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Abstract We present an extension of the previous work, where
a multi-seed region growing (MSRG) algorithm was shown, that
extracts segments from breast MRI. The algorithm of our ex-
tended work filters elongated segments from the segments de-
rived by the MSRG algorithm to obtain vessel-like structures.
This filter is a skeletonization-like algorithm that collects useful
information about the segments’ thickness, length, etc. A model
is shown that scans through the solution space of the MSRG
algorithm by adjusting its parameters and by providing shape
information for the filter. We further elaborate on the usefulness
of the algorithm to assist medical experts in their diagnosis of
diseases relevant to angiography.

Keywords Feature extraction, breast MRI, region-based, image
segmentation

1 Introduction

Magnet resonance (MR) angiography is a diagnostic tool to depict ves-
sels, e.g. blood vessels. Also, potential malignant masses like cancer
can be analyzed, since the spread of cancer is supported by excreting
angiogenesis factor to prompt vessel growth into the mass to provide
nutrients and oxygen [1]. Information about location, size and mor-
phology of vessels may provide clinicians with useful information be-
fore surgery during e.g. a neoadjuvant therapy. Blood vessels in breast
MRI are determined subjectively by radiologists, which is considered
as the gold standard as research shows [2,3]. Rarely accessible data-sets
and their expensive annotation by experts hinder the progress of ves-
sel extraction in medical fields with deep-learning [4]. In recent years,
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many researchers were motivated to provide clinicians with useful al-
gorithms for vessel segmentation for medical diagnostics [5].

In previous work, we developed a fast multi-seed region growing
(MSRG) algorithm [6], that is capable of extracting homogeneous re-
gions even in images exhibiting noise artefacts. While the algorithm is
still in active development, it has shown promising results on which
we rely on in this current contribution. The algorithm generates a
finite two-dimensional solution space of extracted homogeneous re-
gions from a given input image. We extend the previous work with
a skeletonization-like algorithm that is capable of filtering elongated
segments from this solution space.

In Section 2, the algorithm of the previous work is explained in de-
tail. The subsequent sections will describe the skeletonization-like al-
gorithm and show the results of allegedly extracted vessels.

2 Previous Work

The multi-seed region growing (MSRG) algorithm is described for n-bit
RGB images in Nw×h×3

0 as follows: Multiple seeds are employed and
aligned as grid with a user-defined width u and height v with u, v ∈ N,
u ≤ w and v ≤ h as schematically depicted in red (u = v = 3) on the
blue pane of Fig. 2.1. The algorithm walks through pixel space in an
8-adjacency flood-fill manner independently for each of the k seeds as
follows: Let �p ∈ N5

0 = (p0, p1, pR, pG, pB) be a pixel, where (p0, p1)
is its position in pixel space and let IR(�p) = pR, IG(�p) = pG, and
IB(�p) = pB be its intensity values. A bucket queue is used to hold data
objects (�p, q), where q ∈ N0 with q < 2n is the bucket’s index. Initially,
the queue is filled with the seed only, which is a single pixel only. An
iteration i is initiated by polling a bucket Bi. ∀�a ∈ Bi ∀�b ∈ N�(�a), a cost
function δ f : (�a,�b) �→ {r ∈ N0 | r < 2n} is applied, where N�(�a)
denotes all non-visited neighbors of�a. Cost function δ f is defined as:

δ f (�a,�b) =
⌊√

(IR(�a)− IR(�b))2 + (IG(�a)− IG(�b))2 + (IB(�a)− IB(�b))2

3

⌉
.

(2.1)
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At the end of an iteration, each result is added to the queue as
(�b, δ f (�a,�b)).

Figure 2.1: MSRG applied to a single slice of breast MRI dataset [7].
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Figure 2.2: Left: Cumulative frequency of number of assigned pixels mi on ’pliers’ im-
age with (w, h) = (640, 480) and largest step mmax is found at highlighted
iteration i. Right: Image with arbitrary seed positions indicated.

2.1 Heuristic

Additionally, the number of newly assigned pixels mi is tracked for
each iteration i. A map Ms ∈ Nw×h

0 , drawn as an orange pane in
Fig. 2.1, is used for the sth of k seeds and every ra0,a1 ∈ Ms, where
(a0, a1) is the position of �a, is set to mmax(i) = max(m0, m1, ..., mi) at
iteration i. Finally, when the queue is empty, i.e. every pixel was
visited, Ms is converted into a binary map by

r ∈ Ms =

{
0 r < mmax(i)
1 otherwise (2.2)

Then, all k binary maps are added up elementwise to ∑k
s=1 Ms, and

normalized to the range from zero to 2n − 1 to suppress regions that
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occur less often than others. An example is highlighted in Fig. 2.1
(right) with random colors assigned for regions containing the same
numerical value. Growth is depicted in Fig. 2.2 and Fig. 2.3 for two
arbitrary seed positions.

Furthermore, an image quantization factor g ∈ R with 0 < g ≤ 1
is used to decrease the image’s bit depth as a preprocessing step. A
user can tune the grid size (u, v), i.e. the density of dispersed seeds,
and image quantization factor g until a suitable solution is found as
shown in Fig. 2.4.
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i=1415 i=610

Figure 2.3: Growth of blue seed at (60, 60) and orange seed at (320, 240) on ’pliers’.
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Figure 2.4: Solution space of MSRG [6].
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3 Proposed Method

In this section we initially detail an algorithm that filters elongated seg-
ments from the result set of the multi-seed region growing (MSRG) al-
gorithm. Furthermore, in the second subsection, a model is depicted to
show how these two algorithms interact to obtain vessel-like structures
from an input breast MRI stack. The stack is defined as follows: Let
Si be the ith image on the breast MRI stack, that is an 8-bit grayscale
image, we define Ci as an RGB image, that is composed of Si as red
channel, Si+1 as green channel and Si+2 as blue channel. For example,
the top of the second stack from left (C24) in Fig. 3.1 shows such an
8-bit 256 × 256 RGB image as one of 34 possible slices.

Figure 3.1: From left to right: Five of a set of 36 Breast MRI slices of a single session
→ RGB image composited by three grayscale images from the left stack →
Filtered MSRG algorithm fi(C, goff + n · ginc) → Result stack showing a single
result slice.

3.1 Algorithm

Elongated vessel-like segments are filtered out from the set of seg-
ments derived by the MSRG. We apply a skeletonization-like algorithm
sk(msrg(C, g, u, v)) = Msk, where C is an arbitrary RGB image and
g, u, v the other MSRG input parameters as described in the previous
section. Result Msk is a binary map containing the filtered segments.
The algorithm sk(msrg(C, g, u, v)) is described for a single segment of
the MSRG result set as follows:

Initially, we select a random pixel �p from given segment A
and 8-adjacently flood-fill until every pixel has been ’filled’. Let
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N(�p) be the set of adjacent filled pixels of �p in pixel space
of A. Each iteration, we prioritize from the set of poten-
tial new pixels N(A) = {r ∈ A | ¬isfilled(r) ∧ N(r) �= ∅} the subset
Nmax(A) ⊆ N(A), defined as the largest group of adjacent pixels as
highlighted in Fig. 3.2 left.

This rule leads to a fast method such that the segment is flood-filled
nearly homogeneously along an elongated segment as shown in Fig. 3.2
right. Each iteration and until every pixel has been examined, we de-
rive an updated set of Nmax(A). We use this set for statistical analysis:
E.g., |Nmax(A)| gives a rough estimation of the thickness of an elon-
gated shape. This statistical information is useful to filter out segments
that are too short, too thick, or have a too large variance in thickness
or intensity along the potential vessel or along its cross section. With
this filter, the number of parameters increases but the parameters could
be adjusted by medical experts to fit the realistic requirements of the
vessels in question.

Figure 3.2: A Flood-fill algorithm that promotes nearly homogeneous flooding by prior-
itizing the largest adjacent group Nmax(A) ⊆ N(A).

3.2 Model

We generate with the MSRG a one-dimensional solution space: The
seed grid size (u, v) is set to (4, 4), i.e. we select a column as shown in
Fig. 2.4. These values are selected based on user experience with the
MSRG. We define within this subsection the filtered MSRG algorithm
fi(C, g) = sk(msrg(C, g, 4, 4)), where sk(msrg(C, g, 4, 4)) denotes the
filter algorithm from the previous subsection. The algorithm fi(C, g) is
applied to RGB (3 channels) image C ∈ Nw×h×3

0 with image width w
and image height h and results in a binary map Mfi ∈ Nw×h

0 . The
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image quantization factor g ∈ R with 0 < g ≤ 1 is now the only
parameter that influences the result.

To keep the computation time low, we do not iterate over all pos-
sible values of the image quantization factor g. We limit the range
from goff to goff + ginc · gres, where goff denotes the lower bound, gres
the resolution, and goff + ginc · gres the upper bound of the dimension.
Again, the values are selected based on user experience of the MSRG
and should be selected such that the desired features are found within
these bounds.

The model is schematically depicted in Fig. 3.1. The results are bi-
nary images with elongated structures that potentially reveal vessels.
Formally, we generate a result stack (see Fig. 3.1 right) for all j ∈ N

with 1 < j ≤ (MRI stack size − 3), defined as:

Yj =
gres

∑
n=0

co(Cj−1, Cj, Cj+1, goff + n · ginc) (3.1)

where co(R1, R2, R3, g) returns a single binary map that is composed
of the union of the two adjacent slice pairs. Formally,

co(R1, R2, R3, g) = fi(R1, g) ∧ fi(R2, g) ∨ fi(R2, g) ∧ fi(R3, g) (3.2)

where ∧ and ∨ denote element-wise binary operators. Finally, as a post
processing step, we set

r ∈ Yj =

{
0 r < t
1 otherwise (3.3)

where t is a user-defined threshold.
With this technique, it is possible to differ the contours of the skin

from elongated segments that are within the region of interest. We
assume that the color gradient more likely varies along the cross section
as shown in Fig. 3.3. This can be detected by the algorithm of the
previous subsection by statistical analysis of Nmax(A).

4 Results and Evaluation

We apply the proposed method of the previous section to two different
breast MRI stacks that were acquired from the same patient (and same
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Figure 3.3: Left: A potential vessel with color gradient varying lengthwise. Right: Breast
contour with color gradient varying along the cross section.

breast) during two sessions. Several weeks lay between these two ses-
sions. Algorithm parameters are set for both stacks equally. The result
is shown in Fig. 4.1 for four adjacent slices of each result stack. Slices
of these two stacks are shifted such that they roughly match each other
from column to column in Fig. 4.1. We derive similar results for both
stacks, although the region of interest is shaped differently as seen in
the two RGB images of Fig. 4.1. However, these binary results do not
cover all elongated structures as visible in the RGB images. A better
strategy is required to efficiently look for elongated segments in the
solution space of the MSRG algorithm to derive more results. Also, a
slice represents 3 mm thickness and obviously, a much higher resolu-
tion would improve the results for thinner vessel-like structures.

Due to the breast varying in shapes in different postures, it is very
challenging to detect common features, however, this method might be
used for automatic image registration.

5 Conclusions

With our proposed filter and combined with the MSRG algorithm from
the previous work, it seems possible to assist clinicians in detecting
vessel-like segments. The employed algorithm filtered elongated struc-
tures from the solution space of the MSRG algorithm. The results seem
promising, however, they could not be evaluated for the correct de-
tection of vessels without medical expertise. Instead, the proposed
method was applied to two input MRI stacks from the same patient
(and same breast), that were acquired during two sessions. The evalua-
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Figure 4.1: Each row contains four adjacent slices of the result stack as shown in Fig. 3.1
right. Each row’s input stack (Fig. 3.1 on the left) was acquired from the same
patient but several weeks lay between these sessions.

tion showed how barely the results deviate from each other. Although
vessels will be positioned slightly differently between two sessions due
to shaping the breast dependent on the actual posture in the MRI scan-
ner, this method seemingly extracted similar elongated segments for
both input MRI stacks. This suggests the assumption that the extracted
segments are not artefacts.

Based on user experience, the solution space of the MSRG algorithm
was searched through. Due to the complexity and computation time, it
is impractical to search through the whole solution space. It is required
to adjust the MSRG parameters accordingly, however, the MSRG al-
gorithm is not guaranteed to be complete. Further investigations are
required for more efficient search strategies.
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