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Abstract An optical spectrometer uses detector pixels that mea-
sure the integrated intensity over a certain interval of wave-
lengths. These integrated pixel values are divided by the interval
width and then interpreted as estimates of function values of the
wanted spectral irradiance. Hence each pixel measurement con-
stitutes an averaging process. But, averaging biases at maxima:
pixel data feature lower maxima. This paper proposes the con-
ceptual use of a cumulated spectrum to estimate spectral data.
The integrated quantities are placed in their natural habitat. The
motivation originates from the fact that pixel data as integrated
quantities are exact values of the cumulated spectrum. Averag-
ing becomes obsolete. There is no information loss. We start
with a single spectral line. This “true” spectrum is blurred mim-
icking the instrument function of the spectrometer optics. For
simplicity we consider the instrument function to have Gaus-
sian shape. We integrate the blurred spectrum over subintervals
to simulate the pixel measurements. We introduce a cumulated
spectrum approach. We compare the cumulated approach with
the approach that interpolates the averaged function value esti-
mates of the non-cumulated spectrum. The cumulated approach
requires only basic mathematical concepts and allows fast com-
putations.

Keywords Spectrum, spectral fitting, cumulative spectrum, data
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1 Introduction

The analysis of emitted line spectra provides insight into the qualita-
tive and quantitative composition of materials. Virtually all analysis
is carried out by using non-linear fitting of (multi) Gaussians to the
recorded data. This paper replaces the all-purpose non-linear fitting by
direct computation of the peak parameters. This reduces dramatically
the computational effort and eliminates the dependence on intelligent
initial parameter guesses.

Probability theory or statistics knows two perspectives on Gaussians,
i.e. on normal distributions. On the one hand there is famous bell-
shaped curve, the probability density function (PDF). This is how we
usually visualize the normal distribution. On the other hand there is
the tabulated cumulative distribution function (CDF) with which we
perform almost all calculations. The PDF possesses non-negative val-
ues and finite area. The CDF is a non-decreasing function.

A spectrum is also a function with non-negative spectral irradiance
values and finite area which corresponds to the finite irradiance. This is
the usual visualization of a spectrum. In this paper we add the equiva-
lent perspective of a cumulated spectrum to perform our calculations.
After all the irradiance of the spectrum is nothing but the cumulated
spectral irradiance (integrated with respect to wavelength). This paper
introduces how the cumulated approach can be used to fit Gaussian
peaks to discrete spectral data in a simple fashion.

In 2020 the global market volume of applications relying on spectral
line emission analyses is estimated at a trillion US-Dollar. Examples
of these applications are semi-conductor production, quality control
of physical coating processes [1], minimally invasive cancer surgery
with live tissue diagnostics [2], natural resource exploration [3], and
magnetic plasma fusion research [4].

2 Mathematical Model

We use a simple model. An object sampled by a spectrometer possesses
a “true spectrum” which is a function that assigns to each wavelength
a certain non-negative value, the spectral irradiance. The wavelength
can have any positive value, so mathematically, the true spectrum is a
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function S (signal) defined on the interval (0, ∞) with non-negative val-
ues. We restrict our attention to a true spectrum with a single spectral
line which we approximate by a Dirac delta function,

S(λ) = Sμ · δ(λ − μ). (2.1)

2.1 Blurring - Spectral Lines Become Gaussians

A spectrometer blurs the true spectrum S by convoluting it with the
so-called instrument function I. We call the result of this convolution
I ∗ S the blurred spectrum,

B(λ) =
∫ ∞

0
I(λ − �) · S(�) d� . (2.2)

This blurring depends on the used spectrometer. In this paper we as-
sume that the instrument function is sufficiently well approximated by
the Gaussian shape

I(λ) =
1√

2πσ2
e−

λ2

2σ2 (2.3)

with the width parameter3 σ > 0. Selecting a Gaussian is purely illus-
trative. Any shape can be cumulated and treated analogously.

The blurring convolutes the line spectrum, equation (2.1), into the
Gaussian peak

B(λ) = Sμ · I(λ − μ) . (2.4)

2.2 Pixel Detectors - Spectral Irradiances Are Locally Integrated

A spectrometer measures the blurred spectrum on a finite interval of
wavelengths [λ0, λR]. Its detector consists of finitely many pixels that
detect adjacent parts of the blurred spectrum. Each pixel measures the
cumulated spectral irradiance on a subinterval of wavelengths. Let the
rth pixel cover the subinterval [λr−1, λr], 1 ≤ r ≤ R. Then the spectral
irradiance of the blurred spectrum measured by the rth pixel is

Br =
∫ λr

λr−1

B(λ) dλ . (2.5)

3We do not want to call σ standard deviation, since this is a non-statistical use.
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We divide these cumulated values by their subinterval widths to con-
vert Br into the same unit as the blurred spectrum and obtain the aver-
aged values

B∗
r =

Br

λr − λr−1
=

1
λr − λr−1

·
∫ λr

λr−1

B(λ) dλ . (2.6)

A spectrometer with R pixels provides the finitely many values B∗
1 ,

B∗
2 ,. . . ,B∗

R that approximate the blurred spectrum over the interval
[λ0, λ1] ∪ · · · ∪ [λR−1, λR] = [λ0, λR].

Each pixel value B∗
r – though obtained by averaging – can be inter-

preted as a function value estimate at the pixel’s mean wavelength

λ∗
r =

λr−1 + λr

2
. (2.7)

Then the measured spectrum is a function whose graph consists of the
finitely many points (λ∗

1, B∗
1 ), (λ

∗
2, B∗

2 ), . . . , (λ∗
R, B∗

R).

3 Proof of Concept - Matching a Gaussian Peak

As an example we consider a single blurred spectral line shown in Fig-
ure 3.1. This is a Gaussian peak centered at wavelength μ = 500 nm
with width parameter σ = 1 nm and irradiance 100 μW/cm2 (inte-
grated spectral irradiance). We assume that the wavelength interval
from λ0 = 497 nm till λ11 = 503 nm is detected by a row of eleven
equidistant pixels. Their averaged values B∗

1 , . . . , B∗
11 are shown as

function value estimates. Figure 3.1 illustrates in particular the effect
of averaging the concave function segment close to the maximum: av-
eraging underestimates a maximum value.

3.1 Non-linear All-purpose Fitting of the Function Value Estimates

As control case for our example we use the all-purpose Matlab com-
mand fit to fit a Gaussian peak to the pixel values (λ∗

1, B∗
1 ),. . . ,

(λ∗
11, B∗

11). The model function to be fitted is

B̂(λ) = a · e−
(λ−b)2

c (3.1)
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Figure 3.1: A Gaussian peak models a blurred spectral line. The wavelength interval
[497 nm, 503 nm] is divided into 11 equidistant subintervals (pixels). The
pixel values are placed at the midpoints of the subintervals. The dashed
curve is the fitted result by Matlab. The maximum of the fit is lower than the
maximum of the blurred spectrum.

with model parameters a, b, and c. The underlying algorithm for non-
linear least squares requires intelligent initial parameters to produce
convergence. We provided the initial parameters a0 = 39.4 (maximal
pixel value), b0 = 500, and c0 = 2.

Matlab finds â = 39.41, b̂ = 500, and ĉ = 1.432 with 95% confi-
dence intervals (39.40, 39.41), (500, 500), and (1.432, 1.432) respectively.
The estimated model parameters translate into: the line is located at
wavelength 500 nm with width parameter σ = ĉ/

√
2 = 1.0126 nm and

irradiance Ŝμ = â · σ
√

2π = 100.0287 μW/cm2. Figure 3.1 also shows
the fitted curve. It fits the blurred spectrum well, but features the bi-
ased smaller maximum. The estimated irradiance corresponds to the
area under the curve. The fit overestimates the irradiance.
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3.2 Cumulative Spectrum - Natural Use of Pixel Values

This section presents the alternative way to match a Gaussian peak to
the pixel data. Instead of interpreting the pixel data as function value
estimates, we use them exactly as the integrated quantities that they
are. To do so, we consider the blurred spectrum cumulated over the
measured interval

C(λ) =
∫ λ

λ0

B(�) d� , λ0 ≤ λ ≤ λR , (3.2)

and the cumulated pixel values

Cr =
r

∑
i=1

Bi , r = 0, 1 . . . , R. (3.3)

The cumulated pixel values are exact samples of the cumulated blurred
spectrum at the subinterval endpoints, Cr = C(λr), r = 0, 1 . . . , R. For
our example, these quantities are shown in Figure 3.2 and in Table
13.1.4

Table 13.1: Cumulated pixel values of example.

k λk Ck
0 497.00 0.00
1 497.55 0.57
2 498.09 2.68

k λk Ck
3 498.64 8.50
4 499.18 20.53
5 499.73 39.12

k λk Ck
6 500.27 60.61
7 500.82 79.20
8 501.36 91.23

k λk Ck
9 501.91 97.05

10 502.45 99.16
11 503.00 99.73

3.3 Estimating Parameters from Cumulative Values

The cumulative normal distribution function

F(x) =
1√

2πσ2

∫ x

−∞
e−

(ζ−μ)2

2σ2 dζ (3.4)

4The blurred spectrum B (spectral irradiance) is the derivative of the cumulative
spectrum C (irradiance). Consistently, the earlier introduced averaged values B∗

r = (Cr −
Cr−1)/(λr − λr−1) located at the midpoint λ∗

r turn out to be the centered differences
known from numerical differentiation.
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Figure 3.2: The cumulative Gaussian peak function (solid curve) and the cumulated pixel
values at the respective endpoints of the subintervals. The dashed curve is the
piecewise linear interpolation. The cumulated pixel values are exact values
of the cumulative Gaussian peak function, not just estimates.

satisfies F(μ) = 0.5 and can be normalized, z = (x − μ)/σ, into the
standard normal distribution Φ(z). In particular, we obtain the tabu-
lated value

F(μ − σ) = Φ(−1) = 0.1587 . (3.5)

We use these properties to estimate the parameters of the blurred
spectrum.

The irradiance of the spectral line is estimated as the area under the
measured blurred spectrum, which equals a difference in the cumu-
lated spectrum,

Ŝμ = CR − C0 =
∫ λR

λ0

B(λ) dλ ≈
∫ ∞

0
B(λ) dλ ≈ Sμ . (3.6)

In Figure 3.2 this is C11 − C0 = 99.73 − 0 = 99.73. After we will have
obtained a first estimate for all parameters Sμ, μ, and σ, we will check
for consistency and update them.
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Now we estimate the wavelength μ of the spectral line from the cu-
mulated pixel values. First, we find the subinterval [λj−1, λj], in which
the spectral line is located,

C0 < · · · < Cj−1 < 0.5 · Ŝμ ≤ Cj < · · · < CR . (3.7)

In Figure 3.2 this is [λ5, λ6]. We estimate μ̂ by linear interpolation,

μ̂ = λj−1 +
0.5 · Ŝμ − Cj−1

Cj − Cj−1

(
λj − λj−1

)
. (3.8)

Since the cumulative normal distribution function is almost linear at
the half-height value, linear interpolation is sufficient. However, the
interpolation accuracy depends on the pixel width [λj−1, λj]. A nar-
rower pixel width produces a better approximation. Figure 3.2 shows
a good match between the cumulative blurred spectrum and the linear
interpolation on [λ5, λ6]. We compute μ̂ = 500 nm.

Now we estimate σ from the cumulated pixel values. We find the
subinterval [λk−1, λk], in which μ − σ is located (see equation 3.5),

C0 < · · · < Ck−1 < 0.1587 · Ŝμ ≤ Ck < · · · < CR . (3.9)

For the following interpolation we need k ≥ 2 which is a reasonable as-
sumption on the number and widths of the pixels covering the spectral
line. In Figure 3.2 this is the interval [λ3, λ4]. The curvature over this
interval is not negligible. Linear interpolation would systematically
overestimate σ due to the convexity. Thus we compute μ̂ by quadratic
interpolation through (λk−2, Ck−2), (λk−1, Ck−1), and (λk, Ck). 5 We
use Newton’s form of the interpolating parabola. The required divided
differences are

[Ck, Ck−1] =
Ck − Ck−1
λk − λk−1

, [Ck−1, Ck−2] =
Ck−1 − Ck−2
λk−1 − λk−2

, (3.10)

and

[Ck, Ck−1, Ck−2] =
[Ck, Ck−1]− [Ck−1, Ck−2]

λk − λk−2
. (3.11)

5We use the indices k − 2, k − 1, k instead of k − 1, k, k + 1 for numerical reasons.

148



Line Spectra Analysis: A Cumulative Approach

The interpolating parabola is

P(λ) = Ck + [Ck, Ck−1](λ − λk) + [Ck, Ck−1, Ck−2](λ − λk)(λ − λk−1)

(3.12)

and we compute μ̂ − σ̂ from P(μ̂ − σ̂) = 0.1587 · Ŝμ. We plug in

Ck+[Ck, Ck−1](μ̂ − σ̂ − λk)

+ [Ck, Ck−1, Ck−2](μ̂ − σ̂ − λk)(μ̂ − σ̂ − λk−1) = 0.1587 · Ŝμ

(3.13)

and sort for the powers of the unknown σ̂,

0 = Ck + [Ck, Ck−1](μ̂ − λk)− 0.1587 · Ŝμ

+ [Ck, Ck−1, Ck−2](μ̂ − λk)(μ̂ − λk−1)

+
(
[Ck, Ck−1] + [Ck, Ck−1, Ck−2](μ̂ − λk + μ̂ − λk−1)

)
· σ̂

+ [Ck, Ck−1, Ck−2] · σ̂2

(3.14)

In the template 0 = aσ̂2 + bσ̂ + c we obtain the following coefficients
for our example.

a = [Ck, Ck−1, Ck−2] = 10.730
b = 22.278 + 10.730(0.82 + 1.36) = 45.669
c = 20.53 + 22.278 · 0.82 − 15.827 + 10.730 · 0.82 · 1.36 = 34.937

(3.15)

From the geometry, the solution of the quadratic formula with the dif-
ference is the relevant one. The result rounded to four significant digits
is

σ̂ =
b −√

b2 − 4a c
2a

= 1.000 . (3.16)

3.4 Updating the Estimates

Now that we have a complete set of estimates, Ŝμ, μ̂, and σ̂ we use them
to update the estimate of the irradiance Sμ. By design our first estimate
of Sμ is an underestimate. We do not know how much of its area we
actually considered. Now μ̂ and σ̂ allow us to assess this underesti-
mate. We can compute the area covered by the interval [λ0, λR] using
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the tabulated normal distribution. This becomes particularly important
when we have covered a wavelength range significantly smaller than
[μ − 3σ, μ + 3σ] (which corresponds to 99.7% of the area). This is also
useful when we have an asymmetric interval about the location of the
spectral line.

Such an update becomes important when spectral lines are located
close to one another and their areas partially overlap. A similar prob-
lem arises when a spectral line is close to an endpoint λ0 or λR so that
a significant part of the blurred spectrum lies outside our observed
interval.

For our simple example the numbers will not change much, but
let us describe the updating process. Our interval was [λ0, λ11] =
[497 nm, 503 nm]. With respect to our estimates μ̂ = 500 nm and σ̂ = 1
nm the interval endpoints correspond to the standardized z-values −3
and 3 respectively (computed from λi = μ̂ + zσ̂). From the tabulated
normal distribution we read off Φ(−3) = 0.0013 and Φ(3) = 0.9987.
Therefore, the area covers 0.9987 − 0.0013 = 0.9974 = 99.74% of the
irradiance. Hence we update the irradiance estimate

Ŝμ =
original estimate

covered area
=

99.73
0.9974

= 99.99 . (3.17)

With this updated estimate we recalculate μ̂ and σ̂. If the updated
values deviate significantly from the original ones, we iterate this up-
dating process until the estimates become stationary.

4 Outlook

We have only considered the simple example of an isolated spectral line
in a sufficiently large wavelength interval. The results of the cumulated
view point are promising. Only linear and quadratic equations were
required in combination with only two tabulated values of the normal
distribution. However, many aspects are still in need of further inves-
tigation:

• The whole process starts with the determination of an interval
[λ0, λR] which covers most of the irradiance of a blurred spectral
line. We have to automate the partitioning of a spectrum with
several spectral lines into such intervals.
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• We need to study examples of spectral lines whose blurred spec-
tra overlap. Which separation of lines is required for the method
to work properly? How will the method react when the lines are
too close? Similarly, how do we handle spectral lines that are
close to the endpoints of the measured interval?

• We want to transfer this method to other templates like a
Lorentzian or a Voigt profile instead of a Gaussian peak.

The presented approach significantly reduces the calculation com-
plexity of spectral matching by avoiding all-purpose non-linear fit rou-
tines. Due to the simplicity of the computation steps, the presented
cumulative approach can be implemented in FPGAs. This allows im-
mediate on-camera real-time data processing.

This affects many applications. Control circuits for online plasma
analysis will benefit from shorter latencies. Processes like laser in-
duced breakdown spectroscopy (LIBS) that so far require a complex
post mortem analysis have the potential to be treated live. Adapting
the approach to complex fusion spectra will significantly reduce the
amount of currently needed a-priori knowledge. The whole analysis
becomes more deterministic and less dependent on intelligent initial
estimates. The only information to be determined in advance is the
cumulative distribution of the instrument function.
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