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Abstract Recent years have seen a steady trend towards faster
image sensors with higher resolution. It is well known that
images and to a larger extent image sequence contain a lot of
redundant information. An areas-scan image sensor, which is
not sampled with a constant pixel and frame rate, but which
outputs information only if something happens is therefore
an interesting alternative. Such sensors are known as event-
based or neuromorphic image sensors. Currently, there are
several types of event-based image sensors on the market, but
no universal concepts available to characterize these image
sensors. In this work, we propose the characterisation con-
cepts for neuromorphic sensors in extent of the EMVA stan-
dard 1288.

Keywords Sensor characterisation, event-based, neuromor-
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1 Introduction

In the recent years, state-of-the-art image sensors have seen a steady
trend towards higher resolution and speed. The trend is driven by
the need for faster and higher resolution vision systems in automo-
tive, industrial and other fields. Despite of a significant progress
made in the last decades, modern artificial vision systems are still
much less effective and robust in solving real-world tasks than their
biological counterparts. Even small insects outperform the most
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powerful vision systems in such routine tasks as, for instance, real-
time perception.

One of the limitations of the human-engineered vision systems
is imposed by the image sensors and their principle of operation.
Conventional sensors acquire the visual data in form of a series of
images, recorded at discrete points of time. Visual data is sampled at
a predetermined temporal intervals (frame rate) without any relation
to the dynamics of the scene. On top of that, every image contains
the data of all the pixels independently from whether this informa-
tion, or part of it, has been recorded in previous images. This inflates
the data rate unnecessarily and fast changes might be missed.

The alternative is the biologically inspired sensors: the dynamic vi-
sion sensors that implement the event-driven, frame-free approach.
They are often referred to as “event-based” sensors due to their prin-
ciple of operation. This family of sensors capture and is driven by
the transient events in the visual scene, unlike conventional image
sensors, that work with artificially created timing and control sig-
nals [1]. The latter implies that the control over the acquisition is
transferred to single pixel, that handles its own information individ-
ually. The output of this sensor is compressed at the sensor level,
thus optimizing data transfer, storage, and processing.

Characterisation of the conventional image sensors is a well known
problem. The concepts, methodology and techniques for these sen-
sors have been analysed, structured and resulted into the EMVA 1288
characterization standard [2]. These concepts cannot be applied to
the event-based sensors. Characterization of event-based sensor is of
a great importance, since it provides the means to compare them be-
tween each-other, and, most importantly, to conventional image sen-
sors. In this paper, we address the problem of application-oriented
characterisation of event-based sensors, establishing a link to EMVA
1288 standard, proposing characterisation techniques and presenting
the first results. Dynamic vision sensor shows no response to static
images. Therefore, new characterization concepts and procedures
need to be developed, which take into account temporal aspect and
can be applied to this type of sensors. At the same time, we would
like to keep the possibility to compare the performance of the con-
ventional image sensors with and the event-based ones.
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2 Related work

2.1 Neuromorphic sensors

Biological retinas have many desirable characteristics, which are
lacking in conventional image sensors, thus inspiring and driving
the design of neuromorpic vision devices. Many of these advanta-
geous characteristics have been modeled and implemented on sil-
icon. Early development of such devices originated from the bio-
logical sciences community. The main purpose of these chips was
to provide means for demonstration of neurobiological models and
theories. Real-world applications were never the main focus. There-
fore, very few of the sensors have been used in practical applications.
Circuit complexity, large silicon area, low fill factors, or high noise
levels and other factors prevented realistic applications [3], [4]. Re-
cently, the development of practical vision sensors based on biologi-
cal principles gained an increasing amount of attention and effort.

There is a family of event-based sensors, that encode illuminance
in the time domain, namely in the rate of spike “events”. The pix-
els of these devices do not autonomously react to visual events in
the scene. Thus, despite of having some advantages against con-
ventional sensors, they fail to achieve redundancy suppression or
latency reduction [4]. Large fixed pattern noise, complexity of the
digital frame grabber and the big advantage of brighter pixel over
the darker ones in allocating the communication bus make ”octopus
retina” devices [5] impractical for conventional imaging. The pixels
of so called ”time-to-first spike” imager [6], [7], [8] generate only one
spike per frame, static parts of the scene generate spikes at the same
time saturating the readout bus.

In dynamic vision sensor pixels are autonomous in detecting light
changes in the scene. The gain in terms of temporal resolution with
respect to conventional image sensors is dramatic. In addition, such
parameters like the dynamic range of the scene greatly profit from
the this approach. This type of sensor is very well suited for many
machine vision applications including high-speed motion detection
and analysis, object tracking, and shape recognition.

The pixel model proposed by Lichtsteiner et al. [9] simulates sim-
plified three-layer retina (Figure 2.1). The circuit consists of a photo-
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Figure 2.1: Simplified model of a human retina and corresponding event-based pixel
circuitry. Vj,, tracking the photocurrent through the photo-receptor. The
bipolar cell circuit responds with spike events Vj;s¢ of different polarity
to positive and negative changes of the photocurrent. The ganglion cell
circuit monitors the bipolar cells part and transports the spikes to the next
processing stage.

receptor front-end, a differencing switched-capacitor amplifier and a
comparator-based event generator. The photo-receptor responds log-
arithmically to irradiance, thus implementing a gain control mech-
anism that is sensitive to temporal contrast or relative change. The
circuitry of the pixel allows to tune for the sensitivity of smaller or
larger light changes in the scene. For instance, making the pixel bi-
ased to detect brighter-to-darker changes or vice versa. The param-
eters controlling the setting of the circuitry are called “biases”. The
pixels independently and asynchronously react to relative changes
in intensity, producing sparse, frame-free, event-based output. Upon
detection of the relative light intensity change the pixels commu-
nicate their state (ON or OFF) to the readout circuitry. The read-
out and the encoding circuitry encode the coordinated of the pixel,
the state and the microsecond resolution time-stamp into an event-
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packet. These packets or events can be gathered and analyzed by a
visual inspection application.

The relative change events and gray-level image frames are two
orthogonal representations of a visual scene. An event carries in-
formation about local relative changes, hence encodes all dynamic
contents, yet there is no static parts of the scene. The conventional
frame-based image is an absolute intensity map at a given point in
time. Dynamic information is carried in form of blur. In principle,
it is impossible to recreate change events from image frame nor can
gray-level images be recreated from the events.

The most recent developments of sensor designs allow to combine
the acquisition of static and dynamic information of the scene.
Asynchronous time-based image sensor [1], [10] features fully
autonomous pixels, that combine a change detector and a condi-
tional exposure measurement circuit. The exposure measurement is
initiated when an event is detected. Namely, the measurement starts
immediately after the irradiance change of a certain magnitude has
been detected by the respective pixel. Another recent approach to
combine dynamic and static information into a single pixel is the
so-called dynamic and active pixel vision sensor [11]. This pixel
combines conventional frame-based sampling of intensity with
asynchronous detection of log intensity changes. The advantages of
combining the traditional and event-based vision comes at the cost
of the capturing redundant output.

2.2 Conventional sensor characterization

Characterization of the conventional image sensors is a well known
procedure. There are a number of techniques proposed for charac-
terizing the property of certain sensor. The EMVA standard 1288
measures the mean (yy) and variance ((Tyz) of the digital output sig-
nal as a function of the the pixel exposure in photons from dark to
saturation [12]. With these measurements and a linear camera model
it is possible to determine the signal-to-noise ratio SNR as a function
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of the exposure per pixel in photons ji,, neglecting the quantization
noise:

My _ My
% \/ o+ iy

For a linear sensor, SNR depends on the quantum efficiency # and
the temporal variance of the dark signal 3. For a non-linear sen-
sor, the input SNR is the most important quality parameter. It can
be computed from the measured output SNR and the slope of the
characteristic curve [13]:

SNR(pp) = (2.1)
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3 Event sensor characterization

These procedures are not applicable for the event-based sensors, be-
cause the latter are insensitive to static irradiation. Posch et al. [10]
have initially addressed the problem of event-based sensor charac-
terization. In their work, they have proposed a test method that
allows simultaneously evaluating the main performance parameters
and check how well the predictions from theoretical considerations
agree with the performance of the sensor. We adapt the ideas pro-
posed by Posch at al. [1] for the application-oriented characterization
of the event-based sensors, in context of the EMVA 1288 characteri-
zation standard , described in the last section.

3.1 Properties

Sensitivity to small temporal contrasts, the response relation to the
ON/OFF-biases settings and its uniformity across the array are cru-
cial performance parameters for the asynchronous, event-driven sen-
sors. The minimum detectable temporal contrast or simply noise
equivalent contrast is barely detectable by an event-based pixel step
change of the irradiation level. Noise equivalent contrast sensitivity
corresponds to the signal-to-noise ratio property of a conventional
image sensor as described in Sect. 2.2.
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The sensitivity to the event-based sensor to the contrast is controlled
by the ON- and OFF-biases. The biases might be set higher for mak-
ing the sensor insensitive to small temporal contrast in the scene.
The relation between the biases and the contrast threshold might be
non-linear, depending on the circuitry of the pixel.

In the event-based sensor, the pixels react autonomously and
asynchronously to the light transients in the scene. Therefore, the
important characteristic of the sensor is response uniformity. In other
words, how a single-pixel performance translates to the behaviour
of the whole array. Due to production imperfection and tolerances
the photo-sensors, circuitry will inevitably have variations in how
pixel react to the same stimulus. This property of the event-based
sensor corresponds to well-known nonuniformity property of the
conventional image sensors.

3.2 Measurement procedure

The simplest way of experimentally determining the irradiation con-
trast Ay, necessary for generating one event for given mean irradi-
ance level y, and event threshold settings is gradually increase the
stimulus step until an event is generated. The stimulus’ amplitude
must initially be below the response threshold. It should also be fast
enough, namely to have the rise time exceeding the bandwidth of the
circuit under test. The minimal found stimulus amplitude always re-
sults in an event response when applied. In an ideal noise-free world,
this would be the case and this method would be applicable.

In the real world conditions, the very same pixel will react differ-
ently to the same stimulus. Therefore, Posch et al. [10] propose to
operate with “event probability” instead. It is defined for a given as
ratio between the number of event responses M and the number of
applied stimuli N, while background irradiance level and response
thresholds remain unchanged. Plotting the “event probability” vs.
stimulus amplitude, in an ideal noise-free world, would result in a
step function. In reality, such curve would have an ”S”-shape. Fit-
ting the ”S”-curve with a Gaussian error function, with the mean at
the M/ N = 50% event probability point, indicates the location of the
barely sensible contrast.
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Thus the irradiation contrast Ay, that produces an event probability
of 50% corresponds to a temporal standard deviation of one sigma.
In this way the input SNR can be measured as the ratio of y, and
App directly as a function of the mean irradiation from dark to sat-
uration of the sensor. A linear response or the measurement of a
characteristic curve is not required. This procedure corresponds to
the new upcoming release of the EMVA standard 1288 for cameras
with a non-linear response (Release 4.0 General, see [13]). The mea-
surements are to be conducted on the entire array (or a selected area-
of-interest) to ensure statistically significant conclusions, in the same
way as for conventional cameras with the EMVA standard 1288.
Measurement procedure:

1. Choose ranges for background irradiance [p; up**] bias lev-

els for ON/OFF events, stimulus amplitude [App; Apy™*] and
respective increments sizes.

2. For every background irradiance level, bias pairs and stimulus
in the chosen range perform steps 3 and 4.

3. Apply stimulus and reset the selected pixels N times.

4. Count event responses M compute per-pixel probability P and
for every of the selected pixels.

The data acquired this way from the whole sensor or part of it is
sufficient to recover the contrast sensitivity, the response uniformity
and the contrast threshold dependence on the bias settings.

4 First results

The experimental setup used for the measurements consists of an
integrating sphere, background irradiance LED-lamp, contrast gen-
eration LED-lamp, the camera under test and the control PC. The
data has been acquired and processed according to the procedure
described above. The Figure 4.1 presents the event probability P de-
pendence on the stimulus (A /pp) for different background irradi-
ation levels. The data is acquired on the area of 128x128 pixels with
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Figure 4.1: Event probability depending on the stimulus amplitude measured at one
pixel. The ”S”-curves are acquired for different background irradiation
levels. Higher irradiance levels correspond to steeper curves. Gaussian
fit to the red ”"S”-curve. The black dashed line indicates the even proba-
bility point. The vertical dashed lines indicate contrast thresholds for the
corresponding curves.

the biases set 100 milliVolts. All the experiments were performed
with VisionCam EB featuring Prophesee PPS3MVCD sensor.

The mean point of the Gaussian (50% event probability point)
indicated ideal minimum contrast for event generation at this light
level and for the chosen bias settings (Figure 4.1). In conventional
sensors, this corresponds to a irradiation change of 0p (Section
2.2). This means that the proposed method is able to measure the
input SNR as a function of the irradiation. The response relation
to the ON/OFF-biases settings can be extracted from the family of
”S”-curves. The contrast threshold grows with the background irra-
diance levels as represented by in Figure 4.1. The standard deviation



A. Manakov and B. Jahne

of the fitted Gaussian corresponds to the root-mean-square noise of
the pixel.

5 Conclusions

In this work, we have adapted the concepts and methods developed
by Posch et al. [10] to the application-oriented characterization of
the event-based sensors, in terms of the EMVA 1288 characteriza-
tions standard. We have established the link between the properties
of conventional and event-based sensors. Preliminary non-calibrated
test measurements show that the measurement of the event probabil-
ity is the correct way to measure the temporal noise of an event-based
sensor and that this can be used to measured the SNR as a function
of the irradiation. In this way event-based and conventional sensors
can be compared directly. The analysis of the nonuniformities of
event-based sensors requires further research.
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