/IR/1000078437

Bibliography

[KKW14] Benjamin Klatt, Klaus Krogmann, and ChristianWende. “Con-

solidating Customized Product Copies to Software Product

Lines”. In: Softwaretechnik-Trends 34.2 (May 2014), pp. 64–

65. url: http : / / pi . informatik . uni - siegen . de / stt /

34_2/01_Fachgruppenberichte/WSRDFF/wsre_dff_2014-

08_submission_w8.pdf.

[Kla14] Benjamin Klatt. “Consolidation of Customized Product Copies

into Software Product Lines”. PhD thesis. Karlsruhe, Germany:

Karlsruhe Institute of Technology (KIT), Oct. 2014. url: http:

//digbib.ubka.uni-karlsruhe.de/volltexte/1000043687.

[Koc17] Sandro Koch. “Automatische Vorhersage von Änderungsaus-

breitungen am Beispiel von Automatisierungssystemen”. MA

thesis. Karlsruhe Institute of Technology (KIT), 2017.

[Koz08] Heiko Koziolek. “Dependability Metrics”. In: Dependabil-
ity Metrics. Vol. 4909. Lecture Notes in Computer Science.

Springer-Verlag Berlin Heidelberg, 2008. Chap. Goal, Ques-

tion, Metric, pp. 39–42. url: http://www.springerlink.com/

content/n737771751296q23/fulltext.pdf.

[Koz10] Heiko Koziolek. “Performance evaluation of component-

based software systems: A survey”. In: Performance Evalua-
tion 67.8 (2010). Special Issue on Software and Performance,

pp. 634–658. issn: 0166-5316. doi: 10.1016/j.peva.2009.07.

007.

[Koz11a] Anne Koziolek. “Automated Improvement of Software Archi-

tectureModels for Performance andOther Quality Attributes”.

PhD thesis. Karlsruhe, Germany: Institut für Programmstruk-

turen und Datenorganisation (IPD), Karlsruher Institut für

Technologie, July 2011. url: http : / / digbib . ubka . uni -

karlsruhe.de/volltexte/1000024955.

[Koz11b] Heiko Koziolek. “Sustainability Evaluation of Software Ar-

chitectures: A Systematic Review”. In: Proceedings of the 7th
Int. ACM/SIGSOFT Conference on the Quality of Software Ar-
chitectures (QoSA). Boulder, Colorado, USA: ACM, June 2011,

pp. 3–12. doi: 10.1145/2000259.2000263.

457

http://pi.informatik.uni-siegen.de/stt/34_2/01_Fachgruppenberichte/WSRDFF/wsre_dff_2014-08_submission_w8.pdf
http://pi.informatik.uni-siegen.de/stt/34_2/01_Fachgruppenberichte/WSRDFF/wsre_dff_2014-08_submission_w8.pdf
http://pi.informatik.uni-siegen.de/stt/34_2/01_Fachgruppenberichte/WSRDFF/wsre_dff_2014-08_submission_w8.pdf
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043687
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000043687
http://www.springerlink.com/content/n737771751296q23/fulltext.pdf
http://www.springerlink.com/content/n737771751296q23/fulltext.pdf
https://doi.org/10.1016/j.peva.2009.07.007
https://doi.org/10.1016/j.peva.2009.07.007
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000024955
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000024955
https://doi.org/10.1145/2000259.2000263

Bibliography

[Kra+12] Max E. Kramer, Zoya Durdik, Michael Hauck, Jörg Henss,

Martin Küster, Philipp Merkle, and Andreas Rentschler. “Ex-

tending the Palladio Component Model using Profiles and

Stereotypes”. In: Palladio Days 2012 Proceedings (appeared as
technical report). Ed. by Steffen Becker, Jens Happe, Anne

Koziolek, and Ralf Reussner. Karlsruhe Reports in Informatics

; 2012,21. Karlsruhe: KIT, Faculty of Informatics, 2012, pp. 7–

15. url: http://nbn-resolving.org/urn:nbn:de:swb:90-

308043.

[Kra+15] Max E. Kramer, Michael Langhammer, Dominik Messinger,

Stephan Seifermann, and Erik Burger. Realizing Change-
Driven Consistency for Component Code, Architectural Models,
and Contracts in Vitruvius. Tech. rep. Karlsruhe: Karlsruhe
Institute of Technology, Department of Informatics, 2015. url:

http://nbn-resolving.org/urn:nbn:de:swb:90-456541.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. “Mon-

tiCore: Modular Development of Textual Domain Specific

Languages”. In: Objects, Components, Models and Patterns:
46th International Conference, TOOLS EUROPE 2008, Proceed-
ings. Ed. by Richard F. Paige and Bertrand Meyer. Springer,

2008, pp. 297–315.

[KRV10] Holger Krahn, Bernhard Rumpe, and Steven Völkel. “Monti-

Core: a framework for compositional development of domain

specific languages”. In: International Journal on Software Tools
for Technology Transfer 12.5 (Sept. 2010), pp. 353–372. issn:
1433-2787. doi: 10.1007/s10009-010-0142-1.

[KS18] Amine Kechaou and Misha Strittmatter. “Modularizing and

Layering Metamodels with the Modular EMF Designer”. In:

Proceedings of the 21st ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems: Compan-
ion Proceedings. MODELS ’18. Copenhagen, Denmark: ACM,

Oct. 2018, pp. 32–36. isbn: 978-1-4503-5965-8. doi: 10.1145/

3270112.3270119.

[Küh17] Thomas Kühn. “A Family of Role-Based Languages”. PhD

thesis. Dresden, Germany: Technische Universität Dresden,

458

http://nbn-resolving.org/urn:nbn:de:swb:90-308043
http://nbn-resolving.org/urn:nbn:de:swb:90-308043
http://nbn-resolving.org/urn:nbn:de:swb:90-456541
https://doi.org/10.1007/s10009-010-0142-1
https://doi.org/10.1145/3270112.3270119
https://doi.org/10.1145/3270112.3270119

Bibliography

Fakultät Informatik, Aug. 2017. url: http://nbn-resolving.

de/urn:nbn:de:bsz:14-qucosa-228027.

[Lan+11] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi

Cabot. “From UML Profiles to EMF Profiles and Beyond”. In:

Objects, Models, Components, Patterns. Ed. by Judith Bishop

and Antonio Vallecillo. Vol. 6705. Lecture Notes in Computer

Science. Springer Berlin / Heidelberg, 2011, pp. 52–67. isbn:

978-3-642-21951-1.

[Lan+12] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi

Cabot. “EMF Profiles: A Lightweight Extension Approach for

EMF Models”. In: Journal of Object Technology 11.1 (2012),

8:1–29. issn: 1660-1769. doi: 10.5381/jot.2012.11.1.a8.

[Lan74] Edmund Landau. Handbuch der Lehre von der Verteilung der
Primzahlen. 3. ed. New York: Chelsea Publ., 1974. isbn: 0-8284-

0096-2.

[LDC18] Manuel Leduc, Thomas Degueule, and Benoit Combemale.

“Modular Language Composition for the Masses”. In: Pro-
ceedings of the 11th ACM SIGPLAN International Conference
on Software Language Engineering. SLE 2018. Boston, MA,

USA: ACM, 2018, pp. 47–59. isbn: 978-1-4503-6029-6. doi:

10.1145/3276604.3276622.

[Léd+01] Ákos Lédeczi, Greg Nordstrom, Gabor Karsai, Peter Volgyesi,

and Miklos Maroti. “On metamodel composition”. In: Pro-
ceedings of the 2001 IEEE International Conference on Con-
trol Applications. CCA’01. IEEE, Sept. 2001, pp. 756–760. doi:
10.1109/CCA.2001.973959.

[Leh18] Sebastian Michael Lehrig. “Efficiently Conducting Quality-

of-Service Analyses by Templating Architectural Knowl-

edge”. PhD thesis. Karlsruher Institut für Technologie (KIT),

2018. 514 pp. isbn: 978-3-7315-0756-7. doi: 10.5445/KSP/

1000079766.

[Leh80] Meir Manny Lehman. “On Understanding Laws, Evolution,

and Conservation in the Large-program Life Cycle”. In: Jour-
nal of Systems and Software 1 (Sept. 1980), pp. 213–221. issn:
0164-1212. doi: 10.1016/0164-1212(79)90022-0.

459

http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-228027
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-228027
https://doi.org/10.5381/jot.2012.11.1.a8
https://doi.org/10.1145/3276604.3276622
https://doi.org/10.1109/CCA.2001.973959
https://doi.org/10.5445/KSP/1000079766
https://doi.org/10.5445/KSP/1000079766
https://doi.org/10.1016/0164-1212(79)90022-0

Bibliography

[Lev+14] Tihamer Levendovszky, Daniel Balasubramanian, Anantha

Narayanan, Feng Shi, Chris van Buskirk, and Gabor Karsai. “A

semi-formal description of migrating domain-specific models

with evolving domains”. In: Software & Systems Modeling
13.2 (May 2014), pp. 807–823. issn: 1619-1374. doi: 10.1007/

s10270-012-0313-5.

[LEZ14] Benoit Langlois, Daniel Exertier, and Boubekeur Zendagui.

“Development of Modelling Frameworks and Viewpoints with

Kitalpha”. In: Proceedings of the 14th Workshop on Domain-
Specific Modeling. DSM ’14. Portland, Oregon, USA: ACM,

2014, pp. 19–22. isbn: 978-1-4503-2156-3. doi: 10 . 1145 /

2688447.2688451.

[LG10a] Juan de Lara and Esther Guerra. “Deep Meta-modelling with

MetaDepth”. In: Objects, Models, Components, Patterns. Ed.
by Jan Vitek. Berlin, Heidelberg: Springer Berlin Heidelberg,

2010, pp. 1–20. isbn: 978-3-642-13953-6.

[LG10b] Juan de Lara and Esther Guerra. “Generic Meta-modelling

with Concepts, Templates and Mixin Layers”. In: 2010
ACM/IEEE 13th International Conference on Model-Driven
Engineering Languages and Systems (MODELS). Ed. by Dorina

C. Petriu, Nicolas Rouquette, and Øystein Haugen. Oslo, Nor-

way: Springer Berlin Heidelberg, Oct. 2010, pp. 16–30. isbn:

978-3-642-16145-2. doi: 10.1007/978-3-642-16145-2_2.

[LGL14a] Jesús J. López-Fernández, Esther Guerra, and Juan de Lara.

“Meta-Model Validation and Verification with MetaBest”. In:

Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering. ASE ’14. Vasteras, Sweden:

ACM, 2014, pp. 831–834. isbn: 978-1-4503-3013-8. doi: 10.

1145/2642937.2648617.

[LGL14b] Jesús J López-Fernández, Esther Guerra, and Juan de Lara.

“Assessing the Quality of Meta-models”. In: Proceedings of the
11th Workshop on Model Driven Engineering, Verification and
Validation (MoDeVVa). 2014, p. 3.

[LH96] Sheng Liang and Paul Hudak. “Modular denotational seman-

tics for compiler construction”. In: Programming Languages
and Systems—ESOP’96 (1996), pp. 219–234.

460

https://doi.org/10.1007/s10270-012-0313-5
https://doi.org/10.1007/s10270-012-0313-5
https://doi.org/10.1145/2688447.2688451
https://doi.org/10.1145/2688447.2688451
https://doi.org/10.1007/978-3-642-16145-2_2
https://doi.org/10.1145/2642937.2648617
https://doi.org/10.1145/2642937.2648617

Bibliography

[LP09] Maria Teresa Llano and Rob Pooley. “UML specification and

correction of object-oriented anti-patterns”. In: Software En-
gineering Advances, 2009. ICSEA’09. Fourth International Con-
ference on. IEEE. 2009, pp. 39–44.

[LR06] Martin Lippert and Stephen Roock. Refactoring in large soft-
ware projects: performing complex restructurings successfully.
John Wiley & Sons, 2006.

[LR13] Kevin Lano and Shekoufeh Kolahdouz Rahimi. “Case study:

Class diagram restructuring”. In: Proceedings Sixth Transfor-
mation Tool Contest, TTC 2013, Budapest, Hungary, 19-20 June,
2013. 2013, pp. 8–15. doi: 10.4204/EPTCS.135.2.

[LW94] Barbara H. Liskov and Jeannette M. Wing. “A Behavioral

Notion of Subtyping”. In: ACM Transactions on Programming
Languages and Systems 16.6 (Nov. 1994), pp. 1811–1841. url:
http://www.acm.org/pubs/articles/journals/toplas/

1994-16-6/p1811-liskov/p1811-liskov.pdf.

[Mar03] Robert Cecil Martin. Agile Software Development: Principles,
Patterns, and Practices. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2003. isbn: 0135974445.

[Mar98] Michele Marchesi. “OOA metrics for the Unified Modeling

Language”. In: Proceedings of the Second Euromicro Conference
on Software Maintenance and Reengineering. Mar. 1998, pp. 67–

73.

[May+13] Tanja Mayerhofer, Philip Langer, Manuel Wimmer, and Gerti

Kappel. “xMOF: Executable DSMLs based on fUML”. In: In-
ternational Conference on Software Language Engineering.
Springer. 2013, pp. 56–75.

[McC76] Thomas J. McCabe. “A Complexity Measure”. In: IEEE Trans-
actions on Software Engineering SE-2.4 (Dec. 1976), pp. 308–

320. issn: 0098-5589. doi: 10.1109/TSE.1976.233837.

[Mén+16a] David Méndez-Acuña, José A. Galindo, Benoit Combemale,

Arnaud Blouin, and Benoit Baudry. “Puzzle: A Tool for Ana-

lyzing and Extracting Specification Clones in DSLs”. In: Soft-
ware Reuse: Bridging with Social-Awareness: 15th International
Conference, ICSR 2016, Limassol, Cyprus, June 5-7, 2016, Pro-
ceedings. Ed. by Georgia M. Kapitsaki and Eduardo Santana

461

https://doi.org/10.4204/EPTCS.135.2
http://www.acm.org/pubs/articles/journals/toplas/1994-16-6/p1811-liskov/p1811-liskov.pdf
http://www.acm.org/pubs/articles/journals/toplas/1994-16-6/p1811-liskov/p1811-liskov.pdf
https://doi.org/10.1109/TSE.1976.233837

Bibliography

de Almeida. Cham: Springer International Publishing, 2016,

pp. 393–396. isbn: 978-3-319-35122-3. doi: 10.1007/978-3-

319-35122-3_26.

[Mén+16b] David Méndez-Acuña, José A. Galindo, Thomas Degueule,

Benoît Combemale, and Benoît Baudry. “Leveraging Soft-

ware Product Lines Engineering in the development of ex-

ternal DSLs: A systematic literature review”. In: Computer
Languages, Systems & Structures 46.Supplement C (Nov. 2016),

pp. 206–235. issn: 1477-8424. doi: 10 . 1016 / j . cl . 2016 .

09.004. url: http://www.sciencedirect.com/science/

article/pii/S1477842416300768.

[Mey09] Bertrand Meyer. “Touch of class”. In: Learning to program well
with Object Technology and Design by Contract, AN INTRO-
DUCTION TO SOFTWARE ENGINEERING http://se. inf. ethz.
ch/touch (2009).

[MG06] TomMens and Pieter VanGorp. “A Taxonomy ofModel Trans-

formation”. In: Electronic Notes in Theoretical Computer Sci-
ence 152 (2006). Proceedings of the International Workshop

on Graph and Model Transformation (GraMoT 2005), pp. 125–

142. issn: 1571-0661. doi: 10.1016/j.entcs.2005.10.021.

url: http://www.sciencedirect.com/science/article/

pii/S1571066106001435.

[MGP03] MaEsperanza Manso, Marcela Genero, and Mario Piattini.

“No-redundant Metrics for UML Class Diagram Structural

Complexity”. In: Advanced Information Systems Engineering.
Vol. 2681. Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 2003, pp. 127–142.

[MH11] Philipp Merkle and Jörg Henss. “EventSim – An Event-driven

Palladio Software Architecture Simulator”. In: Palladio Days
2011 Proceedings (appeared as technical report). Ed. by Steffen

Becker, Jens Happe, and Ralf Reussner. Karlsruhe Reports in

Informatics ; 2011,32. Karlsruhe: KIT, Fakultät für Informatik,

2011, pp. 15–22. url: http://digbib.ubka.uni-karlsruhe.

de/volltexte/1000025188.

462

https://doi.org/10.1007/978-3-319-35122-3_26
https://doi.org/10.1007/978-3-319-35122-3_26
https://doi.org/10.1016/j.cl.2016.09.004
https://doi.org/10.1016/j.cl.2016.09.004
http://www.sciencedirect.com/science/article/pii/S1477842416300768
http://www.sciencedirect.com/science/article/pii/S1477842416300768
https://doi.org/10.1016/j.entcs.2005.10.021
http://www.sciencedirect.com/science/article/pii/S1571066106001435
http://www.sciencedirect.com/science/article/pii/S1571066106001435
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025188
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025188

Bibliography

[MHK99] Brian Keith Miller, Pei Hsia, and Chenho Kung. “Object-

oriented architecture measures”. In: Systems Sciences, 1999.
HICSS-32. Proceedings of the 32nd Annual Hawaii International
Conference on. IEEE. 1999, 10–pp.

[Mor+14] Antonio Moreno-Delgado, Francisco Durán, Steffen Zschaler,

and Javier Troya. “Modular DSLs for flexible analysis: An

e-Motions reimplementation of Palladio”. In: European Con-
ference on Modelling Foundations and Applications. Ed. by
Jordi Cabot and Julia Rubin. Springer International Publish-

ing, 2014, pp. 132–147. isbn: 978-3-319-09195-2.

[Mos04] Peter D Mosses. “Modular structural operational semantics”.

In: The Journal of Logic and Algebraic Programming 60 (2004),

pp. 195–228.

[MT04] T. Mens and T. Tourwe. “A survey of software refactor-

ing”. In: IEEE Transactions on Software Engineering 30.2 (Feb.

2004), pp. 126–139. issn: 0098-5589. doi: 10.1109/TSE.2004.

1265817.

[Nar+09] Anantha Narayanan, Tihamer Levendovszky, Daniel Bala-

subramanian, and Gabor Karsai. “Automatic Domain Model

Migration to Manage Metamodel Evolution”. In:Model Driven
Engineering Languages and Systems. Ed. by Andy Schürr and

Bran Selic. Berlin, Heidelberg: Springer Berlin Heidelberg,

2009, pp. 706–711. isbn: 978-3-642-04425-0.

[Obj06] Object Management Group (OMG). Object Constraint Lan-
guage, v2.0 (formal/ 06-05-01). 2006. url: http://www.omg.
org/cgi-bin/doc?formal/2006-05-01.

[Obj11] Object Management Group (OMG). UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded Systems, version
1.1. 2011. url: http://www.omg.org/spec/MARTE/1.1/PDF.

[Obj14] Object Management Group (OMG). Business Process Model
And Notation Specification (BPMN) – Version 2.0.2. Jan. 2014.
url: http://www.omg.org/spec/BPMN/2.0.2/.

[Obj16] Object Management Group (OMG). MOF 2.5.1 Core Specifi-
cation (formal/2016-11-01). Nov. 2016. url: http://www.omg.
org/spec/MOF/2.5.1/.

463

https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1109/TSE.2004.1265817
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.omg.org/spec/MARTE/1.1/PDF
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/MOF/2.5.1/
http://www.omg.org/spec/MOF/2.5.1/

Bibliography

[Obj17] Object Management Group (OMG). Unified Modeling Lan-
guage (UML) – Version 2.5.1. Dec. 2017. url: http://www.omg.
org/spec/UML/2.5.1/.

[Obj18] Object Management Group (OMG). Structured Metrics Meta-
model (SMM) – Version 1.2 beta. Apr. 2018. url: https://www.
omg.org/spec/SMM/1.2/Beta1/.

[Pag88] Meilir Page-Jones. Practical Guide to Structured Systems De-
sign (2nd Edition). 2nd ed. Prentice Hall, May 1988. isbn:

9788120314825.

[Par72] David Lorge Parnas. “On the Criteria to Be Used in Decompos-

ing Systems into Modules”. In: Communications of the ACM
15.12 (Dec. 1972), pp. 1053–1058. issn: 0001-0782.

[Pes+15] Ana Pescador, Antonio Garmendia, Esther Guerra, Jesús

Sánchez Cuadrado, and Juan de Lara. “Pattern-based devel-

opment of Domain-Specific Modelling Languages”. In: 2015
ACM/IEEE 18th International Conference on Model Driven
Engineering Languages and Systems (MODELS). IEEE. Sept.
2015, pp. 166–175. doi: 10.1109/MODELS.2015.7338247.

[Pil18] Roman Pilipchuk. “Coping with Access Control Requirements

in the Context of Mutual Dependencies between Business

and IT”. In: Proceedings of the Central European Cybersecurity
Conference 2018. CECC’18. ACM, 2018. doi: 10.1145/3277570.

3277587.

[PS16] Parul and Brahmaleen Kaur Sidhu. “Model Smells In Uml Class

Diagrams”. In: International Journal of Enhanced Research in
Management & Computer Applications 5.5 (May 2016). issn:

2319-7471.

[PSH18] Roman Pilipchuk, Stephan Seifermann, and Robert Heinrich.

“Aligning Business Process Access Control Policies with En-

terprise Architecture”. In: Proceedings of the Central Euro-
pean Cybersecurity Conference 2018. CECC’18. ACM, 2018.

doi: 10.1145/3277570.3277588.

464

http://www.omg.org/spec/UML/2.5.1/
http://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/SMM/1.2/Beta1/
https://www.omg.org/spec/SMM/1.2/Beta1/
https://doi.org/10.1109/MODELS.2015.7338247
https://doi.org/10.1145/3277570.3277587
https://doi.org/10.1145/3277570.3277587
https://doi.org/10.1145/3277570.3277588

Bibliography

[Ras+15] Wolfgang Raskob, Valentin Bertsch, Manuel Ruppert, Misha

Strittmatter, Lucia Happe, Brandon Broadnax, Stefan Wan-

dler, and Evgenia Deines. “Security of Electricity Supply in

2030”. In: Critical Infrastructure Protection and Resilience Eu-
rope (CIPRE). Den Haag, Netherlands, Mar. 2015. url: https:

//publikationen.bibliothek.kit.edu/1000056115.

[Rat13] Christoph Rathfelder. Modelling Event-Based Interactions in
Component-Based Architectures for Quantitative System Eval-
uation. Vol. 10. The Karlsruhe Series on Software Design and

Quality. Karlsruhe, Germany: KIT Scientific Publishing, 2013.

url: http://www.ksp.kit.edu/shop/isbn2shopid.php?

isbn=978-3-86644-969-5.

[RDV09] Jose E Rivera, Francisco Durán, and Antonio Vallecillo. “A

graphical approach for modeling time-dependent behavior

of DSLs”. In: 2009 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, Sept. 2009, pp. 51–
55. doi: 10.1109/VLHCC.2009.5295300.

[Ren15] Andreas Rentschler. “Model Transformation Languages with

Modular Information Hiding”. PhD thesis. Karlsruhe, Ger-

many: Karlsruhe Institute of Technology, Apr. 2015. isbn:

978-3-7315-0346-0. doi: 10.5445/KSP/1000045910. url: http:

//www.ksp.kit.edu/9783731503460.

[Reu+11] Ralf Reussner, Steffen Becker, Erik Burger, Jens Happe,

Michael Hauck, Anne Koziolek, Heiko Koziolek, Klaus Krog-

mann, andMichael Kuperberg. The Palladio Component Model.
Tech. rep. Karlsruhe: KIT, Fakultät für Informatik, 2011. url:

http : / / digbib . ubka . uni - karlsruhe . de / volltexte /

1000022503.

[Reu+16] Ralf H. Reussner, Steffen Becker, Jens Happe, Robert Hein-

rich, Anne Koziolek, Heiko Koziolek, Max Kramer, and Klaus

Krogmann. Modeling and Simulating Software Architectures
– The Palladio Approach. Cambridge, MA: MIT Press, Oct.

2016. 408 pp. isbn: 9780262034760. url: http://mitpress.

mit . edu / books / modeling - and - simulating - software -

architectures.

465

https://publikationen.bibliothek.kit.edu/1000056115
https://publikationen.bibliothek.kit.edu/1000056115
http://www.ksp.kit.edu/shop/isbn2shopid.php?isbn=978-3-86644-969-5
http://www.ksp.kit.edu/shop/isbn2shopid.php?isbn=978-3-86644-969-5
https://doi.org/10.1109/VLHCC.2009.5295300
https://doi.org/10.5445/KSP/1000045910
http://www.ksp.kit.edu/9783731503460
http://www.ksp.kit.edu/9783731503460
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures

Bibliography

[Reu01] Ralf H. Reussner. “Parametrisierte Verträge zur Protokolladap-

tion bei Software-Komponenten”. PhD. Thesis. Department

of Informatics, University of Karlsruhe, 2001.

[Ris98] L. Rising. The Patterns Handbook: Techniques, Strategies, and
Applications. SIGS, 1998. isbn: 9780521648189. url: https:
//books.google.de/books?id=HBAuixGMYWEC.

[Roq16] Pascal Roques. “MBSE with the ARCADIA Method and the

Capella Tool”. In: 8th European Congress on Embedded Real
Time Software and Systems (ERTS 2016). Toulouse, France,
Jan. 2016. url: https://hal.archives-ouvertes.fr/hal-

01258014.

[Ros+15] Kiana Rostami, Johannes Stammel, Robert Heinrich, and Ralf

Reussner. “Architecture-based Assessment and Planning of

Change Requests”. In: Proceedings of the 11th International
ACM SIGSOFT Conference on Quality of Software Architectures.
QoSA ’15. Montreal, QC, Canada: ACM, 2015, pp. 21–30. isbn:

978-1-4503-3470-9. url: http://dl.acm.org/citation.cfm?

id=2737198.

[Rum02] Bernhard Rumpe. “Executable Modeling with UML - A Vision

or a Nightmare?” In: Issues & Trends of Information Technology
Management in Contemporary Associations, Seattle. Ed. by T.

Clark and J. Warmer. London: Idea Group Publishing, 2002,

pp. 697–701. url: http://www.se-rwth.de/topics/~rumpe/

publications/Executable-Modeling-with-UML-A-Vision-

or-a-Nightmare.pdf.

[Run+12] Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell.

Case Study Research in Software Engineering: Guidelines and
Examples. 1st. Hoboken, N.J: John Wiley & Sons, 2012. isbn:

9781118104354.

[Sch+15] Matthias Schöttle, Nishanth Thimmegowda, Omar Alam, Jörg

Kienzle, and Gunter Mussbacher. “Feature modelling and

traceability for concern-driven software development with

TouchCORE”. In: Companion Proceedings of the 14th Inter-
national Conference on Modularity, MODULARITY 2015, Fort
Collins, CO, USA, March 16 - 19, 2015. Mar. 2015, pp. 11–14.

466

https://books.google.de/books?id=HBAuixGMYWEC
https://books.google.de/books?id=HBAuixGMYWEC
https://hal.archives-ouvertes.fr/hal-01258014
https://hal.archives-ouvertes.fr/hal-01258014
http://dl.acm.org/citation.cfm?id=2737198
http://dl.acm.org/citation.cfm?id=2737198
http://www.se-rwth.de/topics/~rumpe/publications/Executable-Modeling-with-UML-A-Vision-or-a-Nightmare.pdf
http://www.se-rwth.de/topics/~rumpe/publications/Executable-Modeling-with-UML-A-Vision-or-a-Nightmare.pdf
http://www.se-rwth.de/topics/~rumpe/publications/Executable-Modeling-with-UML-A-Vision-or-a-Nightmare.pdf

Bibliography

[Sch+16] Matthias Schöttle et al. “On the Modularization Provided by

Concern-oriented Reuse”. In:Modularity. ACM, 2016, pp. 184–

189.

[Sch06] Douglas C Schmidt. “Model-driven engineering”. In: COM-
PUTER 39.2 (2006).

[SH12] Misha Strittmatter and Lucia Happe. “Compositional perfor-

mance abstractions of software connectors”. In: Proceedings
of the 3rd ACM/SPEC International Conference on Performance
Engineering (ICPE). Boston, Massachusetts, USA: ACM, 2012,

pp. 275–278. isbn: 978-1-4503-1202-8. doi: 10.1145/2188286.

2188337.

[SH16a] Misha Strittmatter and Robert Heinrich. “A Reference Struc-

ture for Metamodels of Quality-Aware Domain-Specific Lan-

guages”. In: 13th Working IEEE/IFIP Conference on Software
Architecture. Apr. 2016, pp. 268–269. doi: 10.1109/WICSA.
2016.51. url: http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=7516841.

[SH16b] Misha Strittmatter and Robert Heinrich. “Challenges in the

Evolution of Metamodels”. In: 3rd Collaborative Workshop on
Evolution and Maintenance of Long-Living Software Systems.
Vol. 36(1). Softwaretechnik-Trends. 2016, pp. 12–15.

[Sie04] Johannes Siedersleben. Moderne Software-Architektur: Um-
sichtig planen, robust bauen mit Quasar. Heidelberg, Germany:

dpunkt.verlag, 2004. isbn: 9783898642927.

[SK03] R. Subramanyam and M.S. Krishnan. “Empirical analysis of

CK metrics for object-oriented design complexity: implica-

tions for software defects”. In: IEEE Transactions on Software
Engineering 29.4 (2003). issn: 0098-5589. doi: 10.1109/TSE.

2003.1191795.

[SK16] Misha Strittmatter and Amine Kechaou. The Media Store 3
Case Study System. Tech. rep. 2016,1. Faculty of Informatics,

Karlsruhe Institute of Technology, Feb. 2016. url: http://

digbib.ubka.uni- karlsruhe.de/volltexte/documents/

3792054.

467

https://doi.org/10.1145/2188286.2188337
https://doi.org/10.1145/2188286.2188337
https://doi.org/10.1109/WICSA.2016.51
https://doi.org/10.1109/WICSA.2016.51
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7516841
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7516841
https://doi.org/10.1109/TSE.2003.1191795
https://doi.org/10.1109/TSE.2003.1191795
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/3792054
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/3792054
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/3792054

Bibliography

[SL14] Misha Strittmatter and Michael Langhammer. “Identifying

Semantically Cohesive Modules within the Palladio Meta-

Model”. In: Proceedings of the Symposium on Software Per-
formance: Joint Descartes/Kieker/Palladio Days. Ed. by Stef-

fen Becker, Wilhelm Hasselbring, André van Hoorn, Samuel

Kounev, and Ralf Reussner. Stuttgart, Germany: Universitäts-

bibliothek Stuttgart, Nov. 2014, pp. 160–176.

[SLT14] Daniel Strüber, Michael Lukaszczyk, and Gabriele Taentzer.

“Tool Support for Model Splitting using Information Retrieval

and Model Crawling Techniques”. In: BigMDE 2014: Workshop
on Scalability in Model Driven Engineering. CEUR-WS, 2014,

pp. 44–47.

[SST13] Daniel Strüber, Matthias Selter, and Gabriele Taentzer. “Tool

support for clustering large meta-models”. In: Proceedings
of the Workshop on Scalability in Model Driven Engineering.
BigMDE ’13. Budapest, Hungary: ACM, 2013, 7:1–7:4. isbn:

978-1-4503-2165-5. doi: 10.1145/2487766.2487773.

[Sta12] International Organization for Standardization. ISO/PAS
17506:2012 – Industrial automation systems and integration
– COLLADA digital asset schema specification for 3D visu-
alization of industrial data. 1st ed. July 2012. url: https :

//www.iso.org/standard/59902.html.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Wien: Sprin-

ger Verlag, 1973. isbn: 3-211-81106-0.

[Str+13a] Misha Strittmatter, Philipp Merkle, Andreas Rentschler, and

Michael Langhammer. “Towards a Modular Palladio Compo-

nent Model”. In: Proceedings of the Symposium on Software
Performance: Joint Kieker/Palladio Days. Ed. by Steffen Becker,

Wilhelm Hasselbring, André van Hoorn, and Ralf Reussner.

Vol. 1083. Karlsruhe, Germany: CEURWorkshop Proceedings,

Nov. 2013, pp. 49–58. url: http://www.kieker-palladio-

days.org/.

[Str+13b] Daniel Strüber, Gabriele Taentzer, Stefan Jurack, and Tim

Schäfer. “Towards a Distributed Modeling Process Based on

Composite Models”. In: Fundamental Approaches to Software
Engineering. Ed. by Vittorio Cortellessa and Dániel Varró.

468

https://doi.org/10.1145/2487766.2487773
https://www.iso.org/standard/59902.html
https://www.iso.org/standard/59902.html
http://www.kieker-palladio-days.org/
http://www.kieker-palladio-days.org/

Bibliography

Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 6–

20. isbn: 978-3-642-37057-1.

[Str+14] Daniel Strüber, Julia Rubin, Gabriele Taentzer, and Marsha

Chechik. “Splitting Models Using Information Retrieval and

Model Crawling Techniques”. In: Fundamental Approaches to
Software Engineering. Springer, 2014, pp. 47–62.

[Str+15] Misha Strittmatter, Kiana Rostami, Robert Heinrich, and Ralf

Reussner. “A Modular Reference Structure for Component-

based Architecture Description Languages”. In: 2nd Interna-
tional Workshop on Model-Driven Engineering for Component-
Based Systems (ModComp). CEUR, 2015, pp. 36–41. url: http:
//ceur-ws.org/Vol-1463/paper6.pdf.

[Str+16a] Misha Strittmatter, Georg Hinkel, Michael Langhammer,

Reiner Jung, and Robert Heinrich. “Challenges in the Evolu-

tion ofMetamodels: Smells andAnti-Patterns of aHistorically-

GrownMetamodel”. In: 10th InternationalWorkshop onModels
and Evolution (ME). Saint Malo, France: CEUR Vol-1706, Oct.

2016. url: http://ceur-ws.org/Vol-1706/.

[Str+16b] Misha Strittmatter, Michael Junker, Kiana Rostami, Sebastian

Lehrig, Amine Kechaou, Bo Liu, and Robert Heinrich. “Ex-

tensible Graphical Editors for Palladio”. In: Symposium on
Software Performance (SSP). Nov. 2016.

[Str+16c] Daniel Strüber, Stefan Jurack, Tim Schäfer, Stefan Schulz,

and Gabriele Taentzer. “Managing Model and Meta-Model

Components with Export and Import Interfaces”. In: BigMDE
2016: Workshop on Scalability in Model Driven Engineering.
CEUR-WS, 2016, pp. 31–36.

[Str11] Misha Strittmatter. “Performance Abstractions of Commu-

nication Patterns for Connectors”. Study Thesis. Karlsruhe

Institute of Technology (KIT), Germany, Jan. 2011.

[Str13] Misha Strittmatter. “Feedback-Driven Concurrency Improve-

ment and Refinement of Performance Models”. Diploma The-

sis. Karlsruhe Institute of Technology (KIT), Germany, Mar.

2013.

469

http://ceur-ws.org/Vol-1463/paper6.pdf
http://ceur-ws.org/Vol-1463/paper6.pdf
http://ceur-ws.org/Vol-1706/

Bibliography

[SV06] Thomas Stahl and Markus Völter.Model-driven software devel-
opment : technology, engineering, management. Ed. by Jorn Bet-
tin, Krzysztof Czarnecki, and Bettina von Stockfleth. Chich-

ester: John Wiley & Sons, 2006. isbn: 9780470025703.

[SW00] Connie U. Smith and Lloyd G. Williams. “Software perfor-

mance antipatterns”. In: Workshop on Software and Perfor-
mance. 2000, pp. 127–136. doi: 10.1145/350391.350420.

[SZS10] Kawther Saeedi, Liping Zhao, and Pedro R. F. Sampaio. “Ex-

tending BPMN for supporting customer-facing service quality

requirements”. In: 2010 IEEE International Conference on Web
Services. IEEE. July 2010, pp. 616–623. doi: 10.1109/ICWS.

2010.116.

[Tri08] Adrian Trifu. “Towards Automated Restructuring of Object-

Oriented Systems”. PhD thesis. Fakultät für Informatik, Uni-

versität Karlsruhe (TH), Germany, 2008.

[TT07] Adrian Trifu and Mircea Trifu. SISSy: Catalog of Detected
Problem Patterns. 2007.

[VC15] Edoardo Vacchi and Walter Cazzola. “Neverlang: A Frame-

work for Feature-Oriented Language Development”. In: Com-
puter Languages, Systems & Structures 43.3 (Oct. 2015), pp. 1–
40. issn: 1477-8424. doi: 10.1016/j.cl.2015.02.001. url:

http://www.sciencedirect.com/science/article/pii/

S1477842415000056.

[Vép+06] Éric Vépa, Jean Bézivin, Hugo Brunelière, and Frédéric Jouault.

“Measuring model repositories”. In: Proceedings of the 1st
Workshop on Model Size Metrics. Genoa, Italy, Oct. 2006. url:
https://hal.inria.fr/hal-01272259.

[Völ11] Steven Völkel. Kompositionale Entwicklung domänenspezifis-
cher Sprachen. German. Aachener Informatik-Berichte, Soft-

ware Engineering, Band 9. Shaker Verlag, 2011. isbn: 978-3-

8440-0328-4. url: http://www.se-rwth.de/phdtheses/Diss-

Voelkel-Kompositionale-Entwicklung-domaenenspezifis

cher-Sprachen.pdf.

470

https://doi.org/10.1145/350391.350420
https://doi.org/10.1109/ICWS.2010.116
https://doi.org/10.1109/ICWS.2010.116
https://doi.org/10.1016/j.cl.2015.02.001
http://www.sciencedirect.com/science/article/pii/S1477842415000056
http://www.sciencedirect.com/science/article/pii/S1477842415000056
https://hal.inria.fr/hal-01272259
http://www.se-rwth.de/phdtheses/Diss-Voelkel-Kompositionale-Entwicklung-domaenenspezifischer-Sprachen.pdf
http://www.se-rwth.de/phdtheses/Diss-Voelkel-Kompositionale-Entwicklung-domaenenspezifischer-Sprachen.pdf
http://www.se-rwth.de/phdtheses/Diss-Voelkel-Kompositionale-Entwicklung-domaenenspezifischer-Sprachen.pdf

Bibliography

[VS10] Markus Voelter and Konstantin Solomatov. “Language modu-

larization and composition with projectional language work-

benches illustrated with MPS”. In: Software Language Engi-
neering, SLE 16 (2010), p. 3.

[WBK14] FelixWillnecker, Andreas Brunnert, and Helmut Krcmar. “Pre-

dicting Energy Consumption by Extending the Palladio Com-

ponent Model”. In: SOSP’14 Symposium on Software Perfor-
mance: Joint Descartes/Kieker/Palladio Days 2014. 2014, p. 177.

[WL99] David M Weiss and Chi Tau Robert Lai. Software product-
line engineering: a family-based software development process.
Vol. 12. Addison-Wesley Reading, 1999.

471

Index

abstraction, 17, 19

first-class, 17

second-class, 17

addition, 24

affected class, 321

analyzability, 31

anti-pattern, 32

arbitrary dependency, 21

attribute, 19

bad smell, 31

cause, 58

harmful, 58

base model file, 104

base object, 104

class, 19

abstract, 19

affected, 321

attribute, 19

container, 20

root, 20

containment, 20

direct, 20

indirect, 20

dependency, 21

arbitrary, 21

hierarchy, 19

inheritance, 19

intermediate, 19

sub, 20

super, 20

property, 19

reference, 19

container, 20

opposite, 19

subclass, 19

superclass, 19

class extension, 104

classifier, 19

completeness, 30

concept, 17

core, 17

first-class, 17

second-class, 17

conceptually correct, 140

concern, 34

container, 20

reference, 20

containment, 20

direct, 20

hierarchy, 20

indirect, 20

containment tree fragmentation,

127

correctness, 29

data type, 21

473

Index

dependency, 21

arbitrary, 21

dependency change, 27

dependency graph, 142

DSL, 16

DSML, 16

DSMLs

for quality analysis, 35

quality-describing, 34

Ecore, 18

EMF, 18

enumeration, enum, 21

evolution scenario, 320

extension, 320

modification, 320

generic, 320

historical, 320

potential, 320

evolvability, 31

existence modification, 26

extends relation, 104

extensibility, 30

extension, 104

base model file, 104

base object, 104

class, 104

class extension, 104

content, 104

instantiation, 104

mechanism, 104

metamodel extension, 104

metamodel file, 104

model file, 104

object, 104

point, 104

relation, 104

extension model file, 104

feature

antecedent, 37

descendant, 37

empty, 140

grouping, 37

implemented-by, 145

model, 36

node, 36

relation

dependency, 37

excludes, 37

mandatory child, 36

optional child, 36

requires, 37

root, 36

selection, 37

set

alternative, 36

OR, 36

sibling, 37

GPL, 16

GQM plan, 38

hypergraph, 39

hyperedge, 39

module, 39

IDE, 18

inheritance, 19

instance compatibility, 51

language, 15

domain-specific, 16

DSL, 16

DSML, 16

general-purpose, 16

GPL, 16

474

Index

modeling, 15

programming, 15

language feature, 138

cross-cutting, 140

dependency, 139

conceptually correct, 140

extension, 140

standalone, 140

metamodel

anti-pattern, 32

bad smell, 31, 57

cause, 58

harmful, 58

indicator, 57

occurrence, 57

deployment, 22

design flaw, 57

developer, 34

element, 22

error

semantic, 57

validity, 56

file, 22

for quality analysis, 35

layer, 144

metric, 33

modification, 24

addition, 24

change, 24

dependency, 27

existence, 26

value, 27

quality, 29

analyzability, 31

completeness, 30

correctness, 29

evolvability, 31

extensibility, 30

modifiability, 31

modularity, 30

preciseness, 30

reusability, 30

understandability, 31

quality-describing, 35

refactoring, 28

relevant subgraph, 319

reuse, 23

structure, 22

use, 22

metamodel module, 141

abstract, 143

dependency, 142

graph, 142

transitive, 143

extension, 144

root, 143

metamodel-based tool, 17

metric, 32

model, 15, 22

element, 22

file, 22

fragmentation, 126

root, 22

model fragmentation, 126

modeling

abstraction, 17, 19

first-class, 17

second-class, 17

concept, 17

core, 17

first-class, 17

second-class, 17

modifiability, 31

modification, 24

addition, 24

475

Index

change, 24

Modular Designer, 424

Modular EMF Designer, 424

modularity, 30

MOF, 18

object, 19

root, 22

occurrence (bad smell), 57

package, 21

structure, 21

preciseness, 30

quality-describing

DSMLs, 34

metamodel, 35

reference, 19

container, 20

opposite, 19

result group, 337

reusability, 30

role

developer, 34

metamodel, 34

tool, 34

tool user, 34

root container, 20

root object, 22

semantic

dynamic, 17

semantics

static, 16

subclass, 19

superclass, 19

syntax

abstract, 16

concrete, 16

graphical, 16

tool

developer, 34

user, 34

understandability, 31

validity

construct, 39

external, 39

internal, 39

reliability, 39

value change, 27

view, 23

type, 23

476

List of Figures

2.1. Metamodel Modification Classification 26

2.2. Requirement for Modifications to be Considered a Refactoring 28

2.3. Graphical Notation . 42

4.1. Metamodeling Bad Smells . 58

4.2. The Inconsistent Abstraction Smell and its Correction 66

4.3. The Problem of Orthogonal Classifications 74

4.4. Missing Hierarchy Smell Occurrence: Classification by Enum . 74

4.5. Naive Solution to Orthogonal Classifications 75

4.6. Solutions to Orthogonal Classifications 75

4.7. The Multipath Hierarchy Smell 83

4.8. Superclass is Dependent on Subclass 87

4.9. The Obligatory Container Relation Smell 92

4.10. The Specialized Relation Smell 94

5.1. Concept Overview: External Additions 102

5.2. Illustration of External Additions 103

5.3. Concept Overview: Metamodel Extension 105

5.4. Intrusive Addition and External Extension 108

5.5. Extension Mechanisms: Inheritance, Referencing, Profiles . . 109

5.6. Extension Mechanisms: Extension Point Inheritance 112

5.7. Extension Mechanisms: the Decorator Pattern 113

5.8. Extension Mechanisms: the Role Pattern 117

5.9. Forward Compatibility of Tools 122

5.10. The Applies to Subclasses Comparison Criterion 124

5.11. The Orthogonality Comparison Criterion 125

5.12. The Multiplicity Comparison Criterion 126

5.13. The Containment Tree Integrity Comparison Criterion 127

5.14. The Adds a Type Comparison Criterion 129

477

List of Figures

6.1. Metamodel Modularization Concepts 139

6.2. Language Feature and Feature Model Dependencies 142

6.3. A Transitive Metamodel Module Dependency 143

6.4. Example for Relations Between Modularization Concepts . . 145

6.5. The Class Split Refactoring 155

6.6. The Dependency Inversion Refactoring 156

6.7. Metamodel Module Refactoring Constituents 159

6.8. The Horizontal Split Metamodel Module Refactoring 161

6.9. The Extension Extraction Refactoring 162

6.10. The Feature Support Extraction Refactoring 163

6.11. The Vertical Split Refactoring 163

6.12. The Module Merge Refactoring 164

6.13. The Pull Up Feature Relation Refactoring 165

6.14. Required Relation to Mandatory Child Refactoring 166

6.15. The Pull Up Mandatory Child Refactoring 168

6.16. Transform Mutual Exclusion Refactoring 169

6.17. Feature Relation Refactorings (Part 1/2) 170

6.18. Feature Relation Refactorings (Part 2/2) 171

6.19. Process Overview: Creating a new Metamodel 174

6.20. Process Overview: Refactoring a Legacy Metamodel 180

6.21. Process Overview: Extending a Modular Metamodel 184

7.1. Evaluation Approach . 194

8.1. Metamodel Extension Process 246

9.1. PCM Module Structure . 269

9.2. Package Structure of the PCM 270

9.3. mPCM Module Structure . 273

9.4. mPCM Feature Model . 282

9.5. Smart Grid Topology Module Structure 284

9.6. Modular Smart Grid Topology Modules and Feature Model . 285

9.7. KAMP4aPS Module Structure 288

9.8. mKAMP4aPS Module Structure and Feature Model 289

9.9. BPMN2 Concept Structure . 292

9.10. BPMN2 Module Structure . 293

9.11. BPMN2 Module Structure after Initial Horizontal Split 295

9.12. mBPMN2 Module Structure 297

478

List of Figures

9.13. mBPMN2 Feature Model . 306

9.14. Pattern: Interfaces, Roles, and Connectors 309

9.15. Pattern: Interfaces, Roles, Connectors, and Instantiation . . . 310

9.16. Pattern: Composite . 311

9.17. Pattern: Composition of Instances 311

9.18. Pattern: Instantiation, Roles and Interfaces, and Composition 312

9.19. Module Coupling View of the Previous Pattern Composition 313

9.20. Pattern: Allocation . 314

9.21. Pattern: Flow Chart and Resource Requiring Actions 315

10.1. Hierarchy of Evolution Scenario Types 321

10.2. Metamodel modules of PCM extensions 330

10.3. Evolvability Metric Results: PCM (Compl. and Coupling) . . 338

10.4. Evolvability Metric Results: PCM (Cohesion) 339

10.5. Evolvability Metric Results: Smart Grid Topology 340

10.6. Evolvability Metric Results: KAMP4aPS 341

10.7. Evolvability Metric Results: BPMN2 342

10.8. Utilization: PCM . 344

10.9. Utilization: Smart Grid Topology 345

10.10. Utilization: KAMP4aPS . 346

10.11. Utilization: BPMN2 . 347

B.1. Screenshot of the GUI of the Modular EMF Designer 425

B.2. Notational Elements of Modular EMF Designer Diagrams . . 426

C.1. The GUI of the MRS validation tool 434

479

List of Tables

4.1. Bad Smell Overview . 61

7.1. Metric Thresholds and Smell Occurrences in the PCM 197

7.2. Metric Occurrences in the PCM and Corrections 200

7.2. Metric Occurrences in the PCM and Corrections 201

7.2. Metric Occurrences in the PCM and Corrections 202

7.2. Metric Occurrences in the PCM and Corrections 203

7.2. Metric Occurrences in the PCM and Corrections 204

7.2. Metric Occurrences in the PCM and Corrections 205

7.2. Metric Occurrences in the PCM and Corrections 206

7.3. Metric Occurrences and Corrections in the PCM 226

8.1. Extension Mechanisms: Evaluation of the Comparison Criteria 231

9.1. Case Study Candidates: Criteria Evaluation 260

9.2. Case Studies: Counting Metric Results 267

10.2. Non-generic Evolution Scenarios of the PCM 331

10.4. Non-generic Evolution Scenarios of Smart Grid Topology . . . 333

10.6. Non-generic Evolution Scenarios of KAMP4aPS 334

10.8. Evolvability Evaluation Result Groups 343

A.1. Metric Occurrences in the PCM and Corrections 407

A.1. Metric Occurrences in the PCM and Corrections 408

A.1. Metric Occurrences in the PCM and Corrections 409

A.1. Metric Occurrences in the PCM and Corrections 410

A.1. Metric Occurrences in the PCM and Corrections 411

A.1. Metric Occurrences in the PCM and Corrections 412

A.1. Metric Occurrences in the PCM and Corrections 413

A.1. Metric Occurrences in the PCM and Corrections 414

481

List of Tables

A.1. Metric Occurrences in the PCM and Corrections 415

A.1. Metric Occurrences in the PCM and Corrections 416

A.1. Metric Occurrences in the PCM and Corrections 417

A.1. Metric Occurrences in the PCM and Corrections 418

A.1. Metric Occurrences in the PCM and Corrections 419

A.1. Metric Occurrences in the PCM and Corrections 420

A.1. Metric Occurrences in the PCM and Corrections 421

A.1. Metric Occurrences in the PCM and Corrections 422

482

Band 1 Steffen Becker
 Coupled Model Transformations for QoS Enabled

Component-Based Software Design.
 ISBN 978-3-86644-271-9

Band 2 Heiko Koziolek
 Parameter Dependencies for Reusable Performance

Specifications of Software Components.
 ISBN 978-3-86644-272-6

Band 3 Jens Happe
 Predicting Software Performance in Symmetric

Multi-core and Multiprocessor Environments.
 ISBN 978-3-86644-381-5

Band 4 Klaus Krogmann
 Reconstruction of Software Component Architectures and

Behaviour Models using Static and Dynamic Analysis.
 ISBN 978-3-86644-804-9

Band 5 Michael Kuperberg
 Quantifying and Predicting the Influence of Execution Platform

on Software Component Performance.
 ISBN 978-3-86644-741-7

Band 6 Thomas Goldschmidt
 View-Based Textual Modelling.
 ISBN 978-3-86644-642-7

Band 7 Anne Koziolek
 Automated Improvement of Software Architecture Models

for Performance and Other Quality Attributes.
 ISBN 978-3-86644-973-2

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner // ISSN 1867-0067

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 8 Lucia Happe
 Configurable Software Performance Completions through

Higher-Order Model Transformations.
 ISBN 978-3-86644-990-9

Band 9 Franz Brosch
 Integrated Software Architecture-Based Reliability

Prediction for IT Systems.
 ISBN 978-3-86644-859-9

Band 10 Christoph Rathfelder
 Modelling Event-Based Interactions in Component-Based

Architectures for Quantitative System Evaluation.
 ISBN 978-3-86644-969-5

Band 11 Henning Groenda
 Certifying Software Component

Performance Specifications.
 ISBN 978-3-7315-0080-3

Band 12 Dennis Westermann
 Deriving Goal-oriented Performance Models

by Systematic Experimentation.
 ISBN 978-3-7315-0165-7

Band 13 Michael Hauck
 Automated Experiments for Deriving Performance-relevant

Properties of Software Execution Environments.
 ISBN 978-3-7315-0138-1

Band 14 Zoya Durdik
 Architectural Design Decision Documentation through

Reuse of Design Patterns.
 ISBN 978-3-7315-0292-0

Band 15 Erik Burger
 Flexible Views for View-based Model-driven Development.
 ISBN 978-3-7315-0276-0

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 16 Benjamin Klatt
 Consolidation of Customized Product Copies
 into Software Product Lines.
 ISBN 978-3-7315-0368-2

Band 17 Andreas Rentschler
 Model Transformation Languages with

Modular Information Hiding.
 ISBN 978-3-7315-0346-0

Band 18 Omar-Qais Noorshams
 Modeling and Prediction of I/O Performance

in Virtualized Environments.
 ISBN 978-3-7315-0359-0

Band 19 Johannes Josef Stammel
 Architekturbasierte Bewertung und Planung

von Änderungsanfragen.
 ISBN 978-3-7315-0524-2

Band 20 Alexander Wert
 Performance Problem Diagnostics by Systematic Experimentation.
 ISBN 978-3-7315-0677-5

Band 21 Christoph Heger
 An Approach for Guiding Developers to

Performance and Scalability Solutions.
 ISBN 978-3-7315-0698-0

Band 22 Fouad ben Nasr Omri
 Weighted Statistical Testing based on Active Learning and Formal

Verification Techniques for Software Reliability Assessment.
 ISBN 978-3-7315-0472-6

Band 23 Michael Langhammer
 Automated Coevolution of Source Code and

Software Architecture Models.
 ISBN 978-3-7315-0783-3

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 24 Max Emanuel Kramer
 Specification Languages for Preserving Consistency between

Models of Different Languages.
 ISBN 978-3-7315-0784-0

Band 25 Sebastian Michael Lehrig
 Efficiently Conducting Quality-of-Service Analyses by Templating

Architectural Knowledge.
 ISBN 978-3-7315-0756-7

Band 26 Georg Hinkel
 Implicit Incremental Model Analyses and Transformations.
 ISBN 978-3-7315-0763-5

Band 27 Christian Stier
 Adaptation-Aware Architecture Modeling and

Analysis of Energy Efficiency for Software Systems.
 ISBN 978-3-7315-0851-9

Band 28 Lukas Märtin
 Entwurfsoptimierung von selbst-adaptiven Wartungs-

mechanismen für software-intensive technische Systeme.
 ISBN 978-3-7315-0852-6

Band 29 Axel Busch
 Quality-driven Reuse of Model-based

Software Architecture Elements.
 ISBN 978-3-7315-0951-6

Band 30 Kiana Busch
 An Architecture-based Approach for Change

Impact Analysis of Software-intensive Systems.
 ISBN 978-3-7315-0974-5

Band 31 Misha Strittmatter
 A Reference Structure for Modular Metamodels of

Quality-Describing Domain-Specific Modeling Languages.
 ISBN 978-3-7315-0982-0

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

31

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner

M
is

h
a

St
ri

tt
m

at
te

r

Domain-specifi c modeling languages are used to model systems. Such modeling
languages can be defi ned by metamodels. The challenges posed by the use of
metamodels stem from their maintenance and reuse. They have to evolve to
remain useful, which can lead to a degradation of their structure, including a
decline in understandability, maintainability, and reusability. Often, metamodels
are not built with reusability in mind. If new requirements arise, this may lead
to intrusive additions, branching of languages, or newly developed languages
to be built from scratch. These solutions all have their shortcomings.
To understand the problems in metamodeling, this work presents an investi-
gation of bad smells in metamodels. The core contribution of this work is the
reference structure. It enables design, evolution, and extension of metamodels
for modeling languages used for quality analysis. Applying the reference structure
yields a modular metamodel. To be able to couple the metamodel modules in
a meaningful way, this work investigates metamodel extension mechanisms. A

 R
ef

er
en

ce
 S

tr
u

ct
u

re
 f

o
r

M
o

d
u

la
r

M
et

am
o

d
el

s
o

f
Q

u
al

it
y-

D
es

cr
ib

in
g

 D
o

m
ai

n
-S

p
ec

ifi
 c

 M
o

d
el

in
g

 L
an

g
u

ag
es

ISSN 1867-0067
ISBN 978-3-7315-0982-0
Gedruckt auf FSC-zertifi ziertem Papier

9 783731 509820

ISBN 978-3-7315-0982-0

	Acknowledgment
	Abstract
	Zusammenfassung
	Prologue
	Introduction
	Scope
	Why Good Metamodel Design is Important
	The Relation of Metamodeling and Object-oriented Design

	Foundations and Terminology
	Languages and Modeling
	Metamodeling
	Meta Object Facility
	EMOF-based Metamodels
	Metamodel Use and Reuse
	Views and View Types
	Metamodel Evolution
	Metamodel Modification Types
	Metamodel Refactoring

	Metamodel Quality
	Bad Smells
	Metrics
	EMF Refactor
	Roles
	Developer
	User

	Quality-Describing DSMLs and Metamodels
	Feature Models
	Concepts and Approaches Relevant to the Validation
	Goal Question Metric Approach
	Types of Validity
	Graph and Hypergraph Metrics According to Allen

	Graphical Notation

	Problem Areas and Challenges
	Package Erosion and Growth of Dependencies
	Loss of Knowledge
	Monolithic Metamodels
	Commonalities in Related Languages
	Tool-specific Metamodel Content
	Generality Compromise
	Metamodel Coupling
	Instance Incompatibility
	Incompatible Extensions
	Feature Overload in Metamodel-based Tools

	Contribution
	Bad Smells and Anti-Patterns in Metamodeling
	Research Questions
	Terms and Definitions
	Research Approach
	Bad Smells
	Abstraction
	Missing Class
	Dead Classifier
	Inconsistent Abstraction

	Modularization
	Language Feature Scattering
	God Class
	Blob Package
	Metamodel Monolith

	Hierarchy
	Missing Hierarchy
	Instance Data Modeled by Inheritance
	Redundancies in Hierarchy
	Wide Hierarchy
	Speculative Hierarchy
	Deep Hierarchy
	Multipath Hierarchy
	Concrete Abstract Class

	Relation
	Dependency Cycle
	Container Relation
	Obligatory Container Relation
	Specialized Relation

	Automatic Bad Smell Detection

	Metamodel Extension
	Research Question and Challenges
	Terms and Definitions
	Mechanism Selection Criteria
	Metamodel Extension Mechanisms
	Intrusive Addition
	Direct Inheritance
	Referencing with External Container
	Referencing with Reused Container
	EMF Profiles
	Extension Point Inheritance
	Decorator Pattern

	Dismissed Mechanisms
	Intrusive Mechanisms
	Metamodel-specific Mechanisms
	Duplicate and Composed Mechanisms
	Unavailable Approaches

	Comparison Criteria Catalog
	Metalanguage Support
	Applicable without Preparation
	Model Level Unintrusiveness
	Content Retrieval Computational Complexity
	Applies to Subclasses
	Orthogonality
	Multiplicity
	Model File Integrity
	Containment Tree Integrity
	Extension Object Deletion
	Adds a Type

	A Reference Structure to Enforce Modularity in Metamodels
	Concepts and Best Practices of Related Disciplines
	Research Questions and Challenges
	Metamodel Modularization Concepts
	Language Features
	Feature Modeling
	Metamodel Modules
	Layers
	Layers, Feature Models, and Modules
	Special Roles in the Scope of this Thesis
	Discussing the Research Questions and Challenges

	Layers in Metamodels for Quality Modeling and Analysis
	Paradigm
	Domain
	Quality
	Analysis
	Discussing the Research Questions and Challenges

	Refactorings
	Class Refactorings
	Class Split
	Dependency Inversion

	Metamodel Module Refactorings
	Horizontal Split
	Extension Extraction
	Feature Support Extraction
	Vertical Split
	Merge

	Feature Model Refactoring
	Pull Up Relation
	Transform Required into Mandatory Child
	Merge Mandatory Child into Parent
	Transform Mutual Exclusion
	Omit Transitive Relations

	Application Process
	Creating a New Metamodel
	Refactor an Existing Metamodel
	Extending a Modular Metamodel

	Validation
	Bad Smell Detection and Correction Evaluation
	Evaluation Goals
	Evaluation Approach
	Subject Metamodel
	Metric Thresholds
	Metric Thresholds Determination Approach
	Smell Metric Thresholds

	Detection Result Overview
	Bad Smell Occurrences
	Correction and Revaluation
	Missing Class Primitive Obsession
	Missing Class Shared Properties
	God Class
	Wide Hierarchy
	Deep Hierarchy
	Dead Class
	Multipath Hierarchy
	Concrete Abstract Class
	Container Relation
	Obligatory Container Relation
	Specialized Relation
	Speculative Hierarchy
	Dependency Cycle

	Result Overview
	Threats to Validity
	Result Interpretation

	Metamodel Extension Mechanism Evaluation and Comparison
	Extension Mechanism Evaluation
	Intrusive Addition
	Direct Inheritance
	Referencing with External Container
	Referencing with Reused Container
	EMF Profiles
	Extension Point Inheritance
	Decorator Pattern

	Result Interpretation
	Extension Mechanism Appraisal
	Metamodel Extension Process
	Causal Relations

	Case Studies of the Reference Structure Approach
	Case Study Selection
	Initial Set
	Selection Criteria
	Mandatory Criteria
	Prioritization Criteria

	Selection Result
	Discarded due to Mandatory Criteria
	Discarded due to Prioritization
	Selected Candidates

	Applied Extension Mechanisms
	Modularization Stopping Criteria
	Counting Metrics Results
	Case Study Metamodels
	Palladio Component Model
	Original Metamodel
	Modularization
	Modular Metamodel
	Paradigm
	Domain
	Quality

	Uncorrected Bad Smells and Errors
	Feature Model
	Further Decoupling Potential
	Predefined Metamodel Module Selections

	Smart Grid Topology
	Original Metamodel
	Modularization
	Modular Metamodel
	Paradigm
	Domain
	Analysis

	Feature Model

	KAMP4aPS
	Original Metamodel
	Modularization
	Modular Metamodel
	Paradigm
	Domain
	Quality

	Feature Model

	BPMN2
	Original Metamodel
	Modularization
	Modular Metamodel
	Paradigm
	Domain

	Feature Model

	Module Repositories and Common Paradigm Modules

	Validation of the Reference Structure Approach
	Validation Goals and Metrics
	Evolvability
	Goal Question Metric Plan
	Extraction of Relevant Subgraphs
	Rationale
	Evolution Scenario Types
	Extraction Procedure

	Subgraph to Hypergraph Transformation

	Need-specific Dependence and Use

	Evaluation Design
	Evolvability
	Evaluation Metamodel Version
	Evolution Scenario Collection Approach
	Reevaluating Historical Scenarios
	Evaluability of Historical Scenarios
	Evaluability Despite Subsequent Evolution
	Impact of Subsequent Evolution

	Evolution Scenarios
	Palladio Component Model
	Smart Grid Topology
	KAMP4aPS
	BPMN2

	Need-specific Dependence and Use

	Evaluation Results
	Evolvability
	Need-specific Dependence and Use

	Interpretation and Discussion
	Evolvability
	Overall
	Complexity
	Coupling
	Cohesion

	Need-specific Dependence and Use

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Reliability

	Validation Conclusion

	Epilogue
	Related Work
	Bad Smells and Anti-Patterns in Metamodeling
	Metamodeling Errors and Flaws
	Metamodel Quality Metrics

	Metamodel Extension
	The Reference Structure Approach
	Language Engineering
	Metamodel-based
	Grammar-based
	Deep Modeling

	Software and Language Product Lines
	Modularity, Modularization, and Clustering
	Structuring of Modeling Spaces
	Metamodeling Patterns
	Metamodel Quality Assurance
	Coevolution
	Terminology in Related Approaches

	Conclusion

	Conclusion
	Bad Smells and Anti-Patterns in Metamodeling
	Summary
	Limitations
	Future Work

	Metamodel Extension
	Summary
	Limitations
	Future Work

	The Reference Structure Approach
	Summary
	Limitations
	Future Work

	Appendix
	All Bad Smell Occurrences in the PCM
	Technical Foundation of the Reference Structure Approach
	Metamodel Modules
	Tool Support: The Modular EMF Designer
	Readily Available Tool Support

	Evaluation Tooling and Setup
	Installation
	Concrete Versions Used in the Evaluation
	Using the Validation Tool

	Index
	List of Figures
	List of Tables

