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Abstract It has already been proven that near infrared (NIR) re-
flectance spectroscopy can be used to measure the maturity of
grapes by the determination of the sugar and acid content. Un-
til now, winegrowers frequently collect a random one hundred
berries sample per plot, to measure these parameters destruc-
tively for the estimation of the ideal harvest time of the gained
product. Meanwhile, inexpensive sensors are available, to build
convenient instruments for the non-destructive, low-priced and
fast control of ripening parameters in the vineyard. For this,
a small handheld device including a NIR sensor (1350nm -
2600 nm) was built from a Raspberry Pi 3 single-board computer
and a NIR sensor. Spectra of individual berries, sampled from
Riesling (Vitis vinifera, L.) were collected. Corresponding refer-
ence data were determined with high performance liquid chro-
matography (HPLC). Samples were taken from different fruit as
well as cluster zones and from the beginning of véraison until af-
ter harvest, to ensure a broad range of ingredients and the ripen-
ing properties of different berries from the vine. This study is
the first that systematically investigates the ripening parameters
of a whole vineyard with a handheld sensor. The sensor can be
used in viticulture practice to detect the ripening progress and
determining the ideal harvest time effective, simple, and non-

destructively.

Keywords Vitis vinifera, Near Infrared Spectroscopy (NIRS), re-
flectance, ripening parameters, soluble solids, sugar, acid, hand-

held sensor, individual berry measurement
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1 Introduction

Viticulture is of great economic importance worldwide with an esti-
mated average productin of 258 million of hectoliters (Mio hl) of wine
in 2020. In relation to global production, 60% were produced in Eu-
rope (156 Mio hl), while the USA (24.3 Miohl), China (8.3 Miohl) and
Russia (4.6 Miohl) are the leading countries outside of the European
Union. Within Europe, Italy (47.5Miohl) is the largest wine produc-
ers followed by France (42.1 Mio hl), Spain (33.5Mio hl), and Germany
(9.0Mio hl). Riesling is one of the widely grown white grapevine vari-
eties worldwide, and in Germany the most important cultivar of about
23% (2019) of the wine grapes area. [1,2]

One important factor to hold a large market share is the quality of
the produced wine. While the proportion of table wine in Germany is
relatively stable, the production of quality wine increases rapidly [1].
In order to obtain high quality grapes, the harvest time is of great im-
portance, since after reaching the peak of ripening, over-ripening re-
sults in a decrease in quality. The growth of grape berry takes place in
three phases consisting of two growth cycles and one lag-phase [3,4].
After the lag-phase, from vérasion onwards, acids (mainly malic acid)
slowly start to decrease while sugars increases rapidly. The presence
and amount of mainly sugars and acids determines the quality and
later characteristics of the wine, whereby the sugars are mainly rep-
resented by glucose and fructose and 70 % to 90 %, respectively, and
the acid being mainly tartaric acid and malic acid [5-8]. Sugars deter-
mine the alcohol content of the later wine and acidity contributes to its
fruity character. The balance of sugar and acidity are determining fac-
tors of typicity and wine style which is increasingly affected by climate
change. [9] Due to uneven ripening on the cluster and on the grapevine,
a winegrower in general collects one hundred berries, to estimate the
average maturation of his vineyard. This process is destructive, labori-
ous and to some extent error prone.

NIR sensors are already widespread in a wide variety of disciplines.
They are used in medicine (blood oxygen, diabetes, intracranial bleed-
ing), pharmacy or agriculture (particle measurements), and to ensure
food quality. Till now, several vibrational spectroscopic methods were
discovered to analyse different materials, based on the interaction of ra-
diation with matter. The most prominent method is the FTIR, which is

70



NIR sensor for ripening detection in grapevine

based on the lowering of the radiation intensity due to infrared-active
(IR-active) bonds. In contrast to the passing of light through the mate-
rial, near infrared spectroscopy relies on the principle of reflection and
absorption of radiation from the visible and near infrared spectrum
of light (400nm - 2500nm). The IR-active bonds lower the reflection,
resulting in an increase of the extinction coefficient (the degree of radi-
ation attenuation), depicted as a peak in the reflection spectrum.

In order to investigate a feasible technique to detect quality attributes
in crops, several sensors using IR radiation have been build for several
fruits and vegetables. [10-12] Whilst some sensors measure the trans-
mission spectrum of destroyed berries/bunches [13], other measure the
diffuse reflection but with complex and expensive built ups with lamps
and sensors. [14,15] Goisser et al. 2019 [16] developed a handheld NIR-
sensor which measures diffuse reflection, by simply placing the fruit
on the sensor. This technique could be used to classify the firmness
and to determine sugar content of tomatoes.

Here, we built and investigated a handheld sensor to determine the
most important quality attributes of an entire vineyard without hav-
ing to repeatedly destroy grapes. With a few further developments,
such as an app that can process the spectra immediately, we can give
winemakers a simple and quick-to-use tool.

2 Material and methods

2.1 SmartSpectrometer system

The embedded spectrometer system SmartSpectrometer from Fraun-
hofer IOSB includes the spectrometer control and a real-time spectral
processing unit with artificial intelligence. Furthermore, SmartSpec-
trometer provides a machine-to-machine interface based on OPC-UA
(Open Platform Communications Unified Architecture) using the open
source implementation open62541. This allows the system to be con-
trolled remotely and additional sensors can be added. The built system
consists of a FT-NIR sensor (NeoSpectra-Micro SWS 62231, Neospectra,
SI-Ware, La Canada, California) mounted on a Raspberry Pi 3 (Rasp-
berry Pi Foundation, Cambridge, United Kingdom) single-board com-
puter. The sensors measures near infrared radiation in the range of
1350 nm - 2600 nm with a resolution of 16 nm.
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The spectra of the berries were measured and recorded in the labo-
ratory. A white and a black calibration was done with a Spectralon ®
reflection standard (Sphereoptics, Labsphere, Inc., North Sutton, NH),
to minimize influence of the ambient light and background noise. In-
dividual berries were dried with a paper towel, placed on the sensor,
and five spectra from different sides of each berry were taken using a
graphical user interface.

Figure 2.1: Handheld SmartSpectrometer device based on the NeoSpectra Micro develop-
ment Kit. To determine the degree of maturity, the reflection spectrum is
recorded non-destructively and evaluated directly in the embedded device.

2.2 Dataset

Grapevines of the variety Riesling (Vitis vinifera, L.) from four different
locations in the individual vineyard site “Miitterle” in Wollmesheim
(WH, Landau, Rhineland Palatinate, Germany) were used (see Fig. 2.2,
Table 7.1). All vines were healthy, leaves and berries were free of dam-
ages. In the plots, vine and row spacing were comparable, the greening
in the tracks was well-tended and rows were oriented north -south. All
vines were trained in semi-arched canes and there were either one or
two fruit zones, depending on height of the canopy, with a height of
30cm to 50cm per zone. Per vine and fruit zone two or four berries
respectively were collected.

In total 512 individual berries were harvested. The sampling took
place each week, beginning with véraison (08-17-2020) until harvest
(09-28-2020) from defined vines, and one week after harvest (10-05-
2020) from two to four vines in the field. Berries were taken from
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defined but random selected vines, according their exposure to the
sun (sun exposed, shaded), position in the cluster (near or far from
the peduncle) and position at the vine (Table 7.1). Additionally, from
each plot one hundred berries were randomly picked once a week from
08-10-2020 till harvest 09-28-2020, in order to determine the average
maturity of the vineyard. Berries were transported to laboratory with
a cooling box equipped with ice packs.

Landau, Southern Wine Route
Rhineland Palatinate

49.22°N

49.2°N

Latitude

49.18°N

49.16°N

HEN  2km
8.02°E 8.04°E 8.06°E 8.08°E 8.1°E 8.12°E 8.14°E 8.16°E
Longitude

Figure 2.2: Wine growing areas in Wollmesheim (WH) near Landau, Rhineland Palati-
nate, Germany. Cultivar: Vitis vinifera (L.); variety: Riesling, individual vine-
yard site: Miitterle; farming practice: organic (green), conventional (blue).

Table 7.1: Rating data from the used Riesling areas in 2020 (Figure 2.2), created by the
cooperative Deutsches Weintor; farming practice: organic (Org), conventional
(Con); n.d.: not documented.

Abbre- Farming Area Planting Root- Canopy Defolia-
viation practice (ha) year stock height tion
WHO01 Org 1332 2005 5C 1.10m-1.30m n.d.
WHO08 Org 48.60 1991 Binova 1.10m-1.30m none
WHO04 Con 4867 1991 5C >1.30m one-sided
WH10 Con 4048 2006 5C >1.30m  one-sided
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2.3 Reference data

The juice for the measurement of the one hundred berries sample was
obtained by mixing them with a commercial available mixer (BL 6280,
Grundig, Germany). Individual berries were destroyed in a Falcon tube
by shaking them with four metal bullets in a paint shaker (SK450 Fast
and Fluid Management, Sassenheim, Netherlands). All Falcons were
centrifuged at 25,419 - g in a cooled centrifuge (Sigma 6 —16ks, Sigma,
Kawasaki, Japan) to discard the cell debris. The juice was transferred,
centrifuged with 12,100 - g (Minispin Eppendorf, Hamburg, Germany)
again and 1:3 diluted with double distilled and filtered (pore size
0.2nm) water. Amount of sugars and acids (glucose, fructose, malic-
and tartaric acid) was determined using high performance liquid chro-
matography (Agilent 12900 Infinity 2, Agilent Technologies, Inc., Santa
Clara, California) with ion-exchange ligand-exchange HiPlex H column
(Agilent Technologies, Inc., Santa Clara, California), a refractive index
detector for detection of carbohydrates and a diode array detector for
acids. A standard series ranged from 1.5 to 90 g/L and 0.25 to 15
g/L for sugars and acids, respectively, was used. Recorded data were
processed with Agilent OpenLab CDS Chemstation Software (Agilent
Technologies, Inc., Santa Clara, California).

2.4 Least Squares Support Vector Regression

Due to the Beer-Lambert law, there is a non-linear relationship between
the optical signal and a concentration of compounds, therefore Least
Squares Support Vector Regression (LSSVR) with an RBF kernel was
chosen as a non-linear regression method. The so-called kernel trick
enables the estimation of non-linear correlations using LSSVR.

For the basic LSSVR the linear relation y = wx + b between the re-
gressors x and the dependent variable y is calculated by solving the
following optimization problem

1 n
Qrssvm = J(w, e) = EWTW +rY. ¢ (2.1)
im1

subject to the equality constraints

yi— wix;—b=e;, i=1,2,..,1 (2.2)
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where 7 is the regularization parameter and ¢; is the regression er-
ror. The advantage of the LSSVR over the regular SVM is provided
via converting a quadratic programming problem into a set of linear
equations. By constructing the Lagrange function with the Lagrange
multipliers «, a set of conditions for optimality can be derived. This
leads to a set of linear equations that needs to be solved to obtain the
parameters « and b. The resulting LSSVM model used in function esti-
mation is

n
yi =) oK x;) +b 2.3)
i=1

with the RBF kernel function K. For the model calculation the regular-
ization parameter 7y and the bandwidth of the RBF kernel ¢ needs to
be chosen [17].

3 Results and discussion

Reference data were evaluated and depicted using R (Version 3.6.1)
[18] and R-Studio [19], as well as the packages ggplot2 [20] and Rmisc
[21]. Spectral data analysis and modelling was performed using the
spectraltoolbox framework from Fraunhofer IOSB based on Python 3.8.

3.1 Reference data for spectral data processing

The sugar (glucose, fructose) and acid (tartaric -, malic acid) contents of
berries were measured with high performance liquid chromatography
(HPLC) and results of hundred berries samples are depicted in Figure
3.1.

In individual berries, sugar contents ranged from 6.59g/1 to
11558 g/1 and from 11.52¢g/1 to 108.83 g/l for glucose and fructose,
respectively, over the entire ripening process. For acids, ranges were
smaller and high values were gained at the begin of the ripening with
15.45g/1 for tartaric and 21.79 g/1 for malic acid, respectively. While
the malic acid was partially almost completely metabolized, minimum
tartaric acid content was 3.93 g/1.
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Figure 3.1: Sugar and acid contents in the hundred berries samples, measured with
HPLC, error bars correspond to standard errors, each data point represents
the mean of the four parcels.

3.2 NIR data analysis

The data set contains spectral data from four plots at different locations.
The validation is performed like the later use-case of the ripeness esti-
mation of a plot at a specified date. Therefore, the plot used for valida-
tion was not included in the training and the median of all predictions
is used.

The evaluation of the spectral data was done in several steps. First,
spectra with a low signal strength (average intensity below 0.04) were
discarded. Subsequently, the intensities of the spectral data were nor-
malised using Standard Normal Variate (SNV) [22]:

x—Xx
Xsny = o (3.1)

As a metric to evaluate the regression model, the RMSE and R? score

is used. The RMSE score

/i 0. — 17.)2
RMSE = M (3.2)
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estimates the standard deviation of the prediction of a regression
model. A distinction can be made between the RMSE of prediction
and the RMSE of calibration, depending on y; used during calculation.
In addition, the R2 score

i1 (912)
Y (yi —7)?

indicates how well the independent variables are suited to explain the
variance of the dependent variables. In both formulas 7 is the number
of observations.

Due to the lack of sample preparation, the measurement in reflection
with low signal strength and the use of miniaturised low-cost sensors,
there is an enhanced measurement uncertainty. Because the prediction
of the entire plot at a point in time are relevant for the winemaker,
stochastic errors and outliers can be reduced very well by determining
the median of the single berry predictions. The quality of the predic-
tion of individual grape berries in the training and the median of the
prediction of the validation plot at each time point is shown in Table
7.2.

It can be clearly seen that the median of the single berry prediction
leads to very good results. More precisely, Figure 3.2 shows the me-
dian of acid and sugar of the measured individual berries at different
time points. With this model we were able to determine glucose and
fructose content with 87 % accuracy (+£7.59¢g/1 and +6.57 g/1, respec-
tively) and tartaric, as well as malic acid with 89 % and 78 % accuracy
(£0.52¢g/1 and +1.89 g/1, respectively). Compared to previous studies
that measured the total soluble solids, we were able to predict two indi-
vidual sugars with a high degree of accuracy [23,24]. The two selected
acids could also be predicted separatly, with a better forcast for tartaric
acid, which is the prevalent acid at harvest [23,25]. Higher precision
could eventually be achieved with other models, for which more data
are to be collected.

RZ=1- (3.3)
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Table 7.2: Results of the spectral evaluations using LSSVR. Shown are root mean square
errors of calibration (RMSE(¢) from the training set, the root mean square error
of the median prediction (RMSEp) from validation set, the degree of determi-
nation (R?).

Validation training validation
individual grape berries|median prediction

Plot  Compound |RMSE R2 RMSEp  R?
Glucose 5.29 0.94 9.90 0.87

Fructose 4.48 0.94 8.75 0.86

WH 01 Tartaric acid| 0.51 0.93 1.80 0.54
Malic acid | 1.02 0.93 2.11 0.84

Glucose 5.21 0.94 7.59 0.87

Fructose 4.48 0.94 6.57 0.87

WH 04 Tartaric acid| 0.68 0.90 0.52 0.89
Malic acid | 1.06 0.93 1.89 0.78

Glucose 5.34 0.94 8.70 0.78

Fructose 4.63 0.94 7.98 0.77

WH 08 Tartaric acid| 0.61 0.91 1.17 0.62
Malic acid | 0.98 0.94 1.40 0.86

Glucose 5.67 0.93 10.14 0.80

Fructose 4.83 0.93 8.47 0.81

WH 10 Tartaric acid| 0.63 091 1.25 0.59
Malic acid | 1.09 0.93 1.37 0.86

4 Summary

Sugar (alcohol) and acid content of grapes have a huge impact on the
sensory perception of wine. Measuring of these ingredients is a proxy
for ripening of a vineyard.

Proof of concept was provided on applying a miniature sensor to
measure the maturity of Riesling in vineyards with high accuracy. In
view of the application in the vineyard, the prototype offers an option
for monitoring the ripening in a time efficient way. It is expected that
the sensor will be manageable with one hand. If an App for mobile
phones is developed, the results of the measurement will become im-
mediately apparent. The alternative to invasive measurements being
laborious e.g. a handheld sensor to quantify sugars and acids non-
invasively on hundreds of berries is a step forward towards digitaliza-
tion and precision viticulture.
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Figure 3.2: Median of determined (true, solid line) and estimated (predicted, dashed
line) sugar and acid contents in single berries of the plot WH 04.
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