DOI: 10.58895/ksp/1000150865 -15 erschienen in:
Forum Bildverarbeitung 2022 | Image Pocessing Forum 2022
DOI: 10.5445/KSP/1000150865 | https://www.ksp.kit.edu/site/books/m/10.58895/ksp/1000150865/

Signal processing pipeline for an autonomous
electrical race car

Martina Scheffler!, Ole Kettern!, Oliver Zbaranskil’?, Finn Schiferl2,
Kevin Schmidt!, Bjarne Eberhardt!, and Stefan Werling2

1 CURE Mannheim, Autonomous System Team,
Handelsstrafie 13, 69214 Eppelheim
2 Duale Hochschule Baden-Wiirttemberg Mannheim,
Coblitzallee 1-9, 68163 Mannheim

Abstract This work presents a signal processing pipeline for an
autonomous race car in the context of Formula Student. The soft-
ware used for each step from the detection of objects in camera
images or lidar point clouds to the calculation of control out-
puts for the actuators is described in detail. The sensors and
actuators are covered and the system output is visualized. The
computational times of the pipeline are analyzed and it is de-
rived that the complex algorithms used for motion planning and
SLAM take up the most of the computation times, leaving the
most room for improvements.

Keywords Autonomous driving, signal processing, Formula
Student, YOLO, object detection, SLAM, MPC

1 Motivation

The future lies in autonomous driving, at least in the Formula Student
(FS), an international design competition between student teams. In
this work, the signal processing pipeline of the 2022 electrical and au-
tonomous race car of the team CURE (Cooperative University Racecar
Engineering) is presented. While the Formula Student poses a rather
narrow challenge for autonomous vehicles due to a controlled environ-
ment and clearly specified tracks and track boundaries, it is a good
development and testing ground for algorithms which are also used in
agricultural, industrial or real-life traffic situations.

177

M. Scheffler et al.

2 Problem description

During the FS events, the autonomous race car competes in four dif-
ferent types of competitions, all posing different challenges to the car
and the Autonomous System (AS): Acceleration (1), Skidpad (2), Au-
tocross (3) and Trackdrive (4). The disciplines test the car’s ability to
(i) drive straight lines (1), (ii) handle high acceleration and deceleration
forces (1), (iii) withstand high lateral forces (2), (iv) choose the correct
direction at a known intersection (2), (v) navigate unknown tracks (3)
and (vi) reliably generate global maps and locate itself in them (3, 4).
During all events, the track boundaries are marked by cones of known
sizes [1, Tab. 3]. Small blue and yellow cones mark the left and right
sides and orange cones signal finish lines and the exit areas in which
the car has to come to a standstill. The challenge the cars face is to de-
tect the cones correctly, align the detections with previous knowledge
about the tracks - either from the competition rules or from internally
built maps - generate a path to follow and send control signals to the
actuators accordingly.

3 System overview

This section gives a brief overview of the hardware and software used
to run the pipeline. In it, the processing unit, the sensors and the
actuators of the race car are described.

To handle the challenges regarding the computational power and the
needs of the image processing software, a custom-built Autonomous
Compute Unit (ACU) consisting of an AMD Ryzen 5 5600G hexa-core
CPU, a NVIDIA Tesla T4 data center GPU and 32GB of memory is used.
On it, Ubuntu 20.04 LTS is installed. To implement the various func-
tionalities of the AS, the Robot Operating System (ROS) Noetic is used.
This provides the means for inter-process communication, threading,
debugging as well as visualization tools. In order to simplify develop-
ment, deployment and maintenance, the complete AS is containerized
using Docker.

To interact with the rest of the electrical system in the race car, mul-
tiple CAN buses are used. To send / receive messages, a CAN to ROS
interface is used. The sensors connected to the CAN bus include steer-

178

Signal processing pipeline for an autonomous electrical race car

ing wheel angle sensors, wheel speed sensors and an IMU (Inertial
Measurement Unit). All of them are used as inputs to the AS in order
to track the car’s position and generate control outputs accordingly.
These are then used to control the actuators which include the motors,
the motor for the steering actuation and the electrical valves for the
brake system. Additionally to the sensors connected via CAN, other
sensors are directly connected to the ACU via either USB or Ethernet.
These include a dual-antenna GPS for position and heading informa-
tion, a stereo camera and a lidar.

4 Signal processing pipeline

(e -¢] Position, Heading and

Camera Boundin; Local L;thsailti((:J(r)lze Vel Gl VEiitdle Center Points Trajecto
. e - Global Cone Positions Track Width jectory
Perception Boxes Mapping -
Track Motion
. SLAM - . MPC
Color Information Filtering Planning

T |

Perception - Inertial Measurements CAN Steerin

A e o g Angle

| == Wheel Speeds Motor Torque
GPS Steering Wheel Angle

Brake Pressure

Figure 1: Overview of the modules of the signal processing pipeline.

This section gives a detailed description of the signal processing
pipeline as a whole and each module in it as shown in Figure 1.

4.1 Camera perception

This section focuses on the generation of local maps from images taken
with a Stereolabs ZED2i stereo camera.

Camera Calibration Since the camera images are currently used as the
main way to determine the positions of the cones, the camera needs to
be calibrated as precisely as possible. The local mapping process is
closely related to this as it requires both an intrinsic and an extrinsic
camera matrix to describe the transformation of the cone positions from
image to world coordinates. With the currently used camera model,

179

M. Scheffler et al.

the intrinsic matrix is supplied by the manufacturer and not subject to
change. As of right now, the extrinsic calibration process is done by
mapping image points to world points. In this case, our world points
are represented in a 3 x 3 marker pattern whose position we obtain by
measuring the distance to the camera itself. After capturing an image,
coordinates of the markers in the image are collected by picking out the
respective pixels. Using the image points, the intrinsic matrix and the
world-coordinates of the points, the extrinsic matrix can be computed
using OpenCV'’s function solvePnP() [2]. This method has the benefit of
only using one image but the measurements of the world coordinates
by hand and the determination of image points are error-prone and
add a certain error to the calibration as a whole. Replacing the manual
steps by automated library functions would bring a huge improvement
to the accuracy of the resulting calibration.

Inference An integral part of the camera-based perception is the de-
tection of differently colored cones in the images the camera provides.
As these detections are used to calculate the position of the cones rela-
tive to the vehicle, the task of inference needs to be done both quickly
and accurately.

In order to reach this goal, a neural-network-based approach for ob-
ject detection was chosen. The core element is a YOLOv5 convolutional
neural network [3], completely based on PyTorch, which makes it eas-
ier to work with. YOLO networks gained a lot of popularity in the
last years as they achieve similar, if not better, accuracy than Single-
Shot Detectors while being significantly faster [4]. Using the repository
code, a network is trained using both images that were captured and
labeled by ourselves, as well as additional training data from the For-
mula Student Objects in Context (FSOCO) repository [5]. To further
improve the process, pre-trained weights are used which reduces the
need for a big data set and, consequently, also the time needed for
training.

The actual logic for the task of detecting cones is based on an open-
source inference implementation of YOLOVS5 that leverages the capabil-
ities of NVIDIAs TensorRT library to further optimize performance [6].
Using this camera-based perception pipeline, the vehicle is able to de-
tect cones in a distance of up to 15 meters on images with a resolution

180

Signal processing pipeline for an autonomous electrical race car

of just 1280 x 720 pixels while achieving inference speeds of around
50ms on average. While the detections proved reliable under varying
weather conditions, the neural network struggles in detecting cones
when there is a strong backlight present, as the camera automatically
lowers the image brightness as a consequence. Additionally, because
of the the Python implementation, the processing of 1920 x 1080 pixel
images that are provided by the camera is not possible without signif-
icantly sacrificing inference speed. Consequently, the migration of the
code to C++ would be beneficial in the future.

Local Mapping In order to generate a map with reference to the car’s
current position, a translation of cone positions from image to world
coordinates is necessary. The intrinsic and extrinsic matrices are used
to project the top middle point of the bounding boxes around the de-
tected cones from image to world. This projection results in a ray as the
distance can not be calculated with only the pixel coordinates. To get
the accurate position, the ray is intersected with a plane at the known
height of the cones. This is done for all bounding boxes in the image
resulting in a list of local cone positions to pass on to the rest of the
pipeline.

While the calculation of the local maps itself has proven reliable dur-
ing testing and competitions, its accuracy is highly dependent on the
accuracy of the camera calibration, so an improved calibration process
as mentioned above could significantly improve the quality of the local
maps.

4.2 Lidar perception

To increase the robustness of the system as a whole, a Velodyne VLP-16
Puck Hi-Res lidar is used to generate local maps of the environment as
well. For reasons of time, the lidar perception module has not actually
been used during this year’s competitions, However, development and
tests with a test data set have been done.

First, the amount of data in the captured point cloud is reduced
significantly by cropping the field of view in order to increase the com-
putational performance. Second, the ground plane is filtered out using
the Himmelsbach algorithm [7]. Once the point cloud only contains

181

M. Scheffler et al.

points which are not in the ground plane, Euclidean Clustering is used
to group the points. Then, the shapes of these clusters are checked to
keep any cone-shaped clusters and remove erroneous detections like
people, walls and other structures. The coordinates of the detected
cones are then passed on to the SLAM and track filtering modules.
Additionally, 3D to image translation is used to add color information
to the detected cones using information from the camera images. As a
side note, it has to be added that while the approach works well, the
performance of the pipeline is limited by the low number of channels
of the Puck Hi-Res. Cones which are 6m away from the lidar already
consist of less than 10 points and the number of points decreases fur-
ther with increasing distance.

4.3 Simultaneous localization and mapping

The main goal of Simultaneous Localization and Mapping (SLAM) is
enabling motion planning to generate global trajectories and thus, in-
crease the vehicle performance. The SLAM algorithm is implemented
as an Unscented Kalman Filter (UKF) in Python. This type of filter was
chosen as it is able to handle highly non-linear problems like polar cone
positions more sufficiently than an Extended Kalman Filter (EKF). Also,
it outperforms Particle Filters or Graph-based SLAM approaches due
to their higher complexity. The underlying architecture and mathemat-
ics are based on the open-source library FilterPy [8], however adapted
to increase speed and compatibility to our system. The tracked state
vector ¥ of the UKF consists of the tracked landmarks x1,y1 to xu, yn
and the vehicle pose containing the vehicle position x, y, longitudinal
vehicle velocity v, and global vehicle heading :

During the prediction, the system propagates through a simplified
bicycle model disregarding any lateral forces and slip angles. The cur-
rent steering wheel angle is used to calculate the travelled distance of
the current cornering, while the current longitudinal acceleration ay
and yaw rate) measured by the IMU are used to calculate the new ve-
hicle velocity and global vehicle heading. To continuously update the
values, the output of the local mapping and lidar perception as well
as the measurements of all four wheel speed sensors and the GPS are
used.

To counter the disadvantage of the O(n®) complexity of the UKF

182

Signal processing pipeline for an autonomous electrical race car

algorithm with n being the number of state variables, the predicted
state variables are limited to the vehicle pose states and the updated
state variables are limited to the necessary ones, for instance, only the
vehicle pose if no lidar perception or local mapping output is available
and otherwise the vehicle pose and the observed landmarks. As a
result, the complexity is nearly constant since the number of observed
landmarks is naturally limited.

4.4 Track filtering

The track filtering module calculates the center point line of the track
and the track width using the position and color of the cones. The
general functionality of this module is split up into local and global
filtering, based on the information passed on by the SLAM algorithm.
The local track filtering follows three steps. First, it finds the mid-
points of the track using different approaches based on the number and
color of cones available from SLAM. For only cone or one color avail-
able either the Dynamic Window or Border Shift approach is used. If
more cones of each color are passed on, then the midpoints are cal-
culated with the Delaunay Triangulation. With the variety of possible
approaches, the reliability of this module can be enhanced. The second
step is to interpolate and approximate the center line from the found
midpoints. The third and last step is the definition of the legal track
width for each point and the calculation of the left and right borderline.
This information is then passed on to the motion planning module.
The global track filtering works very similar to its local counterpart,
except that it uses only the Delaunay Triangulation for finding the mid-
points, since all global cone positions are known. They are sorted with
a tree algorithm and used to calculate the track width and border lines.

4.5 Motion planning

The goal of the motion planning module is to generate a trajectory
to enable dynamic racing maneuvers. Therefore, it is separated into
two parts: local and global. The local one is used when no closed
global track is passed on by the SLAM algorithm. It is also used while
the global optimization is still calculating the optimal race line for the
closed and global track.

183

M. Scheffler et al.

Local Motion Planning The local motion planning uses a directed geo-
metric graph-based approach fully written in Python and based on [9].
The current vehicle position is used as origin. In regards to the cen-
terline of the track, normals are calculated at regular intervals. The
layers of the graph are made up of nodes which are evenly spaced on
the normals. From one node, an edge to every node on the next layer
exists. To generate a curvature-optimized race line, a cost is calculated
for each edge. The cost takes into account the average and maximum
of the squared curvature of the edge and its length. Using the known
costs of all edges, the cheapest path can be found. The least-cost path
represents the most curvature-optimal path, for which a velocity profile
is then calculated. This velocity profile is calculated based on the hy-
pothesis that the lateral velocity of the car at the apex point of a curve
is 0 . Due to this hypothesis, the maximum accelerating and decel-
erating velocity profiles are calculated from a ggv-map - it delivers the
maximal acceleration forces - these two profiles are then superimposed.

Global Motion Planning The global approach is also based on curva-
ture optimization and inspired by [10]. For generating the global race
line, the problem is set up as a quadratic programming problem. The
global algorithm tries to minimize the sum of the curvature for a given
reference line. In this specific use case it is the closed global center line
that is passed by the SLAM algorithm and used as reference line. In the
following the quadratic solver tries to minimize the curvature via mov-
ing the way points on their normal vectors. The output path is then
shifted into a trajectory using the same velocity profile calculation as
the local approach. The global approach uses more computing power
and takes more time to be calculated. Therefore, as mentioned above,
the local optimization algorithm continues until a global trajectory is
determined.

4.6 Model predictive control

The control module uses the trajectory from the planning module and
the vehicle states from SLAM as input to control the vehicle dynam-
ics. More precisely, the goal is to control the vehicle movement along
the planned path. This Path Tracking problem [11] aims to minimize

184

Signal processing pipeline for an autonomous electrical race car

the delta between the vehicle and the path points as well as to assure
progress along the race track. A nonlinear model predicitve controller
(NMPC) was developed to reach this goal. In general, a NMPC consists
of three key components: A nonlinear vehicle model, an optimization
objective and a reliable numerical solver. Based on the vehicle model,
the solver calculates the optimal control values in real time in order to
minimize a cost function, which serves as the optimization objective.
In comparison to classic control theory approaches, the NMPC is able
to predict and control the future behaviour of vehicle states inside of
the prediction horizon. Hence, model predictive controllers are very
popular for autonomous vehicles. The vehicle model is described as
a nonlinear state space, that outlines the vehicle dynamics. We use a
kinematic bicycle model, that neglects tire forces, similar to [12] and to
the one used inside the SLAM algorithm. The model is implemented in
Python as a system of time-continuous differential equations with the
vehicle acceleration a, and the tire angle rate 6 as model input. To dis-
cretize the model, a 4/ order Runge-Kutta integrator is used. In every
time step, the NMPC calculates the optimal input vector to solve the
optimization objective. Based on the sign of the input acceleration ay,
this value is transformed to either a pneumatic brake pressure or a mo-
tor torque value. These control values are published to ROS and then
transmitted via CAN to the low-level control devices. Furthermore,
these control values are filtered with an IIR-Filter to counter noises and
outliers from the whole pipeline. The optimization objective is math-
ematically described as a quadratic cost function, where the squared
difference between the predicted vehicle positions and the reference
positions are summed up over the prediction horizon. The reference
positions for every time step along the prediction horizon are derived
by preprocessing the trajectory similar to [12]. Path points and the ve-
locity profile are used to calculate a time profile, which then is used to
extract the exactly-timed reference positions inside the prediction hori-
zon. To solve the optimization objective in real-time, the FORCESPRO
NLP solver by Embotech is used [13]. This solver predicts input values,
which minimize the cost function. With solving times below 5 millisec-
onds this solver is very reliable for application inside the ACU. Due to
the prediction horizon of N = 20 and a time step of 50 ms, the NMPC
is able to predict and control the vehicle dynamics one second ahead
of the current state using the kinematic bicycle model.

185

M. Scheffler et al.

5 Results

Since the benefits and drawbacks of the single modules were already
explained in Section 4, this section focuses more on the results and
computation times of the whole pipeline.

Camera Wrapper 0.038
Inference 0.035
Local Mapping 0.008
SLAM 0.032

Filtering 0.001
Motion Planning 0.040
Control 0.023

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175

Figure 2: Median processing time of each module of the pipeline in seconds.

Figure 2 shows the median processing time of each module and sub-
sequently of the whole signal processing timeline. It takes about 175ms
from the recording of an image until it is represented in the control
output. The camera wrapper includes the recording and processing of
the image and the encoding into a ROS message. Computation heavy
modules like the SLAM and motion planning module have a major
share, which can be lowered by using a different parameter set, mi-
grating to a more efficient language like C++ and parallelizing specific
computations. The processing time of the control module is mislead-
ing, since it is executed with a fixed rate of 20 Hz and thus the median
processing time includes idle time. Modules like the inference, local
mapping and filtering provide little room for improvement since most
of their calculations are carried out with efficient libraries like YOLOv5
or NumPy.

Under the assumption that the vehicle velocity is 152, the total pro-
cessing time will lead to a loss of 2.65m effective perception range.
Since the position dependent modules (filtering, motion planning and
control) use separate and newer vehicle position, the control output er-
ror due to a wrongfully assumed vehicle position is limited and can be
compensated by choosing a corresponding time step of the NMPC.

186

Signal processing pipeline for an autonomous electrical race car

Figure 3: Output of the pipeline visualized on a camera image.

Figure 3 shows the system output visualized on a camera image cap-
tured on a testing day with a driver. The detected bounding boxes of
the inference module as well as the calculated center points (green), the
planned path (blue) and predicted path (purple) are shown.

6 Conclusion and outlook

In this work, the signal processing pipeline for an autonomous race car
in the context of Formula Student competitions was presented. Each
module was explained in detail, also focusing on its positive and nega-
tive aspects regarding computational cost and reliability. The resulting
output of the system was visualized and the computational times of
each module were analyzed and put into context.

To improve the system in the future, the plan is to improve the cali-
bration method used for the camera perception to enhance the accuracy
of the local maps from images. Furthermore, an investment in a lidar
with more than 16 channels, Gaussian channel distribution is planned
and work is done to correctly integrate it into the system. Finally, the
computational times of the motion planning and SLAM modules will
be reduced by migrating them to C++.

References

1. Formula Student Germany. Competition Handbook 2022. [Online].
Available: https://www.formulastudent.de/fileadmin/user_upload/all/

187

M. Scheffler et al.

10.

11.

12.

13.

188

2022 /rules/FSG22_Competition_Handbook_v1.2.pdf

OpenCV. solvePnP. [Online]. Available: https://docs.opencv.org/3.4/d9/
dOc/group-__calib3d.html#ga549c2075fac14829ff4a58bc931c033d

Ultralytics, “YOLOVS5,” Jul. 2021. [Online]. Available: https://github.com/
ultralytics/yolov5

J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” 2018.
[Online]. Available: https:/ /arxiv.org/abs/1804.02767

N. Vodisch, D. Dodel, and M. Schotz, “FSOCO: The Formula Student Ob-
jects in Context Dataset,” SAE International Journal of Connected and Auto-
mated Vehicles, vol. 5, no. 12-05-01-0003, 2022.

W. Xinyu, “TensorRTx,” Jul. 2021, original-date: 2019-11-25T09:01:36Z.
[Online]. Available: https:/ /github.com/wang-xinyu/tensorrtx

M. Himmelsbach, F. Hundelshausen, and H.-]. Wuensche, “Fast segmenta-
tion of 3d point clouds for ground vehicles,” 07 2010, pp. 560 — 565.

R. Labbe. Filterpy. [Online]. Available: https:/ /filterpy.readthedocs.io/en/
latest/

T. Stahl, A. Wischnewski, J. Betz, and M. Lienkamp, “Multilayer graph-
based trajectory planning for race vehicles in dynamic scenarios,” in 2019
IEEE Intelligent Transportation Systems Conference (ITSC), 2019, pp. 3149-
3154.

A. Heilmeier, A. Wischnewski, L. Hermansdorfer, J. Betz, M. Lienkamp,
and B. Lohmann, “Minimum curvature trajectory planning and control
for an autonomous race car,” Vehicle System Dynamics, vol. 58, no. 10, pp.
1497-1527, 2020. [Online]. Available: https://doi.org/10.1080/00423114.
2019.1631455

T. Faulwasser and R. Findeisen, Nonlinear Model Predictive Path-Following
Control. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 335-343.
[Online]. Available: https://doi.org/10.1007/978-3-642-01094-1_28

A. Liniger, A. Domahidi, and M. Morari, “Optimization-based autonomous
racing of 1:43 scale rc cars,” Optimal Control Applications and Methods,
vol. 36, pp. 628-647, 09 2015.

A. Zanelli, A. Domahidi, J. Jerez, and M. Morari, “Forces nlp: an efficient
implementation of interior-point... methods for multistage nonlinear non-
convex programs,” International Journal of Control, pp. 1-17, 2017.

