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1 Introduction

Errors and inaccuracies in the representation of clouds in convection-permitting
numerical weather prediction models can be caused by various sources, in-
cluding the forcing and boundary conditions, the representation of orography,
and the accuracy of the numerical schemes determining the evolution of hu-
midity and temperature. Moreover, the parametrization of microphysics and
the parametrization of processes in the surface and boundary layers do have
a significant influence. These schemes typically contain several tunable pa-
rameters that are either non-physical or only crudely known, leading to model
errors and imprecision. Furthermore, not accounting for uncertainties in these
parameters might lead to overconfidence in the model during forecasting and
data assimilation (DA).

Traditionally, the numerical values of model parameters are chosen by manual
model tuning. More objectively, they can be estimated from observations
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by the so-called augmented state approach during the data assimilation [7].
Alternatively, the problem of estimating model parameters has recently been
tackled by means of a hybrid approach combining DA with machine learning,
more specifically a Bayesian neural network (BNN) [6]. As a proof of concept,
this approach has been applied to a one-dimensional modified shallow-water
(MSW) model [8].

Even though the BNN is able to accurately estimate the model parameters and
their uncertainties, its high computational cost poses an obstacle to its use in
operational settings where the grid sizes of the atmospheric fields are much
larger than in the simple MSW model. Because random forests (RF) [2] are
typically computationally cheaper while still being able to adequately represent
uncertainties, we are interested in comparing RFs and BNNs. To this end,
we follow [6] and again consider the problem of estimating the three model
parameters of the MSW model as a function of the atmospheric state.

2 Model and methods

2.1 The MSW model

The MSW model is used to generate the true atmospheric state as well as the
forecasts. This simple toy model realizes a mapping x(t + dt) = MSWθ (x(t))
to simulate the development of wind (u), clouds (h) and rain (r), and can be
used to study new DA algorithms. A one dimensional grid with 250 grid points
is used, yielding a state vector of the form:

x(t) =




u(t)
h(t)
r(t)


 ∈ R750. (1)

In a realistic setting we do not have access to the true atmospheric state but
only to observations which are sparse and noisy and only available at distinct
times. We simulate this by adding noise to the true atmospheric state and only
observe every 60 model time steps. Furthermore, we observe all variables of
the MSW model only at those grid points where r > 0.005 to simulate radar
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data. The MSW model parameters to be estimated are the rain removal rate α ,
the constant value for the geopotential φc, and the threshold for the fluid height
hr. All model parameters are constant in space and yield a three-dimensional
parameter vector of the form

θ(tk) =




α(tk)
φc(tk)
hr(tk)


 ∈ R3. (2)

that will be estimated in discrete times tk. The parameters for training and
testing are taken from uniform distributions with the same bounds as in [7, 6]
and rescaled to the unit interval [0,1] before training.

2.2 Machine learning

A BNN and a RF regressor are used to estimate the three model parameters
of the MSW model as a function of a snapshot in time of the atmospheric
state (1). This results in an input size of 750 and an output size of 3. For
the BNN, stochastic components are introduced over the weights [5] of a fully
connected neural network with three hidden layers (see [6] for details of the
architecture). The priors for the weights are normal distributions with mean
0 and standard deviation 1. These were optimized via ELBO-based stochastic
variational inference [4] using Pyro [1]. The RF consists of 100 trees with the
minimum sample size for a split set to five.

2.3 Data assimilation

In reality it is not possible to produce accurate weather forecasts by using
only a dynamical model, but it is necessary to update the forecast at certain
time intervals using current observations. This process is also called the DA
cycle, and the updated forecast is called the analysis. Panels II. + III. in Fig. 1
outline the usual steps of such a DA cycle: at time t, a weather forecast for time
t+dt is generated using the MSW model which starts from the current analysis
ensemble: x f c(t + dt) = MSWθ (xan(t)). Once the time t + dt is reached, and
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Figure 1: Sketch of the combined DA and ML algorithm to estimate the state and parameters.

thus observations of the true atmosphere are available, x f c(t + dt) is updated
with the current observations obst+dt using a DA algorithm. We utilize a
stochastic Ensemble Kalman Filter in this work [3]. For this algorithm a time-
varying sample covariance is calculated and used for each forecast ensemble
member, resulting in a new analysis ensemble {xan

k (t + dt)}. This analysis
ensemble can then be used to generate the next weather forecast for the time
t +2dt. Note, if one would simply use x f c(t +dt) to generate the next forecast
for t + 2dt, instead of the analysis, the state error would grow over time and
make the forecast inaccurate.

3 Experiments and results

For the experimental set-up outlined in Fig. 1, the true atmospheric state xtr(t)
starts from a random initial state and is propagated in time by the MSW model
using a sample of model parameters from the test set θ tr which are kept con-
stant in time. The objective is to estimate xtr(t) using DA methods and θ tr
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using ML methods. To simulate a realistic scenario in our toy model set-up,
first 50 DA cycles with nens forecast and analysis ensemble members were gen-
erated without estimating parameters. For the first 50 DA cycles, the forecast
model parameters are simply taken from the uniform distributions specified in
the previous section. Then, a modified DA cycle takes place which incorporates
the ML based parameter estimation (Figure 1: II.-V.). ntrain parameters are
sampled from the uniform distributions, resulting in the set {θ f c

i }
ntrain
i=1 . Each

of these parameters represents one training label and is used to generate ntrain

forecast ensemble members (Figure 1: II.). Each forecast corresponds to one
training input. Both ML methods are trained on the ntrain input/label pairs
(Figure 1: IV.) before they are used to estimate θ tr. Because the ML algorithms
are trained on the full state vector we would ideally use xtr(t) to infer its
parameters. Since we do not have access to this state and the observations are
sparse with a size smaller than the input size of the ML models we are using
the current analysis ensemble (Figure 1: III.). Each analysis ensemble member
is used to generate a set of 100 parameter estimates (Figure 1: V.) resulting
in a set of 100× nens parameters. From this distribution nens parameters are
sampled at each DA cycle for the next 50 cycles, resulting in a different subset
{θ an

k }
nens
k=1 each time. The same experiment is run without the ML modified DA

cycle to asses if the parameter estimation is able to reduce the error between
the analysis ensemble and the true atmospheric state. Note, in [6] steps IV.
+ V. were repeated at every DA cycle. Since this is computationally quite
expensive with only a small improvement over time we omitted those steps for
this present work.

Figure 2 displays the means and standard deviations (std) of the parameter
estimates for both ML methods for a training size of ntrain = 10000 and an
analysis ensemble size of nens = 400. While the averaged root-mean-square
errors (RMSE) of the BNN is slightly smaller than that of the RF, the former
tends to be a bit overconfident in its estimates, producing relatively low stan-
dard deviations even in cases where the parameter estimates are not very accu-
rate. In this regard, the RF seems to quantify its uncertainty more adequately.
Interestingly, there is a visible estimation bias toward intermediate parameter
values, which can be observed for all three parameters and for both methods:
low parameter values are systematically overestimated and high values are
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Figure 2: Scatter plot of means and standard deviations of parameter estimates from Bayesian
neural network (first row) and random forest (second row) with 400 analysis ensemble
members against ground truth for 100 samples of the test set.

underestimated. For the time being, the reason for this bias is not completely
clear. We conjecture that it might be caused by the DA procedure we are using,
which may not be optimal for convective-scale weather models and produce a
discrepancy between forecasts/analysis and the true atmospheric states.

In Fig. 3, the RMSE at the end of the experiment is plotted against the number
of ensemble members for the variables of the MSW model and for the param-
eters. In addition to the methods described above, two other experiments are
shown, a first one where true parameter values were used and the state was
estimated using DA, and a second one that uses random and false parameter
values. For the estimation of parameters, the BNN is more accurate for almost
all ensemble sizes. However, standard deviations when using BNN is much
lower than RMSE, which is not the case for RF that shows similar values. For
atmospheric state, the spread of the ensemble shows that all methods underesti-
mate the RMSE for variables u and h. The situation is different for rain, where
estimating parameters increases the uncertainty of the rain field to values higher
than RMSE. This is the case for both, the estimation with BNN and RF.
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Figure 3: RMSEs (solid) and standard deviations (dashed) of analysis of atmospheric variables
(first row) and parameter estimates (second row) against number of analysis ensemble
members averaged over last 50 DA cycles and over 100 simulations with different ground
truth parameters with ntrain = 10000.

Finally, for the fixed ensemble size of 100, we show the sensitivity of the results
to the number of training samples in Fig. 4. As seen there, for 100 members
BNN needs at least ntrain = 5000 to outperform RF for two parameters, while
not even 10000 samples are enough for the rain removal rate α .

4 Conclusion

In this work, we compared Bayesian neural networks [5] and random forests for
the estimation of parameters of the one-dimensional MSW model as a function
of the analysis of the atmospheric state. Through perfect model experiments we
show that both approaches are in principle able to estimate model parameters
and to quantify the related uncertainty. However, while BNN seems to produce
more accurate results on the test problems, the uncertainty estimates of RF are
closer to RMSE values. For both methods, we observed a systematic estimation
bias in boundary regions where parameters are very low or very high.
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Figure 4: RMSEs (solid) and standard deviations (dashed) of parameter estimates against number
of training samples averaged over 100 simulations with different ground truth parameters
with nens = 100.

Moreover, the estimation of parameters combined with DA for the state de-
creases the initial state errors even when assimilating sparse and noisy obser-
vations.
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