
Comparing Optimization Methods
for Deep Learning at the Example

of Artistic Style Transfer

Alexander Geng1, Ali Moghiseh2, Katja Schladitz2,
and Claudia Redenbach1

1 University of Kaiserslautern,
Gottlieb-Daimler-Straße 47, 67663 Kaiserslautern

2 Fraunhofer Institute for Industrial Mathematics ITWM,
Fraunhofer-Platz 1, 67663 Kaiserslautern

Abstract Artistic style transfer is an application of deep learn-
ing using convolutional neural networks (CNN). It combines
the content of one image with the style of another one us-
ing so-called perceptual loss functions. More precisely, the
training of the network consists in choosing the weights such
that the perceptual loss is minimized. Here, we study the
impact of the choice of the optimization method on the final
transformation result. Training an artistic style transfer net-
work with several optimization methods commonly used in
deep learning, we obtain significantly differing models. In
a default parameter setting, we show that Adam, AdaMax,
Adam AMSGrad, Nadam, and RMSProp yield better results
than AdaDelta, AdaGrad or RProp, both measured by the per-
ceptual loss function and by visual perception. The results of
the last three methods strongly depend on the chosen param-
eters. With a suitable selection, AdaGrad and AdaDelta can
achieve results similar to the versions of Adam or RMSProp.

Keywords Convolutional neural network, perceptual loss,
stochastic gradient descent

Forum Bildverarbeitung 2020

DOI: 10.5445/KSP/1000124383 | https://www.ksp.kit.edu/site/books/m/10.58895/ksp/1000124383/

DOI: 10.58895/ksp/1000124383-27 erschienen in:

A. Geng et al.

1 Introduction

In order to achieve artistic style transfer as first described in [1, 2] in
real time as desirable for live demonstrations, we train a feed for-
ward network for style images and transfer the styles to content im-
ages as specified in [3]. The training of such a network is essentially
an optimization problem. The weights of the network are chosen
such that the prediction is as close as possible to the training data.
We compare eight methods available in PyTorch [4]: AdaGrad [5],
AdaDelta [6], RProp [7], RMSProp [8] and the four variants of Adam
(Adam, AdaMax, Adam AMSGrad [9], Nadam [10]).

2 Method

An overview of the system is visualized in Figure 2.1. It consists of
two components: an image transformation network fW on the left and
a loss network φ on the right side, which is used to define several
loss functions. The mapping ŷ = fW(x) transforms the input image
x into the output image ŷ, where W are the weights of the image
transformation network. We consider loss functions ` f eat(ŷ, y1) and
`style(ŷ, y2) which measure the content and style differences between
the transformed image ŷ and the target images y1 (content target) and
y2 (style target), respectively. In our case, the content target image y1
is the same as the input image x. Training of the image transforma-
tion network consists in minimizing a weighted combination of the
loss functions by using a suitable optimization method. We get an
optimal value W∗ with

W∗ = arg min
W

[
λc` f eat(fW(x), y1) + λs`style(fW(x), y2)

]
, (2.1)

where λc and λs are non-negative weight factors.

2.1 Image transformation network

The image transformation network is a deep convolutional neu-
ral network consisting of several convolutional layers with varying
stride. All convolutional layers are followed by spatial batch normal-
ization and rectified linear units (ReLU) cutting off negative parts.

342

Comparing optimization methods for Deep Learning

Figure 2.1: System overview. We train an image transformation network to transform
input images x into output images ŷ. A loss network φ pre-trained for im-
age classification is used to define loss functions. We measure the differ-
ences in content and style between the target images and the transformed
image. The loss network is not changed during training.

Only the output layer uses a scaled hyperbolic tangent function in-
stead to ensure that the output image has pixels with values in the
range [0, 255]. These encoders and decoders are connected by resid-
ual blocks.

2.2 Perceptual loss function

We apply a perceptual loss function, derived from a pre-trained net-
work. This loss network φ consists of the first four blocks of the
VGG-16 network [11] pre-trained on the ImageNet dataset [12]. This
dataset contains a total of over 14 million human annotated images
developed for computer vision research. These are organized into
around 22K sub-categories, which can be considered as sub-trees of
27 higher-level categories such as animals, plants or people. The loss
network is used to define a feature reconstruction loss and a style
reconstruction loss, that measure differences in content and style of

343

A. Geng et al.

(a) Images ŷ that minimize the feature reconstruction loss `
φ,j
f eat(ŷ, y1). An

image of the Microsoft COCO dataset [13] is taken as content target y1.

(b) Images ŷ that minimize the style reconstruction loss `
φ,j
style(ŷ, y2). Vincent

van Gogh’s painting The Starry Night [14] is taken as style target y2.

Figure 2.2: Reconstruction from different layers of the pretrained VGG-16 loss net-
work φ. Input image is a white noise image.

the transformed image and the content and style targets, respectively.
Finally, the combination of these two losses is minimized.

The feature reconstruction loss is defined as the squared, normal-
ized Euclidean distance (mean squared error) between feature repre-
sentations

`
φ,j
f eat(ŷ, y1) =

1
HjWjCj

‖φj(ŷ)− φj(y1)‖2
2, (2.2)

where φj(x) is a feature map of layer j with shape Hj ×Wj × Cj. In
this case, Hj and Wj represent the height and width, respectively, and
Cj the number of channels of the feature map. The reconstruction of
images from the first layers of the loss network provides images that
are perceptually similar to the target image, but that do not neces-
sarily fit exactly, see Figure 27.2(a). We use the feature map at layer
j = relu2 2 of the loss network to calculate the feature reconstruction
loss in Equation (2.2).

In addition to the content of the target image, the style of another
image has to be met. However, the difference of two images in style
is not as simple to represent as the in difference in content. Copying
the feature reconstruction loss would result in comparing the content

344

Comparing optimization methods for Deep Learning

of the style image with the output image ŷ, which is not our aim. In
order to extract the style representation of the style image, only, we
use the Gram matrix Gφ

j (x) to find the correlation of the channels
(features) of a feature map. This approach is based on the assump-
tion that the style of the image is defined through the co-occurrence
of particular features. As in the loss function above, let φj(x) be
the outcome of the network φ at layer j for the input x, which is a
Hj ×Wj × Cj feature map. Then, the Gram matrix Gφ

j (x), which has
a size of Cj × Cj, is defined by

Gφ
j (x)c,c′ =

1
HjWjCj

Hj

∑
h=1

Wj

∑
w=1

φj(x)h,w,cφj(x)h,w,c′ , (2.3)

where c, c′ ∈ [1, . . . , Cj]. Thus, we get the style reconstruction loss
via

`
φ,j
style(ŷ, y2) = ‖G

φ
j (ŷ)− Gφ

j (y2)‖2
F, (2.4)

i. e., the squared Frobenius norm of the difference of the Gram ma-
trices of output and target image.

Reconstruction from higher layers of the loss network transfers
larger scale structure from the target image (see Figure 27.2(b)).
We use this fact to reconstruct style from a set of layers J instead
of a single layer j and define `

φ,J
style(ŷ, y) as the sum of losses for

each layer j ∈ J. We combine the four layers relu1 2, relu2 2,
relu3 3, and relu4 3 of the VGG-16 loss network φ for the style re-
construction loss, using all available information. Hence, we set
J = {relu1 2, relu2 2, relu3 3, relu4 3} and get the following opti-
mization task

ŷ = arg min
y

[
λc`

φ,relu2 2
f eat (y, y1) + λs`

φ,J
style(y, y2)

]
. (2.5)

Here, λc > 0 is a content and λs > 0 a style weight factor. These
weights have to be adjusted carefully by trial-and-error, in our case
λc = 105 and λs = 1010. To solve Equation (2.5), we use several
optimization methods.

345

A. Geng et al.

2.3 Optimization methods

We focus on comparing extensions of the stochastic gradient descent
method (SGD) [15]. In SGD, the step size or learning rate in each iter-
ation is initially selected and kept fix. The first improvement to SGD
is AdaGrad, which adjusts the learning rate dynamically based on
all gradients observed before. AdaDelta restricts the number of ac-
cumulated past gradients to a fixed number, instead of accumulating
all past gradients. It has been developed to avoid the radical decay
of learning rates observed in AdaGrad. In RProp, the idea of only
using the sign of the gradient is combined with the idea of adapting
the step size individually for each weight. However, the particular
gradient is not available. This is improved by the use of the moving
average in RMSProp, which has been developed independently of
AdaGrad. It also keeps the estimates of the squared gradients, but
uses a moving average instead of continually accumulating them. Fi-
nally, Adam and its variants are very popular in style transfer. Adam
is similar to RMSProp and AdaDelta, but uses an exponentially de-
caying average of the past gradients. Compared to Adam, AdaMax
scales the gradients inversely proportional to the L∞ norm instead
of the L2 norm of the past gradients. Adam AMSGrad maintains
the maximum of all exponentially decaying averages of the gradi-
ents until the present time step and uses this maximum in place of
the actual one. Nadam is a combination of Adam and Nesterov’s
momentum method [16].

We train on the Microsoft COCO dataset of the year 2017 [13]. It
contains a total of over 123K images with annotations belonging to
80 object categories. In each step we update the weights of the image
transformation network.

3 Outcome

We train the model for two epochs with default learning rate η =
0.001 and batch size bs = 4 recommended in [17]. During the train-
ing process, the optimal weights of the image transformation net-
work for a style image are determined. For prediction, we pass a
content image through this network and get the results for the eight
considered optimization methods as shown in Figure 3.1. We take

346

Comparing optimization methods for Deep Learning

Figure 3.1: Content image (1 000× 668), style image (800× 800) and visualization of
stylized content image with various optimizers (each 1 000× 668).

(a) Epoch 1. (b) Epoch 2.

Figure 3.2: Loss plots for two epochs using the eight optimization methods.

an image of the Leaning Tower of Pisa [18] as content image and
a colorful pattern [19] as style image. Visually, the differences are
quite strong. AdaDelta, AdaGrad or RProp result in rather dark
images whose content is not as well visible as in the results of the
Adam versions or RMSProp. The loss plots for the eight methods
over the two training epochs also clearly show the differences, see
Figure 3.2. To investigate the dependence of the solution on the
hyperparameters of the optimization method, we vary the learning
rate η ∈ {0.1, 0.01, 0.001, 0.0001} and batch size bs ∈ {1, 2, 4, 8}. The
best setting and the corresponding loss values and training times are
shown in Table 1. The adjusted parameters result in more similar
images except for AdaGrad and RProp. The loss value for the RProp
result differs by a factor of almost two from the loss values obtained
by the other methods. This is also reflected in the updated results in
Figure 3.3. The training times yield a similar picture: All methods

347

A. Geng et al.

Table 1: Summary of the selected parameters, the loss values, and training times for
two epochs training using the eight optimization methods.

Optimization method η bs Loss value Training time (in hours)

AdaGrad 0.01 1 4.2293 · 106 5.6
AdaDelta 0.1 1 3.3681 · 106 6.0
RProp 0.0001 1 6.0191 · 106 8.6
RMSProp 0.001 1 3.3217 · 106 5.9
Adam 0.001 1 3.5556 · 106 5.8
AdaMax 0.001 1 3.4540 · 106 5.8
Adam AMSGrad 0.001 2 3.5892 · 106 5.9
Nadam 0.001 2 3.4687 · 106 6.0

Figure 3.3: Content image (1000× 668), style image (800× 800) and visualization of
stylized content image with different optimizer and adjusted parameters
(each 1000× 668).

take approximately 6 hours or less, while the training with RProp
requires 8.6 hours.

Differences of the optimization methods show with respect to pa-
rameter selection, too. The Adam versions or RMSProp lead to simi-
lar loss values and stylized images, even if the selected learning rates
and batch sizes are not optimal, whereas for AdaGrad, AdaDelta,
and RProp the loss values depend strongly on the chosen parame-
ters and can exceed the optimal ones by far. Comparing Figures 3.1
and 3.3 also clearly shows these differences.

348

Comparing optimization methods for Deep Learning

4 Summary

The choice of the optimization method can be decisive for the result
of the artistic style transfer. It is advisable to use one of the Adam
versions or RMSProp which are more robust with respect to param-
eter choice than the other methods considered here. Even though we
have used loss functions for measuring the quality of style reproduc-
tion, the evaluation of ”style” is rather subjective and, hence, hard to
measure accurately. Thus, in the next step, we plan to investigate the
effect of the optimization method on a segmentation problem where
differences can be quantified more explicitly.

5 Acknowledgements

This research was supported by the Fraunhofer FLAGSHIP
PROJECT ML4P.

References

1. L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic
style,” Journal of Vision, vol. 16, no. 12, p. 326, 2016.

2. ——, “Image style transfer using convolutional neural networks,” 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
2414–2423, 2016.

3. J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style
transfer and super-resolution,” Lecture Notes in Computer Science, vol.
9906, pp. 694–711, 2016.

4. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” ArXiv, vol. abs/1912.01703, 2019.

5. J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” Journal of Machine Learning
Research, vol. 12, no. 61, pp. 2121–2159, 2011.

6. M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,” ArXiv,
vol. abs/1212.5701, 2012.

349

A. Geng et al.

7. M. A. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: the RPROP algorithm,” IEEE International
Conference on Neural Networks, pp. 586–591 vol.1, 1993.

8. T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide the
gradient by a running average of its recent magnitude,” COURSERA:
Neural Networks for Machine Learning, 2012. [Online]. Available: http:
//www.cs.toronto.edu/∼tijmen/csc321/slides/lecture slides lec6.pdf

9. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014.

10. T. Dozat, “Incorporating Nesterov Momentum into Adam,” ICLR Work-
shop, 2016.

11. K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2015.

12. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
“ImageNet Large Scale Visual Recognition Challenge,” ArXiv, vol.
abs/1409.0575, 2014.

13. T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Per-
ona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft COCO: Com-
mon Objects in Context,” Lecture Notes in Computer Science, 2014.

14. V. van Gogh, “The Starry Night,” Museum of Modern Art, New York,
1889. [Online]. Available: https://www.vangoghgallery.com/catalog/
Painting/508/Starry-Night.html

15. H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Statist., vol. 22, no. 3, pp. 400–407, 1951.

16. A. Botev, G. Lever, and D. Barber, “Nesterov’s accelerated gradient and
momentum as approximations to regularised update descent,” 2017 In-
ternational Joint Conference on Neural Networks (IJCNN), pp. 1899–1903,
2017.

17. P. Saini, “StyleTransferApp,” GitHub repository, 2019. [Online].
Available: https://github.com/puneet29/StyleTransferApp

18. P. la Quiete, “Torre pendente di Pisa,” https://poderelaquiete.it/, [ac-
cessed: September 20, 2020].

19. Colourbox, “Nahtlose bunte Muster, Stock-Vektor,” https://www.
colourbox.de/vektor/nahtlose-bunte-muster-vektor-7143090, [accessed:
September 20, 2020].

350

