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Abstract In grapevine research, phenotyping needs to be done
for different traits such as abiotic and biotic stress. This phe-
notypic data acquisition is very time-consuming and subjective
due to the limitation of manual visual estimation. Sensor-based
approaches showed an improvement in objectivity and through-
put in the past. For example, the ‘Phenoliner” a phenotyping
platform, based on a modified grape harvester, is equipped with
two different sensor systems to acquire images in the field. It
has so far been used in grapevine research for different research
questions to test and apply different sensor systems. However,
the driving speed for data acquisition has been limited to 0.5
- 1 km/h due to capacity of image acquisition frequency and
storage. Therefore, a faster automatic data acquisition with high
objectivity and precision is desirable to increase the phenotyping
efficiency. To this aim, in the present study a prism-based simul-
taneous multispectral camera system was installed in the tunnel
of the ‘Phenoliner” with an artificial broadband light source for
image acquisition. It consists of a visible color channel from 400
to 670 nm, a near infrared (NIR) channel from 700 to 800 nm, and
a second NIR channel from 820 to 1,000 nm. Compared to the
existing camera setup, image recording could be improved to at
least 10 images per second and a driving speed of up to 6 km/h.
Each image is geo-referenced using a real-time-kinematic (RTK)-
GPS system. The setup of the sensor system was tested on seven
varieties (Riesling, Pinot Noir, Chardonnay, Dornfelder, Dapako,
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Pinot Gris, and Phoenix) with and without symptoms of biotic
stress in the vineyards of Geilweilerhof, Germany. Image analy-
sis aims to segment images into four categories: trunk, cane, leaf,
and fruit cluster to further detect the biotic stress status in these
categories. Therefore, images have been annotated accordingly
and first results will be shown.

Keywords Multispectral camera, image acquisition, geo-
information, Vitis vinifera, field phenotyping

1 Introduction

Vitis vinifera (Grapevine) is considered to be one of the most econom-
ically important fruit crops worldwide with 7.4 million ha and an an-
nual production of 78 million tonnes in 2018. In France and Germany,
99% of the grapes are grown for wine production [1]. The yield and
vine health, including wine quality are regarded as the most important
economic indicators for viticulturists [2]. Grapevine is highly suscep-
tible to several diseases, such as powdery mildew and downy mildew,
of which the infection can result in a significant reduction of total solu-
ble solids in berries and further cause a negative effect on total glucose
and fructose content, total red pigments, and thus alcohol content in
wine [3,4]. Therefore, the grapevine breeding activities mainly focus
on selecting new varieties with high abiotic and biotic stress resistance
and high quality characteristics [5]. As a perennial woody plant, ob-
servation of phenology, analysis of growth habits (grapevine architec-
ture), and evaluation of yield are very time-consuming and can only be
conducted in the field. Most of these characteristics need to be evalu-
ated within a narrow time window resulting in limitation of phenotyp-
ing workload and somewhat limited efficiency of grapevine breeding.
Therefore, faster sensor assisted phenotyping methods with high objec-
tivity and precision have been intensively investigated in recent years
to screen breeding material, such as number and size of beeries or
clusters [6,7], berry skin characteristics [8], leaf area [9], cane mass [10],
diseases recognition [11-13] etc.

Due to the improvement of pattern recognition algorithms, compu-
tation capability, and image quality in recent years, computer vision is
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being applied in agriculture [14] for disease detection in rice, maize,
coffee, grapevine etc. [15-18]. To develop a more precise and faster
tool for identification of plant disease by computer vision, the convo-
lutional neural network (CNNSs) techniques are numerously used. So
far, most of the published methods applied for symptom detection are
based on digital images acquired using wavelength of visible and near-
infrared range of the spectrum [19]. With increasing optimization of
algorithms, sensor-based approaches showed an improvement in ob-
jectivity and throughput in disease sensing in the past. In grapevine
research, several sensor techniques have already been tested for vari-
ous applications, including pre-symptomatic and symptomatic disease
sensing [13,20,21]. Both ground-based hyper- and multispectral imag-
ing are proven to be suitable for detection of foliar symptoms of esca
trunk disease and powdery mildew infection in vineyard achieving
overall accuracies of 82-83% and 87%, respectively [13,22]. By com-
bining the biophysical- (e.g. content of chlorophyll, carotenoid and dry
matter) and texture parameters during classification, the accuracy to
predict esca disease was increased from 81% to 99% [23]. However
a hyperspectral sensor, which covers a broader wavelength range to
acquire more information, is usually expensive and bulky. Therefore,
using multispectral or Red Green Blue (RGB)-cameras for image cap-
ture would be more feasible in agricultural applications.

Meanwhile, several platforms, such as PHENObot [24], Phenoliner
[25], grape-picking robot [26] or unmanned aerial vehicle [27], have
been developed to carry the sensor systems for sensing in vineyard or
machinery picking of fruit. However, the operating speeds of these
platforms is either too slow to adapt to the usual operating speed of
field working machines or provides images with low resolution. There-
fore, to improve the efficiency of machinery phenotyping, an update
of the former screening platform 'Phenoliner” was conducted in the
present study to optimize the automated image acquisition in the field,
data management, and data analysis.

2 Material and methods

As described by [25], the ERO-Grapeliner SF200 (ERO Gerétebau, Sim-
mern, Germany), of which all units for harvesting, including the hy-
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draulic system were removed, served as a carrier for the sensor system.
A generator driven by the vehicle was conducted to provide the energy
to operate the sensors, light units, and computers.

2.1 Plant Materials

Field trials were conducted in September 2020 in the experimental vine-
yards at the Julius Kiihn-Institut Geilweilerhof, Siebeldingen, Germany
(49°13'06.0”N, 8°02748.2”E). Seven varieties including red and white
grapevine cultivars , i.e., Riesling, Pinot Noir, Chardonnay, Dornfelder,
Dapako, Pinot Gris, Calardis Musqué and Rieslaner with and without
symptoms of biotic stress were used for testing.

2.2 SmartVision Camera System

In the present study, the embedded image processing system SmartVi-
sion from Fraunhofer IOSB was used. The SmartVision system includes
the user-interface, camera control, image acquisition and real-time im-
age processing unit with artificial intelligence. Furthermore, SmartVi-
sion provides a machine-to-machine interface based on OPC-UA (Open
Platform Communications Unified Architecture) using the open source
implementation open62541. This allows the system to be controlled re-
motely and additional sensors can be added.

The system is equipped with a prism-based simultaneous multispec-
tral camera system (Fusion Series FS-3200T-10GE-NNC, JAI A/S, Ger-
many) with a 8 mm lens (VS-0818H/3CMOS, Pyramid Imaging, USA)
and was installed in the right part of the tunnel of the ‘Phenoliner” with
an artificial light source for image acquisition as in figure 2.1. This cam-
era system consists of a visible color channel from 400 to 670 nm, a near
infrared (NIR) channel from 700 to 800 nm, and a second NIR channel
from 820 to 1,000 nm. The camera system has 2048 x 1536 active pix-
els and single/multi-readout mode for each channel, which provides a
high resolution and speed with lower processing loads. To minimize
the direct sunlight interference, curtains were used on the opening of
the tunnel, and therefore, five LED light lamps (Lumimax LB500-44-W,
IIM AG, Germany) were installed to achieve efficient light conditions
during image acquisition. In order to achieve a better image of NIR
and further increase the driving speed, two broadband NIR LED bars
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(EFFI-Flex, EFFILUX GmbH) were installed in addition at the side of
the camera. The distance of the camera to the grapevine plants and
the height of the captured region were illustrated in figure 6.1(e). The
camera system was ported to a separated mini computer (MAGNUS
EN072070S, Zotac, Hongkong, China) extended with WLAN access
point, which serves as local host and was placed on the top platform
of the harvester to process the image on-board. A 1 T of fast solid-state
disc drives (EMTEC X200 Portable SSD, 450MB/s transfer speed) was
used for storage of data.

To reference the geographic information to each grapevine, a real-
time-kinematic GPS system (SPS852, Trimble, Sunnyvale, USA) was
installed. The GPS antenna is located on top of the vehicle (Fig. 6.1(d))
and the receiver provides standardized National Marine Electronics
Association (NMEA) strings for the camera system as described by
Kicherer et al. (2017).

3 Image acquisition

The SmartVision system provides a WLAN access point and the user
interface is accessible using an internet browser. Both signal intensity
and visible images from both RGB- and NIR-channels are shown (Fig.
3.1), which gave the operators more information to evaluate the quality
of image acquisition in the field. The developed program also provides
an automatic evaluation of exposure of the images. To gain a better
quality of the image several camera parameters, such as cycle time,
integration time, and exposure balance were adjusted accordingly. In
the end, a cycle time of 100 ms and an integration time of 9 ms were
set to achieve a good image acquisition with 10 images per second at
a driving speed of up to 6 km/h. This operating speed is much faster
compared to the former Phenoliner setup, which is only able to move
at a speed of 0.5 - 1 km/h when capturing the images with a frequency
of 5 images per second [25]. Meanwhile, GPS information was taken
and stored.

During the image acquisition, the program displayed the status of the
application, i.e., number of image files, remaining disk space, camera
frame rate etc. as well. The acquired images were saved in a hierarchi-
cal data format (hdf5) and further archived in folders with metadata
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Figure 2.1: Construction of sensor system on Phenoliner. a) container for the camera, b)
computer including WLAN access point for image processing, c) sensor and
light units in the tunnel of Phenoliner, d) image acquisition by Phenoliner in
the vineyard, e) scheme of distance.

correspondingly. The acquired images will be further processed to be
segmented into four classes (trunk, cane, leaf, and fruit cluster) man-
ually using software ‘Labeltool” (Fraunhofer IOSB). Under classes of
cane, leaf, and fruit cluster, at least two sub-classes, healthy and dis-
eased (including different disease severity levels) will be given.

4 Prospective phenotyping pipeline of Phenoliner 2.0 in
viticultural and grapevine breeding

As the acquisition of images with high quality and at normal working

driving speed has been successfully tested in vineyards in the present
study, an opportunity to apply this sensor system in two different areas
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Figure 3.1: RGB Image (a) and normalized difference vegetation index (NDVI) image
using RGB and NIR data (b).

is expected. On the one hand the use in grapevine breeding to describe
and screen breeding material and on the other hand to improve me-
chanical harvest in viticulture.

Both applications have a slightly different workflow and in some
steps different parameters of interest. The pipeline for both applica-
tions is shown in Figure 4.1. For mechanical harvesting a trained model
based on automatic detection is planned to help the grape harvester
make a yes or no decision for harvesting. This could be achieved by
controlling the on and off function of the shaking units, and therefore
the diseased fruit clusters could be excluded to increase the harvest
quality. The application of this sensor system in grapevine breeding
aims at screening selection criteria like yield and plant health fast and
objective in the field. Besides the estimation of yield, the distinction
of different diseases, as well as the disease incidence and severity, are
relevant for the description and selection of breeding material. For
digital documentation of phenotyping data, the processed results ref-
erenced to geographic information will be recorded and saved in a
database. Based on the recorded data, a map with information of yield,
the health status of the individual grapevine can be generated. In case
of the breeding application it opens the opportunity to evaluate differ-
ent breeding material over several years comparably, also retrospective
if new phenotyping tools may be available.
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In further experiments, this constructed sensor system could be in-
stalled in front of a commercial grape harvester and used under nat-
ural sunlight that does not provide a stable light condition compared
to the Phenoliner, to investigate whether it enables the sensing of the
grapevine status in real-time during harvesting. This will open up the
opportunity to use such a sensor system in viticulture in the future to
help the wine grower to improve his plot performance, adjust vineyard

management and increase his wine quality.
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Figure 4.1: Phenotyping pipeline for grape growers and breeders during harvesting.

Dotted frames and lines are considered by grape breeders only.
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