
Predicting the Compressive Strength of
Concrete up to 28 Days-Ahead: Comparison

of 16 Machine Learning Algorithms on
Benchmark Datasets

Farzad Rezazadeh1, Andreas Kroll2

1,2Department of Measurement and Control, University of Kassel
Moenchebergstr. 7, 34125 Kassel

E-Mail: {farzad.rezazadeh, andreas.kroll}@mrt.uni-kassel.de

Abstract

Concrete is the most important and widely consumed construction material.
Concrete parts are produced by a mixing process, followed by casting and a
certain curing time. To assess the quality of concrete, its compressive strength
is usually measured (typically after 28 days curing time). Several factors affect
the compressive strength of concrete, including environmental factors, the type,
quality, and quantity of the constituents, the order of the mixing process, and
the curing conditions. Due to the multitude of factors effecting compressive
strength and partially known chemical reactions during mixing and curing,
in this contribution, data-driven methods are used to model the behavior of
the concrete production process. Three different benchmark datasets from the
concrete manufacturing field are used for the modeling procedure. 16 typical
learning algorithms were selected based on their simplicity and their perfor-
mance in predicting compressive strength. The results show that 1) repeated
cross-validation is more reliable than repeated hold-out in this configuration, 2)
the interaction and power terms (2nd order) of the inputs have a positive effect
on model prediction, 3) the kernel type of the models is of crucial importance,
and 4) gradient boosting and kernel ridge are the most appropriate models for
predicting compressive strength.
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1 Introduction

Conventional concrete (CC) consists of the basic materials Portland cement,
fine and coarse aggregate, and water. To achieve higher compressive strength
(CS) and better workability of the concrete, the basic materials are supple-
mented and mixed with additives such as fly ash, silica fume, blast furnace
slag, and also superplasticizer in various recipes [1]. Depending on the addi-
tives and the type of mixing, high-performance concrete (HPC) or ultra-high
performance concrete (UHPC) is produced, as indicated in Table 1. Figure 1
shows an overview of the four steps of the concrete production process. In
the first step, the raw materials chosen according to the recipe that are subject
to environmental conditions (temperature, humidity), are poured into the mixer
according to the specific instructions of the recipe. In the second step, the mixer
is first set to a certain speed and duration based on the specific instructions
recipe. The result of the second step is fresh concrete. The important factors
in fresh concrete are the temperature, electrical conductivity and the amount of
air contained. The results of the slump and flow tests can be used as additional
describing factors. Lastly, after the curing period (storage of the fresh con-
crete under certain conditions to make it hard), the final concrete production
is prepared. If the compressive strength after curing (lasts typically for 28
days) could be predicted during production (ideally already during the mixing
process) off-spec product could be foreseen, correcting action taken and the
delivery of off-spec parts be avoided.

1.1 State-of-the-Art Regarding Considered Model
Inputs/Features

Rajeshwari et al. [3] attempt to analyze the use of different amounts of fly
ash in concrete formulations and conclude that using a large amount of fly
ash not only improves the physical properties of concrete, but also reduces
greenhouse gas production and is also cost effective. In studying the effects of
environmental conditions (during curing), and cement types on the compres-
sive strength of concrete, Farzampour [4] concluded that the temperature and
the cement-to-water ratio in extreme weather conditions, are highly critical.
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Table 1: CC, HPC, and UHPC can be distinguished by their important characteristics [2].

Concrete
Unit

CS
MPa

Water/binder
%

Workability
mm

Cement
kg/m3

CC 20-50 0.45-0.65 - 260-380
HPC 50-100 <0.4 455-810 400-700

UHPC 100< 0.2-0.3 260< 800-1000

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

Figure 1: Process of concrete production and what to consider at each step.

Non-destructive tests such as electrical conductivity [5] and ultrasonic pulse
velocity [6] measurement to assess the concrete quality are also used because
of their low cost.

1.2 State-of-the-Art Regarding Model Types

Modeling of the concrete production process in order to estimate the concrete
quality (usually the compressive strength after 28 days) is generally divided
into two categories: traditional modeling (based on empirical relationships)
and machine learning. In case of the traditional modeling method, according
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to Abram’s law [7], an empirical relationship based on the ratio of water to
cement is used to estimate the compressive strength ( f = b1/(b

w/c
2 ), where

f is compressive strength after 28 days curing time and b1, b2 are empirical
constants). In order to complete Abram’s law and improve the accuracy of the
estimation, Zain et al. [8] proposed a multiple linear regression,

f = b0 +b1
w
c
+b2a1 +b3a2 + c, (1)

where f is the compressive strength (after 28 days curing time), w is the water
volume, c is the amount of cement, a1 is the amount of coarse aggregate, a2

is the amount of fine aggregate, and b0, b1, b2, and b3 are empirical constants.
On the other hand, Zhu et al. [9] have attempted to estimate the compressive
strength f(t) based only on the curing time t,

f (t) = b0 +b1t +b2t2 +b3t3. (2)

Due to the wide spectrum of effects on compressive strength and the com-
plex and incompletely known chemical reactions during mixing and curing, as
well as the inability of classical modeling methods to address a broad range
of influencing factors, data-driven methods for modeling the behavior of the
concrete production process have prevailed. Ling et al. [10] compared support
vector machine (SVM), artificial neural network (ANN), and decision tree
(DT) to study the effect of environmental factors on the compressive strength
and concluded that the SVM performed better than other methods. On the
other hand, Hoang et al. [11] show that the nonparametric and stochastic
algorithm Gaussian Process Regression (GP) has a better ability to estimate
compressive strength than ANN and SVM. Compared to the above methods,
the best estimates for the compressive strength of concrete were obtained using
ensemble learning regression [12].

1.3 Scope of Present Work

In this contribution, the performance of models with different structures - from
linear to nonlinear, from parametric to nonparametric, and from single model
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to ensemble - is compared for three concrete benchmark datasets that have
different dimensions and a different number of data. At first, the models are
trained using two alternative methods: repeated cross-validation and repeated
hold-out [13]. The performance variation of the models is assessed based on 20
different initializations for the cross-validation and hold-out methods as well
as for each model. The effect of Bayesian optimization is examined on the
hyperparameters of the models. The effects of interaction and power terms
(2nd and 3rd order) of the inputs are also investigated. For using of the models
in online applications, the processing speed of each model is evaluated along
with the memory required to estimate the output.

2 Benchmark Datasets Characterization

Concrete production in the laboratory requires purchasing expensive raw mate-
rials and handling the manufacturing process. Typically, the production of only
one data takes 28 days. This means that the creation of a small dataset with,
for example, only 100 data points can take more than half a year dependent
on the lab capacity. On the other hand, in the concrete industry, only a few
recipes are applied, i.e. there is only little variation in the production process,
so that the resulting data may not be very informative. The data available in
the literature are usually generated in laboratories and, for simplicity, are based
only on changing some constituents, with the environmental variables assumed
to be constant [11]. Alternatively, the recipe and the type, quality and quantity
of constituents are assumed to be constant and only some environmental factors
(usually one or two) are changed [4].

In this paper, three different benchmark datasets from the concrete manufac-
turing field are used for the modeling procedure. The first dataset (Bdata) [14],
was collected from 17 literature sources (laboratory data) and includes 1030
data points. The second dataset (Sdata) [15] with 103 data points and the
third dataset (XSdata) [6] with 84 data points originate also from laboratory
experiments. Table 2 lists characteristic values for each dataset. As shown,
seven factors are identical in Bdata and Sdata. Comparing the minimum and
maximum values of the ingredients of Bdata and Sdata, it can be seen that
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Table 2: Characterization of the concrete benchmark datasets: Mean, median, standard deviation
(STD), minimum (MIN), and maximum (MAX) values of the individual factors.

(a) Bdata (N = 1030)

Ingredient Unit Mean Median STD MIN MAX

Cement kg/m3 281.16 272.90 104.50 102 540
Blast furnace slag kg/m3 73.89 22 86.27 0 359.40

Fly ash kg/m3 54.18 0 63.99 0 200.10
Water kg/m3 181.56 185 21.35 121.80 247

Superplasticizer kg/m3 6.20 6.40 5.9 0 32.20
Coarse aggregate kg/m3 972.91 968 77.75 801 1145
Fine aggregate kg/m3 773.58 779.50 80.17 594 992.60

Age day 45.66 28 63.16 1 365
Compressive strength MPa 35.81 34.44 16.70 2.33 82.6

(b) Sdata (N = 103): The slump and flow tests assess the fluidity (looseness or stiffness) and the consistency of
the fresh concrete, respectively.

Ingredient Unit Mean Median STD MIN MAX

Cement kg/m3 229.89 248 78.87 137 374
Blast furnace slag kg/m3 77.97 100 60.46 0 193

Fly ash kg/m3 149.01 164 85.41 0 260
Water kg/m3 197.16 196 20.20 160 240

Superplasticizer kg/m3 8.53 8 2.80 4.40 19
Coarse aggregate kg/m3 883.97 879 88.39 708 1050
Fine aggregate kg/m3 739.60 742.70 63.34 640.60 902

Slump test cm 18.04 21.50 8.75 0 29
Flow test cm 49.61 54 17.56 20 78

Compressive strength MPa 36.03 35.52 7.83 17.19 58.53

(c) XSdata (N = 84)

Ingredient Unit Mean Median STD MIN MAX

Blast furnace slag/binder % 0.30 0.30 0.22 0 0.60
Ultrasonic pulse velocity km/s 4.14 4.18 0.39 3.16 4.81

Age day 73.42 56 65.01 3 180
Compressive strength MPa 30.45 30.50 12.94 6.32 54.14
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Bdata generally uses a larger range to create each sample. In general, Bdata
has a high dimenson with large data points, Sdata has almost the same high
dimenson as Bdata but with significantly fewer data points, and XSdata has
low dimensions and also less data points.

3 Used Data-Driven Modeling Methods

To model concrete manufacturing process, linear vs. nonlinear single models
and nonlinear ensemble models are investigated. In the ensemble structure,
instead of using a single model to predict the system behavior, a combined
structure with multiple algorithms is used to explore the data from different
angles and achieve a better understanding of the patterns by combining their
results into a final prediction [12]. In this contribution, only two ensemble
structures (bagging and boosting) are considered with decision trees as the base
learners. All used models originate from the Sklearn [16], Xgboost [17], and
LightGBM [18] Python’s libraries. A PC with Intel(R) Core(TM) i9-10900X
CPU and 64.0 GB RAM is used. Tables 4 and 5 give an overview of the used
models with the considered hyperparameters (HPs).

Bayesian optimization, from the Skopt [16, 32] library in Python, is used
to determine the optimal hyperparameters. Bayesian optimization is a non-
derivative and fast optimization technique that searches to find the global min-
imum. Bayesian optimization uses an optimization procedure to create a prob-
ability model, also known as a surrogate model of the objective function, and
selects a hyperparameter in each iteration based on the value of an acquisition
function in the previous iteration for the probability function [33]. The best
hyperparameter is selected based on the best value of the acquisition function
during the whole procedure.

To achieve a more realistic and also generalized performance measure for each
algorithm, 20 times repeated hold-out and repeated cross-validation [13] are
applied to split each of the three datasets into training and test datasets. The
same dataset splits are applied for each model training. In each repetition, a
random initialization is used. Finally, the average performance of each algo-
rithm in the 20 runs is calculated (Algorithm 1 for the repeated hold-out).
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Table 4: Overview of linear and nonlinear single models/algorithms

Model Ab. Description HP Re.

Linear
Regres-

sion

LI Model with tunable coefficients
minimizing the difference between the

estimated and true outputs

None [12]

L
in

ea
rm

od
el

s Lasso LS Model that provides a sparse remedy
based on the L1 penalty

α1 (L1
coefficient)

[19]

Ridge RG Model that provides a sparse remedy
based on the L2 penalty

α2 (L2
coefficient)

[20]

Kernel
Ridge

KR Combination of RG and kernel trick α2, kernel [21]

Elastic
Net

EN Model that provides a sparse remedy
based on the L1 and L2 penalties

α1, α2 [22]

N
on

lin
ea

rs
in

gl
e

m
od

el
s Support

Vector
Machine

SV Finding the line/hyperplane based on
minimizing the distance between
predicted and true values within

highest confidence margin

α2, kernel,
polynomial

kernel degree

[23]

K-nearest
neighbor

KN Output based on the average of the
k-values of the nearest neighbor points

Number and
distance type
of neighbors

[24]

Gaussian
Process
Regres-

sion

GP Non-parametric Bayesian modeling Kernel [25]

Decision
Tree

DT Non-parametric model for estimating
output based on straightforward

decision rules

Depth of tree [26]

4 Results

It should be noted that after investigating the correlation between the factors
of each dataset, it is found that only in Sdata there is a strong correlation just
between slump and flow (90 %). So slump is chosen as an input for modeling,
since the model performances are almost the same when training the models
with and without flow.
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Table 5: Overview of nonlinear ensemble models/algorithms

Model Ab. Description HP Re.

Random
Forest

RF Model based on the different DTs
using bootstrap replicas

Number of
trees

[27]

Extra Tree ET Model based on the different DTs
using whole dataset

Number of
trees

[28]

N
on

lin
ea

re
ns

em
bl

e
m

od
el

s AdaBoost AB Prediction based on decision stumps
grounded on DT with only one node

and two leaves

Number of
trees, learning

rate

[29]

Gradient
Boosting

GB Based on DT and gradient descent
optimization, starting from a single

leaf as opposed to AB (AB starts from
a stump)

Number of
trees, learning

rate

[30]

Stochastic
Gradient
Boosting

XB Based on GB and regularization
principle to avoid overfitting. It

increases the leaves in the horizontal
direction

Number of
trees, depth of
tree, α1, α2

[17]

Light
Gradient
Boosting

LB LB increases the leaves in the vertical
direction, which leads to a better and

also faster performance than XB

Number of
trees, learning

rate

[18]

Histogram
Gradient
Boosting

HB Based on GB with a preprocessing
technique through discretization to

group data

Depth of tree,
learning rate,

α2

[31]

The results of the 20 repetitions of hold-out and cross-validation are shown in
Figures 2, 3, and 4 for Bdata, Sdata, and XSdata, respectively. The abbrevia-
tions of the model types are defined in Tables 4 and 5. The evaluation criterion
used here is R2 because it is simple, standardized, and the most widely used
criterion in predicting compressive strength:

R2(y, ŷ) = 1− ∑
N
i=1(yi− ŷi)

2

∑
N
i=1(yi− ȳi)2

, (3)

where ȳ = 1
N ∑

N
i=1 yi and ŷ is predicted y. With the hold-out method, the perfor-

mance of the model depends on the choice of the data for training and testing.
This dependence is evident in the modeling results of all three datasets. For 20
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Algorithm 1.: Repeated hold-out procedure
model← one choice from 16 available algorithms
dataset← one choice from Bdata, Sdata, or XSdata
results← []
splitSize← 10 % for test data (90 % for training data)

for i← 0:20 (20 times hold−out)
seed← initialize with random values
Train, Test← Splitting dataset based on seed
optimHypers← []
for Fold← 10 (Bayesian optimization loop)

train, test← Splitting Train based on seed
optimHyper← optimal hyperparameters (model)
optimHypers← [optimHypers, optimHyper]

end
OHP← best hyperparameters from optimHypers
trainedModel← fit model with Train (seed, OHP)
result← evaluate trainedModel with Test
results← [results, result]

end
RESULT←mean of results
return RESULT

repetitions of the hold-out procedure, the performance varies in a large range.
For example, LI performance varies from 45 % to 66 % for Bdata, from 75 % to
94 % for Sdata, and from 60 % to 93 % for XSdata. In reviewing the literature
estimating the concrete behavior, in most of the papers the results are obtained
using the (one-time) hold-out method, without any other initial randomization
of the model training. Such results are not reliable and reproducible, since
the best performance of the model could be selected by chance. For example,
in this contribution, SV performance for the repeated hold-out (20 runs) is
equal to R2

max = 73.94 %, R2
mean = 63.76 %, and R2

min = 53.16 % for Bdata and
R2

max = 94.28 %, R2
mean = 86.08 %, and R2

min = 71.49 % for Sdata. However,
in [34] the reported SV performance for Bdata is R2 = 73.98 %, and in [35] for
Sdata is R2 = 85.50 % (only one hold-out). In such a case, the performance of
the model with real data may show a large deviation. To reduce the impact of
this problem, the repeated hold-out method is used. However, the disadvantage
of the repeated hold-out method is the possibility that some data never appear
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in the training or in the testing process. Cross-validation is an alternative, but
to obtain results with higher confidence, repeated cross-validation is recom-
mended [13]. In Figures 2, 3, and 4, the performance of each model based
on repeated cross-validation varies in a smaller range and also generally has
a smaller median than that of the hold-out method. This is because in each
boxplot, each point of 20 runs of cross-validation represents an average of
10 training-test procedures (10-fold corss-validation), but in contrast, in each
boxplot of the hold-out method, each point of 20 runs represents only one
training-test procedure.

As shown in Figures 2, 3, and 4, the performance of the linear models is quite
weak for Bdata, where the dimension of the input space and the number of data
points are high, and also in XSdata, where both the dimension and the number
of data are low. But these linear models have shown good performance for
Sdata, which has a high dimension like Bdata and a small number of data like
XSdata. As a result, KR achieved the best performance for Sdata.

The ensemble models used are all developed based on decision trees, and in
this context, the ensemble models perform better on average than their base
learner. An excellent performance of ensemble models occurs for Bdata, but
these models have not shown good results for Sdata, especially when compared
to linear models. The reason is that these models require a large amount of
data for training. This data requirement also depends on the dimension of the
input space, so ensemble models perform much better in XSdata, which has
almost the same amount of data but a much smaller dimension of the input
space than Sdata. In general, the biggest challenge is the high dimension and
small number of data in Sdata compared to the other two datasets. In such
a situation, ensemble models based on decision trees and other conventional
nonlinear models are not a good choice. On the other hand, GP adapts well
to the small amount of data. By applying the kernel trick to the linear model
(KR), i.e., by better simulating the nonlinear hidden pattern of the data in the
model, better results can be obtained for Sdata than with other models.

To examine the effect of Bayesian optimization, the entire process of hold-out
and cross-validation (with 20 runs) is performed both with and without the
hyperparameter optimization loop. The average of the 20 runs of each model
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Figure 2: Repeated hold-out (r-ho(model)) vs. repeated cross-validation (r-cv(model)), Bdata
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Figure 3: Repeated hold-out (r-ho(model)) vs. repeated cross-validation (r-cv(model)), Sdata

Proc. 32. Workshop Computational Intelligence, Berlin, 01.-02.12.2022 65



60 70 80 90 100
R2 in %

r-ho(LI)
r-cv(LI)

r-ho(LS)
r-cv(LS)

r-ho(RG)
r-cv(RG)
r-ho(KR)
r-cv(KR)
r-ho(EN)
r-cv(EN)
r-ho(SV)
r-cv(SV)
r-ho(KN)
r-cv(KN)
r-ho(GP)
r-cv(GP)
r-ho(DT)
r-cv(DT)
r-ho(RF)
r-cv(RF)
r-ho(ET)
r-cv(ET)
r-ho(AB)
r-cv(AB)
r-ho(GB)
r-cv(GB)
r-ho(XB)
r-cv(XB)
r-ho(LB)
r-cv(LB)
r-ho(HB)
r-cv(HB)

M
od

el
s (

20
 ru

ns
)

Figure 4: Repeated hold-out (r-ho(model)) vs. repeated cross-validation (r-cv(model)), XSdata
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in all three datasets is presented in Table 6. In general, there is not much
difference between the time required to train a model without the optimization
loop in the three datasets. For example, KN takes 0.5, 0.4, and 0.4 seconds
as training time for Bdata, Sdata, and XSdata; AB takes 0.2, 0.2, and 0.1;
and HB needs 0.5, 0.4, and 0.4 seconds, respectively. But there is a big
difference in the training time needed, if KN is utilized in the optimization
loop. For example, KN needs 49 seconds for Bdata, 41 seconds for Sdata
and 42 seconds for XSdata. AB takes 80, 61, 60 and HB takes 151, 122, and
113 seconds, respectively. The Bayesian optimization loop can increase the
training time by more than 100 times. Now the question arises whether such
an optimization loop is necessary in the modeling process. From Table 6, it can
be concluded that Bayesian optimization improves the models where the kernel
types and the number of neighbors are considered in the optimization loop
(see the performance of KR, SV, GP, and KN). On the other hand, the linear
models (RG and EN) where the regularization coefficient is a hyperparameter,
or even the models based on the decision trees, do not differ much when the
optimization is used.

The next step is to investigate the effect of the polynomial forms (interac-
tion and power terms with degree two and three) of the input space on the
performance of the models. Transferring the data into quadratic polynomial
terms (into the interaction and also the power terms) resulted in a significant
improvement in the average accuracy of the linear models. For example, the
average LI performance in Bdata increased from 57.34 % to 68.31 % and in
Sdata from 88.98 % to 97.23 %. In contrast, for the nonlinear models, this
transfer of input space had a slightly positive effect on Bdata (KNN from
75.91 % to 76.80 %) and even a negative effect on Sdata (AB from 78.37
% to 67.59 %). These engineered nonlinear patterns (polynomial terms of 2nd
degree) help linear models to recognize the nonlinear behavior of the data.
On the other hand, nonlinear models do not require such feature engineering,
and using higher order input terms introduces more complexity in the search
space for models and can weaken the performance. Transferring the inputs to
polynomial space with degree 3 had a negative effect on the performance of
the models in all three datasets.
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Table 6: Mean values of 20 runs of repeated hold-out (r-ho(model)) and repeated cross-validation
(r-cv(model)), with (R2 in %) and without (R2

0 in %) Bayesian optimization.

Bdata Sdata XSdata

Model R2 R2
0 R2 R2

0 R2 R2
0

r-ho(LI) 57.34 - 88.98 - 80.76 -
r-cv(LI) 59.97 - 83.92 - 82.19 -
r-ho(LS) 57.32 57.47 88.39 88.80 80.73 77.65
r-cv(LS) 59.71 59.82 83.39 82.64 81.95 73.56
r-ho(RG) 57.34 57.52 89 88.63 80.85 83.94
r-cv(RG) 59.97 59.84 83.96 82.91 82.19 81.05
r-ho(KR) 85.03 57.54 98.71 88.41 96.03 59.94
r-cv(KR) 59.94 59.90 97.49 82.78 93.77 51.80
r-ho(EN) 57.36 57.50 88.73 88.36 80.83 42.54
r-cv(EN) 59.65 59.84 83.50 82.95 82.04 36.29
r-ho(SV) 61.82 24.19 86.08 2.57 78.87 33.19
r-cv(SV) 63.76 25.01 80.98 2.03 65.65 23.63
r-ho(KN) 75.91 68.97 79.98 74.46 84.75 81.88
r-cv(KN) 77.31 71.19 72.75 59.49 80.58 77.81
r-ho(GP) 58.95 3.26 95.69 2.18 93.95 88.63
r-cv(GP) 59.87 3.14 93.45 3.12 92.13 87.97
r-ho(DT) 85.75 85.44 68.33 57.33 90.56 92.96
r-cv(DT) 85.91 85.76 55.93 56.29 90.63 89.54
r-ho(RF) 91.60 91.73 81.13 79.05 95 96.28
r-cv(RF) 91.48 91.62 76.15 75.54 94.70 94.42
r-ho(ET) 92.55 92.45 88.89 87.82 96.43 97.02
r-cv(ET) 92.42 92.53 85.72 85.22 95.93 95.82
r-ho(AB) 79.39 78.43 78.37 78.55 93.27 94.94
r-cv(AB) 78.60 78.58 74.43 72.71 91.69 92.30
r-ho(GB) 94.10 90.06 84.56 83.62 96.32 96.87
r-cv(GB) 93.45 90.49 79.87 80.52 94.99 95.07
r-ho(XB) 93.68 93.50 77.44 78.55 94.37 95.36
r-cv(XB) 93.63 93.46 75.23 74.57 94.34 94.18
r-ho(LB) 94 93.41 80.31 83.34 91.71 91.96
r-cv(LB) 93.64 93.31 75.60 76.24 89.23 89.59
r-ho(HB) 93.74 93.40 82.44 82.98 91.93 92.42
r-cv(HB) 93.53 93.36 78.27 77.18 90.14 90.51
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It should also be kept in mind that transferring the inputs to the higher order
polynomial space significantly increases the time required in the optimization
loop, in the training process, and in the testing phase, so a trade-off between
time and accuracy should be considered when applying such techniques.

Table 7 illustrates three important attributes for the evaluation of each model
under online application, i.e., performance (R2), prediction time (Pt ), and mem-
ory requirement for prediction (Pm). For Bdata, GB model with R2 = 93.45 %,
Pt = 1.40 ms, and Pm = 18114 KiB performs better than the other models in
all three factors. GB is followed by the LB models with high performance
(R2 = 93.64 %) and acceptable memory requirement (Pm = 24082 KiB) but
high prediction time (Pt = 16.71 ms), and AB (R2 = 78.60 %, Pt = 3.59 ms,
Pm = 216247 KiB), and KN (R2 = 77.31 %, Pt = 2.50 ms, Pm = 67315 KiB)
with acceptable prediction time and memory requirement but lower perfor-
mance. In Sdata, KR with R2 = 97.49 %, Pt = 17.65 ms and Pm = 10351 KiB
are able to be the best choice, but on the other hand, GB with R2 = 79.87 %,
Pt = 0.62 ms, and Pm = 3440 KiB needs less speed and memory than KR,
but its performance is weaker. Finally, for XSdata, GB with R2 = 94.99 %,
Pt = 0.62 ms, and Pm = 3044 KiB is the best choice for online application.

5 Conclusions

In this study, 16 data-driven modeling algorithms of linear and nonlinear, para-
metric and nonparametric type, and ensembles are investigated for predicting
compressive strength of concrete. For this, three datasets with different number
of dimensions and different number of data are used. Based on the results of the
repeated hold-out and repeated cross-validation methods, it is recommended
to use the repeated cross-validation in the training process when the required
high computational power is available. The results vary less, which means that
it provides a more reliable assessment of the model performance. It is also
recommended to use Bayesian optimization only for models with kernels (KR,
SV, and GP) and for KN. In cases where the regularization coefficient or the
number and depth of the trees are hyperparameters for the model, Bayesian
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Table 7: Performance of the models for the online application based on R2 (in %) vs. prediction
time (Pt in ms) vs. memory consumed for prediction (Pm in KiB).

Bdata Sdata XSdata

Model R2 Pt Pm R2 Pt Pm R2 Pt Pm

LI 59.97 16.56 14969 83.92 22.81 4200 82.19 17.18 4596
LS 59.71 18.90 14958 83.39 23.90 3984 81.95 23.43 4036
RG 59.97 6.09 14895 83.96 21.09 3488 82.19 22.34 3092
KR 59.94 29.53 772124 97.49 17.65 10351 93.77 19.53 8172
EN 59.65 10 14963 83.50 24.37 3552 82.04 19.21 3156
SV 77.31 2.50 67315 80.98 436.09 71723 65.65 435.31 70731
KN 59.87 16.25 996430 72.75 5.46 34320 80.58 5.62 24136
GP 91.48 69.53 106916 93.45 50.78 99583 92.13 45.15 101366
DT 63.76 15.46 15089 55.93 21.71 4648 90.63 18.28 4252
RF 85.91 25.46 18102 76.15 13.75 3432 94.70 17.34 3036
ET 92.42 28.59 94573 85.72 56.56 84839 95.93 55.78 87991
AB 78.60 3.59 216247 74.43 2.65 24079 91.69 2.34 22671
GB 93.45 1.40 18114 79.87 0.62 3440 94.99 0.62 3044
XB 93.63 51.71 17183 75.23 55 17711 94.34 50.93 17711
LB 93.64 16.71 24082 75.60 32.50 12010 89.23 36.87 10578
HB 93.53 36.25 57485 78.27 58.28 49041 90.14 54.37 49585

optimization is not required and the model can be used directly as a tool with
default values for the hyperparameters. The possible explanation are that the
default values of the hyperparameters of the models used are generally optimal
or that the types of the surrogates (Gaussian process), the acquisition func-
tions (Expected improvement) and also the number of iterations (50) used for
Bayesian optimization are not the best choices and other selections should be
used for such cases. The consideration of the quadratic polynomial terms is
recommended, especially in case of small datasets and for linear models (it
is not recommended for nonlinear models). This concept of the polynomial
terms can be developed specifically for the ensemble methods based on other
base learners (not only DTs). Finally, due to the high performance and speed
of GB for Bdata and XSdata, and the high performance and acceptable speed
of KR for Sdata (if only limited resources are available, GB is better choice
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than KR for Sdata), these models are recommended as superior models for the
considered application.
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