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Abstract A significant challenge in laser drilling is the optimiza-
tion of process parameters and drilling strategies to achieve high-
quality holes. This is further complicated by the fact that qual-
ity assessment is a manual and time-consuming task. This pa-
per presents a methodology designed to significantly reduce the
manual effort required in optimizing parameters for single-pulse
laser drilling of 0.3 mm thick stainless steel. The objective is to
precisely drill holes with an entry diameter of 70 ym and an exit
diameter of 20 pm, achieving high roundness. The features of the
drilled holes were extracted automatically from the raw data us-
ing a combined approach that utilizes deep learning and image
processing techniques. The outcomes were compared against
manual measurements. Results indicate that the mean devia-
tions between automated and manual measurements for both
inlet and outlet diameters are less than one micrometer. We em-
ployed a Bayesian optimization algorithm to efficiently explore
the parameter space without the need for incorporating expert
knowledge. The approach rapidly identified optimal drilling pa-
rameters after only a few iterations, significantly expediting the
optimization process and considerably reducing manual labor.
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1 Introduction

The manufacturing industry is constantly searching for advanced
methods to improve the precision and efficiency of laser drilling pro-
cesses [1]. Various strategies have been employed, including traditional
methods such as Design of Experiments (DoE) and Response Surface
Methodology (RSM), as well as advanced computational techniques.
For example, Gupta et al. [2] used DoE and RSM to optimize the hole
quality in ms-pulsed laser drilling, while Wang et al. [3] applied ar-
tificial neural networks to predict optimal drilling parameters for ns-
pulsed laser drilling in stainless steel. Chatterjee et al. [4] used neuro-
fuzzy systems and genetic programming to predict drilling outcomes,
showing reasonable accuracy. However, these strategies often require
extensive experimental setups or training data and cannot efficiently
navigate complex parameter spaces to search for optimal drilling pa-
rameters.

Recent advances in computational techniques, particularly ap-
proaches to Bayesian optimization (BO), provide a promising alter-
native that can predict multi-dimensional parameters spaces in laser
processes with significantly fewer iterations and less manual interven-
tion [5]. Yang et al. [6] applied BO to improve taper and drilling time in
spiral drilling of stainless steel, achieving suitable results with few iter-
ations. Bamoto et al. [7] optimized a femtosecond laser micro-drilling
process and Menold et al. [8] demonstrated the versatility of BO in op-
timizing laser cutting, laser welding and laser polishing and showed
that less experiments are needed than with traditional approaches.

In addition to the actual optimization of drilling parameters, the ex-
traction of the features required by the optimization approaches repre-
sents a significant challenge in process optimization. In previous stud-
ies on laser drilling, the quality measurements were predominantly
assessed through manual measurements [2]. Feuer et al. [9] propose
an automated approach to extract the drilling geometry as features.
Approaches to automated feature extraction and quality control for a
laser welding process using semantic segmentation are presented by
Hartung et al. [10].

This paper presents an approach that incorporates sophisticated fea-
ture extraction techniques that employ a combination of deep learning
models and conventional image processing methods to accurately ex-
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tract quality features of single-pulse drilled holes. Subsequently, this
study investigates the potential of BO with the aim of determining op-
timal laser parameters including pulse power, pulse length, and focus
position to ensure high-quality holes in terms of diameter and round-
ness.

2 Materials and Methods

This section describes the experimental setup for single-pulse laser
drilling of thin metal sheets. Furthermore, it gives an overview of the
feature extraction and parameter optimization methods utilized. The
procedure of the iterative optimization process is shown in Figure 1.
For the first n=6 optimization steps, the parameter sets are generated
using a sobol sequence to ensure that the points are evenly distributed
in the parameter space. Subsequent parameter sets are suggested by
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Figure 1: Optimization process with a Bayesian Optimizer.

2.1 Experimental Setup

Figure 2 shows the experimental setup of the single-pulse laser drilling
process. In this study, a continuous wave (cw) single mode fiber laser
(TRUMPF TruFiber 2000) was used to perform the single-pulse laser
drilling experiments. The emission wavelength of the unpolarized laser
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Figure 2: Left: Experimental Setup. Right: Borehole cross section with images of an
a) inlet with diameter d; and b) outlet with diameter dg.

was specified as 1075nm in conjunction with a beam propagation fac-
tor of M?<1.2. The laser beam was positioned onto the stainless steel
sample with a galvanometer scanner. A telecentric F-Theta lens with a
focal length of 163 mm was used, resulting in a focus diameter (1/ e2)
of d¢= 20 pm. The pulsed operation mode of the laser source enables
the generation of pulses with a peak power Pp up to 1400 W. This al-
lows for the adjustment of the pulse duration between values from 1 to
25 ps. The setup was equipped with linear stages (x,y) for the sample
and a linear drive (z) for the process optics to adjust the focus posi-
tion. The focus position can thus be positioned with an accuracy of
one micrometer.

The materials used for the experiments are stainless steel (1.4310)
substrates. The substrates, with a thickness h of 0.3 mm, were cut to
a size of 100mm x 50 mm. An optical microscope (Zeiss Axio Imager)
was used to evaluate the borehole criteria, such as inlet (Figure 2 a) and
outlet (Figure 2 b). A 20x magnification was used for optical micro-
scopic observation, where one pixel is equivalent to 0.172 x 0.172 um?.
The evaluation criteria include the diameter of the inlet d; and of the
outlet dp, as well as the roundness R of the outlet. We drilled and ana-
lyzed i=3 holes per parameter set to reduce the influence of side effects
from the inherent noise of laser processing and other uncertainties.

2.2 Feature Extraction

The objective is to automatically extract the features that are required
for the parameter optimization directly from the microscope images.
The features include the borehole’s inlet diameter d; and outlet diame-
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(a) (b)

Figure 3: (a) Inlet of a borehole with breakthrough. (b) Segmented classes by the neu-
ral network: melt (blue), burr (red) and borehole with breakthrough (green).
(c) Contour of the borehole (green) from which the diameter of the maximum
inscribing circle dmax ins (red) and the diameter of the minimum enclosing circle
Aminenc (yellow) were derived.

ter dp, the borehole’s roundness R, the area of the melt deposits around
the borehole, and a classification of whether a breakthrough has oc-
curred. Initial attempts to perform feature extraction based solely on
conventional image processing methods have not delivered satisfac-
tory results. Due to the divergent surface properties of the materials
to be processed, there is a high degree of variance in the captured
images, e.g., due to reflections and mirroring. This variance requires
great efforts to manually adjust the algorithm parameters of conven-
tional image processing methods. Deep learning methods represent
another viable approach to address natural deviations in images like
reflections and mirroring. Nevertheless, a method based exclusively
on deep learning that directly determines quality characteristics is in-
tricate and challenging for the operator to comprehend. A combined
approach, comprising semantic segmentation models and conventional
image processing methods, enables a more robust and understandable
extraction of features. In our study, we employ two semantic segmen-
tation models, each with a neural network architecture modified from
the SDU-net [11]. These models are used to segment images from the
top (inlet) and bottom (outlet) of the borehole. The inlet model classi-
fies the image into the following classes, as partly shown in Figure 3(b):
burr, melt, and one of the classes borehole with breakthrough or borehole
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without breakthrough. The outlet model segments the image into: back-
ground, melt, borehole with breakthrough, and borehole without breakthrough.
To train the inlet model, 68 labeled images were used, while the outlet
model was trained with 44 images. The discrepancy in the number of
training images is due to the fact that only continuous boreholes are in-
cluded in the outlet dataset. The models are initialized randomly with-
out any pre-training. Both models use Categorical Focal Loss [12] as loss
function. The classes segmented by the models are further analyzed
using conventional image processing methods. Figure 3(c) shows, how
the borehole diameter d; was calculated using the contour (green) of
the segmented borehole class borehole with breakthrough. This calcula-
tion involves averaging the diameters of two specific circles: the min-
imum enclosing circle, dpminenc (Shown in yellow), determined using
the method proposed by Welzl et al. [13], and the maximum inscribing
circle, dmayx ins (shown in red), as described by Xia et al. [14].

The roundness R of the borehole is defined by the ratio of the bore-
hole area Apgrenole (Figure 3(b) green) to the area of the minimum en-
closing circle Aminenc [15]. The melt deposition area is calculated as
the sum of the segmented burr and melt area classes. In order to as-
certain whether breakthrough is present, the areas belonging to the
borehole with breakthrough and borehole without breakthrough classes are
compared. The classification of breakthrough is dependent on the class
from which the larger area was segmented.

2.3 Bayesian Optimization

To optimize the single-pulse laser drilling process, we used the ex-
tracted data in a Bayesian Optimization framework. The goal was to
find laser parameters that yield high-quality holes with defined ge-
ometries. The AX Service API [16] was used, with a Gaussian Process
as a surrogate model [17], and the default squared exponential kernel
for the optimization. This approach efficiently explored the parameter
space, aiming to optimize the drilling process with minimal experi-
mental effort. As acquisition function Expected Improvement [18] was
used. More detailed explanations and applications of the BO for other
laser processes were given by Menold et al. [8]. Table 1 shows the pro-
cess parameters that were varied and the quality parameters that result
from the feature extraction process described in Section 2.2. The area



Image-based parameter optimization

of the melt was excluded from the BO to concentrate on enhancing the
accuracy of the diameters and roundness.

Table 1: Parameters and variables for the process.

Category Parameter/Variable Symbol Value Range, Target
Process Parameters Pulse Power Pp 300W ... 1400 W
Pulse Length tp lus...25us
Focal Position Zg -200 um ... 200 um
Quality Variables Inlet Diameter dp Al target = 70 pm
Outlet Diameter do Ao target = 20 pm
Roundness R 0.. 1, Rearget=1

For each parameter set, i=3 holes were drilled and evaluated with an
optical microscope. The image data was analyzed by feature extraction
to obtain the inlet and outlet diameters dy, dp and the roundness R of
the outlet. The cost function

C(x) = Wq,- ‘dl(x) - dl,target| + wq4,0 - (dO (x) - dO,target)z

1)
+wgr-(1—R(x)) +wg-Ep

with the process parameters x=(Pp, tp, z¢) and the weights w4 ;=1 um~1;

wq0=4 um~1; wr=200; wg=2m]J ! calculates the cost C of each bore-
hole, with lower costs indicating higher quality. Determining the ap-
propriate weights w requires domain-specific expertise and is inher-
ently subjective. These weightings are contingent upon the optimiza-
tion objectives and the relative magnitude of the associated process
parameters. Given the significant impact of these weightings on the
optimization outcomes, it may be necessary to adjust them prior to
initiating the optimization process. C(x) is formulated to achieve a
target inlet and outlet diameter with maximum roundness of the out-
let. Pulse length and pulse power were summarized as pulse energy
Ep=Pp-tp, which is to be minimized to encourage a short drilling
duration and lower heat input. If no breakthrough occurs, the cost
C becomes high due to the quadratic influence of the outlet diam-
eter term wy o - (do(x) — dO,target)2~ In addition, the roundness R is
set to zero, which leads to maximum costs of the roundness term
wr - (1 — R(x))=200.
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3 Results and Discussion

This section discusses the results obtained from the feature extraction
techniques, which are divided into two parts: The evaluation of the
training of the segmentation networks and the evaluation of the feature
extraction methods based on the segmentation results. Subsequently,
we explore the findings from the BO process.

3.1 Results of the Feature Extraction

To evaluate the effectiveness of the feature extraction process, 80 im-
ages of borehole openings, captured from 40 laser-drilled boreholes (40
images of inlets and 40 images of outlets), have been labeled by experts
and are available for analysis. These images were not included in the
training data set. We employ the Intersection over Union (IoU) [19] as
evaluation metric to assess the model predictions:

_|AnB]

IoU(A, B) = AUB

2

Where A is the segmentation mask used for training and B is the pre-
diction of the segmentation network. During the evaluation, the inlet
model achieved an IoU value of 0.97 for the borehole classes, while the
outlet model achieved an IoU value of 0.95 for this class. However,
the melt and burr classes exhibit a decline in performance, with each
reaching an IoU value of 0.75. This is primarily attributable to the dis-
tinctive characteristics of the melt, which also manifests as a maximum
IoU value of 0.78 for these two classes during training.

After the image segmentation, the diameters are calculated based
on the prediction of the borehole models. To assess the precision of
the measurement techniques with respect to representative data, the
inlets and outlets of 40 additional boreholes, drilled in identical exper-
imental conditions as illustrated in Figure 2, were evaluated. Figure 4
shows the diameters based on automatic feature extraction diaat. exir. (X-
axis) and manual measurements dman, (y-axis) of the inlet (blue) and
outlet (green). The manual measurements were conducted using an
optical microscope. The right side of Figure 4 shows the deviation be-
tween the feature extraction diameter and the manual measurement.
The mean deviation is -0.5 um for the inlet and 0.34 um for the outlet,
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Figure 4: Comparison of the results of automatic feature extraction (x-axis) with manual
measurements (y-axis) of inlet and outlet diameters.

which is within the expected accuracy and tolerance limits for bore-
hole measurements. These low deviations, typical between automated
and manual measurement techniques, validate the effectiveness of fea-
ture extraction in determining inlet and outlet diameters. The methods
outlined enable automated borehole measurement, facilitating the use
of the extracted features for parameter optimization and significantly
reducing manual effort.

3.2 Results of the Bayesian Optimization

Figure 5 shows the evolution of the process parameters (left) and qual-
ity variables (right) during the optimization process. During the ini-
tialization process (orange) with parameters chosen by the sobol se-
quence, a wide range of process parameters is covered, resulting in
a high cost value (red curve). In the start sequence, three parameter
sets n=3,4,5 did not lead to through holes, because the pulse duration
was too short. In the following optimization steps the BO suggested
only one more parameter set at 7=26, where no breakthroughs were
achieved. In the bottom right of Figure 5 the inlet and outlet of the
borehole with the minimum cost value C12:86.0038:gg after n=12 iter-
ations with process parameters z¢=-79.0 um, P =898 W and tp=17 us is
shown. This led to an inlet diameter of d1:68.0f8:§ um, an outlet diam-

eter of do=18.03f82§ um and a roundness of R=0.84f8:2 um which are
close to the targeted values.
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Evolution of the process parameters (left) and quality variables (right) of the
drilled holes and the value of the cost function during optimization (red). The
error bars are min/max values of three experiments for each parameter set.
a) inlet and b) outlet of borehole n=12.

4 Conclusion

The aim of this work was to reduce the manual effort in parameter
search for single-pulse laser drilling. By employing a combination of
deep learning techniques for the segmentation of microscope images
and conventional image processing methods for the measurement of
segmentations, it is possible to perform a robust and rapid determina-
tion of the quality features of a borehole, particularly in challenging
imaging situations, such as those caused by reflections. The results
demonstrate that the mean deviations between manual measurements
and feature extraction for both inlet and outlet diameters are less than
one micrometer. Furthermore, BO has been demonstrated to be an
effective approach for achieving target hole characteristics with a min-

10
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imal number of iterations. In an optimization experiment compris-
ing 30 iterations, the parameters conducive to drilling with the de-
sired characteristics were identified after just 12 iterations. This signif-
icantly reduces the need for traditional full-factorial experimental de-
signs, simplifying the laser drilling optimization process and increasing
efficiency in industrial applications.
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