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Abstract Recently, it was shown that a correlation exists be-
tween brain activity and oscillations of the pupil. As the ex-
periment was designed to measure exitations of the pupil for
frequencies below 1 Hz, whether such correlations also exist
on the scales of seconds and for frequencies between 5 and
40 Hz is still an open question. In this work, we design a new
experiment and measure the response of the pupil to contin-
uous, periodic visual and acoustic stimuli. We show that a
clear response of the pupil for flashes of 7.5 Hz exists, bearing
similarity to the effect known as Steady-State Visual Evoked
Potential in neuroscience. This result can directly be used to
develop a new kind of non-contact brain-computer-interface,
using visual fixation as a trigger. Further, we evaluate the
pupil response to series of white noise clicks with a frequency
of 8 Hz, in order to assert the pupil response as due to brain
activity. First results indicate the presence of a weak signal,
showing the stimulus frequency and harmonics, bearing sim-
ilarity to the neural effect known as Auditory Steady-State
Response. Measuring brain activity remotely could provide
pathways to new kinds of sensors, in particular for collabo-
rative robots and general human-machine-teams, where esti-
mates of the mental state of the human partner are essential.
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HMT, BCI, sensor

    
Forum Bildverarbeitung 2020  

DOI: 10.5445/KSP/1000124383  |  https://www.ksp.kit.edu/site/books/m/10.58895/ksp/1000124383/

DOI: 10.58895/ksp/1000124383-18 erschienen in:



N. Rohweder et al.

1 Introduction

One central aspect of Human-Machine-Teams (HMT) – be it collab-
orative work in factories, or driving partly autonomous cars – is the
ability of the machine to evaluate its human partner. Especially in
safety-critical environments, a precise state model of the human is es-
sential, consisting, at a minimum, of a binary attribute of “take-over-
readiness” (TOR) – the ability of the human to perform the required
task, e. g. taking back control of the steering wheel, or accepting a
hazardous object in a factory. Otherwise, the machine or robot is left
blind; and indeed, that is the current state-of-the-art. In collabora-
tive situations such as autonomous cars, the focus is placed on clear
interfaces to signal the human partner the need to take over, without
making sure they are actually able to do so [1]. Even the very term of
“take-over-readiness” and the concept it describes is used solely in
the context of partly autonomous cars, not found anywhere else, and
the application of human models and considerations of the HMT as
one unit, i. e. a human-in-the-loop approach, are only of very recent
focus in the literature [2, 3].

Regardless of the complexity of the human model – a single at-
tribute or a full Theory of Mind – the required sensor input is going
to consist of both physical and mental parameters. While research
and sensors for both exist, only physical parameters (e. g. hand po-
sition, heart rate) so far have been measured remotely. The gold
standard for measuring mental parameters such as situation aware-
ness, cognitive load or tiredness, the electroencephalogram (EEG),
requires electrodes placed on the scalp for good signal quality. Ob-
viously, such a setup is infeasible in real world applications, outside
of very special circumstances. On the other hand, Park and Whang
recently showed that a correlation exists between brain activity and
pupil size, such that the electrical state changes created by the neu-
rons – and measured as oscillations of electrical potential on the skin
– are mirrored by oscillations of the size of the pupil [4]. In particu-
lar, they showed a strong correlation of activity in the front and cen-
tral brain region with pupil oscillations, e. g. in the mu-band around
10 Hz, and the gamma-band between 30 and 50 Hz.

However, the setup of Park and Whang used long-time averages,
comparing the frequency bands of the EEG with 1/100 subharmon-
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ics for the pupil oscillations (e. g. the 10-Hz-band of the former with
pupil oscillations around 0.1 Hz), thus creating correlations on the
scales of minutes. A natural extension of the experiment is to ask
whether such correlations also can be measured directly, using the
same frequency bands, thus increasing the time resolution to sec-
onds, rather than minutes. A second question is whether such cor-
relations, if they exist, can be used to create a reliable remote EEG,
for use in sensors to serve as input of a human model, e. g. in the
context of deriving a measure of “trust” between the partners [5].
This overachieving question is the purpose of the HerMes project of
the Clausthal University of Technology, in the context of which our
experiments are performed [6].

2 Steady-State Evoked Potentials as stimuli in
experiments

From the outset, it is clear that measuring oscillations of frequencies
higher than ∼1 Hz decreases the resulting amplitude drastically. The
pupil is an imperfect oscillator, the speed of the dilation or contrac-
tion which the iris muscles can achieve is limited, hence the response
to any stimuli is limited as well. Literature confirms this hypothe-
sis [7, 8]. In order to increase the signal-to-noise ratio, it is therefore
desirable to have an artificially triggered, continuous signal that can
clearly be separated from the noise and measured for arbitrary du-
rations. In neuroscience, such signals are known as “Steady-State
Evoked Potentials”, a response of the brain to a continuous sensory
stimulus at a certain frequency. The stimulus frequency, typically
including harmonics, can be clearly measured in the brain activity,
for as long as the stimulus persists [9].

The visual version – the Steady-State Visual Evoked Potential,
SSVEP – is the one most easily measured. It has an excellent signal-
to-noise ratio (SNR) [10]. It is easily triggered e. g. by flashing LEDs
or flickering computer screens, and often used for brain-computer-
interfaces [11]. The acoustic variant – Auditory Steady-State Re-
sponse, ASSR – has at least an order of magnitude smaller responses
compared to the SSVEP, and is comparatively harder to measure,
typically averaged over multiple traces or long periods to create a
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sufficient SNR. Generally, the strongest responses appear at and be-
low frequencies of 40 Hz [12]. Both visual and acoustic stimuli were
identified as candidates to measure a response in the pupil oscilla-
tions.

3 Algorithm

In order to resolve such small pupil oscillations, a precise computer
algorithm for evaluating the pupil diameter is needed. Typically, a
circle detection is used. Yet unless the camera is placed such that it is
perpendicular to the pupil, this is an approximation; the perspective
distortion turns the circle into an ellipse of increasing eccentricity
for increasing angles. In experiments such as Park and Whang’s,
as well as in commercial eye-trackers such as Tobii [13], this “pupil
foreshortening error” is usually ignored; or avoided, by using large
distances between eye and camera. Protocols for post-hoc correction
exist [14]. On the other hand, the most convenient placement of the
camera for high resolutions of the pupil is close to it, and out of the
line of sight, i. e. nearly always at an angle, e. g. looking up from
below (Fig. 3.1).

Lens and camera

Screen

IR source

Test person

θ

Figure 3.1: Left: The setup of our experiment. Centre: After thresholding to binarise
the image of the eye, major and minor axes of the black pupil are detected.
The aspect ratio in this image is 1.17, corresponding to an angle θ of ap-
prox. 31° for the camera inclination. Right: The perspective distortion
causes the pupil to deviate from the ideal circle.

Thus the experiment was planned to improve the previous setups,
using elliptical pupil tracking from the start. However, while in-
creasing the accuracy, it also increases complexity. A circle detection
algorithm, e. g. the commonly used Hough-transform, operates in a
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three-dimensional parameter space, corresponding to the three pa-
rameters defining the circle: The x and y component of the centre, as
well as the radius. Conversely, an ellipse creates a five-dimensional
parameter space, introducing two radii (or axes) and a rotation an-
gle, in addition to the centre coordinates. In order to calculate the
relevant quantity, the long (semi-)axis, we use an approach derived
from [15, 16]. From the picture to the result, the algorithm works as
follows.

Figure 3.2: Steps of the algorithm. Top left: Image of pupil. A reflection of the experi-
ment’s screen is faintly visible, the line indicates a cross-section. Top right:
Cross-section along the line with binarising threshold in red. Bottom left:
Binarised image. Bottom right: Final result of the Canny edge detection,
with the chords used to calculate the ellipse centre shown for illustrative
purposes. Chords exceeding the box of the ellipse such as near the upper
right corner, due to e. g. missing edge pixels, are discarded.

As the setup is such that the greyscale-image of eye results in the
pupil being darker than the rest of the image (see Sec. 4), it is rather
easy to binarise, leaving only the pupil behind (Fig. 3.2). Over the
binarised image runs a conventional Canny algorithm, which filters
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out the edge pixels. The interior is then divided by two sets of
chords, running from one side of the ellipse to the other, starting
and ending at the innermost pixels. The number of the chords scales
with the size of the ellipse, at a typical size of around 20 for each
set. Start and end points of the chords create a set M of edge points,
defining the ellipse. In accordance with [15,16], we use a geometrical
property to determine the centre of the ellipse: The bisections of two
sets of chords intersect at the centre of the ellipse. Using a linear re-
gression over the individual centre pixels of a set of chords provides
an accurate estimate of its bisector, and leads to a very good estimate
of the ellipse centre.

After determining the centre coordinates, the remaining parame-
ter space is three-dimensional once more, and the other parameters
can be solved iteratively and algebraically, using three points of the
set M. To that end, M is sorted by quadrants and the three points
taken from three different quadrants. These three points need to be
far from respective points of symmetry that would result in an in-
determined ellipse, such as would be the case e. g. with two points
(X|Y), (−X| − Y) as measured from the ellipse centre. The average
of the result from each of the sets of three is finally taken to get the
desired result, the value of the long and the short axis.

The aim here is real-time capability; currently, the entire algorithm,
from saving the image to getting the axes lengths, runs at approxi-
mately 20 fps on an Intel core i5 (8th gen) processor.

4 Experimental setup

The three parts of the experiment are the test person, the camera and
the source of light. The test person takes a seat in front the computer
screen. The eye is filmed from below, while the look fixes ahead, on
a mark on the screen. The illumination comes from the side (Fig.
3.1).

There are two ways to create a high contrast between pupil and the
rest of the eye or face. For the bright pupil effect, in which light is
reflected back from the retina into the camera (the same as the “red-
eye effect” in photography with a flash), camera and source of light
are required to be closely aligned on one optical axis. This in turn
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requires a sufficient distance of the eye from the camera, typically on
the order of metres, as the dimensions of the camera and the source
of light limit their proximity. The dark pupil effect does the inverse,
placing the source of light off-angle; the light is reflected away from
the camera, and the pupil appears black. This is the only feasible
option, as the camera is placed less than half a metre away from the
eye in order to create a sufficient resolution of the pupil.

As usual to avoid glare and to provide uniform illumination, near
infrared light is used. A simple 6 W LED floodlight of 850 nm wave-
length is placed such that the specular reflection off the cornea is not
directed towards the camera, avoiding a bright glint in the otherwise
dark pupil. The lens in front of the camera is assembled using two
Near-IR coated lenses of f = 150 and f = 25.4 mm focal length and
an iris diaphragm in their common focal point, creating a simple
telecentric lens. The advantage of such a setup is the independence
of the magnification from the distance of the object.

On the one hand, this avoids changes in pupil size by involuntary
movements of the head, and on the other hand allows to calibrate
the optical system such that the pupil oscillations can be examined in
real units, not pixels. As the amplitude of such oscillations has never
been measured and therefore is unknown, this was an important
consideration. The calibration was performed before the experiment
using an USAF target, and determined as 20.83± 0.12 µm per pixel.
The lens is mounted on a camera with a 3.2 MP resolution (IDS UI-
3270CP), of which a field of view of 1024 by 1024 pixels is used,
allowing for frame rates of 83 fps. Consequently, frequencies up to
40 Hz can be resolved.

5 Results and discussion

For the first part of the experiment, an SSVEP sequence is displayed
on the screen. It consists of 16 seconds of black screen, then 10 sec-
onds of a white flashing box, and an additional 10 seconds of black
screen at the end. The frequencies of the flashes are chosen such
that the refresh rate of the screen can be synced, i. e. 30 Hz, 15 Hz,
10 Hz or 7.5 Hz. An exemplary result is displayed in Fig. 5.1 for
a stimulation frequency of 7.5 Hz. Both the SSVEP stretch and the
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Figure 5.1: Pupil diameter before, during, and after a sequence. The SSVEP stretch is
highlighted.

dark screen can be clearly determined by the pupil size. The relative
brighter stretch of the flickering screen causes the pupil to contract.
A Fourier analysis (resolution bandwidth: 0.125 Hz) of the SSVEP-
stretch yields a clear peak at the stimulation frequency of 7.5 Hz, as
well as one at its third harmonic, 22.5 Hz (Fig. 5.2, left). The signal-
to-noise ratio of the fundamental was 17 dB. The amplitude of the
oscillations is on the order of 10 µm. As one pixel was calibrated to
20.83 µm, this is a sub-pixel resolution, a result of the parameter esti-
mation algorithm and the Fourier Transform over a sufficiently long
time interval.
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Figure 5.2: Left: Power spectral density of the recorded SSVEP sequence with a fre-
quency of 7.5 Hz. Right: Relative power of the 7.5 Hz band over time, with
respect to the mean power of four bands (7.5 Hz, 10 Hz, 15 Hz, 30 Hz).
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By calculating the mean power of the four bands (30 Hz, 15 Hz, 10 Hz
and 7.5 Hz, resolution bandwidth 0.5 Hz), and looking at the rela-
tive power of the respective individual bands with regards to that
mean, Fourier transforming intervals as short as 2 seconds resulted
in observable pupil responses (Fig. 5.2, right). This result has di-
rect relevance for creating new kinds of non-contact brain-computer-
interfaces. By focusing on one of multiple flickering spots, each with
a different frequency, and using a threshold value on such a time
series of band power, the resulting potential can trigger actions, e. g.
controlling disability aids such as wheelchairs [11]. The idea is sim-
ilar to [7], who suggested such a scheme, at lower frequencies, for
tracking attention or focus.

Unfortunately, for visible stimuli, it is hard to separate oscillation
induced via the steady-state potential and brain activity from oscilla-
tions due to the simple pupillary light reflex. The amplitude of either
oscillation is limited by the mechanical constraints of the iris mus-
cle at any rate; biological considerations such frequency-dependent
light reflex responses and latencies to estimate the influence on the
measurements would appear to increase the complexity of the ex-
periment severely. Instead, we chose to investigate the response of
the pupil to acoustic stimuli. This creates a clear distinction between
light reflex and brain activity-induced oscillations; however, as noted
earlier, the ASSR effect is at least an order of magnitude smaller than
its optical counterpart, and therefore harder to isolate from the noise.

Figure 5.3: The ASSR stimulus. White noise, amplitude-modulated with a rectangle
wave of 8 Hz. The modulation depth is 100%.

We used series of white noise click trains, that is, a 100% am-
plitude modulated sequence of white noise lasting ten seconds and
incorporating 80 clicks, creating a rectangle wave of 8 Hz (Fig. 5.3).
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The soundfile is played using headphones, while the look of the test
person is fixed ahead onto a permanent mark on the screen. The
rest of the procedure, as well as the evaluation of the recorded im-
ages are exactly as above, using Fourier transforms with a resolution
bandwidth of 0.125 Hz.
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Figure 5.4: Left: Power spectral density of the recorded ASSR sequence with a fre-
quency of 8 Hz. Right: Relative power of the 8 Hz band over time, with
respect to the mean power of four bands (8 Hz, 10 Hz, 15 Hz, 30 Hz).

First results indicate the presence of the AM stimulus frequencies
and (sub-)harmonics (Fig. 5.4, left); however, the recordings are sub-
ject to a lot of noise, often entirely covering the signal. The time
series of the relative band power (Fig. 5.4, right) indicates the this:
The sequence starts after 15 seconds, and for the 10 second dura-
tion, the signal is sporadic, fading entirely before reappearing. The
signal-to-noise ratio never exceeds 3 dB, the measured amplitudes of
those oscillations are below 4 µm. Interestingly, for highly eccentric
ellipses, the oscillations, if they do appear, are visible in the diam-
eter of the long axis only, not in the short axis, likely because the
squeezed amplitude due to the perspective distortion is too small to
resolve. This justifies the use of the elliptical fit.

Nevertheless, further improvements to both the algorithm and the
setup may be needed, to increase resolution and precision and de-
crease noise, and achieve robust results. A commercial EEG to mea-
sure brain activity directly, which so far has not been used, will create
another way to confirm the correlation.
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6 Summary

A remote EEG is a promising way to create a sensor for use in
Human-Machine-Teams. Building on the work of Park and Whang,
we developed an experiment to show a correlation between brain ac-
tivity and oscillations of the pupil diameter. As opposed to Park
and Whang, we tried measuring the oscillations in the same fre-
quency band as the brain activity, not its subharmonics, as well as in
real units, not pixels. In order to achieve the required precision, we
placed the camera in close proximity to the eye for a high resolution
of the pupil, and developed an elliptical fitting algorithm in order to
compensate perspective distortion. Using both visual and acoustic
stimuli – SSVEP and ASSR – we tried to measure the corresponding
excitation of the pupil. For the visual stimulation, we received a clear
and reliable signal; oscillations of the pupil of approximately 10 µm
for a stimulation frequency of 7.5 Hz with a SNR of 17 dB. Using in-
tervals for the Fourier transform as short as 2 seconds, we created a
time series of the band power, showing the onset as well as the end
of the stimulation, thus allowing for the construction of non-contact
brain-computer interfaces. In order to separate the brain activity-
induced oscillations from the pupillary light reflex, we also used
acoustic stimuli. First results indicate a positive response, showing
the stimulation frequency of 8 Hz as well as their (sub-)harmonics;
however, subject to much noise, sometimes blanketing the signal,
and never exceeding an SNR of 3 dB. The corresponding amplitude
of the oscillation is below 4 µm. In the future, decreasing the noise
floor and correlating the pupil spectra with commercial EEG spectra
could yield more robust results.
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