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1 Introduction

Neural Style Transfer (NST) is an optimisation technique that combines two
images – a content image and a style image. The result of the NST is an output
image that looks like the content image but is rendered in the style of the style
reference image [1]. An example of such a stylisation is shown in Figure 1. The
application areas for such a method are manifold. Examples include image and
video editing software [2, 3] and virtual reality applications [4].

The style transfer with the original formulation is a gradient-based optimisation
procedure [1]. This procedure can take two to three minutes for the stylisation
of a single image. For this reason, methods have been developed to speed
up this process [5, 6, 7]. The idea of these model-based NST approaches
is to train a feed-forward neural network to learn a direct conversion from a
content image to an NST result image. After successful training, it is pos-
sible to perform the stylisation in a feed-forward pass without optimisation
procedures. There are model-based NST methods that are limited to learn a
single style [5, 6, 7], and there are Multi Style Transfer (MST) methods that
can learn multiple styles [8, 9, 10]. However, although MST techniques can
learn multiple styles simultaneously, they do not integrate spatial control or
integrate it only after the style has been trained on complete images. The idea
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Figure 1: Example of a Neural Style Transfer with the content image (left), the style image used
”Wheat Field with Cypresses” by Vincent van Gogh (centre) and the result of the NST
(right).

of spatial control in NST is that images often consist of smaller segmentations
that correspond to individual objects or further subdivisions. These regions
have their own sub-styles [11]. This means that the style within an image
differs in local regions. For this reason, NST procedures exist in which spatial
control is integrated [11, 12]. Such a semantic style transfer makes it possible
to explicitly assign the sub-style of a region in the style image to a region in
the content image [11]. This control helps to improve the overall result of the
style transfer. However, semantic style transfer has so far been studied mainly
for optimisation techniques on a single image [11, 12].

The main contribution of this paper is therefore to integrate a spatial control
into model-based NST. First, it is shown how existing MST procedures need
to be adapted to be able to learn the sub-styles of a style image. In the second
part, a concept is proposed to integrate the semantic transfer into the training in
order to learn local style representations. In the final part, the proposed concept
is evaluated using the intaglio style as an example. The intaglio style is created
during intaglio printing and is an essential component on banknotes [13]. In a
preliminary work in MEIER et al. it was shown [14] that the style in individual
regions such as the eye, differs strongly from other regions. Therefore Intaglio
Style Transfer (IST) has the potential to profit from a semantic style transfer.

2 Preliminaries

Humans have always been attracted and inspired by the art of painting. The
imitation of certain styles require special skills of well-trained artists. Stylisa-
tion is a complex image processing task. A machine approach to this process
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is described by the seminal work by GATYS et al. [1]. They used an encoder
V created by the Visual Geometry Group (VGG) at Oxford University [15]
to extract content and style representations from images. The result was a
significant increase in performance in automatically creating new images with
a given style, compared to traditional synthesis in pixel space [16] or in a hand-
crafted feature space [17].

There are mainly two loss functions defined in the NST technique – the content
loss function LC and the style loss function LS [1]. If the synthesised image I is
to have the same content as the content image IC, then the difference between
deeper levels of an encoder V in the feature representation of those two images
must be minimised. For this reason, the content loss is simply the mean squared
error (MSE) of the features of the content image and the input image that are
passed through the encoder V to the layer lC [1]:

LC(I, IC) = ∑(V lC(I)−V lC(IC))
2. (1)

The grand sum of the following tensor divided by the number of elements,
i. e. the grand mean, is denoted here by the overlined sum symbol without
indices [18].

Various implementations do not always work equally well for different data.
This is particularly reflected in the style. In NST, recurring patterns in the
style image are analysed. This refers to structures and edges as well as colours
and shapes [2]. One of the possible approaches is to compute different feature
representation correlations of the encoder V [1]. Computation of the style loss
LS between the synthesised image I and the style image IS is thus similar to the
content loss with the difference that features are not compared directly. Instead
the MSE of a correlation measure g is used. The style loss LS, lS for a layer lS
thus results in [1]

LS, lS(I, IS) = ∑(g
(

V lS(I)
)
−g
(

V lS(IS)
)
)2, (2)

where the total style loss LS is the weighted sum of the selected layers LS

with [1]
LS(I, IS) = ∑

lS∈LS

λlS ·LS, lS(I, IS). (3)
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Using multiple layers captures style elements of varying detail. Whereby finer
details are represented in the shallower layers and coarser details in the deeper
layers [1].

GATYS et al. use the GRAM-Matrix as the correlation measure g of the gener-
ated feature map. The GRAM-Matrix of a flattened feature map x of an encoder
V is calculated as follows [11]:

gram : RN×C → RC×C, gram(x) = xT ·x. (4)

The images to be compared mostly have a different size. In order for the
correlation measure g to be independent of this size, the GRAM-Matrix is
divided by the number of elements within the spatial dimensions [1]:

g : RH×W×C → RC×C, g(X) =
gram(spatvec(X))

H ·W . (5)

The function spatvec(·) is a special case of the vectorisation function. This
is used to flatten the feature maps of the encoder V by reducing the spatial
dimension of the feature maps to one [19].

Equation (1) for content loss and (3) for style loss are defined in the original
formulation of GATYS et al. [1] to automatically identify the content and style
of images that need to be merged in a final step for style transfer. The loss
function L for the NST consists of a weighted sum of these loss functions and
is defined as [1]

L(I, IC, IS) = λC ·LC(I, IC) + λS ·LS(I, IS). (6)

The weights λC and λS are hyperparameters and adjusted according to user
preferences [1].

The final step in NST is the minimisation of the above mentioned loss function
by solving an optimisation algorithm. The synthesis of a new image I is
achieved by iteratively adjusting its pixel values as follows [1]:

I = arg min
I

L(I, IC, IS). (7)
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In summary, the original formulation of NST consists of a procedure in which
an image I to be synthesised is transformed in an optimisation process. For
this purpose, a loss function consisting of two components is determined. The
content loss function LC, which specifies how far the image I is from the
content of the content image IC and the style loss function LS, which specifies
how far the image I is from the style of the style image IS [1].

3 Related Work

The seminal work of GATYS et al. [1], presented in the last section, describes
the creation of artistic images by separating and recombining image content
and style. Since the publication of this first NST approach in 2016 numerous
improvements and developments have been published. The following overview
is not exhaustive — for a more comprehensive technical overview, please refer
to the work of JING et al. [21].

A part of NST work has focused on improving the transfer by various loss
functions for style representations. There is no uniform definition for the
style of an image. However, two different approaches exist to describe the
style in NST [1, 22]. A stochastic approach – such as the GRAM-Matrix
concept – assumes that if the global statistics match, the underlying style also
matches [23]. A fundamentally different approach is that styles are described
by regular or irregular compositions of small patches [23]. Such a structural
patch-based approach has been proposed by LI and WAND [22] which also
works on the features of an encoder V . Other methods focus on improving the
results by including additional losses [24, 25] or a combination of stochastic
and structural approaches [14, 24]. That such an image-based method can
also be used to transfer the intaglio style has been demonstrated by MEIER

et al. [14]. This IST algorithm enables the production of high-quality gravure
prints for portrait images within a few hours.

The drawback of all these image optimisation procedures is the slow optimi-
sation process described in (7) in which each individual image is stylised. For
a more dynamic NST, these methods have been extended using the same loss
function by training a feed forward Convolutional Neural Network (CNN) –
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the transformer G – to perform the style transfer. The first to publish such a
model-based approach were JOHNSON et al. [5] and ULYANOV et al. [6] whose
approaches differ only in the structure of the transformer G. They were able
to show that such a network can be trained on one style image and then stylise
arbitrary content images in this style without optimisation procedure. However,
this also means that a separate network must be trained for each style image.
Therefore, other Multi Style Transfer (MST) approaches have investigated the
possibility of learning several styles at the same time [8, 9, 10].

In CHEN et al. [10] filter banks consisting of several convolutional layers, each
encoding one style, are used for the transformation. ZHANG and DANA [9] on
the other hand introduce a CoMatch layer that matches feature statistics based
on the given styles. In these approaches, a training process is still required
to learn weights that are used for transformation. The advantage is that this
transformation is adapted to a given style. Nevertheless, there are methods
that are based on a more flexible transformation [8, 26, 27]. The basic idea
of these approaches is that the statistics of the content features are directly
adapted to the style features. DUMOULIN et al. [26] use an adaptive instance
normalisation layer to determine the parameters for the transformation. This
approach is extended by HUANG and BELONGIE to arbitrary images [27].
An alternative transformation to instance normalisation is a Whitening and
Colouring Transformation (WCT) introduced by LI et al. [8], which achieves
the transformation by uncorrelating the content features and correlating the
features using the style statistics [8]. These approaches have the advantage
of being able to perform an universal style transfer with little or no training.
The disadvantage is that unlike the previous learnable MST approaches, the
transformation cannot be changed by adjusting parameters. This means that if
the result is different than expected, a different transformation must be used to
change the result.

The images used consist of regions that correspond to different foreground
objects and backgrounds or other segmentations. Often stylistic artefacts can
arise which destroy the image content [11]. For this reason, spatial control
is often integrated into NST to learn better semantic style representation. The
feasibility of such spatial control for the reduction of stylistic artefacts has been
demonstrated by CHAMPANDARD [12]. An approach that GATYS et al. [11]
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have also used for a GRAM-Matrix-based optimisation. These works focusing
on semantic style transfer have often been developed for the image optimisation
process, but can also be applied to model-based NST approaches. HUANG

and BELONGIE [27] show localised stylisation control in their network, while
LI et al. [8] use the style/content relationship to control their feedforward
networks. Other methods, on the other hand, only integrate spatial control after
the training [10, 28]. This makes it possible to stylise the individual regions in
different styles, but the actual sense of spatial control during training is lost.

Nevertheless, the drawback of the semantic style transfer is that it has been
developed mainly for the optimisation techniques on a single image. If MST
models are used, then these models integrate the segmentation only after the
training. This means that the models are pre-trained without semantic distinc-
tion and can subsequently transfer only the globally learned style represen-
tations. The application of these global style is not suitable for the IST, as
the intaglio style depends strongly on the respective regions. This means that
the intaglio style in the eye, for example, is very different from the style in
other regions. For this reason, in MEIER et al. the result could be improved
by spatial control. However, such a control has not yet been implemented with
the existing MST procedures. The next section therefore explains how existing
methods can be modified to integrate a semantic style transfer into the MST.

4 Approach

This section is divided into three parts. First, the procedure of semantic style
transfer in the optimisation techniques and the basic functioning of an MST
transformer are explained. Subsequently, an approach is proposed with which a
semantic control is integrated into the model-based NST to restrict the transfor-
mation to explicit regions. Finally, the architecture implemented in this paper
based on an existing MST approach is presented.

Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022 219



4.1 Explicit Semantic Model-Based Style Transfer

The semantic control in NST approaches is achieved by segmenting out indi-
vidual regions in the loss calculation. For this purpose, GATYS et al. [11] use
spatially guided GRAM-Matrices for each region r∈R in the synthesised image
I and style image IS, which are calculated by multiplying the feature maps by
a mask MlS

r . The corresponding GRAM-based regional style loss LS, lS can be
formally calculated with [11]:

LS, lS(I, IS) = ∑
R

∑
r
(g
(

MlS
C,r ◦V lS(I)

)
−g
(

MlS
S,r ◦V lS(IS)

)
)2. (8)

The ◦ represents an element-wise multiplication with each feature map. The
GRAM-Matrix is calculated as before in (4), but is normalised by the area Ar

of the mask Mr to reduce size differences in the masks. An adjusted formula
for the GRAM-Matrix in (5) results in [11]:

g : RH×W×C → RC×C, g(I) =
gram(spatvec(Mr ◦ I))

Ar
. (9)

Semantic style transfer is thus achieved by masking individual areas. This
makes it possible to restrict the transfer of style to user-defined regions in both
the content image and the style image. An example of an improvement through
the spatial control can be seen in Figure 2. Such a semantic distinction can also
be used for the model-based MST approaches to restrict the transformation to
masked regions. In order to propose a possible approach for this distinction,
the general synthesis of an MST is first defined.

The synthesis with a model-based NST or transformer G architecture is shown
in Figure 3. Conceptually, the architecture consists of three components [9]:

1. The encoder part E is applied for feature extraction and dimension re-
duction to perform transformation on features.

2. The transformation part T is used to transform the features in a style.

3. The decoder part D consists of convolutional layers that enlarge the
input and recreates an output image from the transformed features.
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Figure 2: Example of the semantic NST with an explicit transfer for the region sky and region
wheatfield. It can be seen that the result of the semantic style transfer has fewer stylistic
artefacts compared to Figure 1, such as the green artefacts in the clouds.

A general synthesis of the transformer G for a content image IC and a style
image IS can thus be formulated as:

G(IC, IS) = D(T(E(IC), E(IS))). (10)

For a semantic style transfer based on the transformer G in MST, the masks are
normally integrated after the training in order to be able to mask the respective
areas and to perform the selected transformation Ti in the individual areas. A
synthesis with two different style images IS,1 and IS,2 on the basis of a MST
transformer G can thus be carried out as:

G(IC, IS,1, IS,2, MC) = D

(
2

∑
i=1

Ti(Mi,C ◦E(IC), E(IS,i))

)
. (11)

The transformation Ti has been trained to perform stylisation for the corre-
sponding style images IS,1 and IS,2. This makes it possible to stylise the areas
masked with the content masks MC in the different styles. However, different
sub-styles in a single style image cannot be taken into account in this way.

Therefore, this contribution proposes the implementation of explicit semantic
mapping of the transformation. This means that, similar to the spatial control
in semantic style transfer, the transformation TS,r is performed using masks
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Transformer G

Encoder E Decoder DT I

IC

IS

Style 2Style 1 Style n

. . .

Figure 3: Conceptual structure of an MST transformer G. The structure consists of the encoder
part E, transformation part T, and the decoder part D. As an example, three style images
are shown for which a stylisation can be carried out with this MST transformer.

for regions r ∈ R with a certain label. The schematic structure of the explicit
semantic transformer is shown in Figure 4. An extended formula for (10) of an
explicit semantic transformer GS is given by

GS(IC, IS, MC, MS) = D

(
R

∑
r

TS,r
(
ME

C,r ◦E(IC), ME
S,r ◦E(IS)

)
)

. (12)

Thus, in addition to the content image IC and the style image IS, the semantic
transformer GS also receives the masks M for all regions r ∈ R of the content
and style images. This masks are used to explicitly distinguish the transfor-
mation in the feature space. Or in other words, the transformation TS,r is
performed only for regions with the same label in the content and style image.
The fusion of the individual regions can be accomplished by a simple sum
while maintaining the same dimension.

This label-based distinction of regions and the application of the transformation
only to the masked features of the encoder E results in the explicit semantic
style transfer. Furthermore, the transformer will only be able to learn the local
style representations of the sub-style.
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Transformer GS

Encoder E Decoder D

TS,wheatfield

TS,sky

+

sky

wheatfield

Substyle: wheatfield

Substyle: sky

Figure 4: Conceptual structure of a semantic transformer GS. The structure consists of the
components encoder E, decoder D and the semantic transformation parts TS,r for the
regions r ∈ {sky,wheatfield}. The transformation parts are trained to transfer the
respective masked sub-styles of the style image IS by Vincent van Gogh, ”Wheat Field
with Cypresses”.

4.2 Transformer Architecture

The approach presented in the last section can be implemented on the basis
of existing methods by adding the semantic transformation part. In this pa-
per, the generative multi-style network (MSG-Net) architecture of ZHANG and
DANA [9] is applied. The reason for this selection is that it can be shown that
the semantic approach can be integrated into existing approaches. On the other
hand, this approach can be learned. Therefore, the transformation does not
have to be selected or adapted for each sub-style as in universal style transfer
[8, 27].

ZHANG and DANA use a residual block architecture for the MST that can learn
the transformation for multiple styles simultaneously [9]. Each residual block
contains a branch that leads to a series of convolutional blocks whose outputs
are added to the input X of the block. For a reduction (downsampling) and
increase (upsampling) of the input dimension, additional convolutional layers
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Downsampling Restblock
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3×3, in_filter

3×3, in_filter, /2
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+

Restblock

X
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Upsampling Restblock

X

3×3, in_filter

3×3, in_filter,×2

3×3, out_filter

3×3,×2

+

Figure 5: Schematic representation of the residual blocks used in this work for the transformer
architecture. The downsampling residual block reduces the input dimension by half,
the residual block maintains the input dimension, and the upsampling residual block
increases the input dimension by twice. (Based on Figure 5 in [9]).

are used in the direct branch in MSG-Net. A general representation of the
residual blocks used in this work is shown in Figure 5.

This architecture allows the layers to learn modifications of the identity map-
ping rather than the entire transformation, which has been shown to be ben-
eficial for deep neural networks [29]. Each residual block consists of several
convolutional blocks. These convolution blocks consist of the following three
components [29]:

1. an instance normalisation layer [25],

2. a Rectified Linear Unit (ReLU) Activation Function [9], and

3. a convolutional layer.

For the intaglio style, an adjustment must also be made. The reason for this
is that this style is binary, i.e. black or white. Therefore, for simplicity, the
intaglio style is treated as greyscale-image in this work. For this purpose, the
transformer is adapted accordingly by setting the input and output dimension of
the transformer to one, in contrast to the RGB images with three dimensions.
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4.2.1 Encoder and Decoder

The encoder E and the decoder D are symmetrically constructed. The encoder
consists of an input convolutional layer with a kernel size of 7×7 and 32 filters,
followed by two downsampling residual blocks. The decoder consists of two
upsampling residual blocks and one output convolutional block with a kernel
size of 7×7 [9].

4.2.2 Transformation

The transformation part T is the core element of MSG-Net. The transforma-
tion is achieved with the help of a CoMatch layer and several residual blocks
[9]. In this layer, the GRAM-Matrix of the style is computed at runtime. A
weight matrix ω is used to adjust the content features based on the style. The
transformation of such a CoMatch layer can be defined as [9]:

T(IC, IS) = spatvec−1
(

spatvec(E(IC))
T ωg(E(IS))

)T
.

For the semantic transformer GS, a semantic transformation TS,r is integrated
for each region r ∈ R. For this purpose, the features from the encoder E are
masked from both the style image IS and the content image IC by the respec-
tive masks MC,r and MS,r. This results in the transformation TS,r learning
and applying only local style representations of the sub-style in region r. A
semantic transformation with an CoMatch layer can thus be defined as:

TS,r(IC, IS) = spatvec−1
(

spatvec(MC,r ◦E(IC))
T ωg(E(MS,r ◦ IS))

)T
.

Each transformation TS,r consists of a CoMatch layer followed by three resid-
ual blocks with 128 channel. Furthermore, the CoMatch layer is adapted to the
use of masks by normalising the GRAM-Matrix by the area Ar of the mask, as
shown in (9). This serves to reduce intensity differences due to different mask
sizes and thus intensity artefacts [11].
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5 Evaluation

This section is divided into two subsections. At first, the dataset and the meth-
ods utilised throughout this section are described1. Secondly, the results of the
trained semantic transformer are shown. Since there is no objective measure of
comparison for the evaluation, this part is only of qualitative nature.

5.1 Dataset

The dataset CelebAMask-HQ [30] contains 30,000 portrait images from the
larger portrait dataset CelebA [31]. For each of these images, there are up to
19 of labelled masks for all facial components and accessories, such as hair,
eyes, earring and cloth, which are additionally split into left and right side of
the face [30].

For semantic transfer with a transformer GS, such a division into 19 masks
is not necessary. Furthermore, the style will not differ significantly when the
left or right component is considered [32]. For this reason, the number of
masks is reduced for this work. In Table 1 this classification is shown with the
corresponding segmentation masks from the CelebAMask-HQ dataset. This
twelve mutually exclusive binary masks are used for the training, whereby
individual regions, such as ’headwear’, ’accessories’ or ’glasses’ are optional.
A script for the conversion of the masks is available in the implementation.

5.2 Methodology

The implementation of the described transformer architecture has been imple-
mented within the PyTorch framework [33], using the NST library pystiche
[34]. This library allows to implement approaches for NST without much prior
knowledge about NST and Machine Learning (ML).

1 The source code to reproduce the results is published under https://github.com/

jbueltemeier/masterthesis_bueltemeier
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Table 1: Listing of the reduced number of segmentations and the corresponding labels from the
CelebAMask-HQ dataset.

Training segmentation labelCelebAMask-HQ segmentation label
’background’ ’background’1

’skin’ ’skin’, ’neck’
’nose’ ’nose’

’glasses’ ’eye_g’
’eye’ ’l_eye’, ’r_eye’

’brows’ ’l_brow’, ’r_brow’
’ears’ ’l_ear’, ’r_ear’
’lips’ ’mouth’, ’u_lip’, ’l_lip’
’hair’ ’hair’

’headwear’ ’hat’
’accessoire’ ’ear_r’, ’neck_l’

’body’ ’cloth’
1 Corresponds to the image pixel that is not covered by the segmentation masks in CelebAMask-HQ.

An implementation of the MSG-Net model training is implemented once with
the proposed semantic differentiation in the transformer and once without.
These two procedures can be described as follows:

1. E→ T→ D transformer G and

2. E→ TS→ D semantic transformer GS.

The first procedure without semantic control only involves one transformation
for the style image used. The second method performs the transformation of the
transformer using the approach proposed in (12), whereby the transformation
is performed for all possible areas r ∈ R.

The intaglio motifs required for the style images have been cut out from high-
resolution scans of banknotes and converted into greyscale. The scans were
provided by Koeing & Bauer Banknote Solutions. The style images used in
this work are shown in Figure 9 in the appendix. Each image is resized within
the pystiche library with a bilinear interpolation to a size of 512 on the short
side.
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Substyle body Substyle hair Substyle skin

Figure 6: Different sections of the UAH020 S1997 Banknote are shown (Courtesy of Koeing &
Bauer Banknote Solutions). There are clear differences in the shapes used between the
individual images, each representing its own sub-style.

The transformers are trained with a batch size of 1 for 30000 iterations and the
optimisation is performed by the Adam algorithm [35] with a learning rate of
10−4 [33]. For the calculation of the content loss and the style loss, the 19-
layer VGG network [15] is adapted for the feature extraction of the encoder E.
The weights and the necessary preprocessing from the Caffe framework[36]
are used for this encoder. The style loss of the transformer G is calculated
with (2) and the transformer GS with (8). The feature extraction is performed
in shallower layers of the encoder V than in the original papers because the
intaglio structures are very fine. The layer lC = relu_2_2 has been used
for content loss and the layers lS ∈ LS = {relu_1_1, relu_2_1, relu_3_1}
for the style loss. The weights of the individual layers in the style loss are
calculated by λlS = 1/n2

lS
, where nlS denotes the number of channels on the

layer lS [11]. The hyperparameters for the weighting of the loss functions from
(6) have been chosen empirically. They correspond to λC = 1 for the content
loss and λS = 101 for the style loss of the transformer G and the transformer
GS.

5.3 Intaglio Style Transfer

The attention to detail and the different ways in which the engraver can en-
grave the print design distinguish the intaglio style [37]. Typical features of
engraving are lines and shading by cross-hatching, where overlapping lines
create darker areas [37]. These possibilities lead to differences in style. This is
illustrated in Figure 6.
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Region body Region hair Region skin

Figure 7: Style transfer of a transformer G (top) and transformer GS (bottom) for the regions body,
hair and skin of a portrait image.

The fact that a transformer G is not capable of learning such a distinction is
particularly evident in a detailed view. For this purpose, stylised image sections
for the regions hair, skin and body can be seen in the Figure 7. It can be seen
that the results of the transformer G do not differ in all three areas. In contrast,
the results of the semantic transformer GS show that these transformers are able
to learn and transfer a semantic distinction of the sub-styles. The difference is
particularly noticeable in the hair sub-style with the wavy lines compared to
the diamond pattern in the other two detail images.

These differences in the sub-styles in the regions can also be found in the styli-
sation of complete portraits. Figure 8 shows an example of this. To emphasise
the intaglio structures in the portrait, the background in the result images is
displayed uniformly in white. Overall, it shows that both the transformer G and
the semantic transformer GS can be used to create high-quality intaglio images.
However, the transfer of the different sub-styles in the semantic transformer GS
lead to an improvement of the results in terms of the intaglio style.

Nevertheless, a disadvantage of the semantic transformer GS is that transition
areas between the regions arise. This effect can be seen especially at the
hairline in the result image of the semantic transformer GS in Figure 8. This
makes this result appear qualitatively inferior compared to the transformer
G. To reduce this effect, it makes sense to create a binary edge between the
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Content image Segmentation
image G GS Binary edge

Figure 8: Result of a stylisation of a complete content image (left) with the segmentation used
for this, which marks the different regions in colour. From left to right, the result of a
transformer G, a semantic transformer GS, and the result with a binary edge between the
regions is shown.

individual regions. The reason for this is that with very different sub-styles, no
transitional area is expected anyway. This binary edge can be achieved by the
semantic transformer GS stylising the respective regions separately one after
the other and merging them in pixel space. The result of such a stylisation is
shown in Figure 8 on the right. The result shows that the transition areas can
be reduced and the overall result is better.

6 Conclusion and Outlook

This paper has proposed an approach for a semantic treatment of sub-styles
in a model-based NST. It is shown that the semantic treatment of a style im-
age leads to an improvement of the result. This is because with a semantic
transformer GS, in contrast to a transformer G without semantic transfer, it
is possible to transfer the different sub-styles to certain regions in the content
image. The semantic transformer is thus able to produce high quality intaglio
images.

However, there are still questions to be answered in future work:

1. An assumption for simplification is that the intaglio image is greyscale.
This means that there are transitions between black and white. This is not
the case in practice. For this reason, a binary post-processing must take
place in order not to complicate the machine readability of the Intaglio
style.
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2. It has been shown that with the intaglio style, edge artefacts occur be-
tween different regions. Therefore, merging the regions at pixel space
has been investigated to improve the results. These regions should be
further investigated. In this context, it is also important to check for
which regions masking is necessary at all. However, there is still a lack
of a suitable comparison measure.

3. In addition, a single style image has initially been taught for each region.
With the implemented approach, it is also possible to learn several sub-
styles for a region at the same time. Learning several sub-styles can be
used to improve the overall result. For example, it is helpful to use a
style image with long hair for long hair and one with short hair for short
hair.
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