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Abstract Optical spectroscopy is able to detect not only the
chemical composition of the species by their wavelength specific
absorption k but also the morphological feature through their
wavelength dependent scattering s. In standard multivariate data
analysis in hyperspectral imaging, the focus of the chemometric
treatment of the data cube is given on the suppression of the un-
wanted perturbation of multiple scatter of photons. This paper
describes an approach how to separate the morphological infor-
mation s (scatter) from the chemical information k (absorption)
using the radiative transfer equation or Kubelka Munk theory.
When this “first principle spectroscopy” is integrated into most
modern multivariate data analysis like multivariate curve resolu-
tion (MCR), causality is obtained between the spectral data and
response variables like the concentration of an active pharmaceu-
tical ingredient in a tablet. With this approach, the spatially re-
solved calculated k- and s-distribution of an aspirin particle in
cellactose is shown. The optical set up for real life spectral imag-
ing in industry is discussed and examples of spectral images to
control the thickness of thin films on metals, the distribution of
a resin on a wood chip and the differentiation of hard and soft
maize kernels are shown.

1 Introduction

Spectral imaging or chemical imaging is the determination of the chem-
ical identity of species and the visualization of their distribution. Op-
tical spectroscopy is able to detect not only the chemical composition
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of the species by their wavelength specific absorption but also the mor-
phological feature through their wavelength dependent scattering [1].
Figure 1.1 visualizes the integration of the chemical and morphological
information into an image. The most common tool to measure the dis-
tribution of components in a solid particulate system is spectroscopy,
thus chemical imaging is also labeled as spectral or hyperspectral imag-

ing [2].

PHYSICAL/
CHEMICAL | MORPHOLOGICAL
HARACTERI-ZATION | CHARACTERI-
ZATION

Figure 1.1: Visualization of spectral imaging.

The laterally resolved spectroscopy produces a three-dimensional
data cube with two local axes, x and y, and a spectral z-axis with usu-
ally the intensity of the reflectance at different wavelengths A. Figure
1.2 illustrates the essential differences of the techniques used to mea-
sure spectral images.

In the so-called whiskbroom imaging (= mapping), defined object ar-
eas or the entire object is measured point-by-point. This type of imaging
is very flexible in relation to the object and the grid size and generally
requires only a single detector; such as a monochromating element with
a photomultiplier tube or a diode array. A staring imager (=imaging)
takes two-dimensional images in a series at different wavelengths. A
prerequisite for this technique is that the object must remain stationary
during the measurement (“stop motion”), thus only atline applications
can be realized [3].

In pushbroom imaging (=line scanning) the object is imaged along
the y-axis using the line-scan method and is recorded in full through the
movement of the object in the y-direction. Through an entrance gap in
the spectrograph (x-spatial dimension), the light is routed usually into a
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prism-grating-prism optical arrangement and then spectrally resolved
onto the second dimension of the camera. The second spatial dimen-
sion (y) is achieved through the movement of the object. In contrast to
whiskbroom and staring imaging, the pushbroom system is fully on-
line/inline capable, where for each line, under time-defined conditions,
images can be generated and evaluated.
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Figure 1.2: Taxonomy of spectral imaging techniques [1, 3].

The objective of this paper is first to introduce fundamental princi-
ples into the evaluation of spectral imaging data with the objective to
separate the chemical information from the morphology of the scatter-
ing system and then to show how this improves the robustness of the
multivariate data analysis. Finally some examples of the optical setup
of spectral imaging devices for inline control will be presented.

2 Integrating “first principles” into spectral imaging:
separate absorption from scatter

Dispersions, emulsions or solids like powders show the wavelength de-
pendent superposition of the scatter (s) and absorption (k) of light. In
standard multivariate data analysis in process analytical technology, the
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focus of the chemometric treatment of the spectroscopic data is given
on the suppression of the unwanted perturbation of multiple scatter of
photons. A better approach may be to extract not only the chemical in-
formation but also to use the morphological information from the spec-
tra. This approach using first principles exploits the full potential of
the spectral information rather than to eliminate the morphological fea-
tures. One of the most appropriate theories to describe multiple scatter-
ing and absorption in opaque systems is the radiative transfer equation
(RTE). The s- and the k-spectrum can be calculated using the (inverse)
Monte Carlo simulation from the superposed spectra. The approach
of Kubelka and Munk (K-M) is the simplified solution of the radiative
transfer theory. In this case the diffuse reflectance and transmittance
of a sample with defined thickness is described by the scattering ef-
fect s and and the absorption effect k. Thus at least two independent
measurements are needed to separate s and k from the measured spec-
tra [1,3,4]. S and k can be determined independently measuring just
spectra in diffuse reflectance of two samples with known different layer
thicknesses, or measuring one sample in diffuse reflectance and diffuse
transmittance. After solving the equations, two spectra are obtained
which more or less solely represent the spectrum of scatter and the un-
perturbed absorption spectrum of the component [3].

Figure 1.3 shows as an example the spectra of an Aspirin tablet mea-
sured in transmittance and reflectance and the calculated scatter and
absorption spectra using the Kubelka Munk theory.

The scatter and absorption cross sections determine the penetration
depth of the photons and therefore the information depth (“scale of
scrutiny”) [5]. Specular reflected light of the surface may produce also
spectral artefacts [3]. However, these artifacts can easily be removed
using parallel and crossed polarizer during measurement. For inline
applications, in most cases diffuse illumination of the object is sufficient
to minimize specular reflected light.

3 Integrating “chemometrics” into spectral imaging:
reduce the data cube

Principle component analysis and data pretreatment For analysts
used to interpret a single spectrum or a few averaged spectra for each
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Figure 1.3: Spectra of Aspirin (ASA) tablets measured in diffuse reflectance and
diffuse transmittance (left) as well as the resulting calculated scatter and ab-
sorption spectra using Kubelka Munk theory. The ASA particles show different
particle size distribution (unbroken app. 80 um, triturated app. 40 um).

sample, the idea of getting hundreds or thousands of spectra which are
spatially resolved, is confusing and may be even hindering to use spec-
tral imaging for quality or process control. Therefore the implementa-
tion of chemometric tools is very advisable when analyzing such large
amounts of data. Chemometrics offers the possibility to extract the rel-
evant information from the full chemical imaging data set instead of
using single-wavelength channels only. And additionally, chemomet-
rics reduces this relevant information into one or a few quality defining
parameters by applying either multivariate classification or regression
models to the hyperspectral data.

A very effective data reduction is achieved with the principal com-
ponent analysis. The PCA gives a compressed representation of the
image that retains all of the relevant information in the spectral dimen-
sion [6,7]. Often three to five principal components capture most of the
relevant information of several hundred spectral pixels. The principal
components are linear combinations of the original spectral variables.
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PCA is a chemometric method, which decomposes a two- or multi-
dimensional data table X into a bilinear model of latent variables, the
so-called principal components, according to the following expression:

X=TP' +E

where T is the scores matrix and P the transposed loadings matrix. The
matrix E is the residual matrix and accounts for the experimental error
(noise), which is not part of the model. The principal components are
calculated so that they explain as much variance of the data as possible.
The first principal component captures most of the variance in the data
set. This information is then removed from the data and the next princi-
pal component is calculated, which again captures most of the remain-
ing variance, this continues until a predefined stopping criteria of too
little variance explained by a new component is fulfilled. All principal
components are linearly independent, that means there is no correlation
among them and they can therefore serve as a new coordinate system
with reduced dimensions. An image spectrum can have hundreds or
even thousands of pixels, but the relevant information can be contained
in a very small number of principal components and each spectrum can
be described by the first few scores of the principal component model.
A picture of 256 lateral pixels in x- and y- direction and 1000 pixels in
the spectral dimension is then reduced from to e.g. 3 latent variables:
from 256 x 256 x 1000 down to 256 x 256 x 3, more than 300 times less.

The state of the art approach in chemometrics of spectroscopic data
from particulate systems is to exclude the scattering information from
the spectral features by data pre-treatment procedures like standard
normal variate (SNV), multiplicative scattering correction ((extended)
MSC) or orthogonal signal correction (OSC) to obtain unperturbed
quantitative information [3, 6,7]. In this case, the information scatter is
often regarded as unwanted and therefore eliminated instead of being
used as supplementary information on the morphology of the substrate.
A better approach is to integrate the information morphology into the
model as described in the previous chapter.

Multivariate curve resolution A more advanced technique in compar-
ison to PCA is multivariate curve resolution (MCR). The major reason
of an increasing interest in multivariate curve resolution (MCR) solved
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by alternating least squares (MCR-ALS) is its ability to extract from a
complex spectral feature a) the number of involved components b) to
attribute the resulting spectra to chemical compounds and c) to quan-
tify the individuel spectral contributions. Thus interpretable loadings
which represent spectra are obtained. In addition, MCR provides a per-
fect means to integrate knowledge into the chemometric approach. E.g.,
known spectra of the components can be integrated into the model or
e.g. the s- and k- “pure” spectra of the system under investigation [8].

Example Figure 1.4 shows the results using the unperturbed k - ab-
sorption spectra from figure 1.3 for a quantitative calculation based on
Lambert-Beer’s law with a single wavelength or using multivariate par-
tial least square analysis (PLS).

The separated k-spectrum shown in the centre of the chart is compa-
rable to the spectrum in solution. In the visible range no absorption is
measured as it should be the case for transparent materials. It is impor-
tant to emphasize that the absorbance of aspirin is more pronounced in
the UV than in the NIR region and increases with increasing concentra-
tion. The spectral features from 1400nm — 1600nm in the NIR spectra
can be attributed to the excipient cellulose and decreases with increas-
ing API content. It is remarkable that only one latent variable is nec-
essary in PLS calculations to quantify the API content due to the “first
principle” separation of the scatter from the spectrum. This increases
the robustness of the chemometric model. Standard procedures in NIR
spectroscopy often need many more principal components to adjust for
the nonlinearity of the scatter in the spectral information. Alternatively,
single wavelengths can be used to calculate the concentration of aspirin
in a tablet just by Lambert-Beer’s law.

The same approach can be applied in the multidimensional space of
spectral imaging. Figure 1.4 also shows the spatially resolved calcu-
lated k- and s-distribution of an aspirin particle in cellactose in the UV
and NIR using the Kubelka Munk approach. As can be seen, the main
scatter is observed directly at the phase boundary of the particle and is
much higher at shorter wavelengths. The combined effect of scatter and
absorption may even hinder the penetration of the photons into the par-
ticle. In this case quantitative analysis of the composition is a challenge.

When this “first principle spectroscopy” is integrated into most mod-
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Figure 1.4: Top: quantitative calculation of the API concentration of an aspirin
(ASA) tablet using the unperturbed absorption spectra (details see text), lower
part: calculated s- and k- spatial distribution of an aspirin particle in cellactose
measured at 1600nm and 280nm. The data are extracted from transmittance and
reflectance measurements using the Kubelka Munk approach.
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ern MVA methods like Multivariate Curve Resolution (MCR), causality
is obtained between the data and response variables. This closes the
gap between empirical correlative and first principle process informa-
tion [6,8,9].

4 Inline control optical set up: some selected examples

Since 2002, the food and drug administration (FDA) has strongly en-
couraged the process analytical technique (PAT) for a better understand-
ing of the process and to achieve a higher control of the pharmaceutical
manufacturing process [9-11]. Anideal situation would be to control in-
line 100% of the tablet and the particle size as well as the homogeneous
distribution of the active ingredient in the excipient. In the literature,
there are numerous methods which use NIR, IR, Terahertz and Raman
spectroscopic imaging [1-3,11]. Figure 1.5a shows the sketch of a push-
broom imaging device as described in the previous chapters and a set
of optical arrangements for inline process control (figure 1.5).

[lumination e.g. at 45° (with respect to the macroscopic surface) and
detection of the reflected light at 45° (45R45) measures mainly the spec-
ular reflected light. With this arrangement the spectral interference pat-
tern is measured and from these measurements the thickness of e.g. an
oxide film on a glass or metal substrate can be calculated using the Fres-
nel equations [1,12]. When pushbroom imagers with a high pixel num-
ber are used, the film thickness along the imaging line can be detected.
An example how different the distribution of the oxide film thickness
on aluminium can be is shown in figure 1.5c (left).

Particulate systems are commonly measured in diffuse reflectance.
Here an optical arrangement with an illumination at 45° (may be from
both sides) and detection at 0° (45R0) is favorable. The example in figure
1.5¢ (middle) shows the PCA analysis of the distribution of a resin on a
wood chip [3]. However, when high specular reflectance of the object
is observed together with a curvature, strong specular reflectance often
superposes the diffuse reflectance with an optical setup 45R0. These
spectral artifacts can hardly be mathematically eliminated. A solution
is to illuminate the object with diffuse light (e.g. dRO) or a more com-
plex arrangement by illumination with diffuse light and detection with
an integrating sphere. Some possible set ups are explained in [3]. An
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b)

Figure 1.5: Sketch of a pushbroom imaging device (a) and a set of optical ar-
rangements for inline process control (b). Bottom (c): examples of spectral im-
ages to control the thickness of thin films (left), the distribution of a resin on
a wood chip (middle) and the differentiation of hard (bottom) and soft (top)

S. Luckow-Markward, E. Ostertag et al.

a) Matrix Detector

45R45; 45R0: dRO:
specular reflectance diffuse reflectance diffuse illumination

Y
ggg

mpbmwmgdnmn umplomwngdmc'm mlomwngdnc'on
D e O
2 ¢

maize
kernels

maize kernels.



Spectral imaging in process analytics 11

example for a typical application for dRO is shown in figure 1.5¢ (right)
where maize kernels of different origin are measured with a pushbroom
imager. The figure shows the result of a PCA and false color represen-
tation.

5 Outlook

Focus in the pharmaceutical industry is given mainly on three differ-
ent uses: blend uniformity of powders and tablets, composition and
morphological features of coated tablets and granules, spatial changes
during hydration, degradation and active release. Counterfeit pharma-
ceutical products are a real threat to the health of the patients. NIR
chemical imaging provides a rapid method for detecting and compar-
ing suspected counterfeit products without sample preparation. The
advantage of imaging is that the discrimination of the tablets is not only
caused by changes in the chemical composition, but also from its spatial
distribution and texture of the tablet.

Online chemical imaging in agriculture is mainly remote sensing.
Satellite or aerial remote sensing (RS) technology uses nowadays Push-
broom Imaging Technology in the Vis, s-NIR and NIR-range. Vegetation
images show crop growth from planting through to harvest, changes as
the season progresses and abnormalities such as weed patches, soil com-
paction, watering problems etc. This information can help the farmer
make informed decisions about the most feasible solution. In food in-
dustry, numerous online controls are still made by human vision, espe-
cially for sorting bad looking products. Chemical imaging in food and
agriculture can also be used to identify diseases, rot and contaminations
by insects e.g. larvae.

Instead of using at each individual production step a single spectrom-
eter, a pushbroom imager with attached fiber bundles on its slit allows
individual control of the quality at every intermediate and final step.
In this case, the pushbroom imager is used as a multipoint information
source and can substitute a moving multiplexer.

Diffuse optical imaging (DOI) is a new emerging technique for func-
tional imaging of biological tissues. It involves generating images using
measurements in the visible or s-NIR-light scattered across large and
thick tissues for e.g. detecting cancer.
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A detailed description of the future trends in chemical imaging is

givenin [3,11,12].
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