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Abstract PhasmaFOOD is a H2020 project with the goal of
building a miniaturized, smart multi-sensor food scanner.
Equipped with a NIR sensor, a UV-VIS sensor and a RGB cam-
era it aims to be a portable, highly versatile solution for various
food safety issues, ranging from aflatoxin detection in grains and
nuts, over shelf-life prediction in meats and fish to detection of
adulteration in meat, edible oils and alcoholic beverages. The
unique combination of sensors, operation via a smartphone ap-
plication and sophisticated data analysis methods offer the pos-
sibility of rapid, non-destructive measurements that can - in con-
trast to costly and slow laboratory instruments - be applied at
every stage of the production chain, from farm to fork. After a
brief introduction of the PhasmaFOOD system architecture the
data analysis approach, especially the image analysis, based on
dictionary learning is explained in detail.
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1 Introduction

PhasmaFOOD (www.phasmafood.eu) is a H2020 funded project of the
European Union with a strong consortium of 9 stakeholders with ex-
pertise in food safety, spectroscopy, hardware and software develop-
ment and machine learning, namely Intrasoft International S.A., Wings
ICT Solutions, Ltd, VizLore Labs Foundation, RIKILT - Wageningen
Reasearch, Agricultural University of Athens, Italian National Research
Council, University of Rome Tor Vergata, Fraunhofer IPMS and Freie
Universität Berlin. The objective of the PhasmaFOOD project is to de-
velop a miniaturized, portable, smart multi-sensor food scanner. The
system comprises a miniaturized, portable device integrating three dif-
ferent sensors and various light sources and a distributed software ar-
chitecture. The PhasmaFOOD software architecture consists of a pro-
grammable micro-controller that steers the sensors in the portable de-
vice, a mobile app that serves as an interface to the user and is used to
conduct measurements, calibrate the device and present recommenda-
tions based on the decision making in the cloud platform. The unique
combination of three different optical sensors, a Near Infra-Red (NIR)
spectrometer, a UltraViolet (UV) - Visible (VIS) spectrometer, operable
in reflectance and fluorescence mode, a high resolution color imaging
system, and sophisticated machine learning algorithms offer the poten-
tial to cover a wide range of applications in food safety.
The PhasmaFOOD solution is designed to meet three major require-

ments: Portability: the spectrometer is hand-held and can be config-
ured on the mobile app. Hence, it works in various environments
where food is sold or processed. Versatility: The specific combina-
tion of sensors (NIR spectrometer, UV-VIS spectrometer and CMOS
camera) covers a spectal range from 400nm to 1900 nm, and, via the
camera provides also textural information about the sample at hand.
Hence, a wide range of food types and use cases can be targeted. Fast,
non-destructive predictions: The three optical sensors work without
the need to damage the product under investigation and deliver a mea-
surement instantly. Therefore, it is well suited to time-critical problems
like the shelf-life prediction of raw meat or fish, where waiting several
days for results from laboratory measurements is not an option. The
targeted use cases include:
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1. Detection of mycotoxins in various grains and nuts. Aflatoxin de-
tection.

2. Detection of (early signs of) spoilage in fruits, vegetables, meat and
fish. Shelf-life prediction.

3. Detection of food fraud in alcoholic beverages, oil, milk powder and
meat.

2 PhasmaFOOD system architecture

The PhasmaFOOD system consists of a miniaturized sensing device, a
mobile application and the PhasmaFOOD cloud platform. The sensing
device is used to take measurements of food samples with its inte-
grated optical sensors. The sensing system is connected via bluetooth
to a smart mobile device, such as a tablet or mobile phone, from which
it is operated via the PhasmaFOODmobile application. The mobile app
receives data from the sensing device and forwards them to the cloud
platform. On the PhasmaFOOD cloud platform the data is stored in
the database and decision making algorithms are applied to incom-
ing measurements. The predictions obtained from the use-case specific
analysis algorithms are sent back to the mobile application and pre-
sented to the user.

2.1 Sensing device

The PhasmaFOOD sensing device is a portable multi-sensor device,
comprising the sensing sub-unit, in which a NIR spectrometer, a UV-
VIS spectrometer and a CMOS camera, illumination units and driving
boards for all components are located, and the electronics sub-unit,
a custom-built microcontroller, equipped with a recharchable battery,
several communication interfaces (USB, BLE, WiFI), external memory
(microSD) and additional sensors (inertial measurement unit, temper-
ature sensor). The electronics sub-unit is able to configure the sensing
sub-unit, read-in the raw sensor data, perform preprocessing opera-
tions and communicate with the mobile app. Due to the integration of
an ARM processor, RAM and a FPGA unit even advanced processing



102 B. Großet al.

of sensory data can be performed on the sensing device itself. The de-
tails of the electronics sub-unit can be found in [1] The sensing sub-unit
(shown in figure 10.1(a))and the electronics sub-unit are mounted in a
3D-printed housing as shown in figure 10.1(b).

(a) PhasmaFOOD sensing sub-unit (b) PhasmaFOOD portable multi-sensor
device

Special emphasis was given to a modular design in order to en-
able the replacement of sensing or lighting components. For the cur-
rent prototype the following sensors were chosen: A miniaturized NIR
spectrometer by Fraunhofer IPMS [2] (spectral range: 1000− 1900nm,
size: 17 × 12 × 16mm3), the Hamamatsu C12880MA UV-VIS spec-
trometer (spectral range: 340 − 850nm, size: 20.1 × 12.5 × 10.1mm3),
and the Ximea MU9PC-MH CMOS camera (resolution: 5MP, size:
15× 15× 8mm3). The range of the two spectrometers covers the en-
tire visible and the near infra-red spectrum and is supported by a RGB
camera to include spatial information as well. The sensors are accom-
panied by various lighting units, i.e. white LEDs, a NIR and a UV
lightsource. Hence, the device is able to record a NIR spectrum, a flu-
orescence measurement, a visible reflectance spectrum of the sample
under UV illumination and a RGB camera image.

2.2 Mobile application

The device is operated by the user via the PhasmaFOOD mobile app.
In the mobile app the user selects one of the pre-defined use cases
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and the food type under consideration. The app then guides the user
through the measurement process, displays the data and presents anal-
ysis results in comprehensible form. Expert users can also configure
the sensing device for new use cases, adjust the lighting and tweak the
parameters of the sensors, such as integration time, number of internal
measurements etc. through the app. The measurements received from
the device via BLE, together with additional input from the user are
bundled in one json object and sent to the cloud platform for further
processing and analysis. The current status of the mobile application
is described in [3].

2.3 Cloud platform

The cloud platform is the focal point of the PhasmaFOOD system. Run-
ning on two virtual machines, it hosts the data warehouse, the rule en-
gine for decision making, the web dashboard and the machine learning
’playground’, a tool for configuring new machine learning pipelines
for each available dataset. For each use case exists a labelled dataset
in the data warehouse, on which machine learning algorithms for each
sensor are trained. These datasets are produced by experts in food
chemistry laboratories and contain measurements with additional in-
struments that give ground truth values for the quantities of interest
that the PhasmaFOOD system attempts to predict, i.e. aflatoxin con-
tamination for use case 1, microbia counts and age of the samples for
use case 2 and information on adulterands for use case 3. Based on
these decision making algorithms, the rule engine outputs a verdict on
the food quality of an incoming measurement, which is presented to
the user in the mobile app. Details on the cloud functionality can be
found in [3].

3 Data analysis strategy

The different steps that transform the raw measurements into a food
quality verdict are distributed across the PhasmaFOOD system. Simple
preprocessing of the sensor data is done in the electronics subsystem of
the PhasmaFOOD device, whereas the extraction of high level features
and the final prediction is currently done on the cloud platform. A
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redistribution of these decision making steps to the mobile app or even
the device to optimize the use of resources will be subject of further
investigation in the last stage of the PhasmaFOOD project. The deci-
sion making is based on supervised learning methods. While simple
preprocessing steps are the same for all food types under considera-
tion, the computation of expressive features and the best prediction
algorithm for a certain quantity of interest vary with use case and food
type. Hence, for each labelled dataset corresponding to a use case and
food type a variety of models are trained and evaluated to find a suit-
able analysis strategy. The data recorded with the spectrometers only
amount to a few kilobytes. Thus, there is no need to perform com-
pression on the embedded device. The image data on the other hand
requires special treatment to reduce the traffic over the BLE connection
from the device to the mobile app and subsequently to the cloud.

3.1 Structured dictionary learning

It is desirable to reduce the size of the images (ca. 15Mb) signifi-
cantly thereby retaining the significant information for later classifi-
cation. Since natural images are highly redundant, a common idea for
lossy compression is to represent the image as a linear combination of
suitably chosen dictionary atoms. General purpose lossy compression
algorithms like JPEG or JPEG2000 use fixed dictionaries such as cosine
atoms or wavelet atoms, respectively that are well suited to represent
natural images. While these algorithms focus entirely on good recon-
struction of all natural images, measured by human perception, the
goal for image compression in the PhasmaFOOD project is different.
Each use case and food type produces a very narrow class of images
that look very similar, with subtle variations due to spoilage of aged
or adulterated food samples. These variations must be captured for
further analysis at the same time reducing the ammount of dat to be
transfered. Finally, since the compression/feature extraction algorithm
runs on the embedded device, it should be fast and with low com-
putational complexity. Therefore, the idea is to learn a data-adapted
dictionary that focusses on sparse and discriminative encoding. The
time-consuming learning part can be done offline on the cloud plat-
form. For the encoding with the learned dictionary fast algorithms
exist that can be run on the device as shown in figure 3.1. Dictionary
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Figure 10.1: Compression scheme.

learning [4] has proven a successful technique for a variety of imaging
task, such as sparse coding, denoising or image inpainting. In its basic
form, it solves the problem

min
D,A

‖X−DA‖22+ λ‖A‖1 subject to ‖dl‖2 = 1 for l = 0, 1, 2, . . . ,

(10.1)

where D ∈ Rn×N is the dictionary to be learned, X ∈ Rn×m is the
matrix of training samples and A ∈ RN×m the matrix containing the
codes. The regularization term λ‖A‖1 enforces sparsity in the codes
and the columns dl of the dictionary are constrained to have unit norm
to avoid scaling ambiguities. The problem can be solved by iteratively
alternating between computing the codes A thereby keeping D fixed,
i.e. sparse coding, and updating the dictionary atoms to better repre-
sent the data for fixed sparse codes. Additional terms can be incorpo-
rated in the objective function to induce task-specific properties of the
solution. In [5] a classification loss was added to render the problem
supervised, in [6] label information was included via a Fisher discrim-
ination criterion. In [7] the dictionary was structured into a common
and class-specific parts, which was used in [8] for fine-grained image
classification. This approach is adopted here and combined with inco-
herence promoting terms [9] that stabilize the sparse coding and en-
courage the sub-dictionaries to encode different information. Let the
dictionary be partitioned as D = [D0,D1, . . . ,DL], where D0 ∈ Rn×N0

is the common dictionary and Dj ∈ Rn×Nj for j = 1, . . . , L are the
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class specific dictionaries. As another minor modification to the basic
problem 10.1, instead of the l1 regularization of A, here the number
of nonzeros is constrained directly to be ≤ s. Each sample xi with
corresponding label yi is encoded only using D0 and Dyi . With the
aforementioned incoherence terms the objective becomes

f (D, A) = ‖X−DA‖22+
L

∑
j=0

μj‖DTj D−j‖22+
L

∑
j=0

ηj‖DTj Dj− INj‖22, (10.2)

where D−j denotes the dictionary composed of all but the jth sub-
dictionary and IN is the N × N identity matrix. Let Sj denote the
indices of dictionary atoms belonging to the jth sub-dictionary. Then
the discriminative encoding property of the codes can be expressed as
the constraint

ai(
⋃

k/∈{0,j}
Sk) = 0 if yi = j. (10.3)

The sparse coding step for a training sample xi with label yi takes
the form

min
a
‖xi − [D0,Dyi ]a‖22 subject to |a|0 ≤ s, (10.4)

which can be solved efficiently by orthogonal matching pursuit (OMP)
[10]. OMP only needs to compute inner products between the sample
and the dictionary atoms and is hence suited to run on the embedded
device, which has only limited capacities.
For the dictionary update step the algorithm in [9] is employed. De-

note by Xj the samples in class j and Aj the corresponding sparse codes.
Set

Zj = Xj − D0Aj(S0) for j = 1, . . . , L,

Z0 = X− [D1, . . . ,DL]A(S−0).
Computing the derivative of the objective with respect to a sub-

dictionary Dj and setting the result to 0,
∂ f (Dj)
∂Dj

= 0 leads to a Sylvester-
type matrix equation

PDj + DjQ = R (10.5)
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with the matrices

P = μjD−jD−jT ,
Q = Aj(Sj)Aj(Sj)T + ηjDTj Dj − INj ,
R = ZjAj(Sj)T .

The Sylvester equation could be solved by the Bartels-Stewart algo-
rithm [11], if Q and R were independent of Dj. Following [9], an
approximate solution to equation 10.5 can be obtained by intializing
D0
j = Dj and then solving PDj +DjQt = Rt for a few iterations, where

Qt and Rt are computed using Dt−1j (normalized to have unit norm
columns) and the updated sparse codes.
To apply the described algorithm the raw image is first scaled to the

range [0, 1] in each channel, then a square region of interest is extracted
to exclude the edges of the sample holder. The selcted region is divided
into non-overlapping patches of shape (p× p× 3), which then serve as
input to the algorithm, resulting in dictionary atom size 3p2. The sparse
codes of an image’s patches can be quantized and entropy coded to
further reduce the size, if needed. In the cloud, an SVM is trained on
the sparse codes of the training samples, resulting in a verdict for each
image patch.

4 Discussion and conclusion

Although the literature on dictionary learning suggests good results
in terms of compression rates and high accuracies have been achieved
in classification tasks using structured dictionaries, the performance of
the presented approach for the specific application in the context of
PhasmaFOOD remains to be thoroughly investigated once enough la-
belled data has been collected. Furthermore, image data may not in all
use cases contain information about the state of the food samples under
consideration. This must be taken into account in data fusion strate-
gies. In case one sensor does not contain useful information, a high
level fusion strategy, i.e. combining the single predictions together to
get a final verdict can simply assign a low weight to the useless sensor.
In low level data fusion approaches this useless sensor might severly
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distort the classifier, unless a very strict feature selection method is
used.

5 Summary

In this article the PhasmaFOOD system architecture was described. An
approach to image compression and feature extraction based on learn-
ing a structured dictionary from labelled training data was presented
in detail. The training of this dictionary is time consuming, but can be
done offline on powerful computers, whereas the encoding of an image
with it can be done on an embedded device efficiently by using OMP.
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