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1 Introduction

Sliding mode observers (SMOs) provide a robust tool for state estimation and
give additional information about disturbances and model uncertainties [1].
Thus, they are frequently deployed for fault detection and analysis. However,
analysis often contains only low-pass filtering without any further identification
scheme [2]. Yet, characterizing disturbances may be advantageous not only for
disturbance control to prevent any harm to the plant and maintain its desired
behavior, but also to ensure a longer life cycle of mechanical components, e.g.
by actively compensating for disturbances with eigenfrequencies. While our
previous work [3, 4] focused on the joint estimation of states and model uncer-
tainties in general, this contribution transfers the concepts to robust estimation.
In particular, we demonstrate how to efficiently and even automatically receive
dynamical representations for disturbances by a SMO, while also delivering
correct state estimates. Ultimately, this insight can be utilized for disturbance
control and model adaption.

2 Sliding Mode Observer

For the purpose of this contribution, a SMO is designed for the control of an
inverted pendulum on a cart. The set up of the pendulum is displayed in Fig.
la and its parameters are shown in Tab. 1b.
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Parameter | Value | SI Unit |

mass m 0,654 | kg
gravity g 9,81 | m/s?
length a 0,267 | m

inertia J 0,0101 | kg/m/s?
damping d 0,001 | Nms

(a) Set up at our laboratory (b) Table of parameters

Figure 1: Pendulum on a cart and its characteristics

Its dynamics are described by the following:
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with ¢ denoting the angle, s the position of the cart and @,s the velocities,
respectively. However, for simplicity we consider a second-order system in
its nonlinear observability canonical form with dynamics f [5] to describe a
SMO, since it can be easily adapted towards the pendulum on a cart. Then, the
corresponding SMO takes the following form
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with £, £, denoting the estimated states, f representing the model of the system
and e, indicating the measurement error. Hence, the error dynamics with
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e] = x| — X1 and e, = xp — %, are deduced with Eq. (2) by

é1=er+Vv (ey), 3)
& =Af+Va(ey).
Af is hereby the deviation between the system f and the model f. The pa-
rameters k; of the injection terms v;(e,) = —k;sign(ey) control the stability,
effectiveness and convergence rate of the estimation. Especially, k; needs to
be chosen such that k, > |Af| holds [1, 2] but guessing the maximal model
deviation correctly often remains a challenge.

3 Data-driven disturbance identification

Since these injection terms Vv;(e,) = —k;sign(e,) are available at any time, we
can utilize them for identifying the model deviation Af. Assuming that the
SMO is roughly well parameterized with design parameters k; and has reached
its sliding phase, we can not only expect é, — 0 but also é; — 0. Thus, we re-
ceive Af = —V»(ey). Now instead of low-pass filtering Af [2], which is usually
the way to track potential disturbances, we seek for a physically interpretable
representation of the disturbances besides capturing their dynamics. By this,
we gain more insight into the disturbances and are able to e.g. compensate
for these actively or analyze their effects regarding the life cycle of affected
components such as actuators. Moreover, this information can be utilized for
model adaption. Simply, assume a linear combination of ngy suitable, physics-
based terms stored within a library ¥ € R"¢ that incorporate one’s hypotheses
which characteristics the disturbances may exhibit. Therefore, the following
holds for Af’s approximation by the parameters 6 € R"6:

eo =Af —0TW(%,u). 4)

For useful insights into Af, the interpretation error eg must tend towards zero,
ideally for  — oo. Hence, the optimal 8 is found by minimizing

! !
arg miné/o egdt :/0 (—va(ey) — GT‘P()%,M))ZdT, 5)
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whose solution is given by [6]

—1

- (— /0 [ vz(ey)‘l’(fc,u)TdT> [ /0 e e L )

By using an efficient, dynamic calculation for W [6], the inversion of the library
does not need to be computed completely within every time update. To account
for changing characteristics and time-dependent behavior, the cost function can
be averaged by a time factor if necessary.

However, choosing terms y; for ¥ is difficult beforehand if no prior knowl-
edge regarding the disturbances’ characteristics is available. A solution to this
challenge is to collect information regarding the disturbances, e.g. by a Fourier
transformation for oscillations. Fig. 2 illustrates the Fourier transformation
for the example used in Sec. 5, which identifies the three most important
frequencies. Thus, using the Fourier transformation helps to identify the main
frequencies that are then automatically included by trigonometric terms within
W as characteristics of Af.
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Figure 2: Fourier transformation to identify the main frequencies for choosing library terms ;
automatically

4 Results and outlook

To illustrate the effects of our proposed method, we present results from an
open-loop scenario since it is easier to account for the outcomes without the
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controller’s influence. However, similar results have been obtained for closed-
loop behavior using a linear quadratic controller combined with a DMOC
optimal trajectory [7].

Forcing an external disturbance p(t) = 4sin(3xt 4 7/2) additional to the ex-
citation u(z) = sin(zt + m/2) on the test bench at our laboratory, that affects
the cart’s position, we check if the proposed SMO automatically identifies the
additional dynamics. Therefore, we compare two SMOs with libraries that are
constructed differently. First, a library is set up by prior knowledge that con-
tains the dynamics of p(¢). Thereafter, a library is constructed by the Fourier
transform whose identified frequencies are utilized within it. Both libraries
finally exhibit identical terms y; to compare their performance, namely

~

W(%,u) = (sin(@), ¢,sign(), sin(nr 47 /2),sin(3xt +1/2),sin(Snr+7/2))" .

N
As Fig. 2 depicts the frequency of p(¢), namely @; = 3, is identified correctly
by the Fourier transformation. It also recognizes the frequency of the excitation
u(t) at w, = m. Using this information, Fig. 3 then shows excerpts regarding
the convergence of the parameters 6 and the model deviation expressed by
V2 (ey). If the library ¥ is set up by prior knowledge, the orange dashed signal
in Fig. 3a shows that the deviation reduces much faster compared to when
relevant terms for W first need to be determined by a Fourier transformation
which is illustrated by the blue dashed signal. However, in cases when we
do not have any information regarding p(¢), this enables a fully automated
identification of disturbances and features only slightly more convergence time
due to the necessary collection of data that lasts in this case around 26s. Note
that it ultimately arrives at a similar level of error compared to when prior
knowledge is used directly.

Considering the course of the parameters 8, both strategies show strong con-
vergence rates, only varying in speed due to the data collection and analysis
of the Fourier transformation. Yet, both converge to the same value and de-
liver consistent results, e.g. identifying the term y(¢) = sin(37z + 7/2) as
present within the disturbances and neglecting the term y(¢) = sin(57¢ + 7 /2)
by convergence towards zero. However, it can be noticed that the identified
parameter ésin@,r +7/2)>» Which both strategies converge to, does not coincide
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(a) Convergence of v»(r): It converges more slowly if no prior knowledge is used due to the
necessary data collection for the Fourier transformation (blue) compared to when prior
knowledge is applied (red).
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(b) Convergence of selected 0: Parts of p(1) are identified correctly, although convergence rates vary
due to how the library terms are determined.

Figure 3: Excerpts from the identification of Af by prior and automatically chosen ¥

with the amplitude of p (). This results from the effect that p(¢) acts directly on
the control input u(t). As Eq. (1) describes it holds amcos(@)(J +ma*)~"! - u.
Due to the angle’s oscillation around —7 as it can be seen later in Fig. 5, which
results in cos(@) &~ —1, the factor tends to amcos(@)(J +ma®)~' ~ 3. Thus,
both SMOs identify the overall amplitude of p(¢) with 12, assuming the factor
rather belongs to the disturbance than to the control input.

Moreover, in addition to the decrease of v,(¢), we verify if the SMOs identify
the disturbance p(¢) correctly. Hence, Fig. 4 shows an excerpt of a comparison
between the disturbance p(¢) and its approximation by the linear combination
67W(%,u) with the Fourier transformation once the parameters converged. It
reveals that the approximation captures the disturbance well although some
minor deviations can be recognized. Note that p(¢) is displayed with the factor
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Figure 4: Excerpt from comparison of disturbance p(¢) and its approximation by 87¥(%, «)

acting on the control input, since the SMO assumes it acting on the disturbance.
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Figure 5: State estimation when the pendulum is excited by u() and the observer gets additional
disturbance p(t)

Since the injection term v (¢) decreases significantly over time and is already
very low in the beginning of the estimation, the quality of the state estimation is
expected to be high throughout. Fig. 5 confirms this impression by presenting
the trajectories of the pendulum over time. Due to its good parameterization
with k; the sliding mode observer captures the pendulum’s dynamical behavior
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right from the beginning very well without any major estimation errors even
though the disturbance is present and not yet fully identified.

In conclusion, this contribution showed the concept of joint estimation de-
ployed within a sliding mode observer. It highlighted the advantages that
result from disturbance identification and additionally presented the option to
automatically receive candidate functions for the library by the Fourier trans-
formation. Further, it convinced with a high quality of state estimation, while
gaining more insight into present disturbances. Future research allows the
usage of those strategies for intelligent fault management and provides a tool
for online model adaption.
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