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Abstract The size of images and data we process every day have
been growing exponentially over the last years. Quantum com-
puters promise to process this data more efficiently. Experi-
ments on quantum computer simulators prove the paradigms
this promise is built on to be correct. However, currently, run-
ning the very same algorithms on a real quantum computer is
often too error prone to be of any practical use. We explore the
current possibilities for image processing on real quantum com-
puters. We redesign a commonly used quantum image encoding
technique to reduce its susceptibility to errors. We show experi-
mentally that the current size limit for images to be encoded on
the quantum computer and subsequently retrieved with an error
of at most 5% is 2× 2 pixels. A way to circumvent this limitation
is to combine ideas of classical filtering with a quantum algo-
rithm operating locally, only. We show the practicability of this
strategy using the application example of edge detection. Our
hybrid filtering scheme’s quantum part is an artificial neuron,
working well on real quantum computers, too.
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1 Introduction

In this contribution, we do not discuss quantum imaging methods.
Throughout, we assume the image data to be processed on a quantum
computer to be given as a classical gray-value image. Thus, first, we
have to encode the gray-value information into quantum states. There
are basically three concepts for this encoding, namely basis encoding,
phase encoding, and amplitude encoding. Within the last years, several
methods have been developed following these three basic concepts [1].
Here, we concentrate on the phase encoding method Flexible Represen-
tation of Quantum Images (FRQI) [2] and improve its implementation.

After the encoding, we normally process the states by applying some
algorithms. Initially, algorithms were only formulated in theory or
executed on simulators of quantum computers. Only since 2016, it
has also been possible to execute algorithms on real quantum comput-
ers. A short overview of currently available algorithms is given in [3].
Here, we aim at algorithms that run on the actual quantum hardware.
More precisely, we implement quantum image processing algorithms
on IBM’s superconducting quantum computers [4].

This paper is organized as follows. Section 2 provides some ba-
sics of quantum computing. In Section 3, we describe the experimental
setup including the quantum computers, the software, and the classical
computers used. We explain our improved version of the FRQI image
encoding in Section 4. In Section 5, we present the idea of hybrid quan-
tum image filtering and highlight the performance for detecting edges
in images with a quantum computer. Two variants of the quantum
edge detector with 2D and 1D masks are detailed. Section 6 concludes
the paper.

2 Quantum computing basics

Before diving into quantum image processing, we summarize some
basic concepts of quantum computing [5]. Classical computing and
quantum computing follow completely different paradigms, starting
with the basic elements. Classically, everything builds on bits, that can
attain either state 0 or 1. The quantum analogue are the quantum bits
(qubits) – two-state quantum systems that allow for more flexibility.
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Analogous to 0 and 1, there are two basis states of a qubit: |0⟩ = (1, 0)T

or |1⟩ = (0, 1)T . However, any linear combination (superposition)

|ψ⟩ = α |0⟩+ β |1⟩ , (1)

of the basis states with α, β ∈ C and |α|2 + |β|2 = 1 defines a possible
state, too. The overall phase of a quantum state is unobservable [5].
That is, |ψ⟩ and eiξ |ψ⟩ for ξ ∈ [0, 2π] define the same state. Hence, it is
sufficient to consider α ∈ R.

As a consequence, the state of a single qubit can be visualized as a
point on the unit sphere in R3 (Bloch sphere) with spherical coordinates
ϕ and θ, where α = cos(θ/2) and β = eiϕ sin(θ/2). All operations on
a qubit must preserve the condition |α|2 + |β|2 = 1, and can thus be
represented by 2× 2 unitary matrices. Standard operations (so-called
gates) acting on single qubits are

X =

(
0 1
1 0

)
, H =

1√
2

(
1 1
1 −1

)
, P(θ) =

(
1 0
0 eiθ

)
, (2)

where the X-gate acts like a classical NOT operator and the Hadamard
gate (H) superposes the basic states of a single qubit. A qubit in su-
perposition can be thought of as having all possible states at the same
time. The Phase gate (P) rotates by θ about the z-axis of the Bloch
sphere. Phase shift gates can be used to encode gray-values.

Additionally, we need operations that link two or more qubits. The
most common operation in quantum computing is the controlled NOT-
gate (CX-gate) taking two input qubits. The target qubit’s state is
changed depending on the state of the control qubit:

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (3)

That means, if the control qubit is in state |1⟩, then we apply an X-gate
to the target qubit. Otherwise, we do nothing. For example, assume
our two qubit system has the state |10⟩ = |1⟩⊗ |0⟩, where the first qubit
is the control, the second the target qubit and ⊗ is the tensor product.
Then, application of the CX-gate results in the state

|11⟩ = |1⟩ ⊗ |1⟩ = (0, 0, 0, 1)T . (4)
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So basically, the application of quantum gates can be formulated in
terms of linear algebra.

In general, we can apply any unitary operation to the target qubit.
For example, a controlled-Phase gate applies a P-gate to the target qubit
if and only if the control qubit is in state |1⟩. We can also increase the
number of control qubits even further. The operation with two control
qubits and an X-gate applied to the target qubit is called Toffoli gate.

Applying such controlled operations to two or more qubits with
the control qubits in superposition, results in the entanglement of the
qubits involved. In terms of linear algebra, an entangled state of sev-
eral qubits is one that cannot be written as a tensor product of states
of the individual qubits. Entanglement is exactly where we benefit
from the quantum computing properties. Together with superposition,
entanglement allows to use a logarithmically lower number of qubits
compared to the number of classical bits.

While in a classical computer all bits are connected to each other, in
IBM’s quantum computer the qubits are arranged in a special, so-called
heavy-hexagonal scheme (see the honeycomb structure in Figure 1).
That is, each qubit is directly connected to at most three other qubits.
To apply two qubit gates to unconnected qubits, the information has
to be swapped to neighbouring qubits by application of additional CX-
gates. Each CX-gate, however, increases the overall error considerably
such that an algorithm should employ as few CX-gates as possible.

Lastly, the readout is also completely different for classical and quan-
tum computing. On classical computers, you can always read the cur-
rent state of the bits, copy them, or just continue running an algorithm
with the same state of the bits as before the readout. Unfortunately,
this is not possible on quantum computers. First, according to the no-
cloning theorem [5], a state cannot be copied. Second, when measuring
(reading out the state of) a qubit, its state collapses to one of the basis
states |0⟩ or |1⟩. Hence, continuing the algorithm after read out is not
possible. Additionally, measuring a qubit does not immediately pro-
vide the values of α and β in Equation (1). However, the probability
of collapsing to |0⟩ is given by |α|2 while the state |1⟩ is obtained with
probability |β|2. Repeated measurements (shots) of the same state al-
low for an estimation of these probabilities and thus the values α and
β, too. For further reading on quantum computing basics we recom-
mend [5].
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Figure 1: Coupling map of the backends used in this paper. Every circle represents a
qubit, lines represent connections between the qubits. Colors code the readout
errors (circles) and the CX-errors for the connections (lines). Dark blue indi-
cates a small error, purple a large one. Errors are shown for ’ibmq ehningen’.
’ibmq toronto’ has the same coupling map, but errors differ slightly (see Ta-
ble 2).

3 Near-term quantum computers

We use the open-source software development kit Qiskit [6] for work-
ing with IBM’s circuit-based superconducting quantum computers [4].
They provide a variety of systems, also known as backends, which dif-
fer in the type of the processor, the number of qubits (scale), and their
connectivity [4]. Access is provided via a cloud. In this paper, we use
two of the available 22 backends, ’ibmq toronto’ and ’ibmq ehningen’
see Table 1. This choice is not crucial for our use case as we use a
small subset of the qubits only and backends’ performance does not
differ significantly. The coupling map, so the connections between the
qubits, of the backend ’ibmq ehningen’ is shown in Figure 1. Addi-
tional parameters describing the performance of IBM’s backends are
quality (quantum volume) and speed (circuit layer operations per sec-
ond, CLOPS). All parameters of the two used backends are summa-
rized in Table 1.

Besides the coupling map and the above listed performance values,
external conditions influence the backends. Thus, compared to classi-
cal computers, the basic operations of quantum computers yield quite
large errors. E. g., applying a couple of gates or performing measure-
ments is currently quite noisy with errors that can change hourly. Typ-
ical average values for CX error, single qubit gate error, and readout
error, are shown in Table 2. Additionally, Table 2 shows the decoher-
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Table 1: Processor type and actual performance of the used backends as measured in
September 2022.

Backend Processor Scale Quality Speed
type [# qubits] [QV] [CLOPS]

’ibmq toronto’ Falcon r4 27 32 2.800
’ibmq ehningen’ Falcon r5 27 64 1.900

Table 2: Typical average calibration data of the two chosen backends. The values are
from September 2022.

Backend CX-error Single qubit Readout error T1 T2
gate error

[%] [%] [%] [µs] [µs]

’ibmq toronto’ 5.34 0.051 3.66 103.71 107.72
’ibmq ehningen’ 0.71 0.024 1.05 151.74 160.92

ence times T1 – a decay constant measuring, how probable a qubit stays
in the state |1⟩ and not |0⟩, and T2 – the dephasing time measuring how
long the phase of a qubit stays intact. The circuit depth counts the max-
imal number of basis operations performed by a single qubit during an
algorithm. A high circuit depth will result in an accumulation of errors
during the runtime of the algorithm.

An additional issue in quantum computing is that only a few opera-
tions, called basis gates, can be performed on the quantum computer.
Currently, IBM’s superconducting quantum computers have five basis
gates: the identity, X-, CX-, and P-gates, and the square root X (SX-
)gate rotating by π/2 about the x-axis of the Bloch-sphere [4]. Qiskit
includes a transpiler, which decomposes a given algorithm into these
basis gates and optimizes these steps in some way [6]. Nevertheless,
keeping the available basis gates in mind when developing algorithms
helps to limit their overall number.

For preparing data and generating and storing the circuits before
sending them to the quantum computer, we use a classical computer
with an Intel Xeon E5-2670 processor running at 2.60 GHz, a total RAM
of 64 GB, and Red Hat Enterprise Linux 7.9.
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Figure 2: Circuit depth for varying image sizes and MCRY-/MARY-implementation on
backend ’ibmq toronto’. Mean values of 10 observations in logarithmic scale.

4 Quantum image encoding

There are many methods for encoding images in quantum computers.
One of the most frequently mentioned methods is FRQI introduced
in [2]. Assume that we want to encode a 2n × 2n pixel gray-value im-
age. We split the required qubits into two parts - 2n qubits for the pixel
positions and one qubit for the gray-value information. Practically,
FRQI can be implemented on superconducting quantum computers by
using entanglement between the position qubits and the gray-value
qubit. We take a closer look at the heart of the FRQI algorithm, the
multi-controlled y-rotation gate (MCRY). It applies a rotation around
the y-axis corresponding to the gray-value only if all position (aka con-
trol) qubits are in state |1⟩. Subsequently, we change the state to which
the actual phase should be applied by X-gates. Thus,in total we need
one MCRY gate for each gray-value in the classical image. As dis-
cussed above, on a real backend, complex operations like MCRY have
to be constructed by concatenating available basis gates.

Inspired by [7], we replace MCRY by what we call multi-adapted-
controlled y-rotation gates (MARY). Our MARY gates need less basis
gates, especially less of the particularly error-prone CX-gates. Thus,
the replacement reduces the overall error significantly. Moreover, fewer
gates and lower circuit depth (Figure 2) speed up calculations. The im-
pact of replacing MCRY by MARY increases with image size. In MCRY,
all qubits would ideally have to be connected with each other. Hence,
missing connections on the real backends have to be circumvented by
swapping with CX-gates. In contrast, MARY requires a much smaller
connectivity between the qubits.
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Figure 3: Results for 2× 2 gray-value images using the mean of the executions. In the last
column, some measurement error mitigation techniques have been applied [8].

Figure 3 shows the performance on a 2× 2 sample image. The hard-
ware induced error is clearly visible in the results achieved on the real
backend. In fact, there, we can only retrieve the image with acceptable
error when applying measurement error mitigation [8]. That is, from
observations on exactly this backend, the distribution of the error is
estimated. Inversion of the error model then improves the results. To
our knowledge, image retrieval with FRQI for images larger than 2× 2
is currently not possible on real backends, see also [8–10].

Table 3 shows our findings for the maximum executable and usable
image sizes for the MCRY- and MARY-implementations. Executable
here means, it is possible to run the algorithm at all without focusing
on the outcomes. Usable implies that the relative difference between
input image and reconstructed image is less than 5%. We clearly see a
benefit of the MARY-implementation in terms of maximum executable
image size. However, due to the high noise level of the backends, we
could not increase the maximum usable image size.

Having experienced this tight restriction, we still aim at image pro-
cessing algorithms which are robust to the hardware noise in the cur-
rent noisy intermediate-scale (NISQ) era and hence executable on the
real backends. In the next section, we describe a design pattern for
algorithms meeting these demands.
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Table 3: Current maximum executable and usable image sizes for MCRY- and MARY-
implementations on ’qasm simulator’ with 8.192 shots and IBM’s backend
’ibmq toronto’ limited to 64 GB memory.

maximum executable image size maximum usable image size

Method ’qasm simulator’ ’ibmq toronto’ ’qasm simulator’ ’ibmq toronto’

MCRY 32× 32 16× 16 16× 16 2× 2
MARY 256× 256 32× 32 16× 16 2× 2

Figure 4: Scheme from [12] for edge detection in a 30× 30 sample image by using 2×
2 filter masks, ’qasm simulator’ and backend ’ibmq ehningen’ (executed on
October, 15 2021) with 8.192 shots, and ToolIP [13] for post-processing.

5 Quantum image filtering

In this section, we introduce a class of hybrid algorithms combining
classical filtering with quantum computing on 2 x 2 pixel patches. As
an example, we combine classical edge detection with a quantum artifi-
cial neuron [11] as sketched in Figure 4. We calculate the inner product
of the input image patch and the filter mask not only on a simulator but
also on real quantum computers [12]. Being restricted to 2 x 2 masks,
we can either apply that directly or split our task into one-dimensional
filtering steps. The latter is more robust with respect to noise [12].
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Figure 5: Hybrid quantum edge detection. UI encodes the input image patch and UW
the filter mask. The gray value information is encoded in the P-gates. In the 1D
case, the additional diagonal direction is required for detecting corners, too.

Figure 6: Results for the 256× 256 House image [14]. The ’qasm simulator’ and backend
’ibmq ehningen’ results differ only slightly.

Moreover, only a very small number of gates and only one qubit per
direction and pixel are required. This ensures that a very small number
of shots (measurements) suffices for identifying the edges of the image.
The lower number of shots in turn reduces the execution time signifi-
cantly. The quantum circuits of the two implementations are shown in
Figure 5.

Figure 6 shows the results of our hybrid 2D edge detection for a typ-
ical toy example image [14]. In [12], we process 256× 256 pixels gray-
value images. Further extension to larger images increases the number
of circuits, only, but does not decrease the robustness of our algorithm.
Nevertheless, in the end, we create one circuit for each combination of
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input image patch and filter mask. This can scale up quite fast with
larger images. In classical computing, this can be compensated by par-
allelization. In fact, this is also an option in quantum computing. We
can use several qubits in parallel and process multiple image patches at
the same time. By that, we decrease the number of needed circuits and
also the execution time in the end. Mid-circuit measurement [4] allows
to measure a qubit at any step of the algorithm and use the same qubit
again for further calculations.

6 Conclusion

Quantum computing is potentially very useful in image processing. It
promises exponentially lower memory usage in terms of qubits com-
pared to classical bits and also faster calculations. However, the cur-
rently available noisy intermediate-scale quantum computers are still
quite error-prone and hardware improvement is subject of vividly on-
going research. At the moment, image retrieval is only possible for
images up to a size of 2 × 2. A strategy to deal with these limita-
tions is to combine quantum and classical algorithms. In such hybrid
solutions, the quantum computing part is actually much smaller than
the classical part. We use only a small number of gates, and avoid or
decrease the number of particularly error-prone types. The quantum
computing share can be extended gradually along with the hardware
progress. Instead of trying to implement all image processing func-
tionality on quantum computers, we should rather identify, for which
problems and which steps in complex algorithms quantum computing
can be helpful or eventually even beat classical machines.
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