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Abstract

Condition monitoring is a key component of condition-based and predictive
maintenance solutions and has applications in a wide range of industries. How-
ever, extracting long-term asset condition information from process data is
not a trivial process. The objective of this paper is to present the first steps
in developing a condition monitoring solution using a hybrid modeling ap-
proach. The paper provides an introduction to condition monitoring and hybrid
modeling and focuses on the problem of calibration of first principles based
simulation. Several possible approaches to model the calibration coefficients
that vary during the process simulation were considered. Our results show that
the developed piecewise constant approach, together with the tuned version of
the Nelder-Mead optimization algorithm, allows to accelerate the calibration
process without sacrificing the simulation error.

1 Introduction

The design life of equipment is often conservative because, in practice, actual
operating and environmental conditions may differ significantly from those
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considered in the design. Therefore, during operation, a remaining life assess-
ment is required to determine the actual remaining life of critical equipment,
which may be shorter or longer than the design life [4]. However, extracting
long-term asset condition information from process data is not a trivial process.
One possible solution could be to use a condition monitoring solution based
on a hybrid modelling approach—a combination of a first-principles-based
simulation model with machine learning algorithms.

This article presents the results of an ongoing research project with an industry
partner, and not all project details can be disclosed. The article is organized
as follows. Section 2 provides an introduction to condition monitoring. The
hybrid modeling approach and examples of its application to condition mon-
itoring are presented in Section 3. Then, a problem of calibration of the first
principles based simulation is introduced in Section 4. Section 5 presents a
case study to demonstrate and test the developed model calibration approach.
Finally, the conclusions are presented in Section 6.

2 Condition Monitoring

Condition Monitoring (CM) is the process of monitoring the condition of in-
dustrial assets (manufacturing equipment, machinery, parts, auxiliary systems
and components, etc.) during operation. Condition monitoring is a main part
of condition-based and predictive maintenance solutions and has applications
in a broad range of industries [1]. In general, the development of a CM solution
consists of three main parts: data collection, data exploration and processing,
and the development of a CM algorithm [2]. Depending on the industry and
field of application, all three parts can vary significantly from solution to so-
Iution. The data source for CM can be either specially designed and installed
sensors [3] or the existing infrastructure used for process monitoring [?]. The
basic idea behind data-driven condition monitoring is that it is possible to
extract some patterns and trends—condition indicators—from a large amount
of collected data and infer the deterioration status of equipment for which there
are not available or do not exist condition monitoring sensors. Data-driven
condition monitoring relies on various data sources and types of measurements
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acquired during equipment operation and uses various data mining techniques
and algorithms [2].

3  Hybrid Modeling

Hybrid modelling is a combination of two paradigms: first principles-based
and data driven models into a single architecture (Fig. 1). First-principles
(physics-based) models are based on formalized expert knowledge of a prob-
lem, including design data, material properties, etc. In contrast, data-driven
methods rely only on collected data. Hybrid modelling already has a portfolio

Hybrid
Modeling

Figure 1: Hybrid modeling is the fusion of two worlds: machine learning and first-principles based
simulation.

of applications in the process industry [6] and several examples of applications
to condition monitoring. Leturiondo, et al. [8] use hybrid modeling to monitor
the condition of rolling bearings. Gélvez, et al. [?] use hybrid modeling for
condition monitoring of the heating, ventilation, and air conditioning (HVAC)
system in passenger trains. In both works, the authors proceed from the hy-
pothesis that, due to scheduled maintenance and service of equipment, the real
measurements, collected by sensors located in the real system, contain very
limited information about the degradation of elements, especially in the late
stages of degradation. Therefore, in both studies, physics-based models are
used to generate synthetic data for operation with known degradation levels
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and equipment failures. In our study, we would like to propose and test a
different way of condition monitoring by using a hybrid modelling approach.
We assume that in real measurements it is possible to track the degradation
process of the equipment by using detailed and calibrated physics-based sim-
ulation of the process. The calibration coefficients of the physics-based model
can possibly be used as condition indicators. For this purpose the process of
physics-based model calibration should be relatively fast because we plan to
trace the changes of physics-based model calibration coefficients during the
whole lifetime of the equipment. If our hypothesis is successful, the next step
would be to create a data-driven model that could extract condition indicators
from process data without the use of simulation and optimization.

4 Simulation Calibration

One of the important steps in the development of a hybrid model is the calibra-
tion of the physics-based model (simulation) to better match the industrial data
(real measurements). Model calibration is the manual or automated process of
estimating and adjusting model parameters (calibration coefficients) by fitting
the model output to real data.

The simulation calibration process consists of the following steps (Fig. 2).
In the first step, the equipment design data and actual process data (mea-
surements) are prepared and fed into the simulation. The second step is the
execution of the process simulation. In the third step, the parameters calculated
in the simulation are compared with the real measurements. The simulation
error is calculated and passed to the optimization algorithm. The goal of
the optimization algorithm in the fourth step is to minimize the simulation
error by finding optimal calibration coefficients. The process is repeated until
the desired accuracy is achieved or the number of simulations is exhausted.
The choice of an effective optimization algorithm for model calibration is not
obvious and requires considerable experience and some experimentation.
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Figure 2: Flowchart of the Simulation Calibration Process

4.1 Calibration Coefficients

The process simulation has a set of calibration coefficients. From the available
coefficients, we have selected two that could potentially be used as condition
indicators. Since they are just coefficients without units, we can just label them
as Calibration Coefficient 1 (CC1) and Calibration Coefficient 2 (CC2). The
Calibration Coefficient 1 does not change during the one process simulation.
The Calibration Coefficient 2, on the other hand, decreases during the process
simulation (Fig. 3), but can be modeled as a constant for simplification. Mod-
eling CC2 as a constant throughout the process simulation leads to oversimpli-
fication and is suitable for approximate estimation, but doesn’t fit the purpose
of what we are working on.

Due to the complex behavior of the CC2, two other calibration approaches
were considered.

Approach 1 (exponentially decaying curve): In theory, the behavior of CC2
can be modeled with an exponentially decaying curve (Fig. 3) described by the
equation CC2 = A -exp (—+) + B, where 7 is the simulation time; A,B and T
are unknown parameters. Unfortunately, attempts to determine optimal values
for the parameters A, B and T have not been successful because this approach
requires too many time-consuming simulations.

Approach 2 (piecewise constant): Because of the difficulties we encountered in
determining the coefficients of the exponential curve, we developed a different
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Figure 3: Three ways to model CC2: 1-Constant throughout the simulation; 2—Exponentially
decaying curve; 3—Piecewise constant

approach. The simulation is divided into many small steps (overlapping win-
dows) in which the CC2 is modeled as a constant. Then, using an optimization
algorithm, the optimal value of the CC2 is calculated sequentially for each step.
In this approach, the CCl1 is optimized only on the first step.

4.2 Optimization Algorithm

The process of calibration of the simulation model can be considered as simulation-
based optimization problem or Derivative-Free Optimization (DFO) problem.
Simulation optimization is a very broad topic that involves the use of algo-
rithms that come from many different fields, have connections to many differ-
ent disciplines, and have been used in many practical applications [7]. DFO
can be considered as a sub-field of simulation optimization. Most algorithms

in DFO are specifically designed to consider that function evaluations or sim-
ulations are expensive.

The optimization objective is to minimize the difference between the real data
and the simulated data. In our case, the Root Mean Square Error (RMSE)
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between the simulated parameter and the actual (observed) measurement used
as a cost function. Since every objective function evaluation requires a time-
consuming process simulation and gradient information is not available, DFO
algorithms are best suited for our task. The list of DFO algorithms built into the
MATLAB environment we use, including the Statistics and Machine Learning
Toolbox, the Optimization Toolbox, and the Global Optimization Toolbox, is
given in Table 1.

Table 1: List of DFO methods built into MATLAB and available in MATLAB Toolboxes

Algorithm Matlab Function
Nelder-Mead Simplex Method fminsearch
Golden Section Search fminbnd
Pattern Search patternsearch
Surrogate Optimization surrogateopt
Genetic Algorithm ga
Particle Swarm Solver particleswarm
Simulated Annealing simulannealbnd
Bayesian Optimization bayesopt

5 Experiment

The goal of our work is not a detailed benchmarking of algorithms, but the
selection of the most efficient optimization algorithm for our concrete problem.
We formulated several requirements for the optimization algorithm:

* The calibration coefficients have physical bounds, e.g., from 0% to 100%,
and the simulation cannot take values outside these limits. For this
reason, the optimization algorithm must be constrained.

* Detailed simulation takes time, so the algorithm must use a limited num-
ber of function evaluations (as few as possible).

» Since we have several coefficients to optimize, the optimization algo-
rithm should support multi-variable optimization.
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The MATLAB software package contains several algorithms suitable for our
problem. We compare three of them: a constrained version of the Nelder-
Med simplex method, Pattern search and Bayesian optimization. Nelder-Mead
and Pattern Search are widely used direct search methods [10]. In the MAT-
LAB implementation, the Nelder-Mead algorithm does not support constraints.
However, there is a popular community version of the algorithm with con-
straints. Bayesian optimization is a global optimization algorithm recently
become extremely popular for tuning hyperparameters in machine learning
models [11].

5.1 Experiment Setup

For the experiment, we used the industrial process simulation with a total
duration of 85 days. According to the developed piecewise constant approach,
the simulation is divided into 28 steps of 5 days each (window size is 5 days
with an overlap of 2 days). All optimization algorithms are set to the same
maximum number of iterations, 30 for the first step (window) and 15 for all
subsequent steps. For the Nelder—Mead and Pattern Search algorithms, the
starting point is the optimal solution from the previous step. The optimization
constraints are the same for all algorithms.

For the Nelder-Mead algorithm, we carried out two experiments, one with the
default settings and the other with a modified tolerance for both the objective
function value and the variable.The tolerance settings of the Pattern Search
algorithm are equivalent to the tuned version of the Nelder-Mead algorithm,
and for Bayesian Optimization, there are no tolerance settings. The settings of
the experiments are summarized in the Table 2.

5.2 Experiment Results

All three optimization algorithms solved the optimization problem, but with a
significantly different number of objective function evaluations and a slightly
different RMSE values after optimization. Since we have 28 steps in our
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Table 2: Experiment Setup

Short Name Algorithm Tolerance
NM; Nelder-Mead Default: le-4
TolFun: 1e-03
NM, Nelder-Mead TolX: 0.1
BO Bayesian Does not support

Optimization tolerance settings
Pattern TolFun: 1e-03
PS Search StepTolerance: 0.1
MeshTolerance: 0.1

proposed piecewise constant approach, the median RMSE value is used to com-
pare the optimization algorithms. Figure 4 shows the number of evaluations of
the objective function (simulations) that are used by each of the algorithms
at each of the 28 steps. The Nelder-Mead algorithm with the default setting
uses slightly more function evaluations than it was limited to use. However,
by tuning the optimization tolerance, we were able to significantly reduce the
number of function evaluations while keeping the median RMSE at the same
level. This is illustrated in Figure 5, which shows the total number of function
evaluations and the median RMSE value over 28 steps. The Pattern Search al-
gorithm, with the same tolerance settings as the tuned Nelder-Mead algorithm,
required more objective function evaluations and has a slightly worse RMSE
values. As expected, Bayesian optimization without tolerance settings uses the
entire limit of objective function evaluations, but does not show better RMSE
values. The results of the experiment are summarized in Table 3. It should
be noted that we also found that the constrained version of the Nelder-Mead
algorithm can have convergence problems when the solution is very close to
the boundary, which is not a problem for Bayesian optimization and Pattern
search. The resulting values of CC2 after the optimization process are shown
in Figure 6.
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Table 3: Experiment Result

Algorithm Total Number of Optimal Value Median
Short Name Function Evaluations CC1 Simulation Error
NM; 462 1.087 0.0025
NM, 218 1.087 0.0025
BO 435 1.094 0.0028
PS 291 1.100 0.0031
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Figure 4: Number of function evaluations for each calibration step. Tuned version of the Nelder-
Mead algorithm (NM; ) uses less objective function evaluations, especially in the first
17 steps, than other optimization methods.

6 Conclusion

This paper presents the first steps in the development of a condition monitoring
solution using hybrid modeling. In this phase, we considered several possible
ways to model calibration coefficients that vary during the process simulation.
To address this issue, the piecewise constant approach was developed and then
tested with three different optimization algorithms and different optimization
tolerance settings. The experimental results show that the simulation calibra-
tion process can be significantly accelerated by tuning the tolerance parameter
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Figure 6: Resulting CC2 values after calibration procedure. The values are only slightly different
from each other, but the number of function evaluations that are used is completely
different, see Fig. 5

of the optimization algorithm without sacrificing the simulation error. The best
results were obtained using the tuned version of the Nelder-Mead algorithm,
but the optimal balance between optimization speed and simulation error needs
to be further investigated. The next step is to use a developed simulation cali-
bration approach to determine the potential of using the calibration coefficients
as condition indicators in a condition monitoring solution.
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