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Abstract

Concrete, the second most consumed resource worldwide after water [1], plays
a fundamental role in construction. However, modeling the production process
of concrete is challenging due to the incompletely understood physical and
chemical relationships among its ingredients and various influencing factors,
and the scarcity of data. Current models predominantly only rely on mix
design (recipe) data, often overlooking the properties of fresh concrete, the
interactions that result from curing conditions, and disturbances. This paper
introduces a holistic view that integrates mix design, fresh concrete properties,
and curing conditions to enhance predictive models for ultra-high performance
concrete (UHPC) quality. This analysis highlights the significant effect of
average power consumption, fresh concrete temperature, and curing storage
conditions on the quality of concrete.
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1 Introduction

Concrete is formulated from cement, aggregates (both fine and coarse), water,
and occasionally, admixtures. Its production process begins with the com-
bination of these raw materials, followed by a curing process to ensure the
end product quality (Figure 1). The curing process typically requires main-
taining specific moisture and temperature conditions for 28 days. This allows
the cement to undergo hydration, the pivotal chemical reaction that imparts
strength to concrete. The process’s intricacy lies in the delicate balance of these
components and stages, as well as its susceptibility to external environmental
influences, resulting in potential variances in concrete quality [2]. The basic
composition of conventional concrete is predominantly characterized by the
amalgamation of primary constituents: Cement, fine and coarse aggregates,
and water. However, advancements in concrete technology have underscored
the integration of supplementary cementitious materials to optimize specific
mechanical and rheological properties. Materials such as fly ash, silica fume,
blast furnace slag, and superplasticizers, when judiciously incorporated into
the mix, can enhance both the compressive strength (CS) and the workability
of concrete. This yields, e.g., high-performance and ultra-high performance
concrete (Table 1 [3]).

Table 1: Differences between conventional (CC), high-performance (HPC), and ultra-high
performance concrete (UHPC) recipes and properties [3]. CS: Compressive strength.

Concrete type Cement Water/binder ~ Workability CS
in kg/m? in % in mm in MPa
CcC 260 — 380 0.45-0.65 - 20-50
HPC 400 - 700 <04 455 - 810 50-100
UHPC 800 — 1000 02-03 260 > 100

Concrete production presents a multitude of challenges that influence the qual-
ity and consistency of the end product. The complexity of the process is in-
fluenced by the intrinsic properties of the raw materials, the mixing conditions
and tools, the environmental factors, and the storage conditions (Figure 2).
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Traditional paradigms in concrete production modeling have predominantly
gravitated towards mix designs, emphasizing input proportions and types [5, 6].
The mere act of mixing predetermined quantities does not invariably guarantee
uniformity or the sought properties in the resultant concrete. Characteristics
of fresh concrete, such as temperature and workability, are quintessential in
predicting the final product quality [7]. Adding to this complexity, the curing
process is inherently dynamic. Adjustments made herein, be it due to exter-
nal environmental conditions or the targeted properties of the concrete, can
substantially reshape its micro-structure, and by extension, its macro-behavior.
Overlooking these complex nuances could culminate in a limited understand-
ing of the production process, potentially manifesting as inconsistencies, inef-
ficiencies, or even structural vulnerabilities [4].

The primary objective of this contribution, therefore, is to grasp the extent to
which these multifaceted factors might shape the process and discern strategies
to modulate or adapt them, ensuring reproducible outcomes. In light of these
complexities and challenges, a comprehensive framework is proposed in this
contribution to model the concrete production process. Designed to eclipse
the constraints of traditional recipe-centric models, this framework assimilates
insights from fresh concrete characteristics and delves deep into the intricacies
of the curing process. Our contribution in this work can be summarized as:

* Determining the important influencing factors on the concrete process.

* Generating data based on the Taguchi orthogonal array L-50 [8] and the
characteristics of fresh concrete.

* Adjusting different curing conditions to analyze their impact.

» Concrete process modeling based on four different approaches: Mix de-
sign, fresh concrete, curing conditions, and the entire production process,
along with analysis of the results.

In our previous study [5], it was observed that two benchmark datasets, which
neglected to consider environmental, mix process, and curing conditions in
their content, exhibited distinctive behaviors when modeled using data-driven
algorithms. In this paper, our primary focus is to analyze the exact impact of
these omissions on modeling the concrete production process. Unlike in our
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(a) Specimens at high temperature

(c) Specimens under water (d) Specimens in plastic foil

Figure 2: Illustration of different curing conditions in the concrete production process

previous work where multiple data-driven algorithms were compared, only the
Gradient Boosting method will be used in this study to discern the effects of
different modeling approaches.

2 Traditional Data-driven Concrete Modeling

Concrete quality estimation models largely fall into traditional models and
machine learning approaches. The well-known Abram’s law [9] relates the
water-cement ratio (W /C) to the compressive strength (CS) after 28 days:

by

CS= bW7’ (D

2
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where by and b, are empirical constants. Enhancing this, Zain et al. [10]
introduced multiple linear regression, yielding

w
CS=by+b15 +b1CA+b3FA+C. )

Here, W denotes water volume, C represents cement, CA stands for coarse
aggregate, and FA signifies fine aggregate. However, both methodologies ne-
glect the ambient influences, mixing conditions, and the influence of the fresh
concrete characteristics and curing conditions.

Modeling the concrete production process using traditional algorithms is chal-
lenging due to the many partially known effects on CS. Ling et al. [11] found
that among Support Vector Machine (SVM), Artificial Neural Network (ANN),
and Decision Tree, SVM was the superior method for studying the impact of
environmental factors on CS. In contrast, Hoang et al. [12] determined that
Gaussian Process Regression outperformed both ANN and SVM in estimating
CS. Ensemble learning regression, however, provided the most accurate results,
as indicated by [13]. Nevertheless, these studies overlook the properties of
fresh concrete and curing conditions in their models.

Ozbay et al. [14] explored the mix proportions of high-strength self-compacting
concrete using Taguchi’s L-18 experimental design, focusing on six pivotal
factors to achieve an optimal design. Notably, their work did not consider the
potential influence of environmental factors and curing conditions on concrete
production. Safranek [15] delved into the role of the mixing protocol, particu-
larly examining the effects of mixing speed and time, in concrete production.
Their findings suggest that UHPC necessitates an extended mixing period com-
pared to its conventional counterpart to ensure uniformity. However, mixing at
too high a speed could initiate thermal consequences, which might interfere
with the chemical processes during blending. Cazacliu et al. [16] embarked on
an investigation focusing on the importance of power usage patterns during the
mixing process.

Assessing the workability of fresh concrete is vital, with the slump flow test
being a key method [7, 17]. Kemer et al. [18] refined the correlation between
yield stress and slump results. Hoang and Pham [19] employed LS-SVR for
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slump prediction. Farzampour [20] explored the relationship between environ-
mental conditions during curing, and the impact of various cement types on
concrete’s compressive strength. Their findings highlighted that both severe
weather conditions in the curing process and the water-to-cement ratio can
significantly affect concrete quality.

While various subprocesses of concrete production have been investigated,
modeling the entire process considering all major influences remains unex-
plored.

3 Holistic Concrete Production Modeling

In this contribution, a holistic modeling of the concrete production process is
presented, integrating aspects of environmental factors, mix design, fresh con-
crete properties, and curing conditions. The Gradient Boosting (GB) algorithm
[21, 22], in conjunction with recursive feature elimination (RFE) technique
[23], is employed for this purpose. The selection of RFE was based on a
comparative analysis with other standard methods, namely forward feature
selection and backward feature elimination [24]. Among these techniques,
RFE demonstrated superior performance, and as such, the outcomes of the
other methods will not be discussed further. As for the choice of GB, the
primary focus of this study is not to identify the optimal algorithm for modeling
the concrete production process but rather to discern the influence of various
factors on the final product’s quality. Both Random Forest [25] and GB were
considered in preliminary tests, with GB yielding better results. It’s noteworthy
that for techniques like RFE, only algorithms capable of inherently determining
feature importance are viable, further justifying our choice.

The developed framework operates on a computer powered by an Intel(R)
Core(TM) 19-10900X CPU with 64 GB RAM. Leave-One-Out Cross Vali-
dation (LOOCYV) [26] learning processes with random initialization are con-
ducted to validate result consistency. Subsequently, the average performance
of Gradient Boosting is reported and analyzed, based on the test data garnered
through the LOOCYV process."
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3.1 Modeling Approaches

In the context of mixing design, we refer to the specific recipes or raw material
combination, along with their desired proportions (Figure 3). This modeling
approach (MA 1) also encompasses the optimal mixing approach, including
the appropriate speed and duration for mixing. The second modeling ap-
proach (MA 2) evaluates only the fresh concrete properties. Additionally,
this modeling approach takes into account the average power consumption
during the mixing process. The distinction between mixer adjustments (speed
and duration) and average power consumption stems from two main factors.
Firstly, mixer adjustments are controllable variables influenced by the type of
raw materials, concrete type, and the desired attributes of the end product.
Secondly, once water is introduced to the mixture, the subsequent mixing
and the corresponding average power consumption after that offer insights
into the rheological characteristics of fresh concrete. Because of that, mixer
adjustments are analyzed in the first modeling approach (mix design), and
average power consumption is examined in the second one. Unlike the second
modeling approach that considers only the fresh concrete properties, in the
third approach (MA 3), the effects of fresh concrete properties together with
curing conditions are investigated (Figure 3).

During evaluation, the accuracy of the GB algorithm is assessed in the RFE
process by selecting different numbers of features (3, 4, 5, 6, and 7) for three
distinct modeling approaches. As fourth modeling approach (MA 4), a holistic
approach integrates all modeling approaches to model the concrete production
process (Figure 3). In this comprehensive attitude, the optimal number of
features (3, 4, 5, 6, and 7) is re-evaluated using RFE to gauge the performance
of the GB algorithm. The results for each phase are then analyzed to determine
the most effective combination of factors from both modeling approaches for
predicting concrete quality after a curing period of 28 days.

3.2 Recursive Feature Elimination

Recursive feature elimination is a method designed to address the issue of fea-
ture selection for machine learning algorithms. By training a model iteratively
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Figure 3: Illustrating the holistic approach from raw material selection to the curing process,
emphasizing mix design, fresh concrete properties, and curing conditions.

and eliminating systematically the least important features in each iteration,
RFE ensures that only the most impactful features are retained. Gradient
Boosting, by its nature, assigns feature importances based on how often a
feature is employed to split the data across all trees. This ability makes GB
an appropriate choice for RFE, as it can objectively rank features and provide
a clear criterion for elimination. This recursive process continues until the
desired number of features is retained (Algorithm 1).

3.3 Gradient Boosting Algorithm

Gradient Boosting is a machine learning algorithm that aims to construct a
robust predictive model by iteratively building a series of weak learners. Typi-
cally, these learners are decision trees. The algorithm iterates by adjusting the
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Algorithm 1.: Recursive Feature Elimination with Gradient Boosting

1: Input: Training data X € RV*P with N samples and D features, targets y € RV,
Gradient Boosting model, desired number of features to select k
2: Output: Selected feature set S

3: Train the Gradient Boosting model on all features in X to obtain feature importances
1.

4: S+ {1,...,D} > Initialize feature set with all features

5:n+D > Initialize with total number of features

6: while n > k do

7: Remove the feature with the lowest importance from S and corresponding entry
from 1.

8: Retrain the Gradient Boosting model on features in S to obtain updated
importances /.

9: n<n—1

10: return Feature set S with the k top important features

weights of incorrectly predicted instances, ensuring that the following weak
learner focuses more on these challenging instances. The entire process is
governed by a predefined loss function, which the algorithm seeks to minimize
(Algorithm 2).

4 Experiment Design, Data Collection, and Data
Preprocessing

4.1 Controllable Influencing Factors

In order to achieve uniform quality and reproducibility in concrete production,
identifying variables that affect consistency is crucial. This includes factors
like mixing procedures, storage conditions, the presence of admixtures, and
environmental influences, such as temperature and humidity. Tables 2 and 3
list the key factors that were chosen from an initial pool of 25 factors. In this
study, cement is categorized as Cement-reactivity-class = 1 if it had been stored
for long periods (more than one year), and as Cement-reactivity-class = 2 if it
had been shortly stored (less than 3 months). Table 3 also detailed two curing
scenarios: Storage-conditions-1T/C (first day storage conditions after mixing)
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Algorithm 2.: Gradient Boosting Algorithm

1: Input: Training data X € RV*P with N samples and D features, targets y € RV,

Number of boosting rounds M. L(y;,7): Loss function measuring the discrepancy

between the true target y; and prediction 7.
2: Output: Final boosted model Fy;(x)

3: Initialize the model with a constant (mean value):

N
Fo(x) = argmin Y L(i.v)
i=1
4: form=1to M do
5: for each data point i do
6: Compute the negative gradient (pseudo-residuals):

_ 9L F(xi)
i F(x)=Fy1(x)
7: Fit a weak learner Ay, (x) to pseudo-residual using {x;, rjm }
8: Compute multiplier:
N
Y = argmin Y L(yi, Fu—1(x;) + Yhm (%))
Y ooi=1

9: Update the model:
Fin ()C) =Fu1 (x) + Yinhm (x)

10: return Fiy(x) = Fo(x) + X M_ | Yl (x)

and Storage-conditions-28T/C (storage from day 2 to 28). During the first day,
concrete was stored at 95 % humidity (Storage-conditions-1C = 1) or at 40
% humidity (Storage-conditions-1C = 2). From days 2 to 28, it was kept at
40 % humidity (Storage-conditions-28C = 1) or submerged in water (Storage-
conditions-28C = 2).  Given the costly and time-consuming nature of data
collection in concrete production, 50 experiments were planned. Considering
the factors detailed in Tables 2 and 3, and the constraints of the maximum
number of experiments, the Taguchi Orthogonal Array L-50 was employed for
data generation. The Taguchi Orthogonal Array ensures data robustness and
an equal distribution of data points [8]. After curing for 28 days, the CS of the
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Table 2: Factors of mix design: In this investigation, factor values span a range, represented by
their designated levels (L: Level). For each category, two distinct aggregates are utilized:
coarse and fine. These aggregates are labeled as type I and II within their categories.

Factor | Abb |Unit| L1 | L2 | L3 | L4 | L5 |

Cement reactivity class| CRC | - 1 2 - - -

kg |3.042 |2.925|3.159 | 3.276 | 3.364
(%) | (4 %) | (0%) | (8 %)|(12 %)|(15 %)

Ingredient temperature | IT °C 10 20 25 30 40
Coarse aggregate [ | CA-I | kg | 6.900 | 6.000 | 5.400 | 6.300 | 5.100
Coarse aggregate II | CA-II| kg | 8.925|10.500({11.550| 9.975 |12.075
Fine aggregate I FA-I | kg |5.100 | 6.000 | 6.600 | 5.700 | 6.900
Fine aggregate 11 FA-II | kg |0.863 |0.750 | 0.675 | 0.788 | 0.638
Superplasticizer SP | kg |0.290 | 0.323 | 0.306 | 0.355 | 0.339
Graphite GP | kg |0.045]0.000 | 0.090 | 0.135 | 0.225

Mixing speed MS |rad/s| 200 | 350 | 500 | 350 | 350

Mixing duration MD S 300 | 300 | 300 | 210 | 480

Ingredient moisture M

specimens was determined using a destructive method. For each experiment,
six specimens were tested, i.e. a total of 300 specimens were produced.

4.2 Fresh Concrete Properties

After each mixing process, the properties of fresh concrete are measured. A
comprehensive overview of the general characteristics of each property can be
found in Table 4. Fresh concrete temperature depends on the concrete mix con-
dition [15], environmental factors, and raw material temperatures. Chemical
reactions, notably cement hydration, can affect temperature too. High temper-
atures reduce workability, and low temperatures can extend setting times.

The air content test gauges the volume of air in fresh concrete as a percentage
of its total volume, affecting durability and strength. While higher air content
enhances workability and freeze-thaw resistance, it diminishes compressive
strength.The average power consumption in concrete production indicates the
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Table 3: Factors of the Curing Process: In this investigation, curing condition factors vary across
a range, represented by their designated levels. The numbers before T and C denote the
curing period in days. (T: Temperature; C: Class; L: Level)

Factor Abb |Unit| L1 | L2 | L3 | L4 |L5 |
Storage-conditions-1T | SC-IT | °C | 20 20 10 30 | 40
Storage-conditions-1C | SC-1C - 1 2 2 2 2
Storage-conditions-28T| SC-28T | °C | 20 20 10 30 | 40
Storage-conditions-28C| SC-28C | - 1 2 2 2 2

mean power utilized for mixing raw materials and overcoming mixture resis-
tance throughout the entire duration of the process. Environmental factors and
mixer properties can influence the average power needs. Similarly, chemical
reactions, notably between water and cement, can modify the average power
demands. High average power consumption might hint at issues like insuffi-
cient water, while low average power may suggest a weak mix. Electrical con-
ductivity in fresh concrete reflects largely the ionic content in the liquid phase.
This property can indicate the water-to-cement ratio, vital for workability and
durability.

The slump flow test evaluates the flowability of fresh concrete, particularly
for fluid mixes like self-compacting concrete. Concrete is placed in a slump
cone with an outlet diameter of 120 mm. When the cone is lifted, the concrete
spreads, and after t = 30, 60, and 120 seconds, the diameter of the spread
gives the slump flow test value [7]. High values suggest increased flowability,
which can lead to issues like segregation, while low values might pose place-
ment challenges. The funnel runtime assesses the flowability of fresh self-
compacting concrete by timing its flow through a V-shaped funnel. Extended
funnel times indicate workability concerns, while short times indicate risks like
segregation or bleeding.

4.3 Data Preprocessing

In data preprocessing, steps were taken to ensure data integrity. Manual checks
are conducted to verify the absence of outliers. The L-50 Taguchi Orthogonal
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Table 4: Observed Quantities Related to Fresh Concrete

Factor | Abb | Unit | Min | Mean | Max | STD |

Fresh Concrete Temp. | FCT | °C 17.60 25 3190 | 3.94

Air Content AC % 0.40 1.93 7 1.53

Average Power PC | kW | 037 | 090 | 140 | 0.4
Consumption

Slump Flow SF | mm 120 | 32733 | 395 | 53.36

Conductivity CD v 4.54 4.62 4.74 0.05

Funnel Runtime FR S 4 8.05 15 2.69

Array minimizes collinearity risks, and no issues were found. Six missing
values in the fresh concrete characteristics led to the exclusion of related ex-
periments. As a result of excluding the related experiments due to the six
missing values in the fresh concrete characteristics, the analysis is based on the
remaining 44 datapoints. In the project, min-max normalization was chosen
due to the presence of varied scales and feature types, the absence of negative
values, and the lack of outliers. Additionally, the use of the Taguchi Orthogonal
Array inherently facilitated the application of min-max normalization to ensure
consistent interpretation across all factors. If X € RV*P, each entry can be
denoted as X;;, where i ranges from 1 to N and j ranges from 1 to D:

I X,'jfminj(X)
Y max;(X)—min;(X)

3)

4.4 General setting for experiments

In the 50 experiments, the same mixing tool is employed (Figure 1). Envi-
ronmental conditions for material storage and production are controlled, mit-
igating seasonal influences. All experiments utilized a single material batch
for consistent properties. Both the old and new cement were of the same type
and originated from the same factory, and production conditions. The mixer
chamber temperature was measured before each experiment. Given that the
laboratory’s ambient temperature was consistently maintained at 20 °C, the
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Figure 4: Comparing the prediction accuracy of Gradient Boosting across different modeling
approaches (MAs) and also the number of features to be selected by REF. The barplot
succinctly illustrates the average performance on the test data, derived from 44 LOOCV
iterations. (MA 1: Mix Design, MA 2: Fresh Concrete Properties, MA 3: Fresh Concrete
Properties & Curing Conditions, MA 4: Entire Concrete Production Process)

mixer chamber temperature was also close to 20 °C. As a result, this factor did
not introduce any variability into the process.

5 Results and Discussion

In this study, the prediction accuracy of Gradient Boosting under four modeling
approaches and the number of features selected (either three, four, five, six,
or seven) by RFE are analyzed (Figure 4). The objective is to find the com-
binations of influencing factors from the entire concrete production process
that would result in optimal model accuracy. When comparing the prediction
accuracy of the models using the same number of selected features across the
four modeling approaches (Figure 4), model training on the entire concrete
production process consistently yielded the lowest MAE for all modeling ap-
proaches. Specifically, utilizing the complete concrete production process with
six features yielded the most accurate results, achieving an MAE of 6.65. The
mix design consistently exhibited the largest error, indicating that this subset
of data might not be as informative for predictions compared to either the fresh
concrete and curing conditions data or the comprehensive data from the entire
process. In summary, adding more features doesn’t always guarantee enhanced
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performance across all modeling approaches. The data underscores the need
for careful feature selection. In the evaluation of feature contribution frequency
across the considered modeling approaches, distinct patterns emerged (Figure
5). Within the mix design modeling approach, Ingredient-temperature (44
times) and Mixing-duration (44 times) distinctly stood out, highlighting their
central role in modeling the recipe. Additionally, Superplasticizer (40 times),
Mixing-speed (41 times), and Graphite (36 times) are of notable significance,
reinforcing their essential roles in the mix design modeling approach. Con-
versely, Cement-reactivity-class (1 time) and Coarse-aggregate-II (2 times)
showed minimal importance.

Although the modeling approach was based on fresh concrete data, it isn’t
elaborated upon in the discussion. This is due to the fact that only 6 fresh
concrete features exist, which matches the number of inputs selected in the
considered modeling method. In the fresh concrete properties and curing con-
ditions modeling approach, average Power-consumption (44 times), Storage-
conditions-28-T (44 times), and Storage-conditions-1-T (44 times) are consis-
tently selected, emphasizing their significant roles in the modeling. Further-
more, Fresh-concrete-temperature (42 times) and Air-content (41 times) made
significant appearances, underscoring their relevance. In contrast, electrical
conductivity and Slump-flow are less influential.

In the entire concrete production process, the terms average Power consump-
tion, Fresh-concrete-temperature, and Storage-conditions-28T each appeared
44 times, underscoring their critical roles. Storage-conditions-1T (43 times)
and Superplasticizer (38 times) also held significant positions. However, fea-
tures like electrical conductivity (1 time), Funnel-runtime (8 times), Air-content
(12 times), and Slump-flow (2 times) are less prominent. To culminate, when
examining combinations for a comprehensive representation of the concrete
production process, the data from the entire process suggest that average Power-
consumption, Fresh-concrete-production, Storage-conditions-28T,
Storage-conditions-1T, Superplasticizer, and Graphite are the most vital. This
combination promises a comprehensive and accurate modeling of the concrete
production process.
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Figure 6: Illustrating the percentage importance of features selected for predicting the compressive
strength of concrete, as determined by the chosen GB algorithm, using six inputs and
the entire concrete production process as the modeling approach. The SC-28T feature
exhibits the highest importance. SC-28T: Storage-conditions-28T, PC: Average Power
Consumption, SC-1T: Storage-conditions-1T, FCT: Fresh Concrete Temperature, SP:
Superplasticizer, GP: Graphite

In Figure 6, a detailed breakdown of the feature importance is presented. This
breakdown was determined from a model that was identified from a series of
models trained using various approaches based on LOOCV. Among all these
modeling approaches, the one that delivered the best accuracy performance
was selected. Within this chosen approach, several models were generated due
to the nature of LOOCV. From these models, the one exhibiting a performance
closest to the average performance over LOOCV was selected. The feature
importances displayed in Figure 6 are derived from this specific model. The
chart illustrates that the feature Storage-conditions-28T is of the highest impor-
tance, contributing 55 % to the decision-making process of the model. This is
followed by average Power-consumption at 15 %, with the remaining features
each contributing less than 11 %. In general, that means during the monitoring
of the concrete production process, from mix design to the final fresh concrete
state, one can predict the eventual quality of the end product. If this predicted
quality falls short or is not up to the desired standard, modifications can be
made to the curing conditions. By implementing these suitable adjustments, it
becomes feasible to achieve the desired quality for the final product, ensuring
that the concrete aligns with or surpasses the established benchmarks.
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6 Conclusion and Future work

In our previous study [5], it was observed that two benchmark datasets, which
neglected to consider environmental, mix process, and curing conditions in
their content, exhibited distinctive behaviors when modeled using data-driven
algorithms. The presented research underscores the intricacies inherent in the
concrete production process and the significance of incorporating mix design,
fresh concrete properties, and curing conditions to enhance predictive models
for UHPC quality. With this perspective in mind, modifications can be made to
the curing conditions. By implementing these suitable adjustments, it becomes
feasible to achieve the desired quality for the final product, ensuring that the
concrete aligns with or surpasses the established benchmarks.

This contribution also emphasizes that it is not necessary for modeling to
measure all factors in the concrete production process. This insight is par-
ticularly valuable for concrete plants, considering the costs associated with
sensors and the monitoring process. This investigation identified the crucial
factors pivotal in enhancing the predictive model’s precision, namely: aver-
age Power-consumption, Fresh-concrete-temperature, Storage-conditions-28T,
Storage-conditions-1T, Superplasticizer, and Graphite. However, it’s worth
noting that this study was conducted under laboratory conditions. In a real
concrete plant, the situation might differ. For instance, controlling the curing
process is tough. Wear of the mixing tools and outdoor storage of raw materi-
als, especially before mixing in harsh weather, can impact product quality.

For our subsequent steps, we aim to generate more data and delve deeper into
modeling the concrete production process.
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