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Abstract

This paper presents the derivation of the equations of motion of a 3-DOF
gyroscope with a pendulum attachment through the Euler-Lagrange approach,
followed by a conversion into a Takagi-Sugeno Fuzzy Model. First, suitable
coordinate frames and generalized coordinates are defined, followed by the
definition of the kinetic energy of each body frame of the gyroscope. Next,
the kinetic and potential energy of the pendulum attachment is described. The
derived equations of motion are then validated by simulation and compared
to the behavior of a testbed system (see Figure 1). The conversion to the
Takagi-Sugeno fuzzy model is done by a weighted combination of locally valid
linear models. A set of adequate premise variables and membership functions
represent the nonlinear system. Finally, a controller synthesis through parallel
distributed compensation and LMIs satisfying local quadratic Lyapunov func-
tions is conducted and validated by simulation.

1 Introduction

The aim of this paper is to derive and validate the equations of motion of a
"Control Moment Gyroscope" (CMG) with 3 degrees of freedom, extended by
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Figure 1: Testbed system

a pendulum attachement, similar to the testbed used in [1]. For the derivation,
the modeling approaches of the CMG from [2] and the modeling approach of
the Furuta pendulum in [3] are combined. The derived equations of motion are
augmented with friction terms and validated using measurement data from the
real testbed. Subsequently, the developed equations of motion are transformed
into a Takagi-Sugeno formulation, and a Parallel Distributed Compensation
(PDC) controller is derived using Linear Matrix Inequalitys (LMIs) to enforce
closed-loop-dynamic constraints.

2 Methods

2.1 Nomenclature

The Notation in this Paper is as follows. Vectors are written italic with an
underline x, Matrices A bold and scalars s italic. Furthermore, ≺ and ≻ in-
dicate negative and positive definiteness, respectively. E indicates the identity
Matrix.
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Figure 2: System sketch of the CMG Furuta Pendulum with 3 Degrees of freedom, the body
frames, D,G,F,P and the reference frame N. For clarity the origins of the coordinate
systems (except the Pendulum) are depicted with an offset.

2.2 Modelling

The CMG pendulum system in Figure 2 is described using five body frames,
namely Disk (D), Gimbal (G), Frame (F), Pendulum (P), and the fixed refer-
ence frame (N). The coordinate systems are defined using the normal vectors
e j

i with i = x,y,z as axes and j = D,G,F,P,N as the associated body frame.
The reference system N is chosen to be stationary, so that relative movements
of the other reference systems in N constitute to an absolute velocity. The
torques acting on the body frames are denoted as τn with n = 1,2,3,4 along
the corresponding rotational axis following the right hand rule.

Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023 91



The modelling of the CMG part of the overall system follow [2]. Therefore the
generalized coordinates are chosen as:

q := [q1, q2, q3, q4]
⊤

q̇ := [q̇1, q̇2, q̇3, q̇4]
⊤

q̈ := [q̈1, q̈2, q̈3, q̈4]
⊤ ,

(1)

whereas q1 represents the disk position about eD
y , q2 represents the gimbal

position about eG
x , q3 represents the frame position about eF

z , and q4 represents
the pendulum position about eP

x . The controllable inputs of the system are the
torques τ1 and τ2. Disturbance torques are τ3 and τ4. All torques are combined
into the vector

τ := [τ1, τ2, τ3, τ4]
⊤ (2)

The positive rotation directions of all coordinate systems follow the right-hand
rule. Friction terms will be added at a later time. The center mass of the
coordinate systems describing the CMG are assumed to be at the center of
the disk. The mass center of the pendulum, denoted as mP, has an effective
pendulum length of lP. The distance from the pendulum coordinate system’s
rotation axis to the frame’s rotation axis is L1. The moments of inertia of
the bodies around different coordinate axes are represented in tensor form to
calculate the kinetic energies for the Lagrange function.

ID
D =

JDxx 0 0
0 JDyy 0
0 0 JDzz

 , IG
G =

JGxx 0 0
0 JGyy 0
0 0 JGzz


IF

F =

JFxx 0 0
0 JFyy 0
0 0 JFzz

 , IP
P =

JPxx 0 0
0 JPyy 0
0 0 JPzz


(3)

For the later description of the rotational positions of the bodies relative to
each other rotation matrices are used. By combining the rotation matrices it
is possible to represent all positions of the bodies in relation to the reference
coordinate system. The rotation matrices Ri around the coordinate axes i =
x,y,z of the reference coordinate system are defined as follows:
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Rx(q j) =

1 0 0
0 cos(q j) −sin(q j)

0 sin(q j) cos(q j)


Ry(q j) =

 cos(q j) 0 sin(q j)

0 1 0
−sin(q j) 0 cos(q j)


Rz(q j) =

cos(q j) −sin(q j) 0
sin(q j) cos(q j) 0

0 0 1



(4)

Here, the notation Ri
j is introduced, which describes the rotation of the coordi-

nate system j with respect to i.

RG
D = Ry(q1)

RF
G = Rx(q2)

RN
F = Rz(q3)

RF
P = Rx(q4)

(5)

By multiplying the rotation matrices accordingly, it is possible to describe the
rotation of any desired coordinate system of the CMG pendulum relative to the
reference coordinate system.

RN
D = RN

F RF
GRG

D (6)

With the rotation matrices, it is possible to represent the angular velocities of
the different bodies in the reference coordinate system.

ω
N
N,F = [03×1 03×1 ZN

N 03×1]q̇ (7)

ω
N
N,G = [03×1 XN

F ZN
N 03×1]q̇ (8)

ω
N
N,D = [Y N

G XN
F ZN

N 03×1]q̇ (9)
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with the rotational descriptions

ZN
N = eN

z

XN
F = RN

F eN
x

Y N
G = RN

GeN
y

. (10)

The matrices describing the rotations in (7), (8), and (9) are hereafter denoted
as JN

N,k. Here examplary for the disk.

JN
N,D = [Y N

G XN
F ZN

N 03×1] (11)

Additionally, the set of coordinate systems S = D,G,F is defined. From this,
the kinetic energy TCMG(q, q̇) of the CMG part of the overall system can be
defined as:

TCMG(q, q̇) =
1
2 ∑

k∈S
q̇⊤
[(

JN
N,k
)⊤RN

k Ik
k
(
RN

k
)⊤JN

N,k

]
q̇ (12)

The description of the kinetic energy of the pendulum follow [3]. The linear
velocity vP and angular velocity ωP of the Pendulum are described separately
and then combined. First the angular velocity of the pendulum arm is deter-
mined as follows:

ωP = RF
P ·

 0
0
q̇3

+
q̇4

0
0

=

 q̇4

−q̇3 sin(q4)

q̇3 cos(q4)

 (13)

The linear velocity vP of the pendulum arm is composed of the translational
velocity of the pendulum joint

v2 = RF
P
(
ω

N
N,F × [L1, 0, 0]⊤

)
=

 0
cos(q4)L1q̇3

sin(q4)L1q̇3

 (14)

94 Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023



and the translational velocity of the pendulum center mass

vb,m = ωP× [ 0, 0, lP]⊤ =

−sin(q4)lPq̇3

−lPq̇4

0

 (15)

which results in

vP = v2 + vb,m =

 −sin(q4)lPq̇3

cos(q4)L1q̇3− lPq̇4

sin(q4)L1q̇3

 . (16)

The kinetic energy of the pendulum is then given by

TP(q, q̇) =
1
2

(
v⊤P (mPE3×3)vP +(ωP)

⊤IP
PωP

)
, (17)

where E represents the identity matrix. Since the pendulum has potential
energy, and the reference height is chosen at q4 = π (hanging pendulum), the
potential energy of the Pendulum VP is

VP(q) = g ·mP · lP(1+ cos(q4)) (18)

With the kinetic and potential energy of all bodies, the Lagrangian can be
formulated as

L (q, q̇) = TCMG(q, q̇)+TP(q, q̇)−VP(q) . (19)

Now, the equations of motion can be derived using the Euler-Lagrange formal-
ism:

d
dt

(
∂L (q, q̇)

∂ q̇

)
−

∂L (q, q̇)
∂q

= τ (20)

Due to the total number of bodies, four moving equations are derived describ-
ing the acceleration of the different bodies.
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For the formulation of the Lagrangian from (19), the Symbolic Toolbox in
MATLAB is used, and the Euler-Lagrange equations were derived according to
(20) using the community function "EulerLagrange".

2.3 Takagi-Sugeno System

The TS-Model is constructed via local linearization; therefore, consider the
nonlinear system

ẋ = f (x,u)

y = h(x)
(21)

Through the first-order Taylor Series Expansion, we obtain the matrices

Ai =
∂ f
∂x

∣∣∣∣
c

Bi =
∂ f
∂u

∣∣∣∣
c

Ci =
∂h
∂x

∣∣∣∣
c
, (22)

where c describes the linearization point. We then formulate the TS-System,
where all linear submodels are blended into each other by the membership
functions hi(z)

ẋ =
Nr

∑
i=1

hi(z)
(
Aix+Biu+ai

)
y =

Nr

∑
i=1

hi(z)Cix+ ci

(23)

where z denotes the vector of premise variables that determine which model
is active at any given time, Nr is the number of linearization points [4]. The
membership functions hi(z) are chosen to be triangular and fulfill the properties
1 ≥ hi(z) ≥ 0 and ∑

Nr
i=1 hi(z) = 1. Each submodel i represents the nonlinear

system at the linearization point c to 100%, i.e., if h1 = 1, only the submodel
ẋ = A1x+B1u+ a1 would be active and represent the current dynamics fully
[5]. The affine terms ai and ci of non-equilibrium linearization points are
computed as follows:

ai = f (xc,uc)−Aixc−Biuc

ci =h(xc)−Cixc

(24)

96 Proc. 33. Workshop Computational Intelligence, Berlin, 23.-24.11.2023



It is noted here that, for simplicity reasons, the affine terms are neglected for
controller synthesis.

2.4 Parallel Distributed Compensation

The fuzzy controller formulation is done in a similar manner as the TS-Model
by utilizing local controller gains for each linearization point c and blending
these together with the membership functions hi(z) of the model as the premise
variables z change [6].

u =−
Nr

∑
i=1

hi(z)Kix (25)

Augmenting (25) into (23) and neglecting the affine term ai yields the closed-
loop TS-System of the form:

ẋ =
Nr

∑
i=1

Nr

∑
j=1

hi(z)h j(z){Ai−BiK j}x (26)

Which can be written in compact form:

ẋ =
Nr

∑
i=1

Nr

∑
j=1

hi(z)h j(z)Gi jx (27)

2.5 Controller Synthesis via LMIs

For controller synthesis, the local quadratic Lyapunov functions are applied:

Vi(x) = x⊤Pix (28)

V̇i(x) = ẋ⊤Pix+ x⊤Piẋ (29)

where Pi is a symmetric, positive definite matrix. To find controller gains, we
augment (29) with (27) and define Pi = X−1

i and K j = MiX−1
i as for each

local controller j the LMIs are solved independently thus i = j for controller
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synthesis. The requirements for asymptotic lyapunov stability:

Vi(x)> 0, ∀x ̸= 0

Vi(x) = 0, x = 0
(30)

V̇i(x)< 0, ∀x ̸= 0 (31)

can then be expressed in LMIs which constrain convex sets in the complex
plane [7]. The so-called D-Region LMI constraint then results in the formula-
tion:

Find a matrix Xi = X⊤i ≻ 0 and Mi for a desired α ≥ 0, r > α , and θ > 0 under
the constraint:

XiA⊤i +AiXi−M⊤i B⊤i −BiMi +2αXi ≺ 0, (32)[
−rXi AiXi−BiMi

XiA⊤i −M⊤i B⊤i −rXi

]
≺ 0, (33)

[
sinθ(XiA⊤i +AiXi−M⊤i B⊤i −BiMi)

cosθ(XiA⊤i −M⊤i B⊤i −AiXi +BiMi)

cosθ(AiXi−BiMi−XiA⊤i +M⊤i B⊤i )
sinθ(AiXi−BiMi +XiA⊤i −M⊤i B⊤i )

]≺ 0 (34)

where α denotes the minimum required decay rate, r defines the radius of a half
circle toward the complex left-hand open plane with the origin in the center of
the complex plane, and θ defines the angle between the real axis and a cone
restriction toward the complex open left-hand plane [8].

As the D-Region constraint might not be ideal for the coupled dynamics of the
system (all states underlie the same decay constraints α), an optimal controller
design is pursued as well. The optimal controller LMI approach from [6] is
used, utilizing the performance function:

J =
∫

∞

0
{y⊤(t)Wy(t)+u⊤(t)Ru(t)}dt (35)
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The cost function (35) results in the minimization problem J < x⊤(0)Pix(0)<
λ with the following LMI constraints:

min
Xi,Mi,Y0,i

λ

subject to

Xi ≻ 0, Y0,i ⪰ 0, (36)[
λ x⊤(0)

x(0) Xi

]
≻ 0, (37)

Ûii +(s−1)Y3,i ≺ 0,

where s > 1
(38)

Ûii =


(

XiA⊤i +AiXi

−BiMi−M⊤i B⊤i

)
XiC⊤i −M⊤i

CiXi −W−1 0
−Mi 0 −R−1

 (39)

Y3,i = block-diag(Y0,i,0,0)

The optimization problem above is in a reduced form from [6], as stability is
only demanded for the local models and no combination of i ̸= j as well as
the relaxed stability condition where s is the maximum number of submodels
that are active at the same time. The weighting matrices W and R are chosen
constant and do not deviate for different local constraints.

For handling the LMIs, the YALMIP interface together with the solver MOSEK

is used [9],[10].
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Figure 3: State comparison between the nonlinear CMG Furuta Pendulum equations evaluated
using MATLAB’s ode45 solver and measurements of the testbed system on the top, and
RMSE errors at the bottom with q̇1 = 0 rad/s.

3 Results

3.1 Model Validation

The derived nonlinear equations of motion for the CMG Furuta Pendulum from
the Euler-Lagrange approach (20) are simulated using the parameters provided
in Table 1. The simulations are carried out using the MATLAB ode45 solver
and are compared to measured values obtained from the testbed system. The
comparison is evaluated through the Root Mean Squared Error (RMSE):

RMSE =

√
1
N

N

∑
k=1

(y(k)− ŷ(k))2 (40)

for time intervals of 1, 1.5, 2, and 2.5 seconds. Two different sets of measure-
ments are taken while the pendulum is falling from its upright position. For
the first measurement, the disk is not spinning (q̇1 = 0 rad/s), and the states
xmeas,1 = [q̇3,q4]

⊤ are measured, as depicted in Figure 3. At this point, the
system essentially represents a Furuta Pendulum with the center of mass of the
cantilever arm at the center of rotation of the frame.
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Table 1: Systen Parameters of the CMG Furuta Pendulum testbed system

Variable Value Unit

JDxx 0.0027 kg m2

JDyy 0.0048 kg m2

JDzz 0.0027 kg m2

JGxx 0.0014 kg m2

JGyy 0.005 kg m2

JGzz 0.005 kg m2

JFxx 0 kg m2

JFyy 0 kg m2

JFzz 0.0414 kg m2

JPxx 0.003 kg m2

JPyy 0.003 kg m2

JPzz 0 kg m2

µ1 0.8 kg m s−1

µ2 7.2 kg m s−1

µ3 0.7 kg m s−1

µ4 0.135 kg m s−1

L1 0.254 m
lP 0.246 m
mP 0.216 kg

The second measurement is taken with the disk spinning at its maximum speed,
q̇1,max = 28.8 rad/s. In this case, the states xmeas,2 = [q2, q̇3,q4]

⊤ are measured
to observe the effect of precession on the gimbal states and vice versa, as shown
in Figure 4.

In the first measurement, the pendulum angle q4 shows an RMSE of around
0.2 up to 2 seconds, whereas the frame angular velocity q̇3 exhibits an RMSE
of around 0.4. The frame velocity measurements particularly deviate from
the simulation at the peaks, where the frame is accelerated due to the falling
pendulum. The second measurement shows that the measured and simulated
states strongly differ from each other. It is presumed that this discrepancy is
due to the neglect of the motor actuating the disk, which is attached along the
y-axis of the gimbal coordinate frame. The motor has a gearbox, increasing its
weight and potentially offsetting the center of mass of the gimbal. Therefore,
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Figure 4: State comparison between the nonlinear CMG Furuta Pendulum equations evaluated
using MATLAB’s ode45 solver and measurements of the testbed system on the top, and
RMSE errors at the bottom with q̇1 = 28.8 rad/s.

the assumption that all CMG center masses are located in the center of the
CMG is not valid for the measured values.

Table 1 displays the system parameters for the testbed system, which were
obtained through the CAD program Inventor, using an internal Finite Element
Method (FEM) to calculate the inertia of the components.

3.2 Controller Design

The state feedback control structure is depicted in Figure 5. The controllable
inputs of the system are u1 = τ1 and u2 = τ2. The torque τ1 actuating the
disk is not controlled and is kept at a constant value to ensure the disk spins
at its highest angular velocity. Input u2 is controlled via the PDC control law
with controller parameters synthesized through the LMI formulations given
in Section: Controller Synthesis. As premise variables, the current gimbal
and pendulum angles z = [q2,q4]

⊤ are used. The disk position and veloc-
ity are neglected for the state feedback controller, leaving the states xcntrl =

[q2, q̇2,q3, q̇3,q4, q̇4]
⊤ to be controlled via the PDC.
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P
−∑

Nr
i=1 hi(z)Ki

xcntrl = [q2, q̇2,q3, q̇3,q4, q̇4]
⊤

τ1

τ2

z = [q2,q4]
⊤

Figure 5: Basic Control Structure, P resembles the Plant, z the premise vector, τ1 and τ2 the inputs
u1 and u2 into the system respectively and xcntrl the controlled system states

The linearization points are chosen as q2 ∈ [−1.2, 1.2] rad for the gimbal angle
and q4 ∈ [−0.5236, 0.5236] rad for the pendulum angle. The disk speed is set
to q̇1 = 28.8 rad/s for Scenario 1 (Low-Speed Disk) and q̇1 = 45 rad/s for
Scenario 2 (High-Speed Disk).

Scenario 1 yields the following submodels of the TS-System:

A1,4,cntrl =



0 1 0 0 0 0
0 −7.2 0 12.41 0 0
0 0 0 1 0 0

0.115 −0.89 0 −0.7 2.47 0
0 0 0 0 0 1

0.081 −0.65 0 0 28.41 −0.14


(41)

A2,3,cntrl =



0 1 0 0 0 0
0 −7.2 0 12.41 0 0
0 0 0 1 0 0

−0.115 −0.89 0 −0.7 2.47 0
0 0 0 0 0 1

−0.081 −0.65 0 0 28.41 −0.14


(42)
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Table 2: D-Region constraints and Optimal Controller weighting for Low-Speed Disk (Scenario
1) and High-Speed Disk (Scenario 2) controller synthesis.

Scenario D-Region Optimal Controller

1
θ = 0.5236 rad

α = 2
r = 10

W = diag(0.1,0.001,0.1,
0.0001,1,0.001)

R = 0.3
λ = 0.2

x(0) = [0,0,0,0,0.27,0]⊤

2
θ = 0.5236 rad

α = 2
r = 10

W = diag(0.1,0.001,0.1,
0.0001,1,0.001)

R = 0.3
λ = 0.1

x(0) = [0,0,0,0,0.37,0]⊤

B1,3,cntrl =



0 0

0 264.61

0 0

16.6 0

0 0

12.1 0


, B2,4,cntrl =



0 0

0 264.61

0 0

−16.6 0

0 0

−12.1 0


(43)

The parameters for controller synthesis in the different scenarios are listed in
Table 2. The input u2 = τ2 is limited to 2.5 Nm, which is the maximum torque
of the actuating motor for the gimbal.

For scenario 1 we obtain the different gain sets for the D-Region controller

K1,4,D = [−7.44,0.075,−6.01,−8.15,−14.47,−1.99]

K2,3,D = [7.66,0.076,6.41,9.8,−14.32,−3.49]
(44)

and the optimal controller:

K1,4,opt = [−0.098,0.13,−0.004,0.102,−15.48,−2.87]

K2,3,opt = [−0.087,0.15,0.051,0.17,−17.48,−3.32]
(45)
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Table 3: Initial conditions for Low Speed Disk (Scenario 1) and High Speed Disk (Scenario 2)
simulation studies.

Scenario D-Region Optimal Controller

1 x0 = [0,28.8,0,0,0,0,0.2,0]⊤ x0 = [0,28.8,0,0,0,0,0.27,0]⊤

2 x0 = [0,45,0,0,0,0,0.2,0]⊤ x0 = [0,45,0,0,0,0,0.37,0]⊤

3.3 Simulation Studies

In total four simulation studies are conducted to find the maximum initial angle
q4 of the pendulum the controller is able to return into the unstable equilibrium
q4 = 0 rad.

1. Disk spinning at q̇1 = 28.8 rad/s, D-Region constraints

2. Disk spinning at q̇1 = 28.8 rad/s, Optimal controller design

3. Disk spinning at q̇1 = 45 rad/s, D-Region constraints

4. Disk spinning at q̇1 = 45 rad/s, Optimal controller design

The simulation setups allow for comparison between the two different con-
troller synthesis procedures. The increase in angular velocity of the Disk from
q̇1 = 28.8 to q̇1 = 45 rad/s shows if control performance can be improved by
increasing the dynamic of the actuator. As the actuating torque moving the
Frame through precession is defined as

τ3 = q̇2 · q̇1 · JDyy · cos(q2) (46)

As the goal of the Simulations is to find the maximum angle q4 the controller
is able to recover the initial conditions for the different scenarios are listed in
Table 3. The results show, that the maximum initial angle for the D-Region
controller is q4 = 0.2 rad for Scenario 1 and Scenario 2. The optimal controller
was able to recover the Pendulum from q4 = 0.27 for Scenario 1 and q4 = 0.37
rad for Scenario 2.

The simulation results are depicted in Figures 6, 7, and 8. Two main findings
can be obtained. Firstly the simulations indicate a limited stability region
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Figure 6: Gimbal, Frame, and Pendulum angles q2, q3 and q4 respectively for Low-Speed Disk
and High-Speed Disk scenarios as well as a comparison between D-Region and Optimal
Controller

independent of controller synthesis due to various factors. The torque τ3 is
limited by the velocity of the disk q̇1, and the maximum torque τ2 enforced
by the motor moving the gimbal limits q̇2 as seen in (46). Most notable is
the cos(q2) term from the precession in (46) if the gimbal is moved towards
the angle q2 → ±π/2 the effect on the frame through actuating the gimbal
decreases significantly.

Secondly, the simulations indicate that the decay constraints imposed by the D-
Region have a negative impact on the maximum recoverable initial pendulum
angle q4. This is likely induced by the coupled dynamics of the system, as
the body acting on the pendulum is the frame, which is actuated by the gimbal
movement.

Increasing the Disk angular velocity to 45 rad/s for Scenario 2 also increases
the angular momentum of the disk proportionally, therefore increasing τ3 by
actuating the Gimbal with τ2.
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Figure 7: Gimbal, Frame and Pendulum angular velocities q̇2, q̇3 and q̇4 respectively for Low-
Speed Disk and High-Speed Disk scenarios as well as a comparison between D-Region
and Optimal controller

Figure 8 displays the torque τ2 demanded by the controller, which acts on
the gimbal. It can be observed that at the beginning of the simulation, the
recovery of the pendulum angle q4 has the most significant impact on the
demanded torque. The D-Region controller and the optimal controller exhibit
different behaviors when the pendulum angle is recovered and stabilized. This
difference is due to the less conservative decay constraints for the optimal
controller on the states, excluding the pendulum position, which is also evident
in Figures 6 and 7.

4 Discussion

The results presented in this paper demonstrate the capability of a Takagi-
Sugeno Parallel Distributed Compensation (PDC) fuzzy controller to stabi-
lize a highly nonlinear Control Moment Gyroscope (CMG)-actuated Furuta
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Figure 8: Demanded and saturated input torque u2 = τ2 for Low Speed Disk and High Speed Disk
scenarios as well as comparison between D-Region and Optimal controller

Pendulum at an unstable equilibrium point. It is found that the dynamics of
the torque generated through precession, in combination with the controller
design, have an impact on the maximum initial pendulum angle the controller
is able to recover to its unstable equilibrium. In an optimal controller design,
where the closed-loop dynamics of each state can be weighted independently,
the controller can exceed a common decay rate constraint through LMIs, es-
pecially when the actuator dynamics are high, and the system dynamics are
strongly coupled, as in the testbed system. Shortcomings primarily lie in the
identification of the system behavior when the disk is spinning. Therefore, an
adjustment in the hardware and weight distribution of the gimbal might yield
better results. Furthermore, the current testbed system has cables running off
the motor that actuates the gimbal, as seen in Figure 1, introducing random
friction terms due to the current cable positions. An adaptation to slip rings
might be advantageous, eliminating random friction terms.

Furthermore, the current linearization points are chosen to include a wide range
of angles the pendulum and gimbal can have during the recovery of the pen-
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dulum angle. Performance might be improved by increasing the number of
linearization points.

It is noted, that the D-Region constraints were not further optimized after
showing acceptable performance therefore the D-Region controller might show
some room for improvement.

The angles the controllers are able to recover are quite small indicating a lim-
itation of the dynamics of the system under current actuating forces. Therfore
the current Hardware is subject to improvement to increase overall dynamics
of the system.

5 Conclusion

The control of a testbed system similar to the one investigated in this paper is,
to the knowledge of the authors, only conducted in [1] where an LPV approach
is pursued. [1] does focus on the swing up of the system and does not include
an investigation of the stabilizing controller for the unstable equilibrium. It is
only stated, that the switching between the swing-up controller and stabilizing
controller is executed at a Pendulum angle |qx|< 0.15 rad and the LPV schedul-
ing region ranges from q2 ∈ [−60◦, 60◦] and ω1 = q̇1 ∈ [30 rad/s, 60 rad/s].
This paper presents an alternative control concept for the stabilizing controller
through a Fuzzy TS approach and LMIs which in Scenario 2 achieved a stable
recovery of the Pendulum from an initial angle of q4 = 0.37 rad under ideal
conditions and Single Input only actuating the Gimbal through the controller.

As the system parameters in [1] differ from the one in this work it is to be
investigated, if the Fuzzy controller is able to show similar performance when
adapting the system parameters to match the system in [1].

It is mentioned here, that for the system parameters [1] refers to [11] where
the inertia Tensores might not be correctly given in comparison to the system
sketch. [12] is dated later than [11] where the inertia Tensors are corrected.
[11] and [12] refer to the manual of the testbed system ECP 750 (Educational
Control Products) which is to the knowledge of the authors not accessible
publicly.
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6 Future Work

Future work could include an extension to a multi-input system where the
torque τ2 is actuated through the controller as well as conducted in [1]. The
premise variables could be extended to incuding the current Disk velocity q̇1.
Also the D-Region and optimal controller constraints can be altered for each
linearization point increasing flexibility for controller design. As the number
of linearization points is quite small, the controller synthesis could also be
extended to find a global lyapunov function.

Another object of future work is the design of a Fuzzy TS swing-up controller,
where further linearization points as well as an extension of the premise vector
might yield satisfying results.

A significant improvement of the testbed system is the adaptation of the Hard-
ware, real life tests can then be performed to show the performance of the
controller on the Hardware itself. The controller synthesis therefore can be
extended to an optimal-robust approach to ensure robustness against model
uncertainty.
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