
Interval-based Interpretable Decision Tree for
Time Series Classification

Malte Schmidt, Volker Lohweg

inIT – Institute Industrial IT, Technische Hochschule Ostwestfalen-Lippe
Campusallee 6, 32657 Lemgo, Germany

E-Mail: {malte.schmidt, volker.lohweg}@th-owl.de

Abstract

In this paper we present the first iteration of a novel time series classification
algorithm which is globally and inherently interpretable. The need for model
interpretability or explainability is commonly agreed upon in industry [1].
Model interpretability is an important characteristic of a classifier to build trust
in the decisions of the classifier and makes it possible to iteratively improve a
model with domain knowledge.

The proposed algorithm first performs an unsupervised clustering of random
segments of random length of a time series to find the most discriminating
patterns. After finding segments with discriminating patterns, a decision tree
is trained using the cluster labels as features. Therefore, the decision tree
is restricted to learn a mapping from discriminating clusters to given class
labels.

The performance of our algorithm is compared to state-of-the-art algorithms
with a computational feasible subset of the University of California, Riverside,
time series archive [2]. The first iteration of our algorithm is computationally
expensive and does not achieve state-of-the-art accuracy. We point out shor-
tcomings of the current iteration and discuss planned improvements to our
algorithm to tackle these shortcomings. We find that our algorithm creates
shallow decision trees which boosts interpretability. In contrast, not all state-
of-the-art approaches provide interpretable models.

 DOI: 10.58895/ksp/1000138532-7 erschienen in:

Proceedings - 31. Workshop Computational Intelligence : Berlin, 25. - 26. November 2021

DOI: 10.58895/ksp/1000138532 | https://www.ksp.kit.edu/site/books/m/10.58895/ksp/1000138532/

1 Introduction

During the last decades research on time series classification (TSC) has made
considerable progress and the University of California, Riverside, time series
archive (UCR TSA) [2] is often used to benchmark novel TSC algorithms on
one dimensional time series. Often the term time series refers to any ordered
series and is not limited to value-index pairs ordered by time. For example, the
UCR TSA also includes series generated by spectrographs and object outlines
mapped to one-dimensional series.

In industrial and medical applications interpretability of a model is regarded as
an important characteristic for a wide adoption of machine learning techniques
in these fields [1, 3]. Furthermore, the type of interpretability a model provides
is of interest. Here, we differentiate between types of interpretability regarding
two different viewpoints.

First, it is important to know how an explanation of a decision is produced.
We adopt the differentiation from Rudin [4] and differentiate between the fol-
lowing types:

• Post hoc explanation of models. A model is explained post hoc by a
second model. An example of a post hoc explanation method often
applied to neural networks is LIME [5].

• Inherently interpretable models. The model itself provides a faithful
explanation of its decisions. An example for an inherently interpretable
model is a (small) decision tree with interpretable features.

Second, we are interested in what type of explanation is provided by the model.
Here, we adopt the differentiation from Hong [1]:

• Locally interpretable models. The model explanation is given on a per
instance basis. An example for this type of explanations are saliency
maps.

• Globally interpretable models. The logical structure of the model itself
explains how it works globally. An example for globally interpretable
models are, once again, decision trees with interpretable features.

92 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

In this paper we propose an algorithm which is globally and inherently in-
terpretable. The features the algorithm utilises are regions of interest in the
time series based on their visual appearance (shape). These regions of interest
or intervals are phase-dependent which makes our algorithm appropriate for
applications which require phase-dependency.

The rest of the paper is organised as follows. In Section 2 we give an overview
of state-of-the-art TSC algorithms which are related to our work. Next, we
present the design of our algorithm in Section 3. In Section 4 we evaluate the
performance of our algorithms and discuss advantages and shortcomings of it
before finishing the paper with a conclusion and outlook in Section 6.

2 Related Work

One of the most basic approaches to TSC is a k-nearest-neighbours classifier
using an elastic distance metric as similarity measure. An often used elastic
distance metric is dynamic time warping (DTW) [6] or variations of it [7, 8].
While this approach is not competitive to current state of the art in terms of
accuracy, it still provides a reasonable baseline.

As in other fields, there exist a growing number of approaches to TSC which
use neural networks [9]. Neural networks, especially neural networks inclu-
ding convolutional layers, are found to be competitive to other state-of-the-art
approaches in terms of accuracy. Some of the recent approaches rely on fully
convolutional networks [10] or are inspired by successful architectures in com-
puter vision like the Inception architecture [11]. Wang et al. [10] and Fawaz
et al. [9] also explored explaining models with CAM, a post hoc explanation
method for CNN-based models [12].

In 2016 Bagnall et al. [13] published an extensive review of the current state of
the art in TSC. The best performing algorithm was an ensemble of classifiers,
named COTE [14]. COTE combines state-of-the-art classifiers which work
in different transformation domains. It was later extended and called HIVE-
COTE [15]. This ensemble still achieves state-of-the-art accuracy on the UCR

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 93

TSA benchmark due to continuous updating of the ensemble with the latest
developments in TSC [16].

A class of features which provides inherent explanations when combined with
suitable classifiers are shapelets. Shapelets are phase-independent discrimi-
native time series sub-sequences [17]. Classification is done based on the
presence or absence or the count of these discriminative subsequences. One
successful approach transforms the time series with a shapelet transformation
and then a standard classifiers is trained on the transformed time series [18].
Learning of the k best shapelets through a heuristic gradient descent with a k-
means clustering as shapelet initialization is presented by Grabocka et al. [19].
Brunello et al. [20] use a decision tree to build a classifier after finding phase-
independent shapelets with evolutionary algorithms.

Decision trees or forests are common classifiers for TSC problems due to their
fast training time and interpretability. Deng et al. propose a time series forest
(TSF) which uses statistics calculated from random interval as features [21].
They also propose a post hoc explanation through importance curves. More
recently multiple ensembles of decision trees for TSC, which achieve state-of-
the-art accuracy, are proposed [22, 23].

Another algorithm which achieves state-of-the-art accuracy and is inherently
interpretable is the algorithm proposed by Nguyen et al. [24]. A symbolic
representation of time series is combined with a sequence learner originally
developed for biological sequence classification to search for the most dis-
criminating sub-sequences in the symbolic representations. This approach
provides an inherently and locally interpretable model through saliency maps.
Nguyen et al. recently compared the explanations provided by CAM, LIME,
and the inherent explanations of their sequence learner [25].

Although many decision tree approaches for TSC exist, we think there is still
room for further exploration of this approach. We focus on designing an algo-
rithm which creates inherently and globally interpretable models by relying on
(shape-based) clustering results of intervals as features. Our hypothesis is that
this gives us a distinctive separation of phase-dependent shapes of the times
series which improves interpretability. A high level of interpretability enables
verification and improvement of the model by an expert.

94 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

Time Series Random
Intervals

Clustering Cluster Labels Decison Tree

Cluster Centres

Visualisation
for Interpret-
ability

...
...

...

*

*

Fi
lte

rin
g

**** *
*

Figure 1: Concept of the proposed classification algorithm.

3 Algorithm Design

The overall concept of our algorithm can be seen in Fig. 1. First, intervals
with random start index and random length are chosen. Next, for each interval
multiple k-means clusterings with different configurations are computed. After
a preliminary filtering of the clusters by the silhouette score [26], the remaining
clustering results provide the features for a decision tree. Finally, after training
the decision tree, the cluster centres of the selected clusterings visualise the
decision process of the decision tree.

In the following required definitions and notations are introduced.

Time Series. A time series is a sequence t = (t1, . . . , tL) of L values (obser-
vations) ordered by some criterium (e.g. time, frequency or wavelength). The
length of time series t is L.

Discrete Interval. A discrete interval I = [s..e] is a set of integers, i.e.
{s,s+1, . . . , e}. We express the indices of a sub-sequence of a time series
with an interval. For example, t(I) = (ts, . . . , te) is the sub-sequence of time
series t over the interval I . The length of interval I is given by its cardinality
|I |. We assume all intervals are valid, i.e. 1≤ s≤ e≤ L holds.

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 95

3.1 Interval Selection

Instead of choosing all possible intervals, we limit the number of intervals
for a time series with length L to O(L) to reduce the time complexity of our
algorithm. For the selection of the intervals, we follow the approach of Deng
et al. [21]:

1. Select
√

L window lengths from the set of possible window lengths Wp =

{1, . . . ,L} by random sampling without replacement.

2. For each window length w, select
√

L−w+1 start indices from the set
of possible start indices S = {1, . . . ,L−w+1} by random sampling
without replacement.

Each pair of selected window length w and start index i forms an interval I =

[i..i+w−1]. We use these intervals to extract sub-sequences from the time
series for further processing.

By selecting sub-sequences from time series, we follow an interval-based ap-
proach for our algorithm and introduce phase-dependency. The idea is to select
regions of interest which possibly contain distinctive shapes. Ideally, they
should have a causal relation to the class labels.

3.2 Clustering

If we are interested in inherently and globally interpretable models, we require
meaningful features for our model. In TSC one type of meaningful features are
distinctive shapes. After choosing interval candidates which represent possible
regions of interest containing such shapes, one way to find meaningful features
is to cluster the sub-sequences resulting from the intervals.

We follow this rationale and apply k-means clustering with DTW as dissimila-
rity measure to find clusters of sub-sequences which intuitively match in shape.
Each cluster is then represented by an average series calculated with DTW
barycentre averaging (DBA) [27]. We used the k-means clustering implemen-
tation TimeSeriesKMeans from the tslearn [28] library. k-means++ [29] is
applied as cluster initialization method.

96 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

We are only interested in cluster results which give a good separation between
clusters. Therefore, before using the clustering results as training input for a
decision tree, we pre-filter the results to exclude clustering results with high
overlap between different clusters. For this we calculate the mean silhouette
score [26] of all samples for each clustering result with DTW as the dissimila-
rity measure.

The (mean) silhouette score can take values between −1 and 1. A value below
zero indicates overlapping of clusters while a value above 0 indicates a non-
overlapping separation of clusters. We accept all cluster results with an overall
silhouette score greater than zero for further processing.

3.3 Decision Tree Induction

In the last step, a decision tree is trained on the cluster labels of the remai-
ning clustering results. As the decision tree induction algorithm we use an
implementation of the ID3-algorithm by Quinlan [30] with two domain specific
modifications:

• Induce bias towards a preferred interval length.

• Restrict the allowed overlap for intervals in the same tree branch.

For attribute selection gain ratio [30] is applied. In early experiments we
noticed that intervals with a high overlap often have the same (maximal) gain
ratio. To break the tie, we introduce a weighting function which weights the
gain ratio depending on the interval length. With this weighting function, we
induce bias towards a preferred interval length. We prefer a shorter interval
length over a longer one because the shape present in shorter intervals is usually
less complex and easier to interpret. However, if the interval length gets too
small (a single value in the extreme case), the shape may not be meaningful
and dominated by noise.

We propose to use a parametrisable unimodal weighting function

f (x) : [0,1]→ [0,1]

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 97

0 α 0.4 0.6 0.8 1
Relative Interval Length

0

β

1

W
ei

gh
tin

g

Figure 2: Proposed weighting function.

which maps the relative interval length to a weight for the gain ratio. The
parameters are α , the preferred interval length relative to the length of the
time series, and β , the weighting value for the whole series length. We set
f (α) = 1 and f (1) = β . The weighting function is given by

f (x) =

− 1
α2 (x−α)2 +1 for x≤ α,

β−1
(1−α)2 (x−α)2 +1 for x > α

(1)

with 0 < α < 1 and 0≤ β ≤ 1. Fig. 2 shows an example for f (x) with α = 0.2
and β = 0.5.

A quadratic function is chosen for the weighting function because of its sim-
plicity (in terms of parameters) while still having a modest slope around its
maximum in contrast to e.g. a triangle function. However, other unimodal
function types are also valid candidates.

It can also happen that clustering results for the same interval but with a dif-
ferent number of cluster centres have the same (maximal) gain ratio. In this
case we select the clustering result with the highest silhouette score because we
want the features to be as interpretable as possible. However, other preferences,
i.e. selecting the result with the fewest cluster centres, are also valid options.

The consecutive selection of multiple highly overlapping intervals in one tree
branch may lead to overfitting. Suppose one distinctive sub-sequence is cove-
red by overlapping intervals multiple times. Then this sub-sequence is im-

98 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

plicitly selected as classification criterium multiple times. To prevent this,
we restrict the allowed overlap for the intervals used consecutively in a tree
branch.

Let I1, . . . ,IN−1 be the intervals used consecutively in one tree branch and let
IN be the interval which we want to use for splitting at the next node. Then
the maximum relative overlap omax for any of these intervals is given by

omax (I1, . . . ,IN) = max
x

∣∣∣∣∣Ix∩
N⋃

i=1, i6=x
Ii

∣∣∣∣∣
|Ix|

. (2)

omax can have values between 0 (no overlap) and 1 (at least one interval fully
overlaps with others). At each new node in a tree branch omax is calculated
including the new interval we want to use. The new interval is only accepted if
omax does not exceed a threshold θ .

4 Evaluation

4.1 UCR TSA Subset Selection

The current iteration of our algorithm is computationally expensive due to the
clustering and silhouette score computation. Therefore, for this early evalua-
tion of the algorithm, a subset of the UCR TSA is selected. To be as objective as
possible, we define a computational complexity score with which we rank the
datasets and pick the first 25 datasets for our evaluation. We limit our selection
to datasets of the 2015 version of the UCR TSA [31] because accuracies for
the provided train-test-splits are available for these datasets on the UCR TSA
website [32].

We define the complexity score S of a dataset as

S = L · (k2 ·N ·L2 + k · IK ·N ·L2 + IK · IB ·N ·L2) (3)

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 99

Table 1: The UCR TSA dataset subset selected for evaluation.

No. Dataset No. Dataset

1 ItalyPowerDemand 14 MiddlePhalanxTW
2 SonyAIBORobotSurface1 15 ProximalPhalanxTW
3 SonyAIBORobotSurface2 16 DistalPhalanxTW
4 MoteStrain 17 MiddlePhalanx-
5 TwoLeadECG OutlineCorrect
6 ECGFiveDays 18 DistalPhalanx-
7 CBF OutlineCorrect
8 SyntheticControl 19 ProximalPhalanx-
9 ECG200 OutlineCorrect

10 GunPoint 20 Plane
11 ProximalPhalanx- 21 ArrowHead

OutlineAgeGroup 22 MedicalImages
12 MiddlePhalanx- 23 Coffee

OutlineAgeGroup 24 Wine
13 DistalPhalanx- 25 ToeSegmentation1

OutlineAgeGroup

with the number of classes nc in the dataset, the maximal number of clusters
k = max{10, 2 ·nc} to compute, the number of samples N, the time series
length L, the number of iterations of the k-means algorithm IK, and the number
of iterations for barycentre calculation IB of this dataset. The score is composed
of the time complexity of the k-means++ [29] cluster centre initialization (first
summand), the time complexity of the distance calculation to the cluster centres
across all iterations (second summand), and the time complexity of the DBA
across all iterations [27] (third summand).

The 25 datasets with the lowest score S are listed in Tab. 1. It is important to
note that selecting datasets by complexity ranking necessarily introduces a bias
towards datasets with shorter time series and fewer training samples. However,
for an evaluation of this early iteration of our algorithm, the selected datasets
are sufficient to draw preliminary conclusions and point out future research
directions.

100 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

Table 2: Important parameter settings of the TimeSeriesKMeans algorithm.

Parameter Values Explanation

n_clusters {2, . . . ,max{10,2 ·nc}} Number of clusters.
nc: Number of
classes.

max_iter 50 Iterations for
k-means.

metric dtw Metric to be used.
max_iter_barycenter 10 Iterations for DBA.
init k-means++ Cluster initialization

method.

4.2 Experiment Setup

Important parameters of the TimeSeriesKMeans algorithm are listed in Tab. 2
algonside the values we used. The limits for n_clusters, max_iter, and
max_iter_barycenter were chosen to limit the computation time required
by the algorithm. The parameters of the interval weighting function are set to
α = 0.2 and β = 0.6. The threshold for the maximal allowed overlap omax

is set to θ = 0.4 and a minimal gain ratio of 0.05 is required for a node split
to be considered. For the current evaluation no hyperparameter optimization
is considered and the allowed warping path for the DTW calculation has no
additional restrictions.

4.3 Results

First, the performance of our interval-based decision tree (IBIT) and a 1-nearest-
neighbour classifier with DTW as distance metric (1NN-DTW) is compared in
Fig. 3a. Each point represents accuracies for one dataset. Points above the
dashed line indicate a better performance of IBIT. We expect an IBIT model to
perform better than a simple 1NN-DTW model because it is based on the same
underlying distance metric while having a more sophisticated decision process.
However, for 16 out of 25 datasets the 1NN-DTW performance is better.

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 101

0 0.2 0.4 0.6 0.8 1
(a) 1NN-DTW Test Accuracy

0

0.2

0.4

0.6

0.8

1

IB
IT

Te
st

A
cc

ur
ac

y IBIT better here

0 0.2 0.4 0.6 0.8 1
(b) LS Test Accuracy

0

0.2

0.4

0.6

0.8

1

IB
IT

Te
st

A
cc

ur
ac

y IBIT better here

0 0.2 0.4 0.6 0.8 1
(c) HIVE-COTE Test Accuracy

0

0.2

0.4

0.6

0.8

1

IB
IT

Te
st

A
cc

ur
ac

y IBIT better here

0 0.2 0.4 0.6 0.8 1
(d) TSF Test Accuracy

0

0.2

0.4

0.6

0.8

1

IB
IT

Te
st

A
cc

ur
ac

y IBIT better here

Figure 3: Test accuracies of IBIT model compared to test accuracies of selected algorithms as
reported on the UCR TSA website [32] on 25 UCR TSA datasets.

This observation needs further investigating in the future. One possible reason
for the lower performance of IBIT is the unsupervised clustering using k-
means. For example, k-means clustering does not cope well with points which
would be best clustered together but which are spread across a line in the
feature space.

In addition, by looking at the cluster results, we observe that the hard cut-
off of the time series at the interval limits may lead to a clustering dominated
by shapes close to the interval limits. These shapes may be present inside the
interval or outside of it depending on the stretch of the time series. Fig. 4 shows
an example of this phenomenon for the interval I = [33..92] for the ECG200

dataset. All time series posses steep slopes near the interval limits. However,

102 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

33 52 72 92
Index

-2
-1
0
1
2
3

V
al

ue

Cluster 0

33 52 72 92
Index

-2
-1
0
1
2
3

V
al

ue

Cluster 1

33 52 72 92
Index

-2
-1
0
1
2
3

V
al

ue

Cluster 2

33 52 72 92
Index

-2
-1
0
1
2
3

V
al

ue

Cluster 3

Figure 4: An example of a bad clustering due to the hard cut-off at the interval limits. The steep
slopes at the limits of the interval do not always lie inside the interval. The presence or
absence of these slopes inside the interval dominates the clustering result. Barycentres
are displayed as solid lines.

these sections of steep slope are not always captured inside interval I because
some time series are more stretched than others. The presence or absence of
these slopes inside the interval dominates the clustering result and leads to a
limited meaningfulness of the clustering result. One possible solution to limit
the influence of the values close to the interval limits is to apply a weighted
DTW penalizing these values. This should be investigated in the future.

Fig. 3b and 3c compare the IBIT performance to a shapelet-based approach
(LS) [19] and an ensemble of classifiers including shapelet-based classifiers
(HIVE-COTE). For 7 datasets LS and HIVE-COTE both achieve a classifica-
tion accuracy close to 100% and the IBIT performance is not competitive for at
least 3 of these datasets (TwoLeadECG, ECGFiveDays, SyntheticControl).
All these datasets include approximately phase-aligned samples. Therefore,
the low performance of IBIT on these datasets contradicts our expectations. A
possible reason for the low performance of IBIT on these datasets is a selection
of intervals which misses the important regions of interest in these time series.

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 103

This highlights the importance of interval selection. A further detailed analysis
is required to come to a conclusive result in this case.

A performance comparison to TSF, a random forest with simple statistics of
intervals as features, is shown in Fig. 3d. Although TSF only uses simple
features (mean, standard deviation, slope) it outperforms the IBIT accuracy on
most datasets. TSF has two main differences to our decision tree classifier.
First, at each node in a decision tree of the TSF ensemble a new selection
of intervals is considered. Therefore, the algorithm evaluates more intervals
than IBIT does. Second, an ensemble of decision trees is used increasing the
evaluation of different features further. While considering more than O(L)
intervals can be a suitable improvement to our algorithm, using an ensemble
of decision tress cannot. This would lead to loss of interpretability of our
models.

Although the unmodified IBIT models do not achieve state-of-the-art perfor-
mance, they have the advantage of being interpretable. This does not only mean
that the models can be verified but it also means that the IBIT models can be
improved iteratively. An expert can investigate the intervals and cluster results
an IBIT model uses for its decision process and iteratively refine the intervals
or can add new clustering results with modified configurations. For instance,
an expert can identify the inappropriate clustering results shown in Fig. 4 and
make suitable adjustments to the intervals.

An evaluation of the tree complexities of 250 IBIT models trained on 10 diffe-
rent subsets of the training data shows that most decision trees are not overly
complex and can easily be interpreted and modified by an expert. Each model
is trained on 80% of the available training data. Fig. 5 shows the tree depths of
all 250 models investigated. Interestingly, none of these 250 models has a tree
depth greater than six. Possibly this is due to the fact that we put a restriction
on the maximum overlap of intervals and at some deeper nodes of the tree no
new interval candidates are available. For this evaluation, we did not prune the
decision trees and the same underlying intervals were selected. Variation of
intervals and evaluation of pruning techniques is planned in the future.

Fig. 6 shows the number of decision tree leafs across all 250 models. 50%
of models have fewer than 11 leaves and 90% of models have fewer than 40

104 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

0 1 2 3 4 5 6
Decision Tree Depth

0

25

50

75

100

C
ou

nt

Figure 5: Decision tree depth counts of 250 trees from a 10-fold cross-validation for each of the 25
datasets.

0 20 40 60 80 100 120 140 160
Number of Decision Tree Leaves

0

20

40

C
ou

nt

Figure 6: Decision tree leaf counts of 250 trees from a 10-fold cross-validation for each of the 25
datasets.

leaves. Only 10% of models have more than 40 leaves making them hard or
at least tedious to interpret. This supports the hypothesis that IBIT models can
be iteratively improved by an expert. This also shows that the learned decision
trees are shallow but wide decision trees.

5 Conclusion and Outlook

In this paper we presented an algorithm to train interval-based interpretable
decision trees. The algorithm is designed to create easy to interpret models

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 105

which can be iteratively improved by an expert. Modifications to improve the
models can be identified and applied by an expert because of the inherent and
global interpretability of the models. The simplicity of the resulting decision
trees and the intuitive features help achieve this goal.

Although the algorithm does not achieve state of the art in terms of accuracy,
it is important to note that accuracy is not the single most important criterium
in all circumstances. Interpretable models can be analysed and verified by
experts easily and spurious correlations in the data learned by the model can be
identified and prohibited. Interpretable model are easy to improve iteratively
to achieve certain goals and optimisation is not restricted to a single metric,
e.g. the accuracy score. To investigate this hypothesis, cases studies where
IBIT models are improved iteratively are a future field of research.

The evaluation presented in this paper shows preliminary results and a more
comprehensive study is planned in the future. Once a more comprehensive
study is done, we also plan to publish the code of our algorithm to make the
results as reproducible as possible for the research community.

Further improvements to the algorithm we plan to investigated are

• extending the features by interpretable shapelet-based features to include
phase-independent features,

• improving the scalability of the clustering through pruning strategies [33]
or using a clustering strategy based on autocorrelation [34],

• applying pruning strategies to the decision trees,

• using weighted DTW to penalize values near interval limits,

• and optimising hyperparameters of the algorithm.

Acknowledgments

We would like to thank all UCR TSA data contributors and Bagnall et al. [32]
for providing the datasets and accuracy results. Furthermore, we would like

106 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

to thank all contributors of open source software we used to implement our
algorithm with, especially all contributors of the tslearn [28] library.

This work was partly funded by the German Federal Ministry of Education
and Research (BMBF) within the project ITS.ML (grant no. 01IS18041D) and
the Ministry of Economic Affairs, Innovation, Digitalisation and Energy of the
State of North Rhine-Westphalia (MWIDE) within the project ML4Pro2 (grant
no. 005-1807-0090).

References

[1] S. R. Hong, J. Hullman and E. Bertini. “Human factors in model inter-
pretability: Industry practices, challenges, and needs”. In: Proceedings
of the ACM on Human-Computer Interaction 4.CSCW1, pp. 1–26. 2020.

[2] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,
C. A. Ratanamahatana and E. Keogh. “The UCR time series archive”.
In: IEEE/CAA Journal of Automatica Sinica 6.6, pp. 1293–1305. 2019.

[3] A. Vellido. “The importance of interpretability and visualization in
machine learning for applications in medicine and health care”. In:
Neural Computing and Applications 32.24, pp. 18069–18083. 2019.

[4] C. Rudin. “Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead”. In: Nature
Machine Intelligence 1.5, pp. 206–215. 2019.

[5] M. T. Ribeiro, S. Singh and C. Guestrin. “"Why should i trust
you?" Explaining the predictions of any classifier”. In: phProceedings
of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1135–1144. 2016.

[6] H. Sakoe and S. Chiba. “Dynamic programming algorithm optimization
for spoken word recognition”. In: IEEE Transactions on Acoustics,
Speech, and Signal Processing 26.1, pp. 43–49. 1978.

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 107

[7] Y.-S. Jeong, M. K. Jeong and O. A. Omitaomu. “Weighted dynamic time
warping for time series classification”. In: Pattern Recognition 44.9, pp.
2231–2240. 2011.

[8] T. Górecki and M. Łuczak. “Non-isometric transforms in time series
classification using DTW”. In: Knowledge-Based Systems 61, pp. 98–
108. 2014.

[9] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar and P.-A. Muller.
“Deep learning for time series classification: A review”. In: Data
Mining and Knowledge Discovery 33.4, pp. 917–963. 2019.

[10] Z. Wang, W. Yan and T. Oates. “Time series classification from scratch
with deep neural networks: A strong baseline”. In: ph2017 International
Joint Conference on Neural Networks (IJCNN), pp. 1578-1585. 2017.

[11] H. I. Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. F. Schmidt,
J. Weber, G. I. Webb, L. Idoumghar, P.-A. Muller and F. Petitjean.
“InceptionTime: Finding AlexNet for time series classification”. In:
Data Mining and Knowledge Discovery 34.6, pp. 1936–1962. 2020.

[12] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh and
D. Batra. “Grad-CAM: Visual explanations from deep networks via
gradient-based localization”. In: 2017 IEEE International Conference
on Computer Vision (ICCV), pp. 618–626. 2017.

[13] A. Bagnall, J. Lines, A. Bostrom, J. Large and E. Keogh. “The great
time series classification bake off: A review and experimental evaluation
of recent algorithmic advances”. In: Data Mining and Knowledge
Discovery 31.3, pp. 606–660. 2016.

[14] A. Bagnall, J. Lines, J. Hills and A. Bostrom. “Time-series classification
with COTE: The collective of transformation-based ensembles”. In:
IEEE Transactions on Knowledge and Data Engineering 27.9, pp.
2522–2535. 2015.

[15] J. Lines, S. Taylor and A. Bagnall. “Time series classification with
HIVE-COTE”. In: ACM Transactions on Knowledge Discovery from
Data 12.5, pp. 1–35. 2018.

108 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

[16] M. Middlehurst, J. Large, M. Flynn, J. Lines, A. Bostrom and
A. Bagnall. “Hive-cote 2.0: a new meta ensemble for time series
classification”. In: arXiv preprint arXiv:2104.07551. 2021.

[17] L. Ye and E. Keogh. “Time series shapelets: : A new primitive for
data mining”. In: Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 947–956.
2009.

[18] J. Hills, J. Lines, E. Baranauskas, J. Mapp and A. Bagnall. “Classifi-
cation of time series by shapelet transformation”. In: Data Mining and
Knowledge Discovery 28.4, pp. 851–881. 2013.

[19] J. Grabocka, N. Schilling and L. Schmidt-Thieme. “Learning time-
series shapelets”. In: Proceedings of the 20th ACM SIGKDD
international conference on knowledge discovery and data mining, pp.
392–401. 2014.

[20] A. Brunello, E. Marzano, A. Montanari and G. Sciavicco. “J48SS: A
novel decision tree approach for the handling of sequential and time
series data”. In: Computers 8.1, pp. 21. 2019.

[21] H. Deng, G. Runger, E. Tuv and M. Vladimir. “A time series forest for
classification and feature extraction”. In: Information Sciences 239, pp.
142–153. 2013.

[22] M. Middlehurst, J. Large and A. Bagnall. “The canonical interval
forest (CIF) classifier for time series classification”. In: 2020 IEEE
International Conference on Big Data (Big Data), pp. 188–195. 2020.

[23] A. Shifaz, C. Pelletier, F. Petitjean and G. I. Webb. “TS-CHIEF: A
scalable and accurate forest algorithm for time series classification”. In:
Data Mining and Knowledge Discovery 34.3, pp. 742–775. 2020.

[24] T. L. Nguyen, S. Gsponer, I. Ilie, M. O’Reilly and G. Ifrim. “In-
terpretable time series classification using linear models and multi-
resolution multi-domain symbolic representations”. In: Data Mining
and Knowledge Discovery 33.4, pp. 1183–1222. 2019.

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 109

[25] T. T. Nguyen, T. L. Nguyen and G. Ifrim. “A model-agnostic approach to
quantifying the informativeness of explanation methods for time series
classification”. In: International Workshop on Advanced Analytics and
Learning on Temporal Data, pp. 77–94. 2020.

[26] P. J. Rousseeuw. “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis”. In: Journal of Computational and
Applied Mathematics 20, pp. 53–65. 1987.

[27] F. Petitjean, A. Ketterlin and P. Gançarski. “A global averaging method
for dynamic time warping, with applications to clustering”. In: Pattern
Recognition 44.3, pp. 678–693. 2001.

[28] R. Tavenard, J. Faouzi, G. Vandewiele, F. Divo, G. Androz, C. Holtz,
M. Payne, R. Yurchak, M. Rußwurm, K. Kolar and E. Woods. “Tslearn,
a machine learning toolkit for time series data”. In: Journal of Machine
Learning Research 21.118, pp. 1–6. 2020.

[29] D. Arthur and S. Vassilvitskii. “K-means++: The advantages of careful
seeding”. In: Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1027–1035. 2007.

[30] J. R. Quinlan. “Induction of decision trees”. In: Machine Learning 1.1,
pp. 81–106. 1986.

[31] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen and
G. Batista. “The UCR time series classification archive”. www.cs.ucr.
edu/~eamonn/time_series_data/ (Online, 23.09.2021). 2015.

[32] A. Bagnall, E. Keogh, J. Lines, A. Bostrom, J. Large and M. Midd-
lehurst. “UEA/UCR time series classification repository”. www.

timeseriesclassification.com (Online, 23.09.2021).

[33] N. Begum, L. Ulanova, J. Wang and E. Keogh. “Accelerating dynamic
time warping clustering with a novel admissible pruning strategy”. In:
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining., pp. 49–58. 2015.

110 Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/
www.timeseriesclassification.com
www.timeseriesclassification.com

[34] J. Paparrizos and L. Gravano. “k-shape: Efficient and accurate
clustering of time series”. In: Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data., pp. 1855–1870.
2015.

Proc. 31. Workshop Computational Intelligence, Berlin, 25.-26.11.2021 111

