
An Intelligent Camera Tracking System for
Live Stage Performances

Steffen Borchers-Tigasson, Erik Rodner

Hochschule für Technik und Wirtschaft (HTW) Berlin
Wilhelminenhofstraße 75A, 12459 Berlin
E-Mail: steffen.borchers@htw-berlin.de

1 Introduction

Cameras have become increasingly ubiquitous in our daily lives, whether they
are positioned in public spaces, within our households, or conveniently nestled
in our pockets via smartphones. They serve diverse real-world applications, in-
cluding video surveillance of human activities, observing wildlife, facilitating
home care, enabling optical motion capture, and enhancing multimedia experi-
ences. These applications typically entail a sequence of tasks, beginning with
the detection of moving objects, followed by tracking and recognition. Over
the past three decades, the field of computer vision has dedicated substantial
research efforts to the task of detecting moving objects, resulting in a wealth
of publications (cf. [8] for a review). The number of techniques dedicated
to addressing scenarios involving moving cameras is steadily increasing, and
this subject matter has become a significant focus for in-depth investigation, as
evident from recent comprehensive reviews [14, 15, 7].

Focussing on the visual control of moving objects, several approaches have
been proposed using PTZ cameras, e.g. for surveillance [2], autonomous off-
road navigation and mobile robots [4], and the filming industry [6]. However,
available professional systems are still very limited in functionality and flexi-
bility.

To this end, we develop an intelligent camera tracking system suitable for the-
ater, dancing and performances. The system consists of a remote PTZ camera,

Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023 143

DOI: 10.58895/ksp/1000162754-10 erschienen in:

Proceedings. 33. Workshop Computational Intelligence - Berlin, 23. – 24. November 2023
DOI: 10.5445/KSP/1000162754 | https://www.ksp.kit.edu/site/books/e/10.5445/KSP/1000162754/

a state-of-the art real-time object detection and tracking algorithm (Yolov8),
and an user interface to direct and adjust tracking. In this paper, we sketch our
efforts in developing the system including hardware setup (Sect. 2), application
requirements (Sect. 3), and detection and tracking algorithms (Sect. 4). We
conclude with an evaluation (Sect. 5) and discussion (Sect. 6).

2 Technical Configuration

The smart camera system consists of a Panasonic AW-UE 4K camera, which
allows for a pan movement denoted by x with range −175◦ ≤ x ≤ +175◦,
a tilt movement denoted by y with range −30◦ ≤ x ≤ +90◦ and an optical
zoom termed z with 1 ≤ z ≤ 24. For each of the three movement coordinates,
the camera allows for adjusting the movements speed in a range from −50 ≤
{x,y,z}v ≤ 50. The current position and the movement commands are send
and received from the camera via an http API interface. The visual data in
transferred to a dedicated GPU server via an SDI cable, and the cameras are
connected to the server via LAN.

The camera is mounted on a tripod and the absolute camera position remains
fixed for the play.

The GPU Server (Windows 10) is equipped with a Blackmagic Capture Card
to access the video signal in real time (approx. 40 frames/sec). The server
features a NVIDIA RTX Titan (24 GB memory) graphic card.

3 Requirements

In this section, we briefly outline the specific requirements for the camera
system. The requirements can be structured into three main building blocks
of the overall system.

144 Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023

3.1 Camera Control

We aim to track objects throughout the stage and over the course of a play or
performance. The desired position of an object in the frame is the setpoint.

• We demand setpoint control of pan (x), tilt (y) and zoom (z), the re-
spective setpoints are denoted by xSP, ySP, and zSP. The pan and tilt
setpoints denote the coordinates where an image object is to be situated.
For zoom control, the objects size is estimated from the current frame
(see perception) and compared with zSP.

• Setpoint control is extended by a dead zone, i.e. if the object moves
though remains within the specified dead zone, no feedback is applied.

• To ensure homogeneous control performance for close and distant ob-
jects which appear on the frame at same size, the distance of the object
has to be taken into account.

3.2 Perception

Advanced perception capabilities are required for reliable tracking. A basic
understanding of the scene and its actors as well as background, possible pro-
jection, and backstage people is demanded.

• To detect objects on the current frame, bounding boxes and masks are
considered. A high frame rate and low total latency is desired.

• Detection classes are head, face, body. Detected objects are represented
by the respective bounding boxes. These detection classes allow for
different capture settings such as close-up, knee-up, whole body, and
dialog capture.

• All visible persons on the stage shall be detected. Multiple actors may
be present on stage. Detected objects have to be tracked and assigned
with a tracking ID number.

• The objects distance is to be estimated.

Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023 145

• Track losses and switches, e.g. due to occlusion, have to be considered.
Fallback options have to be elaborated.

• Basic association is required for the detected objects and tracks. Objects
from the three detection classes shall be associated to persons.

• To re-identify a person across multiple cameras, face identification is
employed.

3.3 Interface

A flexible and intuitive Human Machine Interface is required. In short, the
interface allows for:

• visualizing the detections, tracks, and associations

• adjusting setpoints and the dead zone online

• changing the tracked object, optionally with smooth transition

• modifying controllers speed

• choosing fallback options

• saving, loading, and visualizing data and configuration

• accessing and controlling all (three) cameras

4 Methods

To obtain a robust, flexible, and fast smart camera tracking system incorporat-
ing the requirements outlined in Section 3, we propose the workflow depicted
in Fig. 1.

Here, the iterative loop starts with a new frame delivered by the PTZ camera.
The frame is processed in the perception module subsequently, where the target
object is detected, tracked, and identified. The objects information is then feed
into the controller module. In combination with the user interface settings, the

146 Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023

Figure 1: Key modules and the basic workflow for the proposed smart camera system.

controller computes the outputs for pan, tilt, and zoom velocities so as to close
the feedback loop.

In the following, we describe the methods and approaches for the key modules
seperately.

4.1 Perception Module

The perception module receives an image, detects all relevant objects in this
image, tracks the objects from frame to frame, associates tracks with persons,
and identifies them if possible.

4.1.1 Object Detection

To detect objects, namely persons, on the image, a custom model for YOLOv8
[1] has been developed. The model yields bounding boxes for three classes:
head, face, and body. For training the model, several datasets such as Holly-
wood Heads [9], CrowdHuman [10], Facenet [11], and COCO [12] have been
combined. Since the desired classes were not covered by all datasets, cross-
inference was used to label the missing classes in each dataset.

Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023 147

(a) Training metrics for the custom detection model. (b) Confusion matrix of the custom model.

Figure 2: Metrics of the custom Yolov8 Model.

The obtained dataset consisted of approx 120.000 labelled images. Using the
open source tool FiftyOne [13], we excluded clones, crowds, and removed the
most similar images. Furthermore, to decrease false positive detection rates,
10 % background images (no objects no labels) were added to the dataset. The
training dataset finally consists of approx. 32.000 labelled images.

Training results and the confusion matrix are depicted in Fig. 2. Accuracy is
very good for head (94 %), face (87 %), and body (92 %). As we could verify
in various rehearsals, the model is robust as it copes very well with different
light settings.

4.1.2 Object Tracking

For tracking the objects detected by our custom Yolov8 model, we used the
Kalman-based tracking algorithm Bytetrack [16]. In comparison with other
SOTA multi-object-trackers (see references in [16]), Bytetrack provided the
best tradeoff between inference speed and accuracy for our purpose of tracking
actors on stage.

4.1.3 Association and Recognition

To associate head, face, and body objects to persons, we utilize intersection
over union (IoU). Thus, we compare the extend of overlap of all detected
bounding boxes. The association works pairwise: If the smaller bounding box

148 Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023

is covered by at least 90 %, we associate the two bounding boxes to the same
person.

4.1.4 Fallbacks

On runtime, it happens that a track is lost, e.g. due to occlusion, turn arounds,
or dancing moves where the head and face are temporarily not visible. Elabo-
rating usefull fallback options thus is essential to ensure reliable tracking.

Basic idea of the fallback strategy is to use the associations obtained. If e.g.
the head track is lost, the fallback consists of automatically switching the track
to the persons face if available, otherwise to the persons body. If at some stage
later a head is reassociated with currently tracked body or face, it atomatically
switches back to head tracking. Note that it may be required to smoothly transit
to the new setpoints.

4.2 Camera Control Module

The control module receives the location and size of the current object of
interest in the image. Given the current setpoints, the controller computes the
errors and a corrective feedback. To this end, we use separate PI controllers for
pan, tilt, and zoom control.

4.2.1 Output linearization

Controller output (xPID
out) and cam output ϕcam

out are non-linearly correlated, see
Fig. 3a.

The measured response Fig. 3a is corrected using a sigmoid function:

fcor(x) = 100(
1

1+ e−0.05x −0.5)

(see Fig. 3b). The resulting (linearized) IO response is depicted in Fig. 3c.
The response is suppressed in the range 0 ≤ |xout | ≤ 9, linear in the range

Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023 149

(a) Measure responses. (b) IO correction. (c) Corrected IO response.

Figure 3: IO Pan resonse curve and proposed correction.

10≤ |xout | ≤ 35, and saturated for |xout | ≥ 36. The correction is applied to pan
and tilt. The zoom IO response is already almost linear, so no correction is
required (data not shown).

4.2.2 Distance estimation

We trained a small dense multilayer perceptron (MLP) from data acquired from
the PTZ camera and laser rangefinder. The networks inputs are head width,
head height, and the zoom level, the output is the distance estimate d [m].
The model provides distance predictions in real time, and validation showed
acceptable performance. An analysis of it is out of scope of this paper.

4.2.3 Adaptive PID controllers

Pan, tilt, and zoom are controlled using PI controllers. The parameters have
been tuned manually. The interface allows to adjust the gains online.

To compensate for a trigonometric non-linearity in pan and tilt, the camera-
object distance is estimated using the trained MLP as described above. The
pan and tilt controller gains are hence automatically scheduled to as:

Kp(d) = K∗p ·
3
d
,

where K∗p is the presetted gain tuned for a object distance of 3 m. In the real-
time setting, we filter the distance estimate of the head object averaging the last
three distance estimates.

150 Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023

4.3 Interface module

Figure 4: An overview of the interface.

The interface module is based on the python package nicegui [3]. The interface
features the current image and detections, as well as interactive selection of
tracks. The interface allows to turn on/off detection and the controllers, to
select tracks and adjust setpoints interactively, as well as to set fallback options
and tune the controller online.

5 Implementation and results

The modules are programmed using Python 3.11. Communication between
the modules is established by using UDP. Associations (persons) as well as the
current tuning and settings are stored using an SQLite database.

The system is currently subject to intensive tests. A current performance record
is depicted in Fig. 5. Here, pan, tilt and zoom controllers are active, and control
is induced by setpoint changes.

Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023 151

(a) Pan Control. (b) Tilt control. (c) Zoom control.

Figure 5: Control performance.

6 Discussion

This paper presents an intelligent camera system for stage performances based
on single PTZ camera. The motivation behind this system is to capture close-
ups and dynamic shots, allowing for projection on a screen on large stages,
and accommodating hybrid formats. The system aims to provide maximum
freedom of movement for actors, dancers, and musicians.

The camera system we developed here employs several perception methods
based on recent advances in machine learning, first and foremost computer vi-
sion. The perception module delivers objects and its associated tracks in terms
of coordinates on the current frame. Given the target location (setpoints), PI
controllers stabilize the errors. Non-linearities resulting from the I/O response
and from trigonometry are addressed.

Overall, the proposed system supports real-time, low-latency, and multi-camera
setups. We handle approx. 40 frames per second, and the overall latency
is approx. 80 ms. The system implementation utilizes APIs, deep learning
frameworks, and interprocess communication for camera control, perception,
and interface functionalities. Overall, this intelligent camera system offers
an innovative solution for capturing stage performances with high precision,
adaptability, and real-time capacity.

152 Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023

References

[1] G. Jocher et al. “Ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime
Instance Segmentation”. Zenodo c7.0 doi:10.5281/zenodo.7347926
https://doi.org/10.5281/zenodo.7347926 2022.

[2] F. Z. Qureshi and D. Terzopoulos. “Surveillance in virtual reality:
System design and multi-camera control.” IEEE Conference on
Computer Vision and Pattern Recognition. IEEE 2007.

[3] F. Schindler and R. Trappe “NiceGUI: Web-based user interfaces with
Python. The nice way.” https://github.com/zauberzeug/nicegui 2023.

[4] A. Hussein et al. “Autonomous off-road navigation using stereo-vision
and laser-rangefinder fusion for outdoor obstacles detection.” in IEEE
Intelligent Vehicles Symposium (IV). IEEE 2016.

[5] C. Ding et al. “Collaborative sensing in a distributed PTZ camera
network.” in IEEE Transactions on Image Processing 21.7: 3282-3295
2012.

[6] J. Chen and P. Carr. “Autonomous camera systems: A survey.” in
Workshops at the Twenty-Eighth AAAI Conference on Artificial
Intelligence 2014.

[7] AS Olagok and H. Ibrahim, and SS Teoh. “Literature survey on multi-
camera system and its application.” in IEEE Access 8 (2020): 172892-
172922 2020.

[8] M. Chapel and T. Bouwmans. “Moving objects detection with a moving
camera: A comprehensive review.” in Computer science review 38
(2020): 100310.

[9] T. Vu and A. Osokin, and I. Laptev. “Context-aware CNNs for person
head detection.” in Proceedings of the IEEE International Conference
on Computer Vision. 2015.

[10] S. Shao et al. “Crowdhuman: A benchmark for detecting human in a
crowd.” in arXiv preprint:1805.00123 (2018).

Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023 153

[11] F. Schroff, and D. Kalenichenko, and J. Philbin. “Facenet: A unified
embedding for face recognition and clustering.” in Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015.

[12] T. Lin et al. “Microsoft coco: Common objects in context.” in
Proceedings of the ECCV: 13th European Conference 2014.

[13] BE Moore and JJ Corso “FiftyOne” in GitHub
https://github.com/voxel51/fiftyone 2020.

[14] M. Cristani, M. Farenzena, D. Bloisi and V. Murino “Background
subtraction for automated multisensor surveillance: A comprehensive
review” in EURASIP Journal on Advances in Signal Processing
2010(24).

[15] E. Komagal, B. Yogameena “Foreground segmentation with PTZ
camera: a survey” in Multimedia Tools and Applications 77 (17) (2018)
22489–22542.

[16] , Y. Zhang et al. “ByteTrack: Multi-Object Tracking by Associating
Every Detection Box” in Proceedings of the European Conference on
Computer Vision (ECCV), 2022.

154 Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023

