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1 Introduction

The logistics industry plays a pivotal role in global trade, and efficient ware-
house operations are essential for the seamless movement of goods. In recent
years, prevailing job market conditions have presented significant difficulties
in recruiting skilled workers in warehouse operations [1]. This shortage of
skilled logistics workers has challenged companies to meet dynamic market
demands and hindered effective workforce planning. The labor shortage results
in increased operating costs and decreased overall efficiency due to suboptimal
resource utilization. The key challenge for warehouse managers is the fluc-
tuating and unpredictable nature of customer demand. Short-term customer
orders, seasonal fluctuations, and rapidly changing market demands make it
difficult for companies to forecast and plan their logistics workforce accurately.
These dynamic demands often result in overstaffing during off-peak periods
and understaffing during peak periods. Understaffing leads to unmet customer
demand and, in some cases, customer churn. It also runs counter to a common
warehouse goal of maximizing service levels (i.e., the promise of fast and ac-
curate delivery) as a measure of differentiation from competitors. Overstaffing
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leads to underutilization and inefficiencies. This results in financial losses, as
customer order fulfillment through picking at the point of delivery is the most
costly activity in the warehouse [2, 3, 4].

To tackle the pressing issues in workforce scheduling, it is essential to develop
accurate forecasting frameworks that can efficiently predict delivery positions.
Accurate forecasting enables companies to optimize their employee staffing
in logistics, reducing the risks of both overstaffing and understaffing within
the limited workforce. Currently, the forecast process is heavily reliant on the
personal expertise and judgment of individual team members. These individu-
als draw on their years of experience and intuition to estimate future demand,
utilizing the number of pre-orders already recorded in their software system
as a key input. This approach, although common in small and medium-sized
warehouses, is inherently subjective and susceptible to human error and bias.

In this context, integrating Machine Learning (ML) methods presents a promis-
ing solution to enhance workforce scheduling efficiency [5, 6]. ML algorithms
offer the capability to process vast amounts of data, identify complex patterns,
and make data-driven predictions. By reframing the workforce optimization
problem as a forecasting challenge, ML models can be leveraged to provide ac-
curate and reliable one-day-ahead delivery position predictions. This approach
not only improves transparency and explainability in the estimation process but
also enhances the overall scheduling efficiency.

2 Problem Statement and Data Description

In the complex domain of workforce planning within logistics, we aim to
develop an accurate mathematical representation of the challenge. Instead of
directly tackling workforce scheduling, we’ve transformed it into a prediction
problem, using various ML models to forecast the next day’s delivery positions.
The problem is defined mathematically as minimizing the root-mean-square
error between the actual and predicted number of delivery positions using the
optimal model and its parameters.
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With
* D%': The actual number of delivery positions for day ¢.

« D" The predicted number of delivery positions for day ¢, using the
i-th ML model.

Simultaneously, we aim for the predicted delivery positions, D", from
the best model to closely match the needed number of workers, W;. The
relationship between these is determined by past company data and workforce
planning rules. This relationship is given by

W, = h(D!"*"") @)

where h(-) represents the historical link between delivery positions and re-
quired workforce. Nonetheless, our focus is on pinpointing the most effective
ML technique, rather than deducing the exact form of 4(+). The study relies on
delivery position data from a collaboration between the Technical University of
Cologne and a major electrical engineering firm, with adjustments made using
a constant factor X to safeguard financial confidentiality. Table 1 provides a
comprehensive statistical overview of the initial time series data.

The actual data entries amount to 1337 data points, given the non-operational
days like weekends and winter breaks. Following an 80/20 split for parti-
tioning, the training set contains 1069 entries, and the test set has 268. The
initial data inspection highlighted significant downward fluctuations, leading
to the removal of entries identified as outliers and those with fewer than 200
delivery positions. This refined dataset, now with 1321 entries, presents a
more consistent distribution conducive to analysis. Cleaning paved the way
for feature engineering, introducing variables like time details, lag intervals,
and multiple rolling means to serve as inputs for the ML models.

Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023 193



Table 1: Feature summary

Start Date End Date Time Span

Lagerbewegung Zeitpunkt 2018-01-02  2023-05-08 1952 days
Mean Std. Min Max
Lagerbewegung Pick ERP-Auftrag 2860.26 697.91 1 4525

3 Methods & Metrics

For forecasting, five primary models were utilized: Random Forest, XGBoost,
LightGBM, Support Vector Regression (SVR), and Convolutional Neural Net-
works (CNN). Random Forest is an ensemble method known for its robustness
and ability to manage non-linear relationships [7]. XGBoost and LightGBM
are both gradient boosting frameworks, with the former being praised for its
speed and flexibility [8], and the latter for efficiency and leaf-wise tree growth
[9]. SVR excels in high-dimensional spaces and offers kernel function flexibil-
ity [10]. CNNs, while dominant in image classification, have shown prowess in
time-series forecasting, capturing both local and global temporal dependencies

[11].

Beyond the primary models, two ensemble strategies, Stacking and Averaging,
were evaluated. Averaging involves computing the mean of individual model
predictions, noted for its robustness [12]. Stacking harnesses multiple base
models, in our case leveraging ridge regression as the meta-model [13].

Hyperparameter tuning for all models was automated using the Optuna pack-
age, streamlining optimal value discovery [14].

Model performance was gauged using Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE). While RMSE emphasizes large errors, offering a
penalty, MAE offers a balanced view on error magnitude [15, 16]. Both metrics
help in a holistic evaluation of model accuracy.

194 Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023



Table 2: Performance metric of the different modeling approaches

Algorithm MAE  RMSE
LightGBM 335.56  440.63
CNN 382.83 518.00
SVR 356.51 470.66
XGBoost 331.86 437.15
Random Forest 32378 429.55
Stacking Ensemble with CNN 683.47 796.16
Average Ensemble with CNN 31891 416.48
Stacking Ensemble without CNN 365.08 476.35
Average Ensemble without CNN 313.98 413.96
4 Results

In evaluating the base models, tree-based algorithms - LightGBM, XGBoost,
and Random Forest - showed close performance, with RMSEs between 429 to
441 and MAEs ranging from 323 to 336. The SVR demonstrated a conservative
forecast, with MAE and RMSE values at 356.51 and 470.66, respectively. Con-
versely, the CNN trailed in performance, especially post-Christmas, resulting
in an MAE of 382.83 and an RMSE of 518.

The ensemble strategies exhibited contrasting results. The stacking ensemble,
despite capturing the time series’ structure, tended to overestimate with MAEs
and RMSEs at 683.47 and 796.16. Contrarily, the average ensemble outper-
formed all models, achieving an MAE of 318.91 and an RMSE of 416.48.

Considering the subpar performance of the CNN, ensembles were recomputed
without CNN inputs. This led to an overall improvement. The average ensem-
ble showed an MAE of 313.98 and an RMSE of 413.96, while the stacking
ensemble registered 365.08 and 476.35 for MAE and RMSE, respectively.
Even though the average ensemble’s metrics were superior, the stacked method
better captured individual peaks.

The performance metrics for all the discussed modeling approaches are sum-
marized below:
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5 Discussion & Outlook

Besides confirming a fundamental predictability in the used dataset, this work
also showed that tree-based models like Random Forests, XGBoost and Light-
GBM are suitable algorithms for this task. Beyond that, stacking and averaging
ensemble methods using these models proved to further increase the forecast-
ing effectiveness.

While the SVM approach performed slightly worse but in the same approx-
imate range as the tree-based models, CNNs clearly showed inferior results,
especially when exposed to irregularities like the post-christmas dip in the used
dataset. The small size of the dataset can be assumed as a possible reason for
this lack in performance. The neural network might not have been exposed to a
sufficient amount of data to pick up the more complex patterns. As the dataset
grows over time, we could expect an improvement in CNNs’ performance.

Going forward with these approaches, a possible next step is the incorporation
of external variables that might influence the number of delivery positions.
These variables can range from calendrical data to pre-order information and
even weather data.

Furthermore, different model architectures should be examined, as this work
mainly focused on tree-based models. Diversifying the model architectures
could boost the forecasting effectiveness even further.

In summary, this research offers a promising start toward optimizing workforce
scheduling in small and medium-sized warehouses in the logistics sector by
leveraging ML methods.

Acknowledgments

The work was partly funded by the German Federal Ministry for Economic
Affairs and Climate Action (BMWK) as part of Project "IMProvT II" (FKZ:
03EN2086 A-E).

196 Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

“Skilled labour shortage: Freight, logistics sector needs 18,000 workers
for jobs,” June 2023. [Online; accessed 11. Sep. 2023].

T. van Gils, K. Ramaekers, A. Caris, and R. B. M. de Koster, “Designing
efficient order picking systems by combining planning problems: State-
of-the-art classification and review,” Eur. J. Oper. Res., vol. 267, pp. 1-15,
May 2018.

Y.-C. Ho and J.-W. Lin, “Improving order-picking performance by
converting a sequential zone-picking line into a zone-picking network,”
Comput. Ind. Eng., vol. 113, pp. 241-255, Nov. 2017.

S. Vanheusden, T. van Gils, A. Caris, K. Ramaekers, and K. Braekers,
“Operational workload balancing in manual order picking,” Comput. Ind.
Eng., vol. 141, p. 106269, Mar. 2020.

M. Witthaut and C. Culotta, “Machine Learning in der Logistik — Eine
empirische Studie tiber die Anwendung in deutschen Unternehmen,”

Logistics Journal : nicht referierte Verdffentlichungen, vol. 2021, June
2021.

M. Akbari and T. N. A. Do, “A systematic review of machine learning
in logistics and supply chain management: current trends and future
directions,” Benchmarking: An International Journal, vol. 28, pp. 2977—
3005, Mar. 2021.

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5—
32,2001.

T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pp. 785-794, 2016.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Advances in neural information processing systems, vol. 30, pp. 3146—
3154, 2017.

Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023 197



(10]

[11]

[12]

[13]

[14]

[15]

[16]

H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik,
“Support vector regression machines,” in Advances in Neural Information

Processing Systems (M. Mozer, M. Jordan, and T. Petsche, eds.), vol. 9,
MIT Press, 1996.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436444, 2015.

T. G. Dietterich, “Ensemble methods in machine learning,” in Interna-
tional workshop on multiple classifier systems, pp. 1-15, Springer, 2000.

D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, no. 2,
pp. 241-259, 1992.

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2623-2631, 2019.

R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and
practice. OTexts, 2018.

T. Chai and R. R. Draxler, “Root mean square error (rmse) or mean
absolute error (mae)?—arguments against avoiding rmse in the literature,”
Geoscientific Model Development, vol. 7, no. 3, pp. 1247-1250, 2014.

198

Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023





