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Abstract We present a heuristic approach to segment an im-
age into multiple regions for subsequent feature extraction.
The algorithm is based on region growing and allows parallel
implementation by employing multiple seeds, that indepen-
dently grow a region until all pixels of the image have been
assigned. Seeds are homogeneously dispersed in pixel space
and the growth of regions is controlled by prioritizing neigh-
boring pixels via a bucket queue. The heuristic is based on
histograms that are built up during growth to derive binary
images for each seed. These binary images are weighted by
additive image fusion. A simple preprocessing technique is
applied to tune the algorithm’s outcome. We explain how in-
put parameters influence the algorithm’s outcome and how
practical solutions can be obtained.

Keywords Image segmentation, region growing, feature ex-
traction, image registration, parallel implementation

1 Introduction

In medical diagnostics, deep learning methods [1] allow for an in-
crease in both sensitivity and specificity of diagnostic results. As a
drawback, however, to obtain accurate results they rely on massive
training data, which typically is not available in the required anno-
tated quality since it requires labor-intensive labeling by experts. An
unsupervised technique called region growing might improve that
situation by providing fully automated computer-aided segmenta-
tion and feature extraction [2]. Region growing is used very exten-
sively in medical diagnostic applications [3] and it has shown to be
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very useful, e. g. in the diagnosis of cardiac disease, or tumor vol-
ume segmentation [4]. It is an easy to implement and fast processing
algorithm that is growing a region by comparing unassigned neigh-
boring pixels to those already assigned to a growing region. It is,
however, prone to so-called leakage. Without any special considera-
tion or improvement to the algorithm, it tends to assign pixels also
outside of a homogeneous region where borders are thinned out or
interrupted due to noise or other artifacts. In this work, we address
a noise-resistant and highly parallelizable technique, which can seg-
ment MRI volume data with a global view on the problem.

A further target is to design a tool for temporal analysis of image
sequences by comparison of extracted features. A common issue in
comparing two or more images is to register them, for example, at
different instances of time, or when the sensor with respect to the
patient is aligned differently. The task considered here tries to solve
this issue by so-called image registration [5]. The idea of our work
is to register different images by a set of extracted features based on
region growing. However, this paper focuses on the region growing
algorithm only and future work will cover the image registration
part.

2 Related Work

Seeded Region Growing (SRG) by Adams and Bischof [6] is an ef-
fective and well-known image segmentation algorithm. SRG grows
one or more regions, initially called seeds, that can be single-pixel-
sized or a set of adjacent pixels. The algorithm grows these distinct
regions due to some homogeneous criterion until all pixels are as-
signed a region. Formally, the sth seed grows region As for every
s ∈ N where s is less than or equal to a user-defined number of
seeds k. Let ~p ∈ N3

0 = (p0, p1, p2) be a pixel, where (p0, p1) is
its position in pixel space and let I(~p) = p2 be its intensity value.
Let N(~p) be the set of neighboring pixels of ~p in pixel space and
N(A) = {r ∈ A | N(r) \ A 6= ∅} the neighboring pixels of region A.
During an iteration, a pixel ~p is assigned to the region As if

~p ∈ N(As) ∧ δ(As,~p) = min
∀i∈N∧i≤k ∀~y∈N(Ai)

{δ(Ai,~y)}, (2.1)
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where function δ is defined as:

δ(A,~p) =
∣∣∣∣I(~p)−mean

~y∈A
{I(~y)}

∣∣∣∣ (2.2)

The number of iterations equals the number of pixels, i. e. the al-
gorithm halts when all pixels are partitioned. The condition of
Eqn. (2.1) may hold for multiple regions As and a single pixel ~p,
however, according to the authors of the SRG implementation, a pixel
cannot be assigned to multiple regions during a single iteration. As
a consequence, two inherent order dependencies may occur, which
may lead to different segmentation results as discussed by Mehnert
and Jackway [7].

Anyway, the presented algorithm employs independent seeds,
which can grow fully in parallel without a rendezvous before ev-
ery pixel has been visited. Also, in this approach, the mean intensity
of a region is neglected and growth is promoted where two directly
neighboring pixels meet the condition of some homogeneous crite-
rion only.

In many region growing algorithms, k seeds typically grow k re-
gions, and selecting a proper set of seed positions is a non-trivial task
and crucial to the outcome. In our approach, we use one or more
seeds but positions are homogeneously dispersed in pixel space and
the number of seeds does not necessarily equal the number of ex-
tracted regions.

3 Algorithm

The following algorithm is described for n-bit grayscale images
in Nw×h

0 , however, adapting it for higher dimensions should be
straightforward. Multiple seeds are employed and aligned as grid
with a user-defined width u and height v with u, v ∈ N, u ≤ w
and v ≤ h. For every k ∈ N0, with k < uv, a seed position vector
(x, y) ∈N2

0 is defined as:

x =

⌊
w
u
(k mod u) +

w
2u

⌉
, y =

⌊
h
v

⌊ k
u

⌋
+

h
2v

⌉
, (3.1)
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Figure 3.1: Region based segmentation applied to a breast MRI dataset [8].

as schematically depicted in red (u = v = 3) on the blue pane of
Fig. 3.1. The algorithm walks through pixel space in an 8-adjacency
flood-fill manner independently for each of the k seeds as follows:
Let ~p ∈ N3

0 = (p0, p1, p2) be a pixel, where (p0, p1) is its position in
pixel space and let I(~p) = p2 be its intensity value. A bucket queue
is used to hold data objects (~p, q), where q ∈ N0 with q < 2n is the
bucket’s index. Initially, the queue is filled with the seed only, which
is a single pixel only. An iteration i is initiated by polling a bucket Bi.
∀~a ∈ Bi ∀~b ∈ N′(~a), a cost function δ f : (~a,~b) 7→ {r ∈ N0 | r < 2n}
is applied, where N′(~a) denotes all non-visited neighbors of ~a. Cost
function δ f is defined as:

δ f (~a,~b) =
∣∣∣I(~a)− I(~b)

∣∣∣ . (3.2)

At the end of an iteration, each result is added to the queue as
(~b, δ f (~a,~b)). A pixel counts as ’visited’ when it is polled from (and
not added to) the bucket queue.

3.1 Heuristic

Additionally, the number of newly assigned pixels mi is tracked for
each iteration i. A map Ms ∈ Nw×h

0 , drawn as an orange pane in
Fig. 3.1, is used for the sth of k seeds and every ra0,a1 ∈ Ms, where
(a0, a1) is the position of ~a, is set to mmax(i) = max(m0, m1, ..., mi)
at iteration i. Finally, when the queue is empty, i. e. every pixel was
visited, Ms is converted into a binary map by

r ∈ Ms =

{
0 r < mmax(i)
1 otherwise (3.3)
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Then, all k binary maps are added up elementwise to ∑k
s=1 Ms, i. e.

additive image fusion is applied, and normalized to the range from
zero to 2n − 1 to suppress regions that occur less often than oth-
ers. An example is highlighted in Fig. 3.1 (right) with random colors
assigned for regions containing the same numerical value. The fol-
lowing pseudo code gives an additional overview of the algorithm
for a single seed:

Algorithm 1: Generating binary Map Ms for a single seed.

1 add pixel ~p = (x, y, 0) to queue;
2 set every r ∈ Ms and mmax to zero;
3 while queue is not empty do
4 poll bucket B (with highest priority) from queue;
5 set mi to zero;
6 for each~a ∈ B do
7 if~a hasn’t been visited yet then
8 mark~a as visited;
9 increment mi by one;

10 set value at position of~a in Map Ms to mmax;
11 for each~b ∈ N′(~a) do
12 add (~b, f (~a,~b)) to queue ;

13 set mmax to max (mmax, mi);

14 for each r ∈ Ms do
15 if r ≥ mmax then
16 set r to one;

In this algorithm, it is not necessary to visit every pixel. The itera-
tion can halt when the number of non-visited pixels becomes smaller
than mmax. For the sake of simplicity, not every considered optimiza-
tion is noted.

Growth is depicted in Fig. 3.2 and Fig. 3.3 for two arbitrary seed
positions. Figure 3.2 shows a cumulative histogram of the pixel as-
similation process and highlights the iteration for each seed where
the largest peak is detected and Fig. 3.3 shows the corresponding
growing process.
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Figure 3.2: Left: Cumulative frequency of number of assigned pixels mi on ’pliers’
(u, v) = (640, 480) and largest step mmax is found at highlighted iteration
i. Right: Image with initial seed positions indicated.
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i=1415 i=610

Figure 3.3: Growth of blue seed at (60, 60) and orange seed at (320, 240) on ’pliers’.
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Figure 3.4: Tuning through the algorithm’s solution space by adjusting the seed grid
size uv and scaling parameter g. Random colors are assigned to distinctive
regions. The fourth column from left contains the same regions as the
third one and regions are colored by its mean intensity of the pixels of the
original image.

3.2 Preprocessing

The algorithm’s result is influenced by an input image and the se-
lected grid size so far. However, it is desired to dynamically ’scan’
for multiple acceptable solutions. Image quantization is used as
a preprocessing step to decrease the image’s bit depth, which has
shown to be very useful to find practical solutions. Scaling parame-
ter g ∈ R with 0 < g ≤ 1 is used to scale the image range to result
in a lower bit depth. A user can tune the grid size uv, i. e. the den-
sity of dispersed seeds, and scaling parameter g as shown in Fig. 3.4
until a suitable solution is found. We may want to refer to [9], where
image quantization is investigated when applied as a preprocessing
step for dimensionality reduction in image classification pipelines.
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Figure 4.1: Sequential circuit representing a pixel in 4-adjacency. Left: Pixel in detail.
Right: Pixel grid overview.

4 Parallel Implementation

This section intends to sketch the possibility of a highly parallelizable
realization of the presented algorithm. While it is obvious to grow
multiple seeds in parallel, it should also be noted, that per iteration,
multiple pixels can potentially be examined in parallel as well. We
present a concept for a sequential circuit, where the basic algorithm
for the creation of a binary map is implemented such that it halts
after as many clock cycles as iterations. The circuit is described for a
pixel raster as schematically depicted on the right of Fig. 4.1, where
δ f denotes a connection in a 4-adjacent neighborhood. However,

adapting it to 8-adjacency or 3D-connected cubes is straightforward.
The single-bit input ’seed’ (upper left of Fig. 4.1) is set HIGH for
the seed pixel to initiate the algorithm and all essential blocks in
Fig. 4.1 are implemented as:

• I() outputs the pixel’s intensity, which can be an unsigned
integer between zero and (2n − 2), where n is the bit depth.
The word (2n − 1) is defined as NULL within this section’s
context.

• v denotes single-bit memory, which saves the state whether a
pixel was visited or not. It is set when the global MIN and
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the local min become equal and stays high until the algorithm
halts.

• δ f calculates δ f of two neighboring pixels as in Eqn. (3.2), if

the outputs v of these two pixels differ from each other, i. e.
one pixel is part of the region and one is a neighbor of it.

• min propagates the minimum of the four n-bit neighboring
δ f -results to the global MIN if the pixel was already visited

or if it is a seed, otherwise NULL is sent to MIN .

• MIN finds the minimum of each’s pixel min output

• mmax updates its value by the global mMAX output until the
pixel was visited.

• mi is a parallel counter [10], which counts each pixel that
is first-time visited. The result is compared to the previous
value of mMAX to determine and output the maximum of both
values.

The performance bottleneck consists of the MIN and mi blocks,
where a clever design is required to keep propagation delays low.
However, propagation delay, stray capacitance, and any other hard-
ware related issues are neglected in this section and require further
investigation. The ’?’-bit width should be chosen to count at least
the largest number of bordering pixels that may occur at a single
iteration.

5 Results and Discussions

5.1 Tuning, Merge and Split

As seen in Fig. 3.4, the more seeds are employed the more the algo-
rithm tends to oversegmentation. The fewer seeds are employed, i. e.
the smaller a seed grid size is selected, the more the position of a
single seed influences the overall outcome of the algorithm. If only
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a few homogeneous regions are dominating the image, increasing
the number of seeds will not necessarily increase oversegmentation.
However, the algorithm might be re-executed with already extracted
regions as input instead of the whole image to furtherly split them.
Conversely, oversegmentation can be compensated for by merging
adjacent regions, that have a similar mean intensity.

This paper intends to provide a low-level tool for high-level appli-
cations. Whether the solution space has optimum solutions or not,
is an application-dependent consideration and requires some sort of
’oracle’ or ’teacher’ as known from active learning [11].

5.2 Performance

When scaling parameter g is decreased the algorithm’s time com-
plexity decreases as well. While the bit depth and the spatial image
resolution influence the algorithm’s time complexity, it is believed
that the complexity will not necessarily increase as the number of
dimensions does for the parallel implementation. Analogously, one
might compare the growth of a square in 2D, a cube in 3D, or a
tesseract in 4D, where each dimension has the same spatial resolu-
tion.

5.3 Application and Future Work

When regions are extracted, subsequently, our goal is to register a
large set of regions of MRI breast cancer image sequences. Also,
we would like to apply our algorithm to pairs of stereo images like
the Middlebury Stereo Datasets [12] to investigate the possibility of
stereo matching techniques. Further investigations will cover non-
rigid shape registration methods and similarity measure of how well
registered regions match.

6 Conclusions

Based on seeded region growing, an algorithm was designed to sup-
port feature extraction in the field of medical diagnostics, however, it
is not necessarily limited to this type of image. While the presented
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algorithm is similar to the common region growing algorithms, the
used heuristic is a novel and potentially faster approach. There is no
need to find specific seed positions but instead, it is required to scale
a parameter to adjust the density of homogeneously dispersed seeds
in pixel space. Another input parameter is applied in a preprocessing
step to reduce dimensionality by image quantization. The combina-
tion of adjusting density and dimensionality was depicted to give an
intuition of the usefulness for more application-oriented approaches
where optimal solutions might be found by an oracle as known from
active learning.

A sequential circuit was described in this paper to point out the
possibility of a highly parallel implementation with low time com-
plexity. Overall experimental results seem promising, however, fur-
ther investigation is required to evaluate the quality of segmentation.
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