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1 Introduction

While tree-based Genetic Programming (GP) [1] is often used with crossover,
Cartesian Genetic Programming (CGP) [2] is mostly used only with mutation
as the sole genetic operator. In contrast to comprehensive and fundamental
knowledge about crossover in tree-based GP, the state of knowledge in CGP
appears to be still ambiguous and ambivalent. Two decades after CGP was
officially introduced, the role of recombination in CGP is still considered to be
an open and remaining question. The state of knowledge about crossover in
CGP has been recently surveyed and the role of crossover is still considered to
be an open and remaining question [3]. Even if some progress has been made in
recent years, comprehensive and detailed knowledge about crossover in CGP
is still missing [3]. A promising step forward was made by the introduction
of the subgraph crossover [4] but this technique has not been comprehensively
studied in the past. Therefore, this work follows up former work on the cro-
sover question by investigating if the search performance of CGP algorithms
that utilize the subgraph crossover can be more efficient as the commonly
used mutation-only CGP on a set of well-known benchmark problems. This
short paper provides an overview of the full paper version [5] of the presented
work.



1.1 Cartesian Genetic Programming

In contrast to tree-based GP, CGP represents a genetic program via genotype-
phenotype mapping as an indexed, acyclic, and directed graph. The CGP deco-
ding procedure processes groups of genes and each group refers to a function
node of the graph. The last genes of the genotype represent the outputs of the
phenotype. Each node is represented by two types of genes which index the
function number in the GP function set and the node inputs. These nodes are
called function nodes and execute functions on the input values. The number
of input genes depends on the maximum arity na of the function set. Given
the number of outputs no, the no last genes in the genotype represent the
indices of the nodes, which lead to the outputs. A backward search is used
to decode the corresponding phenotype. An example of the backward search
of the most popular one-row integer representation is shown in Figure 1. The
backward search starts from the program output and processes all nodes which
are linked in the genotype. In this way, only active nodes are processed during
evaluation. The genotype in Figure 1 is grouped by the function nodes. The
first (underlined) gene of each group refers to the function number in the
corresponding function set in the figure. The integer-based representation of
CGP phenotypes is mostly used with mutation only. The number of inputs ni,
outputs no, and the length of the genotype is fixed. Every candidate program is
represented with nr ∗nc ∗ (na +1)+no integers. CGP is traditionally used with
a (1+λ ) selection scheme of evolutionary algorithms. The new population in
each generation consists of the best individual of the previous population and
the λ created offspring. The breeding procedure is mostly done by a point
mutation that swaps genes in the genotype of an individual in the valid range
by chance.

2 The Subgraph Crossover Technique

The subgraph crossover technique for CGP is inspired by the subtree cros-
sover found in tree-based GP. To recombine two directed acyclic graphs, the
subgraph recombination is performed by respecting the CGP phenotype. The
phenotype of each individual is represented by the active path of the graph
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Figure 1: Example of the decoding procedure of a CGP genotype to its corresponding phenotype.
The nodes are represented by two types of numbers which index the number in the
function lookup table (underlined) and the inputs (non-underlined) for the node. Inactive
function nodes are shown in gray color. The identifiers IP1 and IP2 stand for the two
input nodes with node index 0 and 1. The identifier OP stands for the output node of the
graph.

and is determined through the evaluation process. Furthermore, the active
path of a graph leads to the semantic value of a certain individual in CGP.
As a consequence, the subgraph crossover exclusively recombines the genetic
material of the active paths. The idea of the subgraph crossover is that it should
reduce the disruption which is caused by the genotypic single-point crossover
in standard CGP and truly recombine subgraphs.
For the description of the subgraph crossover procedure, let ni be the predefined
number of input nodes and let nf be the predefined number of function nodes.
In CGP, the input nodes are indexed from ni to ni−1 and the function nodes of
each graph are indexed from 0 to ni +nf−1. The nodes which lie between the
input and output nodes are denoted as function nodes. The crossover is done
with two parents which are denoted as P1 and P2. For the crossover procedure,
the node numbers of the active function nodes are necessary. The node numbers
of the active nodes of P1 and P2 are stored in two arrays M1 and M2. The active
nodes are determined by the backward search in the evaluation procedure.
To define one suitable crossover point, we define two possible crossover points
CP1 and CP2 of the two parents. With information about the active nodes and the
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length of the path, we can choose two possible crossover points. The possible
crossover points CP1 and CP2 are chosen by chance in the range of the active
function nodes which are stored in M1 and M2. The possible crossover points
may not be input or output nodes. A general crossover point CP is defined
by choosing the smaller crossover point from CP1 and CP2. The reason for
this is that the subgraphs of the parents, which will be placed in front of or
behind the crossover point of the offspring’s genome should be balanced. The
representation of CGP allows active paths of an individual, which can start in
the middle or back of the graph. The subgraph which will be placed in front of
the crossover point has to start at more leading active nodes. If CP is defined as
the possible point CP1, the subgraph of P1 in front of CP will be placed in front
of CP in the offspring genome. The subgraph behind CP of P2 will be placed
behind CP in the offspring genome The crossover procedure produces a new
genome that represents the offspring involving the phenotypes of both parents.
In the case that two children should be produced, the crossover procedure
is performed twice with two different general crossover points. Since the
representation of CGP provides connections to any of the previous function
nodes of the graph, performing only the neighbourhood connect could result in
a monotone data flow of the resulting phenotype. An example of the crossover
procedure is illustrated in Figure 2.

3 Experiments and Findings

We performed experiments in the problem domain of symbolic regression and
Boolean function learning. To evaluate the search performance of the tested
algorithms, we measured the number of fitness evaluations until the CGP al-
gorithm terminated successfully (fitness-evaluations-to-success) and the best
fitness value which was found after a predefined number of generations (best-
fitness-of-run). We investigated a diverse set of popular GP benchmarks, inclu-
ding single and multiple output problems. The problems are listed in Table 2
and 3. We used a minimizing fitness function in all experiments. For the
symbolic regression problems, the fitness of the individuals was represented by
a cost function value. The cost function was defined by the sum of the absolute
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Figure 2: Example of the subgraph crossover technique. The subgraph crossover basically works
similar to the single-point crossover except that the active nodes on both sides of the
crossover point are preserved. The crossover point is chosen in a way that it is located
between active function nodes. At the top of the figure, the arrays with the active nodes
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dashed boxes.
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difference between the real function values and the values of an evaluated in-
dividual. For the boolean parity even problems, the fitness was represented by
the number of fitness cases for which the candidate solution failed to generate
the correct value of the Even-Parity function. To evaluate the fitness on the
multiple output problems, we defined the fitness value of an individual as the
number of different bits to the corresponding truth table.
In addition to the mean values of the measurements, we calculated the standard
deviation (SD) and the standard error of the mean (SEM). The algorithms
which were used in our study are listed in Table 1. The best parameter confi-
guration for each algorithm and problem has been determined with the help of
meta-evolution. To classify the significance of our results, we used the Mann-
Whitney-U-Test. The mean values are denoted a† if the p-value is less than the
significance level 0.05 and a‡ if the p-value is less than the significance level
0.01 compared to the (1+4)-CGP. Note that the mean values are only denoted
with the significance level marker if the result of a certain algorithm is better
than the result of the (1+ 4)-CGP. We performed 100 independent runs with
different random seeds.
Table 4 and Table 5 show the results of the algorithm comparison in the Bool-
ean domain. As visible, the Canonical-CGP and the (µ + λ )-CGP perform
better than the mutation-only CGP algorithms on various problems. The results
of our experiments in the symbolic regression domain are shown in Table 6,
Table 7 and Table 8. It is visible that the Canonical-CGP algorithm performs
better than the mutation-only CGP algorithms on all tested problems.
The experiments demonstrate that the subgraph crossover can contribute to the
search performance by using a canonical GA or (µ +λ )-strategy. Moreover,
the results of our experiments indicate that the predominance of the (1+ 4)-
CGP and (1+λ )-CGP algorithms cannot be generalized in the Boolean dom-
ain. The experiments in the symbolic regression domain indicate that the use
of the subgraph crossover is beneficial for the use of CGP and can contribute
significantly to the search performance in this problem domain. Especially
the search performance of the Canonical-CGP algorithm was superior to the
(1+4)-CGP on all tested problems in the symbolic regression domain.
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Table 1: List of the CGP algorithms

Identifier Description

(1+4)-CGP Traditional (1+4)-CGP algorithm
(1+λ )-CGP Traditional (1+λ )-CGP algorithm
(µ +λ )-CGP (µ +λ )-algorithm with subgraph crossover
Canonical-CGP Canonical genetic algorithm (GA) with

tournament selection and subgraph crossover

Table 2: Symbolic regression problems

Problem Objective Function Vars

Koza-1 x4 + x3 + x2 + x 1
Koza-2 x5−2x3 + x 1
Koza-3 x6−2x4 + x2 1
Nguyen-4 x6 + x5 + x4 + x3 + x2 + x 1
Nguyen-5 sin(x2)cos(x)−1 1
Nguyen-6 sin(x)+ sin(x+ x2) 1
Nguyen-7 ln(x+1)+ ln(x2 +1) 1
Keijzer-6 ∑

x
i 1/i 1

Pagie-1 1/(1+ x−4)+1/(1+ y−4) 2

Table 3: Boolean function problems

Problem Number of Inputs Number of Outputs

Parity-Even 3 3 1
Parity-Even 4 4 1
Parity-Even 5 5 1
Parity-Even 6 6 1
Parity-Even 7 7 1
Adder 1-Bit 3 2
Adder 2-Bit 5 3
Subtractor 2-Bit 4 3
Multiplier 2-Bit 4 4
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