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Abstract Test work was performed with near-infrared (NIR)
spectroscopy on 94 ore samples from a South-American Au-Ag
mine. The aim of the test work was to investigate if alteration
minerals can be detected with the NIR sensor that can be used as
indicators of ore value. Partial least squares discriminant analysis
(PLS-DA) was applied to the spectral data to make classification
models that use the measured NIR spectra to distinguish samples
with certain Au, S or C grades. This showed that detection of
mineralogy with NIR spectroscopy can be used to discriminate
on i) ore particles with low Au and Ag grades ii) ore particles
with high carbon contents iii) ore particles with high sulphide
contents.

1 Introduction

Sensor based sorting represents all applications where singular parti-
cles are mechanically separated on certain physical properties after de-
termining these properties by a sensor. It can be incorporated as a
pre-concentration step in ore processing operations to eliminate sub-
economic ore material prior to conventional processing. This has po-
tential to reduce the costs of processing mined materials [1-6]. Sensor
types that are currently used with sensor based sorting include optical,
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near-infrared, X-ray transmission, X-ray fluorescence and electromag-
netic sensors [7,8]. None of these sensors have been proven to be able
to directly detect the Au content of epithermal Au ores.

Near-infrared (NIR) sensors used in sensor based sorting record the
intensity of NIR radiation that is reflected from a solid material as a
function of wavelength. NIR radiation is electromagnetic radiation, or
light, with wavelengths ranging from 700 nm to 1 mm. Certain solid
materials produce intense absorption of radiation around specific wave-
lengths in this region. This is caused by electronic molecular processes
(crystal field effects, charge transfer, colour centres, conduction band
transitions) and/or molecule bond vibrations [9, 10]. Identification of
minerals is often possible by analysing the locations, shapes and rel-
ative intensities of all absorption features in the NIR spectrum of an
ore particle. Not all minerals can be identified with NIR spectroscopy.
It is restricted to minerals containing elements or molecule bonds that
produce diagnostic absorptions. Minerals that that produce diagnostic
absorptions are referred to as NIR active minerals.

Test work was performed to investigate the applicability of an NIR
sensor to characterise epithermal Au-Ag ores on their economic value.
The NIR sensor was selected because NIR spectroscopy has been proven
to be a valuable tool in mapping the distribution of alteration minerals
at epithermal ore deposits [11]. Deposition of Au and Ag at these de-
posits is related to the formation of specific alteration minerals [12-14].
It is therefore possible that the detection of alteration mineralogy with
an NIR sensor can be used for predicting the economic value of the ore.

2 Hydrothermal alteration at epithermal ore deposits

Epithermal Au-Ag deposits are formed by hydrothermal activity that
is driven by a magmatic intrusion occurring at several kilometres be-
low the Earth’s surface. Hydrothermal activity is the movement of hot
aqueous (hydrothermal) fluids through the Earth’s crust and interac-
tion between these fluids and the rocks through which they pass. The
hydrothermal fluids responsible for epithermal deposit formation orig-
inate from the magma and are released due to cooling of the magmatic
intrusion [15]. Au, Ag and other elements are dissolved within these
fluids as ions or complex ions. After release from the magma, the hy-
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drothermal fluids flow towards the surface due to the relatively high
pressure and temperature. The ascending magmatic fluids may subse-
quently mix with meteoric fluids which changes the fluid chemistry and
temperature.

Epithermal Au-Ag deposits form at depths up to 1500 m below the
surface and temperatures < 300 °C. Sharp pressure and temperature
gradients in this environment results in boiling of the hydrothermal
fluids, which changes fluid composition and forces Au and Ag to pre-
cipitate [13,15]. The hydrothermal fluids that introduce Au and Ag in
epithermal deposits also introduce, remove and/or redistribute other
pre-existing components of the host rock. This is referred to as hy-
drothermal alteration [15]. Hydrothermal alteration results in the for-
mation of alteration minerals. The type of alteration minerals that are
formed depends on the pressure and temperature of the hydrothermal
fluids and on the composition of both the hydrothermal fluids and the
host rock [15]. Because precipitation of Au and Ag also depends on
hydrothermal fluid properties, it is related to the formation of specific
alteration minerals [12-14].

3 Sorting objectives of the test work

Test work was performed to investigate the applicability of an NIR sen-
sor to characterise epithermal Au-Ag ores on their economic value. The
economic value of the ore samples that were used for the testwork
mainly depends on the Au grade. Ag is mined as a by-product and
higher Ag grades increase ore value. Relatively high concentrations of
carbonaceous materials or sulphide minerals on the other hand decrease
ore value because these lower the recovery of Auand Ag during ore pro-
cessing. The objectives of the testwork were therefore to investigate if an
NIR sensor can be used to distinguish i) ore particles with low Au and
Ag grades, ii) ore particles with high carbon contents, iii) ore particles
with high sulphide contents.

4 Methods — Test work approach

The test work included NIR spectroscopic measurements on 94 samples
that originate from a South-American mine. This mine exploits a high-
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sulphidation epithermal Au-Ag deposit. Each sample is a rock particle
of about 5-15 cm in diameter. The sample set consists of 80 samples
that were collected from the ore zone of the deposit and 14 samples that
were collected from an unmineralised zone. These different zones are
defined by the geological deposit model that is used by the mine. The
subsets were selected at random from two locations that were about 250
m apart.

7 NIR reflection spectra were measured on each sample with an ASD
Fieldspec3 portable spectroradiometer. This device records reflected
NIR radiation at wavelengths ranging from 350 to 2500 nm. For anal-
ysis of the measured NIR spectra, this wavelength range was subdi-
vided into two regions. This was done because two different types of
absorption processes take place in these regions. At wavelengths rang-
ing from 350 to 1300 nm the measured NIR spectra are dominated by
charge transfer absorptions of the Fe-ion (Fe2+ and Fe3+). These ab-
sorptions therefore allow determination of Fe-bearing mineralogy. This
wavelength region will be referred to as the visible (VIS) region of the
NIR spectra. At wavelengths ranging from 1300 to 2500 nm the mea-
sured NIR spectra are dominated by absorptions from molecule bond
vibrations. These absorptions allow determination of hydrothermal al-
teration mineralogy. This wavelength region will be referred to as the
short wave infrared (SWIR) region of the NIR spectra.

The NIR active mineralogy was determined from each measured NIR
spectrum by comparing the spectra with reference spectra from the G-
MEX spectral interpretation field manual [16] and the USGS spectral
library [17]. X-ray diffraction (XRD) was performed on a subset of 36
samples to validate the determined NIR active mineralogy. Selection of
this subset was based on a classification of samples on the NIR spectra.
Fire assay was performed on the samples in the subset to determine
their Au and Ag grades. Carbon and sulphur contents of samples were
determined by using a LECO analyser [18].

5 Methods — Classification with Partial Least Squares
Discriminant Analysis (PLS-DA)

A classification model known as partial least squares discriminant anal-
ysis (PLS-DA) was applied to investigate the potential of using the NIR
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spectral data to distinguish between pre-defined groups of samples.
PLS-DA is based on partial least squares (PLS) regression [19]. This
is a method that is used for calibrating a multivariate linear prediction
model [20,21]. PLS regression hereby allows investigating the possibili-
ties of predicting a set of response variables from a large set of predictor
variables. A detailed description of PLS regression is presented by Wold
et al. [21] and Abdi [22].

The difference between PLS-DA and PLS regression is that instead of
predicting one or more dependent variables, PLS-DA is used to predict
a certain class analogy. This is performed by simply calibrating a PLS
regression model in which the set of response variables is replaced by a
dummy matrix with assigned class memberships [19]. The advantage of
PLS-DA over most other classification models is that PLS-DA does not
only relate the predictor data to class membership, it also models the
common structure between these datasets. This is achieved by finding a
set of latent variables (LVs) that describe maximum covariance between
the predictor and class data [21,22]. By using the LVs, the model is able
to handle numerous and collinear predictor variables [21]. This was
considered an advantage for making classification models based on the
NIR spectral data, since this type data can be correlated and noisy.

PLS-DA was performed on individual NIR spectral measurements. 7
measured spectra on each individual sample were used for this. To cali-
brate the PLS-DA models, the spectra were assigned to the class that the
sample belongs to. Only two different classes were used in each PLS-
DA model. Definition of the classes was based on the sorting objectives
stated in section 3. The PLS-DA model predicts a response for each
measured spectrum. Responses for samples were calculated by averag-
ing the responses that resulted for the individual measurements. By ap-
plying a threshold to these averaged responses, classification of samples
was performed. Apart from the responses, PLS-DA also calculates load-
ings and scores. The loadings contain information on the wavelength
regions that are important for classification into the classes [21,22]. The
scores describe the relationship between these loadings and the mea-
sured spectra.

PLS-DA was applied to the VIS region (400 — 1300 nm) and the SWIR
region (1300 — 2500 nm) of the NIR spectra separately. The spectra on the
SWIR region were hull quotient corrected before applying the PLS-DA.
This type of correction removes the overall reflection of the NIR spec-
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tra, so that only the absorption features that are produced by molecule
bond vibrations remain [10]. This is necessary to ensure that the model
only uses the features that relate to mineralogy to perform the classifi-
cation. The spectra on the VIS region were not corrected. This was not
needed because the charge transfer absorptions that occur in this region
dominate the overall reflection of the spectrum.

When using PLS-DA, it is important to select the optimal number of
LVs that are used by the model. A higher number of LVs increase the
accuracy of the model on data used for calibration, but the predictive
power on other data may be decreased due to ‘overfitting” [21,22]. To
select the optimal number of LVs, only 75 percent of the samples were
used for model calibration. The remaining samples were used to vali-
date the resulting classifications. The error rate of classification versus
the number of LVs was calculated for 100 randomly chosen calibration
and validation subsets. The number of LVs at which the lowest average
error rate resulted for the validation subset was selected for creating the
PLS-DA classification model.

The PLS-DA was performed with algorithms from the classification
toolbox for Matlab from the Milano Chemometrics and QSAR Research
Group [23]. Before applying the PLS-DA the data was mean-centered.

6 Results — Mineralogy determined with NIR
spectroscopy

Figure 1 presents an overview of measured NIR spectra of all the dif-
ferent minerals that were determined on the samples with NIR spec-
troscopy. The minerals determined from the VIS region of the NIR spec-
tra are presented separately of those from the SWIR region. Almost all
spectra in figure 1 match those of single minerals [16,17]. Only the SWIR
spectra of diaspore and dickite are mixed with other minerals. The spec-
trum of diaspore in figure 1 shows additional features by pyrophyllite
around 1400 and 2170 nm. The presented spectrum of dickite is actu-
ally dominated by broad water absorptions that occur around 1400 and
1940 nm. Dickite was determined from the small absorption features
that occur at 1380, 1415, 2175 and 2205 nm. The spectrum of water that
is presented in figure 1 is likely produced by small fluid inclusions in
quartz. The occurrence of quartz with fluid inclusions is common at ep-
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Figure 16.1: Measured NIR spectra of identified minerals

ithermal deposits [13] and was validated by XRD. It was made sure that
all samples were dry while taking the measurements.

The SWIR region of the measured NIR spectra often contains absorp-
tions by 2 or 3 different minerals. The VIS region on the other hand only
shows a dominant mineralogy because all the characteristic mineral ab-
sorptions overlap. A fraction of the measured VIS spectra also had no
characteristic shape at all, indicating an absence of significant amounts
of Fe-bearing minerals. In total, 22 different combinations of NIR ac-
tive mineral assemblages were determined from the samples. Minerals
that were most often identified include pyrophyllite, quartz (water spec-
trum), hematite and goethite. Diaspore and zunyite were often deter-
mined from mixed spectra with pyrophyllite. Dickite always occurred
together with quartz.

Apart from the spectra in figure 1, also spectra with a very low re-
flection over the entire VIS and SWIR spectral ranges were measured. It
resulted that these spectra are representative for the carbonaceous ore
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Figure 16.2: Error Rate vs. nr of Latent Variables in PLS-DA

materials. The low reflection of carbonaceous samples is also observed
visually from their dark black colour.

XRD validated the occurrence of almost all minerals that were identi-
fied with NIR spectroscopy. The only mineral that was not validated by
XRD is dickite. However, it is possible that the weight fraction of dickite
in the samples is below the limit of detection of XRD. The NIR spectra
from which dickite was identified also showed only weak absorption
features of this mineral, indicating relatively low concentrations.

7 Results — Classification model for sorting on Au

Different PLS-DA classification models have been produced to classify
the samples on the sorting objectives stated in section 3. This section
presents an overview of the results from a PLS-DA model that was
aimed at distinguishing samples with Au grades < 0.20 ppm. Process-
ing of ore samples below this grade is not profitable. The classification
was performed on the SWIR region of the spectra.

The first step in the PLS-DA classification was to select the optimal
nr of LVs that are used by the model. This was performed by calcu-
lating the error rate of classification versus the number of LVs for 100
randomly chosen calibration and validation subsets. Figure 2 presents
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Figure 16.3: Predicted responses from PLS-DA

the average of these classifications. This figure shows that there is no
significant decrease in the error rate of the validation subset when more
than 7 LVs are used. 7 LVs were therefore selected for performing the
PLS-DA classification.

Figure 3a presents the responses that the PLS-DA model calculated
for each measured SWIR spectrum. The different colours in this figure
refer to the different classes on which the model was calibrated. The
calibration of the model is performed in such a way that the difference
between the predicted responses of the two classes is maximised. Figure
3b shows the sample responses, which were calculated by averaging the
responses of the SWIR spectra that were measured on each sample. The
stars and dots in figure 3a and 3b refer to samples that were used for
calibration and validation of the model. The figures show that for each
class the responses of the validation subset fall within the range of re-
sponses of the calibration subset. The classification results are therefore
consistent for samples that were not included during model calibration.
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Using different calibration and validation subsets produced similar re-
sults.

Figure 3b shows that there is overlap between the predicted responses
of the two classes. However, it also shows that calculated responses >
-0.05 only result on samples with low Au grades. By applying a thresh-
old to the responses it is therefore possible to distinguish a group of
samples that all have Au grades < 0.20 ppm. To investigate which SWIR
spectral features allow identification of these samples, the scores and
loadings of the model were analysed.

Figure 4 presents the scores and loadings for the first two LVs that are
used by the PLS-DA model. The green rectangle indicates a region on
the score plot where only measurements on low grade samples result.
The first loadings plot shows that these measurements can be distin-
guished on the basis of absorption features relating either to water (red
arrows) or pyrophyllite (blue arrows). The second loadings plot shows
that the distinction between spectra is also based on the occurrence of
either pyrophyllite (blue arrows) or zunyite (orange arrows). The scores
of the low grade samples in the green rectangle are positive on both the
1st and 2nd LV. This relates to NIR spectra that are represented by ab-
sorption features in the negative direction of the loadings of both LVs. It
results that low grade samples can be identified from the occurrence of
spectral features relating to pyrophyllite and absence of features relat-
ing to water (quartz) and zunyite. Investigation of scores and loadings
of other LVs of the model also showed that features relating to diaspore
are characteristic for the low grade samples. These results were con-
firmed by visual interpretation of the spectra and the determinations of
mineralogy that resulted from XRD.
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Table 1: Geochemistry of samples with pyrophyllite & no zunyite (Class 1} and other samples (Class 2)

Averages before classification Averages Class 1 (45 %) Averages Class 2 (55 %)
Au {ppm) 0.261 Au (ppm) 0.086 Au {ppm) 0.405
Ag(ppm) 1.594 Ag(ppm) 0.000 Ag(ppm) 2,906

As (%) 0.007 As (%) 0.002 As (%) 0.011
C (%) 0.002 C (%) 0.000 C (%) 0.004
5(%) 0.758 5(%) 0.721 5(%) 0.788

Table 2: Geochemistry of samples with carbon (Class 2) and other samples {Class 1)

Averages before classification Averages Class 1 (86 %) Averages Class 2 (14 %)
C(%) 0.722 C(%) 0.002 C(%) 5.186

Au (ppm) 0.239 Au(ppm) 0.261 Au(ppm) 0.104
Ag (ppm) 1.644 Ag (ppm) 1.594 Ag(ppm) 1.960
As (%) 0.007 As (%) 0.007 As (%) 0.006

S (%) 0.938 S (%) 0.758 S (%) 2.052

Table 3: Geochemistry of samples with pyrite (Class 2) and other samples (Class 1)

Averages before classification Averages Class 1 (71 %) Averages Class 2 (29 %)
Au (ppm) 0.261 Au (ppm) 0.313 Au (ppm) 0.132
Ag(ppm) 1.5%4 Ag(ppm) 2.245 Ag(ppm) 0.000

As (%) 0.007 As (%) 0.009 As (%) 0.001
C (%) 0.002 C (%) 0.003 C (%) 0.000
5 (%) 0.758 5 (%) 0.190 5 (%) 2.147

Figure 16.5: Sample classification based on mineralogy detectable with NIR
spectroscopy

8 Results — Overview of classification results

The previous section presented an example of how PLS-DA was used
to identify certain minerals from the SWIR spectra that are character-
istic for samples with Au grades < 0.20 ppm. The same method was
applied to other Au grades and the carbon and sulphur content of sam-
ples. Also the VIS region of the measured spectra was investigated by
using the same approach. Based on the information that this provided,
certain assemblages of NIR active minerals could be defined that only
occur on samples with Au, C or S grades within a certain range. Fig-
ure 5 presents the results of three classifications that were based on dis-
tinguishing samples that contain these mineral assemblages. PLS-DA
modelling showed it was possible to make this distinction on the basis
of NIR spectral data.

The classification result in table 1 is based on distinguishing sam-
ples that contain pyrophyllite while zunyite is absent. The table shows
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significant differences between the average Au and Ag grades of both
sample groups. The maximum Au and Ag grades of group 1 are fur-
thermore 0.19 and 0.00 ppm. It results that the NIR sensor can be used
to distinguish a fraction of the sub-economic ore samples. However, it
should be noted that it is unknown how well these samples represent
the entire ore deposit.

The classification result in table 2 is based on distinguishing samples
with a low overall reflection. The samples that contain carbon gener-
ally absorb most of the NIR radiation which is also visible from their
dark black colour. Classifying the NIR spectra on the average reflection
therefore allows distinguishing carbonaceous ore samples.

The classification result in table 3 is based on distinguishing samples
of which the VIS spectra are characteristic for pyrite. VIS spectra of
samples in group 1 either showed Fe-oxide minerals or no diagnostic
mineral absorptions. By distinguishing samples containing NIR active
pyrite, significant differences between the average sulphur content of
both sample groups results.

9 Conclusions

The following conclusions were drawn from the testwork

e [t is possible to use NIR spectroscopy to distinguish ore samples
with low Au and Ag grades. This is based on specific alteration
mineral assemblages detectable from the SWIR region of the NIR
spectra (1300 — 2500 nm).

e The average NIR reflection of samples can be used to distinguish
samples with relatively high C contents. This distinction can also
be made visually because carbonaceous samples have a dark black
colour.

e Itis possible to use NIR spectroscopy to distinguish between sam-
ples with high and low S contents. This is based on detecting ei-
ther Fe-oxide or Fe-sulphide minerals from the VIS region of the
NIR spectra (350 — 1300 nm).

e PLS-DA is an effective technique to investigate classification pos-
sibilities based on NIR spectroscopic data.
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