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Abstract

In an era where deep learning models are increasingly deployed in safety-
critical domains, ensuring their reliability is paramount. The emergence of
adversarial examples, which can lead to severe model misbehavior, under-
scores this need for robustness. Adversarial training, a technique aimed at
fortifying models against such threats, is of particular interest. This paper
presents an approach tailored to adversarial training on tabular data within
industrial environments.

The approach encompasses various components, including data preprocess-
ing, techniques for stabilizing the training process, and an exploration of di-
verse adversarial training variants, such as Fast Gradient Sign Method (FGSM),
Jacobian-based Saliency Map Attack (JSMA), DeepFool, Carlini & Wagner
(C&W), and Projected Gradient Descent (PGD). Additionally, the paper delves
into an extensive review and comparison of methods for generating adversarial
examples, highlighting their impact on tabular data in adversarial settings.

Furthermore, the paper identifies open research questions and hints at future
developments, particularly in the realm of semantic adversarials. This work
contributes to the ongoing effort to enhance the robustness of deep learning
models, with a focus on their deployment in safety-critical industrial con-
texts.
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1 Introduction

In recent years, artificial intelligence (AI) has witnessed tremendous advance-
ments, revolutionizing various domains and becoming an integral part of our
daily lives. From computer vision systems [1, 2] to natural language processing
[19, 4] and object detection [5] for autonomous vehicles, deep learning models
have showcased remarkable capabilities, surpassing human performance in
many complex tasks. In particular, AI experienced extreme media interest
due to the capabilities of ChatGPT [4]. However, as AI systems become
increasingly integrated into critical applications, ensuring their reliability and
robustness becomes imperative.

One of the key challenges in the deployment of deep learning models is their
vulnerability to adversarial examples (AEs). AEs are carefully crafted pertur-
bations applied to input data, often imperceptible to humans, that can cause
deep learning models to misbehave or produce incorrect predictions [6]. The
existence of AEs has raised significant concerns about the reliability and secu-
rity of AI systems, particularly in safety-critical domains such as healthcare,
autonomous driving, and industrial automation.

Nowadays, industrial production plants are intelligent technical systems. These
cyber-physical production systems can be severely affected by AEs, causing
major financial or personnel damage. An attacker can either stop systems with-
out an anomaly being present or allow them to continue operating even though
a fault has occurred [7, 8]. Notably, in the industrial context, data exhibits high
heterogeneity, diverging significantly from the limited value ranges typically
encountered in image data, the origin of AEs. Additionally, industrial data can
often be unstructured and accompanied by sparse labels. To effectively employ
common AE generation algorithms, preprocessing of industrial data becomes
a necessary step.

This paper delves into the practical application of AEs within the industrial
landscape. Specifically, this paper encompasses the following key elements:

• an exploration of prevalent AE generation algorithms,

• practical insights into adversarial training techniques,
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• preprocessing methodologies tailored for tabular data,

• a comparative analysis of diverse adversarial attacks, evaluating their
suitability for adversarial training with tabular data drawn from the in-
dustrial context,

• identification of ongoing challenges and a prospective outlook on future
research avenues.

2 Related Work and Preliminaries

This section provides background information and relevant methods for gen-
erating adversarial examples (AEs) and countermeasures to enhance robust-
ness.

2.1 Adversarial Examples

The concept of AEs was initially introduced by Szegedy et al. [6] and Biggio
and Roli [9]. In general they can be defined as:
Let x ∈Rd be an input with true label y0 and yt is a (target) label different from
y0. An AE x′ results from a mapping A :Rd→Rd such that the modified input
x′ = A (x) is misclassified as yt without changing its true class.

However, mapping A (·) is often limited to a linear operation [10], so that an
additive perturbation δ is introduced

x′ = x+δ .

To avoid changing the original class membership, δ must be small w. r. t. a
distance metric. On image data, δ is commonly minimized in the literature
[10] w. r. t. the Lp norm

||x′− x||p = ||δ ||p =

(
n

∑
i=1
|δi|p

) 1
p
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to create AEs that are visually indistinguishable to human observers. In partic-
ular, the L0, L2 and L∞ norm are employed [11]. The L0 norm represents the
number of changed features or pixel, the Euclidean distance is measured with
the L2 norm and the L∞ norm indicates the maximum change of a feature or
pixel.

2.2 Adversarial Attacks

To generate AEs, a variety of approaches have been proposed, again with
various modifications [10]. In the following, the most influential basic methods
are presented, which will be compared later. Only white-box methods were
considered, i. e. those that have complete knowledge of all parameters, as they
allow for the strongest attacks [10].

Fast Gradient Sign Method

Szegedy et al. describe the generation of AEs as a constrained optimization
problem [6]. They leverage the box-constrained limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) algorithm to obtain solutions. However,
to reduce the computational cost, Goodfellow et al. introduce the Fast Gradient
Sign Method (FGSM) [12]. Here, gradients ∇x are calculated once for all input
features. Each input feature is then modified in gradient ascent direction by a
fixed step size ε to maximize the loss function L

δ = ε · sign(∇xL (x,y0)). (1)

Since the stepsize ε is equal for all input features and they are all modified
at once, the FGSM is optimized for the L∞ norm. Furthermore, the FGSM is
fast to compute but not an optimal solution. Kurakin et al. [13, 14] provide an
iterative version of this attack, which leads to more sophisticated AEs.
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Jacobian-based Saliency Map Attack

Papernot et al. introduced the Jacobian-based Saliency Map Attack (JSMA)
[16]. They compute the Jacobian matrix for a specific target class w. r. t. its
input features. Based on these partial derivatives a saliency map is constructed
indicating the influence of each input feature. Subsequently, the most influen-
tial input is modified accordingly and checked whether an AE is present. This
process is repeated until a predefined number of features has been altered or an
AE has been found. Due to the successive nature of feature changes, the JSMA
is optimized for the L0 norm.

DeepFool

The basic idea of the DeepFool algorithm [15] is to view the model as an affine
transformation, i. e. the authors linearize the models decision boundary around
an input x. In binary classification the decision boundary becomes a hyperplane
and in the multinomial case the decision boundaries around the input x are
approximated with a polyhedron formed by each of the decision hyperplanes.
They project the input orthogonal, i. e. with minimum distance, to the nearest
hyperplane and push it slightly beyond it to craft an AE. Since the linearization
is an approximation they just take a step in the direction of this projection and
iterate this process until an AE is reached. In the original version the algorithm
is optimized for the L2 norm.

Carlini & Wagner

Carlini and Wagner [11] offer a variety of attacks with L0, L2, and L∞ distance
metrics. However, they claim their L2 attack (C&W) to be the strongest one
and in fact, the L0 version leverages the L2 attack. They iteratively optimize an
objective function consisting of a misclassification term and a distance mea-
sure of the perturbation. Furthermore, they exploit a scaled and shifted tanh
function with a variable exchange

δ =
1
2
(tanh(w)+1)− x (2)
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to let the perturbation map natively into the interval [0,1]. By eliminating the
necessity of clip functions in this way, they are able to employ momentum-
based optimizers such as Adam [17]. The C&W attack is one of the strongest
attacks in terms of finding minimal perturbation and fooling the machine learn-
ing model [11]. Additionally, they overcame numerous defensive strategies
[19], such as Defense Distillation [18], that existed at the time of release.

Projected Gradient Descent

As Gradient Descent is a standard way to solve an unconstrained optimiza-
tion problem, Projected Gradient Descent (PGD) in general provides a way
to solve constrained optimization problems. The PGD attack [20] leverages
this approach to generate AEs. One starts from a random perturbation in an
Lp ball around an input sample, takes a step in the gradient direction of the
loss function w. r. t. its input data and, if necessary, projects the result back
into the Lp ball. This procedure is repeated until convergence or exceeding
the maximum number of iterations. Therefore, Madry et al. [20] reference the
iterative FGSM as an L∞ bounded PGD attack, where the projection is realized
by the clipping function. The authors claim that the PGD method is probably
the strongest first-order attack. They argue that AEs generated with it are more
suitable for adversarial training, since models are also robust against weaker
methods after training with these AEs.

2.3 Adversarial Defensives

The sequence of developments in countermeasures for adversarial examples is
similar to the history of cryptography. After methods for defense are proposed,
there are new attack strategies, which in turn overcome them [19]. Defensive
approaches that do not require the secrecy of specific aspects, such as gradients,
are therefore to be preferred here as well [21].

Adversarial training is a primary strategy for enhancing the adversarial robust-
ness of neural networks. By introducing AEs during training [6, 12], models
can be designed to be more robust to small perturbations. Madry et al. consider
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adversarial training as a saddle point or min-max problem [20]. On the one
hand, the goal is to generate AEs that maximize the loss function and, on
the other hand, to find model parameters that minimize this loss. Moreover,
Tsipras et al. demonstrate that adversarial training can lead to more robust
features, which, however, are obtained at the expense of accuracy [22]. A
more detailed overview of adversarial training can be found in [23].

3 Approach

In this section, an approach is developed that facilitates cross-comparison of
AE generation methods. To ensure comparability among the presented meth-
ods, appropriate metrics must be selected. However, there is no uniform defi-
nition of quantifiable adversarial robustness in the literature. Additionally, ad-
versarial attacks are optimized w. r. t. different Lp norms, further complicating
the assessment of AE quality. To address these challenges, we first empirically
test whether adversarial training enhances model robustness against attacks
using the same method as in training. To achieve this, we employ both the
accuracy on the original data and the accuracy on the AEs as metrics. Subse-
quently, models trained using one method are evaluated against the remaining
attacks.

Another critical consideration is the nature of the data. Humans have less
intuition for tabular, numerical data compared to speech or images [24]. In the
image domain, the Lp norm serves as an approximation for human perception.
Visual inspection helps assess whether visible artifacts are present in the AEs.
This allows to establish a budget for the adversarial attacks such that these
artifacts are minimized while ensuring that the original class membership of
the sample is maintained. However, this is not feasible for tabular data, so
alternative constraints on the adversarial attacks are required. The specific
limitation of the attack methods is detailed in the next section.

Moreover, various approaches exist for conducting adversarial training. In
[20], the iterative training is exclusively performed on the AEs to reduce com-
putational costs, arguing that AEs already offer greater diversity than the orig-
inal data points. Conversely, Specht et al. compute AEs only once and not
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iteratively within the training, augmenting their original training dataset once
with an equivalent amount of AEs [7, 8]. However, our initial tests failed to
reproduce sufficient robustness when training solely on once-generated AEs.
Given the trade-off between adversarial robustness and accuracy [22], we adopt
a mixed approach. We include the original data in training to prioritize ac-
curacy, but AEs are recalculated in each minibatch with the current model
parameters. For each input, an AE is computed without applying a weighting
parameter, ensuring that AEs and original data have equal influence on the
loss.

Additionally, we introduce a one-epoch warm-up phase to stabilize the training
process. During this phase, only the original data is utilized. Starting from
epoch two, a mixture of AEs and original data is incorporated. The warm-
up phase is essential as AEs, considered as worst-case inputs, are typically
more challenging to learn than the distribution of the original data, which
can potentially interfere with finding the appropriate parameters at the begin-
ning. Eliminating the warm-up phase in later implementations resulted in some
classes not receiving any predictions at all.

Furthermore, the heterogeneous nature of industry data requires adjustments to
restrict the range of feature values. This prevents the emergence of unrealistic
values and eliminates the need to adapt algorithms, as they naturally operate
in the constrained range x+δ ∈ [0,1]n, originating from the image processing
domain. Achieving this is straightforward through a min-max scaler. However,
when scaling, it is important to consider the variance within the dataset. Special
attention must be paid to extreme outliers that would distribute the majority of
data into a significantly smaller interval.
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4 Evaluation

4.1 Experimental Setup

Dataset

The experimantal results are obtained on the Sensorless Drive Diagnoses (SDD)
dataset [25]. This dataset is derived from two-phase currents measured in
a 425W permanent magnet synchronous motor, which is part of a modular
demonstrator, as detailed in [26, 27]. The demonstrator itself is comprised of
several components, including the test motor, measuring shaft, bearing module,
flywheel, and load motor. To simulate various fault conditions, synthetic hard-
ware corruptions can be introduced. The raw data from the demonstrator were
preprocessed as described in [28] when creating the SDD dataset. Thereby,
empirical mode decomposition was applied to determine three intrinsic mode
functions and their residuals per phase. Subsequently, the mean, standard
deviation, skewness, and kurtosis were calculated for each, resulting in a total
set of 48 features.

The SDD dataset encompasses 58,509 samples and includes 11 distinct classes,
maintaining a balanced distribution. In this context, class 1 signifies the fault-
free state of the engine, while the remaining ten classes represent various fault
cases stemming from issues such as shaft misalignment, axis inclination, or
bearing failure. A summary of the classes and their respective fault cases is
provided in Table 1. To facilitate model evaluation, an 80/20 split between the
training and test sets was employed, resulting in 46,806 samples in the training
set and 11,703 samples in the test set.

The SDD dataset is particularly suitable as it offers multiple defect classes
with diverse characteristics in the area of industrial data, which facilitates AE
generation. At the same time, it is not too high dimensional, which keeps the
computation times within reasonable limits.
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Table 1: Error indicators of the individual classes of the SDD dataset. Class 1 is error-free, and
the remaining ten are error cases. Equal classes, such as class 4 and 5, are not identical;
they differ in the level of error, for example, the angle of the axis inclination.

Class 1 2 3 4 5 6 7 8 9 10 11

Bearing Failure 0 0 0 0 0 1 1 1 1 1 1
Axis Inclination 0 0 1 1 1 0 1 1 0 1 1

Shaft Misalignment 0 1 0 1 1 1 0 1 1 0 1

Model Implementation

A deep neural network (DNN) with four hidden layers is deployed for evalu-
ation. The input layer comprises 48 neurons, followed by hidden layers with
590, 1180, 2360, and 590 neurons, respectively, and an output layer with 11
neurons. The architecture is based on [7]. Although smaller DNNs can classify
the SDD dataset [29], the selection should prevent a bottleneck of capacity as
discussed in [20] and exclude this influence. After each hidden layer, Batch
Normalization (BatchNorm) [31] is applied followed by the Rectified Linear
Unit (ReLU) activation function. Dropout [30] with a dropout rate of 20% is
utilized after each ReLU layer to prevent overfitting. The output layer employs
a linear layer with Softmax for classification. Cross-entropy loss is used with
the Adam optimizer [17], configured with parameters β1 = 0.9, β2 = 0.999,
ε = 10−8, and a learning rate of 10−4. The implementation is carried out using
the PyTorch framework [32]. A min-max scaler is used for preprocessing to
scale feature values to the range [0,1].

The generation of AEs is performed using the adversarial-robustness-toolbox
[33] and advertorch [34]. For the L∞ attacks PGD and FGSM, the maximum
perturbation is controlled by the explicit parameter ε , which is determined as
described in the following section. The control parameter Γ for JSMA, regu-
lating the proportion of features that can be altered, is set at 14.5% following
[16]. As DeepFool and C&W do not have explicit attack budget parameters,
they are limited to 10 iterations, equivalent to the number of iterations in the
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Table 2: The perturbation budget influences adversarial robustness. A perturbation per feature of
1% of its range leads to adversarial robustness close to the accuracy of clean data. An
increase in the attack budget significantly reduces adversarial robustness, suggesting a
potential change in the true class.

Attack Perturbation in % Clean Accuracy Adversarial Accuracy

PGD 1 0.99 0.92
PGD 2 0.96 0.74
PGD 3 0.93 0.60
PGD 4 0.99 0.22

PGD algorithm with the chosen ε . Further details, code, and parameter settings
can be accessed here1, allowing for result reproduction and further research.

4.2 Results

Attack Budget for L∞ Norm Attacks

To establish an attack budget for L∞ norm attacks, specifically FGSM and PGD,
we selected the stronger of the two variants, i.e., PGD, and tested it with various
parameter values. Table 2 presents the results of these tests. All the attacks
listed in Table 2 were capable of reducing the accuracy of models without
adversarial training by at least 60%. It was observed how long adversarial
training remained effective. A significant drop in adversarial robustness can
be interpreted as an indication that the true class membership has changed,
rendering the model incapable of learning the data distribution. Based on the
results in Table 2, a maximum perturbation of 1% of the feature range was set
as the attack budget for the L∞ norm attacks.

1 https://ds-juist.init.th-owl.de/j.knaup/ciworkshop
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Table 3: Accuracy results of the cross-comparison of different AE generation methods. Clean
indicates the usage of only original training and test data, respectively. The remaining
training methods utilize a mix of the data in the training phase, and the remaining attack
methods are evaluated on the manipulated data exclusively.

Adversarial Adversarial Attack Method
Training Method FGSM JSMA DeepFool C&W PGD Clean

FGSM 0.92 0.21 0.08 0.74 0.91 0.99
JSMA 0.40 0.33 0.26 0.27 0.39 0.43

DeepFool 0.65 0.12 0.24 0.20 0.57 0.99
C&W 0.74 0.09 0.09 0.12 0.67 0.97
PGD 0.93 0.21 0.09 0.74 0.92 0.99
Clean 0.41 0.07 0.01 0.35 0.32 0.99

Cross-comparison of AE Generating Methods

Table 3 shows that training with JSMA generated AEs, significantly affects the
accuracy on the original data. PGD and FGSM achieve almost identical values
and are robust to themselves and each other. JSMA and DeepFool reduce
the accuracies of the other models the most and C&W achieves an increased
robustness against FGSM and PGD. A detailed discussion is provided in the
next section.

5 Discussion

The results presented in Table 3 align with findings in the literature, where
FGSM and PGD are commonly used for adversarial training on image data
[23]. The fact that PGD differs only slightly from FGSM may be attributed to
factors such as the number of iterations or the limited attack budget. JSMA,
originally designed for gray-scale images like the MNIST dataset [35], poses
certain challenges when applied to tabular data. By searching individual pixels
and increasing or decreasing their values depending on the sign of the adjust-
ment parameter, JSMA sets individual features here to 0 or 1, respectively. This
leads to unrealistic inputs, which on the one hand are difficult to classify for
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other models, but on the other hand it is not reasonable to enrich the training
set with them. DeepFool is more suitable in this respect, since the respective
decision boundary is only slightly exceeded. The C&W attack, known for
its high success rate in finding minimal AEs [11], may benefit from further
hyperparameter tuning but at the cost of increased computation time.

However, this study’s approach has yielded the expected results. The pre-
processing enabled the application of various algorithms and the employment
of the original data and the manipulated data prioritized the clean as well
as adversarial accuracy. The warm-up phase added stability to the training
process. A similar approach to this is curriculum-based learning [36], where
attack strength adapts and increases as the training progresses.

Nevertheless, challenges persist in distinguishing between adversarial exam-
ples and points at which the ground truth has fundamentally changed. While
approaches like [37] improve PGD by considering the proximity of each input
to the decision boundary when applying perturbations, they still do not identify
the true tipping point. Additionally, selecting an appropriate distance measure
for this assessment remains an open question. Even though L∞ norm attacks
show promise, perturbations with the same Lp norm can have vastly differ-
ent effects. Comparing methods that employ different distance metrics poses
particular challenges. Furthermore, adversarial training defined as min-max
problem inherently lacks robustness guarantees due to the non-convex nature
of deep neural networks, which makes it intractable to find a global optimum
[23].

Moreover, the adversarial mapping A (·) in this paper has been limited to
additive perturbations δ . Future research directions may involve exploring the
use of generative adversarial networks (GANs) [38, 39] to create adversarial
examples. This approach could generate AEs with semantic information, lead-
ing to more natural and meaningful adversarial examples, commonly referred
to as semantic adversarials in the literature [41, 40].
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6 Conclusion and Outlook

In this paper, we presented an approach that extends the application of adver-
sarial attacks to tabular data for adversarial training. We began by providing
an overview of various adversarial example generation methods, followed by
the introduction of a straightforward preprocessing technique and training sta-
bilization mechanisms. Subsequently, we conducted a comprehensive cross-
comparison of popular attack methods, including FGSM, JSMA, DeepFool,
C&W, and PGD, on an industrial dataset.

The results of our study validate existing findings in the literature, demonstrat-
ing the effectiveness of FGSM and PGD for adversarial training. However, our
investigation also highlights the unique challenges posed by tabular data when
employing methods like JSMA, which generate unrealistic inputs. The quest
for a suitable distance metric remains a pivotal aspect of future research, as it
not only determines the presence of adversarial examples but also serves as the
foundation for method comparisons.

Looking ahead, the exploration of non-additive perturbations presents a promis-
ing avenue for the development of new adversarial example generation meth-
ods. Incorporating semantic contextual information into the generation pro-
cess may yield more natural and meaningful adversarial examples, albeit with
potentially higher Lp norm values. This shift toward semantically enriched
adversarial examples could lead to advancements in the robustness of machine
learning models, particularly in applications involving tabular data.
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