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1 Introduction

The aim of this paper is to investigate and discuss the use of generative neural
networks to reconstruct handcrafted adaptive music. We choose the dynamic
compositions from the 1991 video game Monkey Island 2 [1], which has con-
sistently been recognized as a role model and masterpiece in this field [2, 3].
The music in this game is generated in real-time during gameplay, leading us
to define our task as the successive prediction of note events using autoregres-
sive models. Furthermore, the game’s music adapts to player actions, so the
generative task additionally is conditional.

In Section 2, we explain that music data contains very different types of in-
formation and show how similarly constructed statistical errors can have very
different effects according to cognitive music perception, which brings addi-
tional complexity to this problem domain. In Section 3, we explain how the
dataset was obtained and what attributes it has. The dataset generator itself is
openly available1 for further academic or educational use. We argue that, on
the one hand, music generation is a fun problem domain without ethical issues,
which has the potential to motivate people to engage with AI technology. On

1 https://github.com/fabianostermann/WoodtickWalkingSimulator
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the other hand, it really makes a challenging benchmark for complex multi-
task learning concepts and multi-objective optimization strategies. Moreover,
coping with the adaptive real-time aspect of video game music is exceptionally
difficult and, to our knowledge, poses a unique challenge. For our practical
investigation, Section 4, we define seven problem dimensions specific to this
task. For each dimension, we conduct experiments and discuss the unique
challenges associated with processing music data. In the process, we propose
areas for further investigation, which will be summarized in Section 5.

2 Music as a problem domain

Music is a complex matter. Its description needs a lot of dimensions [4],
which makes it vulnerable to combinatorial explosion. All attempts of sym-
bolic representation, like modern western notation, need some form of severe
simplification.2 The example of MIDI is used to explain which minimum set
of dimensions is required.

MIDI [5] is a widely used music data communication protocol that was also
used for the music of Monkey Island 2. MIDI was designed as a standard to
connect all kinds of electronic musical instruments. It defines atomic musical
instructions called MIDI events that carry byte-sized information about pitch,
timing and loudness3. The beginning and the end of a note are divided into
two different events. The desired instrument sound is implicitly set. The MIDI
stream consists of 16 different channels. A so-called program change event is
sent to a channel to request an instrument change. A special case is channel
10, which is used for drums, and where the pitch information is remapped to
specify which drum instrument to trigger (e.g., snare, bass drum, hihat).

MIDI and its cluttered specification appears a bit dated by today’s standards.
Its main advantage is its wide popularity. A lot of MIDI-encoded music exists
and can be directly used to build machine learning datasets [6]. However, it is

2 An exception may be the approach to process music at the audio signal level [7, 8].
3 Be aware that the loudness of a note in the context of MIDI usually is referred to as velocity,

because the velocity of pressing down a key on a piano keyboard determines its loudness. We
stick to the term loudness here since velocity can easily be misinterpreted as a temporal property.
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usually not practical to use MIDI events directly as input data for classification
or generation tasks.4 Therefore, it is necessary to convert a stream of MIDI
events into a sequence of semantic features.

We choose to define every note as a 5-tuple

notei = (∆time, duration, loudness, pitch, instrument) (1)

and a music sequence of length n as seq = {note1,note2, . . . ,noten}. The time
difference ∆time is calculated as the distance in seconds to the previous note
event. The duration is the distance of beginning and end of the note in seconds.
The loudness is the MIDI velocity value normalized to [0,1]. The pitch is one
of {0,1, ...,127} which linearly maps to the keys of a piano, where 60 denotes
the middle C. The instrument is an integer label determined by searching in
the MIDI stream for the last program change event that occurred on the same
MIDI channel.5

Note that this scheme is one possibility of many and that the concrete encoding
is usually important [9, 10]. Also note that the different types of information
are not equally important to the cognitive perception of the music, since, e.g.,
∆timecan be allowed to vary by a few milliseconds without the perception of
rhythmical flaws while missing a pitch by only a semitone6 instantly results in
severe harmonic dissonances. Changes in duration, loudness or instrument are
rather perceived as variations than mistakes. Among all, ∆timeand pitch are
(by far) the most important features to re-recognizing music.

That said, music makes a complex multi-objective learning problem that mixes
regression (∆time, duration, loudness) and classification (pitch, instrument)
tasks. Therefore, it can be approached by multi-task learning, which was al-
ready applied to music with the most success in music transcription [11, 12].

4 For example, we tested direct prediction of byte events on our training data. It resulted in
accuracy of 90%+, which, however, is not at all useful for actual generation since the smallest
mistake leads to fatal syntax corruption.

5 The actual code implementation makes use of the python package prettymidi [13]
6 A semitone is the smallest possible distance between two different tones in western tonal music.

Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023 201



3 Dataset of adaptive video game music

The 5-tuple encoding above can be applied to all music of information depth
equal to simple MIDI. For the scope of our study, we decided to learn from
data that consist of the adaptive game music that was originally composed and
programmed by Michael Land and Peter McConnell for the all-time adventure
game classic Monkey Island 2 [1]. Despite the game’s release in 1991, the
significant effort invested in creating the adaptive compositions, including the
manual crafting of musical transitions between numerous points in the music
variations, remains extraordinary. It continues to serve as a role model in the
eyes of experts and critics until today [2, 3].7

We selected a specific piece of music from the game: In the town known as
Woodtick, which the main character visits at the beginning of the game, the
music changes as the character enters different locations. But the music is not
just replaced or blended over. Instead, variations of the town music smoothly
appear in various manually-prepared dynamic transitions. We have developed
a random walking simulator for the game, which is openly available8. It auto-
matically walks the main character through Woodtick and records the stream
of MIDI events using the ScummVM emulator [14]. We also track the location
change events that trigger the musical transitions in the MIDI stream.

Since a note from a music sequence in close scope depends linearly on its
previous notes, the process of creating the sequence can be modeled as an
autoregressive task. However, in a wider scope, changing the location leads to
distinct musical continuations. Therefore, the event of changing the location
must be considered as a conditional input ct for the autoregressive model

notet = f (notet−1,notet−2, ...,notet−p,ct), (2)

7 The reason is interesting: The simple MIDI protocol was dropped when waveform sample
playback became possible on home computers. This leap in acoustic complexity made the
possibility of handcrafting complex adaptive music compositions impossible [2]. The game
industry opted for the cinematic feel at the expense of musical immersion. And this trend
continues to this day, with each increase in computing power primarily used for better and
better game graphics. However, this circumstance is likely to change soon, as the power of
home computers is increasing faster and faster due to current improvements in AI technology
[15], which could reach a limit of necessary realism (as it was for 4k screen resolution).

8 https://github.com/fabianostermann/WoodtickWalkingSimulator
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where p is the context length, i.e. the number of considered previous events.
We will use a neural network to map the function f .

The big difference to models usually applied to music generation is that we are
not trying to create a general framework for diverse musical outcomes [16, 8].
Instead, we want to approximate a single composition. However, since this
composition is adaptive, it differs every time it is played. But the number
of possible variations is limited for a finite period of playback. That means,
although the model is autoregressive as described, it does not need to generalize
for all possible inputs.

4 Problem dimensions

In this section, we present seven different problem dimensions of our task:
neural network architecture and type, context length, data input representa-
tion, multi-task learning, complexity reduction, multi-objective optimization
and rare events. This list of seven is not exhaustive, as there are additional
parameters, e.g., batch size, learning rate or the choice of the optimizer itself.9

However, we chose to focus on discussing these seven dimensions because we
found them to be less universal and, in some aspects, unique to the context of
music data. We will present some practical experiments on how to optimize
parameters for each of the dimensions. Given their interdependency, where
changes in one parameter can consistently affect results in other problem di-
mensions, an all-at-once optimization approach would be ideal. However, since
this is beyond the scope of complexity, we decided to propose a chain of opti-
mizations knowing that changing their order may influence final results. Notice
that it was also not possible to exhaustively optimize each dimension. We
will present exemplary results, discuss how each problem dimension should be
addressed, name applicable strategies and name aspects for future investiga-
tions.

To optimize the multi-task models, we used an averaging loss function as
the overall mean of cross entropy loss for pitch and instrument and mean

9 We choose a batch size of 4096, lr = 0.001 and the Adam optimizer [17].
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Table 1: Loss and accuracy score comparison of different neural architectures and types

recurrent
type layers units dense loss ↑ accuracy

LSTM 2 256 – 1.081±0.01 0.807±0.03
LSTM 1 256 128 1.105±0.01 0.712±0.01
LSTM 1 256 – 1.107±0.01 0.706±0.02
GRU 2 256 – 1.147±0.00 0.693±0.02
GRU 1 256 128 1.117±0.01 0.657±0.01
GRU 1 256 – 1.178±0.01 0.565±0.02

absolute error loss for the regression tasks of ∆time, duration and loudness.
We used the latter instead of mean squared error to mitigate averaging issues
associated with large magnitude differences. For evaluation, we will mainly
provide accuracy score. For ∆time, duration and loudness, we simply defined
a deviation of less than 0.05 as sufficiently accurate.10 Due to random weight
initialization, we conducted 5 statistical repetitions on 5 different simulator
runs, each consisting of 2 hours of music. Every loss and accuracy score below
is reported as mean± standard deviation of these 5 runs.

4.1 Architectures and neural network types

The first problem when coping with neural networks is always to choose a
network type and to determine its structure and size. There are a few general
rules to follow [18], but most parameters must be reconsidered with every new
problem. Since we have time series data, the natural choice is to use recurrent
networks. We chose the popular long-short term memory (LSTM) unit [19]
and compare with its less complex but more efficient variant gated reccurent
unit (GRU) [20].

Table 1 shows that an LSTM with 2 layers is performing best for accuracy and
loss. A concatenated dense layer helped in case of only one layer. The same
applies to GRU, which in comparison performed worse. Note that using only

10 For ∆time and duration 0.05 equals to 50 ms.
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Figure 1: Accuracy score, loss and training time in relation to context length. Circle markers
correspond to the left y-axis, cross markers to the right.

the last hidden state of the LSTM gave similar results to GRU, but using hidden
state and last cell state improved the results significantly.

We can clearly see that the choice of model type and architecture is, as ex-
pected, of critical importance. Another approach could be to use 1D convolu-
tional filters. State-of-the-art autoregressive modeling likely involves the use
of transformer models [21, 9], the application of which remains future work.

4.2 Context length

The number of considered previous events is a crucial parameter for autore-
gressive tasks. It determines, how much context information the model has
to predict the next event. For this problem dimension, we used the 2 layered
LSTM, which performed best in the previous section. Figure 1 shows, that for
already 8 events the accuracy reaches a plateau. After that, it only improves
slightly. However, the time needed for calculation increases further since the
number of weight parameters inside the LSTM increases non-linearly. With
p = 16, the calculation needs about one third more time than with p = 8.11 In

11 34 min to 26 min on a Nvidia A100 GPU.
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order to have more capacity for diverse experiments on the following dimen-
sions, we decided to use p = 8 from here on. Please note that a sequence length
of p = 8 in music holds much information (cf. Eq.1). Just imagine, if someone
sings to you 8 notes of a well-known melody, you will probably be able to
recognize it.

4.3 Input representation

The internal representation of data can have great influence on the model per-
formance [22]. The categorical information about pitch and instrument before
was one-hot encoded with nc = 60 unique classes for pitch and nc = 13 differ-
ent instruments. With a sequence length of p = 8 and the 3 other tasks there
were already 8 · (60+ 13+ 3) = 608 input values. As the model complexity
is relative to the input size, we aimed to decrease the number of inputs to the
LSTM by adding an input embedding layer [18]. The embedding size was de-
termined as ⌊ nc

5 ⌋+1. This definition can be considered another hyperparameter
to be optimized.

By applying input embedding, we increased the accuracy from 0.807±0.03 to
0.867±0.02 with a decreasing loss from 1.081±0.01 to 0.867±0.02. A further
approach to directly use the integer label as input12, which reduces the input
size to 1, performed worse with an accuracy of just 0.716±0.02.

4.4 Multi-task learning vs. ensemble learning

To learn all objectives separately and predict them with an ensemble of models
improves evaluation results [23, 18] but comes at a higher computational cost.
If not calculated in parallel, it is far slower in inference (and training, cf. Ta-
ble 2), which might cause severe problems when used for real-time conditioned
generation or on low performance hardware.13

12 For pitches, this may be called an ordinal encoding, since it provides a natural order.
13 Regarding the present context, both requirements are met for video games. In addition,

computational resources are oftentimes reserved for rendering high-resolution 3D graphics.
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Table 2: Loss and accuracy scores for different ensemble and multi-task models. Values
belonging to one individual model share a frame.

accuracy
∆time 0.999±0.00 0.955±0.01 0.945±0.01

duration 0.980±0.00 0.876±0.01 0.862±0.02
loudness 0.975±0.00 0.977±0.00 0.880±0.03

pitch 0.907±0.01 0.670±0.02 0.696±0.03
instr. 0.950±0.00 0.953±0.01 0.954±0.00
mean 0.962±0.00 0.886±0.00 0.867±0.02

∑ training time 106 min 43 min 29 min

Table 2 shows that learning single tasks (left column with numbers) is much
easier than learning multiple tasks at once (right column). Learning the re-
gression tasks (∆time, duration, loudness) or the categorical task separately
(middle column) only improves scores slightly (except for loudness). However,
handling this interdependency is a major topic. E.g., the choice of the next pitch
is highly dependent on which instrument is chosen. Before, they were predicted
in parallel, but the accuracy may be improved by using an hierarchical learning
approach to predict the objectives one after another.

4.5 Complexity reduction

This dimension is to be understood as the output equivalent of the input rep-
resentation from Section 4.3. As Table 2 shows, predicting pitch is the most
difficult objective. That probably is because it has the most classes and the
largest dependencies to the previous notes. In addition, only a near 100%
accurate prediction is satisfactory from a psychological point of view. When
the timing is slightly off or the melody is played by the wrong instrument,
the mistake is not perceived as serious as that of choosing the wrong pitch.14

In this context, leveraging the semantic nature of music data can be used to
further reduce complexity. The pitch information can be divided into two bits

14 An exception is the drums, because when playing back a melody on the MIDI drum channel,
it becomes completely unrecognizable. Hence, another approach to complexity reduction could
involve segregating the prediction of drum instruments from melody and harmony instruments.
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Table 3: Accuracy scores for predicting pitch divided into pitch class and octave.

pitch ∆time duration loudness instrument mean

0.696±0.03 0.945±0.01 0.862±0.02 0.880±0.03 0.954±0.00 0.867±0.02
0.802±0.01 0.908±0.01 0.900±0.02 0.795±0.04 0.817±0.04 0.953±0.00 0.862±0.02

pitch class octave

of information: octave and pitch class. This introduces an additional task to the
multi-task model but has the advantage that predicting one of 12 pitch classes
can be learned with a higher accuracy. In addition, playing in the wrong octaves
(of 5) is not perceived as nearly as disharmonic as any smaller semitone error.15

Table 3 shows a boost in overall pitch accuracy by splitting up the task. But
the multi-task difficulty increases and thus all the single regression tasks drop
in accuracy. However, the average accuracy remains unchanged.

Another approach of complexity reduction is to transform each linear regres-
sion task into a classification task by binning or clustering. This might be
advantageous since continuous regression is at times more difficult, especially
when combined with a classification task in a multi-task learning problem
(cf. Section 4.4).

A more complex approach may be to encode segments of the music with a
(variational) autoencoder that is then controlled by another agent that is re-
warded to recreate the composition in a reinforcement learning setting. More-
over, this approach would be able to come up with some novel variations of the
music.

4.6 Multi-objective optimization

Since the present task is inherently multi-objective, we can also consider to
improve the loss function itself. Up to here, the loss value was calculated as
the equally-weighted mean of all single loss values of all the objectives. Since
pitch was identified to be the hardest but most important objective, we try to

15 The auditory phenomenon of tonal fusion [24] explains that two notes played in the interval of
one octave are most likely to be perceived as a single tone among all possible intervals.
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Table 4: Accuracy scores of different prioritization of pitch under weight wp.

wp pitch ∆time duration loudness instrument mean

0.0 0.017±0.00 0.859±0.03 0.735±0.04 0.778±0.04 0.950±0.00 0.668±0.02
0.2 (mean) 0.681±0.02 0.949±0.01 0.869±0.01 0.885±0.01 0.955±0.00 0.868±0.01
0.5 0.613±0.02 0.757±0.04 0.614±0.02 0.670±0.03 0.950±0.00 0.721±0.02
0.8 0.616±0.03 0.579±0.01 0.451±0.03 0.436±0.04 0.948±0.00 0.606±0.02
1.0 0.629±0.02 0.053±0.01 0.051±0.01 0.038±0.02 0.951±0.01 0.344±0.00

random 0.605±0.02 0.802±0.02 0.679±0.05 0.603±0.05 0.955±0.00 0.729±0.01

determine if it is possible to boost its accuracy by prioritizing it over the other
objectives. The following formular will be used for prioritizing objective p
with weight wp over all the other n objectives:

loss = wp · lossp +
n

∑
i=1

(
1−wp

n
) · lossi (3)

For wp = 0.2, this formula corresponds to the average weighting used before.

Table 4 shows that the applied weighting procedure is not able to boost the
accuracy of the pitch prediction. However, a wp of 0.0 prevents any learning
success for pitch, but surprisingly the other objectives do not benefit from
it. When increasing wp to 1.0, the other objective drop to an accuracy of
nearly 0 as expected (except instrument). The pitch objective, however, does
not benefit from this either, since its accuracy decreases in comparison to the
equal weighting (wp = 0.2). The baseline comparison to a random weighting,
that randomly changes wp on each call, also shows no improvement.

In total, weighting for prioritization was not successful, since equally weight-
ing did indead perform better. This result may be explained by destabilizing the
gradient descent. If so, parameters like batch size and learning rate must also
be reconsidered here. In any case, this topic is complex and worth investigating
in future work, e.g. by applying Chebyshev loss or other strategies from the
domain of multi-objective optimization.
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4.7 Rare events

Music compositions typically exhibit numerous redundancies, such as repeti-
tions, reprises, and motivic variations. As a result, music data often is imbal-
anced. In the simulation, we observe that the main character spends roughly
half of the time outside in the town scene (due to random walking), leading
to a significantly higher presence of the corresponding music. Furthermore,
location changes account for only a maximum of 5% of the data, resulting
in a severe underrepresentation of individual musical transitions, which are
about 5 to 10 per possible location transition. This may explain why all the
training sessions could never reach 100% accuracy and why, e.g., instrument
performs well even if zero weighted (cf. Table 4 where wp = 1.0) To meet this
circumstance, heavy dataset balancing [25] is needed. One approach without
removing samples from the dataset is to use the loss values as an information
of success and to prioritize samples of higher loss during training, either by
loss weighting or by dynamic adjustment of selection probabilities. This topic
also remains work for future investigations.

5 Conclusions

We have seen that music as a problem domain provides a rich ground for
diverse research questions. Datasets with adaptive music from the video game
Monkey Island 2 can be easily generated using our openly available gener-
ator. We have also provided experimental setups and analyses covering the
problem dimensions of neural network architecture and type, context length,
data input representation, multi-task learning, complexity reduction, multi-
objective optimization and rare events. These aspects are critically important
and, in some aspects, unique to the task of adaptive music generation. We have
presented numerous ideas for future work. Implementing more sophisticated
multi-objective loss strategies and to cope with rare events by adaptive dataset
balancing are both worth further investigations.

The concept of autoregressive music generation also holds the potential to
be applied in the creation of original compositions for video games featuring
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adaptive music. Surprisingly, this powerful component [26] is still underuti-
lized in the industry. The notion of using variational autoencoders controlled by
a reinforcement learning agent is intriguing. A solution to this challenge surely
is of interest not only to the video game industry but also to broader contexts,
as the future trend is clearly heading towards “non-linear media” [27].
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