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1 Introduction

Safe and efficient motion planning and control are crucial components for
automated driving. The modeling and prediction of multi-agent interactions
in traffic provides a challenge for current decision-making in driving tasks.
Often driving policies are designed manually for specific scenarios, which is
time-consuming both in development and maintenance. On the other hand,
reinforcement learning (RL) learns and improves driving policies in a trial-and-
error fashion, with little design and engineering effort. Current RL approaches
for automated driving utilize a variety of state-space representations. Hoel
et. al [1] propose a feature vector composed of position, speed, and lane
information. This representation requires a fixed size input. Huegle et. al
[3] employ deep sets [4] to process perceptions of variable dimensionality.
However, they do not encode detailed context information. Fixed-size multi-
layer grid maps (MLG) [2] easily represent semantic context information in
the vehicle’s environment. However, they impose a trade-off between com-
putational efficiency, memory consumption, and performance. Recent work
[5] in the area of trajectory prediction proposes to encode object and context
information as vectors. This comes with the advantage of low discretization
errors and computational workload while achieving better performance. To
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Figure 1: VectorRL system architecture.

overcome the previously described representation complexity, this work pro-
poses a novel graph-based RL approach that relies on a vectorized environment
representation. Different attention mechanisms provide insight into the regions
and objects relevant to the agent’s decision-making. Visualization of the atten-
tion states contributes to the interpretability of the learned policy. The graph-
based RL approach is evaluated in an urban scenario in a realistic simulation
environment. It is compared to several state-of-the-art baselines, which rely
on grid-based environment representations. The analysis shows that the graph-
based approach outperforms the baselines on all metrics.

2 Vector-based Reinforcement Learning

This section introduces the RL problem formulation and the proposed archi-
tecture.

Problem Formulation. Let us model the RL task as a Markov Decision Pro-
cess (MDP), defined by the tuple .# = (.7, </, p,r,7). r(s;,a;,8,+1) denotes
the reward. The policy © : . — </ maps from states s € . to a proba-
bility distribution over actions a € &/. The goal is to estimate an optimal
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policy function T* = argmax ¢ ZzH=1 ¥ r(s,a;,811) that maximizes the finite-
horizon cumulative reward over the horizon H. v € [0... 1] denotes a discount
factor.

Approach. The RL problem relies on a graph-based state representation. Fi-
gure 1 visualizes the architecture of the proposed approach. The planned
route, lane information, and all object trajectories are represented as polylines
of length d € R. Each polyline P; € & with index j € N* is mapped onto
n— 1 equidistant vectors v; € P; with v; = [d,a;, j]. df,df € R? are the 2-
D start and end positions w.r.t. the self-driving vehicles coordinate system
with vector index i € N*. Further, a; is a set of attributes. The route and
lane polylines contain width, velocity limit, and intersection information. The
attributes of the vehicle polylines characterize its width and length, and orien-
tation. Furthermore, polylines contain a node indicator. Following the work
of [5], fully connected sub-graphs encode the corresponding information. Glo-
bal graph models capture the higher-order interactions between sub-graphs.
Whereas the original approach relies on a self-attention (SA) [6] mechanism,
our approach in addition investigates graph-attention (GAT) mechanisms [7].
The Soft Actor-Critic (SAC) [8] agent employs the resulting embedding as
state-space representation. The action a, at time ¢ consists of a normalized
continuous acceleration a € [0... 1], braking signal b € [0...1], and steering
angle § € [—1...1]. The reward function is similar to the work of [2]:

r(s,,a,) = Mry+ Aana + Asrcol + AaFiane — 0.1 (H

Feol, Mat and ry penalize collisions as well as deviations from the reference lane
and the reference velocity, respectively. rjane and the constant term impose
high negative reward, in case the vehicle leaves its lane or stops. The main
advantage of the proposed scheme is the ability to visualize the individual
attention weights as illustrated in Figure 2. A high color saturation indicates
a strong attention of the agent to these polylines. The attention visualization
provides insights into the decision-making progress of the SDV, which is cru-
cial for the acceptance of learning-based driving policies. While the agent pays
close attention to nearby vehicles during merging (Left image of Figure 2), the
attention remote vehicles (Right image of Figure 2) remains low, as these do
not compromise the immediate safety of the SDV.
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Figure 2: Visualization of the attention weights. The current positions of the SDV (red) and other
agents (green) are marked by a star. The history is denoted with circles. Grey indicates
the graph of the lane centers. Blue denotes they waypoints of the global route. A high
saturation visualizes a high attention weight.

3 Evaluation

This section evaluates the approach in a challenging urban roundabout scenario
in the CARLA [9] simulator (Version 0.9.11). The RL algorithm is imple-
mented within Open Al Gym [11]. We compare against multiple baselines
considering different metrics. A roundabout scenario in Town 1 based on the
work of [2] is constructed for the purpose of policy evaluation.

Baselines. BEV-OFF: The approach of [2] first trains an autoencoder (AE)
offline. The AE maps a Bird’s-eye view (BEV) image to a latent space repre-
sentation. Then the SAC algorithm is trained based on the latent representation
BEV-ON: The work of [10] trains the autoencoder together with the RL agent
by minimizing a multi-task objective. VectorRL-SA, VectorRL-GAT: The pro-
posed approach either employs self-attention or graph-attention for the global
graph interaction.

Metrics. Success Rate (SR): The proportion of collision-free episodes in which
the SDV reaches its final destination. Progress (P): The average distance
the vehicle travels. Velocity Tracking Precision (VTP): Average normalized
tracking error of the reference velocity. One indicates the optimal tracking
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Table 1: Performance in the roundabout scenario.

Approach SR [%] P [m] VTP LTE [m]
BEV-OFF 64 83.80+0.81 0.64+0.29 0.40£0.29
BEV-ON 68 91.30£0.79 0.594+0.25 0.29+0.28

VectorRL-GAT 96 108.10£0.80 0.71£0.29 0.41+£0.33
VectorRL-SA 98 110.00+0.80  0.73+£0.3 0.29+£0.39
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Figure 3: Generalization capabilities using an increasing number of obstacle objects and changing
exits.

performance. Lateral Tracking Error (LTE) The mean lateral deviation to the
reference lane.

Performance. In the first experiment, the SDV is supposed to follow the
global route. This route always navigates the agent towards the second exit
of the roundabout. During training and testing, 20 other vehicles are spawned
at random locations in the vicinity of the roundabout. Testing is performed
on 50 randomly generated scenarios, and the results are reported in Table 1.
Notice, that the graph-based approaches outperforms the BEV image-based
approaches consistently across all metrics.
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Generalization. An additional experiment, in which the agent is trained to
take the second exit in a scenario with 100 obstacles spawned over the whole
map evaluates the generalization capability of the state-representations. Note,
that this scenario exhibits sparser traffic compared to the original setup. During
testing the nominal exit is chosen randomly and moreover the number of agents
spawned in the roundabout varies as illustrated in Figure 3. The graph-based
approaches generalize better to a higher number of agents and achieve a more
consistent SR.

4 Conclusion

This work presented a graph-based RL approach for automated driving. The
method encodes different semantic information in a vector-based environment
representation. The evaluation shows that the proposed approach outperforms
other baselines with a grid-based state representation. Future work evaluates
graph-based approaches in the offline RL setting, in which the agent learns
a policy merely from a static dataset without interactions with the environ-
ment.
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