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Abstract Bio-plastics are characterized by the highest rate of
growth in the plastics industry. In connection with the recy-
cling chain they constitute the so-called “oxo-biodegradation”
and drop-in problems. The present study tries to clarify pos-
sibilities of automatic recognition and sorting of conventional
fossil-based plastics against similar “oxo-biodegradable” plas-
tics and drop-ins by means of NIR-SWIR-Hyperspectral-Imaging
(HIS). The spectral structures of the most important plastics (con-
ventional fossil-based plastics and bio-plastics) have been incor-
porated in a database as references for different plastic types
to be subject to identification by NIR-SWIR-HSI. In addition to
widespread chemometrical methods (PLS-DA), artificial neural
networks (ANN) and support vector machines (SVM) are esti-
mated for classification. For “oxo-biodegradable” plastics it turns
out that a decision tree is the most reliable procedure for identi-
fication. Different decision trees are passed to an industrial NIR-
SWIR-Hyperspectral-Imager for generating chemical images of
different plastic mixtures. The mixtures consist of conventional
fossil-based plastics and bio-plastics. The aim of the tests was
to find bounds for sorting throughput and purity. Results of an

industrial sorting trial are finally described.

1 Introduction

Despite there are significant doubts about the environmental sustain-
ability of bio-plastics [1], currently this class of materials has the high-

est rate of growth in the plastics industry [2-4].

In the context of
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the recycling chain they constitute on one hand the so-called “oxo-
biodegradation” problems and on the other hand the so-called drop-in
problems. The first problem is in connection with the use of oxidation-
enhancing additives in the polymer matrix. The second occurs when
the chemical structure of a bio-plastics is similar to its pure fossil-based
homologous. A mixture of different types of similar plastics within the
input stream of a recycling chain can be in some cases useless for repro-
cessing due to not strict similar physical properties.

The present study attempts to clarify the possibilities of automatic
recognition and sorting of bio-plastics, in particular conventional fossil-
based plastics against similar “oxo-biodegradable” plastics, by means
of NIR-SWIR-Hyperspectral-Imaging. After a brief explanation of bio-
plastics material, Hyperspectral-Imaging (HSI) is shortly explained as
the state-of-the-art procedure for sensor-based sorting of plastics waste.
This involves the three main procedures for extracting useful informa-
tion from Hyperspectral-Images (PLS-DA (partial last squares discrimi-
nant analysis), ANN (artificial neural networks), and SVM (support vec-
tor machines)).

Furthermore, the spectral structures of the most important bio-
plastics are depicted. Of particular interest are the fingerprints of the
chemically similar plastics. The results have been incorporated in a
database as references. For classification it turns out that a decision
tree is the most reliable procedure for sorting of “oxo-biodegradable”
plastics.  Different decision trees passed an industrial NIR-SWIR-
Hyperspectral-Imager for generating chemical images of different plas-
tic mixtures. The mixtures consist of conventional fossil-based plastics
and bio-plastics. The results of an industrial sorting trial are finally de-
scribed.

2 Bioplastics

The word “bio-plastics” is an expression of leading astray because it
primarily suggests just materials that are bio-degradable and therefore
supposed environment-friendliness. In the literature the term “bio-
plastics” is considered further. It comprises organic materials, in partic-
ular organic polymers, that are either bio-based, bio-degradable, or both
[5,6]. A bio-plastics material can be distinguished in one of the follow-
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ing three main groups: (1) (partially) bio-based and non-bio-degradable
such as bio-PE, bio-PP or bio-PET (so-called “drop - ins”) as well as
technical polymers such as PTT (poly-trimethylene terephthalate) or
TPC-ET (thermoplastic co-polyester elastomers), (2) bio-based and bio-
degradable such as PLA (polylactic acid), PHA (polyhydroxyalkanoate)
or PBS (polybutylensuccinate), and (3) fossil-based (oil, coal, natural
gas ...) and bio-degradable such as PBAT (polybutylene adipate-co-
terephthalate). For a fully review on present industrial available bio-
plastics see [3,4].

The so-called oxo-biodegradable plastics are a subgroup of bio-
plastics. ~ Terms such as “degradable”, ”biodegradable”, ”oxo-
degradable”, ”“oxo-biodegradable” are used to promote products
made with traditional plastics supplemented with specific additives.
The ”“oxo-biodegradable” additives are typically incorporated in con-
ventional plastics such as polyethylene (PE), polypropylene (PP),
polystyrene (PS), and polyethylene terephthalate (PET). These additives
are based on chemical catalysts, containing transition metals such as
cobalt, manganese, iron, etc., which cause fragmentation as a result of a
chemical oxidation of the plastics” polymer chains triggered by UV irra-
diation or heat exposure. In a second phase, the resulting fragments are
claimed to eventually undergo biodegradation. But oxo-fragmentable
products can hamper recycling of post-consumer plastics. In practice,
these plastics are traditional plastics. The only difference is that they in-
corporate additives which affect their chemical stability. Thus, they are
identified and classified according to their chemical structure and finish
together with the other plastics waste in the recycling streams. In this
way, they bring their degradation additives to the recyclate feedstock.
As a consequence the recyclates may be destabilized, which will hinder
acceptance and lead to reduced value [7]. As a consequence, some pub-
lic and private organizations therefore militate against oxo-degradable
additives.

Drop-in bio-plastics are bio based or partly bio based non-
biodegradable materials such as (partly) bio based PE, PP or PET. Drop-
ins seem to feature the same properties and functionalities as their fos-
sil counterparts. It is assumed that the value-added chain only requires
some irrelevant adaptations in processing. Use, recycling and recovery
follow the same routes as conventional PE, PP or PET products do. But
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this must not be the full truth. A mixture of both types can be in few
cases useless for reprocessing due to not strict equal physical proper-
ties.

3 NIR-SWIR-Hyperspectral-lmaging

3.1 NIR-SWIR spectral range

Due to different views related to the NIR-SWIR spectral range, it is nec-
essary to make some comments in this regard. As a start the term In-
frared (IR) refers to the full portion of the electromagnetic spectrum
between visible light and microwaves. This large range is generally
divided into Near Infrared (NIR, 0.78 - 1.4 pym), Short-Wave Infrared
(SWIR, 1.4 - 3.0 pm), Medium-Wave Infrared (MWIR, 3.0 - 8 pym), and
Long-Wave Infrared (LWIR, 8 - 15 nm). The classification of infrared
spectral ranges was initially based on chemical/physical phenomena
like the types of molecular vibrations or the atmospheric windows for
the radiation, respectively. Latterly more technical aspects divide up
the IR-band based on the response of various semiconductor detec-
tors. The industrially most advanced semiconductor detector materials
for NIR-SWIR-detection are InGaAs, ext-InGaAs and HgCdTe, respec-
tively [8-10].

For NIR imaging, In,Gaj.4As is one of the widely used detector ma-
terials due to its low dark current. InGaAs thin films typically using
an alloy composition of x = 0.53. The spectral response covers at room
temperature 0.9 - 1.7 um. Thus, the 0.9 - 1.7 pm spectral ranges is called
NIR-range by most of the detector providers. By increasing the com-
position to x = 0.82, InGaAs is able to extend its cut-off to 2.6 um (so
called ext-InGaAs). However, the crystal defects due to epitaxy and the
decreased shunt resistance, due to a smaller band gap, degrade perfor-
mance at the longer cut-off wavelengths [11].

An approach to accomplish SWIR imaging under low light level con-
ditions is HgCdTe. Hg1.,CdxTe (MCT) is currently the widely used de-
tector materials for SWIR imaging. The ability to tune the cut-on and
cut-off wavelengths in SWIR by changing the stoichiometry of the sub-
strate enables application optimizations. The alloy composition x can
be fixed to provide an energy band gap equal to the longest wavelength
to be measured in the SWIR band [12]. For SWIR imaging mostly a
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spectral range from 0.9 — 2.5 nm is chosen. The permission of two dif-
ferent systems (InGaAs and MTC as semiconductor material) based on
spectral resolution requirements for the respective application cases.

3.2 Hyperspectral-Imaging

NIR-spectroscopy is currently the most common method for automated
sorting of post-consumer plastics. This technique involves irradiating
the unsorted (unidentified) plastics with near-infrared waves. When the
infrared light reflects off the surface of the plastics, each resin’s charac-
teristic infrared absorption band can be measured. These measurements
can then be compared directly to known polymer values (correlation
analysis) or indirectly by signal transformation and applying of chemo-
metrical procedures to determine the resin type.

NIR-spectroscopy has many advantages. Probably the most signifi-
cant advantage is the speed of identification. A second advantage is the
lack of specimen preparation. Labels or other obstructions like dirt, do
not relevant interfere with readings. Another advantage of NIR-based
optical systems is that colour does not interfere with proper resin iden-
tification. Except for black, the readings are independent of the surface
colour.

The special requirements in plastics sorting call for cost-effective, ro-
bust NIR spectrometers capable of macroscopic imaging. The best an-
swer to this problem is the application of spectral imaging systems,
which are capable of measuring both the spatial and the spectral in-
formation in quasi one step. Such devices are called Hyperspectral-
Imaging cameras or short Hyperspectral-Imager.

Hyperspectral-Imaging is a combination of spectroscopy with digi-
tal image processing. Other than with standard imaging, where only
the spatial information plus the three RGB values for each single image
pixel are recorded, HSI provides full spectral information (a few hun-
dred values) for each surface pixel over a selected wavelength range.
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In instrumentation there are basically three different approaches ( Fig.
6.1). The first approach is the so called “whiskbroom scanning” ( Fig.
6.1 left). This sampling method was introduced in the industrial prac-
tice of plastics waste sorting in the mid-nineties. A whiskbroom imager
scans the sample point-by-point in the x-y-spatial direction and mea-
sures a full spectrum of adjacent regions sequentially. The need of us-
ing rotating or swinging mirrors to generate a HSI makes such systems
mechanically susceptible to faults.

Whilskbroom Pushbroam
& A
Y ¥
Sequenziell (x.y.2) Sequerziel () Simullan (xy) Sequenziell (y) Simullan (x.)

Figure 6.1: Different methods for data acquisition [13]

The second approach is the wavelength scanning method, in remote
sensing also called “staring” ( Fig. 6.1 middle). The sample is kept sta-
tionary under the HSI camera and single images are recorded for each
different wavelength. The spectral information is provided either by (a)
anumber of discreet filters, (b) tunable filters or (c) by combination with
an imaging Fourier-Transform spectrometer. The images recorded for
the different wavelengths are combined in the computer and the spectra
calculated. Staring imagers are not been implemented so far for auto-
matic sorting of waste.

The third method, also known as “push-broom scanning” ( Fig. 6.1
right), requires a relative movement between imager and sample to scan
over the surface. Push-broom scanning is currently the state of the art
according to advanced plastics waste sorting machines. The spectral
imaging system records the spatial information line wise and the spec-
tral information for each pixel along the line by projection of the spectral
information along the second axis of a two-dimensional camera chip (fo-
cal plane array, FPA). The spectral encoding is provided either by linear
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variable filters, by a DMA (digital micro-mirror array) in combination
with grating or by dispersive optics forming an imaging spectrograph.
A computer combines the slices, derives the second axis and thus recon-
structs the full Hyperspectral-Image.

4 Classification Methods

In connection with plastics sorting, classification refers to the assign-
ment of spectral information to a particular source type. Procedures
are used that run under the scientific name ”“chemometrics”. The most
widespread classification methods used in chemometrics are super-
vised and unsupervised trainings [14,15]. The list of such methods is
large: linear and quadratic discriminant analysis, partial least squares
discriminant analysis (PLS-DA), soft independent modelling of class
analogy, hierarchical cluster analysis, k nearest neighbor’s and k-means
methods to name only the most important. Increasingly also nonlinear
methods such as ANN (Artificial Neural Networks, [16,17]) and SVM
(Support Vector Machines, [18]) are used, especially for the so-called
Chemical-Imaging. In this paper the performance of PLS-DA, Feed-
Forward-ANN and SVM are examined with the main focus on PLS-DA.

4.1 PLS-DA

Partial least squares discriminant analysis (PLS-DA) includes a partial
least squares regression of a set Y of binary variables describing the cat-
egories of a categorical variable (here types of plastics) on a set X of
predictor variables (here wavelength-dependent intensity of NIR reflec-
tion) [19]. Partial least squares models are based on principal compo-
nents (eigenvectors of the covariance matrix) of both the independent
data X and the dependent data Y. The central idea is to calculate the
principal component scores of the X and the Y data matrix and to set
up a regression model between the scores (and not between the origi-
nal, not rotated data) [20,21]. This technique is especially suited to deal
with a much larger number of predictors than observations and with
multicollineality, two of the main problems encountered when analyz-
ing data of NIR reflection spectra (regarding to plastics sorting tasks
particular multicollineality).
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4.2 FF-ANN

Artificial neural networks (ANN) are a very flexible class of statisti-
cal regression techniques. The essential advantage of the application
of neural networks is that no explicit assumptions about the functional
form of the unknown link need to be made. The most popular ANNs are
multi-layer-feed-forward neural networks (FF-ANN) that are trained
with a back-propagation learning algorithm [22,23]. As a drawback of
FF-ANN the lack of an exact rule for setting the numbers of neurons and
hidden layers for best performance must be mentioned. Also, the com-
putational costs for modelling are extremely high compared to PLS-DA
modelling.

4.3 SVM

A Support Vector Machine (SVM) is a set of related supervised learn-
ing methods which can be used for classification (and in modified form
also for regression). Given a set of training examples, each marked as
belonging to one of two categories, an SVM classification training algo-
rithm tries to build a decision model capable of predicting whether a
new example falls into one category or the other. If the examples are
represented as points in a hyperspace, a linear SVM model can be inter-
preted as a division of this hyperspace so that the examples belonging to
separate categories that are divided by a clear gap that is as wide as pos-
sible. New examples are then predicted to belong to a category based
on which side of the gap they fall on [24]. A common disadvantage of
non-parametric techniques such as SVMs is the lack of transparency of
results. SVMs cannot represent scores as a simple parametric function,
since (among other things) its dimension may be too high.

5 Application

5.1 Hyperspectral-Imager

For the HSI research a special Hyperspectral-Imager called RTT-HSI 2.2
was employed in push-broom scanning mode. The main system param-
eters (hereinafter referred to in brackets) are the spectral range (1.2 ...
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2.2 pm), the full frame pixel counts (320 spatial x 256 spectral, also a re-
verse arrangement is possible), the digital measuring depth (14 bit) and
the frame rate (330 Hz). Under the assumption of a conveyor belt width
of 2.00 m and a belt speed of 2.00 m/s follows a resolution of less than 7
x 7 mm? for one surface pixel of an object to be identified on the moving
conveyor tape.

5.2 Spectra Library

Identification of spectra is a task similar to pattern recognition. The
base is a library of patterns. For the investigations a set of plastic films
delivered by the GAIKER co-authors was used. On the one hand, it was
a mix of films made of conventional polymers derived from fossil raw
materials and on the other hand, it was made of bio-plastics and plastics
including oxo-degradable additives (Fig. 6.2).

Figure 6.2: Samples to create the spectra library

Fig. 6.3 shows the pattern spectra of bio-plastics regarding to Tab.
6.1 plus the spectra of LDPE-films, office paper and wood. Office pa-
per and wood were included to illustrate the clear differences against
bio-plastics spectra, although they consist likewise of organic material
as basic. Also for illustration Fig. 6.4 contains the pattern spectra of
LDPE and OXO_P1 in more detail. OXO_P1 is an oxo-degradable PE-
based film that is equivalent to LDPE according to the chemical ground
structure.
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Table 6.1: Codes for used Bio-plastics

Code Plastics Type
BIO_PO Potato starch
BIO_P1 Corn starch
BIO_P5 PLA
OX0O_P1 PE (oxo-degradable)
OX0O_P2 PE (oxo-biodegradable)
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Figure 6.3: Pattern spectra of different bio-plastic films, LDPE films, office pa-
per, and wood; spectral range 1.2 ... 2.1 pm, Savitzky-Golay smoothed (win-
dow 15, polynomic-order 3), min-max normalized

5.3 Spectra ldentification Results

Three questions were target to be answered: (1) are novel bio-plastics
distinguishable from the established conventional ones?, (2) is it possi-
ble to discover additives for “oxo-biodegradation”?, and (3) are drop-
ins recognizable from fossil based similar plastics?

Spectra shown in Fig. 6.3 can be easily divided into different classes
by all of the three classification methods (PLS-DA, FF-ANN, SVM). The
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Figure 6.4: Spectra of fossil based PE-films (LDPE) and oxo-degradable PE-films
(OXO_P1); min-max normalized regarding ROI (region of interest, yellow back-
ground)

differences are so serious that even mixed spectra can be disassem-
bled into so-called endmembers by unconstrained demixing procedures
(here not discussed, see [25]).

The codes OXO_P1 and OXO_P2 label two types of “oxo-degradable”
and “oxo-biodegradable” PE-films of different providers, respectively.
The used incorporated additives are unknown to the authors and there
are no references in the delivered data sheets of the films. According to
Fig. 6.3 (OXO_P2) and Fig. 6.4 (OXO_P1 and LDPE), all of the character-
istic bands of PE are well pronounced, but enough differences exist for a
classification ( Fig. 6.4, green oval; this area has been also identified by
calculating the VIP (Variable Importance in the Projection, see [26,27]),
here not discussed). To identify the type of spectra by PLS-DA, in the
case of OXO_P1, OXO_P2 and LDPE so-called derivative spectra of sec-
ond order must be generated. This is not necessary when using FF-
ANN and SVM as classifiers. But the search for appropriate system pa-
rameters for FF-ANN and SVM is very time consuming. Because these
parameters are case-specific it should at this point not be subject to any
in-depth discussion. However for classification of “oxo-biodegradable”
plastics a two-stage algorithm should be used (decision tree), where the
second classifier should be either a SVM or an ANN.
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To answer the third question, whether drop-ins are recognizable from
similar fossil based plastics, the specific case of PET and bio-PET was
considered. A conventional PET plastic is made from two components
known as mono-ethylene glycol (MEG) and purified terephthalic acid
(PTA). MEG makes up for 30 % of the PET weight while the remaining
70 % is made up by PTA. It is possible to replace the fossil-based MEG
portions by a bio-based MEG share (bio-MEG). Ethanol from sugar cane
and sugar cane by-product-molasses is used as basis of bio-MEG as one
of the key plastic ingredients for bio-PET. Aspirations are known to pro-
duce also the second base fabric (PTA) from renewable resources, i.e. as
a result completely bio-based PET can be produced in the future. In
addition there are efforts to develop degradable bio-PET (oxo-bio-PET).
Details on the last mentioned procedures are not known from the liter-
ature. The procedures are still in the development state.
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In the present research the authors tried to explore whether the plas-
tics of ordinary, full fossil based PET bottles and that of so-called
PlantBottles™ (brand name of an American soft drink manufacturer)
can be distinguished by NIR-SWIR-HSI. As result of extensive series of
tests in a laboratory scale is to determine that the products can be as-
sign to the different manufacturers. It is however not been ascertained,
whether MEG is fossil-based or has sugar cane as a base. In fact the spec-
tra are more sensitive with regard to different process conditions during
plastics production as the origin of the MEG monomers. To elucidate
the relationships further investigation are envisaged by exploitation of
MWIR and LWIR spectroscopy.

5.4 Sorting Tests

The Hyperspectral-Imager RTT-HSI 2.2 has been used in industrial scale
with regard to the separation of different types of plastics including bio-
plastics. As basic machine a RTT sorter of type UNISORT PR has been
used. The input stream was a waste mix of bottles and containers con-
sisting of PET, PP and PLA. The decision for such a composition is there-
fore justified that PLA bottles will be in future a serious competitor to
PET bottles. PET bottles and PLA bottles are hard to distinguish with
the naked eye. However within the recycling chain these two plastic
types shall not be mixed, because PLA has a significantly lower melting
point [28]. Already 0.1 % PLA in a PET recycling process makes the PET
recyclate unusable for many end-products.

For the Identification a two-step classification method was used: (1)
distinction into classes of conventional plastics by PLS-DA and (2) two-
class-grouping by SVM.

After the material is identified pixel by pixel (Chemical-Image), object
recognition must be performed based on digital image processing to
blow out an item regarding to its waste fraction. The exploited digital
image processing is described in [29] and based on a gray scaled image
of the HSI. The object reconstruction is then ultimately carried out by
means of connected component labelling.

To sum up, the sorting tests have shown that the considered bio-
plastics can be exact extracted from the input waste stream in a two-
stage cognition procedure. The resulting throughput corresponds well
with ordinary tasks regarding to automatic plastics waste sorting.
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6 Conclusions

Hyperspectral-Imaging is a powerful tool and state of the art in opti-
cal characterization of plastics waste. In conjunction with digital im-
age processing and discriminant analysis, the method allows automatic
sorting in real time under industrial conditions. In the present work,
three questions were target to be answered: (1) are novel bio-plastics
distinguishable from the established conventional ones?, (2) is it possi-
ble to discover additives for “oxo-biodegradation” in the polymer ma-
trix?, and (3) are drop-ins recognizable from fossil based similar plas-
tics? The first question can be answered fully with Yes. Typically,
the NIR spectral range is enough already. With regard to the oxo-
degradable plastics (2), the full NIR-SWIR spectral range must be ex-
ploited to be able to detect additives, which activate or enhance plastics
degradation. For this sorting task a two-stage algorithm of classification
should be used (decision tree), where the second classifier should be ei-
ther a SVM or an ANN. The third question is on the basis of the research
results to answer with No. The NIR-SWIR spectra seem more sensitive
with regard to different process conditions during plastics production
as the origin of the monomers (fossil based or bio-based). To elucidate
the relationships further investigation are envisaged by exploitation of
MWIR and LWIR spectroscopy.
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