
Concepts for Automated Machine Learning in
Smart Grid Applications

Stefan Meisenbacher, Janik Pinter, Tim Martin,
Veit Hagenmeyer, Ralf Mikut

Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen

E-Mail: stefan.meisenbacher@kit.edu

1 Introduction

Undoubtedly, the increase of available data and competitive machine learning
algorithms has boosted the popularity of data-driven modeling in energy sy-
stems. Applications are forecasts for renewable energy generation [1, 2] and
energy consumption [3]. Forecasts for load and generation, e. g., power, gas,
and heat, on different temporal and spatial aggregation levels are elementary
for sector coupling, where energy-consuming sectors are interconnected with
the power-generating sector to address electricity storage challenges by adding
flexibility to the power system [4]. However, the large-scale application of
machine learning algorithms in energy systems is impaired by the need for
expert knowledge, which covers machine learning expertise and a profound
understanding of the application’s process. The process knowledge is required
for the problem formalization, as well as the model validation and applica-
tion. The machine learning skills include the processing steps of i) data pre-
processing, ii) feature engineering, iii) algorithm selection, iv) HyperParameter
Optimization (HPO), and possibly v) post-processing of the model’s output.

Tailoring a model for a particular application requires selecting the data, de-
signing various candidate models and organizing the data flow between the
processing steps, selecting the most suitable model, and monitoring the model
during operation – an iterative and time-consuming procedure. Automated

 DOI: 10.58895/ksp/1000138532-2 erschienen in:

Proceedings - 31. Workshop Computational Intelligence : Berlin, 25. - 26. November 2021

DOI: 10.58895/ksp/1000138532 | https://www.ksp.kit.edu/site/books/m/10.58895/ksp/1000138532/

define task and
select data

design various
models

organize the data
flow between the
processing steps

select the most
suitable model

monitor model
operation

define task and
select data

design
configuration

space

select the most
suitable model

monitor model
operation

define task and
select data

design various
models

select the most
suitable model

monitor model
operation

define task, select
data and template

is warned when
application fails

define task and
select template

is informed about
modifications

machine learning
pipelines help

systematizing the
data flow

hyperparameter
optimization tools

help to find a
suitable pipeline
configuration

configuration
space of template

is searched via
hyperparameter
optimization

select the most
suitable pipeline
configuration

monitor pipeline
operation

select or
generate data

design the con-
figuration space
and optimize

hyperparameters

select the most
suitable pipeline
configuration

predictive
monitoring of

pipeline operation
and adaptation

identify task

select or
generate data

design suitable
pipeline

predictive
monitoring of

pipeline operation
and adaptation

cope with issues
during the
application

Automation
level 0

Manual design
and application

Automation
level 1

Design
assistant

Automation
level 2

Partially
automated

Automation
level 3

Highly
automated

Automation
level 4

Fully
automated

Automation
level 5

Autonomous
system

Figure 1: The five levels of automated forecasting, inspired by the SAE standard for autonomous
driving of vehicles [5].

design and operation of machine learning aim to reduce the human effort to
address the increasing demand for data-driven models. We define five levels of
automation for forecasting where manual design and application reflect Au-
tomation level 0, see Figure 1. In Automation level 1, machine learning
pipelines [6] assist the design process, systematizing the workflow by serially
organizing the processing steps and managing the data flow through the steps’
methods. Still, the pipeline requires manual tailoring by the data scientist to
meet the specific requirements. Most published literature on energy forecasts
range between Automation level 0 and 1, see reference [7]. Across the litera-
ture, standard procedures have emerged that can be used to create automated
pipeline templates for specific tasks.

Partially automated forecasting is enabled in Automation level 2, where HPO
tools1 support the data scientist, automatically evaluating candidate models of
a configuration space ΛΛΛ defined by the data scientist. Still, the data scientist
needs to analyze the optimization results, select the most suitable model, and
monitor the model during operation. In the literature, few approaches exist
for energy systems that we can classify as Automation level 2. A framework

1 e. g., Hyperopt [8], SMAC [9], or NNI [10]

12 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

for automated HPO and forecasting algorithm selection is proposed by Rätz
et al.[11]. Cui et al.[12], and Shahoud et al.[13] propose frameworks for
the automated forecasting algorithm selection using meta information such
as statistical properties of the time series and characteristics of the system.
An approach for combining HPO and ensembling of forecasting algorithms is
proposed by Wu et al.[14]. Maldonado et al.[15] and Valente and Maldonado
[16] introduce embedded feature selection approaches for the Support Vector
Regression (SVR), integrating exogenous weather information into electrical
load forecasting.

Automation level 3 reaches highly automated forecasting by providing pi-
peline templates for specific tasks that include an associated configuration space
ΛΛΛ or a robust default configuration λλλ . The data scientist needs to provide the
data and select the template. Anomaly detection monitors operation and alerts
the data scientist when suspicious model inputs or outputs are detected.2 A
highly automated framework for building energy management is proposed by
Schachinger et al.[17], including a heuristic for the automated design of Artifi-
cial Neural Networks (ANNs), online assessment, and scheduled re-training.

In Automation level 4, the fully automated forecasting takes over the data
selection. The data is either taken from a data storage assigned to the selected
template or generated synthetically according to the template-specific task. Du-
ring operation, the model predicts its performance and warns the data scientist
before system borders are reached.

Finally, Automation level 5 achieves a fully autonomous system that indepen-
dently identifies the task, creates the model, and detects and resolves issues
during operation.

The introduced automation levels are not rigid – interim levels are possible.
To the best of our knowledge, there are yet no applications for smart grids in
Automation levels 4 and 5. The remainder of this paper is organized as follows.
First, we present a general approach to automate the design and operation of
forecasting models in energy systems in Section 2. Then, we describe and

2 Current open-source Automated Machine Learning (AutoML) tools, e. g., AutoSklearn [18],
or TPOT [19], support automated design of regression and classification models. Monitoring of
the model operation is not provided.

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 13

Figure 2: Identified Automated Machine Learning (AutoML) approaches for smart grid appli-
cation. The HyperParameter Optimization (HPO) extension communicates via the
Application Programming Interface (API) with pyWATTS [6].

evaluate automated design algorithms for a hybrid model (autonomous level
2.5) in Section 3. Finally, Section 4 concludes and provides an outlook on
future research.

2 Approach

Although numerous methods for AutoML have been proposed in the literature,
a toolkit tailored for forecasting in energy systems is lacking. Figure 2 shows
a schematic overview of unexplored automation approaches and our long-term
concept based on a taxonomy discussed in Subsection 2.1.

The open-source Python Workflow Automation Tool for Time Series (py-
WATTS)3 [6] assists researchers in the design process, systematizing the
workflow through a pipeline with a uniform interface for various methods
applied to the steps of the pipeline (Automation level 1).

For specialized tasks, the expertise of a data scientist and a process expert is
still required, and we want to keep the human in the loop. To reduce the effort

3 https://github.com/KIT-IAI/pyWATTS

14 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

https://github.com/KIT-IAI/pyWATTS

of tailored pipeline design, an HPO extension for pyWATTS [6] is required
(Automation level 2). The extension enables defining a configuration space
ΛΛΛ and selecting a search algorithm, and wraps around pyWATTS. Commu-
nication is established by an Application Communication Interface (API) of
pyWATTS, allowing the optimization algorithm to configure pipeline para-
meters. The report interface of pyWATTS provides data for visualization of
the optimization progress and results. The schematic process of HPO with
pyWATTS is outlined in Subsection 2.2.

Recurring tasks with good generalizability, such as forecasting of PhotoVoltaic
(PV) and Wind Power (WP) generation, can be handled with default templates
for large-scale deployment (Automation level 3). A default template contains
a forecasting pipeline with normalized output that needs little effort to calibrate
for new operational environments. We introduce a template for PV forecasting
in Subsection 2.3, and a template for WP forecasting in Subsection 2.4.

The hybrid modeling template couples two grey- or black-box models by a
data-dependent weighting of the model outputs. In regions where the model
input is well represented in the training data set, a sophisticated model is
overweighted, whereas, in less representative regions, a robust model gains
weight, as it is expected to have better extrapolation characteristics. We eva-
luate exhaustive and Bayesian HPO for the automated design of a black-box
hybrid model without operation monitoring (Automation level 2.5) on ten
benchmark data sets in Section 3.

The operation of the templates is supported by performance monitoring and
a warning system, alerting the data scientist if any issue is detected during
operation, such as unusually high forecasting errors.

The vision for fully automated pipeline design for energy systems requires a
tool specific to energy systems to integrate domain knowledge – the Pipeline
Wizard (Automation level 4). For tasks where comprehensive training data
is missing, the data manager automatically selects appropriate training data
from a related data storage or synthetically generates training data. The Pi-
peline Wizard automates the design of the forecasting pipeline and enables
integrating specific methods for each pipeline section. The operation of the
Pipeline Wizard is guided by predictive performance estimation to detect drifts

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 15

in the pipeline error at an early stage. This is required to trigger automated
model adaption to cope with concept drifts and informs the data scientist about
changes made. Detailed information on the planned realization of the Pipeline
Wizard can be found in Subsection 2.5.

2.1 Literature Review

Review papers are fundamental for the evaluation of the state of science and
the identification of research gaps. In the research area of AutoML, several
literature review papers exist, e. g., [20, 21]. However, they are limited to
regression and classification tasks. Further, AutoML methods focus on the
problem of Combined Algorithm Selection and Hyperparameter optimization
(CASH) [20]. For time series forecasting, pre-processing and feature engineer-
ing are vital sections of the machine learning pipeline and require specialized
methods, considering the temporal sequence of data points. Consequently, a re-
view on AutoML for time series forecasting must consider time series-specific
methods and the complete pipeline – an unaddressed issue in the present review
studies.

2.2 Hyperparameter Optimization Extension for pyWATTS

Systematizing the workflow with machine learning pipelines can be achieved
with pyWATTS [6]. For enabling external HPO tools to access the pipeline
configuration λλλ of pyWATTS, we target to define an API.

The schematic process for HPO is shown in Figure 3. The data scientist
formalizes the problem, defines the structure of the machine learning pipeline,
and selects the data. The data needs to be split into a set for tuning and a test set.
The tuning set is used to find a suitable pipeline configuration λλλ . We further
split the tuning data set and use a portion to train the pipeline and evaluate the
performance of λλλ on the validation set.4 The test set is hold-out to evaluate the
tuned pipeline afterward.

4 To increase the robustness, Cross-Validation (CV) can be applied.

16 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

The data scientist parametrizes the pipeline sections to be optimized and defi-
nes the configuration space ΛΛΛ accordingly. For the definition of ΛΛΛ, continuous,
categorical, and conditional terms are available. While continuous terms are
used to define the configuration space of hyperparameters, categorical terms
are used for making decisions, such as choosing a polynomial or Radial Ba-
sis Function (RBF) kernel of an SVR or selecting an ANN or SVR as the
forecasting algorithm. Depending on the choice, conditional terms enable
the definition of corresponding sub-configuration spaces ΛΛΛcond ⊂ ΛΛΛ, e. g., the
degree of the polynomial kernel if this kernel was selected.5

The HPO tool selects a hyperparameter configuration λλλ ∈ΛΛΛ, which is assigned
to the pipeline. pyWATTS trains and validates the pipeline and returns the
performance Q on the validation data split, which is usually the forecasting
error. Depending on the selected search algorithm of the HPO tool, Q is
used for the selection of the next λλλ to be evaluated or not. We target to
implement the open-source HPO tool Neural Network Intelligence (NNI) [10],
which allows the selection of various search algorithms, including exhaustive,
heuristic, and Bayesian algorithms, while the definition of the configuration
space ΛΛΛ is standardized.
In HPO, parallel computing is crucial for feasible run times. We may paralle-
lize the pipeline’s training process, the computation of CV folds, the computa-
tion of configuration trials, or combinations of these. The best parallelization
strategy depends on the actual problem and can be determined in a preceding
experiment. The HPO extension for pyWATTS will include the above strate-
gies.

The evolution of the pipeline performance during optimization and the opti-
mization results need to be visualized to aid the data scientist in the design
process. The evolution plot of Q may indicate the convergence of directed
search algorithms and guide the data scientist in deciding on the termination.
Visualization of the best performing hyperparameter configurations helps the
developer to decide whether ΛΛΛ was well defined.

5 The applied definition of a configuration space ΛΛΛ is shown in Subsection 3.2.

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 17

Data scientist

HPO tool

pyWATTS [6]

assign configuration

define configuration space

run black-box optimization

test pipeline
API

API

Visualization

Search
algorithm
select next trial
configuration

Configuration
space Λ
� continual
� categorical
� conditional

λ

Q Test
data

train pipeline
validate pipeline
return val-performance

define and parametrize machine learning pipeline
select and
split dataformalize problem

Report

Train
data

Val
data

Tune
data

=
Train data

+
Val dataPipeline

Step

Step

Step

Step

Figure 3: The schematic process of HyperParameter Optimization (HPO) with the pyWATTS
extension: The data scientist is supported by the HPO tool in tailoring the pipeline to
a specific problem. The HPO tool passes a hyperparameter configuration λλλ ∈ ΛΛΛ via
the Application Programming Interface (API) to pyWATTS [6] and receives the pipeline
performance Q on the validation (val) data.

2.3 Generalized Photovoltaics Template

The majority of published literature on PV forecasting is limited to individual
plants, e. g., [22, 23, 24]. They differ in terms of input features, forecasting
horizon, and forecasting algorithms. The increasing adoption of renewable
energies and their integration into redispatch policies leads to a rapidly growing
demand for PV forecasting models. Therefore, we expect that designing and
training an individual model for each PV plant is infeasible due to the immense
design effort and the need for a sufficient amount of training data for each plant,
which are not present for new plants. Several commercial solutions exist for
renewable energy forecasting in the context of redispatch actions, e. g., [25, 26,
27]. However, the applied methods are closed-source, making an evaluation in
terms of forecasting performance and design efficiency impossible.

We propose a generalized PV forecasting template, which uses weather fore-
casts for the plant’s location as input data – more precisely, global radiation
and air temperature [28]. Thus, weather forecasting is an external module for
which we may use a commercial weather forecasting service or an individual
weather model. Figure 4 shows the process of the generalized PV generation
forecasting template. We generalize the model using normalized training data
of eleven PV plants, whose alignment and orientation are either unknown or

18 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

06:00 10:00 14:00 18:00 22:00
Time

0

20

40

60

80

100

120

PV
 g

en
er

at
io

n
 k

W
h

06:00 10:00 14:00 18:00 22:00
Time

0

20

40

60

80

100

120

P
V

 g
en

er
at

io
n

kW
h

06:00 10:00 14:00 18:00 22:00
Time

0.0

0.1

0.2

0.3

0.5

0.6

P
V

 g
en

er
at

io
n

no
rm

al
iz

ed

0.4

(a) PV generation profiles of 11 plants (b) Normalization and averaging of the PV
 generation profiles

(c) Forecast of the normalized average PV
 generation profile

(d) Re-transforming the PV generation profile to PV plants

06:00 10:00 14:00 18:00 22:00
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
V

 g
en

er
at

io
n

no
rm

al
iz

ed

Figure 4: The process of the generalized PhotoVoltaic (PV) generation forecasting template.

ambiguous. After normalizing the generation profiles according to the peak
power of the PV plants, we calculate the average generation profile. We train
the generalized PV template to forecast the average normalized generation
profile with the weather forecast as input data. After forecasting the average
normalized profile, we re-transform the generation profile to individual plants
in the post-processing.

We validate this approach out-of-sample and achieve a normalized Mean Ab-
solute Error (nMAE) of 26.3%. We may reduce the nMAE to 15.9% if we
would use a flawless weather forecast. To reduce the forecasting error of the
template, it seems reasonable to introduce calibration factors. The factors allow
the calibration of the template to individual plants to compensate for different
efficiency levels, as well as inclinations and orientations, see Figure 5. In
addition, the PV template will support various complex forecasting models

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 19

06:00 10:00 14:00 18:00 22:00
Time

0

20

40

60

80

100

120

PV
 g

en
er

at
io

n
 k

W
h

(b) Orientation and alignment calibration

06:00 10:00 14:00 18:00 22:00
Time

0

20

40

60

80

100

120
PV

 g
en

er
at

io
n
 k

W
h

(a) Efficiency calibration

Measurement
Forecast
Calibrated
forecast

Figure 5: The calibration of the generalized PhotoVoltaic (PV) generation forecasting template.

depending on the availability of data, i. e., depending on the availability and
amount of site-specific historical data and weather forecasts.

The proposed generalized PV model was developed for the Stadtwerke Karls-
ruhe Netzservice GmbH. For the automated application, we target to implement
online performance tracking and calibration. Thereby, the model can adapt to
decreasing efficiencies due to aging or changing environmental conditions, e.
g., shading from new buildings in the surrounding area. Once re-calibration is
performed, the data scientist is informed about the modification.

2.4 Generalized Wind Power Template

Wind turbine manufacturers provide empirical power curves, which link the
power output of the wind turbine to the wind speed at hub height. We propose
to use these power curves to forecast WP generation, rather than designing and
training individual data-driven models [28]. The input of a power curve is the
wind speed of a weather forecast, which comes from a commercial service or
an individual weather model. As the wind speed of the weather forecast is not
at hub height, a correction is necessary. We use the wind profile power law

v2

v1
=

(
h2

h1

)α

, (1)

20 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

Wind speed

Po
w
er

Sec. 1 Sec. 2 Sec. 3 Sec. 4

Activation speed Shut-down speed

0

v2
h2

h1

= v1

α()

h1

v1

α =0.10 α = 0.15 α = 0.20

Wind speed

H
ei

gh
t

(a) Empirical wind power curve (b) Height correction of the wind speed

Figure 6: The wind power curve and height correction with the wind profile power law for
reference height h1 and the wind speed at this height v1 with different exponents α .

where v1 and v2 are the wind speeds at height h1 and h2 above the ground, and
α is the empirically derived friction coefficient, depending on the topology of
the landscape [29]. Figure 6 shows the four sections of a power curve and the
height correction with the wind profile power law. Using the height correction,
we are able to calibrate the power curve to the respective turbine. In most
cases, the heights h1 and h2 are known. The velocity v1 is the wind speed
of the weather forecast. In this case, we calibrate the power curve with the
exponent α . In the literature, α is given for different landscape topologies,
which serve as a starting value for the calibration. The utilization of calibrated
empirical power curves eliminates the need for extensive training data. If
training data is available, re-calibration of α is possible. In the first application,
we determined α using grid search and selected α such that the forecasting
error on a validation data set becomes minimal.6

We validate the calibrated power curve out-of-sample and achieve an nMAE of
62.6%. The model error seems high, but it is mainly related to the forecasting
accuracy of the wind speed. A flawless forecast of the wind speed reduces the
nMAE to 19.6%. The wind speed forecast, in particular, has difficulty pre-
dicting single wind gusts, justifying the large discrepancy between the nMAE
obtained with weather forecasts and flawless forecasts. During the compilation
of the validation data set, we noticed anomalies due to the manual shutdown of
the wind turbines. To clean the data set, we used a heuristic method that takes

6 If apart from α , h1 or h2 is unknown, calibration is still possible but the effort increases.

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 21

advantage of the fact that there are two turbines in the immediate neighborhood
and searches for deviating outputs between the turbines. In further work, we
target to develop a universal anomaly detection method that also works for
individual turbines.

As the PV template (Subsection 2.3), the WP template was developed for
the Stadtwerke Karlsruhe Netzservice GmbH. We aim to implement online
performance tracking and calibration, as well as data-dependent complexity of
the forecasting model. In this way, the model may adapt to changing inflow
characteristics, e. g., caused by transformations of the landscape topology.
Re-calibration triggers the information of the data scientist about the model
adaptation.

2.5 Pipeline Wizard

The objective of the Pipeline Wizard is the automated forecasting pipeline
design and large-scale application for consumption data in energy systems,
including electricity, gas, and heat. For these systems, sufficient training data
is not always available. However, we may use data from related systems for
training with similar environmental conditions, unit size, and utilization. The
related data either can be taken from a data warehouse or generated synt-
hetically. In order to select or generate suitable data, meta information is
necessary that describe the behavior of the system. By eliminating the need for
measurement data of the system, forecasting models can be applied widely.

Recent AutoML tools focus on the CASH problem for classification and re-
gression tasks. Time series forecasting requires specialized methods for pre-
processing and feature engineering that consider the temporal sequence of the
data. We target to provide time series-specific methods for each section of
the pipeline, including pre-processing, feature engineering, HPO, algorithm
selection, and ensembling. Apart from these default methods, integrating spe-
cialized methods for particular system domains is possible, which are then ta-
ken into account in the automated design process, e. g., copy-paste imputation
for energy time series to handle anomalies [30] or the engineering of energy-
specific meta-features [12].

22 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

Concept drifts pose a major challenge in the application of forecasting models.
A concept drift involves the change of the target variable’s statistical properties
[31]. Reasons for concept drifts are manifold: a change of utilization, changing
exogenous influences affecting the system, or structural changes such as unit
size or system boundaries. The changes may occur suddenly, incrementally, or
gradually and may reoccur [32]. At the same time, the forecasting accuracy
of a model decreases if the trained relationships between input and output
variables no longer match the system’s behavior. In this situation, adapting
the forecasting model to the changed system is necessary [31]. Different adap-
tation strategies are possible. The most straightforward strategy is re-training
the forecasting model with the data accumulated after the concept drift. An
improvement can be achieved if not only the model parameters but also its
structure and hyperparameters are tuned. Celik and Vanschoren [33] evaluated
six adaptation and tuning strategies on evolving data for a classification task.
We target to tailor these strategies to time series forecasting and evaluate their
effectiveness.

3 Automated Hybrid Modeling

Robust models are necessary for the representation of participants in smart
grids, e. g., the thermal dynamics of buildings or the characteristics of Electric
Vehicle (EV) batteries [34]. Data-driven models can achieve high predictive
accuracy if the input variables are in familiar range, thus, similar to the training
data set (interpolation). The prediction accuracy declines in extrapolation
areas [35], i. e., if the model makes an inference about the system’s behavior
in a new range of variables [36]. Böhland et al.[37] propose a hybrid model for
local adaption of the model complexity to interpolation and extrapolation. The
hybrid model creates a hull around the interpolation areas using a fuzzy mo-
deled One-Class Support Vector Machine (1C-SVM). The fuzzified hull serves
as a weighting function for the extrapolation and the interpolation model.

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 23

3.1 Automated Design

The design algorithm for black-box modeling automatically determines a suita-
ble combination of the interpolation and the extrapolation model (sub-models),
as well as the 1C-SVM. The data set is split into training, validation, and
test data. The algorithm creates candidate hybrid models using the training
data and estimates their performance afterward with the validation data. After
selecting the best performing hybrid model, it is retrained using the training
and validation data (tuning data), and the performance is assessed with the test
data.

Grid Search The most elementary algorithm for optimizing the configuration
λλλ of a model is grid search, where a finite set of candidate configurations is
defined and exhaustively evaluated. The configuration space ΛΛΛ consists of sub-
models of various prediction algorithms, incorporating the MultiLayer Percep-
tron (MLP), the SVR, Multivariate Adaptive Regression Splines (MARS) [38],
and the LOcal LInear MOdel Tree (LOLIMOT) [39], and the 1C-SVM; each
prediction and decision algorithm has a finite space of candidate hyperpara-
meters. The algorithm of Böhland et al.[37] creates the candidate models and
gathers all trained sub-models and 1C-SVMs in the model pool. Then, each
possible combination of sub-models and 1C-SVMs of the pool is evaluated on
the validation data, and the λλλ with the lowest MAE is selected.

Bayesian Optimization Rather than evaluating a finite search grid, Bayesian
optimization explores and exploits the configuration space ΛΛΛ. The optimiza-
tion scheme uses a probabilistic surrogate model to approximate the objective
function Q, mapping the model’s performance Q over ΛΛΛ. In each iteration, the
surrogate model is updated, and the optimization scheme uses an acquisition
function to decide on the next hyperparameter configuration λλλ ∈ΛΛΛ to be obser-
ved [40]. To apply Bayesian optimization towards automated hybrid modeling,
we need to define the configuration space ΛΛΛ.

24 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

3.2 Evaluation

We evaluate the automated design of the hybrid model as in reference [37] on
ten data sets and compare grid search to Bayesian optimization.

Experimental Setup In the initial proposal of the automated hybrid model,
Böhland et al.[37] showed that it performs significantly better than standard
regression models on nine out of ten benchmark data sets. In this experiment,
we compare HPO algorithms for automated model design, i. e., Bayesian op-
timization with exhaustive grid search. We evaluate which HPO algorithm
achieves lower prediction errors and requires less computation time.

For grid search, we adopt the configuration space ΛΛΛ of reference [37] with
the 1C-SVM implementation of the Scikit-learn library7 [41] (RBF kernel;
σ = 0.01,0.025,0.05,0.1,0.2, . . . ,1,1.5,10; ε = 0.001)8. Since the LOLIMOT
model is not available in the Python programming language [42], we omit
this model type but added Random Forest (RF), Gradient Boosting Machine
(GBM), and Linear Regression (LR):

• MLP (Nneurons = 2,3, . . . ,17,30,50),

• SVR (RBF kernel; σ = 0.1,0.2, . . . ,1,1.2,1.5,2; C = 100; ε = 0.001)8,

• GBM (Nestimators = 90,100, . . . ,150,200,300, . . . ,1000),

• RF (Nestimators = 90,100, . . . ,150,200,300, . . . ,1000),

• MARS,

• LR

We implemented the automated design process in Python [42] and adapted the
grid search from the implementation of the Scikit-learn library7 [41]. SVR, RF,
and LR are based on the Scikit-learn library as well. The GBM implementation
is based on the XGBoost library9 [43], and MARS relies on the Py-earth
library10 [44]. For Bayesian optimization, we apply the NNI toolkit11 [10]

7 https://github.com/scikit-learn/scikit-learn
8 some references denote ε as ν
9 https://github.com/dmlc/xgboost

10 https://github.com/scikit-learn-contrib/py-earth
11 https://github.com/microsoft/nni

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 25

https://github.com/scikit-learn/scikit-learn
https://github.com/dmlc/xgboost
https://github.com/scikit-learn-contrib/py-earth
https://github.com/microsoft/nni

with the Tree Parzen Estimator (TPE) optimizer [8]. The configuration space ΛΛΛ
consist of three categorical hyperparameters – the choice for the interpolation,
extrapolation, and decision algorithm. For the interpolation and the extrapo-
lation, the optimizer may choose the above-listed prediction algorithms. If an
algorithm is chosen, the corresponding conditional configuration space ΛΛΛcond⊂
ΛΛΛ with continuous values and the limits corresponding to the respective mi-
nimum and maximum values of the grid search applies. For the decision
algorithm, only the 1C-SVM algorithm with RBF kernel can be chosen with
continuous hyperparameters and limits equivalent to the grid search.

We evaluate the automated design process on ten data sets and split the data
randomly into training data (60%), validation data (20%), and test data (20%).
The test data is initially held out. With the remaining data, we perform a four-
fold CV for each candidate configuration λλλ and calculate the mean MAE over
the splits. Based on the mean MAE, the HPO algorithm determines the most
suitable λλλ . Afterward, the hybrid model is re-fitted with the chosen λλλ using
the train and validation data (tuning data) and tested on the hold-out test data.
We repeat this process five times for each data set with different random seeds
for splitting the data.

Results We evaluate the performance of grid search and Bayesian optimi-
zation by comparing the MAE of the chosen configuration λλλ on the hold-out
test data and the computation times. Table 1 shows the experimental results
regarding the prediction error MAE and the computing time.

The comparison of the MAE on the hold-out test data shows that no HPO
algorithm has a significant advantage in terms of prediction errors. The advan-
tage of Bayesian optimization is that only the boundaries of the configuration
space ΛΛΛ have to be defined. Thus, configurations between the points of the
grid search are considered, and a reasonable definition of ΛΛΛ depends less on
the skillful definition of candidates by the data scientist.

Grid search shows a clear advantage in terms of computing time. The advan-
tage can be justified with the re-usability of already trained sub-models. For
searching the configuration space ΛΛΛ of the hybrid model, it is sufficient to fit the
grid points of each prediction algorithm individually and cache the predictions

26 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

Table 1: Prediction error and computation time comparison of grid search and Bayesian
optimization for the automated design of the hybrid model.

Data Set Prediction Error MAE [10−3] Computation Time [s]
grid search Bayesian optimization grid search Bayesian optimization

Abalone 52.98 52.81 111 3832
Airfoil 27.70 26.72 51 2112
Boston 49.87 50.22 39 1093
California 64.99 64.78 607 12637
Computer 16.85 16.56 387 7396
Concrete 37.79 36.25 48 1176
Ailerons 26.28 28.29 173 6049
Elevators 40.50 40.29 261 8040
Redwine 68.71 69.81 144 3541
Whitewine 82.82 84.15 66 2091

on the validation data. Then, we may calculate the prediction error for all
possible λλλ ∈ ΛΛΛ combinations of the interpolator, extrapolator, and decider by
combining the cached results (similar to dynamic programming). Thereby, the
number of configurations to be assessed does not increase exponentially with
the points of the grid search but linearly, resulting in NMLP + NSVR + NMARS +
NGBM + NRF + NLR + N1C-SVM = 79 evaluations. In Bayesian optimization,
in contrast, we define the number of candidate configurations (trials) to be
evaluated Ntrials = 500, and the optimization selects candidates based on the
performance of previous trials (directed search).

Figure 7 shows the evolution of the mean MAE on the validation splits of
the computer data set using Bayesian optimization and grid search. The 95%
confidence interval was determined over the five loops based on the Student’s
t-distribution. The progression of the Bayesian optimization converges well
before the 500th trial. Thus, there is the potential of terminating the Bayesian
optimization prematurely as soon as we are satisfied with the result. In contrast,
the grid search cannot be terminated prematurely, as otherwise, areas of the
configuration space ΛΛΛ would not have been examined, and we would obtain
an incomplete model. Therefore, it is reasonable to implement convergence
regularization in future work that terminates the optimization automatically if
no further improvement is expected (early stopping).

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 27

101 102 103

2

4

6

·10−2

Wall clock time in s

V
al

id
at

io
n

M
A

E
Bayesian optimization
Grid search

Figure 7: Development of the MAE on the validation splits of the computer data set using Bayesian
optimization and grid search. The HPO was repeated five times with random splits. The
red line reflects the mean progress over the independent runs, and the light red area the
95% confidence interval, determined based on the Student’s t-distribution.

In future work, we plan to integrate the hybrid model into pyWATTS [6] with
the grid search. The convergence regularization will be developed for the
pyWATTS HPO extension (see Subsection 2.2), for HPO problems with ex-
ponential complexity.
In addition to the application as an EV battery model for representing the
electrical behavior shown in reference [34], we target to model thermal buil-
ding dynamics, using black-box models for interpolation and grey-box models
(thermal-electrical analogy) for extrapolation. In this way, we target to design
a robust default template for thermal building modeling, which can be used for
demand side management, e. g., using model predictive control.

4 Conclusion and Outlook

The transformation of a fossil-based to a sustainable energy system requires
the large-scale application of machine learning algorithms. For satisfying the
rapidly growing demand for time series forecasts, we need to automate the
design and application. We proposed five automation levels, where Automation
level 0 is manual design and application and Automation level 5 is an autono-

28 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

mous system. For Automation levels 1, 2, 3, and 4, we introduced forecasting
approaches for smart grid applications and described their concepts.

For one of the approaches – the hybrid model – we evaluated two HyperPara-
meter Optimization (HPO) algorithms for the automated design (Automation
level 2.5). The hybrid model weights the results of two models depending on
whether the input values were represented in the training data set or not. In
this way, a robust model is used for extrapolation and a sophisticated model
for interpolation. The evaluation shows an advantage of grid search in terms of
computation time if we re-use already trained models. Regarding the prediction
error, there is no clear advantage of grid search or Bayesian optimization.

In future work, a performance tracking and warning system could monitor
the templates’ operation and alert the data scientist if degrading forecasting
performance is detected. We target to improve the PhotoVoltaic (PV) and
the Wind Power (WP) forecasting templates by online calibration (Automation
level 3). More precisely, the PV template will be calibrated for individual plant
efficiencies, orientations, and alignments, and the WP template will include
HPO for the friction coefficient α . For Automation level 4, we develop the
Pipeline Wizard, automating the design of the complete forecasting pipeline.
The Pipeline Wizard includes automated data selection or generation, online
performance prediction, and adaption strategies for concept drifts. In the long
view, probabilistic interval forecasts will replace point forecasts, e. g., refe-
rence [45].

We plan to integrate the proposed automation approaches in the Energy Lab
2.0 [46], a real-world research environment for exploring intelligent coupling
of various energy generation, storage, and supply capabilities. The approaches
for each automation level help to solve forecasting tasks according to individual
complexity and requirements.

Acknowledgements

This project is funded by the Helmholtz Association’s Initiative and Networ-
king Fund through Helmholtz AI, the Helmholtz Association under the Program
Energy System Design. The authors would like to thank Stadtwerke Karlsruhe

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 29

Netzservice GmbH (Karlsruhe, Germany) for the provided PV and WP data,
and Moritz Böhland for sharing the Matlab implementation of the Hybrid Mo-
del [37]. Conceptualization and methodology: S. M., R. M.; Experiments,
validation, investigation, and visualization: J. P., T. M., S. M.; Writing –
original draft preparation: S. M.; Writing – review and editing: S. M., J. P.,
T. M., V. H., R. M.; Supervision and funding acquisition: V. H., R. M.; All
authors have read and agreed to the published version of the article.

References

[1] R. Ahmed, V. Sreeram, Y. Mishra, and M. D. Arif, “A review
and evaluation of the state-of-the-art in PV solar power forecasting:
Techniques and optimization,” in Renewable and Sustainable Energy
Reviews, vol. 124, pp. 109792, 2020.

[2] Z. Qian, Y. Pei, H. Zareipour, and N. Chen, “A review and discussion
of decomposition-based hybrid models for wind energy forecasting
applications,” in Applied Energy, vol. 235, pp. 939–953, 2019.

[3] I. K. Nti, M. Teimeh, O. Nyarko-Boateng, and A. F. Adekoya,
“Electricity load forecasting: A systematic review,” in Journal of
Electrical Systems and Information Technology, vol. 7, no. 13, 2020.

[4] G. Fridgen, R. Keller, M. F. Körner, and M. Schöpf, “A holistic view on
sector coupling,” in Energy Policy, vol. 147, pp. 111913, 2020.

[5] Society of Automotive Engineers, “SAE J3016 levels of driving
automation,” 2021, https://www.sae.org/standards/content/

j3016_202104/.

[6] B. Heidrich, A. Bartschat, M. Turowski, O. Neumann, K. Phipps,
S. Meisenbacher, K. Schmieder, N. Ludwig, R. Mikut, and V. Ha-
genmeyer, “pyWATTS: Python Workflow Automation Tool for Time
Series,” arXiv: 2106.10157, 2021.

30 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

https://www.sae.org/standards/content/j3016_202104/
https://www.sae.org/standards/content/j3016_202104/

[7] J. A. González Ordiano, S. Waczowicz, V. Hagenmeyer, and R. Mikut,
“Energy forecasting tools and services,” in WIREs Data Mining and
Knowledge Discovery, vol. 8, no. 2, pp. e1235, 2018.

[8] J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures,” in Proceedings of the 30. International Conference
on Machine Learning, pp. I-115–I-123, 2013, http://hyperopt.

github.io/hyperopt/.

[9] M. Lindauer, K. Eggensperger, M. Feurer, S. Falkner, A. Biedenkapp,
and F. Hutter, “SMAC v3: Algorithm configuration in Python,’ 2017,
https://automl.github.io/SMAC3/master/.

[10] Microsoft Corporation, “Neural Network Intelligence,” 2017, https:
//nni.readthedocs.io/en/stable/index.html.

[11] M. Rätz, A. P. Javadi, M. Baranski, K. Finkbeiner, and D. Müller,
“Automated data-driven modeling of building energy systems via
machine learning algorithms,” in Energy and Buildings, vol. 202,
pp. 109384, 2019.

[12] C. Cui, T. Wu, M. Hu, J. D. Weir, and X. Li, “Short-term building energy
model recommendation system: A meta-learning approach,” in Applied
Energy, vol. 172, pp. 251–263, 2016.

[13] S. Shahoud, H. Khalloof, M. Winter, C. Duepmeier, and V. Hagenmeyer,
“A meta learning approach for automating model selection in big
data environments using microservice and container virtualization
technologies,” in Proceedings of the 12. International Conference on
Management of Digital EcoSystems, pp. 84–91, 2020.

[14] Z. Wu, X. Xia, L. Xiao, and Y. Liu, “Combined model with secondary
decomposition-model selection and sample selection for multi-step
wind power forecasting,” in Applied Energy, vol. 261, pp. 114345, 2020.

[15] S. Maldonado, A. González, and S. Crone, “Automatic time series
analysis for electric load forecasting via support vector regression,” in
Applied Soft Computing, vol. 83, pp. 105616, 2019.

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 31

http://hyperopt.github.io/hyperopt/
http://hyperopt.github.io/hyperopt/
https://automl.github.io/SMAC3/master/
https://nni.readthedocs.io/en/stable/index.html
https://nni.readthedocs.io/en/stable/index.html

[16] J. M. Valente, and S. Maldonado, “SVR-FFS: A novel forward
feature selection approach for high-frequency time series forecasting
using support vector regression,” in Expert Systems with Applications,
vol. 160, pp. 113729, 2020.

[17] D. Schachinger, J. Pannosch, and W. Kastner, “Adaptive learning-based
time series prediction framework for building energy management,” in
Proceedings of the 2018 IEEE International Conference on Industrial
Electronics for Sustainable Energy Systems (IESES), pp. 453–458,
2018.

[18] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and
F. Hutter, “Efficient and robust automated machine learning,” in Advan-
ces in Neural Information Processing Systems, vol. 28, pp. 2962–2970,
2015, https://automl.github.io/auto-sklearn/master/.

[19] T. T. Le, W. Fu, and J. H. Moore, “Scaling tree-based automated
machine learning to biomedical big data with a feature set selector,”
in Bioinformatics, vol. 36, no. 1, pp. 250–256, 2020, http://

epistasislab.github.io/tpot/.

[20] M.-A. Zöller, and M. Huber, “Benchmark and survey of automated ma-
chine learning frameworks,” in Journal Artificial Intelligence Research,
vol. 70, pp. 409–472, 2021.

[21] S. K. K. Santu, M. M. Hassan, M. J. Smith, L. Xu, C. Zhai, and
K. Veeramachaneni, “A level-wise taxonomic perspective on automated
machine learning to date and beyond: Challenges and opportunities,”
arXiv: 2010.10777, 2021.

[22] A. Chaouachi, R. M. Kamel, and K. Nagasaka, “Neural network
ensemble-based solar power generation short-term forecasting,” in Jour-
nal of Advanced Computational Intelligence and Intelligent Informatics,
vol. 14, no. 1, pp. 69–75, 2010.

[23] A. Mellit, and A. M. Pavan, “A 24-h forecast of solar irradiance using
artificial neural network: Application for performance prediction of a

32 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

https://automl.github.io/auto-sklearn/master/
http://epistasislab.github.io/tpot/
http://epistasislab.github.io/tpot/

grid-connected PV plant at Trieste, Italy,” in Solar Energy, vol. 84, no. 5,
pp. 807–821, 2010.

[24] S. Atique, S. Noureen, V. Roy, V. Subburaj, S. Bayne, and J. Macfie,
“Forecasting of total daily solar energy generation using ARIMA: A
case study,” in Proceedings of the IEEE 9. Annual Computing and
Communication Workshop and Conference (CCWC), pp. 0114–0119,
2019.

[25] Zentrum für Sonnenenergie- und Wasserstoff-
Forschung Baden-Württemberg (ZSW), “GridSage,”
accessed: 27.08.2021, 2021, https://www.zsw-bw.

de/leistung/netzintegration-und-mobilitaet/

gridsage-prognosen-fuer-den-redispatch-20.html.

[26] energy & meteo systems GmbH, “FuturePowerFlow,” accessed:
27.08.2021, https://www.emsysgrid.de/produkte/redispatch/
futurepowerflow.php.

[27] KISTERS AG, “KISTERS Redispatching 2.0,” accessed: 27.08.2021,
https://www.redispatching.de.

[28] T. Martin, “Redispatch 2.0: Prognose der Einspeisemenge erneuerbarer
Energien mithilfe von Machine Learning Ansätzen,” Bachelor’s thesis,
Karlsruhe Institute of Technology, Institute for Automation and Applied
Informatics, 2021.

[29] G. M. Masters, “Renewable and efficient electric power systems,” 1. ed.,
Wiley, New York, 2004.

[30] M. Weber, M. Turowski, H. K. Çakmak, R. Mikut, U. Kühnapfel, and
V. Hagenmeyer, “Data-driven copy-paste imputation for energy time
series," in IEEE Transactions on Smart Grid, early access, 2021.

[31] I. Žliobaitė, M. Pechenizkiy, and J. Gama, “An overview of concept drift
applications,” in N. Japkowicz, J. Stefanowski (eds) Big Data Analysis:
New Algorithms for a New Society, Studies in Big Data, vol. 16, pp. 91–
114, Springer, Cham, 2016.

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 33

https://www.zsw-bw.de/leistung/netzintegration-und-mobilitaet/gridsage-prognosen-fuer-den-redispatch-20.html
https://www.zsw-bw.de/leistung/netzintegration-und-mobilitaet/gridsage-prognosen-fuer-den-redispatch-20.html
https://www.zsw-bw.de/leistung/netzintegration-und-mobilitaet/gridsage-prognosen-fuer-den-redispatch-20.html
https://www.emsysgrid.de/produkte/redispatch/futurepowerflow.php
https://www.emsysgrid.de/produkte/redispatch/futurepowerflow.php
https://www.redispatching.de

[32] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A survey on concept drift adaptation,” in ACM Computing Surveys,
vol. 46, n. 4, 2014.

[33] B. Celik, and J. Vanschoren, “Adaptation strategies for automated
machine learning on evolving data,” in IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 43, no. 9, pp. 3067–3078, 2021.

[34] K. Schwenk, S. Meisenbacher, B. Briegel, T. Harr, V. Hagenmeyer, and
R. Mikut, “Integrating battery aging in the optimization for bidirectional
charging of electric vehicles,” in IEEE Transactions on Smart Grid, early
access, 2021.

[35] M. A. Babyak, “What you see may not be what you get: A brief,
nontechnical introduction to overfitting in regression-type models,” in
Psychosomatic Medicine, vol. 66, no. 3, pp. 411–421, 2004.

[36] N. Matalas, and V. Bier, “B. Extremes, extrapolation, and surprise,” in
Risk Analysis, vol. 19, no. 1, pp. 49–54, 1999.

[37] M. Böhland, W. Doneit, L. Gröll, R. Mikut, and M. Reischl, “Automated
design process for hybrid regression modeling with a one-class SVM,”
in at - Automatisierungstechnik, vol. 67, no. 10, pp. 843–852, 2019.

[38] J. H. Friedman, “Multivariate adaptive regression splines,” in The
Annals of Statistics, vol. 19, no. 1, pp. 1–67, 1991.

[39] B. Hartmann, T. Ebert, T. Fischer, J. Belz, G. Kampmann, and O. Nelles,
“LMNTOOL–Toolbox zum Automatischen Trainieren Lokaler Modell-
netze,” in Proceedings of the 22. Workshop Computational Intelligence,
pp. 341–355, 2014.

[40] M. Feurer, and F. Hutter, “Hyperparameter optimization,” in F. Hutter,
L. Kotthoff, J. Vanschoren (eds) Automated Machine Learning: Met-
hods, Systems, Challenges, pp. 3–33, Springer International Publishing,
Cham, 2019.

[41] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,

34 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” in Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011, https:
//scikit-learn.org/stable/index.html.

[42] Python Software Foundation, “Python language reference, version 3.8,”
http://www.python.org.

[43] Chen, Tianqi, and C. Guestrin, “XGBoost: A scalable tree boosting
system,” in Proceedings of the 22. ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 785–794, 2016,
https://xgboost.readthedocs.io/en/latest/index.html.

[44] J. Rudy, “Py-earth,” 2013, https://contrib.scikit-learn.org/
py-earth/.

[45] K. Phipps, S. Lerch, M. Andersson, R. Mikut, V. Hagenmeyer, and
N. Ludwig, “Evaluating ensemble post-processing for wind power
forecasts,” arXiv: 2009.14127, 2021.

[46] V. Hagenmeyer, K. C. Hüseyin, C. Düpmeier, T. Faulwasser, J. Isele,
H. B. Keller, P. Kohlhepp, U. Kühnapfel, U. Stucky, S. Waczowicz,
and R. Mikut, “Information and communication technology in Energy
Lab 2.0: Smart Energies System Simulation and Control Center with
an open-street-map-based power flow simulation example,” in Energy
Technology, vol. 4, no. 1, pp. 145–162, 2016.

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 35

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
http://www.python.org
https://xgboost.readthedocs.io/en/latest/index.html
https://contrib.scikit-learn.org/py-earth/
https://contrib.scikit-learn.org/py-earth/

