Fast semantic segmentation CNNs for FPGAs

Simon Wezsteinl2, Muen]inl, Michael Stelzl?, and Michael
Heizmann!

! Karlsruhe Institute of Technology, Institute of Industrial Information
Technology,
Hertzstra8e 16, 76187 Karlsruhe, Germany
2 MSTVision GmbH,
Im Weiherfeld 10, 65462 Ginsheim-Gustavsburg, Germany

Abstract In this contribution small semantic segmentation
CNNs are evaluated against traditional segmentation ap-
proaches and state of the art segmentation CNNs. The CNNs
are optimized for the implementation on frame grabber FPGAs.
A dataset of industrial burner flames and a dataset of transpar-
ent plastic granules is used to assess the segmentation perfor-
mance of the models. VisualApplets by Basler AG is used to
implement the models on an FPGA. The implemented models
reach foreground IoU values of up to 96.7 %. The inference of a
552 x 552 pixel image takes slightly more than 1ms. The latency
between the start of an input line to the output of the line is 0.1
to 1.9 ms for streaming an 8192 pixel wide image.

Keywords Image signal processing, FPGA, CNN, segmentation

1 Introduction

Segmentation is a common task in image processing. There are many
methods of segmentation available, from simple global thresholds to
deep neural networks. One common use case in industrial image pro-
cessing is to combine semantic segmentation with a Binary Large Ob-

ject (BLOB) analysis to form an object detection algorithm. There

are

many more applications, often dependent on segmentation: measure-
ment of objects in images, classification of objects, motion detection and

DOI: 10.58895/ksp/1000174496-11 erschienen in:
Forum Bildverarbeitung 2024

DOI: 10.58895/ksp/1000174496 | https://www.ksp.kit.edu/site/books/m/10.58895/ksp/1000174496/

123

S. Wezstein et al.

tracking, etc. Semantic segmentation may be seen as pixel-wise classifi-
cation in an image. With semantic segmentation an image’s pixels may
be classified into various classes. Semantic segmentation with neural
networks (NNs) recently gained big attention for complex tasks like
autonomous driving and many other tasks with high variance regard-
ing the imaging scene. any networks for semantic segmentation use
convolutional filters, they are called Convolutional Neural Networks
(CNN). In our work, we only refer to a binary segmentation, thus the
classification in foreground and background.

Our former work on hybrid image processing with Field Pro-
grammable Gate Arrays (FPGAs) for low latency and high throughput
applications ([1], [2]) was concentrated on balancing the computing
load between CPUs, GPUs and FPGAs for optimized real time capa-
bility and image resolutions in sensor-based sorting. In our current
architecture the FPGA is used for object detection and tracking and the
GPU for object classification. The semantic segmentation in the object
detection stage is realized by a global threshold operation. With this
concept we are able to reduce the load on the PC host which allows
low latencies and high raw image data throughput. Prior investigation
and the correspondence with potential customers showed that simple
rule-based approaches are often not powerful enough to fulfill the task.
Employing CNNs for segmentation in a GPU would break our system
architecture and running the whole raw image data through an NN
would break the tight latency constraints (5 ms camera to actuator).

In our system design a frame grabber with an FPGA is always
present. The approach is to develop simple yet sophisticated enough
NN:s to fit on this FPGA hardware as a drop-in replacement for the cur-
rently used global threshold. Many NNs are designed to fulfill more
complex tasks than most of those in sensor-based sorting or industrial
image processing in general. We seek to fill this gap. In industrial im-
age processing, the imaging scene can be well controlled, which should
allow the usage of simpler models in terms of parameters and opera-
tions, than the common state of the art ones. We want to optimize them
for line scan cameras under low latency and high throughput demands.

124

Designing segmentation CNNs for FPGAs

2 Resources and Methods

Compared to GPU or CPU based development, on an FPGA the de-
fined operations are configured in hardware instead of being broken
down into machine code and being executed sequentially. Therefore
all operations and parameters must fit into the FPGA’s resources. The
FPGA design is built with VisualApplets (VA), a proprietary platform
by Basler AG for their frame grabbers [3]. Due to its exclusive use for
the FPGA implementations at MSTVision GmbH, the set of possible
operations is limited to the ones available in VA. The absolute hard-
ware constraints lead to the unusual development strategy: “Which
operations can be used and how many of them”. We seek to find a
sweet spot between model accuracy, hardware occupation and through-
put/latency.

All currently available Basler frame grabber FPGA hardware is lim-
ited to integer arithmetics, forcing us to use quantized models. We
use the Basler imaFlex CXP-12 Quad frame grabber for our experi-
ments [4]. It is equipped with a Xilinx Ultrascale+ KU3P FPGA and
1.5 GB DRAM [5]. It has 160679 lookup tables (LUTs), 323224 flip flops
(FFs), 720 block ram (BRAM) cells with 18 KiB each and 1368 48 bit
digital signal processing (DSP) units.

For quantization aware training of our networks, QKeras [6] in con-
junction with Keras [7] and TensorFlow [8] is used. The models are
trained on an Nvidia RTX3080 GPU.

2.1 Available operations and limitations

The operator set of VA is limited to basic image and signal processing
operations. These include: base arithmetics, convolution, image up-
scaling, lookup tables (LUTs), histograms, counters, BLOB detector, etc.
Additionally there are many operations for data flow control like first
in first out (FIFO) buffers, pipeline synchronisation, etc. Common op-
erations in CNNs like matrix multiplication, activation functions, pool-
ing, etc. are missing. If needed, they have to be implemented from
scratch using the available operations. A complete list of available op-
erators can be retrieved from [9].

125

S. Wezstein et al.

2.2 Proposed models

Due to the limitations in hardware resources, implemented operations
in VA and possible computation latency, we aim to build the models
as simple and lightweight as possible. Our models need to be able to
be trained from scratch to avoid legal problems with foreign datasets
prohibiting industrial usage. For example the ImageNet dataset is re-
stricted to non-commercial use [10].

Our most simple model (fig. 1) is a two layer convolutional model:

1. Convolution with 5x5 kernel, from 1 channel to 16 channels
2. Quantized ReLu
3. Convolution with 5x5 kernel, from 16 channel to 1 channel
4. Quantized ReLu

This forms the baseline of complexity and parameter count.

All other models are simple convolution only encoder-decoder-
structures (fig. 2(a) and 2(b)). They consist of 2D convolutions, ReLu
activations, max pooling, 2D transposed convolutions and upsampling
with nearest neighbor interpolation. All models are quantized to 8 bit
integer representation. The various tested models have varying filter
sizes and encoder/decoder layer count. One part of the networks runs
upsampling before transposed convolution, the other part after. Us-
ing upsampling after transposed convolution reduces the bandwidth
to be processed in transposed convolution. Using smaller filter sizes
reduces the amount of parameters. Tuning these parameters allows
greater depth. The models, except the baseline model, use 8 channels
and pooling/upsampling by the factor of 2 in the intermediate layers.
All models are listed with their parameters in tab. 1. The model shown
in fig. 2(a) consists of the following operations:

1. Convolution block with 5x5 kernel, 1 input and 8 output channels
a) Convolution with 8 bit integer mask and input
b) Offset with 16 bit values
¢) Rounding to 8 bit integers
d) ReLu

126

Designing segmentation CNNs for FPGAs

. Max pooling
. Convolution block with 5x5 kernel and 8 channels

. Max pooling

. Transposed convolution block with 5x5 kernel and 8 channels

2
3
4
5. Upsampling
6
7. Upsampling
8

. Transposed convolution block with 5x5 kernel and 1 channel

To save FPGA resources, all convolutions except the first and last
layer of a model are carried out sequentially. This should pose only
a minor impact on throughput and latency due to the reduced data
rate after the max pooling operation. Other common operations like
skip connections, fully connected layers, etc. were not considered due
to their hardware requirements and/or implementation complexity.

Table 1: The models evaluated. “Type” denotes the structure of the model with the ab-
breviations : “c” for convolution, “e” for encoder layer, “d” for decoder layer
and “d (c)” for a decoder layer with convolutions instead of transposed con-
volutions. ”"K” denotes the kernel size, e.g.5 by 5. "Ups.” denotes the order
of upsampling operations: before the transposed convolution or after it. “Para
Cnt” denotes the number of model parameters.

Model Type K. Ups. Para Cnt
Base 2 Conv. 5 - 817
4layer5a 2e,2d 5 before 3625
4 layer 5 b 2¢,2d 5 after 3625
6 layer 5 a 3¢, 3d 5 before 6841
6layer3a 3e,3d 3 before 2489

5

3

3

3

6 layer 5 b 3e,3d after 6841
6 layer 3 b 3e,3d after 2489
6layer3ac 3e,3d(c) before 2489
6layer3bc 3e,3d(c) after 2489

127

S. Wezstein et al.

472 N
f |

Figure 1: 2 layer baseline network. Generated with [11].

2.3 Data

We use two industrial datasets to compare the proposed model’s per-
formances. The first dataset is the refined industrial burner dataset
published in [12], [13]. It contains images with a resolution of 552 x 552
pixels. We use the dataset without augmentation to compare our re-
sults with theirs. They provide two datasets, “DataA” and ”“DataB”,
we use the first for our experiments, see fig. 3 for an example image.
We swapped the test (160 images) and train (40 images) folder as they
seem to be accidentally swapped.

The dataset has no predefined test subset, we use the validation set
for testing.

The second dataset is a transparent plastic granule dataset based
on our own data. The raw data was generated with a 16384 pixel
wide line scan camera in a transmitted light setup. The granules to
scan were poured on a slide while the camera was triggered at a line
rate of 100 kHz. The raw data was filtered with a global threshold to
remove most of the empty images. Segment Anything Model (SAM)
[14] was used to generate masks for the granules. The masks were
manually refined, the objects cropped to single 256 x 256 pixel images
and randomly stitched to 512x 512 pixel images (fig. 4). For training
we use a 60/20/20 percent split. The stitched dataset, which is used
for training, consists of 1004 images.

128

Designing segmentation CNNs for FPGAs

(a) 4 layer encoder-decoder-architecture with up-
sampling before transposed convolution.

/8

(b) 4 layer encoder-decoder-architecture with
upsampling after transposed convolution.

Figure 2: 4 layer examples of the proposed encoder-decoder-architecture. The evaluated
models vary in convolution kernel and pooling/upsampling sizes and in layer
count. Generated with [11].

2.4 Evaluation workflow

For both datasets, each model is trained 10 times to gain statistics about
the reached model performance. The models are trained from scratch
with their default initialization defined by QKeras.

Training parameters:

129

S. Wezstein et al.

— e

(a) Industrial burner dataset im- (b) Industrial burner dataset
age data example. Resolution: ground truth example. Resolu-
552 x 552 pixel. tion: 552 x 552 pixel.

Figure 3: Example image pair of the industrial burner dataset. [13, “DataA”, image /mask
172]

S &£
Q<

(a) Image data example, consist- (b) Segmentation ground truth

ing of four cropped granule example, consisting of four
samples. Resolution: 512x512 cropped granule samples.
pixel. Resolution: 512 x 512 pixel.

Figure 4: Example image pair of our granule dataset.

e Batch size: 32

¢ Epoch count: 1500 for granules, 5000 for burner flames

130

Designing segmentation CNNs for FPGAs

* Optimizer: Adam
® Loss function: Binary Cross Entropy

Based on the captured statistics and the estimated performance, the
best performing parameters are picked and implemented with Visu-
alApplets. Timing measurements are implemented, too. The FPGA
simulation results are compared to the results of QKeras. After syn-
thesis, a 8192 x 512 pixel test image is uploaded to the FPGA and pro-
cessed. The timing data is then evaluated.

3 Results

The test results of the best training run for each model are shown in
table 2. All models perform better than the global threshold experi-
ment, which yielded a foreground class intersection over union (IoU)
of 81.4 % (test set of "Data A”) and 80.2 % (test set of “Data B”) for the
burner flames and 51.5% for the granules, except the baseline model
which is below for the burner flames. We perform a grid search like [12]
did. We consider our result of “Data B” for our comparison, because
of the same result in [12, tab. 1].

Due to problems in the implementation of transposed convolutions
with VA, all models were trained with normal convolutions in the de-
coder layers. The models which were not implemented for the FPGA
use transposed convolutions and are listed for comparison. The results
for the FPGA implementations are listed in table 3.

Our best model on the burner dataset is “6 layer 3 b ¢” with a mean
IoU of 92.8% and a foreground class IoU of 89.7 %. We implemented
this architecture on the FPGA, see tab. 3. Our best model on the gran-
ules dataset is ”6 layer 5 a” with a mean IoU of 97.9 % and a foreground
class IoU of 96.5 %. The best model which we could implement on the
FPGA is 76 layer 3 b ¢” with a mean IoU of 96.7 % and a foreground
class IoU of 94.7 %. In comparison to the reference results of [12, tab.
1], most of our models perform better than their traditional machine
learning models, with 86.6 % at best for an MLP. Our models perform
worse compared to their neural networks with their worst results at
91.9 % (U-Net (MN)) and their best at 92.3 % (DL3+ (RN101)). We only
consider their results for training from scratch as we did. The results

131

S. Wezstein et al.

for the granule dataset show even better IoU values compared to the
burner dataset results. This shows the potential of our models for seg-
mentation in granule sorting.

In terms of inference time, the baseline model and the two 6 layer
models take roughly 1ms while the others take more time. This is
due to the sequential calculation of the 8 channels while the amount
of data is only reduced to 1/4 of the input bandwidth. The inference
of the big image drops the throughput to around half the bandwidth.
This behavior requires further investigation. Performing the upsam-
pling operation after the convolution has positive effects for the IoU
and for throughput. The simulation shows small differences between
PC inference and FPGA inference. We suspect rounding problems as
root case.

Table 2: The intersection over union (IoU) results of the models segmentation perfor-
mance. “B” denotes the industrial burner dataset. “G” denotes the granule
dataset. "FG” denotes the foreground class, "Mean” the mean IoU of back-
ground and foreground class. All values in %.

Model Mean IoUB IoUFGB MeanIoUG IoU FG G
Global Threshold 86.3 80.2 69.8 51.5
Base 87.7 82.4 79.7 67.4
4 layer 5 a 92.2 88.8 93.7 89.9
4 layer 5b 92.7 89.5 96.1 93.6
6 layer 5 a 92.6 89.4 97.9 96.5
6 layer 3 a 92.3 89.0 94.8 91.5
6 layer 5 b 92.6 89.5 97.7 96.3
6 layer 3 b 92.7 89.6 96.8 94.8
6layer3ac 92.5 89.3 95.5 92.6
6layer 3b c 92.8 89.7 96.7 94.7

4 Conclusion

We showed the potential of low parameter models for the usage in
semantic segmentation with FPGAs. The models perform better than
initially expected, superseding the traditional machine learning meth-
ods of [12] while having more throughput and lower latencies. Having
an additional latency between 0.105ms and 1.904 ms, the models and

132

Designing segmentation CNNs for FPGAs

Table 3: The throughput/latency and resource occupation results of the FPGA imple-
mentations. “"L2L"” denotes the time between processing the first pixel of a line
and retrieving the first processed pixel of that line using the 8192 pixel wide test
image. “Time B” denotes the inference time for a single 552 x 552 pixel image of
the burner dataset. "LUT, FF, DSP and BRAM” show the relative resource con-
sumption of the model on the FPGA.

Model L2L Time B LUT FF DSP BRAM
[ms] [ms] [%] [%] [%] [%]
Base 0.105 + 2.3e-3 1.041 48.83 3233 241 37.78

4 layer 5 a 1.780 + 0.14 2.755 28.29 31.27 8531 78.89
4 layer 5 b 1.904 £ 0.16 2.074 2841 313 8531 61.25
6layer3ac 1.393 +0.13 1.067 6546 40.89 37.79 38.61
6layer 3bc 1.669 +0.17 1.058 65.68 40.68 37.79 325

implementations are considerable candidates for line scan applications.
Future work will target the rounding problems in the FPGA implemen-
tation. Because of the usage of quantization aware training, we suspect
the FPGA to have exactly the same output as computed on the PC. In
addition the throughput decrease for large images needs will be in-
vestigated, too. We expect to be able to increase the throughput and
parameter count further with bigger FPGAs, hopefully available in the
near future. Future work will target the implementation of more so-
phisticated CNN-operations, too.

References

1. S. Wezstein, M. Stelzl, and M. Heizmann, “Latency evaluation of an FPGA-
based sorting system,” in 9th Sensor-Based Sorting & Control 2022, K. Greiff,
H. Wotruba, A. Feil, N. Kroell, X. Chen, D. Giirsel, and V. Merz, Eds., 04
2022, pp. 143-160.

2. S. Wezstein, O. Griff, M. Stelzl, and M. Heizmann, “Latency evaluation of
a CNN enhanced FPGA-based sorting system,” in 10th Sensor-Based Sort-
ing & Control 2024, ser. Sensor-Based Sorting & Control, K. Greiff, A. Feil,
L. Weitkdmper, N. Kroell, T. Scherling, D. Giirsel, and V. Merz, Eds., vol. 10.
Diiren: Shaker Verlag, 03 2024, pp. 67-88.

3. Basler AG, “VisualApplets Graphical FPGA Programming,” https://www.
baslerweb.com/en/software/visualapplets/, 2024, online, accessed 21-
September-2024.

133

S. Wezstein et al.

4.

——, “imaFlex CXP-12 Quad,” https://www.baslerweb.com/en/shop/
imaflex-cxp-12-quad/, 2024, online, accessed 21-September-2024.

——, “VisualApplets User Manual,” https://docs.baslerweb.com/
visualapplets/files/manuals/content/device_resources.html, 2024, online,
accessed 21-September-2024.

. C.N. C. J. au2, A. Kuusela, S. Li, H. Zhuang, T. Aarrestad, V. Loncar,

J. Ngadiuba, M. Pierini, A. A. Pol, and S. Summers, “Automatic
heterogeneous quantization of deep neural networks for low-latency
inference on the edge for particle detectors,” 2021. [Online]. Available:
https:/ /arxiv.org/abs/2006.10159

7. E Chollet et al., “Keras,” https:/ /keras.io, 2015.
8. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

10.

11.

12.

13.

14.

134

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, 1. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015, software available
from tensorflow.org. [Online]. Available: https://www.tensorflow.org/

Basler AG, “VisualApplets User Manual,” https://docs.baslerweb.com/
visualapplets/files/manuals/content/operator_documentations.html,
2024, online, accessed 21-September-2024.

Stanford Vision Lab, Stanford University and Princeton University,
“ImageNet,” https://www.image-net.org/, 2021, online, accessed 21-
September-2024.

H. Igbal, “Harisiqbal88/plotneuralnet v1.0.0,” Dec. 2018. [Online].
Available: https://doi.org/10.5281/zenodo.2526396

S. Landgraf, M. Hillemann, M. Aberle, V. Jung, and M. Ulrich, “Segmen-
tation of industrial burner flames: A comparative study from traditional
image processing to machine and deep learning,” Tech. Rep., 2023.

S. Landgraf, M. Hillemann, M. Ulrich, M. Aberle, and V. Jung, “Dataset for
the segmentation of industrial burner flames,” 2023. [Online]. Available:
https:/ /publikationen.bibliothek kit.edu /1000159497

A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao,
S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollar, and R. Girshick, “Segment
anything,” arXiv:2304.02643, 2023.

