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1 Introduction

As part of Smart Factories, industrial processes must be optimized in terms of
efficiency, flexibility and process reliability. This is primarily achieved by Ad-
vanced Analytics, where data-driven models are used to analyze, describe and
predict process behavior [1]. In this way, new process knowledge is gained and
used, for instance, to adjust the operation mode of the process or reduce defects
and quality problems [2]. These models need to fulfill certain requirements
to be applicable in an industrial environment. In order to ensure a reliable
operation of the plant and to enable optimization, they must be highly accurate.
Furthermore, to gain process knowledge and confidence towards the operators
and to fix model uncertainties more easily, they must be interpretable.

Decision Trees are a model class that can fulfill these requirements [3]. They
are algorithmic constructed and represented as a top-down directional acyclic
graph, consisting of decision nodes and terminal leaves. This graph is specified
as a tree, which starts with a single decision node, the root, and ends up
in multiple terminal leaves. To predict an output variable j (e.g. process
behavior), an unlabeled sample x = [x] ... xp|, which consists of M input
variables x,, with m € N | 1 < m < M, must pass through the tree until a
terminal leaf is reached. Each decision node contains a test function, that
is applied at x and effects the path that x passes through the tree. The test
functions are usually formulated as univariate splitting criteria x,, < cforc € R
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or x,, € & for # C o/ with a numerical threshold value ¢ or a subset 4 of a
merge of categorical attributes 7. Each terminal leaf contains a local model for
prediction, that is only valid in a certain partition of the input space defined by
trees’ structure. Because of the rule-based structure, trees are human readable
and easy to interpret. They can predict both numerical (Regression Tree) and
categorical (Classification Tree) output variables. In addition, numerical and
categorical input variables as well as missing input values can be handled and
the importance of input variables can be measured [3, 4, 5].

However, especially for Regression Trees with univariate splitting criteria, there
are limitations which can result in lower model accuracy and interpretability
[4, 6]. Univariate splitting criteria depend on a single input variable, resulting
in axis-orthogonal splits that limit model flexibility. Depending on the process
function, this leads to lower model accuracy and, if simple local models are
used, to a larger tree, which reduces interpretability [7]. To overcome these
issues, multivariate splitting criteria ):%:1 Binxm < ¢ with M coefficients 3, can
be used to construct axis-oblique splits. The resulting tree is called Oblique
Regression Tree or, if uni- and multivariate splitting criteria are used, Mixed
Regression Tree [8]. The direction of an axis-oblique split has to adapt to the
curvature of the function and is given by its coefficients f3,, [8, 9, 10]. Furt-
hermore, to maintain interpretability, to avoid overfitting and to overcome the
curse of dimensionality, an efficient and generalized approach is necessary.

In this paper, a novel algorithm to construct Mixed and Oblique Regression
Trees is presented. To determine an axis-oblique split direction adapted to the
curvature in a partition, a first-order Least Squares Regression (LSR) model is
used. This model is limited to significant input variables to describe this curva-
ture, which maintains interpretability and generalization. The input variables
are selected by analyzing the residuals of the resulting splitting model, which
additionally weakens the curse of dimensionality. To construct the local models
for prediction, stepwise regression is used. In Section 2, common algorithms
for the construction of Regression Trees are explained. The proposed algorithm
is presented in Section 3 and tested in Section 4 in an extensive experimental
analysis with both synthetic and real-world data. Moreover, the results are
compared with a state-of-the-art construction algorithm. At the end, Section 5
summarizes the paper and gives an overview on further research.
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2 Construction Algorithms for Regression Trees

In this Section, the functionality of algorithms to construct Regression Trees
is explained. The functionality is described in more detail for the common
algorithms SUPPORT [11], CART [12], GUIDE [6] and PHDRT [10], which
generate the eponymous trees.

Regression Trees are constructed by a divide-and-conquer strategy, which splits
a set of N labeled samples 2 = {X,y} with X = [x; ... xy|T and the corre-
sponding labels y = [y ... yn|T recursively into smaller subsets % until a
stopping criterion is reached. Each set of labeled samples % is represented
as a node 7 with k € {1,2,...,K} within the tree 7, that consists of |T| =K
nodes [5].

The recursive splitting process to construct a tree is shown in Figure 1 and
starts with the entire data set 2 = &, represented by the root 7;. At first, in
step a) a stopping rule for the node #; is check. The stopping rule ensures that
only meaningful splits of & are performed and the size of the tree is limited.
A common stopping rule is a lower bound of the number of samples in a node,
which is used in all four algorithms [5].

In step b) of Figure 1, the node #; becomes a terminal leaf 7, when splitting is
stopped. Each terminal leaf represents a certain partition of the input space and
contains a local model ¥; (x) € R, that approximates the function within that
partition. The local models of GUIDE and PHDRT are first-order multiple re-
gression models and those of SUPPORT are third-order polynomial regression
models [11, 6, 10]. Furthermore, SUPPORT combines all local models by a
weighted average to create a continuous model output. For the local models of
SUPPORT and PHDRT, all input variables are used. In contrast, GUIDE limits
the local models to significant input variables using stepwise regression. The
local models of CART are constant values, which are determined by the mean
value of y in that partition [12].

The node #; will be further split if the stopping rule is not fulfilled. For this
purpose, in step ¢) of Figure 1 the input variable(s) x,, and the threshold value
¢ or subset Z to construct an uni- or multivariate splitting criterion are selected.
The components x,, and ¢ or Z are selected in a way that the impurity is
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Figure 1: Recursive splitting process of a construction algorithm to create an unpruned tree 7'.

reduced as much as possible by the resulting splitting criterion [5, 13]. In
Regression Trees the impurity is described e.g. by the degree of non-linearity
in a partition, which is measured by a specific quality criterion. To measure the
non-linearity in a partition, the error of a linear approximation can be used. To
split a node, CART uses both uni- and multivariate criteria, which are either
selected by a brute force method (univariate) or by a heuristic-based selection
method (multivariate) called Linear Combination Search Algorithm [12]. In
contrast, SUPPORT is limited to univariate splitting criteria and numerical
input variables. For split selection, the samples within a node are approximated
by multiple linear regression and divided into two sample groups with positive
and negative signs of residuals. Due to statistical tests for differences in mean
and variance between these two sample groups, dependencies between input
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variables and residuals are analyzed to select the most significant x,,. The
threshold value c¢ is determined by averaging the means of the two groups
of x,, [11]. The splitting method of GUIDE is similar to SUPPORTSs’ and
differs in the use of a y2-independence tests, an interaction test between input
variables and the ability to handle categorical input variables. Furthermore,
due to a bootstrap-based bias correction, the significance of input variables is
more comparable. Threshold values ¢ are either determined by the median or
mean of x,, and subsets % for a categorical input variable by a heuristic [6].
The splitting of PHDRT is limited to numerical input variables and multivariate
criteria, which are determined by the first component of principal Hessian Di-
rections (PHD). This component describes the direction in which the function
to be approximated has the greatest curvature. To select a threshold value, the
residuals of a multiple linear regression model are split into two partitions and
approximated by one linear regression model each, using the first component
of PHD as an input variable. The balance of the partitions is adjusted so that
both linear models approximate the residuals with a similar standard deviation.
Finally, the point of intersection is taken as the threshold value [10].

If a suitable split is determined, in d) of Figure 1 the splitting criterion sy is
constructed based on the selected components. In addition, the node is split into
two nodes /7| 1 and 77|, containing the subsets %7, | and 77| 2. Recursive
splitting is completed when no more nodes can be split [5, 13].

Further approaches to limit the size of the tree are pre- and postpruning techni-
ques. Prepruning is closely related to the stopping rule and limits the size du-
ring the construction. In contrast, postpruning is applied after the construction
and prunes an oversized tree backwards to a more generalized one. For this
purpose, PHDRT stops splitting if the first component of PHD is insignificant,
which is more similar to a stopping rule than to a prepruning technique [10].
The complexity of SUPPORT is limited by a prepruning technique, which uses
cross validation to check whether a subtree can be created from #; that signifi-
cantly improves model quality [11]. Both CART and GUIDE limit the size by
a postpruning technique called Minimal Cost Complexity Pruning, which uses
cross validation to evaluate the generalization capabilities of different subtrees
during the pruning [12, 6]. In the following, the proposed least-squares-based
tree construction algorithm is explained in more detailed.

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 211



3 Least-Squares-Based Construction Algorithm

Model quality of Regression Trees can be improved by an extension to Oblique
or Mixed Regression Trees using multivariate splitting criteria. To obtain the
advantages of Regression Trees, a trade-off must be found between an increase
in model accuracy and a loss of interpretability. This is a challenging task. In
order to achieve this, the axis-oblique split direction of a multivariate splitting
criterion must adapt to the function gradient V f(x) in a curvature area. Furt-
hermore, the complexity of this criterion must be limited in such a way that
interpretability is maintained. To determine this criterion with an appropriate
computational effort, the curse of dimensionality must be weakened [6, 4, 8].

To construct the splitting criterion, the proposed algorithm uses the coefficients
of a first-order LSR model s, (x). The input variables of j, (x) are selected
in a way that J, (x) adapts to the gradient Vf(x) in the area of curvature
in that partition. This is performed by a forward selection method (FSM)
and depending on the number of selected input variables either an uni- or
multivariate splitting criterion is constructed. A model with a single input
variable constructs an univariate splitting criterion and a model with multiple
input variables a multivariate splitting criterion. The split direction is defined
by the contour lines, contour planes or contour hyperplanes (depending on M)
of J5, (x) and by selecting a suitable output value of y,, (x) as a threshold, the
position of the split is adjusted, which is explained in Subsection 3.1. The
quality of the resulting split is measured by a criterion which analyzes the resi-
duals of y, (x) using a hinge function A(J, ). Due to a reduction of the search
space to the one-dimensional space of residuals, the FSM overcomes the curse
of dimensionality. Furthermore, by limiting the number of significant input
variables to a maximum of A, interpretability and generalization is maintained.
In Subsection 3.2 the FSM is presented in more detail.

If the sample size is too small or an insufficient improvement in model quality
is achieved, splitting is stopped and a local model for prediction is determined.
The local models are also determined by LSR and a FSM, which is explained in
Subsection 3.3. To control the size of tree called Least Squares Regression Tree
(LSRT), the technique Minimal Cost Complexity Pruning is used [12]. Finally,
Subsection 3.4 shows the structure of LSRT using a practical example.
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3.1 Axis-Oblique Split Direction
To get an axis-oblique split direction that is adapted to the gradient V f(x) in

the area of curvature within a partition, a direction orthogonal to Vf(x) has to
be determined. This is achieved using a first-order LSR model

M
P (X) = Bo+ Y. Buxm - (1
m=1

If the non-linearity in a local area is not excessive, a direction orthogonal to
V f(x) is obtained in this way. The coefficients of the model are determined by

B=1[Bo ... Bu]" = (X"X)"'XTy 2)

using the expanded N x (1 + M) predictor matrix

X| I xip x12 -+ Xim
I x; I X1 Xxp -+ Xom

X= = ; 3)
I xy I xy1 xyp 0 XNM

that consists of N samples x, and an additional column of ones to determine
the constant part B of the LSR model [9].

Figure 2a shows a first-order LSR model ¥, (x), that was trained on the 20
samples generated by a test function f(x) = xjx;. A contour line for the
constant model output J, (x) = o is formed by the various input combinations
which result in & and runs as an axis-oblique border through the input space.
The direction of the contour line results from the coefficients [B; ... Bu]"
and is orthogonal to V3, (x), which is presented in Figure 2b. This Figure
shows three possible contour lines resulting from & € {0,1.1,2.1} and J, (x)
in Figure 2a. The contour lines are splitting the input space into two partitions
and by varying o, they are parallel shifted. This allows to determine a suitable
threshold value for splitting. Finally, to construct the multivariate splitting
criterion

M
Z ﬁmxm <o-— ﬁO ) 4

m=1
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(a) Model output jg, (x) of a first-order LSR (b) Three oblique splits that result from
model (grid), trained on 20 samples the contour lines of the model and are
generated from f(x) = xx;. orthogonal to V§j, (x).

Figure 2: Construction of axis-oblique splits using contour lines of a LSR model.

the constant part fy of the LSR model is subtracted. The threshold value
¢ = o — Py as well as the input variables to construct the LSR model are
determined by a FSM, which is explained in the following Subsection.

3.2 Split Selection

In order to construct an uni- or multivariate splitting criterion with regard to the
requirements of approximation capability, interpretability and generalization,
suitable input variables for the LSR model and a suitable threshold value ¢
must be selected. This is achieved by the FSM presented in Figure 3.

At first, the local optimal quality value y* € R, a maximum number of input
variables A € N | 1 <A < M to limit the complexity of the splitting crite-
rion and the index m are initialized. Furthermore, the selected input variables
x* € R' to construct the final splitting criterion are initialized with x* = [1]
for the constant part . Each forward iteration performs a greedy search over
all unselected input variables to extend an existing splitting criterion (resulting
from x*) by a local optimal candidate input variable x,,. To identify the local
optimal candidate during the greedy search, the quality of the splitting crite-

214 Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020



m=m++1

é estimate LSR model with [x* x,,] and compute residuals ]

i\

B7 YSka €lsr

v

2

‘g fit hinge function into ejs;, compute new residuals and ratio y J

h(yASk)7 eh7 7: ‘ehl/‘e]sr‘

YCS | create new suitable
splitting criterion

no

¢* =hinge, 7" =7,
ﬁ* - ﬁv Xremp = [X* xm]

L | X*:X?empa m:O, no
Y=1,i=it1

Figure 3: Activity diagram of the FSM to construct a suitable uni- or multivariate splitting criterion.

rion resulting from an extension with x,, is measured using a specific quality

criterion.

To measure the quality which results from the extension, in step a) a LSR model
95, (X*,x,,) for splitting is determined. This model is constructed based on the
previously selected input variables x* and the candidate x,,. The residuals [9]

e =le1 ... en]" =y =5, =1 =Pl - IN =T

]T

&)
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yASk

Figure 4: Example of the process to measure the quality of a splitting criterion. The residuals e
of a LSR model s, (x*) are approximated by a hinge function /(Js, ) (solid line), which
consists of two LSR models trained by different subsets .#. The quality is measured by
the improvements in approximation capability by A(J, ).

of the model output J, , = 95, (X, %,,m) With n € {1,...N} are computed and
in step b) approximated by a hinge function

h(ysk) = min([l ysk]ﬁh[l ysk]ﬁz) or h(ysk) = max([] ysk]ﬁ] ’ [] )A}Sk]ﬁZ) . (6)

The hinge function consists of two local linear LSR models 8; = [Bo B1]T Vi €
{1,2}, which are joined together by a hinge point [9, 14].

Figure 4 shows a hinge function (solid line), that was determined by N = 24
samples & = {§;,,ei}. To construct A(Ys,), the samples are ordered and
segmented into K subsets .4, containing an equal number of samples. This
segmentation helps to overcome the challenging effects of skewed data. The
subsets resulting from the segmentation are grouped into &g and &gy to de-
termine B, with &jeq and B, with &gne. This is done iterative by changing the
proportion of the groups until a stopping criterion is reached. In Figure 4, K =8
subsets are used. First, the models are determined by two balanced groups
Eleft D {yl,y27y3,§ﬂ4} and éaright D) {5%,&76,(5”7,5”3}, which is illustrated
in Figure 4 by the gray and white area. If the resulting hinge point is out of a
predefined area, e.g. outside the subgroups {.#3,...,.%k_2 }, the balance of the
groups is adjusted and two new LSR models are determined by the adjusted
groups. Otherwise, the stopping criterion is fulfilled and the quality of the
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splitting criterion, resulting from the candidate x,, and the hinge point as a
threshold value [10], is measured.

The quality is measured by a specific criterion, which results in the quality

value
 en]

B ‘elsr|

(N

with the residuals e, = [e; — h(Ps.1) ... en —h(Fsn)]" of h(Js, ). The quality
criterion describes how much the non-linearity in a partition can be reduced
along a certain direction by the splitting criterion. A decrease of non-linearity
is indicated by ¥ < 1 and to fulfill the quality criterion within a forward ite-
ration, the candidate x,, has to be selected in a way that ¥ is minimized to
Y*. Due to this minimization, the direction of non-linearity in a partition is
identified which can most likely be approximated by two local linear models.
Furthermore, this minimization effects that

e the orientation of J, (x*,x,,) becomes more similar to V f(x)
in the area of curvature in that partition.

o the partition is split in an area near the curvature due to the hinge point.

Apart from these improvements, the computational effort to select a suitable
splitting criterion increases linearly by M - A, whereby the curse of dimensio-
nality is weakened.

If a new local optimal quality value is measured (y < ¥*), in step c) of Figure 3
anew suitable splitting criterion is created. After the greedy search was applied
(m = M) and no suitable candidate was identified (y > 7*), the whole FSM is
stopped. Otherwise, x* is extended by x,, that minimizes y* and, if complexity
limitation isn’t reached (dim(x*) < A + 1), the FSM is continued. The FSM is
successfully completed if at least one suitable candidate has been identified. In
this case 8* and ¢* construct either an uni- or multivariate splitting criterion. If
no input variables are selected by the FSM or if a minimal number of samples is
reached, a local model for prediction is determined, which is described next.
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3.3 Local Models

Similar to the requirements on the multivariate splitting criterion, the local
models must be accurate, as interpretable as possible and well generalized.
In order to achieve this, stepwise regression with another FSM is performed.
Due to the bias-corrected Akaike’s Information Criterion

2(M+2)(M+3)

RSS -
AICc =Nlog—— +2M + N+ Nlog(2x = 8
C OgN +2M + N + Nlog( )+N—(M+2)—l ;o (8)
which is embedded into the FSM, both the model accuracy and complexity
are taken into account during the forward selection [15]. The first term of (8)

considers the model accuracy using the residual sum of squares
N
RSS=Y e ©9)
n=1

and the remaining terms are considering model complexity using the dimension
of selected input variables M and the number of samples N. AICc differs from
the uncorrected criterion through the additional bias-correction term resulting
from the last fraction, which leads to an improvement in accuracy for small
data sets or high dimensional input spaces [15]. In this paper, the method is
limited to a first-order LSR model

&) =B+ Y Buxm (10)

meN | x, €X

which is constructed by the selected input variables  with dim(%) = M. This
is illustrated next using a practical example.

3.4 Tree Structure

The proposed algorithm constructs a binary tree, called LSRT, using both uni-
and multivariate splitting criteria. Figure 5c shows a Mixed Regression Tree
that approximates the function f(x) = 5xjx +x% —&—x% which is presented in
Figure 5a.
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Figure 5: Mixed Regression Tree which is called LSRT and constructed by the proposed algorithm.
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The tree was trained on 50 samples and to cover the whole input space, these
samples and generated from an optimized Latin Hypercube Design [16]. The
tree consists of five decision nodes # ¥V k € {1,2,3,5,6} with an uni- or mul-
tivariate splitting criterion displayed to the right of the node and six terminal
leaves 7 V k € {4,8,9,10,11,7} with a local model , (X).

Figure 5b presents the partitions of the input space resulting from the splitting
criteria, which are drawn by black dashed lines. For instance, the axis-oblique
split 1) results from the multivariate splitting criterion of the root #; and the
axis-orthogonal split 2) results from the univariate splitting criterion of node
ts. Each partition contains a first-order LSR model %, (X), which is only valid
in its partition. It can be recognized that the direction of the splits are adapted
to the gray contour lines of f(x), which indicates that the algorithm determines
suitable splits. To investigate the performance of the algorithm in more detail,
in the following an extensive experimental analysis is performed.

4 Experimental Analysis

In order to analyze the proposed algorithm with regard to accuracy and model
complexity, the algorithm is tested in Subsection 4.1 on synthetic data and in
Subsection 4.2 on real-world data. Furthermore, to compare the performance
to state-of-the-art construction algorithms for Regression Trees, LSRT is com-
pared to GUIDE, which is determined by a toolbox [17].

To obtain comparable results among LSRT and GUIDE, the trees are con-
structed based on similar hyperparamters. Both trees are pruned by the same
method using the same hyperparameters and splitting is stopped by a lower
bound of six samples. In addition, the local models are both determined using
a FSM. To ensure the interpretability of LSRT, multivariate splitting criteria
are limited to A = 2. Although both trees are constructed on similar hyper-
parameters, the size of the pruned tree can vary between LSRT and GUIDE.
For a comparison without the restriction of the tree size, a third tree LSRT q; is
considered that is pruned to the same size as GUIDE.
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Test results are evaluated by the root mean squared error E and the tree size | T,
measured by the number of nodes within the tree 7. To generate meaningful
results, £ and |T'| are averaged over 150 runs.

4.1 Synthetic Data

To generate synthetic data, a common test function from [18] is extended to

10 . 20 10 5
fx) =Y 7 sin(7rxs; _4xs5;3) + Tz(XSi—z —0.5)* + T Asi-1+ s (11)
i=1

so that the dimensionality of x € RY | M = I-5 can be varied in discrete steps
I € N of five. In this way, the influence of dimensionality can be analyzed.
The input space is limited to 0 < x;,, < 1 and the N samples for training are
generated from an optimized Latin Hypercube Design [16] to fill the whole
input space. To analyze the influence of noise, white Gaussian noise € with
mean £ = 0 and variance 6> = 0.5 is added to f(x). Furthermore, M, noisy
input variables without a dependence on f(x) are constructed using € with
£ =0.5and 62 = 0.1. In each of the 150 runs, 1500 samples are randomly
generated from (11) for testing. Table 1 shows the experimental results on
eight synthetic data sets.

For all data sets, LSRT and LSRT4; are more accurate than GUIDE. Compared
to GUIDE, the error of LSRT is reduced by 18.8% and the error of LSRT,q;,
which has the same complexity as GUIDE, is reduced by 13.6%. Furthermore,
it can be recognized that the difference in error between GUIDE and LSRT
is slight for data set {50,5,0,0}, whereas the difference for {300,5,0,0} is
significant (20.2%). These differences result from the mixed tree structure
of LSRT. Due to the properties of f(x), axis-oblique splits occur in deeper
layers of LSRT. With an average tree size of |T| = 2.2 in data set {50,5,0,0},
LSRT,g; consists only of univariate splits. In contrast, LSRT,q; with an average
size of |T| = 15.6 consists of several axis-oblique splits, which demonstrates
the improvements resulting from the oblique splits.

Table 1 shows that an influence of noise can be handled well by the proposed
algorithm. The results of LSRT for the noisy data sets {300,5,0,0.5} and
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Table 1: Experimental results on synthetic data for two different trees LSRT and GUIDE.
LSRTjp; is an complexity adjusted version of LSRT with the same size as GUIDE. The
elements in the brackets (left column) indicate the properties of the eight data sets. The
best results for model complexity |T'| and test error E are in bold print.

Settings LSRT GUIDE LSRT,q
{N.M,My,02} |T| E + o 7| E + o E+o
{50,5,0,0} 3.9 2.13+0.19 2.2 2354020  2.3140.30
{100,5,0,0} 7.1 1.73£0.27 4.1 2.07+£0.16  1.94+0.20

{200,5,0,0} 11.0 1.2340.14  11.6 1.52+0.15  1.23+0.17
{300,5,0,0} 114 1.094026 156 1.1940.26  0.95+0.14
{300,10,0,0}  11.0 1.42+0.17 82 1924032  1.68+0.32
{300,15,0,0} 95 1.67+£0.19 4.1 2.174+0.13  2.0840.21
{300,5,5,0} 11.6 1.114£0.18  13.1 1.64+£0.41  1.24+0.36
{300,5,0,0.5}  11.9 1.10+0.23  13.8 1304022  1.03+0.13

{300,5,5,0} are similar to the results of {300,5,0,0}. In addition, the error
of LSRT resulting from {300,5,5,0} is 32.3% lower than the error of GUIDE.
An influence of dimensionality cannot be evaluated clearly. Due to an increase
of the function values by the addition of further terms, E is equally increa-
sed. Based on the error reduction (23.0%) between LSRT and GUIDE for
{300, 15,0,0}, it can be expected that the curse of dimensions is weakened.

In four out of eight data sets, both LSRT and GUIDE have the lowest complex-
ity, which means that both trees achieve comparable results in interpretability.
A comparison between LSRT and LSRT,q; shows that for {300,5,0,0} and
{300,5,0,0.5} tree size was penalized too much by the pruning method. This
can be recognized by the lower test error of LSRT,g;. In the following, LSRT
is tested in a more challenging task using real-world data.

4.2 Real-World Data

In contrast to synthetic data, real-world data provides more challenging tasks
for data driven-models due to incomplete samples, outliers and skewed data. To
analyze and compare the proposed algorithm with regard to a more challenging
task, four different real-world data sets Baseball, Tecator, CPU and Redwine
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Table 2: Experimental results on real-word data for two different trees LSRT and GUIDE.
LSRT,; is an complexity adjusted version of LSRT with the same size as GUIDE. The
real-world data sets Baseball and CPU are scaled by 1072 and 10!,

LSRT GUIDE LSRT q;
Data sets T E + o IT| E + o E + o

Baseball 3.1 2.273+0.118 3.0 2.346+0.088  2.255+0.101
Tecator 3.6 0.903£0.057 1.6 0.926+£0.065  0.858+0.040
CPU 5.2 5.214+0.800 4.3 5.129+£0.514  5.471£1.157
Redwine 3.3 0.645+0.007 1.8 0.653+0.007  0.65240.007

with a dimension from 6 to 24 input variables and a size from 209 to 1599
samples are used [19, 20, 21, 22]. Because of LSRTs’ limitation to numerical
input variables, categorical input variables are excluded from the data sets. In
addition, the Tecator data set is reduced by 100 input variables containing the
absorbance spectrum. Because of the small sample size of CPU with N = 209
and Tecator with N = 240 the analysis is performed by a k-fold cross validation.
Within each run and each data set, k trees of each type are trained by & — 1
varying data subsets, which predict the remaining data subset [9]. For this
purpose, CPU and Tecator are analyzed by k = 10, Baseball by k = 5 and
Redwine by k = 2. The results are shown in Table 2.

Compared to the results on synthetic data, the improvements by the proposed
algorithm are less significant. On average, the error of LSRT is 1.3% and the
error of LSRTp is 1.2% less than that of GUIDE. Furthermore, GUIDE is less
complex for each data set. Nevertheless, due to a maximum size of |T| = 5.2
there are no limitations in interpretability.

Improvements of an axis-oblique structure are only apparent at the Baseball
data set. The root of LSRT is split by a multivariate criterion, which reduces
the error versus GUIDE by 3.9%. For Tecator, the error of LSRTy; is 7.3%
less than the error of GUIDE. Because of the small tree size (|T| = 1.6), the
error reduction only result from the FSM to determine the local model. This
can be explained by distinct linear dependencies, which can be well fitted with
a single multiple regression model. A multivariate split of the root, which is
performed by LSRT (|T'| = 3.6), results in an increase of error. Due to Tecators’
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dimension of 24, this could be caused either by a wrong split selection or by a
limitation A = 2 of two input variables for splitting. Compared to GUIDE,
LSRT performs slightly worse on the CPU data set. Five out of six input
variables of CPU are discrete, so the segmentation process of the split selection
(compare Subsection 3.2) does not work correctly anymore. The Redwine data
set contains much noise and functional dependencies are low. Therefore, an
increase in accuracy of LSRT may result from an increase in complexity.

5 Conclusion

To solve the issues of Regression Trees with respect to model accuracy, their
structure can be extended to Mixed or Oblique Regression Trees using axis-
oblique splits. In order to obtain the advantages of Regression Trees when
using axis-oblique splits, a trade-off between an increase in model accuracy
and a loss of interpretability must be found. In this paper, a novel construction
algorithm for Mixed and Oblique Regression Trees was presented. The di-
rection for splitting within a partition is determined by a first-order LSR model
95, (x*), which is limited to a maximum number of significant input variables
x* due to a forward selection method. Depending on the number of selected
input variables, this direction can be either axis-orthogonal or axis-oblique.
The selection of s, (x*) is based on a quality criterion, which is determined
by an approximation of candidate models’ residuals using a hinge function. In
this way, a split direction adapted to functions’ curvature within the partition
is obtained and the resulting one-dimensional search space for the selection
weakens the curse of dimensionality. By the limitation to significant input
variables, interpretability and generalization is maintained. The proposed al-
gorithm was tested in an extensive experimental analysis using synthetic and
real-world data and compared with a state-of-the-art algorithm for Regression
Trees. Especially for synthetic data, significant improvements in model accu-
racy are achieved, resulting in lower test error compared to the state-of-the-art
algorithm. The improvements for real-world data were less significant due to
effects like discrete input values and partially unsuitable data sets. To obtain
meaningful results on real-world data, further experiments are necessary.
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For further improvements on real-world data, statistical test and an approach to
consider categorical input variables and discrete values can be included into the
split selection process. To improve the over-all performance of the proposed
algorithm, the hinge function should be determined by a common algorithm
in combination with a bootstrapping process. Stepwise selection combined
with a complexity penalty for j, (x*) could also provide further improvements
in split selection. Furthermore, to increase model flexibility by curved splits,
95, (x*) could be extended to a higher order. Additionally, trees’ structure can
be extended to a neuro-fuzzy structure and to decrease the computational effort
of the proposed algorithm, an efficient technique for prepruning is necessary.
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