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Abstract Multispectral image data can be used to quantify the
concentrations of chemical substances in material compounds
by differential spectroscopy. In this paper, we describe Simplex
Volume Maximization (SiVM), a matrix factorization method de-
rived from Archetypal Analysis (AA), that is well suited to sep-
arate spectra. Exemplarily, we apply the technique to multispec-
tral images of wood strands partially covered with adhesives and
wood-polymer composites and show how to determine the con-
centration of the adhesives and how to distinguish the polymer
types.

In the multispectral domain, our objective is to separate the spec-
tral characteristics of the adhesives and polymers from those
spectral components caused by variation in the natural wood, in-
cluding differences in moisture.

Our experiments show that wood particles with different concen-
trations of adhesives or different polymer components can be dis-
tinguished after applying SiVM-based factorization to NIR spec-
tral imaging. We therefore conclude that this technique has great
potential for quality control applications that rely on multispec-
tral imaging.
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1 Introduction

Wood is an important raw material for the enterprises producing par-
ticle boards and other wood-based material like e.g. wood polymer
composites (WPC). Because wood is an eco-friendly renewable material
many efforts in research and development take place to reduce produc-
tion costs [1] and to increase possibilities for recycling [2].

Spectral imaging in the near-infrared range (NIR) is one of many mea-
surement techniques with great potential for classification and sorting
processes [3]. However, the requirements are much higher than e.g. in
recycling of plastic packages, because better resolution is needed and
because the signals acquired by NIR cameras are superposed by opti-
cal scattering due to rough surfaces and statistical/temperature noise
in the detector. The “classical” method to classify spectra using chemo-
metric methods like linear filtering and principal component analysis
(PCA) works but has its limitations [4]. Especially for wood particles
improved methods would help to optimize wood products and to in-
crease the recycling rate.

In addition to improved classification performance, a second moti-
vation to use alternative methods results from the fact, that classical
subspace transformation methods like PCA result in numerical repre-
sentations of the data that have no physical meaning and are hard to in-
terpret. In contrast, non-negative matrix factorization (NMF) has been
shown to provide meaningful results, if the data are inherently non-
negative [5]. But because the underlying problem is NP hard [6], op-
timal solutions are costly to obtain for real-world problems. Instead,
recent extensions to NMF introduce additional constraints on the ba-
sis vectors to reduce the search space. Several of these extensions
have been demonstrated successfully on hyperspectral image data for
remote-sensing applications [7, 8].

In order to obtain a meaningful decomposition of the multispectral
NIR imagery with low algorithmical complexity, we apply Archetypal
Analysis (AA) [9] or rather its approximative implementation Simplex
Volume Maximization (SiVM) [10]. SiVM requires efforts of only O(kn)
to derive basis functions and was shown to provide highly accurate re-
constructions [11].
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2 Wood particles

Two tasks are presented here as examples where the evaluation of mul-
tispectral image data could be improved by new approaches for factor-
ization and classification:

2.1 Adhesive coverage of wood strands

Oriented strand boards (OSB) are made from big wood particles (e.g.
120mm × 25mm × 0.8mm) in automatic production lines. Emulgated
adhesive (or resin) is sprayed onto the surface of the strands while they
pass a rotating drum, then the strands are oriented and formed to a
mat on a conveyor, pass a continuous hot press and leave it as particle
boards. The board quality depends on many manufacturing conditions.
An important one is the adhesive distribution on the strands before the
mat enters the press.

But the adhesive is “visible” only in the NIR range by using spectral
cameras and detection methods which are suitable also for the surface of
an OSB mat. Figure 18.3 shows a scene with strands made from aspen
wood and partially covered with urea-formaldehyde (UF) resin. The
adhesive concentrations, based on the dry mass of wood, were 0% (def-
initely too low), 6% (good concentration) and 12% (too high because
resin is an important cost factor). These concentrations are estimated
from the amount of glue added to the rotary drum, but cannot be de-
duced from the visible light image.

2.2 Detection of different polymer types in WPC granulate

Wood polymer composites (WPC) consist of approx. 50 to 70 mass
percent wood fibers and a polymer component, e.g. polyethylene (PE),
polypropylene (PP), polyvinyl chloride (PVC), or a bio-based poly-
mer like poly-L-lactic acid (PLLA). They are produced in a compound-
ing/extrusion process as profiles and can substitute solid wood in ap-
plications as terrace deckings, windows, and door frames or car interior
parts. Recycling of WPC has proven to be possible. However, meth-
ods for material management and especially for grading and sorting
are not yet available, and therefore most of the material is only reused
as fuel [12].
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Developments for WPC sorting are ongoing but require a sorting
or grading method for WPC granulate to make sure that the material
stream is free of impurities and contains only one polymer component.
The second example in Fig. 18.4 shows WPC granulate with four types
of polymer components (from top to bottom: PLLA, PVC, PP, PE) which
can not be distinguished in the visible light range.

3 Multispectral image decomposition

We interpret multispectral imaging as a discrete form of reflectance
spectroscopy: a sample reflects light to a sensor that measures a discrete
reflectance spectrum per pixel. A multispectral image with F spectral
bands is then represented as a matrix X = [x1, x2, . . . , xN ] of N pixels
xn ∈ R

F.
The run of the spectrum is characteristic of the chemical substance

under investigation. For a mixture of different substances, the mea-
sured spectrum is a weighted sum of the individual spectra. If a pixel
xn shows a mixture of K chemical components with reflectance spectra
sk ∈ R

F and mixture weights wnk, the pixel can be expressed as a linear
combination

xn = wn1s1 + wn2s2 + · · ·+ wnKsK = SWn, (18.1)

with

wnk � 0, ∑
K

wnk = 1.

This is schematically depicted in Fig. 18.1: A pure substance A shall
have a flat spectral reflectivity of 0.8, thus reflecting 80 % of spectrally
white light, while a second, pure substance B shall have a spectral reflec-
tivity of 1.0 over all but a given spectral band, where it has a reflectivity
of 0. When measuring the spectral reflectivity of a compound material
consisting of 60% of substance A plus 40% of substance B, we expect a
combined spectral reflectivity that is the linear combination of the pure
spectra, weighted with the respective lots of the substances. For our
assumed compound substance, we would therefore expect a spectral
reflectivity of 0.88 = 0.6 · 0.8 + 0.4 · 1.0 over most of the spectrum and
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Figure 18.1: We consider three different, thick materials with diffuse surface
scattering, where incident light i is split into a fraction a that is absorbed and a
second part r that is reflected. The spectral reflectivity of a material mixture with
60% of substance A and 40% of substance B is considered to be the weighted
sum of the spectral reflectivities of the pure substances.

0.48 = 0.6 · 0.8 + 0.4 · 0 over the band where substance B is fully ab-
sorbent.

4 Archetypal analysis

The spectra sk of simple chemical substances are known, but natural
materials like wood exhibit mixtures of a high number of components
that can be learned from sample data only. Analogous to Equation 18.1,
we approximate a multispectral image X with N pixels from K spectral
components sk ∈ R

F and K weights wk ∈ R
F as

X ≈ S · W, (18.2)

with

S = [s1, s2, . . . , sK], W = [w1, w2, . . . , wK]
T

with the approximation error E = min ||X− SW||2. While non-negative
matrix factorization (NMF) provides a solution to Equation 18.2 satisfy-
ing the physical requirements for the spectra sk, convex-NMF [13] and
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(a) Exemplary color image
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Figure 18.2: Color mixing example: All pixel colors in (a) can be composed as
linear combination of two archetypal colors light blue and light gray (triangular
color entries in (b)). They form the convex hull (here: a line) enclosing all other
pixel colors.

convex-hull-NMF [14] further guarantee meaningful weights wk satis-
fying the requirements for wnk from Equation 18.1.

The resulting spectra sk typically coincide with actual data points xn,
which makes convex-hull-NMF representations readily interpretable: If
an individual image location n′ exist, at which only a single substance
k is present, the discrete spectrum of this substance sk = xn′ resides on
the convex hull of all data points xn.

For illustrational purposes, we can interpret RGB colors as a col-
orspace with three spectral bands. Figure 18.2 depicts an image con-
taining various colors mixed from light blue and light gray. As can be
seen from the gamut diagram, these colors represent data points in a
subspace of the full RGB spectrum. The “pure” colors light blue and
light gray reside on the convex hull. Given an image like the one de-
picted in Fig. 18.2(a), our goal is to find the “pure” colors and to unmix
the colors of all pixel spectra. Archetypal Analysis (AA) is a method
that selects suitable data points as basis functions for the above men-
tioned convexity-constrained matrix factorization techniques. We use
its speeded up derivate—Simplex Volume Maximization (SiVM)—to
quickly identify archetypal datapoints in our multispectral image data.
Then, all other pixels of the image can be approximated by linear com-
binations of the archetypes. By definition, all resulting coefficients are of
the range [0, 1] and we can interpret them as relative amount of “pure”
ingredients (archetypes) used to “mix” a certain pixel’s spectrum.
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5 Results

We apply the Archetypal Analysis to two material characterization
problems from the woodworking industry.

5.1 Adhesive coverage of wood strands

In our first experiment, we seek to analyze the glue coverage of wood
strands. Data were acquired with an InGaAs line scan camera that
records 316 spectral bands in the near infrared (NIR) range between
1032 nm and 1656 nm. The image depicted in Fig. 18.3 shows about
twenty strands of aspen wood. Four strands are covered with ≈ 6%,
four other strands are covered with ≈ 12% of adhesive.

With Simplex Volume Maximization, 15 archetypes were extracted
from the pixel spectra. We expect to need several different archetypes
to model the spectra of the wooden texture, the spectrum of the adhe-
sives, moisture, image background, and the spectrum of the graphite
used to mark the strands. Using a slightly higher number of archetypes
allows to model shadows, specular highlights, and noise as well. Fig-
ure 18.3(c) and Fig. 18.3(d) show archetype s13 and the corresponding
mixture weights w13, that seem to model the absorption spectrum of
wood covered with ≈ 12% adhesives.

The 15-dimensional SiVM space can be used to classify image pixels
based on the adhesives coverage. Exemplarily, we have marked small
regions with known (compare section 2) glue coverage as training data
for a simple nearest-neighbor classifier (light green is used for 12% and
dark green for 6%). In addition, areas showing strands not covered with
adhesives were marked with light blue and visible background marked
in light grey. The trained classifier was then used to predict the glue
coverage of all other image pixels. Classification result and training data
(marked by boxes) are depicted in Fig. 18.3(b).

5.2 Detection of different polymer types in WPC granulate

In a second experiment, we use the same method to disambiguate pel-
lets made from wood fibres and different sorts of polymers. WPC pel-
lets with four different polymer components (PLLA, PVC, PP, and PE
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Figure 18.3: Wood strands, partially covered with adhesives. The adhesive is
transparent in visible light as well as in the averaged NIR reflectivity (a). Af-
ter decomposition with SiVM into 15 basis functions and training a nearest-
neighbor classifier (training regions marked with black boxes), it can be pre-
dicted for the whole image (b). An exemplary basis function (c) with corre-
sponding weight (d) seems to model adhesive concentration quite well.

respectively) have been placed in a wooden box together with paper la-
bels. The wooden box has walls that cast shadows on part of the scenery
and the whole setup is far from an ideal laboratory environment but
nevertheless closer to industrial conditions. We chose it to illustrate the
resilience of our method against adverse data acquisition conditions.
The image data was captured with an Extended-InGaAs line scan cam-
era with a spectral resolution of 248 bands in the range of 1161 nm to
2262 nm, of which the 20 lowest and 25 highest wavelengths were dis-
carded because of extremely low signal-to-noise ratio.

Again, SiVM with 15 archetypes was used in combination with a
nearest-neighbor classifier to learn the characteristics of the different
plastics from some image pixels and predict it for the remainder of the
image. Figure 18.4 depicts the wood-plastic-compound (WPC) dataset,
including classification result and an exemplary archetype. Archetype
13—depicted in Fig. 18.4(d)—shows contributions in the area of PLLA
pellets.
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Figure 18.4: Composite pellets made from PLLA, PVC, PP, and PE, in a wooden
box. From a conventional color photo (a) or the averaged NIR reflectivity (b),
polymer components can not be estimated. The decomposition of the multispec-
tral NIR image with SiVM into 15 basis functions, however, allows classification
even with a simple nearest-neighbor classifier. Training data (black boxes) and
result are shown in (c). An exemplary basis function is depicted together with
its corresponding weights in (d) and (e).

The nearest-neighbor classification result was obtained by select-
ing per class one rectangular image region as training samples. The
wooden box was learned from a slightly larger region. Overall, this—
really simple—attempt already results in acceptable classification per-
formance. Errors are only visible in shadowed areas. As the pellets
themselves generate small shadows, classification errors looking like
speckle noise are observed especially in the area of PP and PE pellets.

6 Summary

In this paper, we have demonstrated the application of Archetypal
Analysis (AA) / Simplex Volume Maximization (SiVM), a matrix fac-
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torization method, to multi-spectral image analysis for wooden materi-
als. It was shown that adhesive concentrations on wood strands and
polymer types in WPC granulates can be distinguished with simple
classification algorithms using the image decompositions derived from
SiVM/AA.

The proposed method allows for a better understanding of the mul-
tispectral image decomposition than standard methods from chemom-
etry. And while the latter are usually sensitive to outliers, surface and
acquisition conditions rather than to the chemical composition of the
material, the proposed approach appears to deliver predictable results,
invariant to small changes in the initialization.

An objective for future research will be to quantitatively evaluate the
algorithms—shown here as a prove-of-concept—on a larger set of image
data and to optimize the computational performance.
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