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Abstract In this work, we propose a physics-enhanced two-to-
one Y-neural network (two inputs and one output) for phase re-
trieval of complex wavefronts from two diffraction patterns. The
learnable parameters of the Y-net are optimized by minimizing a
hybrid loss function, which evaluates the root-mean-square er-
ror and normalized Pearson correlated coefficient on the two
diffraction planes. An angular spectrum method network is de-
signed for self-supervised training on the Y-net. Amplitudes and
phases of wavefronts diffracted by a USAF-1951 resolution tar-
get, a phase grating of 200 lp/mm, and a skeletal muscle cell
were retrieved using a Y-net with 100 learning iterations. Fast
reconstructions could be realized without constraints or a priori
knowledge of the samples.

Keywords Coherent diffraction imaging, phase retrieval, deep
neural network

1 Introduction

Retrieving the phase from diffraction patterns is a long-standing prob-
lem. In the recorded intensity patterns, the object wavefront is super-
imposed with its a phase-conjugated and for reconstructing the wave-
front without conjugation, the phase needs to be retrieved. Conven-
tional methods used constraints to iteratively solve the phase retrieval
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problem. A priori knowledge of the object plane [1] or modulations ap-
plied on the imaging path [2] [3] can be the constraints. Optimization
iterations are needed.

Deep learning is a powerful approach for solving optimization prob-
lems. A convolutional neural network (CNN) is trained with a dataset
for mapping input to output. CNNs are widely used in image process-
ing, they have an end-to-end structure, which can be trained to retrieve
a phase pattern from an intensity pattern [4] [5]. After training on a
dataset, the reconstruction can be directly made by a CNN without fur-
ther optimization. The phase retrieval problem has an explicit physical
model and a CNN can be enhanced with the diffraction principle [5]
in order to avoid training with thousands of patterns. However, the
end-to-end structure of a CNN described in [6] limits the object to be
phase-only. Splicing the phase and amplitude into one image seems to
be a straightforward solution, but a CNN uses a convolution kernel for
feature extraction. The connected edges of the amplitude and phase
pattern may be convoluted with one kernel and generate data against
the physical model.

In this work, we propose a physics-enhanced neural network for re-
trieving a complex wavefront from two axially displaced diffraction
patterns. A two-to-one Y-net (two inputs and one output) is designed
to retrieve the phase on the first plane. Then the complex wavefront is
calculated with the retrieved phase and the square root of the recorded
intensity pattern. An angular spectrum method (ASM) network is de-
signed to calculate the wave propagation. The Y-net is trained with the
diffraction between the two recording planes and produces a phase on
the first plane, which can be used to generate two patterns on the two
recording planes. The errors between generated and recorded patterns
are evaluated with a hybrid loss function. The normalized Pearson
correlation coefficient and root mean square error are used to build the
hybrid loss function. The learnable parameters in the Y-net are opti-
mized by gradient descent on the hybrid loss function. After training
on a dataset, the Y-net can be generalized to retrieve complex wave-
fronts without optimization. Reconstruction can also be made using
an untrained Y-net. An amplitude-only UASF-1951 resolution chart,
a phase grating, and a skeletal muscle cell are experimentally recon-
structed using an untrained Y-net.
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2 Y-net for retrieving the complex wavefront

A schematic of the setup used for recording axially displaced diffrac-
tion patterns is shown in Fig 1 . The sample is illuminated by a plane
wave and the diffraction patterns are recorded on two planes at dis-
tances of z’and z’+z. To reconstruct the complex-valued object, the
phase on the two diffraction patterns is retrieved using a Y-net.

The proposed Y-net is a fusion of two U-nets. There are two down-
sampling paths and one up-sampling path, which are composed of four
down-sampling and corresponding up-sampling convolution blocks.
In each convolution block, the information passes downstream along
with two sets of batch normalization layers, rectified linear unit (ReLU)
layer, and a convolution layer. The feature maps in each down-
sampling block are extracted using a 3×3 convolution kernel with a
stride of 2. In the bottleneck of the Y-net, the feature maps from the two
down-sampling paths are connected as the input of the up-sampling
path. Then the up sampling is made with transposed convolutions.
There are residual layers and skip connections after the convolution
blocks to make the deep Y-net easy to optimize by avoiding the vanish-
ing gradients problem and mitigating the degradation problem.

The schematic for training the Y-net is shown in Fig.1 (b). In the first
training loop, the learnable parameters are randomly initialized. This
initialization helps keeping the signal from expanding to an extremely
high value or vanishing to zero. Then the learnable parameters are
optimized by minimizing a hybrid loss function, which is built by fol-
lowing the optical diffraction model.

The hybrid loss function for the Y-net is a linear combination of
the loss function on two diffraction patterns. The output of the Y-
net is set to be the phase on the first diffraction pattern. The complex
wavefronts on the two planes follow the Rayleigh-Sommerfeld diffrac-
tion. By merging the phase φ(x1, y1) with the first recorded inten-
sity I1(x1, y1), we obtain the wavefront on the first plane u1(x1, y1) =√

I1(x1, y1)exp[iφ(x1, y1)] . After propagating u1(x1, y1) to the second
plane, we obtain the wavefront u2(x2, y2) = propz{u1(x1, y1)}, where
z is the distance between the two planes. For evaluating the differ-
ences between u2(x2, y2)

2 and I2(x2, y2), a loss function is built from
the linear combination of the root-mean-square error (RMSE) and the
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Figure 1: (a) Recording two patterns diffracted by a complex object; (b) Training the Y-
net based on diffraction between the two planes; (c) Retrieving the phase on
the first pattern.

normalized Pearson correlation coefficient (PCC),

Loss{I, I′} = lPCCPCC{I, I′}+ lRMSERMSE{I, I′} (1)

PCC{I, I′} = 1
2
{1− ∑m,n[I(m, n)− Iave][I‘(m, n)− I′ave]√

∑m,n[I(m, n)− Iave]2 ∑m,n[I‘(m, n)− I′ave]
2
} (2)

RMSE{I, I′} =
√

∑m,n[I(m, n)− I′(m, n)]2

MN
(3)

where lPCC and lRMSE are the relative weights of the normalized PCC
and RMSE, m and n are integer numbers, M and N are the numbers
of pixels in the patterns, Iave and I′ave are the average pixel values of
the images. The PCC measures the linear similarity between the two
patterns, which is evaluated by the ratio between the covariance of the
pixel values and the product of their standard deviations. The PCC has
a value between -1 and 1, where 1 represents two similar patterns. To
perform gradient descent, the PCC operator is normalized as shown
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in Eq.2. The normalized PCC has a value between 0 and 1, where 0
represents a high similarity. The RMSE is used together with PCC to
obtain a better convergence in a training loop. The RMSE compares
every pixel value on the generated intensity and the captured ground
truth. The scaling effect of the PCC can be reduced by using the RMSE
evaluation. When the RMSE value is 0, the generated intensity and the
captured ground truth are the same on every pixel of the image.

In order to apply a sufficient constraint to the neural network, the
loss function is also built on the second plane. The amplitude of
the propagated wave u2(x2, y2) is replaced by

√
I2(x2, y2) . Then

the updated wavefront u′2(x2, y2) is propagated to the first plane,
u′1(x1, y1) = prop−z{u′2(x2, y2)}. The differences between u′1(x1, y1)

2

and I1(x1, y1) are evaluated. The hybrid loss function for training the
Y-net is d1Loss1{I1}+ d2Loss2{I2}, where d1 and d2 are the weights of
the loss on the two diffraction planes. Training the neural network is a
process of optimizing the weights of each layer to minimize the predic-
tion error between the outputs and ground truth. This is usually made
by using gradient descent methods on the loss functions. In this work,
the ADAM optimization is used for minimizing the hybrid loss func-
tion on the two planes. A well-trained Y-net retrieves a phase following
the diffraction principles between the two planes.

3 Reconstructions in experiments

Experimental results were obtained by using an amplitude-only USAF-
1951 resolution test target, a phase grating, and a skeletal cell sample.
The diffraction patterns were recorded using the setup shown in Fig.
2(a). The samples were illuminated with a plane wave having wave-
length 655 nm. The pixel size of the camera is 2 µm. After capturing
the first diffraction pattern, the camera was shifted for capturing the
second. The distance between the two planes was 400 µm. The size of
the diffraction patterns was 512×512 pixel, this is a compromise for ob-
taining good resolution under fast training. Better results could be ob-
tained using more pixels, but in this case a longer training time would
be necessary.

Figs. 2(b) and (c) show the recorded patterns of the USAF-1951
resolution target. The first pattern was recorded at 4.4 mm distance
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Figure 2: Experimental reconstruction for an amplitude-only USAF-1951 resolution tar-
get. (a) Schematic of the experimental setup; (b) and (c) The recorded diffrac-
tion patterns on the two planes; (d) Retrieved phase on the plane of (b); (e) and
(f) Amplitude and phase of the reconstruction using the Y-net with 100 itera-
tions; (h) and (i) Amplitude and phase of the reconstruction by propagating
the first diffraction pattern.
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from the object. An untrained Y-net was used for reconstruction. Self-
supervised learning was performed by optimizing the hybrid loss func-
tion with 100 iterations. With the ASM network, the Y-net learns to
retrieve a phase following the diffraction between the two recording
planes. As shown in Fig. 2(d), the feature of the object can be dis-
tinguished from the retrieved phase. The complex wavefront on the
first plane is calculated by multiplying the retrieved phase and the
recorded amplitude. The phase and amplitude components are then
reconstructed after propagating the calculated wavefront to the object
plane. The intensity and the phase of the reconstruction are shown in
Figs. 2(e) and (f). The sixth element of group five in the USAF-1951
target was resolved (line width of 8.77 µm). The reconstruction of the
complex wavefront was made using the untrained Y-net without a pri-
ori knowledge. Figs. 2(h) and (i) shows the reconstruction of intensity
and phase obtained by simply propagating the first diffraction pattern
to the object plane. The intensity is not correctly reconstructed due to
the presence of the conjugated wavefront.

A phase grating was also investigated with the same experimental
setup shown in Fig. 2(a). The phase grating has a period of 5 µm (200
lp/mm). The first pattern was captured at a distance of 4.6 mm from
the phase grating. Then the camera was shifted 400 µm for recording
the second pattern. After self-supervised learning (100 iterations), the
phase distributions of the gratings was reconstructed (see Figs. 3(b)).
In this experiment, the phase grating cannot be reconstructed using
simple propagation of the recorded diffraction pattern (Figs. 3(c), (d)).

A skeletal muscle cell was used in another experiment, to further
demonstrate the capability of the Y-net. In this case the sample was il-
luminated with a plane wave having wavelength of 632.8 nm. The pixel
size of the camera was 5.86 µm. The first diffraction pattern was cap-
tured 39.4 mm away from the specimen, this distance was numerically
determined by back propagating the retrieved wave from the recording
plane to the object plane. Then the camera was shifted 1 mm for cap-
turing the second pattern. The phase at the first plane was retrieved
after training the Y-net with 100 iterations. The reconstruction of the
sample is obtained by propagating the retrieved wavefront. The recon-
structed amplitude and phase of the skeletal muscle cell are shown in
Figs. 3(e) and (f). The amplitude and phase show different structures
of the skeletal muscle.
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Figure 3: Experimental reconstruction for the phase grating and skeletal muscle cell sam-
ple. (a), (e) and (b), (f) Amplitude and phase of the reconstruction using the
Y-net with 100 iterations; (c), (j) and (d), (h) Amplitude and phase of the recon-
struction by propagating the first diffraction pattern.

4 Conclusion

Y-net is proposed to efficiently reconstruct complex wavefronts. With
self-supervised training through an ASM network, the Y-net learns the
diffraction between the two planes. Only two diffraction patterns are
needed for the reconstruction. The two patterns may also be simul-
taneously captured using two cameras and one beam splitter. Then a
well-trained Y-net may realize a quasi-real-time phase retrieval. The Y-
net can be trained on a big dataset for the best generalization. The Y-net
has a promising potential in the investigation of both timely and spa-
tially varying physical processes. The large-scale complex wavefront
can be rapidly retrieved using a well-trained Y-net. Besides the optical
diffraction, this two-to-one Y-net may also be applied on learning other
physical principles, such as the transmission of sound wave.
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