
Hyperspectral imaging applied to end-of-life

(EOL) concrete recycling

Giuseppe Bonifazi, Roberta Palmieri and Silvia Serranti

Sapienza – Universitá di Roma
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Abstract The recovery of materials from Demolition Waste (DW)
is a significant target of the recycling industry and it is important
to know which materials are present in order to set up efficient
sorting and/or quality control actions. The implementation of an
automatic recognition system of recovered products from End-
Of-Life (EOL) concrete materials can be an useful way to maxi-
mize DW conversion into secondary raw materials. In this paper
a new approach, based on HyperSpectral Imaging (HSI) sensors, is
investigated in order to develop suitable and low cost strategies
finalized to the preliminary detection and characterization of ma-
terials constituting DW flow stream. The described HSI quality
control approach is based on the utilization of a device working
in the near infrared range (1000-1700 nm). Acquired hyperspec-
tral images were analyzed. Different chemometric methods were
applied. Results showed that it is possible to recognize DW ma-
terials and to distinguish the recycled aggregates from the inves-
tigated contaminants (brick, gypsum, plastic, wood and foam).

1 Introduction

The huge amount of generated Construction and Demolition Waste
(CDW) constitutes a serious problem. Eurostat estimated a total pro-
duction of 970 million tons/year, representing an average value of al-
most 2.0 ton/ per capita only in Europe. This estimation is lower than
the reality because this type of waste is often illegally dumped [1]. On
the other hand, during the last century, the use of global materials in-
creased eight-fold with almost 60 billion tons currently used per year.
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It has been forecast that the demand for these materials will double by
2050. CDW recycling is of fundamental importance because it allows
to have “new materials” to use but also because it reduces environ-
mental pressure, preventing the increase of land use for waste disposal
and also avoiding the exploitation of non-renewable raw materials. En-
vironmental impacts linked with the non-renewable raw materials ex-
traction include extensive deforestation, soil loss, air and water reserves
pollution. In this context, the benefits of effective CDW recycling are
evident. The construction sector addressed significant efforts to find
methods to re-use the high volumes of CDW generated each year. A
practical solution can be to produce recycled aggregates from End-Of-
Life (EOL) concrete as a replacement for natural aggregates. In this way,
adopting recycling strategies to the EOL concrete, the improvement of
environment condition and the secondary raw materials collection can
be achieved at the same time [2]. In order to obtain marketable recy-
cled aggregates , pollutants, such as brick, plastic, wood, gypsum, etc.,
usually present into a Demolition Waste (DW) stream, must be absent
or under the limits required by the market. Therefore, the realization
of an automatic system able to identify DW materials is desirable in
order to make easier their conversion into useful secondary raw mate-
rials. Therefore the possibility to develop efficient, reliable and low cost
sensing technologies able to perform detection/control actions during
all recycling steps has to be explored.
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Main aim of this study was the DW stream classification by optical sen-
sors in order to identify concrete aggregates and unwanted contami-
nants (i.e. brick, wood, plastic, gypsum and foam). The developed clas-
sification method is based on the utilization of HyperSpectral Imaging
(HSI) sensing devices acting in the NIR range (1000-1700 nm). An inte-
grated hardware and software architecture constitutes the HSI system:
it allows to digitally capture and handle spectra, as they result along a
pre-defined alignment on a surface sample properly energized [3], [4].
Hyperspectral sensor produces a 3D dataset, the “hypercube”, charac-
terized by two spatial and one spectral dimensions. In the hyperspec-
tral images, the wavelength bands are typically in an equally spaced
sequence, so a full spectrum is obtained for each pixel that can be ana-
lyzed giving spectral information about samples [5]. Samples spectral
behavior is linked to their physical-chemical features according to the
different investigated wavelengths and it can be used for a rapid mate-
rials recognition/classification.

2 Materials and methods

2.1 Samples

Strukton company (NL) provided samples representative of some con-
taminants of concrete collected after the demolition of a building in
Groningen (NL). More in detail, samples are particles of wood, plastic,
gypsum, brick and foam. The investigated concrete aggregates came
from the same demolition waste, but after Advanced Dry Recovery
(ADR) processing in TUDelft (Delft, NL) [6]. This study was thus car-
ried in order to define the best classification strategy for identification
of aggregates and pollutant materials. In order to reach this goal, HSI
model classification was performed using two experimental set-up, as
described in the following.

Experimental set-up 1: the training sample set. Particles of brick (2 par-
ticles), aggregates (3 particles), wood (1 particle), gypsum (3 particles),
foam (3 particles) and plastic (4 particles), arranged in 7 lines, were ac-
quired generating a training image sample set used to build the classifi-
cation model (Figure 12.1) [7].
Experimental set-up 2: validation sample set. Twelve random particles were
arranged in three separated parallel lines, obtaining 4 different material
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Figure 12.1: Digital image representative of the training sample set (Experimen-
tal set up 1).

particles for each row and a validation sample set was thus acquired
(Figure 12.2). This second acquisition was carried out in order to val-
idate the classification model developed through the training sample
set.

2.2 The hyperspectral imaging (HSI) system

Hyperspectral images were acquired adopting a specifically designed
platform by DV srl (Padova, Italy) located at the Laboratory for Parti-
cles and Particulate Solids Characterization (Latina, Italy) of the Depart-
ment of Chemical Materials and Environment Engineering (Sapienza -

Figure 12.2: Digital image representative of the validation sample set (Experi-
mental set up 2). Each material, belonging to the same class, is identified by a
frame of the same color.
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University of Rome, Rome, Italy). The adopted platform is able to per-
form both static and dynamic analysis, indeed it is equipped with a con-
veyor belt (width=26 cm and length=160 cm) with adjustable speed to
simulate the behavior of material flow-stream in a real industrial plant.
Moreover the system consists of a NIR Spectral Camera™(Specim, Fin-
land) equipped with an ImSpector N17E™imaging spectrograph work-
ing with a spectral sampling/pixel of 2.6 nm, coupled with a Te-cooled
InGaAs photodiode array sensor. The device works as a push-broom
type line scan camera allowing the acquisition of spectral information
for each pixel in the line. In order to provide the required energy for the
process, a diffuse light cylinder containing five halogen lamps produc-
ing a continuous spectrum signal optimized for spectra acquisition in
the NIR wavelength range (1000-1700 nm) is present.

A PC unit equipped with a specifically developed software (Spectral
Scanner™v.2.3), allowing to acquire, collect and manage the spectra,
controls the HSI system. Hyperspectral data were acquired in the
880-1720 nm wavelength range, with a spectral resolution of 7 nm, for
a total of 121 wavelengths. The width of the images was 320 pixels and
the number of frames was variable according to the length of the image
to acquire. A calibration, obtained recording two reference images
(one for black and one for white) was carried out preliminarily. Black
image (B) was acquired in order to remove the dark current effect of
the camera sensor covering the camera lens with its cap. The white
image (W) was acquired adopting a standard white ceramic tile under
the same condition of the raw image. Corrected hyperspectral image
(I) was obtained applying the following equation to the original sample
image S:

I = S−B
W−B · 100

3 Spectral data analysis

The PLS Toolbox (Version 7.8, Eigenvector Research, Inc., Wenarchee,
USA) running under Matlab®(Version 7.5, The Mathworks, Inc., Nat-
ick, Massachusetts, USA) environment was used in order to analyze
hyperspectral images. After a preliminary pre-processing procedure,
chemometric techniques were applied. Principal Components Analysis
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(PCA) was used in order to explore the data, to define classes and to
evaluate the best algorithms for successive classification models, while
for classification purpose Partial Least-Squares Discriminant Analysis
(PLS-DA) was adopted.

3.1 Spectra pre-processing and exploratory analysis

In order to remove effects due to the background noise, at the begin-
ning and at the end of the acquisition range, the raw spectra were cut:
spectral variables were thus reduced from 121 to 93 obtaining a new
investigated wavelength interval (1006 to 1650 nm).

To highlight samples spectral differences and to reduce the impact of
possible external sources of variability, hyperspectral data were prepro-
cessed adopting a combination of three algorithms was applied: Mean
Centering (MC), Detrend and Standard Normal Variate (SNV). MC is
one of the most common pre-processing methods calculating the mean
of each column and subtracting this from the column: each row of the
mean-centered data includes only how that row differs from the av-
erage sample in the original data matrix. Detrend algorithm removes
constant, linear, or curved offset; while SNV is a weighted normaliza-
tion adopted to solve scaling or gain effects due to path length effects,
scattering effects (depending on the physical nature of the material and
the particle size), source or detector variations, or other general instru-
mental sensitivity effects [8]. After preprocessing, Principal Compo-
nent Analysis (PCA) was applied as exploratory data analysis [9]. PCA
projects the samples into a low dimensional subspace, whose axes (the
principal components, PCs) point in the direction of maximal variance,
compressing the data. Looking at the distribution of samples into the
PCs space, it is possible to interpret differences and similarities among
them: the more they are grouped, the more they have similar spectral
features. Furthermore, PCA highlights the presence of trends among
samples, giving preliminary information about distribution of different
specimen on an image [10].

3.2 Partial Least-Square Discriminant Analysis

Partial Least-Square Discriminant Analysis (PLSDA) was adopted in or-
der to build a predictive model able to classify aggregates and pollu-
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tants. This technique is a supervised classification method as requires
a prior data knowledge [11] and it is a linear method based on the use
of partial least squares regression. Starting from samples with known
classes, a discriminant function is built to be used to classify new un-
known samples, made of the same material of the known ones. PLS-DA
builds a subspace of latent variables (LVs), which are liner combina-
tions of the original variables, and it looks for the LVs with a maximum
covariance. It is necessary to evaluate the optimal dimension of the
LVs subspace in order to perform the best classification model as possi-
ble [12]. The PLS-DA model allows to assign to each unknown sample
(in this case, pixel) only one of the available defined classes, according
to the similarity among spectra. Prediction maps are PLS-DA results:
each class is defined by a different colour.

4 Results

The spectra of the different materials, collected in the NIR range, pro-
vides chemical information about their composition, being spectral sig-
natures absorption bands strictly related to C-H, O-H and N-H over-
tones.

4.1 Explorative analysis and class setting

The explorative analysis was carried out after spectra preprocessing ap-
plying Mean Center, Detrend and SNV algorithms.

The sample set corresponding to the Experimental set up 1 was ana-
lyzed by PCA: the majority of the variance was captured by the first two
PCs, where PC1 and PC2 explained 58.43% and 25.03% of the variance,
respectively.

The six classes were clearly identified on the PCA score plot because
samples, in fact, are clustered into six different groups (Figure 12.3).
Therefore the training dataset was easily created by removing some bor-
der cluster points “different” from all other spectra of the same category
and by setting class of the remaining pixels.
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Figure 12.3: PCA score plot after preprocessing: all the classes are identified.

4.2 PLS-DA classification

In order to classify the sample set corresponding to the Experimental set
up 2, a PLS-DA method was applied.

The number of latent variables was chosen based on the minimum
classification error in the venetian blind cross-validation and it was 5
LVs and the obtained values of Sensitivity and Specificity are shown in
the Table 12.1. These parameters are the model efficiency indicators: the
more the values are close to one, the better the modelling.

Table 12.1: Sensitivity and Specificity for the PLS-DA model built for the classi-
fication purpose.

Applied algorithms Sensitivity Specificity
in Class Calibration Cross Calibration Cross

the PLS-DA model Validation Validation
Aggregates 0.997 0.997 0.002 0.002

Brick 0.988 0.988 0.996 0.996
Gypsum 0.982 0.981 0.999 0.999

Detrend, SNV, Mean Center Plastic 1.000 1.000 1.000 1.000
Wood 0.985 0.985 0.939 0.939
Foam 1.000 1.000 1.000 1.000
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The Sensitivity, true positive rate, estimates the model ability to avoid
false negatives (i.e. number of samples of a given type correctly classi-
fied as that type). The Specificity is the estimation of the model ability
to avoid false positives (the number of samples not of a given type cor-
rectly classified as not of that type).

Sensitivity and Specificity are very close to 1, except for the Speci-
ficity of aggregates: there are many false positive, probably due to dirt-
iness on the particles surface. Indeed, these materials were not washed,
so some pixels, corresponding to pollutant, can have a similar spectra
of aggregates distorting the classification result. Furthermore there are
some light scattering problems due to the “rough” and heterogeneous
particles surface that can contribute to the presence of errors and/or
misclassifications.

In order to verify its classification ability, the built model was applied
to the image corresponding to the Experimental set up 2. The results, in
form of prediction maps, are reported in Figure 12.4a. The built model
gives a good classification even if some sporadic misclassifications oc-
cur, but it is easy to indentify the predominance of a single class on each
object. Therefore it is possible to impose a constraint on the maximum
percentage of pixels assigned to each object in the image: the class with
the major number of pixels on an object is assigned to the entire object,
to reach this goal the percentage of pixels belonging to each class for
every object in the image was measured.

In Figure 12.4b are reported the labels for the particles of the Experi-
mental set up 2 used to build the Table 12.2, showing the percentages of
pixels belonging to each class for every particle.

A new classification was obtained after the imposition of the con-
straint rules about the maximum percentage of assigned pixels to a spe-
cific class (Figure 12.5).

5 Conclusions

The possibility to develop an efficient recovery and reuse of concrete
materials, considered as secondary raw materials, represents one of the
main targets in the DW sector. The achievement of this goal can con-
tribute to decrease the steady supplies of good quality natural aggre-
gates but in the same time it can secure large supplies of concrete ag-
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a b

Figure 12.4: Experimental set up 2: (a) prediction maps obtained as result of
PLS-DA classification model where classes are: foam (1), gypsum (2), wood
(3), aggregates (4), brick (5) and plastic (6); (b) labels corresponding to each
classified particles.

Table 12.2: Percentage of pixels belonging to each class (i.e. foam, gypsum,
wood, aggregates, brick and plastic) in every particle of the Experimental set
up 2.

Particles

Materials (%) 1 2 3 4 5 6 7 8 9 10 11 12
Foam 0 0 0 0 0 0 0 100 0 0 100 0
Gypsum 97.31 0.74 0 2.82 0 0.25 98.35 0 0.16 6.63 0 0
Wood 0.85 0.25 0 95.7 0 0.5 1.65 0 0 90.23 0 0
Aggregates 1.84 71.51 0.53 1.51 0 98.75 0 0 4.76 3.02 0 0
Brick 0 14.1 99.3 0 0 0 0 0 82.71 0.12 0 0
Plastic 0 13.4 0.13 0 100 0.5 0 0 12.37 0 0 100

gregates to the construction industry and moreover it can reduce the
environmental constraints linked to the DW wastes disposal, especially
in urban regions. Several benefits can be thus reached: i) the reduction
of new non-renewable resources exploitation and of the costs linked to
transport and energy production, ii) the possibility to utilize materials
that otherwise should be lost (i.e. land filled), iii) the land preserva-
tion in respect of future urban development and, finally, iv) the reduc-
tion of the impact, on the environment, of new exploitation activities of
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Figure 12.5: New classification, as resulting from Experimental set up 2, after
the application of the constraint rules about the maximum percentage of as-
signed pixels to each class: background (0); foam (1); gypsum (2); wood (3);
aggregates (4); brick (5); plastic (6).

non-renewable resources. Starting from these premises the possibility
to identify a suitable sensor technology for quality measurement and
control of recycled streams along the entire chain, from demolition to
“new” concrete and/or mortar production, able to recognize and char-
acterize recycled aggregates, as well as the presence of contaminants can
represent an important starting point to develop, implement and set up
on-line control strategies to apply before and after demolition actions.
In this study a procedure based on HyperSpectral Imaging in the NIR
region was thus developed in order to identify different materials in a
DW stream: five kind of contaminants (i.e. brick, plastic, gypsum, wood
and foam) and recycled aggregates. Analysis were carried out adopting
chemometric methods: PCA for the exploratory analysis and PLS-DA
for the classification purpose. Obtained results showed that the classi-
fication was good and sporadic misclassifications are probably due to
light scattering, samples heterogeneity and presence of impurities. In
order to improve the classification, a logic defining the maximum per-
centage of assigned pixels to each class for every particle was imple-
mented: only one class was thus attributed to each object in the image
to be predicted. The proposed HSI based approach is not-expensive,
fast and reliable. For all these reasons it can be profitably utilized to set
up on-line strategies finalized to improve recycling processes efficiency,
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reducing costs and improving the “final quality” of the recovered prod-
ucts.
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