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Hyperspectral imaging as process analysis
technology for inline applications — Laboratory
precision meets high sampling accuracy
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Abstract Hyperspectral Imaging (HSI) has found its way into
modern production lines as yet another camera technology that
combines the means of spectroscopy with computer vision. How-
ever, while its imaging capabilities with its increased amount of
processed data are already subject to state of the art sorting ma-
chines used for product integrity checks and foreign body re-
moval, the potential of doing real-time spectroscopy and quan-
titative chemical analysis of product streams has up to now not
fully been harnessed for the production line. Respective indus-
tries still rely solely on highly precise but statistically limited,
laboratory based, slow and invasive methods while HSI offers
the data needed to perform real-time and statistically represen-
tative product sampling as add on. In this regard the potential
of HSI as process analysis technology (PAT) will be outlined in
this article presenting a first industrial field application based on
the HELIOS near infrared hyperspectral imaging camera. Results
from this up to now first commercialized application of this kind
in the potato industry, i.e. an inline dry matter detection for pota-
toes, will be discussed.

1 Introduction

Modern factories and production lines consist of a variety of different
process steps covered by fully automated machines comprising high-
tech sensor units and electronic equipment. These artificial organs of an
integrated factory body nowadays produce enormous amounts of data
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most of which are only analyzed from a very local point of view with re-
spect to the process location (i.e. data from one machine is used mainly
for process control of this particular unit). On the other hand many in-
line process parameters with rapidly changing states on timescales of
minutes at different locations in the product stream are still monitored
by means of invasive, laboratory based analysis technologies suffering
from low sampling rates (e.g. every 30 min) and limited (not represen-
tative) statistics (number of samples orders of magnitudes below the
number of product items to be controlled). Recently more and more
of these classical methods are combined with more rapid at- and inline
process analysis technologies (PAT) with access to high data statistics
and almost no latencies in the control and regulation cycle. Both of these
developments are subject to a combined trend towards intelligent (in the
machine learning sense), interconnected and self-regulating production
sites where inline monitoring (and process control) machines (such as
e.g. sorting machines) generate real time data at different points of the
production flow. These are combined and analyzed (e.g. via multivari-
ate data analysis) and ultimately used for process control at various pro-
cess locations. Concerning inline PAT one has to keep in mind that it is
not simply the goal to imitate and replace the high precision equipment
of a well introduced laboratory method with its various advantages [1].
The actual objective is to add to a solid and high precision laboratory
quality control the benefits of an inline technology that monitors the
product stream all the time. Such it generates lots of representative
data over the whole product stream thus harnessing the power of sta-
tistical analysis by which (expected) random statistical fluctuations and
non-representative outliers can be averaged out. Such effects will sub-
sequently not propagate into a meaningful mean measurement value.
On the other hand real systematic deviations on shorter time scales can
be observed and reacted at swiftly since statistical parameters such as
target value variance or overall distributions are very sensitive to such
changes which will not be marginalized. Thus it is crucial that a precise
laboratory reference method is used to (re-)calibrate the inline device
whose added value is the enhanced accuracy of the quality control via
statistical representative expectation values being insensitive to Gaus-
sian noise. With the help of PAT the different processes in a factory can
be fine-tuned in order to arrive at the most cost effective production
parameters such as energy, water and input of raw material.
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In the following the inline application of quantitative dry matter de-
tection in potatoes and French fries, respectively, by means of a HE-
LIOS near infrared (NIR) hyperspectral imaging camera (EVK GmbH,
Raaba/ Austria [2]) is presented exemplary for the potential of HSI-PAT.
Similar applications such as the quantitative anaysis of active pharma-
ceutical ingredients (API), metal oxide content in ores or all kinds of
constituents in a food matrix can be done along the same lines and are
subject to current development activities [3]. The hyperspectral imaging
(HSI) technology in the NIR regime is about to develop in the food pro-
cessing industry from a sensor technology used mainly for classification
tasks (e.g. removal of foreign bodies from an input stream) to a method
for spatially resolved quantitative analysis of chemical food parameters
(sugar, starch, proteins etc.). The inline inference of for instance dry
matter values can help in order to save energy for the frying process
and control/adjust the product quality for different products and cus-
tomers on short time scales. The latter expect specific lower limits on
the dry matter levels for their product.

2 Data Taking and Analysis

Hyperspectral imaging data in the NIR regime (1050-1690 nm) was ac-
quired using a HELIOS NIR G1 HSI camera with a scanning rate of 330
Hz full frame translating into ~ 81000 processed data points per sec-
ond.! The inline inference of spatially resolved dry matter values in
French fries and potatoes was investigated with this inspection technol-
ogy. The outline of this work was first to perform a proof of principle
test with a prototype setup in a French fry factory and then in a sec-
ond step the transfer of the full functionality onto a commercializable
monitoring machine.

2.1 Inline Determination of Dry Matter

As was already shown in [4] & [3] the quantitative inference of dry mat-
ter levels in potato tuber slices is feasible using NIR hyperspectral imag-
ing in conjunction with a factor analytical ansatz such as partial least

I A more thorough description of the HELIOS camera and hyperspectral imaging in gen-
eral can be found in [4] & [3]
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Figure 22.1: (left) Inline test setup for dry matter measurements of French fries
using HELIOS NIR G1. Figure taken from [3]. (right) Correlation between ref-
erence analysis and model prediction. The red line indicates perfect correlation
whereas the green line depicts a fit to the data.

squares regression (PLSR) [5]. While this could be shown for a labo-
ratory based test setup the next project step included the validation of
this method during an inline test run in a French fry factory and the ul-
timate transfer to a working machine fit for commercialization [6]. The
inline method validation was carried out by mounting a HELIOS NIR
G1 camera right after the freezer? unit on top of the product stream (see
fig.22.1). The product was illuminated by 4 halogen lights mounted at
an inclination of roughly 60° with respect to the camera optical axis.
Such the camera was positioned head on to the inspection line allowing
for an optimal trade-off between diffuse reflection, i.e. reduced specular
reflection and overall image intensity. Overall roughly 3 min of data,
corresponding to 15 million spectra, were taken over a full day in single
shots of 2 seconds duration each. The target value range was spanned
by deliberately varying the product dry matter, i.e. manipulating the
frying time of the frying unit. For each data acquisition shot a reference
analysis was performed on a sample of about 5 kg of French fries drawn
from the product stream at the moment of data taking. Each sample
was analyzed for its average dry matter content by means of a SMART
Turbo Solids Analyzer [7]. The dataset was pre-prosessed using the spec-

2 At this point of the production line the French fries feature a stable temperature of
about 5°.
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tral first derivative and split into two subsets one for implementing a
chemometric calibration based on PLSR with 5 latent variables and one
(by selecting every second data) for internal validation. The correla-
tion plot between reference values and model prediction is shown in
the right plot of fig. 22.1. As can be seen from the Pearson correlation
R ~ 0.9 and the root mean square error of calibration RMSEC < 1% the
suggested model is within statistical margins fully compatible with the
reference analysis method. The figures for the validation set showed a
somewhat reduced but stable prediction behaviour at levels of R = 0.86
and SEP = 1.3 % for original spectra and R = 0.74 and SEP = 1.9%
for the normalized spectra.

While R and RMSEC are in particular sensitive to the calibration pre-
cision, i.e. repeatability of the measurement, it is more important for an
inline calibration to focus on the accuracy of a model, i.e. the degree of
closeness of the measurement to the true value, especially if the dataset
comprises high statistical, Gaussian scatter that will be easily marginal-
ized under the impression of the enormous inline data statistics. One
has to note that the almost perfect alignment between the (green) linear
fit to the correlation plot fig. 22.1 and the (red) line denoting a corre-
lation coefficient of one is in fact a better measure for accuracy of the
HSI method than any figure of merit prone to noise (see also [8]). While
the model precision is based on only 2 seconds of data taking per mea-
surement point, the accuracy of the method will surpass any labora-
tory based method by averaging out fluctuations that otherwise propa-
gate into the low sampling rate results of classical at line methods. The
method’s accuracy is thus to first order only limited by the intrinsic sam-
pling error of the reference method.

2.2 Dry Matter Monitoring Machine

With the inline test meeting the accuracy requirements for a field appli-
cation the ultimate goal of this work was the transfer of the described
HSI dry matter measurement to the technically more challenging envi-
ronment of a real monitoring machine. Such a machine in contrast to the
described test setup suffers e.g. from suboptimal local resolution (due to
commercially triggered maximization of the working width) and other
optical limitations (reduced focal length of the fore lens and thus en-
hanced lens aberrations etc.). Thus a proof of principle as described
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Figure 22.2: (left) HSI monitoring machine Sherlock Observer from INSORT.
(right) Correlation plot dry matter prediction vs. reference values for Sherlock
Observer. The red line indicates perfect correlation whereas the green line de-
picts a fit to the data.

above does not at all guarantee feasibility for field applications. There-
fore the dry matter measurement method using a HELIOS NIR camera
was implemented on a monitoring machine of the type Sherlock Observer
from INSORT GmbH (see fig. 22.2 (left) and [6]). The implementation on
the machine was performed using raw potato slices to arrive at similar
optical conditions, i.e. surface reflectance etc., than for e.g. French fries.
The various slices were measured on the Sherlock Observer featuring a
working width of 300 mm. Reference analysis was carried out along the
same lines as for the factory test with a SMART Turbo Solids Analyzer us-
ing only 10x10x10 mm cubes from the central parts of the corresponding
slices. Accordingly, only spatially resolved spectra from the same center
region from the HSI image were used for the PLSR multivariate analy-
sis. The sample preparation included the generation of two different
populations. Population I spanned an extended value range from be-
low 20% to over 90% moisture in the tubers. In order to generate very
dry potato probes a desiccation chamber for dehydrating the samples
was used. Population II comprised only natural sampling, thus featur-
ing a confined range in moisture levels. Figure 22.3 shows the validated
correlation of the model prediction based on splitting the data into a
training and a test set for the population I model (left) as well as the
model performance for the confined population II (right). Both models
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Figure 22.3: (left) Validated correlation between model prediction and refer-
ence analysis of potato moisture levels over the extended dry matter level range
(population I). (right) Model correlation for confined dry matter levels (popula-
tion II). The red lines indicate perfect correlation whereas the green lines depict
a fit to the data, respectively.

show a fairly high correlation with the true values from the reference
analysis, i.e. R = 0.95 and R = 0.88 for population I and II, respec-
tively. However, the RMS model error is enhanced for the population
I,ie. RMSEC = 5.4%, in comparison to acceptable RMSEC = 2.4%
for population II. In general the RMS is higher for both models as com-
pared to the inline tests results (fig. 22.1). Presumably, this is related
to an enhanced sampling error using only a limited number of spectra
from spatially confined cubic probes as compared to the much broader
inline data acquisition with hundreds of thousands of spectra per mea-
surement which allow averaging out intrinsic sample scatter. It has to
be noted that in this study the natural scatter of dry matter values across
a 1x1 cm spatial region of interest on a potato slice was at best of the or-
der of 2% and could be as high as ~ 10% if moisture inhomogeneities
such as water channels were part of the inspection region. This can also
be seen in fig. 22.4 showing the spatially resolved moisture levels of a
potato slice as measured with the Sherlock Observer. Peculiar moisture
inhomogeneities in the fruit cross section as well as the fact that potato
tubers show a dry matter gradient from the centre to the outer rims are
obviously traced by the NIR HSI online measurement.

Validation runs were done by measuring several 1 ccm raw potato
cubes with the machine in comparison to the SMART device. Table 22.1
shows the outcome of these tests in terms of several statistical figures
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Figure 22.4: (left) Potato slice including water channels as seen with the naked
eye. (right) Same slice viewed as color coded moisture map (in % water content)
as seen with Sherlock Observer (crf. [6]).

of merit. According to this the two models show a stable behaviour in
the validation in comparison to the calibration with respect to the mag-
nitude of model deviations (RMSEC and SEP, respectively). However,
both calibrations lead to a prediction bias of the order of 3%. While
such a bias if purely Gaussian and statistical in nature can always be
corrected for by e.g. a linear correction of the multivariate parameters
and has thus no impact for a working machine, it hints to the fact that
chemometric calibrations in quantitative applications can be sensitive
to changes in process parameters other than the interesting target vari-
ables. Presumably the bias encountered here goes back to alterations
of the optical setup and feeder mechanics of the Sherlock Observer in-
between calibration and validation runs. It has to be noted that a com-
parison of the RPD values between the two models with respect to the
poor RPD = 0.7 for model I has to be taken with care since the cali-
bration set I had a very sparse coverage and the validation set was lim-
ited in sample numbers. As shown in [9] dataset distributions deviating
from normality can introduce a bias to the RPD value. Witha SEP = 2%
calibration II seems suitable for an inline application in the production
line. The fact that model I features a somewhat poorer SEP = 5% with a
systematic bias towards drier samples, the sparse midrange dry matter
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Table 22.1: Statistics of validation runs for population I and II calibration.
Shown are the model bias, the standard error of prediction (SEP), standard de-
viation of prediction (SDP), standard deviation of reference (SDR) and the ratio
between standard error of prediction and standard deviation of the reference
(RPD), respectively.

Model I Model 11
BIAS [%]| -3.5 -3.0
SEP [%] 5.3 2.1
SDP[%] | 45 3.0
SDR [%] | 3.7 4.2
RPD 0.7 2.0

value data coverage (right plot in fig. 22.2) and the observation that sam-
ples pre-treated in the desiccation chamber show deviations from the
usual spectral potato signature presumably due to changes in the fruit
matrix (e.g. gelatinization effects) would suggest that it is favourable
to only use natural potato probes as done for model II and stick to a
more confined value range as typically present in production lines (e.g.
10 — 35% dry matter). In general any calibration model will need thor-
ough recalibration and maintenance over the whole life cycle of the pro-
duction process due to changes in related parameters ultimately also
impacting the HSI NIR spectra. [10].

3 Conclusions

NIR-HSI is by now an established technology in different industries
such as food, mining, recycling and pharmaceuticals. It has been devel-
oping from a mere inspection technology to a fast, reliable and spatially
resolved quantitative analysis method suitable as PAT tool. Results in
applying these innovative sensor systems for the inline measurement
of dry matter levels in potato processing suggest its suitability for in-
dustrial use with a precision in the %-regime being presumably only
limited by the sampling statistics of the training set. With the technol-
ogy being fit for commercialization the first machines operating with ac-
cording functionalities (dry matter detection, inference of residual peel
amounts) are presently being deployed in the field [6].
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