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1 Introduction

Nonlinear state space models are powerful model architectures for system iden-
tification. They provide the necessary flexibility for the description of nonlin-
ear dynamic processes while still maintaining in a quite compact respresen-
tation. Typically, the data-driven state space models are black-box models, a
fact that causes shortcomings regarding interpretability [9]. Since the modeling
performance is satisfying and competitive to recurrent neural networks [5], we
strive for an increase in interpretability. Interpretability in terms of physical
insights can be achieved by the incorporation of prior process information.
This leads to a gray-box identification strategy. Eventually, the goal of this
contribution is to combine both modeling power and the interpretability of its
parameters.

Gray-box methods require prior process knowledge besides measurement data.
Prior knowledge can be available in different forms. This work studies the
case in which the process structure is a priori known in form of a physical
equation. If a structured identification is carried out, the model is forced into
an explainable form. Then, both the modeling task and the interpretability
problem are solved. The central idea of the proposed method is the reduction
of the model parameters down to the physically required number.
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An advantageous architecture for the structured identification is the Local Model
State Space Network (LMSSN), developed by Schiissler [6]. Its local linear
behavior supports the desire for interpretability, because the well-known foun-
dations of linear system theory can be applied.

2 Gray-Box Modeling with the Local Model State
Space Network

LMSSN is an extension of the linear time-discrete state space for modeling
nonlinear processes. Detailed information about LMSSN can be found in [6].
On the one hand, it can be seen as a state space framework in which the
multidimensional nonlinear functions in the state and output equations are
implemented with two Local Model Networks (LMN) [1]. On the other hand,
it can be seen as a deep neural network consisting out of one recurrent layer
and a dense layer. Expressed with the above mentioned LMNSs, a single-input
single-output LMSSN of order n, with the input u(k), the state £(k) and the
output (k) is defined by

Nstate

k+1) =Y (& +AW3(Kk) + B u(k)) - Dy (K)
j=1
Nout

$(k) =Y (pj+cji(k) +du(k)) - Pouj (k).

J=1

€]

Here, Q&d] is the offset of the state equation, Ag-d] and di] can be interpreted

as the slopes of the j-th model of the state equation. Accordingly, B[]_d] is

the offset of the output euqation and ggd] and dg-d] are the slopes of the j-th
model of the output equation. (The superscript (-)[4! marks the discrete-time
description.) There are altogether ngy,ee superposed affine models in the state
equation network and 7, in the output equation network. The basis functions
®;(k) express the j-th local validity. They are realized with normalized Gaus-
sians and generate a global nonlinear function by superposition of the local
affine models. Due to the fact that these local state space models are fully-
parameterized, LMSSN is a black-box model.
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In the following, the steps of structured identification are presented. The pro-
cedure requires a novel initialization technique for LMSSN models. Nor-
mally, LMSSN is initialized as a linear state space model, before it is di-
vided into serveral local models with the help of the Local Linear Model
Tree (LOLIMOT) or the Hierachical Local Model Tree (HILOMOT) algo-
rithm [1]. The initial model for this tree-construction algorithm is the Best
Linear Approximation (BLA) of the process estimated from input-output data
{u(kTy),y(kTp)}. Tt is generated via a subspace-based system identification
method [2] and results in a linear fully-parameterized model. If the model
is restructured and restricted, it leads to a linear gray-box model. With the
help of LOLIMOT, a nonlinear gray-box model is then derived by splitting
the extended input space i = [£,u]T and adding local models. Note that the
structure of the initial model is kept as splitting progresses and it is passed
to the local models generated by LOLIMOT. The restructuring step will be
described more closely in the following. Figure 1 shows the workflow for
gray-box structured identification.

Canonical state space forms like the Canonical Controllable Form (CCF) are
easy to achieve via similiarity transformations [8]. An arbitrary gray-box struc-
ture requires a more sophisticated restructuring strategy because the transfor-
mation can not be calculated directly. Therefore, three possible methods are
stated. A nonlinear unconstraint optimization with an additional penalty term,
called Penalty Method (PM) [7] can force the free parameters to their desired
values. Alternatively, a classical gray-box technique is the Prediction Error
Method (PEM) [6]. It uses hard constraints for implementation of the known

parameters 6

0., by placing them in the model. Here, the fully-parameterized

black-box model based on BLA is only necessary for initialization. Another
alternative is to estimate a specific transformation matrix that leads to the
desired state space form [4].

After the restructuring step, only the free parameters will be optimized while
the constrained parameters are kept "frozen". In the following step, LOLIMOT
generates a nonlinear global model by partitioning #. Finally, the described
procedure yields a nonlinear model containing the desired gray-box structure.
As a post-processing step, the physical parameters can be extracted, which is
useful for analysis and gives insights into process.

Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023 83



> Parameter Set

Py Dataset

Model Structure
Process

Data

Best Linear
Approximation

Uéfull

Restructuring —f-0

éstr U ;

LOLIMOT
+

anpnig

Optimization of
Free Parameters

N .| Parameter
Otr nonlin L— —] Extraction

Gray-Box Model

Physical
g Parameters: 6,

y(t)

Figure 1: Structured identification procedure. ~The BLA yields the parameter vector qu".
For restructuring the constraint parameters 6.,,, and their indexes are used. The
structured parameters are in the vector 6, while the parameters of the nonlinear

model are in Qslr’mnhn. The parameter extraction decodes 8, yoniin to the interpretable

parameters 6.

3 Test Process

The proposed structured LMSSN is demonstrated on simulated data from a
mechanical system which is a moving body with a single degree of freedom.
The system’s input u(¢) is the excitation force acting on the center of gravity
while the output y(r) is its position:

My(t)+Dy(t)+ Fs(y) =u(r).
——

=Fyfp(e?r—1)

2
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Here, the body’s mass is M and the linear damping ratio is D. A static progres-
sive spring curve Fs(y) leads to a nonlinear equation of motion. The stiffness
characteristic is parameterized with the curve offset Fys and the exponential
stiffness rate . For the excitation of the system, a step-like signal containing 96
events with random levels in the interval [0 N; 1 N] is chosen. The numerical in-
tegration of the equation of motion, necessary for output calculation, is carried
out with the Euler-forward method. After data generation, the output signal
was artifically disturbed with additive white Gaussian noise with an signal-to-
noise ratio of 49 dB.

Next, we state the specific prior knowledge of the process (see (2)) required
for gray-box identification. In the present case, the gray-box knowledge is the
information that the process can be approximated by a second order system
whose numerator equals one (PT, system'). This knowledge is applied to
the model. A favorable structure for the above mentioned task is a Nonlinear
Controllable Form (NCF). Compared to CCF, the initial NCF has an additional
offset in the state equation. The NCF is written as

x<r>=[ o 1

x(t) +
6free,l efree,Z ( )

A(eree ) b Q(eree ) (3 )
Y(t) = [GfreeA 0} E(t) =+ {O} ”(t) + [O} .
—_— -~
QT(eree) d p
For the sake of completeness, the linear case relations are stated as
C D
6frce,l = T35 6free,2 it
9free,3 = 07 9free,4 = _M-

Here, C = const. is the stiffness of a hypothetical linear spring.

! A PT;, system is a second order transfer function without zeros.
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4 Parameter Extraction

The final step is the interpretation of the model parameters in a physical man-
ner, compare Fig. 1. Regarding the nonlinear equation, these are the body’s
mass, damping ratio and stiffness. The parameter extraction is able to deliver
the spring force Fg (y) as a function dependent on the position y. Since we
modeled with local affine functions, we find Fs(y) as the weighted sum of 7y
local affine stiffness functions ﬁafﬁnevi(y), as

nim

Fs(y) =Y. Fattinei () Pi(y)
i=1

LM .
=) (Giiniy + Cofr,i) ) Pi(y)-

i=1

®)

Here, C‘lin’i is the linear stiffness and C\‘Off’i the offset of the i-th local stiffness
model. With (3), we can extract élin’i and CAOH’[ from the estimated model

parameters
. 0, R
Gini=——=, Cori = —0s,. (6)
04

Alternatively, the function 6 (y) which describes the variation of the parameter
6, with ¥(t) can be constructed from (5) and (6) as weighted sum,

ny

61(y) = ' 6, i(y). (N

£

Il
-

The left side of Fig. 2 visualizes the extracted validity functions and ().
Additionally, on the right is the true spring curve plotted, which has been fitted
accurately by the LMN.
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Figure 2: Local Linear Stiffness

5 Conclusion

This contribution emphasized that a nonlinear data-driven state space model
with physically inspired structure is able to combine interpretability with high
performance. Furthermore, computational resources can be preserved com-
pared to an unstructured black-box model because the gray-box model contains
less parameters that have to be optimized.

We are able to demonstrate our apporach on a widely known but simple exam-
ple process. Next, our gray-box method shall be expanded on more complex
processes like the Bouc-Wen hysteresis benchmark.
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