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Abstract Against the background of hyperspectral imaging this
paper evaluates a number of different machine learning based
classification methods in terms of their performance. All consid-
ered methods offer relevance profiles that additionally provide
valuable information about the relevance of all acquired wave-
lengths to get the obtained classification. This relevance pro-
file can be used to select appropriate wavelengths or wavelength
bands to customize data acquisition and analysis tailored to the
specific application at hand.

1 Introduction

Quantitative assessment of phenotypic properties of crop plants in re-
lation to different genotypes, nutrition, stress tolerance, and fruit qual-
ity has become increasingly important in crop plant research, modern
plant breeding, and particularly in precision agriculture / smart farm-
ing. The required assessment can generally be based either on morpho-
logical features, such as plant height, leaf shape, root structure etc., or
on biomolecular/biochemical analyses. While the latter one is typically
invasive and destroys the intact biological structure, morphological fea-
tures are often not sufficient to unravel all relevant information at the
required level of detail. Moreover, wet lab analyses typically assess only
a more or less small number of samples and are not suitable to monitor
crop plants in productive operation on the field or for large-scale (high-
throughput) phenotyping of many genotypes in plant breeding. The
results of wet lab analyses typically cannot be incorporated into on-line
monitoring systems.

    
DOI: 10.58895/ksp/1000032143-10 erschienen in:

OCM 2013 - Optical Characterization of Materials - conference proceedings 

DOI: 10.58895/ksp/1000032143  |  https://www.ksp.kit.edu/site/books/m/10.58895/ksp/1000032143/



104 A. Backhaus and U. Seiffert

VNIR 1600 SWIR 320is SWIR 320m(a)

(b)

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

LDA Coefficient LDA Coefficient LDA Coefficient

5mM
10mM

5mM
10mM

5mM
10mM

0.01 0.005 0 0.005 0.01
5

0

5

0.01 0.005 0 0.005 0.01

0.01

0

0.01

0.02 0.01 0 0.01 0.02

0.02

0

0.02
LDA.Comp.Extern.CoeffScatter.CO1vsCO2: Sector:allNIC1019

NIC1015
SNN

NIC1019
NIC1015
SNN

NIC1019
NIC1015
SNN

LDA Dim 1 LDA Dim 1 LDA Dim 1

LD
A

 D
im

 2

LD
A

 D
im

 2

LD
A

 D
im

 2

*10e-3

*10e-3

*10e-3

*10e-3

*10e-3

*10e-3

Figure 10.1: (a) Histogram of LDA coefficient for the two class problem of nu-
trition state; (b) Scatter plot of the LDA coeffcients for the three class problem of
genotype classification.

There are several non-invasive systems currently available on the
market. Typical applications are ground-based or airborne data acqui-
sition for precision agriculture / smart farming as well as automated
greenhouses in crop plant research and plant breeding. Technically
these systems are based on broadband or selective color imaging (ca.
400-800 nm) that is sometimes accompanied by a few selected spectral
bands in IR (>800 nm) or UV (<400 nm) range. From the application’s
perspective these systems can only monitor for example the level of
green color (chlorophyll) of the plants (leaves) as indicator of nitrogen
nutrition (e.g. Yara N-Sensor), the water content, or some particular
biochemical compounds. Monitoring of a comprehensive health and
nutrition state of crop plants is currently not commercially available.

Hyperspectral imaging linked to subsequent computational intelli-
gence based analysis has proven its suitability to unravel complex in-
formation in a number of different application areas, such as geology,
defense, etc. The extension of this approach to crop plant research, plant
breeding, agriculture, and food processing has started just quite re-
cently. Here, the image acquisition ranges from airborne sensing mainly
for agricultural applications down to single leaf analysis in the context
of precision and high-throughput plant phenotyping. All these applica-
tions have in common, that particular relevant compounds of the plant
need to be determined by means of hyperspectral signatures as comple-
ment or substitute to extensive biochemical analyses.

Often the direct relationship between spectral information and bio-
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chemical target value or material category is not known in a closed
mathematical form. In this case a machine learning approach is used
to acquire an analysis model from reference data, a paradigm often re-
ferred to as ‘soft-sensor’. Sensor data analysis becomes a pattern recog-
nition task. Regarding pattern recognition and data mining in the ac-
quired spectral data, computational intelligence based methods are still
providing powerful tools to cope with this kind of high-dimensional
and complex data.

In this paper we assess the ability of machine learning methods to
robustly classify nutrition states and genotypic identity from input of
three different hyperspectral cameras covering the VNIR/SWIR range.

2 Data acquisition

The data set originated from three genetically different tobacco va-
rieties, namely Nicotiana tabacum L., cv. SamsunNN (SNN), Nicotiana
tabacum L., cv. undulata (NIC1015) and Nicotiana tabacum L., cv. undulata
(NIC1019). Plants were cultivated on quartz sand and maintained under
controlled environmental conditions in a greenhouse. The plants were
daily irrigated with a complete nutrient solution containing either 5 mM
or 10 mM NH4NO3 (ammonium nitrate). Twelve weeks old plants were
used in the experimental setup. Hyperspectral images were acquired
from whole leaf blade (lamina). Leaves of different age were taken into
account. Four leaves per plant were recorded. Leaves are numbered
starting from the top downwards along the stem, therefore leaf age in-
creases with the leaf number.

Images were acquired covering the complete VNIR/SWIR-band with
three sensors simultaneously (Norsk Elektro Optikk A/S, VNIR 1600,
SWIR 320i, SWIR 320m, 0.4-1.0, 0.9-1.7, 1.3-2.5 μm, respectively). The
acquired images were read from 16 bit raw data using the vendors soft-
ware. Blank images of the image background were also taken into ac-
count for inhomogeneous pixel sensitivities, which were found negligi-
ble. Reflectance calibration values were obtained from a standard opti-
cal PTFE (polytetrafluoroethylene) pad.

In a first k-means clustering [1], background pixels and pixels of
non-leaf objects were removed. For display purposes and as input to
the Support Vector Machine classifier in the classification stage, a Lin-
ear Discriminant Analysis (LDA) was performed. Figure 10.1a shows
the data distribution in a one-dimensional LDA space per camera for
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the two-class problem of nutrition classification (5 mM and 10 mM
NH4NO3). In Figure 10.2a, the mean spectrum (middle line) is depicted
per camera. The seam around the mean spectra depicts the extend of
the standard deviation per spectral band. Spectra were normalized to
unit length. In both figures data originates from mutant NIC1019 and
all leaf ages. Figure 10.1b shows the scatter plot in a two-dimensional
LDA space per camera for the three-class problem of genotype classifi-
cation while Figure 10.3a shows the mean spectra with standard devia-
tion. Data originates from all leaf ages.

3 Theory

For machine learning, four different classification models are consid-
ered, a Radial Basis Function (rRBF) Network with Relevance Learn-
ing [2, 3], Generalized Relevance Learning Vector Quantization (GR-
LVQ) [4], Supervised Relevance Neural Gas (SRNG) [5] as well as a
Support Vector Machine [6]. In general, rRBF, SRNG, and GRLVQ Net-
works are similar in terms that they process the input data in a layer
of prototypical data points. While the rRBF generates activation due to
the similarity with prototypes which is accumulated in a second layer
for the network output, the GRLVQ and SRNG directly assign classes
to prototypical data points. Prototypes usually represent central posi-
tions in a data cloud. In contrast, the Support Vector Machine stores
support vectors, e.g. representative data points at the margin between
data clouds. The used Support Vector Machine implementation of the
ν-SVM variant [7] from the freely available libSVM package1 takes up a
variable amount of support vectors.

In order to compute the distance of spectral data point v and a proto-
type w in the rRBF, SRNG and GRLVQ, we used the weighted Euclidean
distance metric

d (v, wr, λ) = ∑
i
λi (vi − wir)

2 , (10.1)

where λi is the relevance factor per spectral band which is adapted dur-
ing the learning process to form the relevance profile. The rRBF, SRNG,
and GRLVQ learning approach is essentially an energy minimization
problem. In the standard learning scheme, stochastic gradient descent

1 www.csie.ntu.edu.tw/˜cjlin/libsvm/
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with step-sizes manually set for different parameters are used. In or-
der to avoid a manually chosen step-size, we used the non-linear conju-
gate gradient approach with automatic step size from the optimization
toolbox ’minFunc’2 available for Matlab. For this purpose we had to
provide the objective/energy function along with the first derivatives
according to the optimization parameters. The derivatives are accumu-
lated for all data points (batch learning).

3.1 Radial basis function network with relevance

For the rRBF [2, 3] the objective function is the accumulated quadratic
error of the network output y and target value t across network outputs
and data samples v j.
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1
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2 http://www.di.ens.fr/˜mschmidt/Software/minFunc.html
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The output weights urk are yielded by direct update UT = Φ†T where
† denotes the pseudo inverse [8]. For the classification task a 1-out-of-N
coding scheme for the target vector was used.

3.2 Generalized relevance learning vector quantization

For the GRLVQ the objective function is the accumulated difference in
shortest distance of a data point to a prototype representing its class d+r
and a prototype representing any other class d−r [4]:

E (V, W, λ) = ∑
v∈V

d+r − d−r
d+r + d−r

.

The partial derivatives are as follows

∂E
∂w+

ir
= − 2 · d−r(

d+r + d−r
)2 2

(
vi − w+

ir
) ∂E

∂w−ir
=

2 · d+r(
d+r + d−r

)2 2
(
vi − w−ir

)
∂E
∂λi

=
2 · d−r(

d+r + d−r
)2

(
vi − w+

ir
)2 − 2 · d+r(

d+r + d−r
)2

(
vi − w−ir

)2 .

All partial derivatives not belonging to the winning prototype of same
class w+

r and any other class w−r are set to zero.

3.3 Supervised neural gas

The SRNG [5] is a supervised version of the well known neural gas clus-
tering algorithm [9]. Like in the GRLVQ a number of prototype vectors
with pre-assigned class labels are distributed in the input space while
minimizing the energy function

E (V, W, λ) = ∑
v∈V

∑
wr∈Wc

hγ (r, v, Wc)
d+r − d−r
d+r + d−r

,

where hγ (r, v, Wc) denotes the degree of neighborhood cooperation
among all prototypes representing the respective spectral vector class.
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Figure 10.2: Nutrition state classification: (a) Mean spectral profile; (b) rRBF
relevance profile for NIC1019; In VNIR 1600, a clear dominant frequency range
around the intensity flank can be observed. This is known as ”red edge” that
corresponds to photosynthesis activity in plants as result of varying nitrogen
supply.
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4 Spectral band reduction

All three described machine learning modeling approaches optimize
their respective energy function by adaptation of per-spectral band
weighting. This weight vector is used to order the spectral bands ac-
cording to their relevance. In order to check model performance on re-
duced spectral information, an rRBF network model was trained on the
largest weighted bands as input and continuously added bands with
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Figure 10.3: Relevance profiles for genotype classification: (a) Exemplary mean
spectral profile; (b) rRBF relevance profile.

the highest input dimensionality of 70. The rRBF networks were trained
with the same setup and parameters as above. The data is taken from
the VNIR range for leaf 1. Test accuracy on unseen data for nutrition
and genotype classification is evaluated for each n-dimensional input
space. As control, a matching number of spectral bands are chosen at
random (uniform distribution).

5 Results

For the prediction of nutrition states and genotypic identity, data
sets were obtained from all three cameras for all leaves, for leaf one
(youngest), and leaf three (second oldest) separately. Furthermore, for
nutrition prediction, data was separated for each mutant condition to
remove variation from genotype identity, which is a reasonable assump-
tion since crop plant species should be known in advance in a precision
farming environment. For the genotype classification, all nutrition con-
ditions per genotype were included, since these could vary on the field.
For each class 3, 000 randomly selected spectral samples were chosen.
Data was partitioned into 50% training and 50% test data. A 5-fold
cross validation with randomized assignment of data samples to test
and training data under the given partition and randomized initializa-
tion in GRLVQ, SRNG, and rRBF was performed. Classifier accuracy
was averaged and standard deviation was calculated.

Table 10.1 on the left shows test data accuracy for classification of nu-
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Nutrition Genotype
Class. VNIR 1600 SWIR 320i SWIR 320m VNIR 1600 SWIR 320i SWIR 320m
Method

Leaf 1-4
SVM+LDA 79.2 (0.1) 70.8 (0.9) 80.3 (0.2) 79.2 (0.1) 70.8 (0.9) 80.3 (0.2)
SVM 59.0 (0.5) 53.6 (1.7) 55.2 (1.6) 59.0 (0.5) 53.6 (1.7) 55.2 (1.6)
SRNG 56.0 (5.1) 55.5 (3.8) 54.5 (2.0) 56.0 (5.1) 55.5 (3.8) 54.5 (2.0)
GRLVQ 58.4 (0.6) 55.4 (4.0) 53.4 (2.9) 58.4 (0.6) 55.4 (4.0) 53.4 (2.9)
rRBF 83.7 (0.6) 75.2 (0.9) 81.5 (0.7) 83.7 (0.6) 75.2 (0.9) 81.5 (0.7)

Leaf 1 - youngest
SVM+LDA 99.3 (0.1) 87.9 (0.7) 85.8 (0.3) 99.3 (0.1) 87.9 (0.7) 85.8 (0.3)
SVM 97.3 (0.1) 77.9 (0.3) 69.2 (1.5) 97.3 (0.1) 77.9 (0.3) 69.2 (1.5)
SRNG 92.6 (1.9) 74.3 (2.7) 57.6 (4.5) 92.6 (1.9) 74.3 (2.7) 57.6 (4.5)
GRLVQ 92.3 (0.3) 61.5 (8.9) 60.3 (0.7) 92.3 (0.3) 61.5 (8.9) 60.3 (0.7)
rRBF 99.5 (0.1) 93.9 (0.6) 91.1 (0.8) 99.5 (0.1) 93.9 (0.6) 91.1 (0.8)

Leaf 3 - second oldest
SVM+LDA 78.9 (0.4) 74.6 (0.5) 83.8 (0.5) 78.9 (0.4) 74.6 (0.5) 83.8 (0.5)
SVM 70.6 (0.3) 53.5 (0.4) 59.1 (0.9) 70.6 (0.3) 53.5 (0.4) 59.1 (0.9)
SRNG 70.6 (0.3) 60.3 (8.8) 52.9 (6.2) 70.6 (0.3) 60.3 (8.8) 52.9 (6.2)
GRLVQ 60.7 (5.4) 59.0 (1.3) 54.0 (1.8) 60.7 (5.4) 59.0 (1.3) 54.0 (1.8)
rRBF 83.5 (0.4) 79.8 (1.4) 84.3 (0.5) 83.5 (0.4) 79.8 (1.4) 84.3 (0.5)

Table 10.1: The table contains the classification test accuracy averaged over a
five-fold cross validation and according standard deviation in brackets. Best
performance per classification is highlighted.

trition from the NIC1019 mutant, other mutants showed comparable
levels of performance. It is apparent that both GRLVQ and SRNG show
poor performance in data sets containing all leaf ages while improv-
ing significantly if just the youngest leaf is considered, especially in the
VNIR 1600 camera data. Furthermore, VNIR 1600 and SWIR 320m data
performed better in classification than SWIR 320is. As to be expected,
the SVM classifier gains much from data transformation by LDA and
shows poor performance on plain spectra data for the data set with all
leaves, gaining performance if the youngest leaf is considered only. Leaf
age seems to be the most prominent confounding factor for prediction
of the nutrition state. Finally we have to note that the RBF network per-
forms robustly with levels of performance matching those of an SVM on
LDA subspace. Classification performance is affected by the leaf age to
a much smaller extend than seen in GRLVQ and SRNG staying around
80% accuracy in all cameras for all leaf ages.

Figure 10.2b shows relevance profiles obtained from the rRBF trained
for nutrition classification for all three cameras and the NIC1019 mutant
in the youngest leaf (which showed best classification performances).
Some interesting properties can be learnt from these relevance profiles.
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The relevance profile is altered in a way to minimize the mean square
error between network output and target vector, e.g. to maximize net-
work classification performance. In the VNIR 1600 data, a peak of rel-
evance can be observed right at the position of the intensity flank be-
tween 0.7μm and 7.5μm. In the SWIR 320m, increased relevance can be
observed at the flank between 1.5μm and 1.6μm as well as the end of
the intensity flank between 1.8μm and 1.9μm. A similar behavior can
be found for the other mutants.

Figure 10.4a compares the test accuracy of nutrition classification
for the rRBF model trained on input spaces of different dimensional-
ity for the three selection strategies (relevance, discriminance, and ran-
dom selection). The data, taken from the VNIR range, contains mutant
NIC1019 and leaf one. In general, accuracy saturated extremely fast for
both strategies. From around 20 spectral bands onwards, all strategies
converge. However, it is apparent that the selection based on the rele-
vance vector yields test accuracy above 0.9 with even just one spectral
band. This shows that the relevance weighting can identify bands that
will contribute highly to the classification task at hand.

Table 10.1 on the right side shows test data accuracy for classification
results of genotypes. Generally, the classification of genotypes proves to
be a harder task then the classification of nutrition. Like in the nutrition
classification both GRLVQ and SRNG show poor performance in data
sets containing all leaf ages while in contrast to nutrition performance
did not improve significantly if just the youngest leave was considered.
There is also no clear difference of performance between VNIR 1600,
SWIR 320m and SWIR 320is ranges across the board. The best results for
genotypic classification were gained with an rRBF network in the VNIR
range if just the youngest leaf is considered, yielding near 90% accuracy.
From theory of plant nutrition it is known that young leaves are most
active in terms of photosynthesis while older leaves show weaker pho-
tosynthesis related signals up to beginning senescence. From the ap-
plication point of view this fact offers excellent perspectives for smart
farming set-ups because typically only the youngest leaves are visible
from above.

Figure 10.3b shows relevance profiles obtained from the rRBF net-
work trained for genotype classification for all three cameras in the
youngest leaf (which showed best classification performances). Like
for the nutrition classification, some interesting properties can be de-
rived from these relevance profiles. In the VNIR 1600 data, a peak of
relevance can be observed right at the position of the intensity flank
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Figure 10.4: Model accuracy on reduced spectral bands: Spectral bands are cho-
sen due to rRBF relevance profile or at random; rRBF Models are trained on
reduced data set and test accuracy is depicted for (a) nutrition state prediction
and (b) genotype classification.

between 0.7μm and 7.5μm but additionally, the range between 0.5μm
and 0.6μm gains high relevance factors. In the SWIR 320m, increased
relevance can be observed at the flank between 1.7μm and 1.9μm.

Figure 10.4b compares the test accuracy of genotype classification for
the rRBF model trained on input spaces of different dimensionality for
the three selection strategies (relevance, discriminance, and random se-
lection). The data, taken from the VNIR range, contained all nutrition
conditions and leaf one. In general, accuracy saturated slower than
for the nutrition classification showing that more spectral information
is needed for this classification task. The relevance selection strategy
yields a slight advantage in the classification performance. In general,
this graph shows that the number of dimensions can be reduced mas-
sively and still retaining the classification accuracy.

6 Summary

Leaf age showed a strong impact on reducing classification performance
for nutrition states by GRLVQ, SRNG, and SVM (plain spectra) down to
near guessing level. Both SVM on LDA subspace and rRBF showed a
robust nutrition prediction under leaf age variation. Such performance
is needed for the utilization of machine learning methods in precision
farming where other than under laboratory conditions recorded data
cannot be controlled for individual leaf age for example. The genotype
classification task proved to be much harder compared to nutrition clas-
sification. Here an rRBF trained on young leaf data in the VNIR range
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showed best results while performance dropped significantly when all
leaf ages are considered in the same model.

From the application point of view the obtained results clearly
demonstrate the usefulness and suitability of this framework for preci-
sion phenotyping and smart farming. While detecting unknown geno-
types is typically not in the focus of this kind of applications, recog-
nition and quantitative modeling of the abundance of several metabo-
lites, caused by various abiotic and biotic stress factors, is much more
relevant. For example, quantitative changes in the plant’s metabolism
based on different supply of nutrients is the key to a wide range of
smart farming applications. This also paves the way for modeling fur-
ther metabolic effects that are relevant in plant breeding and pathogen
response.
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