
 DOI: 10.58895/ksp/1000124139-16 erschienen in:

Proceedings – 30. Workshop Computational Intelligence: Berlin, 26. - 27. November 2020

DOI: 10.58895/ksp/1000124139 | https://www.ksp.kit.edu/site/books/m/10.58895/ksp/1000124139/

A Comparative Study on Subgraph Crossover
in Cartesian Genetic Programming

Roman Kalkreuth

Department of Computer Science
TU Dortmund University, Germany

Email: roman.kalkreuth@tu-dortmund.de

1 Introduction

While tree-based Genetic Programming (GP) [1] is often used with crossover,
Cartesian Genetic Programming (CGP) [2] is mostly used only with mutation
as the sole genetic operator. In contrast to comprehensive and fundamental
knowledge about crossover in tree-based GP, the state of knowledge in CGP
appears to be still ambiguous and ambivalent. Two decades after CGP was
officially introduced, the role of recombination in CGP is still considered to be
an open and remaining question. The state of knowledge about crossover in
CGP has been recently surveyed and the role of crossover is still considered to
be an open and remaining question [3]. Even if some progress has been made in
recent years, comprehensive and detailed knowledge about crossover in CGP
is still missing [3]. A promising step forward was made by the introduction
of the subgraph crossover [4] but this technique has not been comprehensively
studied in the past. Therefore, this work follows up former work on the cro-
sover question by investigating if the search performance of CGP algorithms
that utilize the subgraph crossover can be more efficient as the commonly
used mutation-only CGP on a set of well-known benchmark problems. This
short paper provides an overview of the full paper version [5] of the presented
work.

1.1 Cartesian Genetic Programming

In contrast to tree-based GP, CGP represents a genetic program via genotype-
phenotype mapping as an indexed, acyclic, and directed graph. The CGP deco-
ding procedure processes groups of genes and each group refers to a function
node of the graph. The last genes of the genotype represent the outputs of the
phenotype. Each node is represented by two types of genes which index the
function number in the GP function set and the node inputs. These nodes are
called function nodes and execute functions on the input values. The number
of input genes depends on the maximum arity na of the function set. Given
the number of outputs no, the no last genes in the genotype represent the
indices of the nodes, which lead to the outputs. A backward search is used
to decode the corresponding phenotype. An example of the backward search
of the most popular one-row integer representation is shown in Figure 1. The
backward search starts from the program output and processes all nodes which
are linked in the genotype. In this way, only active nodes are processed during
evaluation. The genotype in Figure 1 is grouped by the function nodes. The
first (underlined) gene of each group refers to the function number in the
corresponding function set in the figure. The integer-based representation of
CGP phenotypes is mostly used with mutation only. The number of inputs ni,
outputs no, and the length of the genotype is fixed. Every candidate program is
represented with nr ∗nc ∗ (na +1)+no integers. CGP is traditionally used with
a (1+λ) selection scheme of evolutionary algorithms. The new population in
each generation consists of the best individual of the previous population and
the λ created offspring. The breeding procedure is mostly done by a point
mutation that swaps genes in the genotype of an individual in the valid range
by chance.

2 The Subgraph Crossover Technique

The subgraph crossover technique for CGP is inspired by the subtree cros-
sover found in tree-based GP. To recombine two directed acyclic graphs, the
subgraph recombination is performed by respecting the CGP phenotype. The
phenotype of each individual is represented by the active path of the graph

264 Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020

Genotype 0 1 0 1 2 1 2 2 3 3

Phenotype + /- OP
IP1

IP2

Function
Lookup Table

Index Function
0
1
2

Addition
Subtraction

Division

Decode

Node
Number 2 3 4 OP

432

0

1

Figure 1: Example of the decoding procedure of a CGP genotype to its corresponding phenotype.
The nodes are represented by two types of numbers which index the number in the
function lookup table (underlined) and the inputs (non-underlined) for the node. Inactive
function nodes are shown in gray color. The identifiers IP1 and IP2 stand for the two
input nodes with node index 0 and 1. The identifier OP stands for the output node of the
graph.

and is determined through the evaluation process. Furthermore, the active
path of a graph leads to the semantic value of a certain individual in CGP.
As a consequence, the subgraph crossover exclusively recombines the genetic
material of the active paths. The idea of the subgraph crossover is that it should
reduce the disruption which is caused by the genotypic single-point crossover
in standard CGP and truly recombine subgraphs.
For the description of the subgraph crossover procedure, let ni be the predefined
number of input nodes and let nf be the predefined number of function nodes.
In CGP, the input nodes are indexed from ni to ni−1 and the function nodes of
each graph are indexed from 0 to ni +nf−1. The nodes which lie between the
input and output nodes are denoted as function nodes. The crossover is done
with two parents which are denoted as P1 and P2. For the crossover procedure,
the node numbers of the active function nodes are necessary. The node numbers
of the active nodes of P1 and P2 are stored in two arrays M1 and M2. The active
nodes are determined by the backward search in the evaluation procedure.
To define one suitable crossover point, we define two possible crossover points
CP1 and CP2 of the two parents. With information about the active nodes and the

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 265

length of the path, we can choose two possible crossover points. The possible
crossover points CP1 and CP2 are chosen by chance in the range of the active
function nodes which are stored in M1 and M2. The possible crossover points
may not be input or output nodes. A general crossover point CP is defined
by choosing the smaller crossover point from CP1 and CP2. The reason for
this is that the subgraphs of the parents, which will be placed in front of or
behind the crossover point of the offspring’s genome should be balanced. The
representation of CGP allows active paths of an individual, which can start in
the middle or back of the graph. The subgraph which will be placed in front of
the crossover point has to start at more leading active nodes. If CP is defined as
the possible point CP1, the subgraph of P1 in front of CP will be placed in front
of CP in the offspring genome. The subgraph behind CP of P2 will be placed
behind CP in the offspring genome The crossover procedure produces a new
genome that represents the offspring involving the phenotypes of both parents.
In the case that two children should be produced, the crossover procedure
is performed twice with two different general crossover points. Since the
representation of CGP provides connections to any of the previous function
nodes of the graph, performing only the neighbourhood connect could result in
a monotone data flow of the resulting phenotype. An example of the crossover
procedure is illustrated in Figure 2.

3 Experiments and Findings

We performed experiments in the problem domain of symbolic regression and
Boolean function learning. To evaluate the search performance of the tested
algorithms, we measured the number of fitness evaluations until the CGP al-
gorithm terminated successfully (fitness-evaluations-to-success) and the best
fitness value which was found after a predefined number of generations (best-
fitness-of-run). We investigated a diverse set of popular GP benchmarks, inclu-
ding single and multiple output problems. The problems are listed in Table 2
and 3. We used a minimizing fitness function in all experiments. For the
symbolic regression problems, the fitness of the individuals was represented by
a cost function value. The cost function was defined by the sum of the absolute

266 Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020

0 2 1

*

*

+
2 4

4

x

1

Index Function
0 +
1 -
2 *
3 /

43 2 3
5

3
/

0

1 5

OP1

2 1 0 2 0 0

A32

/

-

+
2 4

x

1
3

0

1 5

OP2

0 2 0
4

0 3 3
5

1 1 1 3 0 0

A32

0 4 5

3 5 2 6

6

6

Parent P1

Parent P2

Parent P1

Parent P2

+

PC2 := 6
Pc := 3

Function Lookup Table

/
6

6

PC1 := 3

*

*

2
x

1 3

0

1

Offspring

+
4

+
5

OP2/
6

0 2 0
4

0 2 1
5

2 1 0 2 0 0

A32
3 5 2 6

6
Offspring

M1 = {2,4} M2 = {2,3,5,6}

≤��1 ��2

Subgraph S1

Subgraph S2

Random Connected Edge

Neighbourhood Connected Edge

+

Figure 2: Example of the subgraph crossover technique. The subgraph crossover basically works
similar to the single-point crossover except that the active nodes on both sides of the
crossover point are preserved. The crossover point is chosen in a way that it is located
between active function nodes. At the top of the figure, the arrays with the active nodes
and crossover points are listed. Below this information, the genotypes and phenotypes of
the parents and the offspring are shown, and the parts of the crossover are marked with
dashed boxes.

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 267

difference between the real function values and the values of an evaluated in-
dividual. For the boolean parity even problems, the fitness was represented by
the number of fitness cases for which the candidate solution failed to generate
the correct value of the Even-Parity function. To evaluate the fitness on the
multiple output problems, we defined the fitness value of an individual as the
number of different bits to the corresponding truth table.
In addition to the mean values of the measurements, we calculated the standard
deviation (SD) and the standard error of the mean (SEM). The algorithms
which were used in our study are listed in Table 1. The best parameter confi-
guration for each algorithm and problem has been determined with the help of
meta-evolution. To classify the significance of our results, we used the Mann-
Whitney-U-Test. The mean values are denoted a† if the p-value is less than the
significance level 0.05 and a‡ if the p-value is less than the significance level
0.01 compared to the (1+4)-CGP. Note that the mean values are only denoted
with the significance level marker if the result of a certain algorithm is better
than the result of the (1+ 4)-CGP. We performed 100 independent runs with
different random seeds.
Table 4 and Table 5 show the results of the algorithm comparison in the Bool-
ean domain. As visible, the Canonical-CGP and the (µ + λ)-CGP perform
better than the mutation-only CGP algorithms on various problems. The results
of our experiments in the symbolic regression domain are shown in Table 6,
Table 7 and Table 8. It is visible that the Canonical-CGP algorithm performs
better than the mutation-only CGP algorithms on all tested problems.
The experiments demonstrate that the subgraph crossover can contribute to the
search performance by using a canonical GA or (µ +λ)-strategy. Moreover,
the results of our experiments indicate that the predominance of the (1+ 4)-
CGP and (1+λ)-CGP algorithms cannot be generalized in the Boolean dom-
ain. The experiments in the symbolic regression domain indicate that the use
of the subgraph crossover is beneficial for the use of CGP and can contribute
significantly to the search performance in this problem domain. Especially
the search performance of the Canonical-CGP algorithm was superior to the
(1+4)-CGP on all tested problems in the symbolic regression domain.

268 Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020

Table 1: List of the CGP algorithms

Identifier Description

(1+4)-CGP Traditional (1+4)-CGP algorithm
(1+λ)-CGP Traditional (1+λ)-CGP algorithm
(µ +λ)-CGP (µ +λ)-algorithm with subgraph crossover
Canonical-CGP Canonical genetic algorithm (GA) with

tournament selection and subgraph crossover

Table 2: Symbolic regression problems

Problem Objective Function Vars

Koza-1 x4 + x3 + x2 + x 1
Koza-2 x5−2x3 + x 1
Koza-3 x6−2x4 + x2 1
Nguyen-4 x6 + x5 + x4 + x3 + x2 + x 1
Nguyen-5 sin(x2)cos(x)−1 1
Nguyen-6 sin(x)+ sin(x+ x2) 1
Nguyen-7 ln(x+1)+ ln(x2 +1) 1
Keijzer-6 ∑

x
i 1/i 1

Pagie-1 1/(1+ x−4)+1/(1+ y−4) 2

Table 3: Boolean function problems

Problem Number of Inputs Number of Outputs

Parity-Even 3 3 1
Parity-Even 4 4 1
Parity-Even 5 5 1
Parity-Even 6 6 1
Parity-Even 7 7 1
Adder 1-Bit 3 2
Adder 2-Bit 5 3
Subtractor 2-Bit 4 3
Multiplier 2-Bit 4 4

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 269

Table
4:R

esults
forthe

B
oolean

single-outputproblem
s

evaluated
by

the
num

beroffitness
evaluations

(FE
)to

term
ination

Problem
A

lgorithm
M

ean
FE

SD
SE

M
1Q

M
edian

3Q

Parity-E
ven-3

(1
+

4)-C
G

P
3177

3417
±

343
1246

2136
3760

(1
+

λ
)-C

G
P

2495
2919

±
293

846
1534

2872
C

anonical-C
G

P
3107

3070
±

307
1201

2104
3907

(µ
+

λ
)-C

G
P

1565 ‡
1517

±
152

602
1168

1892

Parity-E
ven-4

(1
+

4)-C
G

P
15420

14152
±

1422
6292

10358
17726

(1
+

λ
)-C

G
P

16523
19168

±
1926

6095
11276

18557
C

anonical-C
G

P
54967

47042
±

4727
24813

40612
71851

(µ
+

λ
)-C

G
P

11135 ‡
8447

±
845

5117
8527

14085

Parity-E
ven-5

(1
+

4)-C
G

P
45542

33947
±

3411
21524

36834
61222

(1
+

λ
)-C

G
P

34375 ‡
28146

±
2828

20685
27104

38941
C

anonical-C
G

P
28413 ‡

25538
±

2566
23388

19640
34876

(µ
+

λ
)-C

G
P

43476
2055

±
1022

23814
36188

57182

Parity-E
ven-6

(1
+

4)-C
G

P
199989

142915
±

14291
107418

163234
242573

(1
+

λ
)-C

G
P

118768 ‡
73682

±
7368

65766
91577

156639
C

anonical-C
G

P
242986

161762
±

16257
134518

200196
309346

(µ
+

λ
)-C

G
P

110158 ‡
75163

±
7516

63908
90676

135148

Parity-E
ven-7

(1
+

4)-C
G

P
478055

301113
±

30111
268210

393362
605372

(1
+

λ
)-C

G
P

441857
328539

±
32853

226272
352254

545197
C

anonical-C
G

P
631568

548180
±

54818
293613

453204
750792

(µ
+

λ
)-C

G
P

358420 ‡
246131

±
24613

189278
303988

451667

270 Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020

Ta
bl

e
5:

R
es

ul
ts

fo
rt

he
B

oo
le

an
m

ul
ti-

ou
tp

ut
pr

ob
le

m
s

ev
al

ua
te

d
by

th
e

nu
m

be
ro

ffi
tn

es
s

ev
al

ua
tio

ns
(F

E
)t

o
te

rm
in

at
io

n

Pr
ob

le
m

A
lg

or
ith

m
M

ea
n

FE
SD

SE
M

1Q
M

ed
ia

n
3Q

A
dd

er
-1

B
it

(1
+

4)
-C

G
P

18
95

18
56

±
18

6
63

4
12

52
24

94
(1
+

λ
)-

C
G

P
14

15
15

32
±

15
4

50
8

10
57

16
40

C
an

on
ic

al
-C

G
P

21
55

20
18

±
20

2
88

2
15

21
29

07
(µ

+
λ

)-
C

G
P

13
93

†
13

11
±

13
2

49
6

95
4

17
84

A
dd

er
-2

B
it

(1
+

4)
-C

G
P

85
66

7
84

35
5

±
84

78
29

50
6

58
65

0
11

07
94

(1
+

λ
)-

C
G

P
73

41
7

58
58

9
±

58
88

33
36

7
53

65
4

94
00

9
C

an
on

ic
al

-C
G

P
22

56
52

20
03

84
±

20
03

8
78

24
7

15
81

30
27

17
17

(µ
+

λ
)-

C
G

P
68

37
5

43
22

9
±

53
61

32
99

8
64

00
6

98
05

2

M
ul

tip
lie

r-
2B

it
(1
+

4)
-C

G
P

11
58

3
10

46
9

±
10

46
50

20
85

24
14

49
8

(1
+

λ
)-

C
G

P
17

66
4

21
66

4
±

21
77

54
00

92
33

19
26

2
C

an
on

ic
al

-C
G

P
30

48
9

25
70

0
±

25
82

13
38

4
22

69
6

22
91

6
(µ

+
λ

)-
C

G
P

11
05

5‡
13

28
1

±
13

34
36

35
66

93
13

22
0

Su
bt

ra
ct

or
-2

B
it

(1
+

4)
-C

G
P

11
02

9
13

97
5
±

13
97

5
46

42
69

86
11

87
8

(1
+

λ
)-

C
G

P
83

77
‡

99
58

±
10

00
29

89
61

11
95

79
C

an
on

ic
al

-C
G

P
35

82
9

41
82

2
±

42
03

10
34

6
20

05
6

40
69

8
(µ

+
λ

)-
C

G
P

15
16

1
22

38
8

±
22

50
52

91
96

71
16

70
5

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 271

Table
6:R

esults
forthe

algorithm
com

parison
forthe

problem
s

K
oza

1,2
&

3
evaluated

by
the

num
beroffitness

evaluations
(FE

)to
term

ination

Problem
A

lgorithm
M

ean
FE

SD
SE

M
1Q

M
edian

3Q

K
oza-1

(1
+

4)-C
G

P
8675635

16681422
±

1668142
441477

1814344
7045961

(1
+

λ
)-C

G
P

7370880 ‡
17384354

±
1738435

204400
1050936

4294170
C

anonical-C
G

P
663822 ‡

838546
±

83854
135162

337950
710275

(µ
+

λ
)-C

G
P

7780751 ‡
15830735

±
1583073

197284
1830312

6318740

K
oza-2

(1
+

4)-C
G

P
8264426

19894512
±

1989451
150140

888884
4378756

(1
+

λ
)-C

G
P

8191549
20275790

±
2027579

94290
559028

4710848
C

anonical-C
G

P
444118 ‡

95000
±

286700
627550

29650
78800

(µ
+

λ
)-C

G
P

5729778
11021660

±
1102166

,
238156

1320880
5878696

K
oza-3

(1
+

4)-C
G

P
600153

1214527
±

121452
39076

177418
443038

(1
+

λ
)-C

G
P

753551
2535215

±
253521

29528
120368

431318
C

anonical-C
G

P
32870 ‡

57156
±

10435
2488

6700
32713

(µ
+

λ
)-C

G
P

926857
3473467

±
347347

28548
121040

362180

272 Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020

Ta
bl

e
7:

R
es

ul
ts

of
th

e
al

go
ri

th
m

co
m

pa
ri

so
n

al
go

ri
th

m
fo

rt
he

sy
m

bo
lic

re
gr

es
si

on
pr

ob
le

m
s

ev
al

ua
te

d
w

ith
th

e
be

st
-fi

tn
es

s-
of

-r
un

m
et

ho
d

Pr
ob

le
m

A
lg

or
ith

m
M

ea
n

B
es

tF
itn

es
s

SD
SE

M
1Q

M
ed

ia
n

3Q

N
gu

ye
n-

4
(1
+

4)
-C

G
P

0,
68

0,
55

±
0,

05
0,

34
0,

58
0,

77
(1
+

λ
)-

C
G

P
0,

61
0,

46
±

0,
04

0,
35

0,
54

0,
74

C
an

on
ic

al
-C

G
P

0,
50

†
0,

28
±

0,
04

0,
31

0,
47

0,
60

(µ
+

λ
)-

C
G

P
0,

60
†

0,
40

±
0,

04
0,

36
0,

54
0,

76

N
gu

ye
n-

5
(1
+

4)
-C

G
P

0,
45

0,
42

±
0,

04
0,

06
0,

32
0,

81
(1
+

λ
)-

C
G

P
0,

39
0,

33
±

0,
03

0,
08

0,
27

0,
63

C
an

on
ic

al
-C

G
P

0,
29

‡
0,

27
±

0,
03

0,
05

0,
20

0,
40

(µ
+

λ
)-

C
G

P
0,

28
‡

0,
25

±
0,

02
0,

06
0,

19
0,

45

N
gu

ye
n-

6
(1
+

4)
-C

G
P

0,
54

0,
66

±
0,

06
0,

16
0,

29
0,

61
(1
+

λ
)-

C
G

P
0,

50
0,

67
±

0,
06

0,
15

0,
22

0,
50

C
an

on
ic

al
-C

G
P

0,
31

‡
0,

31
±

0,
03

0,
15

0,
24

0,
40

(µ
+

λ
)-

C
G

P
0,

61
0,

67
±

0,
06

0,
16

0,
35

0,
67

N
gu

ye
n-

7
(1
+

4)
-C

G
P

0,
79

0,
48

±
0,

05
0,

45
0,

67
1,

06
(1
+

λ
)-

C
G

P
0,

71
0,

45
±

0,
04

0,
44

0,
67

0,
76

C
an

on
ic

al
-C

G
P

0,
60

‡
0,

35
±

0,
03

0,
36

0,
60

0,
68

(µ
+

λ
)-

C
G

P
0,

62
‡

0,
40

±
0,

04
0,

42
0,

63
0,

68

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 273

Table
8:R

esults
ofthe

algorithm
com

parison
algorithm

forthe
sym

bolic
regression

problem
s

evaluated
w

ith
the

best-fitness-of-run
m

ethod

Problem
A

lgorithm
M

ean
B

estFitness
SD

SE
M

1Q
M

edian
3Q

K
eijzer-6

(1
+

4)-C
G

P
3
,78

2,61
±

0,26
2
,16

3,24
4
,59

(1
+

λ
)-C

G
P

3
,38

2,52
±

0,25
2
,41

3,03
3,158

C
anonical-C

G
P

2,81 †
1,13

±
0,11

1
,78

2,90
3
,75

(µ
+

λ
)-C

G
P

2
,88 †

1,09
±

0,1
2,25

3,14
3
,15

Pagie-1
(1
+

4)-C
G

P
128

,18
48,19

±
4,81

87
,81

119,09
161

,08
(1
+

λ
)-C

G
P

120
,75

44,95
±

4,49
86

,14
120,91

155
,06

C
anonical-C

G
P

98,52 ‡
50,57

±
5,08

59
,04

85,31
130

,04
(µ

+
λ

)-C
G

P
99

,74 ‡
41

,246
±

4,12
65

,32
95,79

131
,76

274 Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020

References

[1] J. Koza. Genetic Programming: A paradigm for genetically breeding
populations of computer programs to solve problems. Technical Report
STAN-CS-90-1314, Dept. of Computer Science, Stanford University, June
1990.

[2] Julian F. Miller. An empirical study of the efficiency of learning
boolean functions using a cartesian genetic programming approach. In
Proceedings of the Genetic and Evolutionary Computation Conference,
Orlando, Florida, USA, 1999.

[3] Julian Francis Miller. Cartesian genetic programming: its status and future.
Genetic Programming and Evolvable Machines, 21(1):129–168, 2020.

[4] Roman Kalkreuth, Guenter Rudolph, and Andre Droschinsky. A new
subgraph crossover for cartesian genetic programming. In EuroGP 2017:
Proceedings of the 20th European Conference on Genetic Programming,
volume 10196 of LNCS, pages 294–310, Amsterdam, 19-21 April 2017.
Springer Verlag.

[5] Roman Kalkreuth. A comprehensive study on subgraph crossover in
cartesian genetic programming. In Proceedings of the 12th International
Joint Conference on Computational Intelligence, IJCCI 2020, November
02-04, 2020. ScitePress, 2020.

Proc. 30. Workshop Computational Intelligence, Berlin, 26.-27.11.2020 275

