
Interpretable Machine Learning: On the
Problem of Explaining Model Change

Barbara Hammer1, Eyke Hüllermeier2

1Faculty of Technology
Bielefeld University

E-Mail: bhammer@techfak.uni-bielefeld.de

2Institute of Informatics
LMU Munich

E-Mail: eyke@lmu.de

1 Introduction

Over the past couple of years, the idea of explainability and related notions
such as transparency and interpretability have received increasing attention in
artificial intelligence (AI) in general and machine learning (ML) in particular.
This is mainly due to the ever growing number of real-world applications
of AI technology and the increasing level of autonomy of algorithms taking
decisions on behalf of people, and hence of the social responsibility of com-
puter scientists developing these algorithms. Recent methods for improving
the understandability and transparency of models produced by ML algorithms
include both model-specific [6] as well model-agnostic approaches [12].

These approaches have largely focused on the explanation of static models,
typically learned on a set of training data in a batch mode. Arguably more
challenging is interpretability in the context of learning in non-stationary en-
vironments, where models are learned on a continuously evolving, potentially
unbounded stream of temporally ordered data, and incrementally updated in the
light of newly observed training examples [5, 4]. Corresponding algorithms
must be able to react to changes in the underlying data-generating process,

 DOI: 10.58895/ksp/1000138532-1 erschienen in:

Proceedings - 31. Workshop Computational Intelligence : Berlin, 25. - 26. November 2021

DOI: 10.58895/ksp/1000138532 | https://www.ksp.kit.edu/site/books/m/10.58895/ksp/1000138532/

which is referred to as concept drift [10, 8]. Concept drift may call for incre-
mental adaptations and sometimes also more significant modifications of the
model — in the extreme case of an abrupt change, the learner may even decide
to abandon the current model completely and start learning from scratch.

Explaining model change, whether incremental or abrupt, is important in practi-
cal applications of online learning and can be seen as a key prerequisite for
user acceptance. In particular, it is well known that humans prefer stability
to change [2] — they tend to rely on what is predictable from the past and are
cognitively challenged by deviations from an established solution. Hence, a
good explanation is required to convince a user of any need for changing the
current model.

Taking the stance that this explanation should focus on the change itself, that is,
on the differences between the original and the updated model, we subsequently
elaborate on the idea of explaining model change and identify a number of
important problems to be addressed in this regard. In Section 3, we illustrate
these problems for the specific example of instance-based learning on data
streams.

2 Explaining Model Change

Consider a sequence of models (ht)t∈T produced by an incremental learning
algorithm A, where T ⊂ [0,∞) is a countable set of time indices, for example
T = N. The model ht : X −→ Y is produced on the basis of the data

Dt =
{
(xi,yi)

}
i∈T∩[0,t] ⊂X ×Y

observed by the learner till time t, where X and Y denote the underlying in-
stance and outcome space, respectively (cf. Fig. 1 for an illustration). The data
generating process is characterized by a corresponding sequence of probability
distributions (Pt)t∈T on X ×Y , which may evolve over time (i.e., Ps 6= Pt for
s 6= t) and, of course, is not known to the learner; thus, we assume that each
data point (xt ,yt) is generated by Pt [16, 9].

2 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

Figure 1: Illustration of model change (here for the case of decision trees) over the course of an
incremental learning process.

If data and models evolve quickly, perhaps even in realtime, it will not be
possible to explain every single model ht to a user or human domain expert.
Besides, individual explanations of that kind, isolated from each other, might
be problematic for the user anyway, especially in the case of inconsistencies.
Instead, the user might be more interested in how the model changes over the
course of time, and in understanding the reasons for these changes. This gives
rise to the idea of explaining model change in the sense of the “difference”
between models, a task that appears to be more feasible, especially if changes
are local, i.e., restricted to certain parts of a model or a local region of X .

More concretely, consider a scenario in which, at every time point t ∈ T , the
user has information about a previous model ht0 , where t0 < t. This reference
model is not necessarily up to date, because the learning process has progres-
sed since then and produced updated models (hs)s∈T∩(t0,t]. What we mean
by explaining a model change is to inform the user about the “difference”
∆(ht0 ,ht) between the reference and the current model and making ht the new
reference. Questions, problems, and challenges arising in this context include
the following:

Q1 What are suitable representations of models and model change?

Q2 How to quantify model change, i.e., the difference ∆(ht0 ,ht) between
models ht and ht0 (distinguishing between syntactic difference referring
to the representation of a model and semantic difference referring to the
change of the functional dependence X −→ Y)?

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 3

Q3 How to compute ∆(ht0 ,ht) efficiently, preferably in an incremental man-
ner?

Q4 When and how often should a model change be explained, bearing in
mind aspects of computational complexity, but perhaps more importantly
the cognitive capacity of the human user (who is likely to prefer stability
over change)?

Q5 How to complement the explanation of a change by convincing reasons
for why it was needed?

Obviously, suitable answers to these questions will strongly depend on the
learning task and the type of model produced by the learning algorithm. In
the next section, we illustrate the problems for a specifically simple example,
namely, the case of instance-based learning on data streams.

3 Instance-Based Learning on Data Streams

The notion of instance-based learning (IBL) refers to a family of machine
learning algorithms, including memory-based learning, exemplar-based lear-
ning, and case-based learning [13, 7], which represent a predictive model in an
indirect way via a set of stored data. Thus, in contrast to model-based machine
learning methods which induce a general model (theory) from the data and use
that model for further reasoning, IBL algorithms simply store the data itself
and defer its processing until a prediction (or some other type of query) is
actually requested — a property which qualifies them as a lazy learning method
[1]. Predictions are then derived by combining the information provided by
the stored examples, typically accomplished by means of the nearest neighbor
(NN) estimation principle [3]. In this regard, examples are also referred to as
cases, and the stored data as the case base.

More specifically, consider the simple example of binary classification with
data of the form D = {(xi,yi)}N

i=1 ⊂X ×Y , where X =Rd and Y = {0,1}.
The instance space X is equipped with a distance measure, for example the

4 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

Euclidean metric. Adopting the simple nearest neighbor rule, the model hD

induced by the data D is given by

hD : X → Y , x 7→ yNN(x,D) ,

where NN(x,D) denotes the (index of the) nearest neighbor1 of x in D , i.e.,

NN(x,D) = arg min
1≤i≤N

‖x− xi‖ .

Obviously, using hD to make predictions for new query instances xq requires
searching for the nearest neighbor of xq in the data D . Although the complexity
of nearest neighbor search can be reduced by means of specific data structures
[11], instance-based learning will typically remain more costly at prediction
time than model-based learning.

On the other side, an instance-based approach naturally supports an incre-
mental mode of learning. In fact, in the data stream scenario, where new
cases are observed continuously over the course of time, the problem of le-
arning essentially reduces to the problem of case based editing or case based
maintenance [15]: every time a new example (xnew,ynew) arrives, one needs
to decide whether or not this example should be added to D , and if other
cases should perhaps be removed. Disregarding computational complexity, the
ideal case base D∗ ⊆D ∪{(xnew,ynew)} will maximize predictive performance
(classification accuracy) of the induced classifier in the future. As this criterion
cannot be used directly (future performance is difficult to anticipate, especially
in the presence of concept drift), most methods fall back on suitable indicators
of the usefulness of individual cases. For example, the IBLStreams approach
[14] decides about the addition or removal of cases on the basis of the following
criteria:

• Temporal relevance: Recent observations are deemed potentially more
useful and are hence preferred to older ones.

• Spatial relevance: Examples can be redundant in the sense of not chan-
ging the nearest neighbor classification of any query. More generally
(and less stringently), one might consider a set of examples redundant

1 A tie breaking mechanism is needed in the case where the nearest neighbor is not unique.

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 5

if they are closely neighbored in the instance space and, hence, have
a similar region of influence (Voronoi cell). In other words, a new
example in a region of the instance space already occupied by many other
examples is considered less relevant than a new example in a sparsely
covered region.

• Consistency: An example should be removed if it seems to be inconsis-
tent with the current concept, e.g., if its class label differs from most of
the labels in its neighborhood. In this regard, however, it is important
to distinguish between “noisy cases” and the possible beginning of a
concept drift.

Bringing the aspect of explainability into play, we can imagine a learner adop-
ting principles of this kind to edit its case base but delaying the update. In
other words, the learner maintains a candidate case base Dt in parallel to the
reference case base Dt0 that is used to make predictions. Thus, whenever Dt

is modified, the learner has to decide whether to retain Dt0 or replace it by Dt .
Let us reconsider the questions Q1–Q5 for this particular scenario.

As for Q1, we already mentioned that models are represented indirectly in
instance-based learning: a model hDt0

is represented by a set of cases (xi,yi) ∈
Dt0 , which can be presented to a user as prototypical examples. Seen from
this perspective, the case base should be kept as small as possible, because
overly large case bases will compromise interpretability. Individual predictions
hDt0

(xq) are naturally “justified” by means of similarity-based or example-
based explanations referring to local (nearest neighbor) information in the vi-
cinity of the query xq. In the simplest case, the nearest neighbor is retrieved
and its class label is provided as a justification: “There is a case xi that belongs
to class yi and resembles xq, so xq is likely to belong to yi as well.”

As for Q2, the syntactic difference between hDt0
and hDt is naturally defined

in terms of the (cardinality of the) symmetric difference (Dt0 ∪Dt)\ (Dt0 ∩Dt)

between Dt0 and Dt . Likewise, a natural definition of the semantic difference
is the expected discrepancy

∆(hDt0
,hDt) =

∫
X
‖hDt0

(x)−hDt (x)‖ p(x)d x ,

6 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

Figure 2: Illustration of a model change in the case of nearest neighbor classification. A model
is characterized by a Voronoi tessellation. Adding a new example to the original model
(left) leads to a change of the model (middle) and a corresponding difference (right) to
be explained to the user.

where p(x) is the probability (density) of observing x as a query. Because
the latter is not known and difficult to estimate, especially in the presence of
concept drift, one may think of

∆(hDt0
,hDt) =

∫
X
‖hDt0

(x)−hDt (x)‖d x (1)

as an alternative, effectively assuming a uniform distribution on X . Obviously,
X must be bounded in this case, which can be guaranteed through normali-
zation, for example by mapping X to [0,1]d ; a transformation of this kind is
anyway advisable to assure commensurability between the different features
(dimensions) and hence the meaningfulness of the Euclidean metric.

Turning to Q3, the computation of (1) is an algorithmically challenging pro-
blem, which comes down to identifying the (volume of) the discrepancy region
in X , viz. the set of points x for which the label of the nearest neighbor in
Dt0 differs from the label of the nearest neighbor in Dt (cf. Fig. 2). While an
efficient algorithmic solution to this problem is beyond the scope of this paper,
we mention that a simple approximation can be obtained through Monte Carlo
sampling:

∆(hDt0
,hDt)≈

1
K

K

∑
k=1
‖hDt0

(x′k)−hDt (x
′
k)‖ ,

where x′1, . . . ,x
′
K are sampled uniformaly at random from X .

As for Q4 and Q5, the learner needs to take both ∆(hDt0
,hDt) and the difference

between hDt and hDt0
in terms of (estimated) usefulness into account. The

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 7

larger these quantities, the stronger the need for an update. The explanation of
an update then essentially comes down to informing the user about the sym-
metric difference between the corresponding cases bases, i.e., explaining that
some of the previous cases have become redundant or are no longer considered
sufficiently prototypical, while other cases have been added as new prototypes.
To convince the user of the need for a revision of the case base, one may
present examples of queries that are classified correctly with the new model
but incorrectly with the old one.

4 Conclusion

We motivated the task of explaining the change of models in the context of
learning in dynamic environments, where data is coming in streams and con-
tinuously evolving over the course of time, possibly urging the learner might
to react to concept drift. In this regard, we highlighted a number of problems
and challenges to be addressed, and illustrated these problems for the specific
case of instance-based learning on data streams. As a next step, we seek
to realize these ideas on a more technical level, put them into practice, and
evaluate them in the context of real applications. Besides, we shall study the
problem of explaining model change also for other learning tasks and other
model classes.

References

[1] D.W. Aha, editor. Lazy Learning. Kluwer Academic Publ., 1997.

[2] A. Clark. Whatever next? Predictive brains, situated agents, and the
future of cognitive science. Behavioral and Brain Sciences, 36(3):181–
204, 2013.

[3] B.V. Dasarathy, editor. Nearest Neighbor (NN) Norms: NN Pattern
Classification Techniques. IEEE Computer Society Press, Los Alamitos,
California, 1991.

8 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

[4] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar. Learning in
nonstationary environments: A survey. IEEE Computational Intelligence
Magazine, 10(4):12–25, 2015.

[5] G. Morales De Francisci and A. Bifet. SAMOA: scalable advanced
massive online analysis. Journal of Machine Learning Research,
16(1):149–153, 2015.

[6] J.H. Friedman and B.E. Popescu. Predictive learning via rule ensembles.
The Annals of Applied Statistics, 2(3):916–954, 2008.

[7] J.L. Kolodner. Case-based Reasoning. Morgan Kaufmann, San Mateo,
1993.

[8] V. Losing, B. Hammer, and H. Wersing. KNN classifier with self
adjusting memory for heterogeneous concept drift. In IEEE International
Conference on Data Mining (ICDM), pages 291–300, 2016.

[9] V. Losing, B. Hammer, and H. Wersing. Incremental on-line learning: A
review and comparison of state of the art algorithms. Neurocomputing,
275:1261–1274, 2018.

[10] V. Losing, B. Hammer, and H. Wersing. Tackling heterogeneous
concept drift with the Self-Adjusting Memory (SAM). Knowledge and
Information Systems, 54(1):171–201, January 2018.

[11] Y. Malkov and D. Yashunin. Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs. CoRR,
abs/1603.09320, 2016.

[12] M.T. Ribeiro, S. Singh, and C. Guestrin. "Why Should I Trust You?":
Explaining the Predictions of Any Classifier. In Proc. 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’16, pages 1135–1144. ACM Press, 2016.

[13] S. Salzberg. A nearest hyperrectangle learning method. Machine
Learning, 6:251–276, 1991.

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 9

[14] A. Shaker and E. Hüllermeier. IBLStreams: a system for instance-
based classification and regression on data streams. Evolving Systems,
3(4):235–249, 2012.

[15] B. Smyth and E. McKenna. Competence models and the maintenance
problem. Computational Intelligence, 17(2):235–249, 2001.

[16] G.I. Webb, L.K. Lee, F. Petitjean, and B. Goethals. Understanding
concept drift. arXiv preprint arXiv:1704.00362, 2017.

10 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

