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Abstract Hyperspectral sensors are used to identify materials via
spectroscopic analysis. Often, the measured spectra consist of
mixed materials and depending on the problem, the mixture ra-
tio and the pure material spectra are wanted. In this paper, linear
spectral unmixing is performed using the Nonnegative Matrix
Factorization to analyze its correlation to ground truth data. The
results are compared to Nonnegative Least Squares unmixing us-
ing manually selected endmembers from the image. Addition-
ally, the effect of different endmember extraction algorithms and
abundance initialization methods for NMF are investigated. To
test the validity of the method, several checkerboard patterns of
different ground minerals/rocks with predefined mixtures were
prepared. It was shown that good initialization is beneficial in
terms of approximation error and correlation to ground truth.

1 Introduction

Hyperspectral sensors are used to identify materials via spectroscopic
analysis. They are widely used in areas such as satellite/airborne imag-
ing, mining and recycling. The value of hyperspectral data can be in-
creased by having a fair knowledge about the physical composition
of the recorded data. Considering that certain materials only occur in
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small quantities on a sub-pixel level, typical classification approaches
can be insufficient depending on the scope of work. Instead, spectral
unmixing can be used to determine the individual material spectra, so
called endmember and their abundances in a measured sample. As the
amount of materials in an image is generally much less than the number
of spectral bands, data reduction is achieved simultaneously [1].

Usually, the endmembers must be provided by the user and the abun-
dances are computed by a Nonnegative Least Squares (NNLS) approach
to approximate the original data set. However, this is only applicable
when they are known in advance or can be selected manually from the
data. When the data sets become larger, manual selection is increas-
ingly difficult and automatic endmember extraction algorithms should
be used. Small deviations from the actual endmember spectra, e.g. noise
in the data set or variation in illumination, can lead to errors. The
Nonnegative Matrix Factorization (NMF) can be used to alternately op-
timize endmembers and abundances to increase approximation accu-
racy [2].

When the focus lies on the physical interpretation of a hyperspectral
data set, generally two constraints have to be introduced to the pro-
cess [3]. The most important is the nonnegativity constraint for end-
members and abundances as the measured reflectance is per definition
nonnegative and mutual cancellation of endmembers is impossible. The
second constraint states that the abundances of one sample must sum
to one. In that case, each abundance directly stands for the ratio of its
associated endmember.

2 Linear spectral unmixing and initialization

The underlying optimization problem of linear spectral unmixing can
be written as

minW,H ‖V −WH‖F ,
subject to W, H ≥ 0 per element,

(16.1)

where V is the data matrix with m bands and n samples, W is the m× k
endmember matrix and H the k × n abundance matrix. ‖ · ‖F denotes
the Frobenius norm. All entries of the matrices are real and nonnegative
numbers. When the endmember matrix W is already known, it can be



Evaluation of NMF on mineral mixtures 171

considered as constant and optimization is done only for H. Thus, the
optimization problem becomes convex and a global minimum can be
computed via NNLS.

In practice, data dimensionality will always be m due to sensor noise.
However, the number of materials and thus the inherent dimension of
a data set is usually much smaller than m and a set of k vectors, with
k � m can approximate the data very well [1]. In this paper, we act on
the assumption that k is known, as determination of the actual number
of endmembers for a data set is a problem by itself. Further information
on the selection of k can be found in [4].

The NMF is basically computed using the method of alternating
steepest descent. As the underlying optimization problem is nonlin-
ear due to the nonnegativity constraint, multiple (sub)optimal solutions
exist and a good initialization improves the outcome [5].

The alternating multiplicative update proposed by [6] is basically a
steepest descent algorithm with efficient step size calculation, to com-
ply with the nonnegativity constraint. W and H are alternately updated.
The NMF can be used when the endmembers are not known a priori or
cannot be determined with sufficient accuracy. However, linear spectral
unmixing is an ill-posed inverse problem. Because of model inaccura-
cies, sensor noise, external measurement conditions and variability in
material spectra, it is impossible to analytically determine the solution.
Depending on the initialization the steepest descent algorithm can get
stuck in a local minimum due to initialization.

The endmembers can be regarded as extreme directions of the min-
imal convex cone containing the data cloud in m-dimensional space.
All spectra within the cone can be reconstructed without residuals, us-
ing abundances as coefficients for the linear combination of endmem-
bers. NMF iteration alternately adjusts the endmembers and their abun-
dances to better fit the data cloud and thus reduce the approximation
error.

Using the notation from (16.1), NMF can be performed as follows:

H(t+1) = H(t) ∗ ((W(t))TV)

(W(t))TW(t)H(t) +ε

W(t+1) = W(t) ∗ (V(H(t+1))T)

W(t)H(t+1)(H(t+1))T +ε

(16.2)
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Here, (t) is the iteration index and ∗ and ·
· denotes multiplication/divi-

sion per element. ε is a small, strictly positive value to prevent division
by zero. The proof of monotony can be found in [6], further discussion
on convergence in [3].

One of the most useful properties of NMF is that it usually produces
a sparse representation of the data set. This means that most of the
information is concentrated in a few abundances [6]. As the mixed
spectra usually consist of only two or three different materials, this is
a great benefit when compared to an unconstrained least squares ap-
proach where all endmembers are used per sample.

2.1 Initialization of W

Several approaches exist to extract endmember spectra directly from the
data and use them to initialize the endmember matrix for linear spec-
tral unmixing. This section contains a short explanation of the most
frequently used algorithms. Further information and examples for im-
plementation can be found in [2, 5, 7, 8].

Random initialization: The random methods are among the fastest
and easiest to code. W is initialized as a dense matrix with random
numbers between 0 and 1. According to [9], these initializations have
the potential to outperform every other method in terms of approxima-
tion error.

Spherical k-Means Clustering: The cluster centers are used as initial-
ization for W. In this paper, the spectral angle is used as a metric for
clustering. This is a reasonable choice, as spectra of identical mixtures
should be treated identical, regardless of illumination. The algorithm,
which is very similar to conventional k-Means Clustering, can be found
in [2].

Pixel Purity Index (PPI): The data is projected onto random unit vec-
tors and the most extreme samples are collected. This is repeated several
times and the resulting samples are thinned out till only a set amount of
spectra remains. The PPI algorithm used for endmember extraction can
be found in [7].

Sequential Orthogonal Subspace Projection (SOSP): The SOSP is
an analytical approach to determine the most significant vertices of the
data set in m-dimensional space. Thus, an approximation to the convex
hull of the data set is computed. The algorithm can be found in [8] and
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performs exceptionally well on simulated data satisfying the linear mix-
ture model. In contrast to the other methods discussed here, no random
procedures are used making the result reproducible.

2.2 Initialization of H

Only two notable initialization methods exist for the abundance matrix
H. The first being random initialization similar to W from Subsect. 2.1.
This usually provides good results, but specifically when a sparse solu-
tion is needed another method must be chosen.

After initialization of W with an endmember extraction algorithm,
the abundances in H are estimated by their fractional part, that is not
accounted for by any other endmember. Each row Hi: of H is calculated
separately by

Hi: = wT
i P−i

OSP, where

P−i
OSP = (I −W−i(WT

−iW−i)
−1WT

−i)V
(16.3)

I is the unit matrix of suitable dimension and W−i is the endmember
matrix W without the i-th endmember wi. A discussion of this method
can be found in [10].

3 Experiments and discussion

Evaluation of linear spectral unmixing was performed using a 4 × 4
checkerboard pattern of ground minerals/rocks with known abun-
dances per square. Experiments with three to nine classes were per-
formed. To evaluate the effect of different endmember extraction meth-
ods at least one square was provided containing the pure material. Also,
the experiments were limited to having three different materials per
square at most.

For every pattern, regions of interest (ROI) were manually selected
to outline the homogeneous parts of each sample. This was done to re-
strict the endmember extraction algorithms to spectra that comply with
the linear mixture model. However, NMF was performed on the whole
data set. Restricting NMF to the homogeneous regions was considered
to be impractical when working with data that is not specifically pre-
pared. The setup for three classes is shown in Fig. 16.1. The ground
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Figure 16.1: Ground truth masks (left) and corresponding abundance images
(right) for basalt (top), trachyte (middle) and rhyolite (bottom); endmembers by
SOSP, random initial abundances.
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truth masks depict homogeneous regions of each square, light blue cor-
responding to a fraction of 25%, green 50%, orange 75% and red 100%
of the corresponding material.

The data was recorded in a laboratory using an AISA sensor with 238
spectral bands in the wavelength range from 1 − 2.5μm and artificial
illumination.

On the left side of Fig. 16.1 the ground truth images for basalt, tra-
chyte and rhyolite are depicted from top to bottom. On their right
are the corresponding abundance images. In this case, assignment was
done manually as the similarities are clear. The abundances from Fig.
16.1 were calculated by initializing W with SOSP and H randomly.

To evaluate the results, the mean approximation error per sample as
well as the mean correlation between the abundance images and the
corresponding ground truth images were calculated. This was done for
all initialization methods in section 2.1 including the random and OSP
initialization for H. All methods that use random procedures were com-
puted 10 times and the best result was saved. Only the combination
of SOSP initialization for W and OSP for H can be computed analyt-
ically, always producing the same outcome. The NMF algorithm was
terminated after 2000 iterations of (16.2). Without parallel processing
the computation time of NNLS and NMF was comparable. The results
of NMF and NNLS solutions are shown in tables 16.1 and 16.2 respec-
tively. Depicted are the mean results over all available test sets.

Selecting the endmember candidates manually from visual judgment
usually results in a good unmixing. However, manual selection is sus-
ceptible to errors especially on extensive data sets. The random ini-
tialization for both W and H gives good results in terms of correlation.
However, the approximation error, especially in the case of NNLS, is
worse when compared to other methods. Also, initialization methods
with random procedures were evaluated 10 times due to the depen-
dency of NMF and NNLS on a good initialization. When random pro-
cedures are involved and no ground truth is available, selecting the best
among multiple solutions remains to be investigated. In the case of
NNLS, random initialization of W has a very high approximation error
per sample as it is treated as a fixed endmember matrix and the results
depend on its similarity to the actual endmembers.

Spherical k-Means Clustering, PPI and SOSP have similar perfor-
mance. When manual initialization is not possible SOSP in combination
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with OSP initialization of H is preferable due to analytic computation.
It was shown that SOSP always finds the correct endmembers, when the
linear mixture model holds [8]. On simulated data sets a correlation of
0.9986 could be achieved while simultaneously the approximation er-
ror was the lowest among the tested methods. However, outliers and
regions with nonlinear mixtures must be ignored during initialization.

Table 16.1: NMF results: Approximation error and mean correlation between
abundances and corresponding ground truth images.

NMF: HOSP Hrandom
approx. error mean corr. approx. error mean corr.

Random 0.1850 0.8891 0.1387 0.9111
Manual initialization 0.1330 0.9012 0.1958 0.8665
k-Means Clustering 0.1247 0.8790 0.1954 0.8517
Pixel Purity Index 0.1550 0.8418 0.2417 0.9543
Sequential OSP 0.1147 0.9273 0.1942 0.9386

Table 16.2: NNLS results: Approximation error and mean correlation between
abundances and corresponding ground truth images.

NNLS: HOSP Hrandom
approx. error mean corr. approx. error mean corr.

Random 3.6586 0.9015 3.7402 0.8900
Manual initialization 0.1541 0.9380 0.1580 0.9452
k-Means Clustering 0.1563 0.8978 0.1562 0.8955
Pixel Purity Index 0.6656 0.6475 0.6656 0.6475
Sequential OSP 0.2036 0.8239 0.2036 0.8239

4 Conclusion

Comparison of linear spectral unmixing algorithms has shown that
NNLS generally gives good results provided the initial endmember ma-
trix closely resembles the actual endmember spectra in the scene. The
iterative approach of NMF is able to compensate for worse initializa-
tion by alternately updating abundances and endmembers. While the
accuracy of the result, measured here by correlating the abundance im-
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ages with their corresponding ground truth information, is comparable,
good results are computed more consistently with NMF and the approx-
imation error is lower. In a measurement where no ground truth data is
available to quantify the result, NMF is generally more forgiving of bad
initialization and the chance to get a result close to the actual physical
composition in the first attempt is higher.

Considering the different initialization methods, random initializa-
tion for W and H has the potential to outperform every other method
with the downside that multiple computations may be necessary. The
SOSP initialization for W most consistently gave good results as the
computation does not rely on random procedures. Additionally, when
H is initialized with random values the NMF is able to iterate towards
a result that allows easy assignment between ground truth and abun-
dance images. It has to be noted that for this to work properly on a real
data set, areas where nonlinear effects occur should be ignored while
initializing W. Otherwise, endmembers might be chosen from these ar-
eas. NNLS and NMF would then be preset to prioritize the approxima-
tion of these areas over the actual linear mixtures. This can result in a
lower approximation error, when a lot of nonlinear mixtures are in the
scene, but in terms of comparability to the physical composition of the
scene the result is worse.

Initialization of H by (16.3) already limits optimization problem (16.1)
to certain solutions resulting in slightly lower correlations in our tests.
This limitation can be advantageous, where nonlinear mixtures should
be ignored. Also, when computation time is especially important, tests
have shown that it can already be used as a crude unmixing or reduce
the number of iterations needed for NMF.

The arranged test sets are valuable for further analysis as barely any
hyperspectral data is available with ground truth about the mixture ra-
tios per sample. More checkerboards were prepared where some mate-
rials were only included in mixtures. The arranged data sets can also be
used to analyze nonlinear mixtures as well. Nonlinear unmixing usu-
ally needs a lot of a priori information about the data set, but the ground
truth information is already available. This can help to improve the un-
derstanding of unmixing and the degree of model complexity that is
needed for accurate results.

In future work the performance of NMF will be analyzed when no
pure spectra are available for endmember extraction. Additionally, the
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effects of over- or underestimating the real amount of endmembers have
to be explored.
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