
Measuring similarity of rendered and real
image pairs using domain translation by

employing Conditional Generative
Adversarial Networks

Naveen Raj Datha1 and Marcus Thiel2

1 Fraunhofer Institute for Factory Operation and Automation IFF,
Sandtorstraße 22, 39106 Magdeburg

2 Otto-von-Guericke-Universität Magdeburg,
Fakultät für Informatik, Data & Knowledge Engineering Group,

Universitätsplatz 2, 39106 Magdeburg

Abstract One way for the visual inspection of assemblies with
many variants is to compare camera images with the corre-
sponding rendered view of the CAD model. In this paper, we
address the problem to decide whether there are significant
differences between camera and rendered images, which sig-
nal an assembly error. Our approach uses a Conditional Gen-
erative Adversarial Network (CGAN) to translate the camera
image to a rendered like one, followed by error detection by
comparing the translated and rendered images.

Keywords Automated visual assembly inspection, CGAN,
deep learning, quality assurance, human-machine systems

1 Introduction

This research is motivated by an inspection task in manual assem-
bly. In order to ensure that a module is correctly assembled visual
inspection is a frequent choice. When assembly errors may cause
high costs in downstream processes or could lead to dangerous mal-
function, an investment into a reliable automated inspection solution
is of interest. For assemblies with many variants the following ap-
proach with cameras could be used. The cameras take images of

Forum Bildverarbeitung 2020

DOI: 10.5445/KSP/1000124383 | https://www.ksp.kit.edu/site/books/m/10.58895/ksp/1000124383/

DOI: 10.58895/ksp/1000124383-22 erschienen in:

N. R. Datha and M. Thiel

(a) Correct assembly (b) Assembly error (missing part)

Figure 1.1: Pairs of camera and rendered images.

sufficient resolution of the parts to be inspected in such a way, that
we know the position of the camera with respect to the assembly.
This allows us to render the same view using the CAD model [1].
Then we compare the rendered view and the real camera image and
to decide, whether there is an error. In the current work, we refer to
the rendered view as the CAD image and the real camera image as
real-world image.

The CAD model provides only geometrical information. A photo-
realistic rendering is not possible. Yet, intensity changes can be ex-
pected, where surface normals change or neighbor pixels are on dif-
ferent objects or background. That is why the existing image process-
ing approaches focus on the comparison of edges detected in CAD
and real-world images [2]. As expected edges appear more or less
distinct, and as there are further edges from texture and illumina-
tion, edge detection and comparison criteria need to be parametrized
based on example images from the assembly. Whenever there are
new parts, their finishing changes or lighting conditions are mod-
ified it may be necessary to adapt parameters and criteria again.
Therefore, it is natural to ask whether there is a machine learning
approach, which learns the classification of assembly errors and cor-
rectly mounted parts based on annotated example images with only
few examples for assembly errors. In the current work, we intro-
duce such a data-driven learning mechanism. Our approach can be
easily adapted to new assembly products, parts or conditions, with
minimal human expert involvement.

280

Measuring similarity of rendered and real image pairs

Dataset: The dataset we used consists of image pairs obtained from
42 real-world assemblies of 3 different assembly products. Figures
22.1(a) and 22.1(b) show such sample image pairs. From all the 42
experiments we have around 24333 inspection tasks, i. e. 24333 image
pairs that can be used for training and testing. In the 24333 image
pairs only 260 image pairs are assembly errors and all the other are
correctly assembled samples. For our learning task, we leave out
the samples from 9 experiments (3 from each assembly type) for
testing and use the remaining samples for training. From here on,
we refer to the correctly assembled samples as negative samples and
the assembly error samples as positive samples.

We categorize the parts-of-interest in our inspection tasks into 10
different categories based on their visual appearance. Figure 1.2
shows one sample from each of these categories and their names.
Also, we increase the dataset size by performing data-augmentation
(discussed later in section 2). We adjust all the images to aspect ratio
1 : 1 for the sake of ease of training Convolutional Neural Networks.

Figure 1.2: Sample images of 10 different categories. Names in order from left: Air-
Adapters, Bolts-1, Bolts-2, Bolts-3, Bolts-4, Mounting-Plates, Stiffeners,
Swivel-Nuts, Vent-Tubes, Miscellaneous categories.

2 Method

Suppose that the real image could be translated from the domain of
real textured images to the domain of rendered like images, then an
image comparison could be used for classification. Similar images
would represent the correctly mounted parts and differences in the
images would signalize assembly errors. The intention is to simplify
the classification to asking whether a similarity measure for two im-
ages is above or below some threshold. The learning comes in with
domain translation. The advantage is that for learning the domain
translation we only need negative samples.

281

N. R. Datha and M. Thiel

Figure 2.1 shows the conceptual idea behind our methodology, the
data flows from left to right in the pipeline. The first stage is about
pre-processing data. We generate a mask from the CAD image,
where the pixels of part of interest are assigned value 0 and the
background pixels are assigned a value 1. We then extract the back-
ground from the real-world image by simply multiplying the real-
world image with the mask image. The extracted background is
then added to the CAD image resulting in a hybrid image. We use
this hybrid image as our ground-truth for training and also for clas-
sification of assembly errors. Figure 2.2 shows an example of these
data pre-processing steps. In section 3 we also discuss results of ex-
periments, where we omitted this pre-processing and kept the black
background.

Figure 2.1: Conceptual diagram

The second stage is image domain translation. For domain trans-
lation, we choose a deep learning approach: Conditional Generative
Adversarial Networks (CGAN) [3]. CGANs are a special case of Gen-
erative Adversarial Networks (GAN) [4] which are state-of-the-art
image generation models. A CGAN consists of two blocks, generator
and discriminator, both these blocks are made up of Convolutional
Neural Networks. During training, the generator of CGAN learns to
translate input real-world image to CAD domain. The discriminator
on the other hand learns to distinguish between the generator’s out-
put and ground-truth CAD image, given the real-world image. For
the generator network, we experimented with two different architec-

282

Measuring similarity of rendered and real image pairs

Figure 2.2: 3 step data pre-processing to obtain ground-truth images

tures from the state-of-the-art, the pix2pix [5] and U-Net [6] archi-
tectures. For the discriminator, we use the architecture proposed in
pix2pix [5]. Also, to make domain translation invariant to Euclidean
transformations or small changes of intensities, we apply data aug-
mentation techniques such as Flipping, rotating, translating, small
random increase/decrease of pixel values on the training data set.
The third stage of the conceptual design consists of a classification
block, where we compare the translated and ground-truth images
to detect assembly errors. Note that, though we use the terminol-
ogy of classification here, no learning process happens in this block.
The actual learning process happens only in the domain translation
block.

In our approach, we need image comparison metrics for two pur-
poses. One for evaluating the quality of image translation, the other
for comparing the translated and ground-truth images in the classi-
fication block. For the purpose of measuring the image translation
quality we use the Structural SIMilarity (SSIM) Index [7]. Given a
pair of perceptually similar images, SSIM gives a measure of simi-
larity in the structural information of the images. A good domain
translation model, while translating the domain of an input image,

283

N. R. Datha and M. Thiel

should not affect/degrade the structural information present in it.
Thus, comparing the structural information in the translated images
with the structural information in the ground-truth images forms a
good basis for testing the translation quality. The SSIM metric serves
this purpose here. Note that, for training and testing the CGAN per-
formance, we only need the negative samples from the dataset, we
do not need the positive samples here.

For comparing the translated and ground-truth images in the clas-
sification block, we use the Mean squared error (MSE). MSE is calcu-
lated as the mean of squared pixel intensity differences between the
given pair of images. MSE is calculated at pixel level and does not
take into account the neighborhood relations. However, MSE highly
penalizes large deviations in pixel intensities. This factor greatly
helps in classifying the borderline positive samples, where the parts-
of-interest in the image pair are mostly similar with only some small
differences, see figure 22.1(b). To classify a sample as negative or
positive based on MSE, we need a threshold. We choose the thresh-
old as a trade-off between the sensitivity and specificity measures.
The sensitivity and specificity measures are calculated as

Sensitivity =
True Positives

True Positives + False Negatives
, (2.1)

Specificity =
True Negatives

True Negatives + False Positives
. (2.2)

We calculate the sensitivity and specificity over a range of different
thresholds and finally choose the threshold where the sum of both
measures is maximum. We use 60% of our test samples, both nega-
tive and positive for this purpose. Also, to have a balanced dataset
for threshold calculation, we perform data-augmentation to generate
artificial positive samples, by simply swapping the CAD image of a
given image pair with some different CAD image.

3 Results

We performed a set of experiments to evaluate the performance of
our pipeline with pix2pix and U-Net generator architectures. The
architectures in all our experiments were trained using the Adam

284

Measuring similarity of rendered and real image pairs

optimizer [8] with a learning rate of 0.0002. In case of discriminator
we used Mean squared error (MSE) as the loss function, whereas in
case of generator we used a weighted sum of Mean squared error
(MSE) and Mean absolute error (MAE) as suggested in [5].

The results we report in this section were obtained for real-world
to CAD image translation and by using images with background.
Later in this section, we explain our observations on why translating
CAD images to real-world results in poor translation quality and
why it is not a good idea to use images without background for
training. Also, the numbers reported in this section were obtained
over original positive and negative test samples, no augmented data
was included in these calculations.

Table 1: Image translation and classification results

Translation quality
(Avg. SSIM)

Classification performance
(based on MSE measure)

Architecture Train-set Test-set Sensitivity Specificity
pix2pix 0.93 0.92 0.75 0.97
U-Net 0.94 0.93 0.85 0.98

Table 1 lists the results of the best performing pix2pix and U-
Net generator models. The pix2pix generator model took relatively
longer training time compared to U-Net for achieving similar trans-
lation quality. In both cases, image translation quality remains good
and consistent over train and test sets, indicating that the models
learned to generalize. Figures 22.1(a), 22.1(b), 22.1(c) show some
sample image translation results obtained with the U-Net model. In
terms of classification performance, although the specificity is almost
the same in both cases, we achieved better sensitivity with U-Net
translation. While the pix2pix pipeline misses to detect 25% error
samples in the test set, U-Net performs slightly better by missing
15% defects.

The results in table 1 were obtained using a common MSE thresh-
old for all the 10 categories of objects. But, in production different
types of errors can occur for different categories. For example, in
our dataset, missing bolt is a most common error in case of bolts,
whereas, in case of air-adapters the most common error is mount-

285

N. R. Datha and M. Thiel

(a) Negative sample (No error) (b) Positive sample (Wrong part)

(c) Positive sample (Missing part)

Figure 3.1: Image translation results

ing a wrong part. When the types of errors differ, the MSE values
in these cases differ too and therefore it would be beneficial to use
different cut-off values for each category of objects rather than us-
ing a common cut-off for all the categories. Table 2 summarizes
the results we obtained after choosing individual cut-offs for each
category. These results were obtained using the U-Net generator
mentioned in table 1. Except for the Stiffeners category all other
categories have sensitivity of 1.0 i. e., 100% error detection.

Stiffeners are a special category of objects which have an extreme
aspect ratio, see figure 3.2. When these images are resized to a aspect
ratio of 1 : 1, a lot of information about the part of interest is lost,
and therefore it would be difficult to detect errors in such cases. We
solved this problem by training the CGAN on image tiles, obtained
by splitting each Stiffener image into multiple small tiles. And dur-
ing classification, if any tile of an image is classified as positive then
the image itself is classified as positive. Using this approach we
achieved 100% error detection in case of Stiffeners too.

Translating CAD images to real-world: Figures 22.3(a) and 22.3(b)
show the image translation results we obtained by training a CGAN
model to translate CAD images to real-world images. The training

286

Measuring similarity of rendered and real image pairs

Table 2: Category-wise classification results obtained after choosing individual cut-
offs for each category

Category Sensitivity Specificity
Air-Adapters 1.0 1.0

Bolts-1 1.0 0.99
Bolts-2 1.0 0.99
Bolts-3 1.0 0.98
Bolts-4 1.0 1.0

Mounting-Plates 1.0 0.97
Stiffeners 0.75 0.98

Swivel-Nuts 1.0 1.0
Vent-Tubes 1.0 1.0

Miscellaneous 1.0 0.96

Figure 3.2: Image of a Stiffener with its original aspect ratio (14 : 1)

loss and the image quality stopped improving after we trained the
model for a few hundred epochs. The possible reason here for poor
image translation quality could be that, the process of transitioning
from real-world to CAD-world is like a simplification process, the
other way is not. Lets say there is a product which contains a part X,
the part’s CAD model image is Xc. Lets say for the purpose of train-
ing we obtained real-world images Xr1, Xr2, Xr3 of this part when
the product was assembled three different times. Now, when we
train the CGAN model with Xr1, Xr2, Xr3 as inputs and Xc as the
common ground-truth for all three inputs, we are essentially train-
ing the model to simplify the inputs and converge the output to the
pixel values seen in Xc. But, when we train the model with Xc as
input and Xr1, Xr2, Xr3 as ground-truths, the model learns to gener-
ate a mean output image that equally satisfies the constraints of all
three ground-truths it has seen during training. Therefore, translat-
ing CAD images to real-world might always result in blurry outputs.

287

N. R. Datha and M. Thiel

(a) Test sample 1 (b) Test sample 2

Figure 3.3: Blurry translation results obtained from a CGAN model trained to trans-
late images from CAD domain to real-world domain

Using images without background: In the experiments where we
trained the CGAN on images without background, we observed that
the translation quality on training images was satisfactorily good,
but the quality of outputs obtained on test-set was poor, indicating
over-fitting. Figures 22.4(a) and 22.4(b) show the mean activation
maps [9] we plotted for the top layers of the CGAN generator model
to understand its behaviour. In figure 22.4(a), where we trained the
model on images without background, we see that, in almost all cat-
egories of input images, the high activation values are in the back-
ground region (The reddish regions in the activation maps indicate
high activations). But, in case of figure 22.4(b), where we trained the
model on images with background, the activation values in the back-
ground region are lower than the part-of-interest, indicating that the
model learned the structure of the part-of-interest. When a model
is trained on images without background, the network might find
it easier to learn about the black patches in the background, than
learning about the complexity of structures in the region of interest.
The Convolutional Neural Networks usually learn to find or extract
the most common features that can differentiate one class from the
other. Therefore in order to drive the network towards learning the
right features for a given part of interest, we simply have to make
sure that no other part or region in the image highly correlates with
the part-of-interest. But this is not the case with black-background
images. Whenever there is some specific part-of-interest in an im-
age, there are always corresponding black-patches as well. Then the
network might learn about the black-patches rather the part of in-
terest. In short, the lower the correlation between background and

288

Measuring similarity of rendered and real image pairs

(a) Without background (b) With background

Figure 3.4: The activation maps of each category highlight the difference in behaviour
of the CGAN model when trained on with and without background im-
ages. (Reddish regions in the images indicate higher activation values)

the region of interest, the better. The background added from the
real-world image and the data-augmentation helps in achieving this
randomness.

4 Summary

In manual assembly tasks, inspection of products assembled by hu-
mans is essential. One way of doing this is by automated visual
inspection using camera images. Images captured in the real-world
can be compared with images rendered from the CAD model to de-
tect errors. The existing approaches focus on comparison of edges
detected in rendered and real image pairs. However, when the prod-
ucts/parts or lighting conditions change, the parameters of these
comparison algorithms have to be adjusted again by subject matter
experts. In the current work we introduce a data-driven learning
approach to solve this problem. We use the idea of image domain
translation to translate the real-world images into rendered like ones,
so that the translated and ground-truth images can be compared us-
ing simple image comparison measures, thus minimizing involve-
ment of human experts. We use CGAN for the purpose of image
domain translation and MSE for the purpose of image comparison.
By choosing individual MSE thresholds for different types of parts
and for some parts (with extreme aspect ratio) training on image
tiles instead of whole image at once, we achieved 100% error de-
tection while mis-classifying only 0.5% correct assembly samples as
errors.

289

N. R. Datha and M. Thiel

References

1. S. Sauer, T. Dunker, and M. Heizmann, “Ein Framework zur Simulation
optischer Sensoren,” in 20. GMA/ITG-Fachtagung Sensoren und Messsys-
teme 2019. Nürnberg: AMA Association for Sensors and Measurement,
2019.

2. S. Sauer and D. Berndt, “Optische Montageprüfung unter Nutzung intel-
ligenter Algorithmen,” in 3D-NordOst 2018, Berlin, 2018, pp. 35–42.

3. M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

4. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–2680.

5. P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” Proceedings CVPR 2017, vol. 2017-
Janua, pp. 5967–5976, 2017.

6. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” Lecture Notes in Computer Science,
vol. 9351, pp. 234–241, 2015.

7. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE transac-
tions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

8. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

9. F. Chollet, Deep Learning with Python, 1st ed. USA: Manning Publications
Co., 2017.

290

