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1 Introduction

As the integration of hardware and software continues to evolve, production
systems are becoming increasingly intricate, now often referred to as Cyber-
Physical Production Systems (CPPS). Particularly, Artificial Intelligence (AI)
can be instrumental in improving processes such as anomaly detection, op-
timization, or predictive maintenance. However, at the moment, incorporat-
ing Al algorithms into these systems is far from straightforward; it demands
substantial time, financial resources, and expertise. Adopting a standardized
architecture could facilitate the integration of Al technologies, especially for
small and medium-sized enterprises, empowering them to remain competitive.
For this reason the Cognitive Architecture for Artificial Intelligence (CAAI)
was introduced in [1] as cognitive architecture for Al in CPPS. The goal of

Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023 1




the system is to reduce the implementation effort by creating a standard ar-
chitecture. The core of the CAAI is a cognitive module that processes the
user’s declarative goals, selects suitable models and algorithms, and creates a
configuration for the execution of a processing pipeline on a big data platform.
During the revision of the CAAI project, it became obvious that there are
existing limitations in automating the algorithm pipeline development process
for all environments and use cases. This is mainly due to rapidly changing
software interfaces and transfer complexities. Additionally, it became apparent
that the architecture in the use case for CPPS provides a good environment for
the implementation of online machine learning (OML) algorithms. This can be
explained by the continuous data streams produced by the system’s machines.
This abstract assesses the potential advantages of OML algorithms through an
analysis of a real-world application in slitting machines.

Section 2 roughly describes the concept of OML. Furthermore, it includes a
description of the experimental setup, including its real-world application. In
Section 3 the results of the experiment are discussed. Finally, a short conclu-
sion is presented at the end of the abstract.

2 Materials and Methods

2.1 Online Machine Learning

The amount of data generated from various sources has increased enormously
in recent years ("Big Data"). Technological advances have enabled the con-
tinuous collection of data. Web, social media, share prices, search queries,
but also sensors of modern machines produce continious streams of data. It
becomes more and more challenging to store and process these infinite streams.
Traditional batch machine learning is the common strategy to train machine
learning models. It basically boils down to the following steps[2]:

1. Loading and pre-processing the train data;
2. Fitting a model to the data;

3. Calculating the performance of the model on the test data;
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In modern OML approaches, we do not train the model with the entire dataset
at once; instead, we update it incrementally with the newly arriving data. This
way, we avoid storing large amounts of data by discarding it after the updating
process. This procedure might be beneficial in terms of time and memory
consumption. Additionally, this continuous updating allows OML methods to
better address structural changes within the data, known as concept drift.The
introduction of different methods of incremental learning has been quite slow
over the years, but the situation is changing at the moment [3] [4] [5].

To compare OML with the classical batch learning method in our experiments,
a Hoeffding Tree regressor (HTR) from the Python ’river’ library [3] is used
for online learning, while a Decision Tree regressor from the ’scikit-learn’ [8]
package is used for the classical approaches. In online machine learning,
Hoeffding trees are preferred because they do not rely on previously used
instances, instead they await the arrival of new instances [7]. Given their
incremental learning capacity, Hoeffding trees are more adept at handling a
data streaming context compared to traditional methods.

2.2 Experiment Setup: Slitting Machines

In the experiments discussed in this work, data was collected using a test setup
for winding stations from "Kampf Schneid- und Wickeltechnik GmbH & Co.
KG", a company that specializes in building machines for slitting and winding
web-shaped materials. The idea of the experiment is to use the motor torque
and revolution values of a slitting machine to predict the vibration level. All
features are available in form of time series with with measuring intervals of
10 ms.

For our experiment, we divide the data into a training and a test set. The goal
is to compare the prediction performance over an evaluation horizon that is
subdivided into segments of 150 data points. Additionally, we analyze the
calculation time and memory consumption during the evaluation. To com-
pare OML with classical approaches, and to assess their respective strengths
and weaknesses, we utilize four different approaches in our experiment. For
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all approaches, we train the initial model based on the training set before
we start with the evaluation process. Three of the algorithms belong to the
group of batch machine learning techniques. The first is the classical batch
learning approach, where the model is trained only once on the training set
and subsequently evaluated on the test set. Another method is the landmark
approach, where we add the data from the current horizon to the training set
after each evaluation step, and then train the model from scratch. The final
batch learning method is the shifting window approach. Unlike the landmark
approach, the algorithm is not trained on the entire set of observed data, but
rather on a moving window of data. In our case, this window is the size of
the initial training set, meaning we add 150 data points with each evaluation
step and remove the earliest 150 data points. The last evaluation technique
is the pure OML approach where we update the model incrementally after
each prediction step with the new data. The implementations of all evaluation
strategies can be found under the following link: https://github.com/

sequential-parameter-optimization/spotRiver.

3 Results

In the following part, we compare the different approaches as introduced in
Section 2.2.

The performance of the different approaches is visualized in the top graph
of Figure 1. It shows how the MAE evolves over the evaluation horizon.
All batch learning evaluation methods produce comparable results. Initially,
performance degrades slightly and then improves continuously. The OML
approach comparatively achieves constant results and outperforms the batch
evaluations over the entire horizon.

The second diagram in Figure 1 shows a comparison of the computation times
of the different methods. As assumed, the landmark and shifting-window
methods show a continuous increase in computation time due to the models
need to be retrained at each evaluation iteration. In contrast, the conventional
batch learning approach exhibits a much lower processing time because of
its singular model training phase. On the other hand, the OML algorithm
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Figure 1: The MAE, computation time, and memory consumption of different approaches for each
evaluation step. The MAE plot shows an overlap of the graphs of all bml methods. In
the plots for computation time and memory consumption, the curves of landmark and
shifting window, as well as the OML and the classical batch method overlap.

achieves time efficient results as well. This is because OML updates models
incrementally, rather than training from scratch with each evaluation.

The lowest graph of Figure 1 shows the memory consumption. Here, the
OML approach also delivers comparable results to the basic batch approach.
However, it should be emphasized again that the batch approach’s memory
consumption only takes place during the training step, and the remaining con-
sumption is negligible. This fact is also visualized by the graph. In the first
evaluation step, the memory consumption for the classic batch method drops
towards zero. The shifting window and the landmark approach perform com-
parably poorly. This is mainly due to the generated model, which must be built
again in each iteration.

Furthermore, the assertions regarding the superior performance of the OML
algorithms have been statistically substantiated by a one-sided t-test. This
test demonstrates that the average deviation of predictions made by the OML
algorithm from the actual values is significantly smaller than that observed in
predictions from all batch learning approaches.

Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023 5



4 Conclusion and Discussion

The OML algorithms outperformed the classical approaches not only in terms
of memory consumption and computation time, but they also achieved signif-
icantly better results in terms of prediction accuracy. This can be attributed to
the algorithms’ enhanced responsiveness to concept drift, a decisive advantage
especially in the domain of production machinery. Further improvements to the
results presented here could be realized through additional experiments, partic-
ularly with surrogate model based optimization of the hyperparameters. This
evidence suggests that OML algorithms should undoubtedly be considered in
the development of CAAI for CPPS.
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