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Abstract In this paper, we developed a tool that uses active
learning and deep learning together for segmentation of 3D CT
data. We demonstrate the results of the method using the use
case of plant segmentation. In addition, we compare the method
with a baseline and a classical image processing-based algo-
rithm.
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1 Introduction

Automated segmentation of 3D CT data is a vast field of application.
Especially in the medical environment, there is currently a transition
from conventional methods based on classical image processing to Ma-
chine Learning / Deep Learning (ML/DL) based methods [1,2]. Much
of the aforementioned success of Deep Learning is due to the large
number of publicly available annotated datasets, for example, the Im-
ageNet database [3]. One of the major challenges is the necessity to
acquire sufficient ground truth data for modeling. However, this data
are usually not available in sufficient quantities, especially for indus-
trial use cases. Moreover, the annotation of this data turns out to be
an extremely time-consuming and very expensive task, especially for
large 3D datasets.

Thus, we need effective methods to reduce the labeling effort. One
such method is active learning, a collection of techniques that support
machine learning algorithms to achieve better results with less labeled
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training data. The learning algorithm can interactively prompt a user
to assign the correct labels to new data points. To do this, the algorithm
should ask questions that promise a high information gain in order to
keep the number of questions as small as possible.

These questions, called queries, can be grouped into three main
types: stream-based selective sampling, membership query synthesis,
and pool-based sampling. Stream-based selective sampling assumes a
stream of incoming unlabeled data points x. The current model and a
measure of informativeness measure I(x) are used to decide for each
incoming data point whether to ask the oracle for an annotation. In
membership query synthesis, the data points are not drawn, but rather
the model generates new data points in a way that it considers infor-
mative to itself. With pool-based sampling, a batch b is selected from
the unlabeled dataset. The current model is used to predict the sample
stack and obtain a measure of informativeness I(b). Based on this mea-
sure, the best N samples are selected to be annotated by the oracle [4].

Overall, Deep Learning has strong capabilities in processing data
through automatic feature extraction, but requires a very large amount
of annotated data to do so. Active Learning, on the other hand, has
the potential to effectively reduce the effort required for labeling. The
combination of deep learning and active learning support each other,
so their application potential improves significantly. Therefore, we have
developed a tool that allows us to apply active learning to the area deep
learning segmentation of 3D CT data.

We demonstrate the use of our tooling on the basis of plant seg-
mentation, as plant breeding has undergone rapid progress in recent
decades. In this context, targeted plant breeding, for example of
climate-resistant strains, is also becoming increasingly important [5].
Innovative analysis methods, such as 3D segmentation, play an essen-
tial role in this context, enabling seedlings and seeds to be assessed
qualitatively.

The segmentation task here is to divide the 3D CT scan of the plant
inside a container in folded paper into the classes plant, paper and
background (see figure 1). Through use of the segmentation the indi-
vidual plants can be evaluated and classified by downstream applica-
tions later. It is particularly difficult to distinguish the seedlings from
the paper. Paper and seedling absorb X-rays to a similar degree, so
there is virtually no usable contrast difference that could be used for
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Figure 1: Data for the plant segmentation. The data is split in raw image or volume
and its corresponding segmentation. On the left the volume is sliced in axial
direction. In the middle a 3D rendering can be seen. And on the right the
sagittal/coronal direction is shown.

segmentation. This is also affected by the limited resolution of only 140
µm and noise, which is why incorrect segmentations can easily occur.
Either components of the seedling are assigned to the paper or vice
versa. This hinders the subsequent assessment of the seedling in the
downstream application due to incorrectly calculated characteristics.

2 Methods

Our method operates in three main phases (see figure 2). In the pre-
training phase, an initial network (currently 3D U-Net) is trained from
weak labels. These can be derived from existing classical image pro-
cessing pipelines, simulations or rough hand-annotations.

Subsequently, this pre-trained network is passed to the active learn-
ing phase. The active learning phase itself also consists of several
steps, namely inference, location, visualization/interaction, and train-
ing. During inference, the segmentation network generates a segmen-
tation map, which is then analyzed during the location phase. Then the
user can visualize the results and interact with them to correct invalid
segmentations. Next, the areas corrected by the user are retrained dur-
ing the training phase and the weights of the segmentation network are
updated. A graphical user interface guides the user through these four
steps until a visually satisfactory result is achieved or an application-
specific condition is met.
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Figure 2: Overall conceptual process of the developed deep learning and active learning
approach.

Finally, the resulting fine-tuned network can be deployed. As an
additional result, all corrections made by the user during the active
learning phase can be used for future algorithms or training.

2.1 Pre-training phase and network architecture

In the pre-training phase, the network is initially trained in such a way
that later, in the active learning phase, the segmentation is almost cor-
rect and only invalid segmentations have to be corrected and re-trained.
For this, already existing classical algorithms (based on thresholding,
filtering, . . . ) or simulations can be used as weak labels.

The U-Net architecture used consists of a simple 3D U-Net (see fig-
ure 3). It is 5 levels deep with 2 convolution blocks per level. With
each level the number of feature maps doubles and the spatial resolu-
tion halves. The convolution blocks consist of 2 convolution layers with
batch normalization [6], swish activation [7] and a residual connection.
In the decoding path the feature maps are upsampled and concate-
nated by simple upsampling. The last layer is 1x1x1 convolution with
Softmax activation and represents our final segmentation. The entire
3D input volume is usually too large to be processed at once, so it is
processed block by block through subvolumes of size 643.

The training parameters are set as follows. As loss function we
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Figure 3: Schematic of the employed u-net network architecture.

choose the sum of dice and cross entropy loss, as in [8]. For the opti-
mizer, we use Adam [9] with a learning rate of 3e−4 and cosine decay.
As regularization, we set a weight decay of 2e−5 [10] and also use la-
bel smoothing of 0.1. Additionally, we use augmentations to increase
the training data. We use contrast, noise, affine transformations, flips,
blur and artifacts augmentations with varying strength. The network
is implemented using TensorFlow [11] and the augmentation pipeline
makes use of the TorchIO package [12]. The training has been con-
ducted using a NVIDIA GTX Titan X with 12 GB of GPU RAM.

2.2 Active learning phase

After the network has completed the pre-training phase and has
reached suitable convergence, it is passed on to the active learning
phase. Here the user is in the focus, and first he is presented with
the following view within the simple application we developed, with
which he can interact with the current dataset. In figure 4 three orthog-
onal sliceable views with which the dataset can be navigated can be
seen and the toolarea in which multiple tools are available for the user.
The user has access to brush, image processing operations (flood-fill,
morphology, clustering, ...), 3D visualization, neural network training
and use-case specific functions.

In general, 4 sub-steps are then performed within the active learn-
ing phase: namely, inference, location, visualization/interaction, and
training.

Inference. Here the network prediction is executed. In the field of 3D
CT data segmentation, the volumes are often large, with sizes of several
GB or more, which prevents the direct use of a segmentation network
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Figure 4: Overview of the graphical user interface guides the user through the active
learning phase. In the top right, top left and lower left, orthogonal sliceable
views can be seen, that allow the user to navigate the through the data and
overlayed segmentation. In the bottom right the toolarea can be seen.

due to the limited GPU RAM. Therefore, to perform segmentation with
such volumes, we need to split them into smaller blocks (usually 643).
Each of these blocks is then segmented individually by the network.
In addition, overlapping is performed at the edges of the blocks to
compensate for the lack of spatial information at the edges. Finally, all
the blocks are merged to form the total volume.

Location. In the localization phase, the user has to find and cor-
rect incorrect segmentations. Since this is a very time-consuming pro-
cess to do manually, we have developed a way to quickly and semi-
automatically present potentially incorrect areas to the user. To do
this, we use a random forest that classifies the objects contained in the
current segmentation. It is trained by the user on the basis of a few
examples. For this purpose, first the current segmentation is analyzed
by a connected component analysis (CCA). Then, features are calcu-
lated for each of the connected objects (e.g. size, mean, eigenvalues,
...). Now the user has to label at least one object of each desired class
(for example: paper, seedling, faulty, ...). After that, the random forest
can be trained and applied to all contained objects. The user is then
shown the objects that have been classified and can then improve their
segmentation. The GUI and the random forest pipeline are shown in
figure 5.

Visualization/Interaction. After a wrong segmentation has been
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Figure 5: Location phase overview. On the top the GUI part of the location phase can be
seen. In the middle the table containing features of the objects can be selected.
On the left you can see a cutout of the data and the object is slightly highlighted
in red. On the right a 3D visualization of the object is displayed. The lower
part shows the pipeline running in the background. The gray text describes the
data flow from plain voxels to connected objects and their features.

found in the localization phase, the user has to correct it. This is done
with the help of the three orthogonal views in the GUI and the avail-
able tools. Most of the time, the corrections that need to be made are
small local corrections, such as roots that are incorrectly marked as pa-
per. However, painting pixels is difficult and painting voxels turns out
to be even more difficult. That’s why we provided the brush tool with
special modes for segmenting plants. After all, the brush tool is the
most commonly used tool for local segmentation changes. It should be
easy (and fun) to use and support many automatic modes so that the
user can segment as many voxels as possible by hand with as little ef-
fort as possible. In figure 6 the brush usage of the brush tool is shown
along with its special Frangi [13] filter mode.

Training. After the localization, visualization and interaction phases
mentioned above, the training phase can begin. The goal of our active
learning process is that the user annotates as little as possible, but as
much as necessary to correct the wrong segmentations. Therefore, the
changes in the loss of the network are also rather small, which could
hinder the learning of the corrected regions. To compensate for this
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Figure 6: Example of an incorrect segmentation and its correction. The Frangi filter can
select tubular structures, which makes it easier to separate them from the pla-
nar paper, allowing the user to correct the incorrect segmentation more easily
than by manually tracing each voxel.

imbalance, voxel-wise loss weighting is used to force learning of the
regions corrected by the user. The weight calculation is similar to scikit-
learns class weights function [14]. The training parameters are the same
as in the pretraining phase mentioned above.

Iteration. Finally, the figure 7 shows an iteration of the active learn-
ing process of the developed tool. Starting in the inference phase, the
current network generates a segmentation. Then, in the localization
phase, the incorrect region is found and presented to the user. Subse-
quently, the user corrects the incorrectly segmented voxels. After fin-
ishing training with the new annotations, the next iteration can start.
In the upper right of the figure 7, the result after the iteration can be
seen on another area that was not annotated by the user.

2.3 Deployment phase

After the active learning phase has been completed, the resulting fine-
tuned network can be passed on to the deployment phase. Here, it
is then used for inference in another application. In the case of plant
segmentation, the output of the network is used to analyze individual
seedlings and their characteristics for subsequent seed selection and
breeding.
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Figure 7: Overview of the usual active learning workflow with example segmentations
in the different steps. In the top right the result after the iteration is shown.

3 Results

We evaluated our developed tool on the use case of segmentation of 3D
CT scans of plants. The seedlings grow in a plastic container in folded
paper. Due to the similar attenuation coefficients, it is particularly diffi-
cult to distinguish plant and paper. We compare the performance of the
pre-trained network and the fine-tuned network with the performance
of a classical image processing-based algorithm [5]. The methods are
compared visually by inspection and by calculating segmentation met-
rics. To give no algorithm an advantage, we manually created a ground
truth scan from the test set from scratch without using algorithmic as-
sistance. In order not to let the effort explode, we evenly distributed
two slices from each of the three orthogonal directions (see figure 1) for
annotation. Each of these six slices took the annotator an average of 20
minutes, extrapolating to the total scan size of about 8003, this would
require about 16 days for the entire scan in the worst case, which would
be impractical.

Figure 8 show the comparison of the segmentation with the re-
spective ground truth slice from the two different directions. As can
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Figure 8: Results for the ground truth slices of different directions (top: axial, bottom:
sagittal/coronal). The method names and their dice results are shown above
the image. Various points of interest are highlighted by yellow ellipses.

be seen, the classical algorithm generally segments the roots more
sparsely than the ground truth. In some cases, the roots are com-
pletely missed, which is a fatal error for the final application in the
deployment phase. The pre-trained network reproduces the errors of
the classical algorithm, which is to be expected after it has been trained
with data from the classical algorithm. The fine-tuned network finds
roots missed by the other two methods, but segments them a bit too
thick. Nevertheless, such an error is not as serious as missing roots.

The figure 9 shows the metrics of the different methods. It can be
seen that all metrics are quite close to each other. The classical algo-
rithm can only convince in one metric, while the pre-trained network
achieves the highest score in 2 out of 12 cases. In the remaining 9 out
of 12 cases, the fine-tuned network achieves the highest scores. This is
also in agreement with the assessment in the visual inspection.

4 Conclusion

Overall, the results achieved with our active learning tooling in plant
segmentation are very promising. Although all metrics are quite close
to each other, we have a performance gain of about 1% in terms of the
DICE score. Furthermore, qualitatively visually, the DL segmentation
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Metric

Algorithm Background Paper Plant Background Paper Plant Background Paper Plant Background Paper Plant

1_classical 0.9827         0.9825         0.9962         0.9516         0.9495         0.8499         0.9906         0.8708         0.7456         0.9815         0.7735         0.6064         

2_pretrained 0.9825         0.9827         0.9958         0.9630         0.9572         0.9019         0.9905         0.8741         0.7583         0.9812         0.7789         0.6178         

3_finetuned 0.9837         0.9848         0.9949         0.9788         0.9682         0.9636         0.9911         0.8894         0.7545         0.9824         0.8031         0.6109         

Accuracy Area under curve Dice Intersection over Union (IoU)

Figure 9: Table of the calculated segmentation metrics. In the top row, the metric can
be read. In the second row, the class to which it refers. The last three rows
show the results of the individual algorithms. The metric of the best method is
highlighted in green.

results are ahead. Additionally, we did not use any prior knowledge
about scan geometry, container, paper and plant type. This makes the
DL approach much easier to adapt. In the future, other active learning
approaches or new network architectures can be integrated to further
increase the performance.
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A. Wolff, “Der phenotest–ein automatisiertes ct-system zur phänotyp-
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